Science.gov

Sample records for gamma spectrometry spectra

  1. Analysis of spectra from portable handheld gamma-ray spectrometry for terrain comparative assessment.

    PubMed

    Dias, Flávio; Lima, Marco; Sanjurjo-Sánchez, Jorge; Alves, Carlos

    2016-04-01

    Geological characteristics can have impacts on societal development by, e.g., geotechnical issues and radiological hazard levels. Due to urban sprawl, there is an increasing need for detailed geological assessment. In this work are analysed data from portable handheld gamma-ray spectra (K, eU and eTh) obtained in granitic and Silurian metaclastic outcrops as well as in an profile, roughly N-S, on soil covered terrains transecting a mapped contact between these rock types (the profile's northern extremity is at locations mapped as granite). Estimations from gamma-ray spectra were studied by univariate and multivariate analyses. K, eU and eTh values were higher on granite in relation to Silurian metaclastic rocks. The northern extremity of the profile showed clearly higher contents of eTh and this contrast was supported by univariate statistical tools (normality plot and Wilk-Shapiro test; boxplots). A ternary plot with the contribution of the elements to gamma-ray absorbed dose showed the separation of granite from Silurian metaclastic rocks with the former being nearer the eTh vertex. The points in the northern extremity of the profile are nearer the eTh vertex than the other points on the profile. These visual suggestions were supported by hierarchical cluster analysis, which was able to differentiate between granite and metaclastic outcrops and separate portions of the profile located on different terrains. Portable gamma-ray spectrometry showed, hence, the potential to distinguish granite and metaclastic terrains at a scale useful for engineering works. These results can also be useful for a first comparative zoning of radiological hazards (which are higher for granite). PMID:26867098

  2. EML Gamma Spectrometry Data Evaluation Program

    SciTech Connect

    Decker, Karin M.

    2001-01-01

    This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV to 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these results by the users.

  3. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  4. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  5. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  6. Photon energy conversion efficiency in gamma-ray spectrometry.

    PubMed

    vec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed. PMID:26474210

  7. EML Gamma Spectrometry Data Evaluation Program

    SciTech Connect

    Decker, Karin M.

    1998-02-28

    This report represents the results of the analyses for the second EML Gamma Spectrometry Data Evaluation Program (August 1997). A calibration spectrum, a background spectrum and three sample spectra were included for each software format as part of the evaluation. The calibration spectrum contained nuclides covering the range from 59.5 keV to 1836 keV. The participants were told fallout and fission product nuclides as well as naturally occurring nuclides could be present. The samples were designed to test the detection and quantification of very low levels of nuclides and the ability of the software and user to properly resolve multiplets. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Twenty-nine sets of results were reported from a total of 70 laboratories who received the spectra. The percentage of the results within 1 F of the expected value was 76, 67, and 55 for samples 1, 2, and 3, respectively. From all three samples, 12% of the results were more than 3 F from the expected value. Sixty-two nuclides out of a total of 580 expected results were not reported for the three samples. Sixty percent of these false negatives were due to nuclides which were present at the minimum detectable activity level. There were 53 false positives reported with 60% of the responses due to problems with background subtraction. The results indicate that the Program is beneficial to the participating laboratories in that it provides them with analysis problems that are difficult to create with spiked samples due to the unavailability of many nuclides and the short half-lives of others. EML will continue its annual distribution, the third is to be held in March 1999.

  8. Covariance Analysis of Gamma Ray Spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-01

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  9. Covariance analysis of gamma ray spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-15

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  10. Applications of Monte Carlo simulations of gamma-ray spectra

    SciTech Connect

    Clark, D.D.

    1995-12-31

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry.

  11. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGESBeta

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore » multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  12. Gamma-ray Output Spectra from 239Pu Fission

    NASA Astrophysics Data System (ADS)

    Ullmann, John

    2015-05-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  13. Parametric Studies for 233U Gamma Spectrometry

    SciTech Connect

    Scheffing, C.C.; Krichinsky, A.

    2004-01-01

    Quantification of special nuclear material is a necessary aspect to assuring material accountability and is often accomplished using non-destructive gamma spectrometry. For 233U, gamma rays are affected by matrix and packaging attenuation and by a strong Compton continuum from decay products of 232U (inherently found in 233U) that obscure 233U gamma photopeaks. This project, based on current work at the national repository for separated 233U located at Oak Ridge National Laboratory (ORNL), explores the effects of various parameters on the quantification of 233U– including material form and geometry. Using an attenuation correction methodology for calculating the mass of 233U from NDA analysis, a bias of almost 75% less than the actual 233U mass was identified. The source of the bias needs to be understood at a more fundamental level for further use of this quantification method. Therefore, controlled experiments using well characterized packages of 233U were conducted at the repository and are presented in this paper.

  14. Resonant Compton scattering and gamma-ray burst continuum spectra

    NASA Technical Reports Server (NTRS)

    Baring, M. G.

    1995-01-01

    The Thomson limit of resonant inverse Compton scattering in the strong magnetic fields of neutron stars is considered as a mechanism for producing gamma-ray burst continuum spectra. Photon production spectra and electron cooling rates are presented using the full magnetic Thomson cross-section. Model emission spectra are obtained as self-consistent solutions of a set of photon and electron kinetic equations, displaying spectral breaks and other structure at gamma-ray energies.

  15. Composite mapping experiences in airborne gamma spectrometry.

    PubMed

    Bucher, B

    2014-08-01

    During an international intercomparison exercise of airborne gamma spectrometry held in Switzerland 2007 teams from Germany, France and Switzerland were proving their capabilities. One of the tasks was the composite mapping of an area around Basel. Each team was mainly covering the part of its own country at its own flying procedures. They delivered the evaluated data in a data format agreed in advance. The quantities to be delivered were also defined in advance. Nevertheless, during the process to put the data together a few questions raised: Which dose rate was meant? Had the dose rate to be delivered with or without cosmic contribution? Activity per dry or wet mass? Which coordinate system was used? Finally, the data could be put together in one map. For working procedures in case of an emergency, quantities of interest and exchange data format have to be defined in advance. But the procedures have also to be proved regularly. PMID:24664949

  16. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    SciTech Connect

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  17. Monte Carlo simulations of plutonium gamma-ray spectra

    SciTech Connect

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-07-16

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum.

  18. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    SciTech Connect

    Katakura, J. ); England, T.R. )

    1991-11-01

    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.

  19. Neutron spectra unfolding in Bonner spheres spectrometry using neural networks.

    PubMed

    Kardan, M R; Setayeshi, S; Koohi-Fayegh, R; Ghiassi-Nejad, M

    2003-01-01

    The neural network method has been used for the unfolding of neutron spectra in neutron spectrometry by Bonner spheres. A back propagation algorithm was used for training of neural networks. 4 mm x 4 mm bare LiI (Eu) and in a polyethylene sphere set: 2, 3, 4, 5, 6, 7, 8, 10, 12, 18 inch diameter have been used for unfolding of neutron spectra. Neural networks were trained by 199 sets of neutron spectra, which were subdivided into 6, 8, 10, 12, 15 and 20 energy bins and for each of them an appropriate neural network was designed and trained. The validation was performed by the 21 sets of neutron spectra. A neural network with 10 energy bins which had a mean value of error of 6% for dose equivalent estimation of spectra in the validation set showed the best results. The obtained results show that neural networks can be applied as an effective method for unfolding neutron spectra especially when the main target is neutron dosimetry. PMID:12862240

  20. Formation of cyclotron lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1989-01-01

    A transmission model of gamma-ray burst sources is studied using the relativistic QED magnetic-resonant opacities including multiple photon scattering, incorporated into a discrete-ordinate radiative-transport scheme. The physics of the cyclotron line-producing region is discussed in general, and the expected line profiles, relative harmonic strengths, and polarizations are indicated under various conditions. The calculated spectra for these models show good agreement with the spectra reported from Ginga for GB 880205 and GB 870303.

  1. A sensitive continuum analysis method for gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Thakur, Alakh N.; Arnold, James R.

    1993-01-01

    In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.

  2. Inversion of neutron/gamma spectra from scintillator measurements

    NASA Astrophysics Data System (ADS)

    Khler, J.; Ehresmann, B.; Martin, C.; Bhm, E.; Kharytonov, A.; Kortmann, O.; Zeitlin, C.; Hassler, D. M.; Wimmer-Schweingruber, R. F.

    2011-11-01

    The Radiation Assessment Detector (RAD) on-board NASA's Mars Science Laboratory (MSL) rover will measure charged particles as well as neutron and gamma radiation on the Martian surface. Neutral particles are an important contribution to this radiation environment. RAD measures them with a CsI (Tl) and a plastic scintillator, which are both surrounded by an anticoincidence. The incident neutron/gamma spectrum is obtained from the measurements using inversion methods which often fit a functional behavior, e.g., a power law, to the measured data applying the instrument response function and, e.g., a least-squares method. In situations where count rates are small, i.e., where the stochastic nature of the measurement is evident, maximum likelihood estimates with underlying Poissonian statistics improve the resulting spectra. We demonstrate the measurement and inversion of gamma/neutron spectra for a detector concept featuring one high-density scintillator and one high-proton-content scintillator. The applied inversion methods derive the original spectra without any strong assumptions of the functional behavior. Instrument response functions are obtained from Monte-Carlo simulations in matrix form with which the instrument response is treated as a set of linear equations. Using the response matrices we compare a constrained least-squares minimization, a chi-squared minimization and a maximum likelihood method with underlying Poissonian statistics. We make no assumptions about the incident particle spectrum and the methods intrinsically satisfy the constraint of non-negative counts. We analyzed neutron beam measurements made at the Physikalisch Technische Bundesanstalt (PTB) and inverted the measurement data for both neutron and gamma spectra. Monte-Carlo-generated measurements of the expected Martian neutron/gamma spectra were inverted as well, here the maximum likelihood method with underlying Poissonian statistics produces significantly better results.

  3. The 2002 IAEA test spectra for low-level ?-ray spectrometry software

    NASA Astrophysics Data System (ADS)

    Los Arcos, Jos M; Blaauw, Menno; Fazinic, Stjepko; Kolotov, Vladimir P.

    2005-01-01

    Test spectra for low-level ?-ray spectrometry were acquired and made available to the general public at www.iri.tudelft.nl/~rc/fmr/iaea2002. As opposed to the 1995 test spectra, where reference values were made available only for the peak energies and areas, the new set of test spectra was acquired with certified sources, so that the reference values are radionuclide activities. Two well-defined detection geometries were employed: a 500 ml Marinelli beaker on a 33% relative efficiency HPGe detector; and a 100 ml pillbox on a 96% HPGe detector. The complete set addresses various issues that are especially important in low-level gamma-ray spectrometry, i.e. determination of efficiency curves in the presence of coincidence summing, differences in source geometry and density between standard and sample, poor statistics, shielding of background by the sample, use of low X- or ?-ray energies and the assumption of secular equilibrium of the natural radionuclides. The set was used in an IAEA intercomparison of software packages in December, 2002, reported on in a separate paper.

  4. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  5. Features in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Stanek, Krzysztof Z.; Paczynski, Bohdan; Goodman, Jeremy

    1993-01-01

    Gravitational lensing of cosmological gamma-ray bursts by objects in the mass range about 10 exp 17 to 10 exp 20 g (femtolensing) may introduce complicated interference patterns that might be interpreted as absorption or emission lines in the bursts' spectra. This phenomenon, if detected, may be used as a unique probe of dark matter in the universe. The BATSE spectral data should allow one to detect such spectral features or to put significant upper limits on the cosmic density of a dark matter component that may be in the femtolensing range. Software to generate theoretical spectra has been developed, and it is accessible over the computer network with anonymous ftp.

  6. Diversity and Patterns: Gamma-ray spectra of AGN

    NASA Astrophysics Data System (ADS)

    Wagner, Stefan

    2012-07-01

    Gamma ray emission from AGN is generally thought to be related to relativistic beaming in jets and is associated with high Doppler boosting. Doppler boosting inferred from gamma-ray observations are often significantly higher than those determined by other techniques at lower energy bands. Furthermore, GeV and TeV facilities have discovered AGN of different flavors beyond the traditional Blazar objects. The sources discovered have been classified at lower energy bands as belonging to different classes, many of which are not though to display significant Doppler boosting at all. This study compares GeV-TeV spectra and broad-band SEDs of AGN belonging to different classes. It aims at identifying patterns related to different source classes in order to understand whether the phenomenon of significant gamma-ray emission is related to similar processes in AGN of otherwise different overall characteristics or whether there are indeed fundamentally different mechanisms of gamma-ray emission operating in different AGN types. The effects of limited dynamic range of gamma-ray observations, diversity in gamma-ray properties among otherwise similar AGN, and ambiguities in derivation of Doppler factors will be discussed.

  7. The sharpness of gamma-ray burst prompt emission spectra

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase. Appendices are available in electronic form at http://www.aanda.org

  8. Magnetic photon splitting and gamma ray burst spectra

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1992-01-01

    The splitting of photons into two photons becomes both possible and significant in magnetic fields in excess of 10(exp 12) Gauss. Below the threshold energy, 2m sub e c(exp 2) for single photon pair production, splitting can be an astronomically observable phenomenon evident in gamma ray burst spectra. In such circumstances, it was found that magnetic photon splitting reprocesses the gamma ray burst continuum by degrading the photon energy, with a net effect that is quite similar to pair cascade reprocessing of the spectrum. Results are presented for the spectral modifications due to splitting, taking into account the different probabilities for splitting for different polarization modes. Unpolarized and polarized pair cascade photon spectra form the input spectra for the model, which calculates the resulting splitting reprocessed spectra numerically by solving the photon kinetic equations for each polarization mode. This inclusion of photon polarizations is found to not alter previous predictions that splitting produce a significant flattening of the hard X ray continuum and a bump at MeV energies below a pair production turnover. The spectrum near the bump is always strongly polarized.

  9. Report of the Department of Energy, Office of Environmental Management, Gamma Spectrometry Data Validation Program

    SciTech Connect

    Decker, K.; Sanderson, C.G.; Greenlaw, P.

    1996-11-01

    This report represents the results of analyses received on or before August 15, 1996 for the first annual Gamma Spectrometry Data Validation Program (May 1996) designed to assess the capability of DOE laboratories and DOE contractors in performing routine gamma spectra analyses. Data reduction of gamma spectra are normally performed with computer codes supplied by commercial manufacturers or are developed in house. Earlier evaluations of commercial codes gave spurious results for complex spectrum. A calibration spectrum, a background spectrum and three sample spectra of increasing complexity were included for each format. The calibration spectrum contained nuclides covering the energy range from 59.5 keV to 1836 keV. The first two samples contained fallout nuclides with halflives of over 30 days. Naturally occurring nuclides were also present. The third sample contained both short and long lived fission product nuclides. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Sixteen software packages were evaluated. In general, the results do not appear to be dependent on the software used. Based on the control limits established for the Program for the three sample spectra, 62%, 63% and 53%, respectively, of the reported results were evaluated as acceptable.

  10. Seabed gamma-ray spectrometry: applications at IAEA-MEL.

    PubMed

    Osvath, I; Povinec, P P

    2001-01-01

    The technique of underwater gamma-ray spectrometry has been developed to complement or replace the traditional sampling-sample analysis approach for applications with space-time constraints, e.g. large areas of investigation, emergency response or long-term monitoring. IAEA-MEL has used both high-efficiency NaI(Tl) and high-resolution HPGe spectrometry to investigate contamination with anthropogenic radionuclides in a variety of marine environments. Surveys at the South Pacific nuclear test sites of Mururoa and Fangataufa have been used to guide sampling in areas of high contamination around ground zero points. In the Irish Sea offshore from the Sellafield nuclear reprocessing plant, a gamma-ray survey of seabed sediment was carried out to obtain estimates of the distribution and subsequently, for the inventory of 137Cs in the investigated area. PMID:11379061

  11. Experimental simulation of A-bomb gamma ray spectra: revisited.

    PubMed

    Pattison, John E; Payne, Lester C; Hugtenburg, Richard P; Beddoe, Alun H; Charles, Monty W

    2004-01-01

    It has been reported recently that the A-bomb gamma ray spectra received by the colon of the average Japanese survivor of Hiroshima and Nagasaki may be experimentally simulated using a hospital-based Philips SL15 linear accelerator. The simulated A-bomb gamma radiation may be used in radiobiology experiments to determine, amongst other things, the biological effectiveness of the A-bomb gamma radiation. However, in that study, the electron beams from the linear accelerator were poorly defined and photon contamination was ignored. In the study reported here, a Varian Clinac 2100C linear accelerator has been used for the same purpose but with photon contamination included in better defined output electron beams. It is found that the A-bomb gamma radiation can still be matched to an acceptable degree (<10%). The cause of the slightly poorer fit was due mainly to the different ranges of energies available from the linear accelerators used. The absorbed dose received by model breasts was also estimated in this study for the same situations as in the previous study. The ratio of the breast to colon doses was found to be only (3.9 +/- 4.0)% low compared with the expected values of 1.17 and 1.16 for Hiroshima and Nagasaki, respectively. These results provide further confirmation of the acceptability of the simple cylindrically symmetrical body models employed in these studies to represent the average Japanese survivor. PMID:15254320

  12. Spectra and positions of galactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Knight, F. K.; Matteson, J. L.; Jung, G. V.; Rothschild, R. E.

    1985-01-01

    The UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO-1 scanned the galactic center region during three epochs in 1977 and 1978 from 13 to 180 keV. The results are presented from the scanning epoch of 1978 September. Twenty-two known 2 to 10 keV source positions were necessary for an acceptable fit to the data. The spectra of the 16 strongest, least confused sources are all consistent with power laws with photon spectral indices ranging from 2.1 to 7.2. Acceptable fits to thermal bremsstrahlung models are also possible for most sources. No one source in this survey can be extrapolated to higher energy to match the intensity of the gamma-ray continuum as measured by HEAO-1 large field of view detectors, which implies that the continuum is a composite of contributions from a number of sources.

  13. On gamma-ray bursts spectra: A possible theoretical understanding

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Popov, Mikhail; Chechetkin, Valery; Baranov, Andrey

    2015-12-01

    The study of spectra of gamma-ray burst is certainly a very promising part of the GRB studies. More and more data are available for GRBs and with time-sequence analysis it is possible also to propose a link with the other set of data represented by the light curves. Consequently, the explanation of the spectra requires both the local physical condition of the engine as well as the dynamic of the explosion process. In this view, we have analysed the GRB spectra with a specific model: black-body + thermal Bremsstrahlung. Our results show that this model is consistent with the observed GRB spectra. We can derive the temperature of the hot plasma needed to reproduce this spectrum consistent with the core of a very hot star ˜109 K. We have also found a correlation between the variation in time of this temperature and the variation of the spikes in luminosity of the light curves. This time profile each spike could be the correct fingerprint of the GRB physical process.Each spike, as a fingerprint, could keep the memory of the GRB physical process. If this model find a confirmation for other GRBs, this idea will ask us to open a new paradigm in GRB physics.

  14. Analysis of size-fractionated soil samples by gamma spectrometry.

    PubMed

    Savva, M I; Karangelos, D J; Anagnostakis, M J; Simopoulos, S E

    2016-03-01

    The purpose of this work was to investigate the effect of particle size on radionuclides in soil, particularly in relation to depth. A set of soil samples at the 0-10cm and 10-20cm depth layers were collected, separated into size fractions using a sieving machine and analyzed by gamma spectrometry to determine (238)U, (226)Ra, (210)Pb, and (137)Cs. Significant variations between different size fractions and depth layers were observed. A 0-20cm depth profile was also investigated. PMID:26671791

  15. Gamma ray spectrometry of LDEF samples at SRL

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1992-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed.

  16. Gamma ray spectrometry of LDEF samples at SRS

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1991-01-01

    A total of 31 samples from Long Duration Exposure Facility (LDEF), including materials of Al, V, and steel trunnions were analyzed by ultralow level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include an end piece that collects noticeable Be-7 on its leading surface. No significant Be-7 was detected in the samples analyzed. The most sensitive analyses were performed with a 90 pct. efficient HPGe gamma ray detector, which is enclosed in a purged active/passive active shield.

  17. Matrix of Response Functions for Deconvolution of Gamma-ray Spectra

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Ulin, S. E.

    An approach for creation the response functions'matrix for the xenon gamma-ray detector is discussed. A set of gamma-ray spectra was obtained by Geant4 simulation to generate the matrix. Iterative algorithms used allow to deconvolve and restore initial gamma-ray spectra. Processed spectrum contains peaks that help to identify and estimate a activity of a radioactive source. Results and analysis of experimental spectra deconvolution are shown.

  18. Gamma-ray Output Spectra from 239 Pu Fission

    SciTech Connect

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  19. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  20. Gamma spectrometry of 234Th (238U) in environmental samples.

    PubMed

    El-Daoushy, Farid; Hernndez, Francisco

    2002-07-01

    Environmental samples from a wide-range of aquatic and soil deposits, mainly of Scandinavian origin, were analysed for 234Th (238U) using low-level gamma-spectrometry. The diversity of the samples, in terms of composition and ages, allowed a detailed evaluation of the analytical problems associated with gamma-ray spectrometry with focus on the reliability of the 234Th peaks for absolute determination of the 234Th activities. The X-ray contributions in the 93 keV peak were compared with the corresponding self-absorption corrected activities of the 63 keV peak. These X-ray contributions were, also, correlated with the 238U, 232Th, 235U, 40K and 137Cs activities of the samples. Despite the difficulties imposed by the self-absorption corrections, the 63 keV peak is still the best option. Large variability in the 93 keV peak interferences, due to X-rays from Th, exists in sediment and soil samples. Only in the case of young ombrotrophic peat samples was it possible to conclude that the 93 keV peak is free from X-ray contributions and can be as good as the 63 keV Monte-Carlo self-absorption corrected peak. X-ray contributions in the samples correlated with the 238U and 232Th activities, only, in closed environmental systems where a secular equilibrium with the daughters of the U/Th series can occur. PMID:12173662

  1. Energy spectra of cosmic gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Klebesadel, R. W.; Strong, I. B.

    1973-01-01

    Spectral measurements of six cosmic gamma-ray bursts in the energy region of 0.1 to 1.2 MeV, made using a semi-omnidirectional X-ray detector on IMP-6 are reported. These measurements confirm the hard X-ray or gamma-ray nature of the bursts, as inferred from the original observations by Klebesadel et al., (1973), and show that their maximum energy release is in this several hundred keV region. Each burst consists of several 1 or 2-second pulses each with the characteristic spectrum of approximately 150-keV exponential, followed by a softer decay. There is no evidence of line structure in this energy region, or for a marked change in the energy spectrum within a given pulse. Event size spectra are estimated for galactic and extragalactic models; the total emission is consistent with present measurements of the diffuse background, and unlikely to account for any spectral feature in the few-MeV region.

  2. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  3. Gamma-ray spectra from neutron capture on /sup 87/Sr

    SciTech Connect

    Sullivan, R.E.; Becker, J.A.; Stelts, M.L.

    1981-07-01

    The gamma-ray spectrum following neutron capture on /sup 87/Sr was measured at 3 neutron energies: E/sub n/ = thermal, 2 keV, and 24 keV. Gamma rays were detected in a three-crystal Ge(Li)-NaI-NaI pair spectrometer. Gamma-ray intensities deduced from these spectra by spectral unfolding are presented.

  4. High-resolution gamma-ray spectrometry in uranium exploration

    USGS Publications Warehouse

    Moxham, Robert M.; Tanner, Allan B.

    1977-01-01

    Sedimentary-type uranium deposits accumulate at favorable sites along a migration path which may be kilometers in length. Their source is a large volume of rock from which the uranium has been leached. The geochemical mobilities and half lives of uranium and its daughter products vary widely so that they are transported from the source rocks, at different rates, along the migration path to their ultimate site. The radioactive disequilibrium resulting from this process has been well documented in the immediate vicinity of ore deposits, and disequilibrium is commonly recorded on gamma-ray logs up the hydraulic gradient from uranium ore. Little is known about the state of secular equilibrium in the leached host rocks, which often represent the only part of the migration path that is at or near the surface and is thus most accessible to the exploration geophysicist. High-resolution gamma-ray spectrometry provides a means of investigating the disequilibrium associated with uranium leaching and migration. Direct measurement of uranium can be made by this method, and the equivalent weight percents can be determined for six of the seven daughter-product decay groups that characterize the state of radioactive equilibrium. The technique has been used quantitatively in laboratory studies, where the results compare favorably with radiochemical analyses; field experiments suggest that semi-quantitative data may be obtained at the outcrop.

  5. Measured neutron and gamma spectra from californium-252 in a tissue-equivalent medium.

    PubMed

    Elson, H R; Stupar, T A; Shapiro, A; Kereiakes, J G

    1979-01-01

    A method of experimentally obtaining both neutron and gamma-ray spectra in a scattering medium is described. The method utilizes a liquid-organic scintillator (NE-213) coupled with a pulse-shape discrimination circuit. This allows the separation of the neutron-induced pulse-height data from the gamma-ray pulse-height data. Using mathematical unfolding techniques, the two sets of pulse-height data were transformed to obtain the neutron and gamma-ray energy spectra. A small spherical detector was designed and constructed to reduce the errors incurred by attempting spectral measurements in a scattering medium. Demonstration of the utility of the system to obtain the neutron and gamma-ray spectra in a scattering medium was performed by characterizing the neutron and gamma-ray spectra at various sites about a 3.7-microgram (1.5 cm active length) californium-252 source in a tissue-equivalent medium. PMID:492077

  6. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlire, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  7. Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

    SciTech Connect

    William Quam

    2001-09-01

    This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to large source to detector distances. The usual laboratory measurements are done with small sources at 20 to 50 cm ranges. Practical ranges for aerial work will be 50 to 100 meters or greater. These distances will require correction for air attenuation for most of the low energy isotopes. The approximations used in the present note for aerial measurements involve small diameter sources (diameter approximately equal to the altitude), a 1 kt pass, and a planar array with no aircraft attenuation material in the field of view. The array will have a collimator to limit the side-looking sensitivity to enable a more accurate extrapolation from the laboratory data. Large arrays will have significant physical size and weight compared to the small hand-held instruments thus far constructed. We estimate these parameters and extrapolate the power consumption to provide a realistic estimate of a suitable airborne system. In all cases these larger systems are lighter and physically more compact than the usual NaI or high purity Germanium (HPGe) systems used in aerial work. Thus deployment should be simple. The power consumption is much less as well.

  8. Spectra, fluxes, and observability of gamma rays from dark matter annihilation in the Galaxy

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Tylka, A. J.

    1989-01-01

    Details of the physics of gamma-ray production by the annihilation of dark matter particles in the Galaxy are presented. Improved gamma-ray spectra and fluxes are calculated and compared with present observational data on cosmic gamma-ray fluxes at high Galactic latitudes. A comparison with the gamma-ray flux from cosmic-ray interactions is made. It is found that gamma-rays from dark matter annihilation are most potentially observable from patches of the sky at high Galactic latitudes in directions having an unusually low total column density of gas and from a dark matter core at the Galactic center.

  9. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  10. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    SciTech Connect

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  11. Low level measurement of (60)Co by gamma ray spectrometry using γ-γ coincidence.

    PubMed

    Paradis, H; de Vismes Ott, A; Luo, M; Cagnat, X; Piquemal, F; Gurriaran, R

    2016-03-01

    This paper presents the latest development of the laboratory to measure the natural and artificial massic activities in environmental samples. The measurement method of coincident emitters by gamma-gamma coincidence using an anti-Compton device and its digital electronics is described. Results obtained with environmental samples are shown. Despite its low efficiency, this method decreases detection limits of (60)Co for certain samples compared to conventional gamma-ray spectrometry due to its very low background. PMID:26682892

  12. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    NASA Astrophysics Data System (ADS)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Hojbota, Calin; Jo, Sung Ha; Shin, Kang Woo; Sung, Jae Hee; Lee, Seung Ku; Cho, Byeoung Ick; Choi, Il Woo; Nam, Chang Hee

    2015-12-01

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  13. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation.

    PubMed

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Hojbota, Calin; Jo, Sung Ha; Shin, Kang Woo; Sung, Jae Hee; Lee, Seung Ku; Cho, Byeoung Ick; Choi, Il Woo; Nam, Chang Hee

    2015-12-01

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime. PMID:26724015

  14. Portable microcomputer unit for the analysis of plutonium gamma-ray spectra

    SciTech Connect

    Ruhter, W.D.; Camp, D.C.

    1981-10-01

    A portable microcomputer has been developed for the IAEA to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32K words of memory, a 20-character display for user prompting, and a 20-character thermal printer for hardcopy output. Only the positions of the 148-keV Pu-241 and 208-keV U-237 peaks are required for spectral analysis. The unit was tested against gamma-ray spectra taken of NBS plutonium standards and IAEA spectra. Results obtained are presented.

  15. Neutron and gamma dose and spectra measurements on the Little Boy replica

    SciTech Connect

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.

  16. Gamma ray spectra from targets irradiated by picosecond lasers

    NASA Astrophysics Data System (ADS)

    2011-09-01

    Photon spectra in the energy range 60 keV to 1 MeV were recorded from targets irradiated by the LLNL Titan and LLE EP picosecond lasers. The radiation consisted of K-shell radiation, bremsstrahlung radiation from MeV electrons, and preliminary evidence for 511 keV positron annihilation radiation. The spectra were recorded by two instruments, an energy-dispersive CCD detector with a CsI phosphor coating that operated in the single-hit per pixel mode and was absolutely calibrated using a Cs-137 662 keV source, and a wavelength-dispersive Cauchois type spectrometer employing a curved Ge(220) transmission crystal that operated in the first and second diffraction orders with high spectral resolution. The calibrated photon energy distributions from Au, Eu, and Al targets are compared to the energetic electron distributions emerging from the targets.

  17. Intergalactic magnetic field spectra from diffuse gamma-rays

    NASA Astrophysics Data System (ADS)

    Chen, Wenlei; Chowdhury, Borun D.; Ferrer, Francesc; Tashiro, Hiroyuki; Vachaspati, Tanmay

    2015-07-01

    Non-vanishing parity-odd correlators of gamma-ray arrival directions observed by Fermi-LAT indicate the existence of a helical intergalactic magnetic field with strength B 10-14 G on 10 Mpc scales. We successfully test this hypothesis using more stringent cuts of the data, Monte Carlo simulations with Fermi-LAT time exposure information, separate analyses for the Northern and Southern galactic hemispheres, and confirm predictions made in Tashiro & Vachaspati. With some further technical assumptions, we show how to reconstruct the magnetic helicity spectrum from the parity-odd correlators.

  18. QUALITY CONTROL FOR ENVIRONMENTAL MEASUREMENTS USING GAMMA-RAY SPECTROMETRY

    EPA Science Inventory

    This report describes the quality control procedures, calibration, collection, analysis, and interpretation of data in measuring the activity of gamma ray-emitting radionuclides in environmental samples. Included in the appendices are basic data for selected gamma ray-emitting ra...

  19. Analysis of multiplicity gated high energy gamma spectra for extracting giant dipole resonance parameters

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.

    2006-05-01

    The procedures adopted in analyzing the experimental multiplicity gated high energy gamma spectra for extracting the angular momentum dependent giant dipole resonance parameters have been discussed. A Monte Carlo based statistical model analysis is necessary for an accurate extraction of the parameters. A method is devised to use the code CASCADE for making an equivalent Monte Carlo calculation of the multiplicity gated high energy gamma spectra. A practical approach for a fast search of the resonance parameters using this equivalent Monte Carlo analysis is suggested and the accuracy of such procedure is demonstrated.

  20. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  1. ADONIS, high count-rate HP-Ge {gamma} spectrometry algorithm: Irradiated fuel assembly measurement

    SciTech Connect

    Pin, P.; Barat, E.; Dautremer, T.; Montagu, T.; Normand, S.

    2011-07-01

    ADONIS is a digital system for gamma-ray spectrometry, developed by CEA. This system achieves high count-rate gamma-ray spectrometry with correct dynamic dead-time correction, up to, at least, more than an incoming count rate of 3.10{sup 6} events per second. An application of such a system at AREVA NC's La Hague plant is the irradiated fuel scanning facility before reprocessing. The ADONIS system is presented, then the measurement set-up and, last, the measurement results with reference measurements. (authors)

  2. Nondestructive determination of plutonium by gamma spectrometry and neutron well coincidence counting

    NASA Astrophysics Data System (ADS)

    Agarwal, Chhavi; Poi, Sanhita; Nathaniel, T. N.; Mhatre, Amol; Kalsi, P. C.; Singh, Sarbjit; Goswami, A.

    2009-03-01

    Different NDA methods based on gamma ray and neutron measurements developed for the determination of Pu in solid samples is reported. In the gamma spectrometric measurements for solid samples, a method which takes advantage of the multiple ?-rays emitted by Pu and relies on the empirical relation between apparent mass of the sample and ?-ray energy was used. The method is applicable for the determination of small quantities of plutonium samples of non standard geometry by gamma ray spectrometry. The gross and coincidence neutron count rates for two different sets of standard Pu oxide powder samples were found to fall on different calibration lines. Isotopic composition of the two sets were determined using gamma ray spectrometry to obtain effective 240Pu content in the samples. A common calibration curve could be obtained when coincidence count rates were plotted vs. effective 240Pu content.

  3. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination with the relative activities of Cs-134/Co-60 (Co-60 is introduced as a dopant) to yield the burnup and enrichment for each pebble. Furthermore, a direct consequence of the relative approach is the ability to apply a self-calibration scheme using the multiple gamma lines of Ba-La-140 to establish the relative efficiency curve of the HPGe detector. An assessment of the expected uncertainty components in this approach showed that a maximum uncertainty of less than 5% should be feasible. To confirm the above findings, gamma-ray scans were performed on irradiated PULSTAR reactor fuel assemblies at North Carolina Sate University. The measurements used a 40% efficient n-type coaxial HPGe detector connected to an ORTEC DSPEC plus digital Gamma-Ray Spectrometer, and a data acquisition computer. The obtained results showed consistency with the predictions of the simulations including the observation of the I-132, Cs-134, Np-239 uncontaminated gamma lines. In addition, the Ba-La-140 lines were clearly observed confirming the ability to perform relative calibration of the spectrometer.

  4. Programs in C for parameterizing measured 5? 5? NaI gamma response functions and unfolding of continuous gamma spectra

    NASA Astrophysics Data System (ADS)

    Nguyen, H. V.; Campbell, J. M.; Couchell, G. P.; Li, S.; Pullen, D. J.; Schier, W. A.; Seabury, E. H.; Tipnis, S. V.

    1996-02-01

    A 5? 5? NaI(Tl) detector has been used to measure gamma-ray spectra resulting from the decay of aggregate fission products. In order to extract the true gamma-ray energy distribution from the measured spectra, the detector response functions for monoenergetic gamma rays spanning the energy range of the measurements must be determined. At present we have measured 13 such response functions in the energy range 0.081-6.13 MeV. NGRC is a program in C written to implement an interpolation scheme for estimating the response function at any other intermediate energy. This program takes a library of response function tails and constructs a response function matrix which is used as input to a second program CRSUP written for obtaining gamma-ray energy distributions. It assumes the measured spectrum consists of a superposition of a specified number of response functions placed at energies determined by the program according to the detector resolution and spectrum end point energy. The program then computes the distribution of the strength of the response functions in a least-squares fashion. This program is designed to maximize the number of response functions that can be used in modeling the measured spectrum without reducing the number of bins used in each response function. The response functions constructed by the interpolation procedure have been used in the program SPEC-FIT to fit in a least-squares fashion the gamma-ray spectrum of 152Eu. The fit is an excellent reproduction of both the photopeak and continuous regions of the entire measured spectrum. Finally the validity of the least-square method implemented by CRSUP has also been tested by using this program to unfold an analytically constructed continuous spectrum. The results obtained were in excellent agreement with the assumed distribution function, illustrating the applicability of CRSUP for unfolding other types of continuous spectra as encountered in beta, neutron-time-of-flight and Rutherford-backscattering spectroscopy.

  5. Calculated Neutron and Gamma-ray Spectra across the Prismatic Very High Temperature Reactor Core

    SciTech Connect

    James W. Sterbentz

    2008-05-01

    Neutron and gamma-ray flux spectra are calculated using the MCNP5 computer code and a one-sixth core model of a prismatic Very High Temperature Reactor based on the General Atomics Gas Turbine-Modular Helium Reactor. Spectra are calculated in the five inner reflector graphite block rings, three annular active core fuel rings, three outer graphite reflector block rings, and the core barrel. The neutron spectra are block and fuel pin averages and are calculated as a function of temperature and burnup. Also provided are the total, fast, and thermal radial profile fluxes and core barrel dpa rates.

  6. Study of total gamma spectra correlation for extending identification range over photopeak analysis

    NASA Astrophysics Data System (ADS)

    Dooley, A. W.

    1984-03-01

    This report shows that gamma spectra identification by total flux correlation can be used to extend identification range over photo peak methods. Identification was based on two decision rules both employing cross-correlation coefficients. The largest coefficient (first decision rule) matched the unknown spectra with the correct source thirty-seven out of thirty-eight trials. The proposed likelihood function (second decision rule) had a success rate of thirty-five out of thirty-eight trials. These results were based on spectra generated by the transport code, Morse.

  7. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    SciTech Connect

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  8. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    SciTech Connect

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: (1) a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, (2) a data-analysis application to analyze plutonium gamma-ray spectra for plutonium isotopic ratios and weight percents of total plutonium, (3) and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 2 describes the operations of these applications and the installation and maintenance of the software.

  9. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  10. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    NASA Astrophysics Data System (ADS)

    Prettyman, T.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. approximately 140g/cm2 for inelastic scattering and approximately 50 g/cm2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum on order to determine the contribution of individual elements.

  11. Pulse profiles and spectra of gamma ray pulsars in the polar cap model

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Daugherty, Joseph K.

    We investigate predictions for pulse profiles and spectra of gamma-ray pulsars in the polar cap curvature radiation-initiated cascade model. In this model, the gamma-ray beam is a hollow cone centered on the magnetic pole, producing either double-peaked or single-peaked pulse profiles depending on observer orientation. We have computed simulated distributions of pulse peak phase separation seen by observers at random orientation as a function of gamma-ray beam width and obliquity distribution. The observed distribution of pulse peak phase separation, which favors double-peaked pulses with phase separation near 0.4, can be matched assuming that most gamma-ray pulsars have obliquity < 45 deg and beam opening angles of around 30 deg. The gamma-ray spectra result from primary particle curvature radiation, softened by synchrotron radiation from one or more generations of electron-positron pairs. We have determined the generation number and predicted spectral index of gamma-ray pulsar cascades as a function of period and surface magnetic field. It is found that the spectral hardness should decrease with cascade generation number and increase with characteristic age, a trend observed for EGRET-detected pulsars.

  12. Fission studies by prompt gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Materna, T.; Letourneau, A.; Amouroux, Ch.; Marchix, A.; Litaize, O.; Sérot, O.; Regnier, D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G.; Leoni, S.; de France, G.; Urban, W.

    2015-05-01

    The feasibility of retrieving accurate fission observables with a Ge-detector array around a fissile target placed in a cold neutron beam was tested. In three measurement campaigns performed at ILL with the EXILL setup, 235U and 241Pu targets were placed in the high flux cold neutron beam available at the PF1B neutron guide. Gamma-rays following fission were detected by an array of 16 Ge detectors. In the following study, part of data was analyzed as a proof of principle. A set of yields belonging to the Kr-Ba pair were extracted using a gamma-gamma coincidence technique. Preliminary results were compared to the predictions of two phenomenological models: GEF and FIFRELIN.

  13. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOEpatents

    Hartwell, Jack K. (Idaho Falls, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Blackfoot, ID); Killian, E. Wayne (Idahoe Falls, ID)

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  14. Plutonium isotopic analysis of nondescript samples by gamma-ray spectrometry

    SciTech Connect

    Gunnink, R.

    1981-09-01

    A gamma-ray spectrometry system has been developed for the Savannah River Plant that when coupled with calorimetry will allow a complete nondestructive assay of various plutonium product and waste materials contained in sealed cans. The computer-based system employs two germanium detectors to obtain spectral information that is analyzed in a unique fashion to obtain plutonium isotopic ratios.

  15. High resolution GRB spectra from the Transient Gamma-Ray Spectrometer (TGRS)

    NASA Astrophysics Data System (ADS)

    Palmer, D. M.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Pehl, R.; Madden, N.; Owens, A.

    1996-08-01

    The Transient Gamma-Ray Spectrometer (TGRS) is a germanium spectrometer designed to produce high-resolution (2-3 keV) spectra of bright gamma-ray bursts. In its first year of operation it has triggered on 62 GRBs, of which ~33 were bright enough for spectroscopy. Almost all of these bursts were also seen by the Konus detectors on the same spacecraft, and about half were also observed by BATSE. This allows the instruments and their results to be compared and will allow line candidates seen by any of the instruments to be confirmed or refuted by the others. This paper presents some typical spectra from GRBs observed by TGRS, and includes for comparison the corresponding BATSE and Konus spectra.

  16. Characterization of coal and charcoal by alpha-particle and gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Carrasco Lourtau, A. M.; Rubio Montero, M. P.; Jurado Vargas, M.

    2015-11-01

    Although coal and charcoal have similar physical and chemical characteristics, there are several crystallographic procedures used to distinguish and characterize them. But if the matrix is crushed, there is no standard procedure to distinguish coal from charcoal. In this work, a procedure to characterize coal and charcoal samples based on the radioactive content is proposed. The first assay is by gamma-ray spectrometry, which allows a part of the radioactive content to be determined rapidly and non-destructively. Then, alpha-particle spectrometry is applied to assay the content of those radionuclides which are difficult to determine precisely by gamma-ray spectrometry. This second technique requires prior chemical purification of the carbon sample in order to separate the corresponding radionuclides of interest.

  17. ON WEAK REDSHIFT DEPENDENCE OF GAMMA-RAY SPECTRA OF DISTANT BLAZARS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander

    2012-05-20

    Line-of-sight interactions of cosmic rays provide a natural explanation of the hard gamma-ray spectra of distant blazars, which are believed to be capable of producing both gamma rays and cosmic rays. For sources with redshifts z {approx}> 0.1, secondary gamma rays produced in cosmic-ray interactions with background photons close to an observer can dominate over primary gamma rays originating at the source. The transition from one component to another is accompanied by a change in the spectral index depending on the source redshift. We present theoretical predictions and show that they agree with the data from Fermi Large Area Telescope. This agreement, combined with the spectral data from Atmospheric Cherenkov Telescopes, provides evidence of cosmic-ray acceleration by active galactic nuclei and opens new opportunities for studying photon backgrounds and intergalactic magnetic fields.

  18. Simulation of gamma-ray spectra for a variety of user-specified detector designs

    NASA Technical Reports Server (NTRS)

    Rester, A. C., Jr.

    1994-01-01

    The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.

  19. Application of PERALS alpha spectrometry and gamma spectrometry for analysis and investigation of environmental spills at ISL uranium mining projects.

    PubMed

    Borysenko, A; Ostrowski, A; Bellifemine, D; Palmer, G; Haigh, P; Johnston, A

    2014-03-01

    Radiation protection and environmental monitoring in mining requires effective and reliable radionuclide analysis at all stages of the mine project-prior to mining, during operation and through to remediation and decommissioning. The approach presented in this paper was specially developed for the monitoring of radioactive waste resulting from spills during mining and mineral processing operations and uses a combination of high resolution gamma spectrometry, and PERALS alpha spectrometry to identify and reliably quantify the activity of the major members of the U-238 decay chain at activities down to 10 mBq g(-1) by direct radionuclide counting and by assessment of the activity of their decay products. This approach has reduced sample preparation and analysis time while providing effective analysis and quantification of naturally occurring radionuclides in environmental samples. It has been successfully applied to several in situ leach (ISL) mining-related projects involving investigations of process material spill impacts and also to routine environmental monitoring. PMID:24270399

  20. Monitoring of Martian atmosphere with gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Gasnault, O.; D'Uston, C.; Forni, O.; Maurice, S.

    Mars Odyssey has been monitoring the leakage gamma-rays from Mars since 2002 [1]. The spectrum of these gamma-rays is made of a dominating continuum plus lines (only 4% of the count rates) [2]. The latter have been used to build compositional maps of the surface [3]; the former can be analyzed to monitor atmospheric variations with time and place [4, 5]. Sometimes both aspects can be combined when during polar winters it is possible to track the argon in the atmosphere through its discrete gamma-ray line [6]. The Martian atmosphere is quite transparent (free mean path of about 100km) at these energies (100 keV - 10 MeV), and consequently the continuum varies by only a few percents over the Martian year. However the statistics are good enough to see these variations. Previous studies revealed short and long term time variations, as well as regional differences. In particular we noticed earlier that the atmospheric cycle looks slightly different from one year to the other. Deep basins (Argyre and Hellas) seem also to act as reservoirs at some seasons. We will present an update of the study of the gamma-ray continuum, including the latest data available, in terms of transparency of the Martian atmosphere. [1] Boynton et al. (2004) Space Sci. Rev., 110 (1), 37-83; [2] Evans et al. (2006) J. Geophys. Res., accepted; [3] Boynton et al. (2006) J. Geophys. Res., in preparation; [4] Gasnault et al. (2003) LPSC 34, abstract #1649 CD-ROM; [5] Gasnault et al. (2005) 1st Mars Express Sci. Conf., Noordwijk, Netherlands; [6] Sprague et al. (2006) J. Geophys. Res., accepted.

  1. Characteristics of raindrop spectra as normalized gamma distribution from a Joss-Waldvogel disdrometer

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Thurai, Merhala; Han, Dawei

    2012-05-01

    The raindrop spectra observed in a precipitation system is a complex phenomenon that can help to explain the underlying physical processes of rainfall. This paper explores the characteristics of raindrop spectra in terms of drop size distributions (DSD) using seven years of Joss-Waldvogel disdrometer data within the mid-latitude UK region climatology. A total of 162,415 one-minute "filtered" raindrop spectra obtained from the disdrometer are fitted into a normalized gamma DSD model describing DSDs by the concentration parameter (Nw), the drop diameter (Dm and D0), and the shape parameter (?). The results show that the rain rates retrieved from the normalized gamma DSD model are in good agreement with the disdrometer measured rain rates, implying the appropriateness of the raindrop spectra as normalized gamma distributions. The DSD characteristics are studied in different seasonal ("cold" and "warm"), atmospheric ("dry" and "wet") as well as rain type ("stratiform" and "convective") contexts in a long-term perspective. It has been revealed that the normalized gamma DSD parameters are very sensitive to the rain intensities. The mass weighted mean drop diameter Dm clearly increases exponentially with respect to the rain intensities. Variation of the DSDs in different contexts is also exposed reflecting seasonal, atmospheric and rain type consequence on raindrop spectra. Particularly, the scatterplot between the concentration parameter log10Nw and the median drop diameter D0 exhibits clear separation index between stratiform and convective DSDs. There is a large difference in averaged mass weighted mean drop diameters among stratiform and convective segments (stratiform < Dm> = 0.988 mm versus convective < Dm> = 1.99 mm). The DSD inconsistency in different contexts have been further examined in terms of the Z-R relationships (Z = aRb) variability. Additionally, 10 selected events taken place during the study period are also investigated, in which each of the events has shown unique DSD characteristics.

  2. On line gamma-ray spectrometry at open sea.

    PubMed

    Tsabaris, C; Ballas, D

    2005-01-01

    Set up and application of a stationary monitoring network for measuring specific gamma- activities in the Aegean Sea are described. Three NaI scintillator based spectrometers have been used to detect the gamma rays. The gross counting rate of each system was found to be nearly constant, when there was no rainfall. The volumetric activity of the natural gamma-ray emitter 40K in open sea varied from 12,200 to 13,000 Bq/m3. The counting rate for 1461 keV 40K radiation was measured by intercalibration with an appropriate salinity sensor mounted close to the NaI-detector system. A simple relation between the counting rate and the salt concentration has been observed. The amount of the artificial radioactivity from 137Cs was increased up to seven times higher after strong rainfall, compared to the radiation level as given in literature (3.5-5.5 Bq/m3), while the 214Bi counting rate was increased up to ten times compared to the data without rainfall. PMID:15498689

  3. Inclusive gamma-ray spectra from psi/3095/ and psi-prime/3684/ decays

    NASA Technical Reports Server (NTRS)

    Biddick, C. J.; Burnett, T. H.; Masek, G. E.; Miller, E. S.; Smith, J. G.; Stronski, J. P.; Sullivan, M. K.; Vernon, W.; Badtke, D. H.; Barnett, B. A.

    1977-01-01

    Inclusive gamma-ray experiments were carried out in a e(+)e(-) colliding-beam apparatus with NaI(Tl) arrays as detectors. The inclusive gamma-ray spectra, after cosmic-ray background subtraction, are shown as histograms for the decays of the psi(3095) and psi-prime(3684). The psi spectrum has no significant narrow structure, while the psi-prime spectrum shows at least four peaks. Three major radiative decays of the psi-prime(3684) are found, and their respective branching fractions are computed.

  4. Thermal-neutron-capture prompt-gamma emission spectra of representative coals. [1. 5 to 11 MeV

    SciTech Connect

    Herzenberg, C L; Olson, I K

    1981-12-01

    Prompt gamma ray emission spectra have been calculated from 1.5 to 11 MeV for a wide range of coal compositions exposed to a thermal neutron flux. These include contributions to the spectra from all of the major and minor elements present in the coals. Characteristics of the spectra are discussed and correlated with the coal compositions.

  5. Measurement of Branching Fractions and Mass Spectra of B to K pi pi gamma

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-07-12

    The authors present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B {yields} K{pi}{pi}{gamma} in the range m{sub K{pi}{pi}} < 1.8 GeV/c{sup 2}. They reconstruct four final states: K{sup +}{pi}{sup -}{pi}{sup +}{gamma}, K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}, K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}{gamma}, and K{sub S}{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}, where K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}. Using 232 million e{sup +}e{sup -} {yields} B{bar B} events recorded by the BABAR experiment at the PEP-II asymmetric-energy storage ring, they measure the branching fractions {Beta}(B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +}{gamma}) = (2.95 {+-} 0.13(stat.) {+-} 0.20(syst)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}) = (4.07 {+-} 0.22(stat.) {+-} 0.31(syst.)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup +}{pi}{sup -}{gamma}) = (1.85 {+-} 0.21(stat.) {+-} 0.12(syst.)) x 10{sup -5}, and {Beta}(B{sup +} {yields} K{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}) = (4.56 {+-} 0.42(stat.) {+-} 0.31(syst.)) x 10{sup -5}.

  6. Natural Radiation from Soil using Gamma-Ray Spectrometry

    SciTech Connect

    Silveira, M. A. G.; Moreira, R. H.; Paula, A. L. C. de; Medina, N. H.

    2009-06-03

    We have studied the distribution of natural radioactivity in the soil of Interlagos, in Sao Paulo city and Billings Reservoir, in Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the effective radiation dose is due to the elements of the {sup 238}Th decay series, with smaller contributions from {sup 40}K and the elements of the series of {sup 238}U. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.

  7. The spectra program library: A PC based system for gamma-ray spectra analysis and INAA data reduction

    USGS Publications Warehouse

    Baedecker, P.A.; Grossman, J.N.

    1995-01-01

    A PC based system has been developed for the analysis of gamma-ray spectra and for the complete reduction of data from INAA experiments, including software to average the results from mulitple lines and multiple countings and to produce a final report of analysis. Graphics algorithms may be called for the analysis of complex spectral features, to compare the data from alternate photopeaks and to evaluate detector performance during a given counting cycle. A database of results for control samples can be used to prepare quality control charts to evaluate long term precision and to search for systemic variations in data on reference samples as a function of time. The entire software library can be accessed through a user-friendly menu interface with internal help.

  8. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  9. Gamma ray spectrometry of LDEF samples at SRL

    NASA Astrophysics Data System (ADS)

    Winn, W. G.

    1991-07-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90 percent efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  10. Measurements of the Martian Gamma/Neutron Spectra with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Brinza, D.; Weigle, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Martin-Garcia, C.; Boehm, E.; Posner, A.; Rafkin, S. C.; Kortmann, O.

    2013-12-01

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover curiosity measures the energetic charged and neutral particle spectra and the radiation dose rate on the Martian surface. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first measurements of the Martian gamma/neutron spectra and compare them to theoretical predictions. We find that the shape of the gamma spectrum is very similar to the predicted one, but with a ~50% higher intensity. The measured neutron spectrum agrees well with prediction up to ~100 MeV, but shows a considerably increased intensity for higher energies. The measured neutron spectrum translates into a radiation dose rate of 25 ?Gy/day and a dose equivalent rate of 106 ?Sv/day. This corresponds to 10% of the total surface dose rate, and 15% of the biological relevant surface dose equivalent rate on Mars. Measuring the Martian neutron spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat. The contribution of neutrons to the dose equivalent increases considerably with shielding thickness, so our measurements provide an important figure to mitigate cancer risk.

  11. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    SciTech Connect

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detectors self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  12. NEUTRON GENERATOR OUTPUT MONITORING FOR NORMALIZATION OF GAMMA-RAY SPECTRA.

    SciTech Connect

    MITRA,S.; WIELOPOLSKI, L.

    2006-05-08

    Neutron generators (NG) being devices where neutron outputs are accomplished electrically, suffer from fluctuations in their outputs. Of particular importance are the short term variations that may affect individual data acquisition runs. Thus when using NGs for quantitative neutron-induced gamma-ray spectroscopy, the neutron output must be continuously monitored in real time, and normalization procedures subsequently applied to properly evaluate the gamma-ray spectra. Using a plastic scintillator, we developed a scheme for detecting fast neutrons that relies firstly, on recording a spectrum and, secondly, on establishing a region-of-interest (ROI) that may effectively discriminate against gamma rays that are always present in a neutron field. We discuss the optimization of these procedures for a field system to measure carbon in soil.

  13. Similarity analysis of spectra obtained via reflectance spectrometry in legal medicine.

    PubMed

    Belenki, Liudmila; Sterzik, Vera; Bohnert, Michael

    2014-02-01

    In the present study, a series of reflectance spectra of postmortem lividity, pallor, and putrefaction-affected skin for 195 investigated cases in the course of cooling down the corpse has been collected. The reflectance spectrometric measurements were stored together with their respective metadata in a MySQL database. The latter has been managed via a scientific information repository. We propose similarity measures and a criterion of similarity that capture similar spectra recorded at corpse skin. We systematically clustered reflectance spectra from the database as well as their metadata, such as case number, age, sex, skin temperature, duration of cooling, and postmortem time, with respect to the given criterion of similarity. Altogether, more than 500 reflectance spectra have been pairwisely compared. The measures that have been used to compare a pair of reflectance curve samples include the Euclidean distance between curves and the Euclidean distance between derivatives of the functions represented by the reflectance curves at the same wavelengths in the spectral range of visible light between 380 and 750 nm. For each case, using the recorded reflectance curves and the similarity criterion, the postmortem time interval during which a characteristic change in the shape of reflectance spectrum takes place is estimated. The latter is carried out via a software package composed of Java, Python, and MatLab scripts that query the MySQL database. We show that in legal medicine, matching and clustering of reflectance curves obtained by means of reflectance spectrometry with respect to a given criterion of similarity can be used to estimate the postmortem interval. PMID:23897013

  14. Investigation of Failed TRISO Fuel Assay Using Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Harp, Jason Michael

    TRISO microsphere fuel is the fundamental fuel unit for Very High Temperature Reactors (VHTR). A single TRISO particle consists of an inner kernel of Uranium Oxycarbide surrounded by layers of pyrolytic carbon and silicon carbide. The silicon carbide serves as the primary barrier to the release of fission products into the core. If the silicon carbide layer fails, fission gas, especially Kr and Xe, will begin to escape the failed particle. In order to understand the behavior of TRISO fuel under in-core conditions, a series of experiments is being conducted by Idaho National Lab at the Advanced Test Reactor. AGR-1 is the first of these experiments. It will measure fission product release due to failed TRISO particles. Simulations of this experiment have been conducted at North Carolina State University to develop a method for the analysis of the results of the experiment. The ATR core was simulated using the Monte Carlo code MCNP to calculate the expected neutron energy spectrum for the AGR-1 experimental test train. This spectrum was used to create one-group cross sections for implementation in ORIGEN calculations of the amount of activity produced in the experiment. Several theoretical models have been developed to describe the phenomenon of gas release. While each model is based on similar physics, different models contain unique features that distinguish them from one another. These Release to Birth (R/B) models are developed and applied to the activity found in the ORIGEN calculations to create expected release activities. The release activity is used to create gamma-ray spectra that are representative of the different R/B models. Expected R/B due to a model can be calculated for comparison to the experiment with knowledge of the number of failed particles in the spectra. The comparison of measured to predicted R/B ratios gives insight into the physics of release and also helps validate specific models. Direct comparison is possible, but many of the uncertainties associated with direct comparison are nullified through the use of relative indicators. Each R/B model has a unique set of indicators that reflect the physical processes simulated in the model. Trends in the model indicators can be matched up with trends in indicators derived from the release spectra to validate either an entire model or validate the need to consider certain parameters in the creation of a complete and successful release to birth model. Gamma spectrometry is a useful tool for the understanding of fission gas release from failed TRISO particles. A better understanding of the processes that influence fission gas release will influence the fuel manufacturing and quality assurance protocols during the continued development of the VHTR. Future work in this area includes experiment in which the conditions can be better controlled to document the effects of temperature and fission rate in the fuel.

  15. Rapid analysis of 226Ra in waters by gamma-ray spectrometry.

    PubMed

    Johnston, A; Martin, P

    1997-05-01

    Techniques for the determination of 226Ra in waters by gamma-ray spectrometry are examined, with an emphasis on methods capable of completion within 1-3 days of sample collection. Methods discussed utilise either: (i) the 186 keV 226Ra gamma ray, with the contribution from 235U being subtracted after a separate uranium determination, or (ii) measurement of ingrowing 222Rn progeny. An analysis of the statistical and systematic errors associated with each technique is presented. Examples are given of their application to analysis of uranium mine process waters. PMID:9204522

  16. Use of MCNP + GADRAS in Generating More Realistic Gamma-Ray Spectra for Plutonium and HEU Objects

    SciTech Connect

    Rawool-Sullivan, Mohini; Mattingly, John; Mitchell, Dean

    2012-08-07

    The ability to accurately simulate high-resolution gamma spectra from materials that emit both neutrons and gammas is very important to the analysis of special nuclear materials (SNM), e.g., uranium and plutonium. One approach under consideration has been to combine MCNP and GADRAS. This approach is expected to generate more accurate gamma ray spectra for complex three-dimensional geometries than can be obtained from one-dimensional deterministic transport simulations (e.g., ONEDANT). This presentation describes application of combining MCNP and GADRAS in simulating plutonium and uranium spectra.

  17. Analysis of polypropyleneglycols using electrospray ionization mass spectrometry. Effects of cationizing agents on the mass spectra.

    PubMed

    Okuno, Shoji; Ohmoto, Masayoshi; Arakawa, Ryuichi

    2003-01-01

    In electrospray ionization mass spectrometry (ESI-MS) of polypropyleneglycol (PPG), effects of cationizing agents were examined. When NaI was used as a cationizing agent, the distribution of multiply-charged ions in the spectra was greatly affected by the ratio of cationizing agent and PPG. However, the distribution was not affected by the use of CH(3)COONH(4). With an increase of cone voltage, fragmentation occurred by in-source collision-induced dissociation (CID) when CH(3)COONH(4) was used. On the contrary, no decomposition of the PPG backbone was observed with NaI. Instead, the intensity of the lower-charged ions, whose mass-to-charge (m/z) ratios are larger, increased because of the elimination of Na(+) with increase of cone voltage. Under optimum conditions for ESI-MS analysis, PPGs that have different molecular weights, different initiators or end groups were easily and accurately characterized. A tandem mass spectrometry (MS/MS) study of NH(4)(+) adduct ions of PPG indicated that a vinyl-terminated linear structure is formed at the end group during the fragmentation. PMID:12748393

  18. Polarised IR and Raman spectra of the gamma-glycine single crystal.

    PubMed

    Baran, Jan; Ratajczak, Henryk

    2005-05-01

    Complete (full) set of the polarised IR and Raman spectra for the gamma-glycine single crystal at room temperature are presented. The polarised IR spectra were measured by the specular reflection method and the spectra of the imaginary parts of the refractive indices were computed by Kramers-Kronig transformation. The polarised properties of the bands are discussed with respect to the normal coordinate analysis (literature data) and diffraction crystal data (oriented gas model approximation). A very good agreement between the polarised properties of the bands and simple models of vibrations are observed for the stretching vibrations of the CH2 and COO- group. It is not the case for most of the deformation vibrations of the carboxylic group and of the skeleton. The polarization properties of the stretching vibrations of the NH3+ group are determined by their hydrogen bondings. PMID:15820895

  19. The potential of gamma-ray spectrometry as supplementary information for mapping central European soils

    NASA Astrophysics Data System (ADS)

    Schuler, U.; Bock, M.; Baritz, R.; Willer, J.; Pickert, E.; Kardel, K.; Herrmann, L.

    2012-04-01

    Permanently updated soil maps are needed inter alia for the prediction of landslide hazards, flooding and drought effects, land degradation monitoring, and precision farming. Since comprehensive and intensive field mapping is not affordable, alternative mapping approaches are required. A promising tool, with quite unrecognised potential for modern soil science is gamma-ray spectrometry. As the radioelements potassium, thorium and uranium respond differently to soil forming processes, it should be possible to infer from their concentration on weathering status, and after calibration on soil properties and types. This paper aims to investigate the potential of airborne gamma spectrometry for mapping of central European soils and soil properties. The study was conducted for a test site in Southern Saxony, Germany, 140*85 km wide, representing diverse soil landscapes. Seven different petrographic training and validation areas were chosen each. To assess the potential of gamma-ray spectrometry as additional data layer, predictions were carried out (i) with and (ii) without radiometric data. The outputs were compared with independent soil information of the validation areas. Both prediction runs used the following predictors: elevation, slope, curvature, planform curvature, profile curvature, terrain ruggedness index, relative altitude, vertical distance above drainage network, wetness index, and convergence index. As additional predictor parent material derived from a reclassification of the official geological map (1:1M scale) was used. As radiometric properties potassium, thorium and uranium were used. The radiometric raster datasets were generated by universal kriging using relative altitude as covariate. Training and validation datasets were selected from a comprehensive dataset representing more than 14.000 point data. Point data include soil types and substrates, and for more than 800 sites soil profiles with analysed texture, pH, exchangeable cations, nutrients, and efficient cation exchange capacity. The study shows that gamma spectrometry is suitable to enhance the prediction of soil types and properties such as texture significantly.

  20. Correction for radon distribution in solid/liquid and air phases in gamma-ray spectrometry.

    PubMed

    Carconi, P; Cardellini, F; Cozzella, M L; De Felice, P; Fazio, A

    2012-09-01

    The effect of radon diffusion and distribution between a (226)Ra matrix and the top air gap inside sample containers for gamma-ray spectrometry was studied. Containers filled at almost 100% or just 70% of total capacity yielded correction factors of about 7% and 20% respectively. Applying these correction factors allowed activity values calculated from (226)Ra or radon decay products to agree within 2%. PMID:22476014

  1. Determination of impurities in (124)I samples by high resolution gamma spectrometry.

    PubMed

    de Almeida, M C M; da Silva, R L; Delgado, J U; Poledna, R; de Araújo, M T F; Laranjeira, A S; de Veras, E; Braghirolli, A M S; Dos Santos, G R; Lopes, R T

    2016-03-01

    (124)I is a radionuclide used in the diagnosis of tumors. The National Health Agency requires identification and activity measurement of impurities. Using gamma spectrometry with an efficiency calibrated high-purity germanium detector, impurities (125)I and (126)I in an (1)(24)I production sample were identified. Activity ratios of (125)I and (126)I to (124)I were approximately 0.5% and 98%, respectively. PMID:26653211

  2. NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents

    SciTech Connect

    Mihalczo, J. T.; Mattingly, J. K.; Mullens, J. A.; Neal, J. S.

    2002-05-10

    The concept for the system described herein is an active/passive Nuclear Materials Identification System{sup 2} (NMIS) that incorporates gamma ray spectrometry{sup 3}. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure.

  3. Detection of Anomalous Gamma-Ray Spectra for On-Site Inspection

    SciTech Connect

    Seifert, Carolyn E.; Myjak, Mitchell J.; Pfund, David M.

    2009-05-29

    This work aims to solve some of the technical and logistical challenges inherent in performing On Site Inspection activities under the authority of the Comprehensive Nuclear-Test-Ban Treaty. Inspectors require equipment that can reliably identify the radionuclide signatures of nuclear test explosions amid a background of environmental contamination. Detection of these radiation anomalies by mobile search teams in the air or on the ground can narrow the search field and target specific areas for more detailed inspection or sampling. The need to protect confidential information of the inspected State Party, especially regarding past nuclear testing activities, suggests that full access to measured gamma-ray spectra should be limited. Spectral blinding techniques---in which only a fraction of the information derived from the spectra is displayed and stored---have the potential to meet the needs of both the OSI team and the State Party. In this paper, we describe one such algorithm that we have developed for identifying anomalous spectra from handheld, mobile, or aerial sensors. The algorithm avoids potential sensitivities by reducing the gamma-ray spectrum into a single number that is displayed and stored. A high value indicates that the spectrum is anomalous. The proposed technique does not rely on identifying specific radionuclides, operates well in the presence of high background variability, and can be configured to ignore specific spectral components. In previous work, the algorithm has proven very effective in classifying gamma-ray spectra as anomalous or not, even with poor statistical information. We performed a limited simulation of an airborne search scenario to demonstrate the potential algorithm for OSI missions. The technique successfully detected an injected source of interest whose count rate was an order of magnitude below background levels. We also configured the algorithm to ignore 137Cs as irrelevant to the mission. The resulting alarm metrics were unaffected by the presence of injected 137Cs contamination.

  4. Measurements of keV-neutron Capture Cross Sections and Capture Gamma-ray Spectra of Pd Isotopes

    NASA Astrophysics Data System (ADS)

    Terada, K.; Matsuhashi, T.; Hales, B.; Katabuchi, T.; Igashira, M.

    2014-05-01

    The capture cross sections and capture gamma-ray spectra of 104,105,106,108,110Pd were measured in the neutron energy region from 15 to 100 keV. A neutron time-of-flight method was utilized by means of an anti-Compton NaI(Tl) spectrometer and a 1.5 nsec pulsed neutron source via the 7Li(p,n)7Be reaction. The capture yields were obtained by applying a pulse-height weighting technique to the net gamma-ray pulse-height spectra. The capture cross sections of 104,105,106,108,110Pd were determined with uncertainties of less than 6%, using the standard capture cross sections of 197Au. The capture gamma-ray spectra of 104,105,106,108,110Pd were also derived by unfolding the respective observed capture gamma-ray pulse-height spectra.

  5. Testing of regolith of celestial bolides with active neutron gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Vostrukhin, Andrey; Mitrofanov, Igor; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton

    2015-04-01

    Current space instruments for studying planet's surface include gamma ray spectrometers that detect natural radioactive isotopes as well as gamma-rays induced in subsurface by galactic cosmic rays. When measuring from celestial body's surface, statistics and amount of detected elements can be dramatically increased with active methods, where soil exposed to artificial flux of particles. One good example is the Russian Dynamic Albedo of Neutron (DAN) instrument onboard Martian Science Laboratory mission (Curiosity rover) developed in 2005-2011. It is the first active neutron spectrometer flown to another planet as part of a landed mission to investigate subsurface water distribution and which has now successfully operated for more than two years on the Martian surface. Presentation describes a number of space instruments for different landers and rovers being developed in Russian Space Research Institute for studying Moon and Mars, as well as method of active neutron and gamma spectrometry overview.

  6. Monte Carlo calculations of neutron and gamma-ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Barnes, J.M.

    1983-01-01

    Neutron and gamma-ray energy spectra resulting from the interactions of approx. 14 MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree witin 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra are also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE.

  7. Experimental and MCNP simulated gamma-ray spectra for the UNCOSS neutron-based explosive detector

    NASA Astrophysics Data System (ADS)

    Eleon, C.; Perot, B.; Carasco, C.; Sudac, D.; Obhodas, J.; Valkovic, V.

    2011-02-01

    In the frame of the FP7 UNCOSS project (Underwater Coastal Sea Surveyor), whose aim is to develop a neutron-based explosive detection system to identify unexploded ordnance (UXO) lying on the sea bottom, the choice of the gamma-ray detector is essential to reach the optimal performances. This paper presents comparative tests between the two candidates: NaI(Tl) and LaBr 3(Ce) detectors, in favour to the 3 in.3 in. LaBr 3(Ce); thus, confirming the choice previously performed by numerical simulation because of its higher fast timing properties, spectral resolution, and efficiency per volume unit. The gamma-ray spectra produced by 14 MeV tagged neutron beams on the elements of interest (C, O, N, Al, Fe, Si, and Ca) have also been recorded with this detector in order to unfold the spectrum of the interrogated object into elementary contributions. A qualitative comparison with the gamma-ray spectra simulated with the MCNPX computer code and the ENDFB/VII.0 nuclear library has also been performed to validate the numerical model. An additional quantitative validation has been performed with an explosive-like material (ammonium acetate).

  8. Gamma ray Emission Spectra from Dark matter annihilation in dwarf galaxy Draco

    NASA Astrophysics Data System (ADS)

    Duorah, Kalpana

    2015-08-01

    The gamma ray emission from Dark Matter annihilation in the dwarf spheroidal galaxy Draco has been studied. Dwarf Spheroidal (dSph) galaxies are through to be the repository of dark matter due to their high mass to light ratio. Draco is believed to emit energy due to certain dark matter candidates. One of the most motivated dark matter appears to be the neutralino as predicted in the Minimal Supersymmetric Standard model(MSSM). The mass of the neutralino is constrained to be in the range 6GeV to 100TeV by the CMB measurements and accelerator searches. Gamma Ray Spectra and fluxes have been calculated for neutral no annihilation over a mass range (10-100) GeV. The gamma ray flux from the annihilation of 100GeVneutralino in the dSph galaxy Draco is found to be ~1.6x10^(-10) cm^(-2)s^(-1)GeV^(-1) . This is found to be agreeable with the observed flux as measured from a NFW density profile for dark matter distribution in Draco. The gamma ray distribution for neutral no annihilation shows a maximum value near the centre and found to falls off as radially.

  9. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    SciTech Connect

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The user interacts with the system by means of menus and screens that allow the user to select various applications and to enter information pertinent to a measurement. This information, along with the plutonium weight-percent-abundance results from the data analysis, is stored in dBASE III files. The spectral-data-analysis program, IAEAPU, determines the relative plutonium isotopic abundances from gamma-ray peaks in the 110- to 390-keV region of the spectral data. The program is compact so that it may be used on a portable, battery-operated, laptop, personal computer (PC) that uses a 3-1/2-in. floppy diskette. This is intended to be the final report on this work. We describe in detail the data-analysis methodology, the software, and the operation of the plutonium gamma-ray analysis system. 10 refs., 1 fig., 2 tabs.

  10. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  11. The imprint of the extragalactic background light in the gamma-ray spectra of blazars.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Schady, P; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bellazzini, R; Blandford, R D; Bloom, E D; Borgland, A W; Bottacini, E; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Domnguez, A; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Jackson, M S; Jogler, T; Kataoka, J; Kndlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Tramacere, A; Nuss, E; Greiner, J; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rain, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reyes, L C; Ritz, S; Rau, A; Romoli, C; Roth, M; Snchez-Conde, M; Sanchez, D A; Scargle, J D; Sgr, C; Siskind, E J; Spandre, G; Spinelli, P; Stawarz, ?ukasz; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ? 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band. PMID:23118013

  12. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Domnguez, A.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hays, E.; Jackson, M. S.; Jogler, T.; Kataoka, J.; Kndlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Tramacere, A.; Nuss, E.; Greiner, J.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rain, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ritz, S.; Rau, A.; Romoli, C.; Roth, M.; Snchez-Conde, M.; Sanchez, D. A.; Scargle, J. D.; Sgr, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Stawarz, ?ukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.

    2012-11-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  13. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Guirec, S.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Scargle, J. D.; Troja, E.

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  14. A Case Study Correlating Innovative Gamma Ray Scanning Detection Systems Data to Surface Soil Gamma Spectrometry Results - 13580

    SciTech Connect

    Thompson, Shannon; Rodriguez, Rene; Billock, Paul; Lit, Peter

    2013-07-01

    HydroGeoLogic (HGL), Inc. completed a United States Environmental Protection Agency (USEPA) study to characterize radiological contamination at a site near Canoga Park, California. The characterized area contained 470 acres including the site of a prototype commercial nuclear reactor and other nuclear design, testing, and support operations from the 1950's until 1988 [1]. The site history included radiological releases during operation followed by D and D activities. The characterization was conducted under an accelerated schedule and the results will support the project remediation. The project has a rigorous cleanup to background agenda and does not allow for comparison to risk-based guidelines. To target soil sample locations, multiple lines of evidence were evaluated including a gamma radiation survey, geophysical surveys, historical site assessment, aerial photographs, and former worker interviews. Due to the time since production and decay, the primary gamma emitting radionuclide remaining is cesium-137 (Cs-137). The gamma ray survey covered diverse, rugged terrain using custom designed sodium iodide thallium-activated (NaI(Tl)) scintillation detection systems. The survey goals included attaining 100% ground surface coverage and detecting gamma radiation as sensitively as possible. The effectiveness of innovative gamma ray detection systems was tested by correlating field Cs-137 static count ratios to Cs-137 laboratory gamma spectrometry results. As a case study, the area encompassing the former location of the first nuclear power station in the U. S. was scanned, and second by second global positioning system (GPS)-linked gamma spectral data were evaluated by examining total count rate and nuclide-specific regions of interest. To compensate for Compton scattering from higher energy naturally occurring radionuclides (U-238, Th-232 and their progeny, and K-40), count rate ratios of anthropogenic nuclide-specific regions of interest to the total count rate were calculated. From the scanning data, locations with observed Cs-137 ratios exceeding six standard deviations above the mean ratio were mapped in high resolution [2]. Field teams returned to those locations to collect static count measurements using the same detection systems. Soil surface samples were collected at 30 locations and analyzed for Cs-137. An exponential correlation was identified between Cs-137 concentrations in surface soil and field-scanned Cs-137 ratios. The data indicate field minimum detectable concentration (MDC) of Cs-137 at 0.02 Bq/g (0.5 pCi/g) or lower depending on contaminant distribution in soil. (authors)

  15. Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources

    SciTech Connect

    Sanchez-Conde, M. A.; Prada, F.; Paneque, D.; Bloom, E.; Dominguez, A.

    2009-06-15

    Axionlike particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as active galactic nuclei (AGNs). Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the extragalactic background light intensity at 3.6 {mu}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC, and VERITAS.

  16. Acquisition of prompt gamma-ray spectra induced by 14 MeV neutrons and comparison with Monte Carlo simulations.

    PubMed

    El Kanawati, W; Perot, B; Carasco, C; Eleon, C; Valkovic, V; Sudac, D; Obhodas, J; Sannie, G

    2011-05-01

    Gamma-ray spectra produced in carbon, nitrogen, oxygen, sodium, aluminium, silicon, chlorine, calcium, chromium, iron, nickel, copper, zinc, and lead by 14 MeV tagged neutrons have been collected with NaI(Tl) detectors of the EURITRACK system, which low-energy threshold has been reduced to 0.6 MeV to detect gamma rays of major elements like iron. The spectra have been compared with Monte Carlo simulations to check the tabulated gamma-ray production data. A quantitative approach to subtract the scattered neutron background is also reported. PMID:21295986

  17. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  18. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector at the previous activation point, could not be evaluated because of equipment failure.

  19. The Study of Equilibrium factor between Radon-222 and its Daughters in Bangkok Atmosphere by Gamma-ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Rujiwarodom, Rachanee

    2010-05-01

    To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.560.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.560.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand

  20. Measurement of gamma radiation levels in soil samples from Thanjavur using gamma-ray spectrometry and estimation of population exposure.

    PubMed

    Senthilkumar, B; Dhavamani, V; Ramkumar, S; Philominathan, P

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides (232)Th, (238)U and (40)K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using gamma-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of (232)Th, (238)U and (40)K is 42.9+/-9.4 Bq.kg(-1), 14.7+/-1.7 Bq.kg(-1) and 149.5+/-3.1 Bq.kg(-1) respectively are derived from all the soil samples studied. The activity concentration of (232)Th, (238)U and (40)K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h(-1) and 59.1 nGy.h(-1) with an arithmetic mean of 43.3 +/-9 nGy.h(-1). This value is lesser than the population weighted world-averaged of 60 nGy.h(-1). Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 muSv.y(-1) with an arithmetic mean of 53.1+/-11 muSv.y(-1). The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels. PMID:20177570

  1. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  2. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  3. A convenient method for discriminating between natural and depleted uranium by gamma-ray spectrometry.

    PubMed

    Shoji, M; Hamajima, Y; Takatsuka, K; Honoki, H; Nakajima, T; Kondo, T; Nakanishi, T

    2001-08-01

    A convenient method for discriminating between natural and depleted uranium reagent was developed by measuring and analyzing the gamma-ray spectra of some reagents with no standard source. The counting rates (R) of photoelectric peaks of gamma-rays from nuclides with the same radioactivity divided by their emission probability (B) are expressed as a function of gamma-ray energy. The radioactivities of 234Th and 234mPa and 21.72 times that of 235U are equal to the radioactivity of 235U in natural uranium. Therefore, the plot of 21.72-fold R/B for 235U should be on a curve fitted to the points for 234Th and 234mPa in natural uranium. Depleted uranium with a 235U isotopic composition of less than 0.68% could be discriminated from natural uranium in the case of a reagent containing 4.0 g of uranium. PMID:11393763

  4. Fluence Evaluations For Applications of In Situ Gamma-Ray Spectrometry in Non-Flat Terrain

    SciTech Connect

    Miller, Kevin M.

    1999-02-28

    Evaluations of gamma-ray fluence are made for source geometries that depart from the flat ground geometry that is used in standard applications of in situ spectrometry. Geometries considered include uniform source distributions for soil mounds on top of flat terrain, cylindrical wells, and rectangular trenches. The results indicate that scaling the standard fluence values for flat terrain by the ratio of solid angle subtended by the soil to 2? leads to fluence estimates that are accurate to within a few percent. Practical applications of in situ spectrometry in non-flat terrain also appears to be simplified by the fact that the angular correction factor for a typical coaxial detector in these geometries may typically be about the same as that computed for flat ground.

  5. Low Background Gamma-Ray Spectrometry in the 'Laboratoire Souterrain de Modane'

    SciTech Connect

    Hubert, Ph.; Hubert, F.

    2007-03-28

    Most of the underground experiments in physics and many studies in geology, biology or environmental sciences face a common requirement with the necessity of using experimental devices with ultra-low background radioactivity. Many developments involving many different techniques have been used in order to be able to measure extremely low levels of radioactivity in materials. This report will focus on low background gamma-ray spectrometry and will describe the work which has been carried out over the last fifteen years in the 'Laboratoire Souterrain de Modane' (LSM)

  6. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Okelley, G. D.

    1975-01-01

    Primordial and cosmogenic radionuclide concentrations are determined nondestructively by gamma-ray spectrometry in soil and rock samples from the returned Apollo 17 sample collection from Taurus-Littrow and Descartes. Geochemical evidence in support of field geology speculation concerning layering of the subfloor basalt flows is demonstrated along with a possible correlation of magmatic fractionation of K/U as a function of depth. The pattern of radionuclide concentrations observed in these samples is distinct due to proton bombardment by the intense solar flares of August 4-9, 1972. Such radionuclide determinations are used in determining lunar sample orientation and characterizing solar flare activity.

  7. Monte Carlo simulation by GEANT 4 and GESPECOR of in situ gamma-ray spectrometry measurements.

    PubMed

    Chirosca, Alecsandru; Suvaila, Rares; Sima, Octavian

    2013-11-01

    The application of GEANT 4 and GESPECOR Monte Carlo simulation codes for efficiency calibration of in situ gamma-ray spectrometry was studied. The long computing time required by GEANT 4 prevents its use in routine simulations. Due to the application of variance reduction techniques, GESPECOR is much faster. In this code specific procedures for incorporating the depth profile of the activity were implemented. In addition procedures for evaluating the effect of non-homogeneity of the source were developed. The code was validated by comparison with test simulations carried out with GEANT 4 and by comparison with published results. PMID:23566809

  8. Comparison of LabSOCS and GESPECOR codes used in gamma-ray spectrometry.

    PubMed

    Done, L; Tugulan, L C; Gurau, D; Dragolici, F; Alexandru, C

    2016-03-01

    Two dedicated software packages -LabSOCS and GESPECOR- for efficiency evaluation in gamma-ray spectrometry, were compared for equivalence. The detection efficiency and the coincidence-summing corrections coefficients were calculated for a specific HPGe detector, for different sample parameters and energies typically encountered in environmental radioactivity measurements. The discrepancy between the results obtained with the two codes were acceptable for most of the applications. Furthermore, the deviations between the values of the standard sources/ reference materials activities from the certificate and the values obtained after Monte Carlo simulation were less than 8% for LabSOCS and 9% for GESPECOR. PMID:26625727

  9. Precipitation correction of airborne gamma-ray spectrometry data using monitoring profiles: methodology and case study

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Motschka, Klaus; Slapansky, Peter

    2014-08-01

    Variations of soil moisture content caused by precipitation often complicate the interpretation of airborne gamma-ray spectrometry data. This is particularly the case in repeated surveys designed to monitor the change of near surface abundances of radioactive elements or in large and time-consuming surveys. To counter this precipitation effect we propose a correction method based on repeated survey flights over a monitoring profile. Assuming that the weather and the soil conditions at the monitoring profile are representative for the survey area, the weather dependent effect of soil moisture can be observed and sufficiently corrected.

  10. The spectra and light curves of two gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Knight, F. K.; Matteson, J. L.; Peterson, L. E.

    1981-01-01

    Observations made by the Hard X-ray and Low Energy Gamma-Ray Experiment on board HEAO-1 of the spectra and light curves of two gamma-ray bursts for which localized arrival directions will become available are presented. The burst of October 20, 1977 is found to exhibit a fluence of 0.000031 + or - 0.000005 erg/sq cm over the energy range 0.135-2.05 MeV and a duration of 38.7 sec, while that of November 10, 1977 is found to have a fluence of 0.000021 + or - 0.000008 erg/sq cm between 0.125 and 3 MeV over 2.8 sec. The light curves of both bursts exhibit time fluctuations down to the limiting time resolution of the detectors. The spectrum of the October burst can be fit by a power law of index -1.93 + or -0.16, which is harder than any other gamma-burst spectrum yet reported. The spectrum of the second burst is softer (index -2.4 + or - 0.7), and is consistent with the upper index in the double power law fit to the burst of April 27, 1972.

  11. Measurements of gamma radiation levels and spectra in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Lo, B. T.; Brozek, K. P.; Angell, C. T.; Norman, E. B.

    2011-10-01

    Much of the radiation received by an average person is emitted by naturally-occurring radioactive isotopes from the thorium, actinium, and uranium decay series, or potassium. In this study, we have measured gamma radiation levels at various locations in the San Francisco Bay Area and the UC Berkeley campus from spectra taken using an ORTEC NOMAD portable data acquisition system and a large-volume coaxial HPGe detector. We have identified a large number of gamma rays originating from natural sources. The most noticeable isotopes are 214Bi, 40K, and 208Tl. We have observed variations in counting rates by factors of two to five between different locations due to differences in local conditions - such as building, concrete, grass, and soil compositions. In addition, in a number of outdoor locations, we have observed 604-, 662-, and 795-keV gamma rays from 134,137Cs, which we attribute to fallout from the recent Fukushima reactor accident. The implications of these results will be discussed. This work was supported in part by a grant from the U. S. Dept. of Homeland Security.

  12. Evaluation of radiological data of some saturated fatty acids using gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.; Palani Selvam, T.

    2016-02-01

    Radiological parameters such as mass attenuation coefficients (μm), total attenuation cross section (σtot), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective electronic cross section (σt, el) of saturated fatty acids, namely butyric acid (C4H8O2), caproic acid (C6H12O2), enanthic acid (C7H14O2), caprylic acid (C8H16O2), pelargonic acid (C9H18O2) and valeric acid (C5H10O2) were measured using NaI(Tl)-based gamma spectrometry. Radioactive sources used in the study are 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na. Gamma ray transmission method in a narrow beam good geometry set up was used in the study. The measured data were compared against Win-XCOM-based data. The agreement is within 1%.

  13. Measurement of uranium series radionuclides in rock and groundwater at the Koongarra ore deposit, Australia, by gamma spectrometry

    SciTech Connect

    Yanase, Nobuyuki; Sekine, Keiichi

    1995-12-31

    Gamma spectrometry without any self-absorption correction was developed to measure low energy gamma rays emitted by uranium and actinium series radionuclides in rock samples and groundwater residues collected at the Koongarra ore deposit, Australia. Thin samples were prepared to minimize the self-absorption by uranium in the samples. The present method gave standard deviations of 0.9 to 18% for the measurements of concentrations of uranium and actinium series radionuclides. The concentrations of {sup 238}U, {sup 230}Th and {sup 235}U measured by gamma spectrometry were compared with those by alpha spectrometry that requires a complicated chemical separation procedure. The results obtained by both methods were in fairly good agreement, and it was found that the gamma spectrometry is applicable to rock and groundwater samples having uranium content sup to 8.1% (10{sup 3} B1/g) and 3 Bq/l of {sup 238}U, respectively. The detection limits were calculated to be of the order of 10{sup {minus}2} Bq/g for rock samples and 10{sup {minus}1} Bq/l for groundwater samples. The concentrations of uranium and actinium series radionuclides can be determined precisely in these samples using gamma spectrometry without any self-absorption correction.

  14. EPR spectra induced by gamma-irradiation of some dry medical herbs

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.00500.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.00500.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.00480.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  15. Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors.

    PubMed

    Casanovas, R; Morant, J J; Salvad, M

    2014-07-01

    The implementation of in-situ gamma-ray spectrometry in an automatic real-time environmental radiation surveillance network can help to identify and characterize abnormal radioactivity increases quickly. For this reason, a Real-time Airborne Radioactivity Monitor using direct gamma-ray spectrometry with two scintillation detectors (RARM-D2) was developed. The two scintillation detectors in the RARM-D2 are strategically shielded with Pb to permit the separate measurement of the airborne isotopes with respect to the deposited isotopes.In this paper, we describe the main aspects of the development and calibration of the RARM-D2 when using NaI(Tl) or LaBr3(Ce) detectors. The calibration of the monitor was performed experimentally with the exception of the efficiency curve, which was set using Monte Carlo (MC) simulations with the EGS5 code system. Prior to setting the efficiency curve, the effect of the radioactive source term size on the efficiency calculations was studied for the gamma-rays from (137)Cs. Finally, to study the measurement capabilities of the RARM-D2, the minimum detectable activity concentrations for (131)I and (137)Cs were calculated for typical spectra at different integration times. PMID:24607535

  16. An Analysis of Nuclear Fuel Burnup in the AGR 1 TRISO Fuel Experiment Using Gamma Spectrometry, Mass Spectrometry, and Computational Simulation Techniques

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz; Phillip L. Winston; James W. Sterbentz

    2014-10-01

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1 %FIMA for the direct method and 20.0 %FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3 % FIMA to 10.7 % FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. The results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20 % FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.

  17. Photon and neutrino spectra of time-dependent photospheric models of gamma-ray bursts

    SciTech Connect

    Asano, K.; Mészáros, P. E-mail: nnp@astro.psu.edu

    2013-09-01

    Thermal photons from the photosphere may be the primary source of the observed prompt emission of gamma-ray bursts (GRBs). In order to produce the observed non-thermal spectra, some kind of dissipation mechanism near the photosphere is required. In this paper we numerically simulate the evolution of the photon spectrum in a relativistically expanding shell with a time-dependent numerical code. We consider two basic models. One is a leptonic model, where a dissipation mechanism heats the thermal electrons maintaining their high temperature. The other model involves a cascade process induced by pp(pn)-collisions which produce high-energy electrons, modify the thermal spectrum, and emit neutrinos. The qualitative properties of the photon spectra are mainly determined by the optical depth at which the dissipation mechanism sets in. Too large optical depths lead to a broad and curved spectrum contradicting the observations, while for optical depths smaller than unity the spectral hardness becomes softer than observed. A significant shift of the spectral peak energy to higher energies due to a large energy injection can lead to an overly broad spectral shape. We show ideal parameter ranges for which these models are able to reproduce the observed spectra. For the pn-collision model, the neutrino fluence in the 10–100 GeV range is well above the atmospheric neutrino fluence, but its detection is challenging for presently available detectors.

  18. Software (MSPECTRA) for automatic interpretation of triacylglycerol molecular mass distribution spectra and collision induced dissociation product ion spectra obtained by ammonia negative ion chemical ionization mass spectrometry.

    PubMed

    Kurvinen, J P; Rua, P; Sjvall, O; Kallio, H

    2001-01-01

    Rapid analysis of molecular mass distributions of triacylglycerol (TAG) mixtures and regioisomeric structures of selected molecular mass species is possible using ammonia negative ion chemical ionization mass spectrometry utilizing sample introduction by direct exposure probe. However, interpretation of spectra and calculation of results is time consuming, thus lengthening the total analysis time. To facilitate result calculation a software package (MSPECTRA 1.3) was developed and applied to automatic processing of triacylglycerol molecular mass distribution spectra and collision induced dissociation (CID) product ion spectra. The program is capable of identifying triacylglycerol molecular mass species possessing different ACN:DB (acyl carbon number:number of double bonds) ratios on the basis of m/z values of [M - H](-) ions. In addition to such identification the program also corrects spectra for abundances of naturally occurring (13)C isotopes and calculates relative proportions of triacylglycerol molecular species in the analyzed samples. If several replicate spectra are processed simultaneously the program automatically calculates an average and standard deviation of relative proportions of molecular species. In the case of CID spectra the program identifies fatty acid fragment ions [RCO(2)](-) and the corresponding [M - H - RCO(2)H - 100](-) ions, and calculates the relative proportions of ions in both groups. These proportions are then used automatically to calculate the fatty acid combinations comprising the parent triacylglycerol molecule and the regiospecific positions of fatty acids. Processing of several replicate product ion spectra simultaneously produces averaged proportions of regioisomers comprising the parent triacylglycerol molecular species and the standard deviation of the analysis. The performance of the program was tested by analyzing triacylglycerol samples of human milk, human milk substitutes, human chylomicron and cocoa butter, and by comparing results obtained by automated processing of the data with manually calculated results. PMID:11404845

  19. Measurement of TeV gamma-ray spectra with the Cherenkov imaging technique

    NASA Astrophysics Data System (ADS)

    Mohanty, G.; Biller, S.; Carter-Lewis, D. A.; Fegan, D. J.; Hillas, A. M.; Lamb, R. C.; Weekes, T. C.; West, M.; Zweerink, J.

    1998-06-01

    In this paper, we seek to establish reliable methods for extracting energy spectra for TeV gamma-ray sources observed using the atmospheric Cherenkov Imaging Technique. Careful attention has been paid to the calculation of the telescope gain, and we obtain good agreement between direct measurements, with a statistical error of about 10%, and an absolute calibration from the background cosmic-ray trigger rate that has an overall error of 18%. Two independent analyses that are based on different Monte Carlo shower simulations, employ different selection criteria in order to retain a large fraction of gamma-ray events, and use different approaches to spectral estimation are presented here. The first is a fairly traditional method that builds on established image selection techniques and calculates the detector collection area and an energy estimation function. The error in measuring the enrgy of a single event is estimated at 36%, and we try to compensate for this poor energy resolution. The second analysis uses more elegant gamma-ray selection criteria and implicity incorporates the properties of the detector into the simulations that are then compared with the data in order to obtain source spectra. The two simulations are compared to each other and to the data, with the aim of establishing that each method is robust and insensitive to simulation details. Finally, we consider the main sources of systematic errors, the largest of which is in the telescope gain calibration, arising from an incomplete knowledge of the relevant factors, and is estimated to be 16%. The effect of possible errors in the simulations is also considered. Both methods have been applied to a part of the Whipple observatory database on the Crab Nebula for the 1988/89 observing season, while the first method has also been applied to data taken in 1995/96. The statistical error in the flux constant is about 8% and that in the spectral index is about 5%, while the corresponding systematic errors are estimated to be 18% and 2%, respectively. The results presented here show good agreement between the two methods as well as between the two seasons. However, a comprehensive consideration of the implications of the derived spectra and a comparison to other work is addressed in another paper.

  20. Radioactivity of a Rock Profile from Rio do Rasto Formation Measured by High Resolution Gamma Spectrometry

    NASA Astrophysics Data System (ADS)

    Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, Jos P. P.

    2011-08-01

    Natural occurring radionuclides are present in different concentrations in sedimentary rocks. Generally, their distribution correlates reasonably with their geo-physicochemical behavior during sediment deposition and rock consolidation. This fact permits to study some geological characteristics of the rocks by analyzing the radionuclide distribution in the rocks, as it might reflect the origin of the sediments, the depositional environment, and more recent events such as weathering and erosion. In this work, rocks from an exposed profile of the Rio do Rasto Formation were collected and analyzed in laboratory by high resolution gamma spectrometry for 226Ra, 232Th and 40K determination. It was employed a standard gamma ray spectrometry electronic chain, with a 66% relative efficiency HPGe detector. The efficiency calibration, as well as its validation, was accomplished with eight International Atomic Energy Agency certified samples. The outcrop exposes layers of sandstone and siltstone and, secondarily, claystone, with varying colors (gray, red and green). The rocks were collected along this profile, each of them was dried in the open air during 48 hours, grounded, sieved through 4 mm mesh and sealed in cylindrical recipients. The 226Ra, 232Th and 40K activity concentrations are presented, their distribution and the possible relations among activities are analyzed. The general pattern of radionuclides distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  1. Spectra of X-ray and Gamma-ray Bursts Produced by Stepping Lightning Leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity. TGFs were serendipitously discovered by BATSE detector aboard the Compton Gamma-Ray Observatory originally launched to perform observations of celestial gamma-ray sources [Fishman et al., Science, 264, 1313, 1994]. These events have also been detected by the RHESSI satellite [Smith et al., Science, 307, 1085, 2005], the AGILE satellite [Marisaldi et al., JGR, 115, A00E13, 2010], and the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010]. Moreover, measurements have correlated TGFs with initial development stages of normal polarity intra-cloud lightning that transports negative charge upward (+IC) [e.g, Lu et al., JGR, 116, A03316, 2011]. Photon spectra corresponding to well-established model of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. However, it has been suggested that high-potential +IC lightning leaders could produce a sufficient number of energetic electrons to explain TGFs [Celestin and Pasko, JGR, 116, A03315, 2011] and Xu et al. [GRL, 39, L08801, 2012] have shown that this mechanism could explain the TGF spectrum for lightning potentials higher than 100 MV. In addition to TGFs, X-ray bursts are produced by negative lightning leaders in association with stepping processes and are observed from the ground [Dwyer et al., GRL, 32, L01803, 2005]. However, the energy spectrum of X-ray bursts from lightning is still poorly known, mainly due to the low fluence detected from the ground. In this work, we use Monte Carlo models to study the acceleration of runaway electrons in the electric field produced around lightning leader tip and the associated bremsstrahlung photon spectra observed by low-orbit satellites in the case of high potential +IC discharges and from the ground in the case of negative cloud-to-ground discharges. We particularly investigate the variability of the photon spectrum with the lightning electric potential.

  2. Systematic Measurement of keV-Neutron Capture Cross Sections and Capture Gamma-Ray Spectra of Zr Isotopes

    SciTech Connect

    Ohgama, Kazuya; Igashira, Masayuki; Ohsaki, Toshiro

    2005-05-24

    The capture cross sections of 92Zr were measured in the incident neutron energy region from 15 to 90 keV and at 550 keV. A neutron time-of-flight method was adopted with a ns-pulsed neutron source by the 7Li(p,n)7Be reaction and with a large anti-Compton NaI(Tl) spectrometer. A pulse-height weighting technique was applied to observed capture gamma-ray pulse-height spectra to derive capture yields. Using the standard capture cross sections of 197Au in ENDF/B-VI, the capture cross sections of 92Zr were obtained with the errors from 7% to 11%. The present results were compared with previous measurements and the evaluations of JENDL-3.3 and ENDF/B-VI. The capture gamma-ray spectra of 92Zr were derived by unfolding observed capture gamma-ray pulse-height spectra.

  3. Gamma-ray spectra and doses from the Little Boy replica

    SciTech Connect

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.

  4. Systematic Measurement of keV-neutron Capture Cross Sections and Capture Gamma-ray Spectra of Sn Isotopes

    SciTech Connect

    Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G. N.; Chung, W. C.; Ro, T. I.

    2006-03-13

    The capture cross sections and capture {gamma}-ray spectra of 117,119Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7Li(p,n)7Be reaction and a large anti-Compton NaI(Tl) {gamma}-ray spectrometer. A pulse-height weighting technique was applied to observed capture {gamma}-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119Sn were obtained with the error of about 5% by using the standard capture cross sections of 197Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture {gamma}-ray spectra of 117,119Sn were derived by unfolding the observed capture {gamma}-ray pulse-height spectra.

  5. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  6. Spectra of GRB970228 from the transient gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Palmer, D. M.; Cline, T. L.; Gehrels, N.; Hurley, K.; Kurczynski, P.; Madden, N.; Pehl, R.; Ramaty, R.; Seifert, H.; Teegarden, B. J.

    1998-05-01

    Visible afterglow counterparts have now been detected for two GRBs (970228 and 970508) but are absent, with Lopt/L? ratios at least two orders of magnitude lower, for other GRBs, e.g., 970828. The causes of this variation are unknown. Any correspondence which could be discovered between the ?-ray properties of a GRB and its Lopt/L? would be useful, both in determining the GRB mechanisms, and in allocating resources for counterpart searches and studies. This paper presents the ?-ray spectra of GRB970228 as measured by the Transient Gamma-Ray Spectrometer and comments on characteristics of this GRB compared to others that do and do not have observable counterparts.

  7. GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

  8. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  9. Differentiation of three pairs of Boc-beta,gamma- and gamma,beta-hybrid peptides by electrospray ionization tandem mass spectrometry.

    PubMed

    Ramesh, V; Srinivas, R; Sharma, G V M; Jayaprakash, P; Kunwar, A C

    2008-09-01

    A new series of Boc-N-beta(3), gamma(4)-/gamma(4), beta(3)-isomeric hybrid peptides (containing repeats of beta(3)-Caa and gamma(4)-Caa's, Caa = C-linked carbo beta(3)-/gamma(4)-amino acids derived from D-xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion-trap and high resolution quadrupole time-of-flight/tandem mass spectrometry (Q-TOF MS/MS). MS(n) of protonated isomeric peptides and [M+H-Boc+H](+) produce characteristic fragmentation involving the peptide backbone, the Boc-group, and the side chain. The positional isomers are differentiated from one another by the presence of y(n)(+), b(n)(+), and other fragment ions of different m/z values. It is observed that the peptides with beta-Caa at the N-terminus produce extensive fragmentation, whereas gamma-Caa gave rise to much less fragmentation. Peptides with gamma-Caa at the N-terminus lose NH(3), whereas this process is absent for the carbopeptides with beta-Caa at the N-terminus. Two pairs of dipeptide diastereomers are clearly differentiated by the collision-induced dissociation (CID) of their protonated molecules. The loss of 2-methylprop-1-ene is more pronounced for Boc-NH-(R)-beta-Caa-(R)-gamma-Caa-OCH(3) (6) and Boc-NH-(R)-gamma-Caa-(R)-beta-Caa-OCH(3) (12), whereas it is insignificant or totally absent for its protonated diastereomeric pair Boc-NH-(S)-beta-Caa-(S)-gamma-Caa-OCH(3) (1) and Boc-NH-(S)-gamma-Caa-(S)-beta-Caa-OCH(3) (7). Further, ESI negative ion tandem mass spectrometry has also been found to be useful for differentiating these isomeric peptide acids. PMID:18320536

  10. Development of a Method of Thermal-Neutron Capture Cross Section Measurement by Unfolding Prompt Gamma-Ray Spectra

    SciTech Connect

    Sakane, Hitoshi; Furutaka, Kazuyoshi; Shcherbakov, Oleg; Harada, Hideo; Fujii, Toshiyuki; Yamana, Hajimu

    2005-05-24

    A method of thermal neutron-capture cross-section measurement by using a pair spectrometer and unfolding prompt gamma-ray spectra is described. To evaluate the validity of the method, it was applied for the measurement of the thermal neutron cross section of 14N. A pair spectrometer system was used to measure prompt gamma rays emitted from 15N produced by thermal neutron capture. Response functions of the system were calculated by using EGS-4 code. To verify the reproducibility of the response functions, the measured spectrum of prompt gamma rays of 15N was reproduced by using EGS-4 code, which was used for calculating response functions.

  11. Compton scattering in strong magnetic fields and the paucity of X-rays in gamma-ray burst spectra

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    1989-12-01

    An analytic method is developed for treating Compton scattering of soft photons by relativistic electrons beamed along the direction of strong magnetic fields. As shown by Daugherty and Harding, the dominant process is the magnetic Compton scattering with the scattered electron both initially and finally in the ground-state Landau level. Interactions involving both resonant and nonresonant parts of the magnetic cross section lead to spectra deficient in X-rays, compared with nonmagnetic Compton-scattered spectra. This is proposed as the reason for the observed paucity of X-rays in gamma-ray burst spectra.

  12. Summary of gamma spectrometry on local air samples from 1985--1995

    SciTech Connect

    Winn, W.G.

    1997-04-02

    This report summarizes the 1985--1995 results of low-level HPGe gamma spectrometry analysis of high-volume air samples collected at the Aiken Airport, which is about 25 miles north of SRS. The author began analyzing these samples with new calibrations using the newly developed GRABGAM code in 1985. The air sample collections were terminated in 1995, as the facilities at the Aiken Airport were no longer available. Air sample measurements prior to 1985 were conducted with a different analysis system (and by others prior to 1984), and the data were not readily available. The report serves to closeout this phase of local NTS air sample studies, while documenting the capabilities and accomplishments. Hopefully, the information will guide other applications for this technology, both locally and elsewhere.

  13. Fast-ion energy resolution by one-step reaction gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Nocente, M.; Gorini, G.; Jacobsen, A. S.; Kiptily, V. G.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardocchi, M.; Contributors, JET

    2016-04-01

    The spectral broadening of γ-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space and quantify the velocity-space sensitivity of one-step reaction high-resolution GRS measurements in magnetized fusion plasmas. The weight functions suggest that GRS resolves the energies of fast ions directly without the need for tomographic inversion for selected one-step reactions at moderate plasma temperatures. The D(p,γ)3He reaction allows the best direct fast-ion energy resolution. We illustrate our general formalism using reactions with and without intrinsic broadening of the γ-rays for the GRS diagnostic at JET.

  14. A review of the nationwide proficiency test on natural radioactivity measurements by gamma spectrometry.

    PubMed

    Şahin, N K; Yeltepe, E; Yücel, Ü

    2016-03-01

    This study is the review of the first proficiency test on radioactivity measurement organized in Turkey by Sarayköy Nuclear Research and Training Center (SANAEM) of Turkish Atomic Energy Authority (TAEK) in 2013. The objective of the test was to determine (226)Ra, (232)Th and (40)K activity concentrations in natural soil samples using gamma-ray spectrometry. The bulk material consisting of uranium- and thorium-rich soil and sand was milled, mixed thoroughly and sieved. Homogeneity of the final mix was tested with 6 randomly taken samples. 16 proficiency test samples were distributed to 16 participating laboratories. 12 laboratories reported results. The results were evaluated on the accuracy and precision criteria adopted by the IAEA Proficiency Testing Group. The percentage of acceptable scores was 49%. Some recommendations have been provided to the laboratories to improve the quality of their results. It is planned to extend these proficiency tests periodically for various radionuclides in various matrices. PMID:26750585

  15. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization

    NASA Astrophysics Data System (ADS)

    Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.

    2015-11-01

    Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.

  16. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. PMID:26868275

  17. Breaks in gamma-ray spectra of distant blazars and transparency of the Universe

    NASA Astrophysics Data System (ADS)

    Rubtsov, G. I.; Troitsky, S. V.

    2014-11-01

    Energetic gamma rays scatter on soft background radiation when propagating through the Universe, producing electron-positron pairs (A.I. Nikishov, Sov. Phys. JETP 14, 393 (1962)). Gamma rays with energies between 100 GeV and a few TeV interact mostly with infrared background photons whose amount is poorly known experimentally but safely constrained from below by account of the contribution of observed light from known galaxies (R.C. Keenan, A.J. Barger, L.L. Cowie, and W.-H. Wang, Astrophys. J. 723, 40 (2010); arXiv: 1102.2428). The expected opacity of the intergalactic space limits the mean free path of TeV gamma rays to dozens of Megaparsecs. However, TeV photons from numerous more distant sources have been detected (S.P. Wakely and D. Horan, http://tevcat.uchicago.edu/). This might be interpreted, in each particular case, in terms of hardening of the emitted spectrum caused by presently unknown mechanisms at work in the sources (S. Archambault et al. (VERITAS and Fermi LAT Collaborations), Astrophys. J. 785, L16 (2014); arXiv: 1403.4308). Here we show that this interpretation is not supported by the analysis of the ensemble of all observed sources. In the frameworks of an infrared-background model with the lowest opacity (R.C. Gilmore, R.S. Somerville, J.R. Primack, and A. Dominguez, Mon. Not. Roy. Astron. Soc. 422, 3189 (2012); arXiv: 1104.0671), we reconstruct the emitted spectra of distant blazars and find that upward spectral breaks appear precisely at those energies where absorption effects are essential. Since these energies are very different for similar sources located at various distances, we conclude that the breaks are artefacts of the incorrect account of absorption and, therefore, the opacity of the Universe for gamma rays is overestimated even in the most conservative model. This implies that some novel physical or astrophysical phenomena should affect long-distance propagation of gamma rays. A scenario in which a part of energetic photons is converted to an inert new particle in the vicinity of the source and reconverts back close to the observer (M. Simet, D. Hooper, and P. Serpico, Phys. Rev. D 77, 063001 (2008); arXiv: 0712.2825; M. Fairbairn, T. Rashba, and S. Troitsky, Phys. Rev. D 84, 125019 (2011); arXiv:0901.4085) does not contradict our results. This new axion-like particle appears in several extensions of the Standard Model of particle physics (J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010); arXiv: 1002.0329) and may constitute the dark matter (P. Arias et al., JCAP 1206, 013 (2012); arXiv: 1201.5902).

  18. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.

    PubMed

    Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F

    2016-01-01

    In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. PMID:26623928

  19. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  20. F-GAMMA: On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Fuhrmann, L.; Nestoras, I.; Fromm, C. M.; Perucho-Pla, M.; Schmidt, R.; Zensus, J. A.; Marchili, N.; Krichbaum, T. P.; Ungerechts, H.; Sievers, A.; Riquelme, D.; Pavlidou, V.

    2012-07-01

    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars. In the current study we show and discuss the evolution of broad-band radio spectra, which are measured at ten frequencies between 2.64 and 142 GHz using the Effelsberg 100-m and the IRAM 30-m telescopes. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. It is argued that these can be attributed to only two classes of variability mechanisms. The first four types are dominated by spectral evolution and can be described by a simple two-component system composed of: (a) a steep quiescent spectral component from a large scale jet and (b) a time evolving flare component following the "Shock-in-Jet" evolutionary path. The fifth type is characterised by an achromatic change of the broad band spectrum, which could be attributed to a different mechanism, likely involving differential Doppler boosting caused by geometrical effects. Here we present the classification, the assumed physical scenario and the results of calculations that have been performed for the spectral evolution of flares.

  1. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    SciTech Connect

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the work of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry.

  2. Effects induced by gamma-irradiation and thermal treatment on the infrared spectra of ferrocene in its disordered state

    NASA Astrophysics Data System (ADS)

    Gaffar, M. A.; Abd-Elrahman, M. I.

    2004-10-01

    Lattice, rotation and intramolecular vibrations of ferrocene, Fe(C5H5)(2), crystallites of the C-2h(5) factor group in the disordered phase are calculated using the correlation theorem based on group theory. The correlation between the species of the C-1 site symmetry occupied by cyclopentadienyl molecules and those of the factor group C-2h, of the crystal are calculated. The number of lattice vibrations of the cyclopentadienyl molecules is found to be 12. with active modes in Raman and infrared (IR) spectra. The same number of rotations for the cyclopentadienyl molecules is expected to be allowed in both spectra. The active number of intramolecular vibrations for the cyclopentadienyl molecules having D-5 molecular symmetry is expected to be 80 vibrations in both the Raman and the IR spectra. The effect of gamma-irradiation with different doses and heat treatment at different temperatures on the IR spectra of ferrocene in the energy range 4000-200 cm(-1) is discussed. A number of bands continuously shifted their position, and a decrease in intensity with increasing gamma-dose is observed. New bands appeared in this spectral region for different annealing temperatures and different gamma-doses. These changes are discussed in terms of intermolecular interactions between molecules within the unit cell.

  3. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results. PMID:22887117

  4. Numerical simulations of planetary gamma-ray spectra induced by galactic cosmic rays

    SciTech Connect

    Masarik, J.; Reedy, R.C.

    1994-07-01

    The fluxes of cosmic-ray-produced gamma rays escaping from Mars were calculated using the LAHET Code System and basic nuclear data for {gamma}-ray production. Both surface water content and atmospheric thickness strongly affect the fluxes of {gamma}-ray lines escaping from Mars.

  5. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.

    PubMed

    Khan, A J; Semkow, T M; Beach, S E; Haines, D K; Bradt, C J; Bari, A; Syed, U-F; Torres, M; Marrantino, J; Kitto, M E; Menia, T; Fielman, E

    2014-08-01

    The results are described of an upgrade of the low-background gamma-ray spectrometry laboratory at New York State Department of Health by acquiring sensitivity to low-energy gamma rays. Tuning of the spectrometer and its low-energy response characteristics are described. The spectrometer has been applied to monitor the environment by measuring aerosols and water in New York State contaminated by the 2011 Fukushima accident plume. In addition, the spectrometer has been used to monitor radioactivity in food by performing a study of cesium in Florida milk. PMID:24836905

  6. Discriminating Nuclear Threats from Benign Sources in Gamma-ray Spectra using a Spectral Comparison Ratio Method

    SciTech Connect

    Anderson, Kevin K.; Jarman, Kenneth D.; Mann, Matthew L.; Pfund, David M.; Runkle, Robert C.

    2008-06-15

    This manuscript presents a method for categorizing gamma-ray spectra as benign or threatening. It is widely believed that the goal of segregating gamma-ray spectra into benign and threatening populations can achieved with fewer counts than are required for confident characterization of a spectrum’s isotopic composition, while still providing improvement over count-based algorithms. This has potentially important implications on the detection of radiological and nuclear threats, where decisions must be made from analysis of count-starved spectra that dominate the landscape of monitoring special nuclear material transport and lost-or-stolen source search. We report here the method of Spectral Comparison Ratios (SCRs) which is useful in the targeted detection of specific gamma-ray signatures or signature classes. SCRs discriminate between benign and target sources by comparing counts in broad, pre-defined energy bins that are pre-determined using statistical discrimination criteria. The integral component of the SCR algorithm is the location and interdependence of the energy bins, and we discuss the statistical methods used for choosing their locations along with the decision criteria that maximally separate targets from benign sources.

  7. Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillation detectors.

    PubMed

    Casanovas, R; Morant, J J; Salvad, M

    2013-10-01

    In this study, the implementation of gamma-ray spectrometry in two real-time water monitors using 2 in. 2 in. NaI(Tl) scintillation detectors is described. These monitors collect the water from the river through a pump and it is analyzed in a vessel, which is shielded with Pb. The full calibration of the monitors was performed experimentally, except for the efficiency curve, which was set using validated Monte Carlo simulations with the EGS5 code system. After the calibration, the monitors permitted the identification and quantification of the involved isotopes in a possible radioactive increment and made it possible to discard possible leaks in the nuclear plants. As an example, a radiological increment during rain is used to show the advantages of gamma-ray spectrometry. To study the capabilities of the monitor, the minimum detectable activity concentrations for (131)I, (137)Cs and (40)K are presented for different integration times. PMID:23827508

  8. Assessment of measurement result uncertainty in determination of (210)Pb with the focus on matrix composition effect in gamma-ray spectrometry.

    PubMed

    Iurian, A R; Pitois, A; Kis-Benedek, G; Migliori, A; Padilla-Alvarez, R; Ceccatelli, A

    2016-03-01

    Reference materials were used to assess measurement result uncertainty in determination of (210)Pb by gamma-ray spectrometry, liquid scintillation counting, or indirectly by alpha-particle spectrometry, using its daughter (210)Po in radioactive equilibrium. Combined standard uncertainties of (210)Pb massic activities obtained by liquid scintillation counting are in the range 2-12%, depending on matrices and massic activity values. They are in the range 1-3% for the measurement of its daughter (210)Po using alpha-particle spectrometry. Three approaches (direct computation of counting efficiency and efficiency transfer approaches based on the computation and, respectively, experimental determination of the efficiency transfer factors) were applied for the evaluation of (210)Pb using gamma-ray spectrometry. Combined standard uncertainties of gamma-ray spectrometry results were found in the range 2-17%. The effect of matrix composition on self-attenuation was investigated and a detailed assessment of uncertainty components was performed. PMID:26653212

  9. Assessment of radiological hazards of Lawrencepur sand, Pakistan using gamma spectrometry.

    PubMed

    Qureshi, Aziz Ahmed; Ali, Muhammad; Waheed, Abdul; Manzoor, Shahid; Siddique, Rehan Ul Haq; Ahmed Khan, Hameed

    2013-11-01

    The Lawrencepur sand had remained refrigerated during a long period of glaciations in the study area. Owing to its derivation from the granitic rocks of the Himalayas and its preservation under glacial environment, the sand grains are still fresh and may contain high level of primordial radioactivity. For that reason, radiological hazards of Lawrencepur sand were assessed using a high-purity germanium gamma spectrometry technique. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 15.973.05, 27.984.89 and 498.2015.91 Bq kg(-1), respectively. These values are higher than those of the sands of many countries of the world but lower than those of some of the Pakistani, Indian and Egyptian sands. The outdoor and indoor hazard indices and annual effective doses of the Lawrencepur sand are higher than those of some of the sand deposits of European, African and American countries but lower than those of nearby Pakistani and Indian sands. However, the hazard indices and annual effective doses of the Lawrencepur sand are within the safe limits. Overall, the Lawrencepur sand does not pose any radiological health hazard as a building material. PMID:23630384

  10. Detection of /sup 210/Pb in the lungs of smokers by in-vivo gamma spectrometry

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1982-09-01

    Since mainstream smoke is highly enriched in /sup 210/Pb, alpha radiation from inhaled cigarette smoke particles has been proposed as a cancer-producing agent in cigarette smokers. /sup 210/Po and /sup 210/Pb have been observed in tobacco, cigarette smoke and in the lungs of smokers. Since /sup 210/Pb is highly enriched in mainstream smoke, there have been estimates of yearly excesses of /sup 210/Pb in the lungs of one-pack-a-day smokers of 3 to 10 pCi (0.11 to 0.37 Bq). The ORNL Whole Body Counter was used to verify this estimate by the methodology of high-resolution, in vivo gamma spectrometry. Measurements were made on 113 adult male non-radiation workers who have either smoked at least one pack of cigarettes per day for at least five years, or have never smoked cigarettes. An analysis-of-variance table was generated based on the Pb-ratio for each individual which revealed that there was no statistically significant increase in the amount of /sup 210/Pb in the lungs of smokers over those of non-smokers. Sources of error are also discussed.

  11. Using gamma ray spectrometry for fingerprinting sources of estuarine and coastal sediment in Mukawa coast, Hokkaido, northern Japan

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Ohtsuka, J.; Murakami, Y.; Ishiya, T.; Hamamoto, S.

    2010-12-01

    To seek the geological tracers of environmental radionuclide for fingerprinting sources of estuarine and coastal sediment, the gamma ray spectrometry was conducted for the soil and sediment samples collected from subcatchments, rivers, estuaries and coast in Mukawa and Sarugawa river watersheds and Mukawa coast, Hokkaido, northern Japan. Gamma ray spectrometry was conducted to determine the activities of environmental radionuclides associated with each soil and sediment samples using HP Ge well-type detector. Gamma ray spectrometry could determine 15 environmental radionuclides, including U-series, Th-series, cesium-137 and potassium-40. Lead-210 excess was also determined by subtracting the activities of Pb-214 from that of Pb-210. The Kruskal-Wallis H test was conducted to assess the ability of each tracer property to discriminate between surface soil samples from the categories divided by subcatchment, geological era and period, suggesting that more than 11 tracer properties were available. Subsequently, the stepwise discriminant function analysis was conducted to identify which combination of tracer properties provides the best composite fingerprint for differentiating source materials on the basis of subcatchment and geology source groups. This analysis suggested that the composite fingerprints of Pb-212, Ac-228 and K-40 can classify the geology into 6 groups based on rock type. Using these tracer properties, the contribution of rock to estuarine and coastal sediment can be evaluated with the multivariate sediment mixing model.

  12. gamma-Irradiation effects on the thermal decomposition behaviour and IR absorption spectra of piperacillin

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Gaffar, M. A.; Abu El-Fadl, A.; Hamad, Ar. G. K.

    2003-11-01

    The thermal decomposition behaviour of unirradiated and pre-gamma-irradiated piperacillin (pipril) as a semi-synthetic penicillin antibiotic has been studied in the temperature range of (273-1072 K). The decomposition was found to proceed through three major steps both for unirradiated and gamma-irradiated samples. Neither appearance nor disappearance of new bands in the IR spectrum of piperacillin was recorded as a result of gamma-irradiation but only a decrease in the intensity of most bands was observed. A degradation mechanism was suggested to explain the bond rupture and the decrease in the intensities of IR bands of gamma-irradiated piperacillin.

  13. A NEW METHDOLOGY FOR DETERMINING FISSILE MASS IN INDIVIDUAL ACCOUNTING ITEMS WITH THE USE OF GAMMA-RAY SPECTROMETRY.

    SciTech Connect

    KANE,W.R.; VANIER,P.E.; ZUHOSKI,P.B.; LEMLEY,J.R.

    2000-07-16

    In the safeguards, arms control, and nonproliferation regimes measurements are required which give the quantity of fissile material in an accounting item, e.g., a standard container of plutonium or uranium oxide. Because of the complexity of modeling the absorption of gamma rays in high-Z materials, gamma-ray spectrometry is not customarily used for this purpose. Gamma-ray measurements can be used to determine the fissile mass when two conditions are met: (1) The material is in a standard container, and (2) The material is finely divided, or a solid item with a reproducible shape. The methodology consists of: (A) Measurement of the emitted gamma rays, and (B) Measurement of the transmission through the item of the high-energy gamma rays of Co-60 and Th-228. We have demonstrated that items containing nuclear materials possess a characteristic ''fingerprint'' of gamma rays which depends not only on the nuclear properties, but also on the mass, density, shape, etc.. The material's spectrum confirms its integrity, homogeneity, and volume as well. While there is attenuation of radiation from the interior, the residual radiation confirms the homogeneity of the material throughout the volume. Transmission measurements, where the attenuation depends almost entirely on Compton scattering, determine the material mass. With well-characterized standards, this methodology can provide an accurate measure of the contained fissile material.

  14. Neutron-Capture Gamma-Ray Data for Obtaining Elemental Abundances from Planetary Spectra

    NASA Technical Reports Server (NTRS)

    Frankle, S. C.; Reedy, R. C.

    2001-01-01

    Newly compiled and evaluated energies and intensities of gamma rays made by the capture of thermal neutrons by elements from H to Zn plus Ge, Sm, and Gd are reported for use in determining elemental composition by planetary gamma-ray spectroscopy. Additional information is contained in the original extended abstract.

  15. Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Iwanowska, Joanna; Swiderski, Lukasz; Szczesniak, Tomasz; Sibczynski, Pawel; Moszynski, Marek; Grodzicka, Martyna; Kamada, Kei; Tsutsumi, Kousuke; Usuki, Yoshiyuki; Yanagida, Takayuki; Yoshikawa, Akira

    2013-06-01

    Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry has been investigated. The measurements of two samples of GAGG:Ce cover the tests of emission spectra (maximum of emission at about 530 nm), light output, non-proportionality, energy resolution, time resolution and decay time of light pulses. We compare the results with commonly known scintillators, such as NaI(Tl), LSO, LuAG etc. The results show that GAGG:Ce has a high light yield of about 33000 ph/MeV as measured with Hamamatsu S3590-18 Si PiN photodiode [1]. The total energy resolution for 662 keV gamma-rays from 137Cs source is equal to about 6%, whereas intrinsic resolution is equal to 5.2%. Additionally, we made basic measurements of photoelectron yield, non-proportionality and total energy resolution of small sample (555 mm3) of GAGG:Ce crystal coupled to Hamamatsu MPPC array (66 mm2). The results show that the performance of GAGG:Ce measured with the MPPC array are similar to those measured with the PMT.

  16. Gamma-ray burst spectra and time histories from 2 to 400 keV

    SciTech Connect

    Fenimore, E.E.

    1998-07-01

    The Gamma-Ray burst detector on Ginga consisted of a proportional counter to observe the x-rays and a scintillation counter to observe the gamma-rays. Both instrument recorded the time histories in phase with each other and with 0.03125 s temporal resolution. The author compares the average of 21 gamma-ray bursts to determine the delay, in any, between the peak of the x-rays and the peak of the gamma-rays. The delay is less than or about equal to 30 msec. Thus, models must content with two average features of the temporal behavior. First, as a function of energy, the time structure scales as {approximately}E{sup {minus}0.45}. Second, the x-rays are not appreciable delayed relative to the gamma-rays. Some cooling models might have difficulties explaining these features.

  17. Monte carlo simulation of in situ gamma-spectra recorded by NaI (Tl) detector in the marine environment

    NASA Astrophysics Data System (ADS)

    Wang, Yiming; Zhang, Yingying; Wu, Ning; Wu, Bingwei; Liu, Yan; Cao, Xuan; Wang, Qian

    2015-06-01

    To develop a NaI (Tl) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Carlo N-Particle ( MNCP ) code were performed to provide the response spectra of some interested radionuclides and the background spectra originating from the natural radionuclides in seawater recorded by a NaI (Tl) detector. A newly developed 75 mm 75 mm NaI (Tl) detector was calibrated using four reference radioactive sources 137Cs, 60Co, 40K and 54Mn in the laboratory before the field measurements in seawater. A simulation model was established for the detector immersed in seawater. The simulated spectra were all broadened with Gaussian pulses to reflect the statistical fluctuations and electrical noise in the real measurement. The simulated spectra show that the single-energy photons into the detector are mostly scattering low-energy photons and the high background in the low energy region mainly originates from the Compton effect of the high energy ?-rays of natural radionuclides in seawater. The simulated background spectrum was compared with the experimental one recorded in field measurement and they seem to be in good agreement. The simulation method and spectra can be used for the accurate analysis of the filed measurement results of low concentration radioactivity in seawater.

  18. Neanderthal skeleton from Tabun: U-series data by gamma-ray spectrometry.

    PubMed

    Schwarcz, H P; Simpson, J J; Stringer, C B

    1998-12-01

    The Neanderthal hominid Tabun C1, found in Israel by Garrod & Bate, was attributed to either layer B or C of their stratigraphic sequence. We have used gamma-ray spectrometry to determine the 230Th/234U and 231Pa/235U ratios of two bones from this skeleton, the mandible and a femur. The ages calculated from these ratios depend on the uranium uptake history of the bones. Assuming a model of early U (EU) uptake the age of the Tabun C1 mandible is 34+/-5 ka. The EU age of the femur is 19+/-2 ka. The femur may have experienced continuous (linear) U uptake which would give an age of 33+/-4 ka, in agreement with the mandible's EU age, but implies marked inhomogeneity in U uptake history at the site. These new age estimates for the skeleton suggest that it was younger than deposits of layer C. This apparent age is less than those of other Neanderthals found in Israel, and distinctly younger than the ages of the Skhul and Qafzeh burials. This suggests that Neanderthals did not necessarily coexist with the earliest modern humans in the region. All of the more complete Neanderthal fossils from Israel are now dated to the cool period of the last glacial cycle, suggesting that Neanderthals may have arrived in this region as a result of the southward expansion of their habitable range. The young age determined for the Tabun skeleton would suggest that Neanderthals survived as late in the Levant as they did in Europe. PMID:9929173

  19. Calculation of the decision thresholds for radionuclides identified in gamma-ray spectra by post-processing peak analysis results

    NASA Astrophysics Data System (ADS)

    Korun, Matjaž; Vodenik, Branko; Zorko, Benjamin

    2016-03-01

    A method for calculating the decision thresholds for gamma-ray emitters, identified in gamma-ray spectrometric analyses, is described. The method is suitable for application in computerized spectra-analyzing procedures. In the calculation, the number of counts and the uncertainty in the number of counts for the peaks associated with the emitter are used. The method makes possible to calculate decision thresholds from peaks on a curved background and overlapping peaks. The uncertainty in the number of counts used in the calculation was computed using Canberra's Standard Peak Search Program (Canberra, 1986, Peak Search Algorithm Manual 07-0064). For isolated peaks, the decision threshold exceeds the value calculated from the channel contents in an energy region that is 2.5 FWHM wide, covering the background in the immediate vicinity of the peak. The decision thresholds vary by approximately 20% over a dynamic range of peak areas of about 1000. In the case of overlapping peaks, the decision threshold increases considerably. For multi-gamma-ray emitters, a common decision threshold is calculated from the decision thresholds obtained from individual gamma-ray emissions, being smaller than the smallest of the individual decision thresholds.

  20. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  1. Mapping the spatial distribution and activity of (226)Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data.

    PubMed

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2016-03-01

    Radium ((226)Ra) contamination derived from military, industrial, and pharmaceutical products can be found at a number of historical sites across the world posing a risk to human health. The analysis of spectral data derived using gamma-ray spectrometry can offer a powerful tool to rapidly estimate and map the activity, depth, and lateral distribution of (226)Ra contamination covering an extensive area. Subsequently, reliable risk assessments can be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally occurring radionuclide such as (226)Ra. As a result, conventional surveys tend to attribute the highest activities to the largest total signal received by a detector (Gross counts): an assumption that tends to neglect higher activities at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations, Principal Component Analysis and Machine Learning based algorithms to derive depth and activity estimates for (226)Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide, the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated by mapping depth and activity estimates at a case study site in Scotland. There the method identified significantly higher activity (<3Bqg(-1)) occurring at depth (>0.4m), that conventional gross counting algorithms failed to identify. It was concluded that the method could easily be employed to identify areas of high activity potentially occurring at depth, prior to intrusive investigation using conventional sampling techniques. PMID:26795756

  2. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry.

    PubMed

    Daz, N Cornejo; Gil, A Vergara; Vargas, M Jurado

    2010-03-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. PMID:20018515

  3. Hints of the Existence of Axion-Like-Particles From the Gamma-Ray Spectra of Cosmological Sources

    SciTech Connect

    Sanchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Dominguez, A.; /IAA, Granada /Seville U.

    2009-06-23

    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the EBL intensity at 3.6 {micro}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.

  4. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, ?) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, ?) as well as 234,236U(n, ?). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  5. Overview of reaction mechanisms for calculating the high energy component of fast-nucleon induced gamma spectra

    SciTech Connect

    Dietrich, F.S.

    1995-02-21

    This presentation reviews the current status of quantum mechanical models for understanding the high-energy component of gamma spectra resulting from radiative capture of fast nucleons; i.e., the part of the spectrum that is not amenable to standard statistical model (Hauser-Feshbach) treatments. These models are based on the direct-semidirect (DSD) model and its variants. Included are recent results on the extension of the DSD model to unbound final states, a discussion of problems and improvements in understanding the form factors in this model, and a brief discussion of a model closely related to the DSD, the pure-resonance model.

  6. New capture Gamma-Ray library and Atlas of spectra for all elements

    SciTech Connect

    Firestone, R.B.; Revay, Zs.; Molnar, G.L.

    2003-01-01

    A new library comprising 30 thousand neutron capture gamma rays has been created by combining new measurements on natural elements from Budapest and literature data for all stable isotope targets. All energies and intensities are consistent in that they are based on the chlorine and nitrogen standards, respectively. Accurate neutron binding energies and thermal capture cross-sections could also be inferred for all cases where the level scheme is sufficiently complete. The new data can be used for nuclear structure investigations, reaction model calculations, and a number of applications, such as Prompt Gamma-ray Activation Analysis (PGAA).

  7. A revision factor to the Cutshall self-attenuation correction in (210)Pb gamma-spectrometry measurements.

    PubMed

    Jod?owski, Pawe?

    2016-03-01

    The Cutshall transmission method of determination of self-attenuation correction in (210)Pb measurements by gamma-spectrometry gives the results burdened with errors of up to 10%. The author proposes introducing into the Cutshall correction Cs,Cuts an additional revision factor CCs,Cuts to eliminate errors. The proposed formula of the revision factor describes the CCs,Cuts value depending on the experimentally obtained Cs,Cuts correction. Formula holds true in wide ranges of the measurement geometries and linear attenuation coefficients of both the standard and the sample. PMID:26702546

  8. Determination of the natural radioactivity in Qatarian building materials using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Huda; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Matthews, M.; Regan, P. H.; Santawamaitre, T.

    2011-10-01

    This study is aimed at the determination of the activity concentrations of naturally occurring and technically enhanced levels of radiation in building materials used across the State of Qatar. Samples from a range of common building materials, including Qatarian cement, Saudi cement, white cement, sand and washed sand, have been analyzed, in addition to other samples of cement's raw materials and additives collected from the main suppliers in Qatar. In order to establish the activity concentrations associated with the 235,8U and 232Th natural decay chains and 40K, the samples have been studied using a high-resolution, low-background gamma-ray spectrometry set-up. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the preliminary results of the activity concentrations associated with the naturally occurring radionuclide chains for the building materials collected across the Qatarian peninsula.

  9. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    NASA Astrophysics Data System (ADS)

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  10. Use of a Shielded High Resolution Gamma Spectrometry System to Segregate LLW from Contact Handleable ILW Containing Plutonium - 13046

    SciTech Connect

    Lester, Rosemary; Wilkins, Colin; Chard, Patrick; Jaederstroem, Henrik; LeBlanc, Paul; Mowry, Rick; MacDonald, Sanders; Gunn, William

    2013-07-01

    Dounreay Site Restoration Limited (DSRL) have a number of drums of solid waste that may contain Plutonium Contaminated Material. These are currently categorised as Contact Handleable Intermediate Level Waste (CHILW). A significant fraction of these drums potentially contain waste that is in the Low Level Waste (LLW) category. A Canberra Q2 shielded high resolution gamma spectrometry system is being used to quantify the total activity of drums that are potentially in the LLW category in order to segregate those that do contain LLW from CHILW drums and thus to minimise the total volume of waste in the higher category. Am-241 is being used as an indicator of the presence of plutonium in the waste from its strong 59.54 keV gamma-ray; a knowledge of the different waste streams from which the material originates allows a pessimistic waste 'fingerprint' to be used in order to determine an upper limit to the activities of the weak and non-gamma-emitting plutonium and associated radionuclides. This paper describes the main features of the high resolution gamma spectrometry system being used by DSRL to perform the segregation of CHILW and LLW and how it was configured and calibrated using the Canberra In-Situ Object Counting System (ISOCS). It also describes how potential LLW drums are selected for assay and how the system uses the existing waste stream fingerprint information to determine a reliable upper limit for the total activity present in each measured drum. Results from the initial on-site commissioning trials and the first measurements of waste drums using the new monitor are presented. (authors)

  11. A rapid dissolution procedure to aid initial nuclear forensics investigations of chemically refractory compounds and particles prior to gamma spectrometry.

    PubMed

    Reading, David G; Croudace, Ian W; Warwick, Phillip E; Britton, Richard

    2015-11-01

    A rapid and effective preparative procedure has been evaluated for the accurate determination of low-energy (40-200 keV) gamma-emitting radionuclides ((210)Pb, (234)Th, (226)Ra, (235)U) in uranium ores and uranium ore concentrates (UOCs) using high-resolution gamma ray spectrometry. The measurement of low-energy gamma photons is complicated in heterogeneous samples containing high-density mineral phases and in such situations activity concentrations will be underestimated. This is because attenuation corrections, calculated based on sample mean density, do not properly correct where dense grains are dispersed within a less dense matrix (analogous to a nugget effect). The current method overcomes these problems using a lithium tetraborate fusion that readily dissolves all components including high-density, self-attenuating minerals/compounds. This is the ideal method for dissolving complex, non-volatile components in soils, rocks, mineral concentrates, and other materials where density reduction is required. Lithium borate fusion avoids the need for theoretical efficiency corrections or measurement of matrix matched calibration standards. The resulting homogeneous quenched glass produced can be quickly dissolved in nitric acid producing low-density solutions that can be counted by gamma spectrometry. The effectiveness of the technique is demonstrated using uranium-bearing Certified Reference Materials and provides accurate activity concentration determinations compared to the underestimated activity concentrations derived from direct measurements of a bulk sample. The procedure offers an effective solution for initial nuclear forensic studies where complex refractory minerals or matrices exist. It is also significantly faster, safer and simpler than alternative approaches. PMID:26572834

  12. Cosmic Infrared Background From Population III Stars and Its Effect on Spectra of High-z Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    2005-01-01

    We discuss the contribution of Population III stars to the near-IR (NIR) cosmic infrared background (CIB) and its effect on spectra of high-z, high-energy gamma-ray bursts (GRBs) and other sources. It is shown that if Population III is composed of massive stars, the claimed NIR CIB excess will be reproduced if only approx. 4% plus or minus 2% of all baryons went through these stars. Regardless of the precise amount of the NIR CIB due to them, they likely left enough photons to provide a large optical depth for high-energy photons from distant GRBs. Observations of such GRBs are expected following the planned launch of NASA's GLAST mission. Detecting such damping in the spectra of high-z GRBs will then provide important information on the emissions from the Population III epoch, and the location of this cutoff may serve as an indicator of the GRBs' redshifts. We also point out the difficulty of unambiguously detecting the CIB part originating from Population III in spectra of low-z blazars.

  13. [The triboluminescent spectra of the blood of gamma-irradiated rats].

    PubMed

    Orel, V E; Dziatkovskaia, N N; Afonin, A N; Mazurik, V K

    1991-01-01

    Triboluminescence (TL) of rat blood 3 h after whole-body single exposure to gamma-radiation (0.25, 1, 3, and 5 Gy) exhibited positive coefficient of correlation r = 0.99 (at a wave length of 412 nm) with radiation dose. The effect of ionizing radiation on the animal body caused changes in blood TL within the fixed areas of the spectral range, whose fluctuation parameters were conditioned by specifically significant radiobiological changes and nonspecific adaptive reactions. PMID:1887011

  14. Implications of Martian Surface Composition Determined by Mars Odyssey Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2006-12-01

    The Mars Odyssey spacecraft carries a gamma-ray spectrometer (GRS) that allows measurement of several elements (K, Th, Fe, Si, Al, Ca, Cl, and H) on the surface of Mars. Although its spatial resolution is 500 km, it measures the composition in the upper few tens of centimeters (compared to microns to a few hundred microns for reflectance or emission spectral techniques). GRS provides the first global chemical perspective on the composition of the Martian surface, allowing us to assess the composition of the crust and, with judicious assumptions, the bulk silicate composition of the planet. The data also allow us to identify major geochemical provinces to understand the evolution of the crust and search for the effects of aqueous alteration. GRS data show that the Martian surface is chemically heterogeneous. Elemental concentrations vary across the surface, including variations within high-albedo areas that are presumably covered with dust. Fe concentrations are uniformly high, in accord with the compositions of Martian meteorites and most rock samples analyzed by landed instruments. K/Th is variable, but 95% of the surface has a weight ratio between 3000 and 7000. The mean (5300) is double that in terrestrial crustal rocks and in the bulk silicate Earth. These data indicate that bulk silicate Mars is enriched in moderately volatile elements and in FeO compared to Earth, suggesting that there was not extensive mixing throughout the inner solar system during planetary accretion. Cl varies substantially, with the highest values (0.8 wt%) in the region west of the Tharsis Montes. Surface Types (ST) 1 and 2 (identified from TES spectra) are indistinguishable in Si and Fe concentrations, but ST2 is enriched in K and Th by about 30% relative to ST1 (the K/Th ratio is similar in both regions). The combination of TES and GRS data suggests that ST2 is composed of a different suite of (probably) basaltic rocks than is ST1 and has been weathered. The H2O mass fraction (derived from the H content) in equatorial regions ranges from about 1.5 to 7 %, suggesting the presence of hydrous minerals. Variation in H2O and highly soluble Cl, coupled with some areas with anomalous K/Th, provide geochemical evidence for the role of aqueous alteration on Mars, although the generally uniform K/Th might indicate that wet periods were short.

  15. Comparison between the Spectra of Gamma Radiation for Climate Dry Periods and Rainy in the Southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Gomes, M. P.; Martin, I. M.

    2013-05-01

    Through this work, present themselves the results obtained for the spectra of ionizing radiation (X-rays and gamma) environmental southeast Brazil for the periods of dry and rainy climate, respectively. One of the objectives this work is promoting through analysis of the results a better understand, in the educational area, the physical processes related to the background radiation of the places where measurements were made. In Brazil, there is still little information about the radiation from soil, radon gas atmospheric, cosmic and artificial origin. Measurements of gamma radiation spectra were performed with a scintillator of NaI (Tl) (volume 300 cm3) mounted within an aluminum cell and coupled to a photomultiplier tube, which in turn is coupled through an interface to specify a notebook for storage of data. The measurement of X and gamma rays photons occur of way omnidirectional without distinction as to direction. The data acquisition was performed at fixed intervals of 1 minute continuously for the entire period of dry climate (June to October) and rainy (December 2012 to January 2013). Figures 1 and 2 show the results obtained for both periods, dry and rainy, respectively. Regarding the graph of Figure 1, is evidenced a cycle of 24 hours in the radiation spectrum. In this period without rain the radiation increases always between sunrise sunset until 11 - 12 hours local, due to the increased presence of radon gas (222Rn) which decays after 3.8 days in 214Pb and 214Bi, emitting photons in the range of energy the detector is measuring (0.030 to 3.0 MeV). The graph in Figure 2 shows that during the rainy period, there was a significant increase in radiation intensity, in addition to that already shown in the dry times that for certain time intervals. This increase is due to when occurs precipitation, the amount of radon gas increases because of the phenomenon of washing the lower atmosphere where the gas is suspended and diluted in water droplets. In the rainy period, the periodicity that is present in the spectrum of the dry climate is practically destroyed due to the interference of photons gamma of radon gas from the rain.

  16. A method for the comparison of performance of gamma-ray spectrometry calibration cocktails.

    PubMed

    Legarda, F; Los Arcos, J M; Herranz, M

    2004-01-01

    In order to make quantitative assessments about the usefulness of different gamma-ray emitting radionuclide cocktails to carry out efficiency calibrations of gamma-ray spectrometers, a method has been developed that allows the comparison of their different performances and to optimize the choice of gamma energy lines for the radionuclides within a specific cocktail. The method has been applied to compare different cocktail configurations obtained from measurements made in the laboratory with monoenergetic radionuclides, and their relative performances are presented and discussed. PMID:14987701

  17. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    PubMed

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  18. Effects of gamma radiation on commercial food packaging filmsstudy of changes in UV/VIS spectra

    NASA Astrophysics Data System (ADS)

    Moura, E. A. B.; Ortiz, A. V.; Wiebeck, H.; Paula, A. B. A.; Silva, A. L. A.; Silva, L. G. A.

    2004-09-01

    The effects of gamma irradiation doses up to 100 kGy on the optical properties of different commercial packaging films were studied in this paper. The packaging films analyzed were: polyethylene "LDPE", amide 6-amide 6.6 copolymer "PA6-PA6.6" and poly(ethylene terephthalate) "PET". An investigation on film samples before and after irradiation was performed by UV/VIS spectroscopy. The results showed that, in the absorption spectra of irradiated LDPE and PA6-PA6.6 films, a red-shift in the wavelength of the UV cutoff and a marked reduction in % transmittance (at low wavelengths) occur with increasing radiation dose. With respect to PET samples, no significant changes were observed in either light absorption or transmittance.

  19. A prototype of radioactive waste drum monitor by non-destructive assays using gamma spectrometry.

    PubMed

    Thanh, Tran Thien; Trang, Hoang Thi Kieu; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tran, Le Bao; Tam, Hoang Duc; Tao, Chau Van

    2016-03-01

    In this work, segmented gamma scanning and the gamma emission tomography were used to locate unknown sources in a radioactive waste drum. The simulated detector response function and full energy peak efficiency are compared to corresponding experimental data and show about 5.3% difference for an energy ranging from 81keV to 1332.5keV for point sources. Computation of the corresponding activity is in good agreement with the true values. PMID:26717796

  20. Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry.

    PubMed

    Ozmen, S F; Boztosun, I; Yavuz, M; Tun, M R

    2014-03-01

    In this study several soil samples were collected from the Bykeceli district where Turkey's first nuclear power plant will be built and radioactivity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs were determined by gamma spectrometry using a high-purity germanium detector. The measured activity concentrations in soil samples ranged from 9.8 0.7 to 258.6 15.8, 11.7 0.9 to 85.6 5.0, 173.8 2.1 to 1949.5 14.7 and 0.4 0.1 to 72.2 2.2 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. Findings are in good agreement with the published results of neighbouring areas. The absorbed gamma dose rate (D) in air and the annual effective dose of soil samples were calculated to be 80.2 nGy h(-1) and 98.3 mSv y(-1), respectively. The results show that the radiation hazard in the Bykeceli district is insignificant. The data presented in this study would be very useful to determine the future effects of the nuclear power plant to the environment. PMID:24214909

  1. ON THERMALIZATION IN GAMMA-RAY BURST JETS AND THE PEAK ENERGIES OF PHOTOSPHERIC SPECTRA

    SciTech Connect

    Vurm, Indrek; Piran, Tsvi; Lyubarsky, Yuri

    2013-02-20

    The low-energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the thermalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, {approx}10{sup 10} to a few Multiplication-Sign 10{sup 11} cm, and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest E {sub pk} values. The least restrictive constraint for successful thermalization, {Gamma} {approx}< 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.

  2. Gannet: A Batch-Processing Tool for the Quantitative Analysis of Gamma-Aminobutyric AcidEdited MR Spectroscopy Spectra

    PubMed Central

    Edden, Richard A.E.; Puts, Nicolaas A.J.; Harris, Ashley D.; Barker, Peter B.; Evans, C. John

    2014-01-01

    Purpose The purpose of this study is to describe the Gannet toolkit for the quantitative batch analysis of gamma-aminobutyric acid (GABA) -edited MRS data. Materials and Methods Using MEGA-PRESS editing and standard acquisition parameters, four MEGA-PRESS spectra were acquired in three brain regions in 10 healthy volunteers. These 120 datasets were processed without user intervention with Gannet, a Matlab-based tool that takes raw time-domain data input, processes it to generate the frequency-domain edited spectrum, and applies a simple modeling procedure to estimate GABA concentration relative to the creatine or, if provided, the unsuppressed water signal. A comparison of four modeling approaches is also presented. Results All data were successfully processed by Gannet. Coefficients of variation across subjects ranged from 11% for the occipital region to 17% for the dorsolateral prefrontal region. There was no clear difference in fitting performance between the simple Gaussian model used by Gannet and the other more complex models presented. Conclusion Gannet, the GABA Analysis Toolkit, can be used to process and quantify GABA-edited MRS spectra without user intervention. PMID:25548816

  3. On the non-existence of a sharp cooling break in gamma-ray burst afterglow spectra

    SciTech Connect

    Uhm, Z. Lucas; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-01-01

    Although the widely used analytical afterglow model of gamma-ray bursts (GRBs) predicts a sharp cooling break ? {sub c} in its afterglow spectrum, the GRB observations so far rarely show clear evidence for a cooling break in their spectra or a corresponding temporal break in their light curves. Employing a Lagrangian description of the blast wave, we conduct a sophisticated calculation of the afterglow emission. We precisely follow the cooling history of non-thermal electrons accelerated into each Lagrangian shell. We show that a detailed calculation of afterglow spectra does not in fact give rise to a sharp cooling break at ? {sub c}. Instead, it displays a very mild and smooth transition, which occurs gradually over a few orders of magnitude in energy or frequency. The main source of this slow transition is that different mini shells have different evolutionary histories of the comoving magnetic field strength B, so that deriving the current value of ? {sub c} of each mini shell requires an integration of its cooling rate over the time elapsed since its creation. We present the time evolution of optical and X-ray spectral indices to demonstrate the slow transition of spectral regimes and discuss the implications of our result in interpreting GRB afterglow data.

  4. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  5. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity ratios showed distinct differences between the closed CANDU primary coolant system and radiopharmaceutical production releases. According to the concept proposed by Kalinowski and Pistner (2006), the relationship between different isotopic activity ratios based on three or four radioxenon isotopes was plotted in a log-log diagram for source characterisation (civil vs. nuclear test). The multiple isotopic activity ratios were distributed in three distinct areas: HC atmospheric monitoring ratios extended to far left; the CANDU primary coolant system ratios lay in the middle; and 99Mo stack monitoring ratios for ANSTO and CRL were located on the right. The closed CANDU primary coolant has the lowest logarithmic mean ratio that represents the nuclear power reactor operation. The HC atmospheric monitoring exhibited a broad range of ratios spreading over several orders of magnitude. In contrast, the ANSTO and CRL stack emissions showed the smallest range of ratios but the results indicate at least two processes involved in the 99Mo productions. Overall, most measurements were found to be shifted towards the reactor domain. The hypothesis is that this is due to an accumulation of the isotope 131mXe in the stack or atmospheric background as it has the longest half-life and extra 131mXe emissions from the decay of 131I. The contribution of older 131mXe to a fresh release shifts the ratio of 133mXe/131mXe to the left. It was also very interesting to note that there were some situations where isotopic ratios from 99Mo production emissions fell within the nuclear test domain. This is due to operational variability, such as shorter target irradiation times. Martin B. Kalinowski and Christoph Pistner, (2006), Isotopic signature of atmospheric xenon released from light water reactors, Journal of Environmental Radioactivity, 88, 215-235.

  6. The Need to Represent Raindrop Size Spectra as Normalized Gamma Distributions for the Interpretation of Polarization Radar Observations.

    NASA Astrophysics Data System (ADS)

    Illingworth, Anthony J.; Blackman, T. Mark

    2002-03-01

    Polarization radar techniques essentially rely on detecting the oblateness of raindrops to provide a measure of mean raindrop size and then using this information to give a better estimate of rainfall rate R than is available from radar reflectivity Z alone. To derive rainfall rates from these new parameters such as differential reflectivity ZDR and specific differential phase shift KDP and to gauge their performance, it is necessary to know the range of naturally occurring raindrop size spectra. A three parameter gamma function is in widespread use, with the three variables No, Do, and providing a measure of drop concentration, mean size, and spectral shape, respectively. It has become standard practice to derive the range of these three variables in rain by comparing the 69 published values of the constants a and b in the empirical relationships Z = aRb with the values of a and b obtained when R and Z are derived by integrating the appropriately weighted gamma function. The relationships in common use both for inferring R from Z, ZDR, and KDP, and for developing attenuation correction routines have been derived from a best fit through the values obtained by cycling over these predicted ranges of No, Do, and . It is pointed out that this derivation of the predicted range of No, Do, and arises using a flawed logic for a particular nonnormalized form of the gamma function, and it is shown that the predicted ranges give rise to some very unrealistic drop spectra, including many with high rainfall and very small drop sizes. It is suggested that attenuation correction routines relying on differential phase may be suspect and the commonly used relationships between rainfall rate and Z, ZDR, and KDP need to be reexamined. When more realistic drop shapes are also used, it may be that published relationships for deriving R from Z and ZDR are in error by over a factor of 2; a new equation is proposed that, in the absence of hail and attenuation, should yield values of R accurate to 25%, provided that ZDR can be estimated to 0.2 dB and Z is calibrated to 1 dB. Relationships of the form R = aKbDP, with b = 1.15, are in widespread use, but more realistic drop spectra and drop shapes yield a value of b closer to 1.4, similar to the exponent in Z-R relationships. In accord, although KDP has the advantage of insensitivity to hail, it may have the same sensitivity to variations in drop spectra as Z does. In addition, the higher value of the exponent b implies that the proposed use of the total phase shift to give the path-integrated total rainfall is also questionable. However, the consistency of Z, ZDR, and KDP in rain can be used to provide absolute calibration of Z to 0.5 dB (12%), and when it fails it indicates that hail is present, in which case a relationship of the form KDP = aR1.4 should be used. The technique should work at S, C, and X band, but, in all cases, paths should be chosen so that the total phase shift is not large enough to introduce significant attenuation of Z and ZDR.

  7. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.; Sigg, R.

    1990-12-31

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.

  8. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.

  9. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    SciTech Connect

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-11-15

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education (ORISE) field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how “fit for use” this technology is for detecting discrete particles in soil.

  10. Evaluation of an automated assay system to measure soil radionuclides by L x-ray and gamma-ray spectrometry

    SciTech Connect

    Nyhan, J.W.; Drennon, B.J.; Crowell, J.M.

    1982-08-01

    An automated radionuclide assay system for conducting soil radioassays using L x-ray and gamma-ray spectrometry was evaluated. Wet chemistry assay procedures were shown to be considerably more time consuming than similar analyses of soil on this radionuclide assay system. The detection limits of /sup 241/Am and plutonium were determined, as well as the reproducibility of radionuclide assay results. The L x-ray spectrometric measurements were compared with radiochemical analyses on several tuff samples. The assay system's intrinsic germanium detector was found to respond linearly to varying low concentrations of /sup 241/Am and plutonium, both of which were easily detected in the presence of elevated concentrations of /sup 137/Cs.

  11. Mathematical model of gamma-ray spectrometry borehole logging for quantitative analysis

    USGS Publications Warehouse

    Schimschal, Ulrich

    1981-01-01

    A technique for analyzing gamma-ray spectral-logging data has been developed, in which a digital computer is used to calculate the effects of gamma-ray attentuation in a borehole environment. The computer model allows for the calculation of the effects of lithology, porosity, density, and the thickness of a horizontal layer of uniformly distributed radioactive material surrounding a centralized probe in a cylindrical borehole. The computer program also contains parameters for the calculation of the effects of well casing, drilling fluid, probe housing, and losses through the sodium-iodide crystal. Errors associated with the commonly used mathematical assumption of a point detector are eliminated in this model. (USGS)

  12. Calculation of the decision threshold in gamma-ray spectrometry using sum peaks.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2016-03-01

    In the presence of radon daughters, gamma rays from (88)Y with energies at 898.0keV or 1836.1keV appear on a high, continuous background or overlap with other peaks. Therefore a calculation of the decision threshold from the sum peak at 2734.1keV represents a useful alternative, because here the continuous background is low. The decision threshold calculated from this peak can attain a value being comparable to the decision threshold calculated from the gamma-ray peak at 898.0keV. PMID:26625726

  13. An efficiency calibration for 210Pb and 7Be measurements by gamma-ray spectrometry in atmospheric filters

    NASA Astrophysics Data System (ADS)

    Martnez-Ruiz, F.; Borrego, E.; San Miguel, E. G.; Bolvar, J. P.

    2007-09-01

    Natural radionuclides, especially 210Pb and 7Be, condensed on suspended particulate matter in the atmosphere (commonly called aerosols) have been widely used to study a large variety of relevant atmospheric processes. A rapid and non-destructive analysis of 210Pb and 7Be is possible by direct measurement of their 46.5 and 477.6 keV ?-rays, respectively. In this work we have developed an original method to find an empirical function which relates the full-energy peak efficiency with energy in a rectangular geometry for energies above 150 keV. For the energy range below 150 keV only the 46.5 keV of the gamma photon of 210Pb was of interest in this work. A dusty Reference Material (phosphate rock) containing high levels of 238U-series radionuclides, especially 226Ra, was used as calibration sample. This solid matrix (grain size smaller than 63 ?m) was taken to impregnate homogenously the filters so that the real geometry of measurement was reproduced. 210Pb and 7Be activity concentrations in surface air were determined in samples collected from July 2004 to June 2005 at three different locations of the Huelva province (South West of Spain): urban, rural, and industrialized areas. 7Be and 210Pb activities have been determined in the PM 10 and TSP fractions of surface aerosols. The radiometric measurements were performed by low-level gamma spectrometry with a thin window coaxial germanium detector.

  14. The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities

    SciTech Connect

    Kane, Walter R.; Lemley, James R.; Forman, Leon

    1997-12-31

    While well-developed methodologies exist for the employment of high- resolution gamma ray spectrometry (HRGS) in determining the isotopic composition of plutonium samples, the potential capabilities of such measurements in determining the properties of nuclear materials otherwise remain largely unexploited. These measurements contain information sufficiently detailed such that not only can the isotopic composition of uranium and plutonium materials be determined, but the details of the spectrum obtained will depend reproducibly upon other factors including the total mass, density, chemical composition, and geometrical configuration of the material, and for certain materials, the elapsed time since chemical processing. The potential thus exists to obtain a `gamma-ray fingerprint` for typical containers or assemblies of nuclear material which will then serve to identify that class of item in a later confirmatory measurement. These measurements have the additional advantage that, by comparison with active interrogation techniques which usually require the introduction of some extraneous form of radiation or other intrusive activity, they are totally passive, and thus impose only minimal additional safety or regulatory burdens on the operators. In the application of these measurements to the verification of treaty-limited items, where the information acquired may be sensitive in nature, the use of the CIVET (Controlled Intrusiveness Verification Technique) approach, where a computer-based interface is employed to limit access to the information obtained, may be followed.

  15. Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure

    PubMed Central

    Senthilkumar, B.; Dhavamani, V.; Ramkumar, S.; Philominathan, P.

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides 232Th, 238U and 40K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using γ-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of 232Th, 238U and 40K is 42.9±9.4 Bq.kg−1, 14.7±1.7 Bq.kg−1 and 149.5±3.1 Bq.kg−1 respectively are derived from all the soil samples studied. The activity concentration of 232Th, 238U and 40K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h−1 and 59.1 nGy.h−1 with an arithmetic mean of 43.3 ±9 nGy.h−1. This value is lesser than the population weighted world-averaged of 60 nGy.h−1. Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 μSv.y−1 with an arithmetic mean of 53.1±11 μSv.y−1. The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels. PMID:20177570

  16. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Shuhaimi, Alif Imran Mohd

    2016-01-01

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results, two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software.

  17. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  18. Quantifying the benefits of ultrahigh energy resolution for gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Drury, Owen B.; Terracol, Stephane F.; Friedrich, Stephan

    2005-03-01

    Cryogenic Gamma-ray spectrometers operating at temperatures of 0.1 K provide an order of magnitude better energy resolution than conventional germanium detectors. Ultra-high energy resolution improves the accuracy of non-destructive analysis of nuclear materials, since a better separation of lines reduces statistical errors as well as systematic errors from background subtraction and efficiency correction. We are developing cryogenic Gamma-spectrometers based on bulk tin absorbers and superconducting molybdenum-copper sensors for nuclear forensics and non-proliferation applications. Here we quantify the improvements in accuracy for isotope analysis with cryogenic detectors in terms of detector performance for different cases of line separation, line intensity ratios and background levels. Precise measurements of isotope ratios are crucial in the context of nuclear attribution, since they provide signatures of composition, age, origin, intended purpose and processing history of illicit nuclear materials.

  19. Elemental analysis of a comet nucleus by passive gamma ray spectrometry from a penetrator

    NASA Technical Reports Server (NTRS)

    Evans, L. G.; Trombka, J. I.; Boynton, W. V.

    1986-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) spacecraft, to be launched in 1991, was designed to study the physical and chemical properties of cometary and asteroid bodies. It is proposed that these properties can be determined by utilizing a penetrator experiment delivery system aboard the CRAF, which would deliver a passive gamma ray spectrometer to the comet and determine the composition of subsurface materials. Results of calculations for a model comet (50 percent CI carbonaceous chrondrite, 50 percent ices) provide data on the expected gamma ray fluxes, the minimum detectable limits, and the detection uncertainties for 35 isotopes. These results confirm that this technique can determine the composition of both the rocky and ice components, and the rock-to-ice ratio in the nucleus. In addition, useful information regarding the formation of the solar system is provided.

  20. Monte Carlo Solutions for Selected Problems in Gamma-Ray Spectrometry and Nuclear Activation Analysis

    SciTech Connect

    Sima, Octavian

    2008-08-14

    A comprehensive calibration of gamma-ray spectrometers cannot be obtained purely on experimental basis. Problems like self-attenuation effects, coincidence-summing effects and non-uniform source distribution (resulting e.g. from neutron self-shielding in NAA) can be efficiently solved by Monte Carlo simulation. The application of the GESPECOR code to these problems is presented and the associated uncertainty is discussed.

  1. Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies: I. Electrospray Spectra of 2-Ring Isomers

    PubMed Central

    2015-01-01

    Purified methylenedianiline (MDA) regioisomers were structurally characterized and differentiated using tandem mass spectrometry (MS/MS), ion mobility-mass spectrometry (IM-MS), and IM-MS/MS in conjunction with computational methods. It was determined that protonation sites on the isomers can vary depending on the position of amino groups, and the resulting protonation sites play a role in the gas-phase stability of the isomer. We also observed differences in the relative distributions of protonated conformations depending on experimental conditions and instrumentation, which is consistent with previous studies on aniline in the gas phase. This work demonstrates the utility of a multifaceted approach for the study of isobaric species and elucidates why previous MDA studies may have been unable to detect and/or differentiate certain isomers. Such analysis may prove useful in the characterization of larger MDA multimeric species, industrial MDA mixtures, and methylene diphenyl diisocyanate (MDI) mixtures used in polyurethane synthesis. PMID:24678803

  2. Hydration of hyaluronan polysaccharide observed by IR spectrometry. II. Definition and quantitative analysis of elementary hydration spectra and water uptake.

    PubMed

    Haxaire, K; Maréchal, Y; Milas, M; Rinaudo, M

    2003-01-01

    We recorded a series of spectra of sodium hyaluronan (HA) films that were in equilibrium with their surrounding humid atmosphere. The hygrometry of this atmosphere extended from 0 to 0.97% relative humidity. We performed a quantitative analysis of the corresponding series of hydration spectra that are the difference spectra of the film at a defined hygrometry minus the spectrum of the dried film (hygrometry = 0). The principle of this analysis is to use this series of hydration spectra to define a limited number (four) of "elementary hydration spectra" over which we can decompose all hydration spectra with good accuracy. This decomposition, combined with the measurements of the numbers of H(2)O molecules at the origin in these elementary hydration spectra of the three characteristic vibrational bands of H(2)O, allowed us to calculate the hydration number under different relative humidity conditions. This number compares well with that determined by thermogravimetry. Furthermore, the decomposition defines for each hygrometry value which chemical mechanisms represented by elementary hydration spectra are active. This analysis is pursued by determining for the elementary hydration spectra the number of hydrogen bonds established by each of the four alcohol groups found in each disaccharide repeat unit before performing the same analysis for amide and carboxylate groups. These results are later utilized to discuss the structure of HA at various stages of hydration. PMID:12722111

  3. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Pachova, Zdravka

    2006-03-01

    EPR spectra of dry, sugar containing fruitsraisins, sultanas, figs, dates, peaches, blue plums and chokeberry recorded before and after irradiation with gamma-rays, are reported. It is shown that weak singlet EPR line with 2.0031 0.0005 can be recorded before irradiation of seeds, stones or skin of chokeberry, figs and raisins as well as flesh of blue plum, raisins and peaches. EPR signals of various shape are distinguished after irradiation in different parts of the fruits, as well as in randomly cut pieces of them: Seeds of raisins, chokeberry and figs give a singlet line. Stones from blue plums and peaches exhibit typical "cellulose-like" EPR signal consisting of an intense singlet line with g = 2.0033 0.0005 and 2 week satellite lines situated ca. 30 G left and right to it. Stones of dates are the only sample in which "sugar-like" spectrum is recorded. Skin of raisins and figs exhibits "sugar-like" EPR spectrum whereas that of dates and chokeberrya singlet line. Under the same experimental conditions skin of sultanas, peaches and blue plums are EPR silent. Flesh of raisins, sultanas, figs, dates and peaches exhibits "sugar-like" EPR spectrum, flesh of blue plums gives a singlet EPR line and that of chokeberry is EPR silent. As a result, randomly cut pieces of dry fruits suitable for EPR studies, containing various constituents, exhibit different in shape and intensity EPR spectra. Kinetic studies followed for 1 year on the time stability of all reported EPR signals indicate that intensity ratio between the simultaneously appearing EPR signals in particular fruit varies from 1:20 immediately after irradiation to 1:0.5 at the end of the period. These observations open a new possibility for identification of irradiated fruits - using the magnitude of the intensity ratio to find the approximate date of radiation processing in the first ca. 30-100 days.

  4. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume II. Software description and listings. [IAEAPU

    SciTech Connect

    Ruhter, W.D.

    1984-05-01

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and has dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV /sup 241/Pu and 208-keV /sup 237/U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings.

  5. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume I. Data analysis methodology and hardware description

    SciTech Connect

    Ruhter, W.D.

    1984-05-01

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and had dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV /sup 241/Pu and 208-keV /sup 237/U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings.

  6. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  7. Simulation of gamma-ray spectra for a variety of user-specified detector designs. Semiannual technical report, 1 March-31 August 1994

    SciTech Connect

    Rester, A.C. Jr.

    1994-12-01

    The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.

  8. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation.

    PubMed

    Abdelghany, A M; ElBatal, F H; Azooz, M A; Ouis, M A; ElBatal, H A

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation. PMID:22995547

  9. Fission Fragment Studies by Gamma-Ray Spectrometry with the Mass Separator Lohengrin

    NASA Astrophysics Data System (ADS)

    Materna, T.; Amouroux, C.; Bail, A.; Bideau, A.; Chabod, S.; Faust, H.; Capellan, N.; Kessedjian, G.; Kster, U.; Letourneau, A.; Litaize, O.; Martin, F.; Mathieu, L.; Mplan, O.; Panebianco, S.; Rgis, J.-M.; Rudigier, M.; Sage, C.; Serot, O.; Urban, W.

    2014-09-01

    A gamma spectrometric technique was implemented at the exit of the fission fragment separator of the ILL. It allows a precise measurement of isotopic yields of most important actinides in the heavy fragment region by an unambiguous identification of the nuclear charge of the fragments selected by the mass spectrometer. The status of the project and last results are reviewed. A spin-off of this activity is the identification of unknown nanosecond isomers in exotic nuclei through the observation of a disturbed ionic charge distribution. This technique has been improved to provide an estimation of the lifetime of the isomeric state.

  10. Uncertainty assessment in the free release measurement by gamma spectrometry of rotating waste drums.

    PubMed

    Stanga, D; Sima, O; Gurau, D

    2016-03-01

    The assessment of uncertainty in free release measurements by integral gamma scanning method is described and applied to the measurement of homogeneous and heterogeneous waste drums. It is based on the propagation of distributions using the Monte Carlo method. In addition, two techniques for the uncertainty reduction are also described. The first technique makes use of containers constructed from two concentric cylinders and the second technique is based on the measurement of a group of waste drums. It is proved that the uncertainty of clearance measurements can be reduced using both techniques. PMID:26653210

  11. ENERGY-DEPENDENT LIGHT CURVES AND PHASE-RESOLVED SPECTRA OF HIGH-ENERGY GAMMA-RAYS FROM THE CRAB PULSAR

    SciTech Connect

    Li, X.; Zhang, L.

    2010-12-20

    Energy-dependent light curves and phase-resolved spectra of high-energy {gamma}-ray emission from the Crab pulsar have been detected recently by the Fermi Large Area Telescope (LAT). Within the framework of a two-pole, three-dimensional outer gap model, we calculate the energy-dependent light curves and phase-resolved spectra in the inertial observer's frame. Our results show that (1) the observed {gamma}-ray properties from both Fermi LAT and MAGIC can be reproduced well in this model; (2) the first peak of the light curves in the energy region less than {approx}10 GeV comes from the sum of emissions from both the north and south poles, and the second peak comes only from the emission from the south pole; however, the relative contribution of the two poles to the first peak changes with increasing {gamma}-ray energy, and the light curve in the energy region greater than {approx}20 GeV comes completely from the emission of the south pole; and (3) {gamma}-rays in the energy region greater than 100 MeV are produced through inverse Compton scattering from secondary pairs and the survival curvature photons, where the latter dominate over {gamma}-ray emission in the energy region greater than several GeV.

  12. Modern aerial gamma-ray spectrometry and regional potassium map of the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.

    1990-01-01

    The aerial gamma-ray data were obtained as part of the National Uranium Resource Evaluation (NURE) Program sponsored by the U.S. Department of Energy during the period 1975-1983. References for the Open-File Reports that describe the surveys and data collection can be found in Bendix Field Engineering Corp. (1983). The aerial surveys were flown by contractors using fixed-wing and helicopter systems with 33-50 L (liters) of thallium-activated sodium iodide (NaI (TI)) crystals. The nominal survey altitude used is 122 m. The survey lines were generally east-west with line spacings of 1.6-10 km. Tie lines were flown perpendicular to the flight lines at intervals of 16- 30 km. The data were corrected for background from aircraft contamination and cosmic rays, altitude variations, airborne 214Bi, and Compton scattering. The gamma-ray systems were calibrated using the calibrations pads at Grand Junction, Colorado (Ward, 1978 ) and the dynamic test strip at Lake Mead, Arizona (Geodata International, Inc., 1977).  

  13. Application of spectrum shifting methodology to restore NaI(Tl)-recorded gamma spectra, shifted due to temperature variations in the environment.

    PubMed

    Mitra, Pratip; Singha Roy, Arup; Verma, Amit K; Pant, Amar D; Prakasha, M S; Anilkumar, S; Vinod Kumar, A

    2016-01-01

    A method has been standardized for restoring a shifted differential pulse height spectrum from a scintillator based gamma ray spectrometer recorded at measurement temperature, to the position of a desired spectrum, recorded at a reference temperature. The method is based on the assumption that the spectrum obtained at measurement temperature represents the same statistical distribution as that at reference temperature but with different energy scales. A computer program has been developed for calculation of the transformation between the energy scales and for the restoration of the shifted spectrum. The method developed has been successfully applied for the restoration of gamma spectra measured at different temperatures. PMID:26492324

  14. Absorption-Mode Fourier Transform Mass Spectrometry: the Effects of Apodization and Phasing on Modified Protein Spectra

    PubMed Central

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David. P. A.; Barrow, Mark P.; Lin, Cheng; OConnor, Peter B.

    2014-01-01

    The method of phasing broadband FT-ICR spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed, and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by >100. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode. PMID:23568027

  15. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry.

    PubMed

    Khandaker, M U; Jojo, P J; Kassim, H A; Amin, Y M

    2012-11-01

    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 13, 21 4, 50 12 and 46 8, respectively. Respective values of (232)Th were obtained as 65 10, 21 3, 58 10 and 57 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 91, 290 20, 380 61 and 432 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future. PMID:22887119

  16. Detection of frozen salt in pipes using gamma-ray spectrometry of potassium self-activity

    SciTech Connect

    Grena, Roberto; Scafe, Raffaele; Pisacane, Fabrizio; Pilato, Renzo; Crescenzi, Tommaso; Mazzei, Domenico

    2010-01-15

    Solar plants that use molten salts as heat transfer fluid need careful control to avoid the freezing of the salt in the pipes; if such a problem occurs, a diagnostic instrument to localize where is the frozen salt plug and to determine its length is useful. If the salt contains potassium (as is the case of the most common mixture used in solar plants, NaNO{sub 3}/KNO{sub 3} 60/40% by weight), the gamma decay of the natural unstable isotope {sup 40}K can be exploited to detect the frozen salt in a non-invasive way. Simulations and experimental results regarding the detectability of such plugs with different masses/lengths are presented. (author)

  17. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-04-10

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  18. Updated summary of measurements and calculations of neutron and gamma-ray emission spectra from spheres pusled with 14-MeV neutrons: Revision 1

    SciTech Connect

    Hansen, L.F.; Goldberg, E.; Howerton, R.J.; Komoto, T.T.; Pohl, B.A.

    1989-01-19

    New measurements of the neutron and gamma-ray emission spectra from materials of interest to thermonuclear reactors with a 14 MeV neutron source were done during 1986 and 1987. These measurements characterized by better resolution than those reported in the Summary published in 1982, were performed using the pulsed sphere and time-of-flight techniques. The detector used in these measurements was a NE-213 cylinder, 5.08 cm in diameter by 5.08 cm thick. The new measurements include the following materials: Be, C, N, H/sub 2/O, C/sub 2/F/sub 4/ (teflon), Al, Si, Ti, Fe, Cu, Ta, W, Au, Pb, /sup 232/Th, and /sup 238/U. For all these materials, both the neutron and gamma emission spectra were measured. A complete tabulation of all the measurements done under the Pulse Sphere Program is presented. 37 refs., 1 tab.

  19. Survey of the {sup 137}Cs contamination in Belgium by in-situ gamma spectrometry, a decade after the Chernobyl accident

    SciTech Connect

    Uyttenhove, J.; Pomme, S.; Hardenman, F.; Culot, J.P.

    1997-10-01

    The residual radiocesium concentration, nearly 10 y after the Chernobyl accident, is measured at different sites on the Belgian territory by means of in-situ gamma-spectrometry. A possible link between the rainfall at the beginning of May 1986 and the actual cesium concentration is investigated. The radiological impact of this contamination, even in the most affected regions in the Ardennes, is very small (<6 {mu}Sv y{sup -1}). 6 refs., 4 figs., 1 tab.

  20. In situ gamma spectrometry measurements and Monte Carlo computations for the detection of radioactive sources in scrap metal.

    PubMed

    Clouvas, A; Xanthos, S; Takoudis, G; Potiriadis, C; Silva, J

    2005-02-01

    A very limited number of field experiments have been performed to assess the relative radiation detection sensitivities of commercially available equipment used to detect radioactive sources in recycled metal scrap. Such experiments require the cooperation and commitment of considerable resources on the part of vendors of the radiation detection systems and the cooperation of a steel mill or scrap processing facility. The results will unavoidably be specific to the equipment tested at the time, the characteristics of the scrap metal involved in the tests, and to the specific configurations of the scrap containers. Given these limitations, the use of computer simulation for this purpose would be a desirable alternative. With this in mind, this study sought to determine whether Monte Carlo simulation of photon flux energy distributions resulting from a radiation source in metal scrap would be realistic. In the present work, experimental and simulated photon flux energy distributions in the outer part of a truck due to the presence of embedded radioactive sources in the scrap metal load are compared. The experimental photon fluxes are deduced by in situ gamma spectrometry measurements with portable Ge detector and the calculated ones by Monte Carlo simulations with the MCNP code. The good agreement between simulated and measured photon flux energy distributions indicate that the results obtained by the Monte Carlo simulations are realistic. PMID:15650590

  1. Data acquisition ATCA system for neutron and gamma-rays spectrometries

    SciTech Connect

    Pereira, R.; Fernandes, A. G.; Sousa, J.; Varandas, C. A. F.

    2006-10-15

    Digital pulse processing (DPP) systems are known to have better performance than analog ones for neutron and/or gamma-ray pulses. DPP can synthesize almost any pulse response shape without the associated signal degradation which happens in a complex analog path. Measuring techniques involving detectors/spectrometers for fusion diagnostics rely on real-time algorithms, implemented in field programmable gate array (FPGA), for pulse height analysis, pulse shape discrimination, and pileup rejection of digitized pulses in real time for reduced data throughput, monitoring, and control. This article describes a data acquisition system for real-time pulse analysis based on ATCA and contains a 6 GFLPOS ix86-based control unit and a number of transient recorder (TR) modules interconnected through PCI Express links. Each TR module features (i) eight channels of 12 bit resolution with accuracy equal or higher than 10 bits, (ii) 200 Msamples/s of sampling rate achieving 400 Msamples/s in an interleaved architecture, (iii) 2 or 4 Gbytes of local memory, and (iv) two field FPGAs able to perform real-time processing algorithms.

  2. Data acquisition ATCA system for neutron and gamma-rays spectrometries

    NASA Astrophysics Data System (ADS)

    Pereira, R.; Fernandes, A. G.; Sousa, J.; Varandas, C. A. F.

    2006-10-01

    Digital pulse processing (DPP) systems are known to have better performance than analog ones for neutron and/or gamma-ray pulses. DPP can synthesize almost any pulse response shape without the associated signal degradation which happens in a complex analog path. Measuring techniques involving detectors/spectrometers for fusion diagnostics rely on real-time algorithms, implemented in field programmable gate array (FPGA), for pulse height analysis, pulse shape discrimination, and pileup rejection of digitized pulses in real time for reduced data throughput, monitoring, and control. This article describes a data acquisition system for real-time pulse analysis based on ATCA and contains a 6 GFLPOS i ×86-based control unit and a number of transient recorder (TR) modules interconnected through PCI Express links. Each TR module features (i) eight channels of 12bit resolution with accuracy equal or higher than 10bits, (ii) 200Msamples/s of sampling rate achieving 400Msamples/s in an interleaved architecture, (iii) 2 or 4Gbytes of local memory, and (iv) two field FPGAs able to perform real-time processing algorithms.

  3. Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry

    NASA Astrophysics Data System (ADS)

    Hahn, B. C.; McLennan, S. M.; Klein, E. C.

    2011-07-01

    Martian thermal state and evolution depend principally on the radiogenic heat-producing element (HPE) distributions in the planet's crust and mantle. The Gamma-Ray Spectrometer (GRS) on the 2001 Mars Odyssey spacecraft has mapped the surface abundances of HPEs across Mars. From these data, we produce the first models of global and regional surface heat production and crustal heat flow. As previous studies have suggested that the crust is a repository for approximately 50% of the radiogenic elements on Mars, these models provide important, directly measurable constraints on Martian heat generation. Our calculations show considerable geographic and temporal variations in crustal heat flow, and demonstrate the existence of anomalous heat flow provinces. We calculate a present day average surface heat production of 4.9 0.3 10-11 W kg-1. We also calculate the average crustal component of heat flow of 6.4 0.4 mW m-2. The crustal component of radiogenically produced heat flow ranges from <1 mW m-2 in the Hellas Basin and Utopia Planitia regions to 13 mW m-2 in the Sirenum Fossae region. These heat production and crustal heat flow values from geochemical measurements support previous heat flow estimates produced by different methodologies.

  4. Evaluation of the Doppler-Broadening of Gamma-Ray Spectra from Neutron Inelastic Scattering on Light Nuclei

    SciTech Connect

    Womble, Phillip C.; Barzilov, Alexander; Novikov, Ivan; Howard, Joseph; Musser, Jason

    2009-03-10

    Neutron-induced gamma-ray reactions are extensively used in the nondestructive analysis of materials and other areas where the information about the chemical composition of a substance is crucial. The common technique to find the intensity of the gamma ray is to fit gamma-ray line shape with an analytical function, for example, a Gaussian. However, the Gaussian fitting may fail if the gamma-ray peak is Doppler-broadened since this leads to the miscalculation of the area of the peak and, therefore, to misidentification of the material. Due to momentum considerations, Doppler-broadening occurs primarily with gamma rays from neutron-induced inelastic scattering reactions with light nuclei. The recoiling nucleus of interest must have excited states whose lifetimes are much smaller than the time of flight in the material. We have examined various light nuclei bombarded by 14 MeV neutrons to predict when the peak shape of a neutron-induced gamma ray emitted from these nuclei will be Doppler-broadened. We have found that nearly all the gamma rays from neutron-induced gamma-ray reactions on light elements (A<20) are Doppler-broadened with only a few exceptions. This means that utilization of resolution curves derived from isotopic sources or thermal neutron capture reactions have little value in the analysis.

  5. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    NASA Astrophysics Data System (ADS)

    Sergeyeva, Victoria; Domergue, Christophe; Destouches, Christophe; Girard, Jean Michel; Philibert, Hervé; Bonora, Jonathan; Thiollay, Nicolas; Lyoussi, Abdallah

    2016-02-01

    The CEA MADERE platform (Measurement Applied to DosimEtry in REactors) is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI). This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuous improvement process. Recently, two High Efficiency diodes have been integrated to the MADERE platform in order to manage the accurate low level activity measurements (few Bq per sample). This new equipment provides a good level of efficiency over the energy range from 60 keV to 2 MeV. The background continuum is reduced due to the use of a Ultra Low Background (ULB) lead shielding. Relative and absolute X-ray measurement techniques have been improved in order to facilitate absolute rhodium activity measurement (Rh103m) on solid samples. Additional efforts have been made to increase the accuracy of the relative niobium (Nb93m) activity measurement technique. The way of setting up an absolute measurement method for niobium is under investigation. After a presentation of the MADERE's measurement devices, this paper focuses on the technological options taken into account for the design of high efficiency measurement devices. Then, studies performed on X-ray measurement techniques are presented. Some details about the calculation of uncertainties and correction factors are also mentioned. Finally, future research and development axes are exposed.

  6. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  7. Quantitative comparison between experimental and simulated gamma-ray spectra induced by 14 MeV tagged neutrons.

    PubMed

    Perot, B; El Kanawati, W; Carasco, C; Eleon, C; Valkovic, V; Sudac, D; Obhodas, J; Sannie, G

    2012-07-01

    Fast neutron interrogation with the associated particle technique can be used to identify explosives in cargo containers (EURITRACK FP6 project) and unexploded ordnance on the seabed (UNCOSS FP7 project), by detecting gamma radiations induced by 14 MeV neutrons produced in the 2H(3H,?)n reaction. The origin of the gamma rays can be determined in 3D by the detection of the alpha particle, which provides the direction of the opposite neutron and its time-of-flight. Gamma spectroscopy provides the relative counts of carbon, nitrogen, and oxygen, which are converted to chemical fractions to differentiate explosives from other organic substances. To this aim, Monte Carlo calculations are used to take into account neutron moderation and gamma attenuation in cargo materials or seawater. This paper presents an experimental verification that C, N, and O counts are correctly reproduced by numerical simulation. A quantitative comparison is also reported for silicon, iron, lead, and aluminium. PMID:21782459

  8. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry.

    PubMed

    Arnhard, Kathrin; Gottschall, Anna; Pitterl, Florian; Oberacher, Herbert

    2015-01-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become an indispensable analytical technique in clinical and forensic toxicology for detection and identification of potentially toxic or harmful compounds. Particularly, non-target LC-MS/MS assays enable extensive and universal screening requested in systematic toxicological analysis. An integral part of the identification process is the generation of information-rich product ion spectra which can be searched against libraries of reference mass spectra. Usually, 'data-dependent acquisition' (DDA) strategies are applied for automated data acquisition. In this study, the 'data-independent acquisition' (DIA) method 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) was combined with LC-MS/MS on a quadrupole-quadrupole-time-of-flight (QqTOF) instrument for acquiring informative high-resolution tandem mass spectra. SWATH performs data-independent fragmentation of all precursor ions entering the mass spectrometer in 21m/z isolation windows. The whole m/z range of interest is covered by continuous stepping of the isolation window. This allows numerous repeat analyses of each window during the elution of a single chromatographic peak and results in a complete fragment ion map of the sample. Compounds and samples typically encountered in forensic casework were used to assess performance characteristics of LC-MS/MS with SWATH. Our experiments clearly revealed that SWATH is a sensitive and specific identification technique. SWATH is capable of identifying more compounds at lower concentration levels than DDA does. The dynamic range of SWATH was estimated to be three orders of magnitude. Furthermore, the >600,000 SWATH spectra matched led to only 408 incorrect calls (false positive rate = 0.06 %). Deconvolution of generated ion maps was found to be essential for unravelling the full identification power of LC-MS/MS with SWATH. With the available software, however, only semi-automated deconvolution was enabled, which rendered data interpretation a laborious and time-consuming process. PMID:25366975

  9. Speciation of Nitrogen-Bearing Species Using Negative and Positive Secondary Ion Spectra with Nano Secondary Ion Mass Spectrometry.

    PubMed

    Li, Kexue; Sinha, Baerbel; Hoppe, Peter

    2016-03-15

    In this study, we demonstrate that Nano Secondary Ion Mass Spectrometry (NanoSIMS) can be used to differentiate different nitrogen-containing species commonly observed in atmospheric aerosol particles with micrometer or submicrometer spatial resolution, on the basis of the relative intensity of secondary ion signals, both in negative and positive secondary ion mode, without the need to chemically or physically separate the samples. Compounds tested include nitrate, nitrite, ammonium salts, urea, amino acids, sugars, organic acids, amides, triazine, imidazole, protein, and biological tissue. We show that NO2(-) secondary ions are unique to the decomposition of nitrate and nitrite salts, whereas NH4(+) secondary ions are unique to samples containing ammonium ions, with low signal intensities observed from amino groups but none from biological tissue. CN(-) signals are obtained from all nitrogen-bearing compounds, but relative signal intensities are the highest for organic nitrogen-containing compounds. We demonstrate that quantitative determination of the elemental fractions of carbon, oxygen, and nitrate in nanometer-sized aerosol samples using normalized secondary ion intensities is possible. We further demonstrate that stable isotope ratios measured on in-house standards of unknown isotopic composition using the (12)C(15)N(-)/(12)C(14)N(-) ratio (all nitrogen-containing species), the (15)N(16)O2(-)/(14)N(16)O2(-) ratio (nitrate and nitrite species), and the (15)NH4(+)/(14)NH4(+) ratio (ammonium salts, amino acids, and urea) are stable and sufficiently precise for nitrogen isotope analysis. PMID:26854563

  10. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation.

    PubMed

    ElBatal, F H; Abdelghany, A M; ElBatal, H A

    2014-03-25

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe(3+)) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi(3+)) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi(3+) ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements. PMID:24326262

  11. Gamma Emission Spectra from Neutron Resonances in 234,236,238U Measured Using the Dance Detector at Lansce

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2013-03-01

    An accurate knowledge of the radiative strength function and level density is needed to calculate of neutron-capture cross sections. An additional constraint on these quantities is provided by measurements of ?-ray emission spectra following capture. We present ?-emission spectra from several neutron resonances in 234,236,238U, measured using the DANCE detector at LANSCE. The measurements are compared to preliminary calculations of the cascade. It is observed that the generalized Lorentzian form of the E1 strength function cannot reproduce the shape of the emission spectra, but a better description is made by adding low-lying M1 Lorentzian strength.

  12. A mass spectrometric analysis of {gamma}-GPS films

    SciTech Connect

    Dillingham, R.G.; Boerio, F.J.; Bertelsen, C.; Savina, M.R.; Lykke, K.R.; Calaway, W.F.

    1996-06-01

    {gamma}-glycidoxypropyltrimethoxysilane ({gamma}-GPS) is used for pre-treatment of grit-blasted aluminum before adhesive bonding. This paper discusses analysis of non-reflective grit-blasted surfaces using mass spectrometry of species that were either sputtered off using an ion beam or thermally desorbed as neutrals using a pulsed laser and then post-ionized using a secondary laser. Results show that fragmentation is excessive and structural information is difficult to obtain from the spectra.

  13. DS02 fluence spectra for neutrons and gamma rays at Hiroshima and Nagasaki with fluence-to-kerma coefficients and transmission factors for sample measurements.

    PubMed

    Egbert, Stephen D; Kerr, George D; Cullings, Harry M

    2007-11-01

    Fluence spectra at several ground distances in Hiroshima and Nagasaki are provided along with associated fluence-to-kerma coefficients from the Dosimetry System 2002 (DS02). Also included are transmission factors for calculating expected responses of in situ sample measurements of neutron activation products such as (32)P,(36)Cl,(39)Ar,(41)Ca, (60)Co,(63)Ni,(152)Eu, and (154)Eu. The free-in-air (FIA) fluences calculated in 2002 are available for 240 angles, 69 energy groups, 101 ground distances, 5 heights, 4 radiation source components, 2 cities. The DS02 code uses these fluences partitioned to a prompt and delayed portion, collapsed to 58 energy groups and restricted to 97 ground distances. This is because the fluence spectra were required to be in the same format that was used in the older Dosimetry System 1986 (DS86) computer code, of which the DS02 computer code is a modification. The 2002 calculation fluences and the collapsed DS02 code fluences are presented and briefly discussed. A report on DS02, which is available on the website at the Radiation Effects Research Foundation, provides tables and figures of the A-bomb neutron and gamma-ray output used as the sources in the 2002 radiation transport calculations. While figures illustrating the fluence spectra at several ground ranges are presented in the DS02 Report, it does not include any tables of the calculated fluence spectra in the DS02 report. This paper provides, at several standard distances from the hypocenter, the numerical information which is required to translate the FIA neutron fluences given in DS02 to a neutron activation measurement or neutron and gamma-ray soft-tissue dose. PMID:17643260

  14. Building-up a code for the purpose of TRUE coincidence summing correction in gamma-ray spectrometry with EGS4

    NASA Astrophysics Data System (ADS)

    Celik, Necati; Altin, Duygu; Cevik, Ugur

    2015-10-01

    In the presented study, a code was created for the purpose of true coincidence summing (TCS) correction factors for 134Cs. The created code was implemented in EGS4 Monte Carlo simulation package. TCS factors were determined for nine different energies for different detector-source geometries. The calculated results were successfully validated by an empirical method using a point 134Cs radioactive source and a p-type HPGe detector having 55% relative efficiency. Although the code created gives TCS factors only for 134Cs, the technique presented can be used to obtain the factors for any radionuclide used in gamma-ray spectrometry.

  15. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    PubMed

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. PMID:24331854

  16. Measurement of {sup 25}Mg(p, {gamma}){sup 26}Al{sup g} resonance strengths via accelerator mass spectrometry

    SciTech Connect

    Arazi, A.; Niello, J. O. Fernandez; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Rugel, G.; Richter, E.; Wallner, A.

    2006-08-15

    The strengths of resonances located at center-of-mass energies of E{sub c.m.}=189, 304, 374, and 418 keV for the {sup 25}Mg(p,{gamma}) reaction have been measured for the first time with an off-line method: Mg targets were firstly activated with protons at the resonance energies and the produced {sup 26}Al{sup g} nuclei were counted by means of highly sensitive accelerator mass spectrometry (AMS). Thus, the production of {sup 26}Al in its ground state is determined independently from the {gamma}-decay branching ratio. While the 304, 374, and 418 keV resonances show fair agreement with previous measurements, the 189 keV resonance yield a significantly less strength. In addition, an experimental upper limit for the E{sub c.m.}=92 keV resonance was determined.

  17. Systematic Measurements of keV-NEUTRON Capture Cross Sections and Capture Gamma-Ray Spectra of pd Isotopes

    NASA Astrophysics Data System (ADS)

    Terada, K.; Igashira, M.; Matsuhashi, T.; Katabuchi, T.; Anh, T. T.

    2013-03-01

    The capture cross sections and capture γ-ray spectra of 104,105Pd were measured in the neutron energy region of 15-100 keV as a part of systematic series of measurements. A neutron time-of-flight method was adopted, using a ns pulsed neutron source via the 7Li(p, n)7Be reaction. The capture γ-rays from the samples were measured with an anti-Compton NaI(Tl) spectrometer. The capture yields were obtained by applying a pulse-height weighting technique to the net capture γ-ray pulse-height spectra. The capture cross sections of 104,105Pd were derived with errors less than 5%, using the standard capture cross sections of 197Au. The capture γ-ray spectra of 104,105Pd were also derived by un-folding the respective observed capture γ-ray pulse-height spectra.

  18. Complete sequencing of anti-vancomycin fab fragment by liquid chromatography-electrospray ion trap mass spectrometry with a combination of database searching and manual interpretation of the MS/MS spectra.

    PubMed

    Adamczyk, Maciej; Gebler, John C; Wu, Jiang; Yu, Zhiguang

    2002-02-01

    Sequencing of anti-vancomycin monoclonal antibody (mAb) Fab region (48,000 Da) was carried out using liquid chromatography-electrospray ionization ion trap mass spectrometry (LC/ESI-MS). Comprehensive strategies were employed to ensure complete sequence coverage. The sequence information was obtained from the spectra of collision-induced dissociation (CID) (MS/MS) of the protonated proteolytic peptides resulting from multiple enzymatic digestions of reduced/S-carboxymethylated (RCM) light chain and Fd fragment. Database searching of the spectra against the published immunoglobulin G (IgG) sequences allowed the identification of all the peptides in constant domains as well as partial sequences in variable domains. The rest of the sequences were deduced by manual interpretation of the peptide tandem mass spectrometry (MS/MS) spectra. The analysis showed that the N-terminus of the heavy chain was modified by the conversion of a glutamine residue to pyroglutamic acid. PMID:11792392

  19. Monte Carlo based method for conversion of in-situ gamma ray spectra obtained with a portable Ge detector to an incident photon flux energy distribution.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    1998-02-01

    A Monte Carlo based method for the conversion of an in-situ gamma-ray spectrum obtained with a portable Ge detector to photon flux energy distribution is proposed. The spectrum is first stripped of the partial absorption and cosmic-ray events leaving only the events corresponding to the full absorption of a gamma ray. Applying to the resulting spectrum the full absorption efficiency curve of the detector determined by calibrated point sources and Monte Carlo simulations, the photon flux energy distribution is deduced. The events corresponding to partial absorption in the detector are determined by Monte Carlo simulations for different incident photon energies and angles using the CERN's GEANT library. Using the detector's characteristics given by the manufacturer as input it is impossible to reproduce experimental spectra obtained with point sources. A transition zone of increasing charge collection efficiency has to be introduced in the simulation geometry, after the inactive Ge layer, in order to obtain good agreement between the simulated and experimental spectra. The functional form of the charge collection efficiency is deduced from a diffusion model. PMID:9450590

  20. Measurements of keV-NEUTRON Capture Cross Section and Gamma-Ray Spectra of 142Nd

    NASA Astrophysics Data System (ADS)

    Katabuchi, T.; Igashira, M.; Tajika, M.; Nakamura, Y.; Kamada, S.; Terada, K.

    2013-03-01

    The neutron capture cross section and capture γ-ray spectra of 142Nd in the neutron energy ranges from 15 to 95 keV, and around 550 keV have been measured by the time-of-flight method. Capture γ-rays were detected with an anti-Compton NaI(Tl) spectrometer, and the pulse-height weighting technique was applied to derive the neutron capture cross section. The capture γ-ray spectra were obtained by unfolding the detector pulse-height spectra with the detector response matrix. The results were compared with previous measurements and cross section data in the evaluated nuclear data libraries, JENDL-4.0 and ENDF/B-VII.0.

  1. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-02-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients. PMID:24321866

  2. Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2012-03-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved. PMID:22324886

  3. Spiked environmental matrix for use as a reference material for gamma-ray spectrometry: Production and homogeneity test.

    PubMed

    Sobiech-Matura, K; Máté, B; Altzitzoglou, T

    2016-03-01

    The application of a spiking method for reference material production and its utilisation for a food matrix is presented. The raw rice powder was tested by means of γ-ray spectrometry and spiked with a (137)Cs solution. The spiked material was mixed and tested for homogeneity. The future use of the rice powder reference material after the entire characterisation cycle will be for γ-ray spectrometry method validation. PMID:26610369

  4. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra

    PubMed Central

    Pinto, Angie; Halliday, Catriona; Zahra, Melissa; van Hal, Sebastian; Olma, Tom; Maszewska, Krystyna; Iredell, Jonathan R.; Meyer, Wieland; Chen, Sharon C.-A.

    2011-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods. Methods MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n?=?264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster. Principal Findings Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ?2.0) and genus (score ?1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ?2.0 and 160/167 (96%) with scores of ?1.70; amongst Candida spp. (n?=?148), correct species assignment at scores of ?2.0, and ?1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ?1.90 and ?1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.701.90 provided correct species assignment despite being identified to genus-level. MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n?=?1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results. Conclusions MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility. PMID:22022438

  5. Observation of the double optical-gamma resonance in Mssbauer spectra of 151 Eu in EuP 5 O 14 single crystal

    NASA Astrophysics Data System (ADS)

    Cherepanov, V.; Chuev, M.; Polikarpov, M.; Nikoulin, S.; Panchenko, V.

    2014-04-01

    A theoretical analysis has been made and calculation procedures have been developed for describing the hyperfine structure of 151Eu Mssbauer spectra and the effect of double optical-gamma resonance (DOGR) in the presence of hyperfine quadrupole interaction with an arbitrary symmetry of the electric field gradient tensor. An experimental setup was designed for DOGR-effect observation, incorporating the pumping argon laser and the tunable dye laser combined with the Mssbauer spectrometer on a common platform. The Mssbauer absorption spectra of 151Eu3 + nuclei in single crystals of europium pentaphosphate, EuP5O14, have been measured at T = 5 K and 80 K under the absence and presence of optical pumping tuned to the 7FD0 electronic transition at the 578 nm wavelength. A simultaneous analysis of these spectra in terms of the spin Hamiltonian of hyperfine quadrupole interaction has allowed us to evaluate the DOGR-effect magnitude with the population of the excited (5D0) electronic state under optical pumping of about 10 %.

  6. Cyclodextrin--piroxicam inclusion complexes: analyses by mass spectrometry and molecular modelling

    NASA Astrophysics Data System (ADS)

    Gallagher, Richard T.; Ball, Christopher P.; Gatehouse, Deborah R.; Gates, Paul J.; Lobell, Mario; Derrick, Peter J.

    1997-11-01

    Mass spectrometry has been used to investigate the natures of non-covalent complexes formed between the anti-inflammatory drug piroxicam and [alpha]-, [beta]- and [gamma]-cyclodextrins. Energies of these complexes have been calculated by means of molecular modelling. There is a correlation between peak intensities in the mass spectra and the calculated energies.

  7. Development of a neural network approach to characterise (226)Ra contamination at legacy sites using gamma-ray spectra taken from boreholes.

    PubMed

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul

    2015-02-01

    There are a large number of sites across the UK and the rest of the world that are known to be contaminated with (226)Ra owing to historical industrial and military activities. At some sites, where there is a realistic risk of contact with the general public there is a demand for proficient risk assessments to be undertaken. One of the governing factors that influence such assessments is the geometric nature of contamination particularly if hazardous high activity point sources are present. Often this type of radioactive particle is encountered at depths beyond the capabilities of surface gamma-ray techniques and so intrusive borehole methods provide a more suitable approach. However, reliable spectral processing methods to investigate the properties of the waste for this type of measurement have yet to be developed since a number of issues must first be confronted including: representative calibration spectra, variations in background activity and counting uncertainty. Here a novel method is proposed to tackle this issue based upon the interrogation of characteristic Monte Carlo calibration spectra using a combination of Principal Component Analysis and Artificial Neural Networks. The technique demonstrated that it could reliably distinguish spectra that contained contributions from point sources from those of background or dissociated contamination (homogenously distributed). The potential of the method was demonstrated by interpretation of borehole spectra collected at the Dalgety Bay headland, Fife, Scotland. Predictions concurred with intrusive surveys despite the realisation of relatively large uncertainties on activity and depth estimates. To reduce this uncertainty, a larger background sample and better spatial coverage of cores were required, alongside a higher volume better resolution detector. PMID:25461525

  8. Method for the Compound Annotation of Conjugates in Nontargeted Metabolomics Using Accurate Mass Spectrometry, Multistage Product Ion Spectra and Compound Database Searching

    PubMed Central

    Ogura, Tairo; Bamba, Takeshi; Tai, Akihiro; Fukusaki, Eiichiro

    2015-01-01

    Owing to biotransformation, xenobiotics are often found in conjugated form in biological samples such as urine and plasma. Liquid chromatography coupled with accurate mass spectrometry with multistage collision-induced dissociation provides spectral information concerning these metabolites in complex materials. Unfortunately, compound databases typically do not contain a sufficient number of records for such conjugates. We report here on the development of a novel protocol, referred to as ChemProphet, to annotate compounds, including conjugates, using compound databases such as PubChem and ChemSpider. The annotation of conjugates involves three steps: 1. Recognition of the type and number of conjugates in the sample; 2. Compound search and annotation of the deconjugated form; and 3. In silico evaluation of the candidate conjugate. ChemProphet assigns a spectrum to each candidate by automatically exploring the substructures corresponding to the observed product ion spectrum. When finished, it annotates the candidates assigning a rank for each candidate based on the calculated score that ranks its relative likelihood. We assessed our protocol by annotating a benchmark dataset by including the product ion spectra for 102 compounds, annotating the commercially available standard for quercetin 3-glucuronide, and by conducting a model experiment using urine from mice that had been administered a green tea extract. The results show that by using the ChemProphet approach, it is possible to annotate not only the deconjugated molecules but also the conjugated molecules using an automatic interpretation method based on deconjugation that involves multistage collision-induced dissociation and in silico calculated conjugation. PMID:26819907

  9. Method for the Compound Annotation of Conjugates in Nontargeted Metabolomics Using Accurate Mass Spectrometry, Multistage Product Ion Spectra and Compound Database Searching.

    PubMed

    Ogura, Tairo; Bamba, Takeshi; Tai, Akihiro; Fukusaki, Eiichiro

    2015-01-01

    Owing to biotransformation, xenobiotics are often found in conjugated form in biological samples such as urine and plasma. Liquid chromatography coupled with accurate mass spectrometry with multistage collision-induced dissociation provides spectral information concerning these metabolites in complex materials. Unfortunately, compound databases typically do not contain a sufficient number of records for such conjugates. We report here on the development of a novel protocol, referred to as ChemProphet, to annotate compounds, including conjugates, using compound databases such as PubChem and ChemSpider. The annotation of conjugates involves three steps: 1. Recognition of the type and number of conjugates in the sample; 2. Compound search and annotation of the deconjugated form; and 3. In silico evaluation of the candidate conjugate. ChemProphet assigns a spectrum to each candidate by automatically exploring the substructures corresponding to the observed product ion spectrum. When finished, it annotates the candidates assigning a rank for each candidate based on the calculated score that ranks its relative likelihood. We assessed our protocol by annotating a benchmark dataset by including the product ion spectra for 102 compounds, annotating the commercially available standard for quercetin 3-glucuronide, and by conducting a model experiment using urine from mice that had been administered a green tea extract. The results show that by using the ChemProphet approach, it is possible to annotate not only the deconjugated molecules but also the conjugated molecules using an automatic interpretation method based on deconjugation that involves multistage collision-induced dissociation and in silico calculated conjugation. PMID:26819907

  10. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    SciTech Connect

    Ullmann, John L; Couture, A J; Keksis, A L; Vieira, D J; O' Donnell, J M; Jandel, M; Haight, R C; Rundberg, R S; Kawano, T; Chyzh, A; Baramsai, B; Wu, C Y; Mitchell, G E; Becker, J A; Krticka, M

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  11. The use of the bulk properties of gamma-ray burst prompt emission spectra for the study of cosmology

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam

    The study of bulk spectral properties of Gamma-Ray Bursts (GRBs) is important to understanding the physics behind these powerful explosions and may even be an aide in studying cosmology. The prompt emission spectral properties have long been studied by a growing community of researchers, and many theories have been developed since the discovery of GRBs. Even though the exact physics of these phenomena is not completely understood, GRBs have been proposed to give insight on other astrophysical phenomena from dark matter to the expansion of the universe. Obviously, using GRBs to study cosmology requires a large sample size to adequately constrain results and provide confident conjectures. For this reason, BATSE and GBM results are paramount to the study of the prompt emission of GRBs. Using results from both instruments, I study the bulk spectral properties of GRBs and describe analysis techniques that can be used to study cosmology.

  12. Evaluation of comparison and proficiency test results of gamma ray spectrometry at Jožef Stefan Institute from 1986 to 2014.

    PubMed

    Glavič-Cindro, Denis; Korun, Matjaž; Nečemer, Marijan; Vodenik, Branko; Zorko, Benjamin

    2016-03-01

    One of the best ways to demonstrate the performance and capabilities of testing laboratories is to participate successfully in different international comparison schemes and proficiency tests. The overview of all results of such schemes in the field of high resolution gamma-ray spectrometry where the Laboratory for Radioactivity Measurements (LMR) of the Jožef Stefan Institute (JSI), Slovenia, participated in years 1986-2014 is presented. Different schemes are compared, strong points and drawbacks of different providers and schemes regarding evaluation procedures, determination of reference values, reporting time, sets of radionuclides included in the samples and range of activities of different radionuclides are discussed. One of the main conclusions is that the comparison and proficiency test samples normally contain substantially larger activities than are usually detected in environmental samples. Therefore the capability of determination of activities close to detection limits is usually covered only by few schemes. PMID:26706285

  13. A Multi-detector NaI(Tl) Gamma-ray Spectrometry System for Investigation of Neutron Induced Capture and Fission Reactions

    NASA Astrophysics Data System (ADS)

    Ruskov, I.; Kopach, Yu. N.; Skoy, V.; Hambsch, F.-J.; Oberstedt, S.

    At the Joint Institute for Nuclear Research (JINR) Frank Laboratory of Neutron Physics (FLNP), a new multi-detector gamma-ray spectrometry system (MDGRSS) was constructed. It consists of 24 hexagonal NaI(Tl) detectors, arranged in two cylindrical arrays of variable diameter and distance between them. Test measurements with the MDGRSS are going on at one of the neutron beam-lines of the pulsed white-spectrum neutron source IREN. Some preliminary results from a measurement of the resonance-neutron flux density at IREN 60m flight-path station, using 181Ta(n,?) reaction, are reported. In combination with a multi-section parallel-plate gas-ionization chamber as a fission fragment detector, positioned in the centre of the system, it is possible to investigate the neutron-induced capture and fission reactions on a number of heavy isotopes, important for fundamental and applied neutron and nuclear physics.

  14. Determination of thorium-232 in Canadian soils by gamma-ray spectrometry via lead-212 and actinium-228, interference from uranium

    SciTech Connect

    Zikovsky, L.; Blagoeva, R.

    1994-12-31

    Thorium-232 background levels in non-cultivated Canadian soils (southern and northern Quebec and the Northwest Territories) are presented. Gamma-ray spectrometry was used to determine the activity of {sup 232}Th by measuring the activities of {sup 228}Ac and {sup 212}Pb at 37 sites. The specific activity levels ranged from 2.7 to 95.5 Bq/kg with an overall mean of 24.0 {+-} 15.4 Bq/kg. This activity generated an annual absorbed dose equivalent in air of 0.1 mSv. The activities of {sup 228}Ac and {sup 212}Pb in the soil increased with increasing depth. IT was found that uranium, via its decay product radium, can interfere with the determination of thorium in the soil.

  15. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schtz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  16. Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized CeBr3, LaBr3:Ce, and NaI:Tl Gamma-Ray Detectors

    SciTech Connect

    Guss, Paul; Reed, Michael; Yuan, Ding; Beller, Denis; Cutler, Matthew; Contreras, Chris; Mukhopadhyay, Sanjoy; Wilde, Scott UNLV

    2014-03-01

    Gamma-ray energy spectra were acquired for different sizes of cerium tribromide (CeBr3), cerium-doped lanthanum tribromide (LaBr3:Ce), and thallium-doped sodium iodide (NaI:Tl) detectors. A comparison was conducted of the energy resolution and detection efficiency of these scintillator detectors for different sizes of detectors. The results of this study are consistent with the observation that for each size detector, LaBr3:Ce offers better resolution than either a CeBr3 or NaI:Tl detector of the same size. In addition, CeBr3 and LaBr3:Ce detectors could resolve some closely spaced peaks in the spectra of several radioisotopes that NaI:Tl could not. As the detector size increased, all three detector materials exhibited higher efficiency, albeit with slightly reduced resolution. Significantly, the very low intrinsic activity of CeBr3 is also demonstrated in this study, which, when combined with energy resolution characteristics for a range of detector sizes, could lead to an improved ability to detect special nuclear materials compared to the other detectors.

  17. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    SciTech Connect

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  18. Use of airborne gamma-ray spectrometry for environmental assessment of the rehabilitated nabarlek uranium mine, Australia.

    PubMed

    Martin, Paul; Tims, Stephen; McGill, Anthony; Ryan, Bruce; Pfitzner, Kirrilly

    2006-04-01

    This article describes an airborne gamma survey of a 7 x 5 km region around the rehabilitated Nabarlek uranium mine in northern Australia. An unusually tight line spacing (100 m) and low aircraft height (50 m) were used, enabling the survey to distinguish man-made structures such as ponds and accommodation areas, as well as creek lines. Positive correlations between airborne data and ground-based readings enabled an estimation of the average absorbed dose rate arising from terrestrial gamma radiation over large areas of the site to be derived. For the fenced minesite area this estimate was 0.31 micro Gy hr(- 1). The airborne survey data were found to be invaluable in helping to plan further ground-level investigations and showed promise as an assessment tool for rehabilitated minesites. PMID:16649135

  19. Assessing sample attenuation parameters for use in low-energy efficiency transfer in gamma-ray spectrometry.

    PubMed

    Bruggeman, M; Verheyen, L; Vidmar, T; Liu, B

    2016-03-01

    We present a numerical fitting method for transmission data that outputs an equivalent sample composition. This output is used as input to a generalised efficiency transfer model based on the EFFTRAN software integrated in a LIMS. The procedural concept allows choosing between efficiency transfer with a predefined sample composition or with an experimentally determined composition based on a transmission measurement. The method can be used for simultaneous quantification of low-energy gamma emitters like (210)Pb, (241)Am, (234)Th in typical environmental samples. PMID:26688363

  20. The natural radioactivity measurements in coastal sediment samples along the East Coast of Tamilnadu using gamma spectrometry technique

    NASA Astrophysics Data System (ADS)

    Chandramohan, J.; Tholkappian, M.; Harikrishnan, N.; Ravisankar, R.

    2015-08-01

    The natural radioactivity concentration in beach sediment samples collected from Pattipulam to Devanampattinam of East Coast of Tamilnadu have been determined by NaI (TI) gamma ray spectrometer. The specific activity concentrations range from ≤ 2.21 (BDL) to 37.02 Bq kg-1 with a mean of 3.79 Bqkg-1 for 238U, ≤ 2.11 (BDL) to 643.77 Bqkg-1 with a mean of 49.60 Bqkg-1 for 232Th and 300.34 Bqkg-1 to 449.08 Bqkg-1 with a mean of 360.23 Bqkg-1 for 40K. The potential radiological hazards due to natural radionuclides content such as Radium Equivalent activity (Raeq), Representative level index (RLI), External hazard index (Hex), absorbed gamma does rate (DR), and Annual effective dose rate (AEDR) are estimated to assess the radiation hazard associated with the sediments. The obtained data are compared with the recommended safety limits and international approved values. All the values are well below the recommended safety limits indicating that radiation levels do not poses any significant health hazard to the public in the area as a result of the natural radioactivity of beach sediments. This study may help the baseline data for more extensive works in the same subjects of future studies.

  1. Investigation of the environmental impacts of naturally occurring radionuclides in the processing of sulfide ores for gold using gamma spectrometry.

    PubMed

    Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C

    2011-09-01

    The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment. PMID:21865616

  2. Iron and titanium distribution on the moon from orbital gamma ray spectrometry with implications for crustal evolutionary models

    NASA Technical Reports Server (NTRS)

    Davis, P. A., Jr.

    1980-01-01

    A set of Fe and Ti maps and regional values are obtained from the Apollo 15 and 16 orbital gamma ray data by energy band analysis. High-Ti basalts predominate the early and late stages of mare volcanism with high-Fe basaltic volcanism in the interim. The first evidence of a high-Ti-KREEP basalt association is found in the Aristarchus region. A N-S asymmetry for Fe and Ti in the east limb and farside highlands complicates the E-W asymmetry for Th but substantiates crustal inhomogeneity. The observed crustal inhomogeneity adds an additional objection to the primitive source model for crustal evolution. The high-Ti-KREEP basalt association and the general trend of decreasing mare basalt Ti with time lend support to the cumulate source model; however, this model cannot account for young, high-Ti maria. The dynamic assimilation model better accounts for chemical variations observed on the moon.

  3. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry.

    TOXLINE Toxicology Bibliographic Information

    van Beek P; Souhaut M; Lansard B; Bourquin M; Reyss JL; von Ballmoos P; Jean P

    2013-02-01

    We describe a new underground laboratory, namely LAFARA (for "LAboratoire de mesure des FAibles RAdioactivités"), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ∼20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of (226)Ra in sedimentary barite (BaSO(4)), ii) determination of (227)Ac ((231)Pa) activities in marine sediment cores.

  4. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Lansard, B; Bourquin, M; Reyss, J-L; von Ballmoos, P; Jean, P

    2013-02-01

    We describe a new underground laboratory, namely LAFARA (for "LAboratoire de mesure des FAibles RAdioactivités"), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ∼20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of (226)Ra in sedimentary barite (BaSO(4)), ii) determination of (227)Ac ((231)Pa) activities in marine sediment cores. PMID:23164692

  5. Evaluation of natural radioactivity content in high-volume surface water samples along the northern coast of Oman Sea using portable high-resolution gamma-ray spectrometry.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Omidi, Zohre; Khorambagheri, Mahdi; Mortazavi, Mohammad Seddigh; Ebrahimi, Mahmood; Akbarzadeh, Gholamali

    2015-06-01

    Portable high-resolution gamma-ray spectrometry was carried out to determine the natural radioactivity levels in high volume surface water samples of the northern coast of Oman Sea, covering the coastal strip from Hormoz strait to Goatr seaport, for the first time. The water samples from 36 coastal and near shore locations were collected for analysis. Analyses on the samples collected were carried out to determine (226)Ra, (232)Th and (40)K contents. The concentration of (226)Ra, (232)Th and (40)K in surface water samples ranged between 2.19 and 2.82 Bq/L, 1.66-2.17 Bq/L and 132.6-148.87 Bq/L, respectively. The activity profile of radionuclides shows low activity across the study area. The study also examined some radiation hazard indices. The external hazard index was found to be less than 1, indicating a low dose. The results of measurements will serve as background reference level for Oman Sea coastlines. PMID:25847859

  6. Broad screening and identification of ?-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search.

    PubMed

    Li, Tingting; Cao, Jingjing; Li, Zhen; Wang, Xian; He, Pingli

    2016-02-01

    Broad screening and identification of ?-agonists in feed, serum, urine, muscle and liver samples was achieved in a quick and highly sensitive manner using ultra high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with a spectra library search. Solid-phase extraction technology was employed for sample purification and enrichment. After extraction and purification, the samples were analyzed using a Q-Orbitrap high-resolution mass spectrometer under full-scan and data-dependent MS/MS mode. The acquired mass spectra were compared with an in-house library (compound library and MS/MS mass spectral library) built with TraceFinder Software which contained the M/Z of the precursor ion, chemical formula, retention time, character fragment ions and the entire MS/MS spectra of 32 ?-agonist standards. Screening was achieved by comparing 5 key mass spectral results and positive matches were marked. Using the developed method, the identification results from 10 spiked samples and 238 actual samples indicated that only 2% of acquired mass spectra produced false identities. The method validation results showed that the limit of detection ranged from 0.021-3.854 ?g kg(-1)and 0.015-1.198 ng mL(-1) for solid and liquid samples, respectively. PMID:26304337

  7. A method for determining the analytical form of a radionuclide depth distribution using multiple gamma spectrometry measurements.

    PubMed

    Dewey, Steven Clifford; Whetstone, Zachary David; Kearfott, Kimberlee Jane

    2011-06-01

    When characterizing environmental radioactivity, whether in the soil or within concrete building structures undergoing remediation or decommissioning, it is highly desirable to know the radionuclide depth distribution. This is typically modeled using continuous analytical expressions, whose forms are believed to best represent the true source distributions. In situ gamma ray spectroscopic measurements are combined with these models to fully describe the source. Currently, the choice of analytical expressions is based upon prior experimental core sampling results at similar locations, any known site history, or radionuclide transport models. This paper presents a method, employing multiple in situ measurements at a single site, for determining the analytical form that best represents the true depth distribution present. The measurements can be made using a variety of geometries, each of which has a different sensitivity variation with source spatial distribution. Using non-linear least squares numerical optimization methods, the results can be fit to a collection of analytical models and the parameters of each model determined. The analytical expression that results in the fit with the lowest residual is selected as the most accurate representation. A cursory examination is made of the effects of measurement errors on the method. PMID:21482447

  8. The use of MCNP and gamma spectrometry in supporting the evaluation of NORM in Libyan oil pipeline scale

    NASA Astrophysics Data System (ADS)

    Habib, Ahmed S.; Bradley, D. A.; Regan, P. H.; Shutt, A. L.

    2010-07-01

    The accumulation of scales in production pipes is a common problem in the oil industry, reducing fluid flow and also leading to costly remedies and disposal issues. Typical materials found in such scale are sulphates and carbonates of calcium and barium, or iron sulphide. Radium arising from the uranium/thorium present in oil-bearing rock formations may replace the barium or calcium in these salts to form radium salts. This creates what is known as technologically enhanced naturally occurring radioactive material (TENORM or simply NORM). NORM is a serious environmental and health and safety issue arising from commercial oil and gas extraction operations. Whilst a good deal has been published on the characterisation and measurement of radioactive scales from offshore oil production, little information has been published regarding NORM associated with land-based facilities such as that of the Libyan oil industry. The ongoing investigation described in this paper concerns an assessment of NORM from a number of land based Libyan oil fields. A total of 27 pipe scale samples were collected from eight oil fields, from different locations in Libya. The dose rates, measured using a handheld survey meter positioned on sample surfaces, ranged from 0.1-27.3 ?Sv h -1. In the initial evaluations of the sample activity, use is being made of a portable HPGe based spectrometry system. To comply with the prevailing safety regulations of the University of Surrey, the samples are being counted in their original form, creating a need for correction of non-homogeneous sample geometries. To derive a detection efficiency based on the actual sample geometries, a technique has been developed using a Monte Carlo particle transport code (MCNPX). A preliminary activity determination has been performed using an HPGe portable detector system.

  9. Effects of Fe as a physical filter on spectra of Technitium- 99m, uniformity, system volume sensitivity and spatial resolution of Philip ADAC Forte dual-head gamma camera

    NASA Astrophysics Data System (ADS)

    Sohaimi, N.; Abdullah, N.; Shah, S. I.; Zakaria, A.

    2014-11-01

    Single photon emission computed tomography (SPECT) imaging inherits some limitations, i.e., due to scattered gamma photons which degrade spatial resolution causes poor image quality. This study attempts to reduce a fraction of scattered gamma photons before reaching gamma camera detector by using Fe sheet (0.35 mm and 0.40 mm) as a physical filter. Also investigate the effects on spectra of Tc-99m, spatial resolution, system volume sensitivity and uniformity. The thickness of Fe physical filter is selected on the basis of percentage attenuation calculations of different gamma ray energies by various thicknesses of material. Data were acquired using Philip ADAC forte dual-head gamma camera without and with physical filter with LEHR collimator installed. For spectra, uniformity and system volume sensitivity, a cylindrical source tank filled with water added with Tc-99m was scanned. Uniformity and system volume sensitivity images were reconstructed with FBP method by applying Butterworth filter of order 5, cut-off frequency 0.35 cycles/cm and Chang's attenuation correction method using 0.13 cm-1 linear attenuation coefficient. Spatial resolution study was done by scanning a line source (0.8 mm inner diameter) of Tc-99m at various source-to-collimator distances in air and in scattering medium without and with physical filter. A substantial reduction in count rate from Compton and photopeak regions of Tc-99m spectra with physical filter is recorded. Improvement in spatial resolution with physical filter up to 4 cm source-to-collimator distance is obtained. System volume sensitivity was reduced and no improvement in uniformity. These thicknesses of physical filter may be tested further by scanning different planar/SPECT phantoms in Tc-99m imaging.

  10. Ion Mobility Mass Spectrometry for Ion Recovery and Clean-Up of MS and MS/MS Spectra Obtained from Low Abundance Viral Samples

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Crispin, Max; Bonomelli, Camille; Scrivens, Jim H.

    2015-07-01

    Many samples of complex mixtures of N-glycans released from small amounts of material, such as glycoproteins from viruses, present problems for mass spectrometric analysis because of the presence of contaminating material that is difficult to remove by conventional methods without involving sample loss. This study describes the use of ion mobility for extraction of glycan profiles from such samples and for obtaining clean CID spectra when targeted m/z values capture additional ions from those of the target compound. N-glycans were released enzymatically from within SDS-PAGE gels, from the representative recombinant glycoprotein, gp120 of the human immunodeficiency virus, and examined by direct infusion electrospray in negative mode followed by ion mobility with a Waters Synapt G2 mass spectrometer (Waters MS-Technologies, Manchester, UK). Clean profiles of singly, doubly, and triply charged N-glycans were obtained from samples in cases where the raw electrospray spectra displayed only a few glycan ions as the result of low sample concentration or the presence of contamination. Ion mobility also enabled uncontaminated CID spectra to be obtained from glycans when their molecular ions displayed coincidence with ions from fragments or multiply charged ions with similar m/z values. This technique proved to be invaluable for removing extraneous ions from many CID spectra. The presence of such ions often produces spectra that are difficult to interpret. Most CID spectra, even those from abundant glycan constituents, benefited from such clean-up, showing that the extra dimension provided by ion mobility was invaluable for studies of this type.

  11. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.

    PubMed

    Cresswell, A J; Sanderson, D C W

    2012-10-15

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq (137)Cs within large areas (10-20 km(2)h(-1)), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15m whilst maintaining speeds covering 1-2 km(2) h(-1) can detect buried (137)Cs sources of 0.5MBq or greater activity. A survey design to detect 100 kBq (137)Cs sources at 10 cm depth has also been defined, requiring surveys at <15m ground clearance and <2 ms(-1) ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. PMID:22947616

  12. A Users' Guide for the Computer Program ISDMAP: Analysis and Mapping of In-Situ Gamma-Ray Spectrometry and Soil Sample Data

    SciTech Connect

    Reginatto, Marcel; Bailey, Paul; Shebell, Peter

    2000-11-30

    The computer program ISDMAP was written to analyze data from a set of in situ gamma-ray spectrometry measurements on a grid. It can also do a combined analysis of this type of data and data from soil samples. One well-known difficulty with attempting this type of analysis is that such sets of data can never provide enough information to determine a unique solution. This can be understood intuitively since a finite number of measurements cannot be sufficient to determine a continuous distribution (this observation is not restricted to data collected with the in situ technique, but holds for any set of discrete measurements, such as a series of soil samples). One can, however, restrict to particular types of solutions by requiring that they satisfy other conditions in addition to the measurements, and this is the approach taken by ISDMAP. In ISDMAP, the data are analyzed in a different manner depending on whether the data is from a characterization survey or from a post-remediation survey. The ''characterization'' option creates a map of contamination in surface soil that is smooth and fits the data. The ''post-remediation'' option creates a map with a summary of potential hot spots over a constant background level, providing a map of hot spots that might be ''hidden'' in the data. This report describes the operation of ISDMAP in sufficient detail to allow a user to prepare the necessary input files and run the program. The program requires a PC with DOS or a DOS emulator (most Windows machines have this).

  13. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  14. Effects on the thermally stimulated discharge-current spectra of a cured epoxy resin system exposed to up to 2 MGy of gamma and neutron radiation

    NASA Astrophysics Data System (ADS)

    Fouracre, R. A.; Al-Attabi, A.; Given, M. J.; Banford, H. M.; Tedford, D. J.

    1995-01-01

    The effects of high radiation doses of both ? and neutron radiation on the thermally stimulated discharge spectra of an epoxy resin system have been investigated. The glass transition temperature was found to depend both on the dose level and the nature of the radiation. Thermal cleaning techniques have been applied to the measured TSDC spectra which were shown to be due to charge migration. Modelling of ion charge transport showed that resultant TSDC spectra behaved in a similar fashion to dipolar processes, allowing a similar analysis. As a result data pertaining to the relaxation process can be derived and from which it was shown that the same compensation law operated for both irradiated and pristine samples. This relationship between the activation entropy and activation enthalpy held for both thermally cleaned TSDC spectra and for spectra obtained at different polarisation voltages.

  15. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  16. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    DOE PAGESBeta

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore » component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  17. Free electron laser-Fourier transform ion cyclotron resonance mass spectrometry facility for obtaining infrared multiphoton dissociation spectra of gaseous ions

    SciTech Connect

    Valle, Jose J.; Eyler, John R.; Oomens, Jos; Moore, David T.; Meer, A.F.G. van der; Helden, Gert von; Meijer, Gerard; Hendrickson, Christopher L.; Marshall, Alan G.; Blakney, Gregory T.

    2005-02-01

    A Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been installed at a free electron laser (FEL) facility to obtain infrared absorption spectra of gas phase ions by infrared multiple photon dissociation (IRMPD). The FEL provides continuously tunable infrared radiation over a broad range of the infrared spectrum, and the FT-ICR mass spectrometer, utilizing a 4.7 Tesla superconducting magnet, permits facile formation, isolation, trapping, and high-mass resolution detection of a wide range of ion classes. A description of the instrumentation and experimental parameters for these experiments is presented along with preliminary IRMPD spectra of the singly-charged chromium-bound dimer of diethyl ether (Cr(C{sub 4}H{sub 10}O){sub 2}{sup +}) and the fluorene molecular ion (C{sub 13}H{sub 10}{sup +}). Also presented is a brief comparison of the fluorene cation spectrum obtained by the FT-ICR-FEL with an earlier spectrum recorded using a quadrupole ion trap (QIT)

  18. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the ?-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  19. Low-spin states of /sup 250/Cf populated in the electron capture decay of 2. 22-h /sup 250/Es. [ULTIPOLE TRANSITIONS; PARITY; ROTATIONAL STATES; SPIN; VIBRATIONAL STATES; GAMMA SPECTRA

    SciTech Connect

    Ahmad, I.; Sjoblom, R.K.

    1980-09-01

    Low-spin states of /sup 250/Cf have been investigated by measuring ..gamma.. rays and conversion electrons associated with the electron capture decay of 2.22-h /sup 250/Es. Mass-separated /sup 250/Es samples produced by the /sup 249/Cf(d,n) reaction were used for these measurements. The ..gamma..-ray spectra were measured with a 25-cm/sup 3/ coaxial Ge(Li) spectrometer and the electron spectra were measured with a cooled Si(Li) detector. Multipolarities of intense transitions in /sup 250/Cf were deduced and logft values of electron capture transitions were derived from measured electron capture intensities. On the basis of the results of the present investigation the following bandheads were identified in /sup 250/Cf: E (keV),K,I..pi..=871.6, 2,2-; 1031.9, 2,2+; 1154.2, 0,0+; 1175.5, 1,1-; 1210.0, 2,2-; 1244.4, 2,2+; 1266.5, 0,0+; and 1658.1, 2,2+. The 2.22-h state in /sup 250/Es has been given a spin-parity assignment of 1- with configuration )n(734)9/2-; p(633)7/2+)/sub 1//sub -/.

  20. Liquid chromatography/mass spectrometry of domoic acid and lipophilic shellfish toxins with selected reaction monitoring and optional confirmation by library searching of product ion spectra.

    PubMed

    McCarron, Pearse; Wright, Elliott; Quilliam, Michael A

    2014-01-01

    LC/MS methodology for the analysis of domoic acid and lipophilic toxins in shellfish was developed using a hybrid triple quadrupole linear ion trap mass spectrometer. For routine quantitation a scheduled selected reaction monitoring (SRM) method for the analysis of domoic acid, okadaic acid, dinophysistoxins, azaspiracids, pectenotoxins, yessotoxins, gymnodimines, spirolides, and pinnatoxins was developed and validated. The method performed well in terms of LOD, linearity, precision, and trueness. Taking advantage of the high instrument sensitivity, matrix effects were mitigated by reducing the amount of sample introduced to the mass spectrometer. Optionally, samples can be analyzed using information dependent acquisition (IDA) methods, either in positive or negative mode, which can provide an extra level of confirmation by matching the full product ion spectra acquired for a sample with those from a specially constructed spectral library. Methods were applied to the analysis df a new certified reference material and Canadian mussels (Mytilus edulis) implicated in a 2011 diarrhetic shellfish poisoning (DSP) incident. The scheduled SRM method enabled the screening and quantitation of multiple phycotoxins. As DSP had not previously been observed in this area of Canada, positive identification of putative toxins was accomplished using the IDA and spectral search method. Analysis of the 2011 toxic mussel samples revealed the presence of high levels of dinophysistoxin-1, which explained the DSP symptoms, as well as pectenotoxins, yessotoxins, and variety of cyclic imines. PMID:24830142

  1. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    NASA Astrophysics Data System (ADS)

    Farah, Khaled; Hosni, Faouzi; Mejri, Arbi; Boizot, Bruno; Hamzaoui, Ahmed Hichem; Ben Ouada, Hafedh

    2014-03-01

    Samples of a commercial silicate glass have been subjected to ion exchange at 320 C in a molten mixture of AgNO3 and NaNO3 with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1-250 kGy and heating at the temperature of 550 C for different time periods ranging from 10 to 582 min. The spectral absorption in UV-Vis range of the Ag-Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy.

  2. Progress in numerical modelling of the Cl influence on gamma-ray spectra from an n-gamma logging tool, by using the improved ENDF data for radiative capture.

    PubMed

    Cywicka-Jakiel, Teresa

    2007-06-01

    Quality of the numerical modelling (MCNP code) of the spectrometric neutron-gamma benchmark experiment, performed at the Polish Calibration Station BGW in Zielona Gora for quantification of the main rock elements: Si, Ca, Fe and H, is considered. Elemental concentrations obtained from the measurements and simulations, for the rock models with water-filled boreholes, are in good agreement. For chlorine present in the borehole, the quality of the numerical reproducibility of the measured elemental concentrations depends on the cross section library used for the Cl(n,gamma)Cl reaction. The standard evaluated nuclear data library ENDF/B-VI Release 2 supplies imperfect data for photon production from thermal neutron capture in Cl. The improved cross sections for Cl(n,gamma)Cl are included in the ENDF/B-VI Release 8 library. Superiority of this new compilation over the previous one is shown in the paper. The accuracies for the Si, Ca and Fe determination have been improved by about 36%, 19.9% and 21.4%, respectively, when the ENDF/B-VI Release 8 library has been used for Cl. PMID:17011201

  3. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry.

    PubMed

    Kannan, V; Rajan, M P; Iyenga, M A R; Ramesh, R

    2002-07-01

    Pre-operational survey at Kalpakkam coast, indicated elevated gamma background radiation levels in the range of 100-4000 nGy h(-1) over the large tracts of the coastal sands due to the presence of pockets of monazite mineral in beach sands. In view of the prevalence of monazite, a systematic gamma spectrometric study of distribution of natural radionuclides in soil and beach sand samples collected from the terrestrial and coastal environment of Kalpakkam was performed and concentrations of primordial radionuclides such as 238U, 232Th and 40K and anthropogenic radionuclide 137Cs were determined. The concentrations of 238U, 232Th and 40K in soil samples were 5-71, 15-776 and 200-854 Bq kg(-1) dry, respectively. In beach sand samples, 238U, 232Th and 40K contents varied in the range of 36-258, 352-3872 and 324-405 Bq kg(-1) dry, respectively. The total absorbed gamma dose rate in air due to the presence of 238U, 232Th and 40K in Kalpakkam soil samples varied between 24 and 556 nGy h(-1) with a mean of 103 nGy h(-1). The contribution to the total absorbed gamma dose rate in air in the decreasing order was due to the presence of 232Th (76.4%), followed by 40K (16.9%) and 238U (6.7%) in Kalpakkam soils. However, in beach areas of Kalpakkam, the presence of 232Th in beach sand contributed maximum (94.0%) to the total absorbed gamma dose rate in air followed by 238U (4.7%) and minimum contribution was by 40K (1.3%). 137Cs in Kalpakkam soils ranged from < or = 1.0 to 2.8 Bq kg(-1) dry, which was 1-3 order of magnitude less than the concentration of primordial radionuclides in soil. PMID:12137019

  4. Shape parameter analysis using cloud spectra and gamma functions in the numerical modeling RAMS during LBA Project at Amazonian region, Brazil

    NASA Astrophysics Data System (ADS)

    Gonalves, F. L. T.; Martins, J. A.; Silva Dias, M. A.

    2008-07-01

    The microphysical variable shape parameters have been investigated considering a numerical simulation based on RAMS (Regional Atmospheric Modeling System), with focus on southwest Amazon Basin during the transition from dry to wet seasons within the scope of LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia). All data were obtained during the dry-to-wet campaign from September to October 2003. Three precipitation events were chosen during the campaign, classified as polluted, intermediary and clean events. The dataset, for the description of the observed convective systems, includes airborne observations with a microphysics airplane. The variables were cloud droplet contents and spectra, in several flights; radiosonde launches; a 10 cm Doppler radar; visible and IR satellite maps and rain gauge network. The preliminary results have shown that over polluted areas, shape parameters with higher values, from 5 to 7 are better fitted to cloud spectra observations, than the usual shape parameter 2 used in RAMS microphysics default table. For its turn, shape parameter 2 is related to the cleaner areas, i.e., without biomass burning. On the other hand, the numerical simulations, reproducing as close as possible the microphysical variable spatial distributions in the observed dataset, have shown that the average total rainfall precipitation at the surface generally decreases as the CCN concentration and shape parameter increases. CCN vertical and temporal profiles support that result, emphasizing that the higher CCN concentrations are related to biomass burning, where higher shape parameters are better fitted. Additionally, it is possible to conclude that different shape parameters and CCN concentrations may influence directly the maximum and average amount of precipitation and cloud water, implying that different regions should have each the proper specification characteristics. Shape parameters and CCN concentrations are quite useful tools in order to evaluate the spatial and temporal cloud patterns as well as, the rainfall amount with regional implications.

  5. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  6. Gamma scattering

    SciTech Connect

    Baker, A.G.

    1980-01-01

    Experimental examinations have been performed on a gamma scattering source/detector configuration that is believed to have the potential for providing density information at a finite number of positions along the primary beam and the average attenuation along the exit rays from those positions. Scattering spectra were acquired for several void-fluid density distribution simulations. The multiple-scattered photon contribution to the total acquired spectrum from a water-filled pipe simulation was extracted and found to be between 18 to 33% of the total counts in the single-scattered photon energy region, with a region average of 24%.

  7. Calculation of responses and analysis of experimental data for a silicon gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Klusoň, Jaroslav; Jánský, Bohumil

    2010-07-01

    A silicon detector developed for gamma ray spectrometry (intended for measurement in the mixed neutron gamma fields, e.g. in reactor physics) was tested for the photon energy interval up to 10 MeV. The responses of this spectrometric system were simulated using a Monte Carlo method (MCNPX code), and the response matrix was calculated. Unfolding techniques for reconstructing incident photon spectra were tested, and a method based on the Scofield-Gold iterative solution of the corresponding matrix equation was applied. The applicability of such an approach to spectrometry data processing and spectral analysis is demonstrated, an example of the results is presented, and possible future improvements and optimizations are discussed.

  8. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    SciTech Connect

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.

  9. A New Method for the Reconstruction of Very-High-Energy Gamma-Ray Spectra and Application to Galactic Cosmic-Ray Accelerators

    NASA Astrophysics Data System (ADS)

    Fernandes, Milton Virgílio

    2014-06-01

    In this thesis, high-energy (HE; E > 0.1 GeV) and very-high-energy (VHE; E > 0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESS J1646-458 (2.2° in size) towards the SC Westerlund 1 (Wd 1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESS J1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the previously reported, but unidentified extended TeV γ-ray source HESS J1614-518. Unpublished H.E.S.S. data and archival multi-wavelength (MWL) data (radio, X-ray, and HE data) as well various astrophysical objects in the FoV were investigated in search of a counterpart. The energy-dependent TeV morphology (with at least two source regions) can hardly be reconciled with the MWL data. A SC-wind scenario appears unlikely and the FoV lacks plausible counterparts, but a relic pulsar wind nebula could explain the lack of prominent X-ray emission. The VHE γ-ray source remains unidentified. The analysis of unpublished H.E.S.S. data on the SFR the Gould Belt (GB) did not provide any firm evidence of VHE γ-ray emission, and upper limits on the flux and the cosmic-ray enhancement were derived. The analyses appeared to be affected by the many bright stars and a hypothetically faint large-scale extended emission, possibly posing a limitation in observations and data analysis of current IACTs. Towards Orion A, a possible discovery of extended VHE γ rays with a flux of 10.8% of the Crab Nebula is found with TBS, but cannot be confirmed and could be an artifact of the analysis of this region. Observations with the H.E.S.S. telescope system motivate that SCs and SFRs can accelerate GCRs. However, further H.E.S.S. observations are needed for further morphological and spectral studies. Also, more X-ray observations (in the case of HESS J1614-518) and further studies on the background-estimation methods and their systematics (in the case of the GB) are required.

  10. Mass spectra of copolymers.

    PubMed

    Montaudo, Maurizio S

    2002-01-01

    Recent and older literature (covering the last 12-13 years) in the field of mass spectra of random and block copolymers is reviewed. A detailed description is given of the information on copolymer properties that can be recovered from the analysis of the low-mass region of the spectrum (the region below 500 Da) and the high-mass region. The features of mass spectra of copolymers obtained by different synthetic routes are discussed, such as free radical, condensation, ring-chain equilibration, microbial synthesis, ring-opening, simple anionic, cationic, Ziegler-Natta, and/or metallocene catalysis, along with some random and block copolymers that occur in Nature. The emphasis is on copolymer composition and average molar mass determination, and on the benefits of coupling mass spectrometry (MS) with separation techniques such as size-exclusion chromatography (SEC) and high performance liquid chromatography (HPLC). PMID:12373747

  11. Antagonistic properties of a natural product - Bicuculline with the gamma-aminobutyric acid receptor: Studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B. P.

    2011-12-01

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap ? E, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline.

  12. Potential of natural gamma-ray spectrometry for mapping and environmental monitoring of black-sand beach deposits on the northern coast of Sinai, Egypt.

    PubMed

    Aboelkhair, Hatem; Zaaeimah, Mostafa

    2013-04-01

    The concentrations and distributions of naturally occurring radioactive materials were studied with the aim of detecting and mapping radioactive anomalies as well as monitoring the environment for black-sand beach deposits in Northern Sinai, Egypt. For this purpose, ground gamma-ray spectrometric surveys were conducted using a portable GS-512 spectrometer, with an NaI (Tl) detector, on an area 77.5 km(2) in surface area located between the cities of Rafah and Elareish on the Mediterranean Sea coast. The results revealed that the black-sand beach deposits could be differentiated according to their total-count (TC) radioactivity into five normally distributed interpreted radiometric lithologic (IRL) units denoted by U1, U2, U3, U4 and U5. The computed characteristic TC radiometric statistics of these five IRL units range from 4.67  to 9.96 Ur for their individual arithmetic means. The computed arithmetic means for the three radioelements K, eU and eTh reach 0.46 %, 2.25 and 6.17 ppm, respectively for the whole study area. Monitoring the environmental effects of radioelement concentrations on the study area showed that the mean natural equivalent radiation dose rate from the terrestrial gamma-radiation of the whole area attains 0.33 mSv y(-1). This average value remains on the safe side and within the maximum permissible safe radiation dose (<1.0 mSv y(-1)) without harm to the individual, except at three scattered points reaching more than these values. Some of the local inhabitants in the region sometimes use black sands as a building material. Consequently, they are not recommended for use as building materials, because the inhabitants will, then, receive a relatively high radioactive dose generated mainly by monazite and zircon minerals, two of the main constituents of black sands. PMID:22869819

  13. Spatial mapping of soil and radioactivity redistribution at the hillslope scale using in-situ gamma spectrometry, terrestrial laser scanning and RFID tags after the Fukushima nuclear accident fallout.

    NASA Astrophysics Data System (ADS)

    Patin, Jeremy; Onda, Yuichi; Noguchi, Takehiro; Parsons, Anthony

    2013-04-01

    In March 2011, the Fukushima Daiichi Nuclear Power Plant disaster, triggered by the Tohoku earthquake and the consequent tsunami, released a large amount of radionuclides in the environment. To provide a rapid assessment of the soil contamination and its potential redistribution, intensive scientific monitoring has been conducted since July 2011 in our study site, located in the Yamakiya district of Kawamata town, in Fukushima prefecture, Japan, about 37 km from the power plant. In this paper, we summarize and analyze a dataset combining multiple innovative methods deployed inside a 5m x 22m bounded hillslope plot. In addition to runoff volumes and sediments radiocesium concentrations, each major rainfall event was followed by in situ gamma spectrometry measurements. In 2012, to trace the complex behavior of sediments inside the plot, about 300 RFID (Radio-Frequency IDentification) tags representing coarse sediments were scattered and their spatial position was periodically checked using a total station. Finally, several high resolutions Digital Elevation Models were acquired with a terrestrial laser scanner to assess the surface structure and changes. The observed processes at the event scale include interrill and rill erosion, as well as local deposition and remobilization phenomenon. Not only do they directly provide information on the erosion spatio-temporal variability and the associated radionuclides transfers, but combined together they can constitute a solid basis to improve and challenge process-based distributed erosion models.

  14. Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Fallahi Kapourchali, Maryam; Bagheri, Hashem; Khoram Bagheri, Mahdi; Abedini, Ali; Pakzad, Hamid Reza

    2016-02-01

    Measurements of natural radioactivity levels and heavy metals in sediment and soil samples of the Anzali international wetland were carried out by two HPGe-gamma ray spectrometry and atomic absorption spectroscopy techniques. The concentrations of (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs in sediment samples ranged between 1.05??0.51-5.81??0.61, 18.06??0.63-33.36??.0.34, 17.57??0.38-45.84??6.23, 371.88??6.36-652.28??11.60, and 0.43??0.06-63.35??0.94Bq/kg, while in the soil samples they vary between 2.36-5.97, 22.71-38.37, 29.27-42.89, 472.66-533, and 1.05-9.60Bq/kg for (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. Present results are compared with the available literature data and also with the world average values. The radium equivalent activity was well below the defined limit of 370Bq/kg. The external hazard indices were found to be less than 1, indicating a low dose. Heavy metal concentrations were found to decrease in order as Fe?>?Mn?>?Sr?>?Zn?>?Cu?>?Cr?>?Ni?>?Pb?>?Co?>?Cd. These measurements will serve as background reference levels for the Anzali wetland. PMID:26490904

  15. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  16. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  17. Gamma spectroscopy of environmental samples

    NASA Astrophysics Data System (ADS)

    Siegel, P. B.

    2013-05-01

    We describe experiments for the undergraduate laboratory that use a high-resolution gamma detector to measure radiation in environmental samples. The experiments are designed to instruct the students in the quantitative analysis of gamma spectra and secular equilibrium. Experiments include the radioactive dating of Brazil nuts, determining radioisotope concentrations in natural samples, and measurement of the 235U abundance in uranium rich rocks.

  18. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    PubMed Central

    Tayel, A.; Zaki, M.F.; El Basaty, A.B.; Hegazy, Tarek M.

    2014-01-01

    The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications. PMID:25750755

  19. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  20. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  1. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  2. Neutron spectrometry in mixed fields: proportional counter spectrometers.

    PubMed

    Tagziria, H; Hansen, W

    2003-01-01

    Proton recoil proportional counters have been successfully used in many laboratories worldwide for more than 30 years in order to measure high-resolution neutron energy spectra. The method is well elaborated and understood, nevertheless high expertise is required for its proper application. Table 4.1 summarises typical basic data for proton recoil proportional counters and the requirements for their application. It is noteworthy that any limiting parameter can vary to a certain degree depending on the quality of the detectors used (design, gas purity, response functions, etc) and their response matrices, the data analysis and the unfolding procedures applied with a correct evaluation of the uncertainties involved. It is also important to lend a critical eye to details during measurements (e.g. environmental and electronics problems) as well as in subsequent analysis and unfolding (e.g. oscillations due to unfolding artefacts or inadequacies in detector response matrices). It is recommended that any spectrometry system (procedures for measurement and data evaluation) should be tested and validated in well-known neutron fields e.g. 252Cf standard fission or 241Am-Be. One should, however, expect that, due to different room scatter conditions, deviations from the ISO spectra may occur, especially for low neutron energies. In order to demonstrate the capability of the recoil proton counter technique, two examples of typical neutron spectra are shown in Figures 4.20 and 4.21, both measured in mixed neutron-gamma fields at nuclear research reactors. PMID:14756169

  3. Gamma-ray spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Peterson, L. E.; Metzger, A. E.; Trombka, J. I.

    1972-01-01

    The experiments in gamma-ray spectrometry to determine the geochemical composition of the lunar surface are reported. The theory is discussed of discrete energy lines of natural radioactivity, and the lines resulting from the bombardment of the lunar surface by high energy cosmic rays. The gamma-ray spectrometer used in lunar orbit and during transearth coast is described, and a preliminary analysis of the results is presented.

  4. Reduction of multielement mass spectra

    SciTech Connect

    Russ, G.P. III; Caffee, M.W.; Hudson, G.B.; Storch, N.A.

    1990-06-29

    Even though the spectra obtained by inductively coupled plasma source spectrometry (ICP-MS) are relatively simple, their interpretation can be complicated by the presence of molecular and isobaric interferants. To the extent that isotopic abundances are known and constant, one can treat observed spectra as sums of known components. A linear decomposition approach for determining the concentrations of the components in a spectrum and correctly propagating uncertainties is presented. This technique differs from linear regression in that an exact fit is made to a subset of isotopes and goodness-of-fit is evaluated from the deviations between the predicted and measured intensities of the other, unfit isotopes. This technique can be applied to a wide range of spectral fitting problems. In this paper, its applicability to ICP-MS spectra is used to demonstrate the use and utility of the technique. 2 refs., 9 figs.

  5. Improved peak shape fitting in alpha spectra.

    PubMed

    Pomm, S; Caro Marroyo, B

    2015-02-01

    Peak overlap is a recurrent issue in alpha-particle spectrometry, not only in routine analyses but also in the high-resolution spectra from which reference values for alpha emission probabilities are derived. In this work, improved peak shape formulae are presented for the deconvolution of alpha-particle spectra. They have been implemented as fit functions in a spreadsheet application and optimum fit parameters were searched with built-in optimisation routines. Deconvolution results are shown for a few challenging spectra with high statistical precision. The algorithm outperforms the best available routines for high-resolution spectrometry, which may facilitate a more reliable determination of alpha emission probabilities in the future. It is also applicable to alpha spectra with inferior energy resolution. PMID:25497323

  6. Infrared spectra of olivine polymorphs - Alpha, beta phase and spinel

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.

    1980-01-01

    The infrared absorption spectra of several olivines (alpha phase) and their corresponding beta phase (modified spinel) and spinel (gamma) high-pressure polymorphs are determined. Spectra were measured for ground and pressed samples of alpha and gamma A2SiO4, where A = Fe, Ni, Co; alpha and gamma Mg2GeO4; alpha Mg2SiO4; and beta Co2SiO4. The spectra are interpreted in terms of internal, tetrahedral and octagonal, and lattice vibration modes, and the spinel results are used to predict the spectrum of gamma Mg2SiO4. Analysis of spectra obtained from samples of gamma Mg2GeO4 heated to 730 and 1000 C provides evidence that partial inversion could occur in silicate spinels at elevated temperatures and pressures.

  7. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    SciTech Connect

    Heath, R.L.

    1997-05-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the Internet. At a later date the catalogues will be expanded to include spectra representing the response of large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization.

  8. Alpha particle analysis using PEARLS spectrometry

    SciTech Connect

    McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

    1984-01-01

    Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig.

  9. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  10. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  11. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  12. Detection of high-energy gamma rays with the Gamma-1 telescope during the solar flares of March 26 and June 15, 1991

    NASA Astrophysics Data System (ADS)

    Akimov, V. V.; Afanasyev, V. G.; Belaousov, A. S.; Blokhintsev, I. D.; Volsenskaya, V. A.; Kalinkin, L. F.; Leikov, N. G.; Nesterov, V. E.; Galper, A. M.; Voronov, S. A.; Zemskov, V. M.; Kirillov-Ugryumov, V. G.; Lutchkov, B. I.; Ozerov, Y. V.; Popov, A. V.; Rudko, V. A.; Runtso, M. F.; Chesnokov, V. J.; Kurnosova, L. V.; Rusakovich, M. A.; Topchiev, N. P.; Fradkin, M. I.; Chuikin, E. I.; Tugaenko, V. Y.; Tian, T. N.; Ishkov, V. N.; Gros, M.; Grenier, I.; Barouch, E.; Wallin, P.; Baser-Bachi, A. R.; Lavigne, J. M.; Olive, J. F.; Juchniewicz, J.

    1992-02-01

    Gamma radiation at energies up to about 2 GeV from the solar flares of March 26 and June 15, 1991 was detected by the Gamma-1 gamma telescope on board the Gamma astrophysical observatory. The values of the fluxes and energy spectra of the gamma rays are determined.

  13. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  14. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    PubMed

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these. PMID:24261821

  15. {gamma} ray astronomy with muons

    SciTech Connect

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-04-01

    Although {gamma} ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard {gamma} ray spectra there is a relative {open_quotes}enhancement{close_quotes} of muons from {gamma} ray primaries as compared to that from nucleon primaries. All shower {gamma} rays above the photoproduction threshold contribute to the number of muons N{sub {mu}}, which is thus proportional to the primary {gamma} ray energy. With {gamma} ray energy 50 times higher than the muon energy and a probability of muon production by the {gamma}{close_quote}s of about 1{percent}, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10{sup 4}. The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by {gamma} ray detectors such as MILAGRO. TeV muons from {gamma} ray primaries, on the other hand, are rare because they are only produced by higher energy {gamma} rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. {copyright} {ital 1997} {ital The American Physical Society}

  16. Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2006-01-01

    We calculate the intergalactic photon density as a function of both energy and redshift for 0Gamma-rays in intergalactic space owing to interactions with low-energy photons and the 2.7 K cosmic microwave background radiation. We calculate the optical depth of the universe, Tau , for Gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from 0 to 5. We also give an analytic fit with numerical coefficients for approximating (E(Gamma), z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z=0.117 and compare it with the spectrum observed by the HESS air Cerenkov Gamma-ray telescope array.

  17. Erratum: Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2007-01-01

    Table 1 in our paper had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays; tau. The correct values for these parameters as described in the original text are given in the table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift.

  18. Online Spectral Fit Tool for Analyzing Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Penttil, A.; Kohout, T.

    2015-11-01

    The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.

  19. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    SciTech Connect

    Heath, R.L.

    1997-11-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization. 8 refs., 8 figs.

  20. Xgremlin: Interferograms and spectra from Fourier transform spectrometers analysis

    NASA Astrophysics Data System (ADS)

    Nave, G.; Griesmann, U.; Brault, J. W.; Abrams, M. C.

    2015-11-01

    Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.

  1. Gamma rays from the de-excitation of C-12 resonance 15.11 MeV and C-12 resonance 4.44 MeV as probes of energetic particle spectra

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1977-01-01

    The flux of 15.11 MeV gamma rays relative to the flux 4.44 MeV gamma rays was calculated from measured cross sections for excitation of the corresponding states of C-12 and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhances by low source-background continuum in this energy range.

  2. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  3. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  4. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  5. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  6. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  7. Fast atom bombardment mass spectrometry/mass spectrometry of cationic technetium and iron complexes

    SciTech Connect

    Unger, S.E.

    1984-03-01

    A series of related technetium and iron cationic complexes were examined by mass spectrometry/mass spectrometry (MS/MS). Fast atom bombardment (FAB) was used to generate secondary ions of the transition-metal complexes. Distinguishing structural characteristics were evident in their MS/MS spectra, including the site of oxidation and the relative stability to ligand dissociation. Comparison of the relative daughter ion intensities indicates structural features controlling unimolecular dissociation. 37 references, 6 figures, 3 tables.

  8. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  9. Study on Raman spectra of synthetic celluloses

    NASA Astrophysics Data System (ADS)

    Tong, Na; Zhu, Changjun; Zhang, Yixin

    2015-02-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of aliphatic polyamide fiber and polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The results show that Raman peaks beyond 1200 cm-1 appear for aliphatic polyamide fiber processed by sodium hydroxide, while the Raman peaks beyond 1000 cm-1 disappear for aliphatic polyamide fiber processed by sulfuric acid. Raman peaks beyond 1750 cm-1 decrease for polyethylene terephthalate processed by sodium hydroxide, while Raman peaks beyond 1000 cm-1 disappear, except weak peaks around 3000 cm-1 , for polyethylene terephthalate processed by sulfuric acid. The variations of the Raman spectra are primarily related to the changes of chemical bonds and molecular structures.

  10. Existing Data Format for Two-Parameter Beta-Gamma Histograms for Radioxenon

    SciTech Connect

    TW Bowyer; TR Heimbigner; JI McIntyre; AD McKinnon; PL Reeder; E Wittinger

    1999-03-23

    There is a need to establish a commonly acceptable format for storing beta-gated coincidence data for stations in the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The current aerosol RMS type data format is not applicable for radioxenon in that the current format contains implicit assumptions specific to conventional gamma-ray spectrometry. Some assumptions in the current RMS format are not acceptable for the beta-gated spectra expected from the U.S. Department of Energy PNNL Automated Radioxenon Sampler-Analyzer (ARSA) and other similar systems under use or development from various countries. The RMS data format is not generally applicable for radioxenon measurements in the CTBT for one or more of the following main reasons: 1) The RMS format does not currently support 2-dimensional data. That is, the RMS data format is setup for a simple l-dimensional gamma-ray energy histogram. Current data available from the ARSA system and planned for other radioxenon monitors includes spectral information from gamma-rays and betas/conversion electrons. It is worth noting that the beta/conversion electron energy information will be used to separate the contributions from the different radioxenons. 2) The RMS data format assumes that the conversion between counts and activity can be calculated based (in part) on a simple calibration curve (detector efficiency curve) that depends only on energy of the gamma-ray. In the case of beta-gated gamma-ray spectra and for 2-dimensional spectra, there are generally two detector calibration curves that must be convoluted, the lower energy cutoff for the betas must be considered, and the energy acceptance window must be taken into account to convert counts into activity. . 3) The RMS format has header information that contains aerosol-specific information that allows the activity (Bq) calculated to be converted into a concentration (Bq/SCM). This calculation is performed by dividing the activity calculated (Bq) into number of standard cubic meters of air (SCM) passed through the filters. Most xenon-samplers do not have a 100% collection and transfer efficiency, and these efficiencies should not be assumed constant, so that the total volume flow through the sampler may not be used to convert activity into concentration. There is a pretty straightforward analogy that requires, instead, the total volume of xenon gas measured by the xenon station for the conversion. The following paper describes one possible file format for storing the multi-parameter beta-gamma coincidence spectra generated by the DOE PNNL ARSA sampler. This format proposal was generated as a draft guide to begin discussions.

  11. Gamma-ray peak shapes from cadmium zinc telluride detectors

    SciTech Connect

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  12. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  13. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complement of gamma gliadin genes expressed in the wheat cultivar Butte 86 was evaluated by analyzing publicly available expressed sequence tag (EST) data. Eleven contigs were assembled from 153 Butte 86 ESTs. Nine of the contigs encoded full-length proteins and four of the proteins contained an...

  14. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  15. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts.

  16. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leoniv, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  17. Pyrolysis-photoionization mass spectrometry

    SciTech Connect

    Bookwalter, C.W.; Zoller, D.L.; Johnston, M.V.

    1995-12-31

    Pyrolysis mass spectrometry has been performed by photoionization with coherent vacuum ultraviolet (VUV) radiation. Pyrolysis mass spectra are often difficult to interpret owing to the complex distribution of ions formed. Much of this complexity can be ascribed to the heterogeneity of samples typically analyzed or to the numerous reaction pathways accompanying pyrolysis. Indeed, information of this type is often the goal of a pyrolysis experiment. However, fragmentation induced by the ionization process can also be extensive and often obscures useful information, VUV photoionization with 9.6 to 10.5 eV radiation minimizes fragmentation by photoionizing just above the ionization threshold.

  18. Simultaneous beta/gamma digital spectroscopy

    NASA Astrophysics Data System (ADS)

    Farsoni, Abdollah T.

    A state-of-the-art radiation detection system for simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) built in our laboratory. The DPP board was designed to digitally capture the analog signal pulses and, following several digital preprocessing steps, transfer valid pulses to the host computer for further digital processing. A MATLAB algorithm was developed to digitally discriminate beta and gamma events and reconstruct separate beta and gamma-ray energy spectra with minimum crosstalk. The spectrometer proved to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  19. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  20. Photon spectra from quark generation by WIMPs

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A.; Maroto, A. L.; Dobado, A.; Lineros, R.

    2011-05-23

    If the present dark matter (DM) in the Universe annihilates into Standard Model (SM) particles, it must contribute to the gamma ray fluxes that are detected on the Earth. The magnitude of such contribution depends on the particular DM candidate, but certain features of these spectra may be analyzed in a model-independent fashion. In this work we provide the fitting formula valid for the simulated photon spectra from WIMP annihilation into light quark-anti quark (qq-bar) channels in a wide range of WIMP masses. We illustrate our results for the cc-bar channel.

  1. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  2. Thermal radiation spectra of individual subwavelength microheaters

    NASA Astrophysics Data System (ADS)

    Au, Yat-Yin; Skulason, Helgi Skuli; Ingvarsson, Snorri; Klein, Levente J.; Hamann, Hendrik F.

    2008-08-01

    Polarization resolved spectra of infrared radiation from individual electrically driven platinum microheaters have been measured by Fourier-transform infrared spectrometry as a function of heaters width. When the heater width approaches zero, the signal with polarization parallel to the heater long axis converges to a finite value, while its perpendicularly polarized counterpart drops below our detection limit. As a result this leads to strongly polarized radiation for very narrow heaters. Further, while the parallel polarized radiation spectra appear to be insensitive to heater width variation (at least within the sensitive range of our light detector), the perpendicular polarized spectra were heavily affected. We observed a ?/2 -like resonance that we attribute to correlation of charge oscillations across the heaters width, which are possibly mediated by surface plasmons. These findings provide implications for fabrication of nanoscale electrically driven thermal antennas.

  3. Alpha particle induced gamma yields in uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Swinhoe, Martyn T.; Miller, Karen A.

    2013-01-01

    Fluorine has a relatively large (?,n) production cross-section in the MeV range, the energy range of interest for special nuclear materials. In the uranium fuel cycle enriched UF6 in particular is a reasonably prolific source of (?,n) neutrons because along with 235U, 234U becomes enriched and it has a relatively short half-life. This enables the mass content of storage cylinders containing UF6 to be verified by neutron counting methods. In association with such measurements high resolution gamma-ray spectrometry (HRGS) measurements using a high-purity Ge detector are often undertaken to determine the 235U enrichment based off the intensity of the direct 186 keV line. The specific (?,n) neutron production, neutrons per second per gram of U, is sensitive to the relative isotopic composition, particularly the 234U concentration, and the traditional gross neutron counting approach is needed to quantitatively interpret the data. In addition to F(?,n) neutrons, ?-induced reaction ?-rays are generated, notably at 110, 197, 582, 891, 1236 and 1275 keV. If one could observe 19F(?,x?) gamma-lines in the HRGS spectra the thought was that perhaps the ?-activity could be estimated directly, and in turn the 234U abundance obtained. For example, by utilizing the ratio of the detected 197-186 keV full energy peaks. However, until now there has been no readily available estimate of the expected strength of the reaction gamma-rays nor any serious consideration as to whether they might be diagnostic or not. In this work we compute the thick target yields of the chief reaction gamma-rays in UF6 using published thin target data. Comparisons are made to the neutron production rates to obtain ?/n estimates, and also to the 235U decay line at 186 keV which we take as a fiducial line. It is shown that the reaction gamma-rays are produced but are far too weak for practical safeguards purposes. Now that the underlying numerical data is readily available however, it can be used to support neutron and gamma production calculations in other fluorine compounds, for example impure plutonium reference materials where fluorine may be present only at the parts per million by weight level yet still present a serious nuisance addition to the neutron production rate.

  4. Protein sequencing by tandem mass spectrometry.

    PubMed Central

    Hunt, D F; Yates, J R; Shabanowitz, J; Winston, S; Hauer, C R

    1986-01-01

    Methodology for determining amino acid sequences of proteins by tandem mass spectrometry is described. The approach involves enzymatic and/or chemical degradation of the protein to a collection of peptides which are then fractionated by high-performance liquid chromatography. Each fraction, containing as many as 10-15 peptides, is then analyzed directly, without further purification, by a combination of liquid secondary-ion/collision-activated dissociation mass spectrometry on a multianalyzer instrument. Interpretation of collision-activated dissociation mass spectra is described, and results are presented from a study of soluble peptides produced by treatment of apolipoprotein B with cyanogen bromide and trypsin. PMID:3462691

  5. Fast atom bombardment tandem mass spectrometry of carotenoids

    SciTech Connect

    van Breeman, R.B.; Schmitz, H.H.; Schwartz, S.J.

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  6. MCMC-based inversion algorithm dedicated to NEMS mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prenon, R.; Mohammad-Djafari, A.; Sage, E.; Duraffourg, L.; Hentz, S.; Brenac, A.; Morel, R.; Grangeat, P.

    2013-08-01

    Nano Electro Mechanical Systems (NEMS) provide new perspectives in the mass spectrometry field. This new generation of sensors is sensitive enough to detect a single molecule. Thus, it is possible to estimate a concentration profile in a counting-mode which brings a reduced noise and a higher sensitivity. In this paper, first, we briefly describe the measurement system. Then we propose a probabilistic model of the acquisition system in the form of an input-output system from which we can deduce the likelihood of the unknowns in the data and a Bayesian inference approach with a hierarchical Bernoulli-Gamma prior model. To do the computation we propose the use of a Multiple-Try Metropolis Monte-Carlo Markov-Chain algorithm. Multiple-Try Metropolis proposal functions are adapted to the model, especially to the discrete nature of the problem. Our approach provides an automatic robust estimation of mass spectra. We test the proposed algorithm both on experimental and on simulated data. We discuss the performances of the algorithm and the robustness of the estimation.

  7. Implications for High Energy Blazar Spectra from Intergalactic Absorption Calculations

    NASA Technical Reports Server (NTRS)

    Stecker, F

    2008-01-01

    Given a knowledge of the density spectra intergalactic low energy photons as a function of redshift, one can derive the intrinsic gamma-ray spectra and luminosities of blazars over a range of redshifts and look for possible trends in blazar evolution. Stecker, Baring & Summerlin have found some evidence hinting that TeV blazars with harder spectra have higher intrinsic TeV gamma-ray luminosities and indicating that there may be a correlation of spectral hardness and luminosity with redshift. Further work along these lines, treating recent observations of the blazers lES02291+200 and 3C279 in the TeV and sub-TeV energy ranges, has recently been explored by Stecker & Scully. GLAST will observe and investigate many blazars in the GeV energy range and will be sensitive to blazers at higher redshifts. I examine the implications high redshift gamma-ray absorption for both theoretical and observational blazer studies.

  8. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  9. Measurement of radionuclide activities induced in target components of an IBA CYCLONE 18/9 by gamma-ray spectrometry with HPGe and LaBr3: Ce detectors.

    PubMed

    Tomarchio, Elio

    2014-08-01

    Cyclotrons are used worldwide to produce radiopharmaceuticals by proton irradiation of a suitable target. The intense secondary neutron beam generated by proton interactions with the target induce high radionuclide activities in the target assembly parts that may result in an exposure to high dose levels of the operators during maintenance. The main goal of this work is to evaluate gamma-emitting radionuclide activities induced in Havar foils and titanium windows of a target assembly and carousel stripper forks of an IBA CYCLONE 18/9 cyclotron. The knowledge of radionuclide inventory for each component is required by many companies to assess risk for operators before waste handling and disposal. Gamma-ray spectrometric analyses were carried out with High Purity Germanium (HPGe) and Lanthanum bromide (LaBr3:Ce) scintillation detectors. HPGe is the most used detector for its high energy resolution although it is more suitable for use in a laboratory. The use of LaBr3:Ce can be considered a viable option, particularly in realizing a portable spectrometric system to perform "on-site" measurements and a fast dose rate evaluation before the disposal of activated parts. Due to a high activity of target assembly components replaced after a typical irradiation cycle (about 5000 ?Ah integrated beam current), gamma-ray spectrometric measurements were performed at a large distance from the detector, even more than 100 cm, or by using a purposely realized Lead-walled collimator. The identification of some key-radionuclides allows to evaluate through simple formulations the dose rate behavior for each component as function of decay time from the last irradiation. The knowledge of the dose rate behavior is a significant piece of information to health physicists for waste handling with safety at work. For an Havar foil, the dose rate will be reduced to about 1/1,000 of the starting value after a decay period of approximately 4 y (about 1,500 d), with a relatively safety at product disposal work. For a longer time, only long-lived radionuclides (57)Co, (60)Co, and (54)Mn contribute to dose rate. PMID:24949919

  10. Galaxies and gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.

    1979-01-01

    The nature of the high-energy spectra of several types of active galaxies and their contribution to the measured diffuse gamma-ray emission between 1 and 150 MeV are considered, using X-ray spectra of active galaxies and SAS 2 data regarding the intensity upper limits to the gamma-ray emission above 35 MeV. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low energy gamma-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies; the power-law spectra observed in the X-ray range must steepen substantially between 50 keV and 50 MeV. In addition, a cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1-150 MeV diffuse background, even without significant evolution.

  11. Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium

    SciTech Connect

    Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O. ); Takahashi, S.; Yamamoto, Y.; Aoki, I. )

    1991-01-01

    High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and {sup 241}Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from {sup 241}Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of {sup 239}Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the {sup 241}Am contamination from the {sup 239}Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of {sup 239}Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs.

  12. Gamma-ray emission from thermonuclear supernovae

    SciTech Connect

    Isern, J.; Bravo, E.; Hirschmann, A.

    2007-08-21

    The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. Nevertheless, there is a wide agreement that high amounts of radioactive nuclei are produced during these events and that they are expected to be strong {gamma}-ray emitters. In this paper we investigate the use of this {gamma}-rays as a diagnostic tool. For this purpose we have performed a complete study of the {gamma}-ray spectra associated with all the different scenarios currently proposed: detonation, deflagration, delayed detonation, and pulsating delayed detonation. Our study shows that the {gamma}-ray emission from SNIa is, effectively, a promising tool but that has to be carefully used since it can lead to misinterpretations. We also show that 3D effects can be relevant in some circumstances and that they can provide important information about the exploding system and the thermonuclear burning front mechanism if high resolution spectra could be obtained.

  13. Elevated temperature reference spectra

    SciTech Connect

    Brown, D.; Phillips, B.; Tussey, L.

    1997-12-31

    A compilation of infrared spectra at elevated temperatures is required for the accurate quantification of gas concentrations for Fourier transform infrared (FTIR) extractive sampling of stack gases and FTIR in-situ process monitoring. Analysis of high temperature gases utilizing ambient temperature reference spectra can result in significant quantification errors. The US Air Force`s Arnold Engineering Development Center (AEDC) is currently assisting the EPA in measuring reference spectra and making existing and new data available to the public through two ongoing efforts. One of these efforts is the measurement of elevated temperature infrared reference spectra of the low vapor pressure hazardous air pollutants (HAP) compounds, as well as spectral interfering compounds. The equipment and procedures used for the elevated temperature reference spectra measurements is described as well as some of the challenges encountered in these measurements. Examples of the reference spectra are also presented. To make the reference spectra developed by AEDC and other EPA programs easily accessible, AEDC has also been tasked to maintain a site on the World Wide Web containing reference spectra, reports, and software tools of interest to the optical sensing community. This web site has seen increased use during the three years that it has been in existence with users from academia, commercial, and government, both domestic and foreign. The site has undergone several improvements since inception and actively solicits inputs for further improvements from its users. A description of this web site and recent improvements and additions is given in this paper.

  14. The 2002 IAEA intercomparison of software for low-level ?-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Arnold, Dirk; Blaauw, Menno; Fazinic, Stjepko; Kolotov, Vladimir P.

    2005-01-01

    The IAEA 2002 set of test spectra for low-level ?-ray spectrometry, reported on in a separate paper, was used in an intercomparison of widely available software packages, i.e. Anges 1.0, GammaVision 5.3, Gamma-W 1.68 for Windows, Ganaas 3.11, Genie2000 2.1, Hyperlab 2002.3.2.18, Interwinner 5.0 and UniSampo 1.97. With each program, efficiency curves were obtained for the two counting geometries (a 500 ml Marinelli beaker on a 33% relative efficiency HPGe detector, and a 100 ml pillbox on a 96.3% HPGe detector) and subsequently used to obtain radionuclide activities for the unknown samples. Both the calibration sources and the unknown samples contained radionuclides giving rise to cascade summing effects. Cascade summing correction factors as obtained with some of these programs, as well as with GESPECOR, were compared directly. After the intercomparison meeting, the activities obtained were compared with the certified activities that had been kept secret until then. In this paper, the results will be presented and suggestions made for further improvement of the software.

  15. Gamma irradiators

    SciTech Connect

    Cuda, J.; McKinnon, R.G. ); Baker, P.G. )

    1989-02-01

    The commercial use of gamma radiation to sterilize medical equipment and supplies began in the late 1950s. This article describes the basic technology and design aspects of commercial irradiation facilities. It explains the safety features and interlocks which protect workers, the public, and the environment from radiation and radioactive material.

  16. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  17. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  18. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population

    PubMed Central

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D.

    2010-01-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of 238U, 232Th, and 40K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of 238U, 232Th, and 40K in the surface soil were 53.8, 44.2 and 464.2 Bq kg−1 respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values. PMID:21170189

  19. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  20. HEAO-1 observations of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Hueter, G. J.; Matteson, J. L.

    1985-01-01

    A search of data from the High Energy X-Ray and Low Energy Gamma Ray Experiment on HEAO-1 uncovered 14 gamma ray bursts. Nine of these events are reported for the first tiome. Except for the faintest events, all of the bursts detected by this experiment have been measured above an MeV, thereby confirming the hard spectral character of gamma ray burst spectra reported by SMM. Results give a burst rate of at least 105 per year above 6 times 10 to the minus 7th power ergs, which is consistent with previous measurements of burst frequency.

  1. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  2. The gamma 1 and gamma 3 bands of (16)O3: Line positions and intensities

    NASA Technical Reports Server (NTRS)

    Flaud, J.-M.; Camy-Peyret, C.; Devi, V. Malathy; Rinsland, C. P.; Smith, M. A. H.

    1988-01-01

    Using 0.005/cm-resolution Fourier transform spectra of samples of ozone, the gamma 1 and gamma 3 bands of (16)O3 have been reanalyzed to obtain accurate line positions and an extended set of upper state rotational levels (J up to 69, K sub a up to 20). Combined with the available microwave data, these upper state rotational levels were satisfactorily fitted using a Hamiltonian which takes explicitly into account the strong Coriolis interaction affecting the rotational levels of these two interacting states. In addition, 350 relative line intensities were measured from which the rotational expansions of the transition moment operators for the gamma 1 and gamma 3 states have been deduced. Finally, a complete listing of line positions, intensities, and lower state energies of the gamma 1 and gamma 3 bands of (16)O3 has been generated.

  3. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  4. The use of low-level liquid scintillation spectrometry for rapid measurement and decision making

    SciTech Connect

    Schoenhofer, F.

    1998-12-31

    Liquid scintillation spectrometry (LSC) has proved over the last fifteen years to be an excellent tool for low-level counting of beta- and alpha-particle emitters. Using low-level instruments the determination of, for instance {sup 90}Sr, could be considerably simplified in the laboratory, saving time and also money for chemicals and manpower. Furthermore, low-level instruments have been successfully used for measurements when fast analysis was required. The four instruments (Quantulus, Wallac Oy), that the author uses, have not only very low background, which cuts measurement time considerably; but from the pulse- height spectra much information about the nature of the radionuclides present and the absence of specific radionuclides can be extracted. From the absence of high-energy beta-particle activity in the pulse-height spectra of precipitation in the first days after the Chernobyl accident the author could draw the conclusion, that practically no {sup 90}Y was present and therefore only small amounts of {sup 90}Sr, if any, could be expected in precipitation and later in food. This enabled them to make the decision not to waste time with a large number of {sup 90}Sr analyses. Large numbers of drinking water samples could be screened for contamination much more sensitively and faster than by gamma-ray spectrometry. More examples will be presented of cases where rapid information was needed; how contamination and nuclear installations can be easily checked and how LSC helped to cut down the time required, the manpower and the costs for radon measurements and environmental surveillance.

  5. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

  6. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  7. Spectra over complex terrain

    SciTech Connect

    Panofsky, H.A.; Larko, D.; Lipschutz, R.; Stone, G.

    1981-01-01

    Spectra have been measured over land downwind of a water surface, over hilltops and escarpments, and over rolling farmland. The following hypotheses can be used to explain the differences between these spectra. (1) For wavelengths short compared to the fetch over the new terrain, spectral densities are in equilibrium with the new terrain. (2) For wavelengths long compared to this fetch, spectral densities remain unchanged if the ground is horizontal. If the flow is over a steep hill, the low-frequency structure is modified by distortion of the mean flow, with the longitudinal component losing energy relative to the lateral and vertical components. Because vertical-velocity spectra contain relatively less low-frequency energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain.

  8. Gamma-gamma interaction region design issues

    SciTech Connect

    Gronberg, J

    2001-01-12

    An initial design of the optics required for producing gamma-gamma collisions was produced for the NLC Zeroth Order Design Report (ZDR) submitted to the 1996 Snowmass workshop. The design incorporated only loose constraints from the interaction region requirements. In this paper we report progress on a design of a gamma-gamma interaction region which incorporates all constraints.

  9. Gamma-gamma interaction region design issues

    NASA Astrophysics Data System (ADS)

    Gronberg, Jeff

    2001-07-01

    An initial design of the optics required for producing gamma-gamma collisions was produced for the NLC Zeroth Order Design Report (ZDR) submitted to the 1996 Snowmass workshop. The design incorporated only loose constraints from the interaction region requirements. In this paper we report progress on a design of a gamma-gamma interaction region which incorporates all constraints.

  10. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  11. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  12. Heavy meson mass-spectra by general relativistic methods (*)

    SciTech Connect

    Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.

    1984-11-01

    By applying the classical methods of general relativity to elementary particles, one can get-in a natural way-the observed confinement of their constituents, avoiding any recourse to phenomenological models such as the bag model and allowing the deduction of the heavy meson (i.e., charmonium (J/psi) and bottomonium (..gamma..)) mass-spectra.

  13. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  14. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    SciTech Connect

    Chyzh, A.; Dashdorj, D.; Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Becker, J. A.; Parker, W.; Wu, C. Y.; Becvar, F.; Kroll, J.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  15. Nuclear Magnetic Resonance Spectrometry.

    ERIC Educational Resources Information Center

    Wasson, John R.; Salinas, Jorge E.

    1980-01-01

    Reviews current research in NMR spectrometry, in the areas of apparatus and techniques, spectral analysis, computer applications, analytical applications, and selected organic and inorganic systems. Various aspects of NMR spectrometry are presented in tabular form, with 133 references. Listed also are 124 references from the discussions in the…

  16. Nuclear Magnetic Resonance Spectrometry.

    ERIC Educational Resources Information Center

    Wasson, John R.; Salinas, Jorge E.

    1980-01-01

    Reviews current research in NMR spectrometry, in the areas of apparatus and techniques, spectral analysis, computer applications, analytical applications, and selected organic and inorganic systems. Various aspects of NMR spectrometry are presented in tabular form, with 133 references. Listed also are 124 references from the discussions in the

  17. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical

  18. Study of laser resonance ionization mass spectrometry using a glow discharge source

    SciTech Connect

    Xiong, X. |; Hutchinson, J.M.R.; Fassett, J.D.; Lucatorto, T.B.; Schima, F.J.; Bowman, W.A.; Hess, K.R.

    1994-09-01

    The mass spectra of a metal alloy sample consisting of Al, Cu and Fe were studied using both glow discharge mass spectrometry (GDMS) and resonance ionization mass spectrometry (RIMS). Particular emphasis was placed on the reduction of isobaric interferences and discrimination between those ions formed by the discharge and those formed by the laser radiation.

  19. Study of laser resonance ionization mass spectrometry using a glow discharge source

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Hutchinson, J. M. R.; Fassett, J. D.; Lucatorto, T. B.; Schima, F. J.; Bowman, W. A.; Hess, K. R.

    1995-04-01

    The mass spectra of a metal alloy sample consisting of Al, Cu and Fe were studied using both glow discharge mass spectrometry (GDMS) and resonance ionization mass spectrometry (RIMS). Particular emphasis was placed on the reduction of isobaric interferences and discrimination between those ions formed by the discharge and those formed by the laser radiation.

  20. System and method for resolving gamma-ray spectra

    DOEpatents

    Gentile, Charles A.; Perry, Jason; Langish, Stephen W.; Silber, Kenneth; Davis, William M.; Mastrovito, Dana

    2010-05-04

    A system for identifying radionuclide emissions is described. The system includes at least one processor for processing output signals from a radionuclide detecting device, at least one training algorithm run by the at least one processor for analyzing data derived from at least one set of known sample data from the output signals, at least one classification algorithm derived from the training algorithm for classifying unknown sample data, wherein the at least one training algorithm analyzes the at least one sample data set to derive at least one rule used by said classification algorithm for identifying at least one radionuclide emission detected by the detecting device.

  1. Induced Radioactivity in Recovered Skylab Materials. [gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.

    1980-01-01

    Four radioactive isotopes found in aluminum and stainless steel samples from Skylab debris were recovered in Australia. The low-level activity was induced by high-energy protons and neutrons in the space environment. Measurements of the specific activities are given.

  2. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  3. "Decoupled" Proton NMR Spectra

    NASA Astrophysics Data System (ADS)

    Woodley, M.; Freeman, R.

    High-resolution proton NMR spectra are recorded in a new form where all resonances are singlets at the chemical-shift frequencies, with no spin-spin splittings. These "decoupled" proton spectra are derived from two-dimensional J spectra after real Fourier transformation (without frequency discrimination in F1) so that each spin multiplet lies along both the 45° and the 135° diagonal, forming a pattern similar to St. Andrew's cross, with C 4 symmetry. The chemical shifts are located by searching for these centers of symmetry with a postacquisition data-processing algorithm. This is designed to facilitate the separation of overlapping and interpenetrating spin multiplets. The method is illustrated with applications to the 400 MHz high-resolution proton spectra of dehydrotestosterone and 4-androsten-3,17-dione. It is also possible to separate the spectra of components in a mixture and this is illustrated by breaking down the spectrum of an aqueous solution of D-glucose into subspectra from the α and β anomers, in order to follow the time evolution of the mutarotation.

  4. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  5. Experimental Study of Level Density and {gamma}-strength Functions from Compound Nuclear Reactions

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Massey, T. N.; Schiller, A.; Guttormsen, M.; Siem, S.

    2008-04-17

    The current status of experimental study of level density and {gamma}-strength functions is reviewed. Three experimental techniques are used. These are measurements of particle evaporation spectra from compound nuclear reactions, the measurements of particle-{gamma} coincidences from inelastic scattering and pick-up reactions and the method of two-step {gamma}-cascades following neutron/proton radiative capture. Recent experimental data on level densities from neutron evaporation spectra are shown. The first results on the cascade {gamma}-spectrum from the {sup 59}Co(p,2{gamma}){sup 60}Ni reaction are presented.

  6. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    NASA Astrophysics Data System (ADS)

    Mladenova, Ralitsa B.; Firzov, Cyril; Yordanov, Nicola D.

    2010-09-01

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039±0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Еnoviton, Еnoviton С and Еnoviton СЕ, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Еnoviton С or Еnoviton СЕ due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Еnoviton С and Еnoviton СЕ). Gamma-induced free radicals exhibit long time stability—for a six months period the intensity of central peak decrease with 30-40%.

  7. Determinations of photon spectra. Master's thesis

    SciTech Connect

    Wannigman, D.L.

    1989-01-01

    A method is developed to unfold photon spectra from measurements obtained with a sodium iodide counting system. A response matrix is computed by combining photon cross sections with probability distributions of path lengths for incident and internally generated photons in the energy range 0-2.8 MeV. This matrix is inverted and multiplied by a measured pulse height spectrum to obtain the photon energy distribution incident upon the detector. This deconvolution procedure provides improved information about the energy continuum of incident photons and can enhanced the identification of discrete gamma energies. Experiments were performed to verify the unfolding methodology and to evaluate the feasibility and accuracy of this technique. Measured spectra were acquired from indoor and outdoor environments and unfolded. The results show that measured spectra overestimate the number of photons below 240 keV by up to 30 %. When the total exposure was calculated directly from the measured spectra, the low energy contribution was overestimated by a factor of two. This may have implications on the interpretation and calibration of energy dependent dosimeters used for occupational and environmental monitoring.

  8. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  9. Mass Spectrometry Based Identifications of LMW Glutenin Subunits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tandem mass spectrometry (MS/MS) is routinely used to identify wheat endosperm proteins. In this method, peptide fragmentation patterns generated by MS/MS are identified using a ‘search engine’ to compare the spectra to those generated in silico from protein sequence databases. Trypsin is a commonly...

  10. Sterilization of teeth by gamma radiation.

    PubMed

    White, J M; Goodis, H E; Marshall, S J; Marshall, G W

    1994-09-01

    Clinical simulations and restorative materials research and development conducted in vitro require the use of large numbers of extracted teeth. The simultaneous need for infection control procedures and minimal alterations of structure and properties of the tissue prompted this study of gamma irradiation as a method to eliminate microbes associated with extracted teeth and their storage solutions. Evaluations of potential change in structure of dentin were conducted in terms of permeability, Fourier transform infrared spectroscopy (FTIR), and optical properties. The dose required for sterilization by gamma irradiation was established by means of a tooth model inoculated with Bacillus subtilis (10(8) organisms/mL). Sterilization occurred at a dose above 173 krad with use of a Cesium (Cs137) radiation source. Gamma irradiation did not affect permeability of crown segments of dentin. A comparative evaluation of the effects of four sterilization methods on dentin disks was based on FTIR and ultraviolet-visible-near infrared (UV/VIS/NIR) spectra before and after sterilization by (1) gamma irradiation; (2) ethylene oxide; (3) dry heat; and (4) autoclaving. No detectable changes were found with gamma irradiation, but all other methods introduced some detectable change in the spectra. This suggests that common methods of sterilization alter the structure of the dentin, but gamma irradiation shows promise as a method which both is effective and introduces no detectable changes as measured by FTIR, UV/VIS/NIR, or permeability. PMID:7929992

  11. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3mBq within a 20h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. PMID:24412563

  12. Electrons and protons separation in the GAMMA-400 experiment

    NASA Astrophysics Data System (ADS)

    Leonov, Alexey

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific tasks: search for signatures of dark matter, investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons, protons and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in total flux is ~10^-3 for high energies. In present paper the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The separate investment in proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide rejection from protons with factor of ~4×10^5 for vertical incident particles and ~3×10^5 for particles with initial inclination of 30 deg.

  13. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry

    PubMed Central

    2013-01-01

    Background Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7m+c. The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Results Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7m+c+ and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Conclusions Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates. PMID:24195572

  14. Spectral feature of 31 December 1981 gamma-ray burst not confirmed

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Share, G. H.; Chupp, E. L.; Forrest, D. J.; Matz, S. M.

    1984-01-01

    Measurements of a gamma ray burst at 01:37 UT on December 31, 1981 using the SMM gamma ray spectrometer (GRS) are compared with those made by the Konus instruments on Veneras 11-14. Burst time profiles, photon spectra, and detector energy loss spectra for three time intervals are compared for the GRS and the Konus instruments. It is concluded that the SMM spectra exhibit no evidence for the presence of emission features reported by the Konus group.

  15. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  16. Development of {gamma}-ray detectors for {sup 16}O(p,p'{gamma}) experiment

    SciTech Connect

    Mori, T.; Izumi, T.; Ou, I.; Yano, T.; Sakuda, M.; Tamii, A.; Suzuki, T.; Yosoi, M.

    2012-11-12

    The {gamma} ray production in neutral-current (NC) neutrino-oxygen interaction is very important to the detection of neutrinos from supernova explosion in a neutrino experiment, since those {gamma} rays can become extra signals or unexpected background in the energy region from 5 MeV to 30 MeV. We propose the experiment to measure {gamma} rays in {sup 16}O(p,p') reaction at Research Center for Nuclear Physics (RCNP, Osaka) to provide good information on the {gamma}-ray emission spectra in neutrino-oxygen reactions. We present the design of {gamma}-ray detectors (NaI, CsI, HPGe), which will be used in proposed experiment.

  17. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  18. Mass spectrometry of modified RNAs: recent developments.

    PubMed

    Wetzel, Collin; Limbach, Patrick A

    2016-01-01

    A common feature of ribonucleic acids (RNAs) is that they can undergo a variety of chemical modifications. As nearly all of these chemical modifications result in an increase in the mass of the canonical nucleoside, mass spectrometry has long been a powerful approach for identifying and characterizing modified RNAs. Over the past several years, significant advances have been made in method development and software for interpreting tandem mass spectra resulting in approaches that can yield qualitative and quantitative information on RNA modifications, often at the level of sequence specificity. We discuss these advances along with instrumentation developments that have increased our ability to extract such information from relatively complex biological samples. With the increasing interest in how these modifications impact the epitranscriptome, mass spectrometry will continue to play an important role in bioanalytical investigations revolving around RNA. PMID:26501195

  19. A system for simultaneous beta and gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Farsoni, A. T.; Hamby, D. M.

    2007-08-01

    A state-of-the-art radiation detection system for real-time and simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) designed and built in our laboratory. The DPP board digitally captures the analog signal pulses and, following several digital preprocessing steps, transfers valid pulses to the host computer for further digital processing. A resolving algorithm also was developed to digitally discriminate beta and gamma events, and reconstruct separate beta and gamma-ray energy spectra with minimal crosstalk. The spectrometer has proven to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  20. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  1. Technical innovations in Gamma Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Lizarazo, Juan

    2002-03-01

    An abondoned solar power plant has been converted to an instrument for measuring the Cherenkov light component of extensive air showers induced by cosmic particles. The Atmospheric Gamma Ray Observatory (AGRO) has been operating during the Winter months of 2001-02 and a large sample of Cherenkov events has been collected. Our prelimary results indicate an excess of gamma ray showers emanating from the direction of the Crad Nebula, which is a known gamma ray source and the standard candle of gamma ray astrophysics. Further improvements to the detector will consist of lowering of the energy threshold and dramatic increase in data collection efficiency. Present day detectors, with their thresholds in the 100-200 GeV range are unable to measure extinction properties of AGN spectra, thus limiting their ability to constrain the inter-galactic infra-red photon density. I will present a discussion of a technique and algorithms that will make this possible.

  2. Numerical analysis of alpha spectra using two different codes.

    PubMed

    Hurtado, S; Jiménez-Ramos, M C; Villa, M; Vioque, I; Manjón, G; García-Tenorio, R

    2008-01-01

    This work presents an intercomparison between commercial software for alpha-particle spectrometry, Genie 2000, and the new free available software, Winalpha, developed by International Atomic Energy Agency (IAEA). In order to compare both codes, different environmental spectra containing plutonium, uranium, thorium and polonium have been analyzed, together with IAEA test alpha spectra. A statistical study was performed in order to evaluate the precision and accuracy in the analyses, and to enhance the confidence in using the software on alpha spectrometric studies. PMID:18342525

  3. Search for gamma ray lines from supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.

    1974-01-01

    A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.

  4. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  5. Cross sections and differential spectra for reactions of 2-20 MeV neutrons on /sup nat/Cr

    SciTech Connect

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2 to 20 MeV on /sup nat/Cr targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope. We present product yields versus incident neutron energy, n,p,..cap alpha.. spectra versus incident neutron energy, and calculated ..gamma..-ray spectra.

  6. Cross sections and differential spectra for reactions of 2 to 20 MeV neutrons on /sup nat/Fe

    SciTech Connect

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2 to 20 MeV on /sup nat/Fe targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope. We present product yields versus incident neutron energy, n,p,..cap alpha.. spectra versus incident neutron energy, and calculated ..gamma..-ray spectra.

  7. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  8. Dual multifractal spectra.

    PubMed

    Roux, Stphane; Jensen, Mogens H

    2004-01-01

    The multifractal formalism characterizes the scaling properties of a physical density rho as a function of the distance L. To each singularity alpha of the field is attributed a fractal dimension for its support f(alpha). An alternative representation has been proposed by considering the distribution of distances associated to a fixed mass. Computing these spectra for a multifractal Cantor set, it is shown that these two approaches are dual to each other, and that both spectra as well as the moment scaling exponents are simply related. We apply the same inversion formalism to exponents obtained for turbulent statistics in the Gledzer-Ohkitani-Yamada shell model and observe that the same duality relation holds here. PMID:14995714

  9. Indoor and outdoor in situ high-resolution gamma radiation measurements in urban areas of Cyprus.

    PubMed

    Svoukis, E; Tsertos, H

    2007-01-01

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of (232)Th and (238)U series, and (40)K are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +/- 0.5. PMID:17065195

  10. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  11. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    The SAS-2 gamma ray experiment and its detection of celestial gamma rays are described. Data also cover intensity of high energy gamma rays, gamma ray distribution, gamma ray origin, and diffuse radiation.

  12. Uncoiling collagen: a multidimensional mass spectrometry study.

    PubMed

    Simon, H J; van Agthoven, M A; Lam, P Y; Floris, F; Chiron, L; Delsuc, M-A; Rolando, C; Barrow, M P; O'Connor, P B

    2016-01-01

    Mass spectrometry can be used to determine structural information about ions by activating precursors and analysing the resulting series of fragments. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) is a technique that correlates the mass-to-charge (m/z) ratio of fragment and precursor ions in a single spectrum. 2D FT-ICR MS records the fragmentation of all ions in a sample without the need for isolation. To analyse specific precursors, horizontal cross-sections of the spectrum (fragment ion scans) are taken, providing an alternative to conventional tandem mass spectrometry (MS/MS) experiments. In this work, 2D FT-ICR MS has been used to study the tryptic digest of type I collagen, a large protein. Fragment ion scans have been extracted from the 2D FT-ICR MS spectrum for precursor m/z ratios: 951.81, 850.41, 634.34, and 659.34, and 2D FT-ICR MS spectra are compared with a set of 1D MS/MS spectra using different fragmentation methods. The results show that two-dimensional mass spectrometry excells at MS/MS of complex mixtures, simplifying spectra by eliminating contaminant peaks, and aiding the identification of species in the sample. Currently, with desktop computers, 2D FT-ICR MS is limited by data processing power, a limitation which should be alleviated using cluster parallel computing. In order to explore 2D FT-ICR MS for collagen, with reasonable computing time, the resolution in the fragment ion dimension is limited to 256k data points (compared to 4M data points in 1D MS/MS spectra), but the vertical precursor ion dimension has 4096 lines, so the total data set is 1G data points (4 Gbytes). The fragment ion coverage obtained with a blind, unoptimized 2D FT-ICR MS experiment was lower than conventional MS/MS, but MS/MS information is obtained for all ions in the sample regardless of selection and isolation. Finally, although all 2D FT-ICR MS peak assignments were made with the aid of 1D FT-ICR MS data, these results demonstrate the promise of 2D FT-ICR MS as a technique for studying complex protein digest mixtures. PMID:26568361

  13. Martian neutron leakage spectra

    SciTech Connect

    Drake, D.M.; Feldman, W.C.; Jakosky, B.M.

    1988-06-10

    Energy spectra of Martian leakage neutrons are calculated by a high-energy nucleon-meson transport code using a Monte Carlo technique and a one-dimensional diffusion accelerated neutral-particle transport code, which solves the Boltzmann equation. Four series of calculations were made to simulate (1) a uniform surface layer containing various amounts of H/sub 2/O, (2) different burial depths of a 50% H/sub 2/O layer underneath a 1% H/sub 2/O layer, (3) changing atmospheric pressure, and (4) a thick CO/sub 2/ ice sheet overlying a ''dirty'' water ice sheet. We found that all calculated spectra at energies less than about 1000 eV could be fitted by a superposition of thermal and epithermal functions having four free parameters. Two of these parameters, the thermal and epithermal amplitudes, were found to vary systematically over ranges exceeding 1 order of magnitude and to specify uniquely the configuration in each of the series. We conclude that measurements of leakage neutron spectra should allow determination of the hydrogen content of surface layers buried to depths up to about 100 g/cm/sup 2/ and determination of the thickness of a polar dry ice cap up to thicknesses of about 250 g/cm/sup 2/. Variations of these parameters were also shown to depend on the composition of the assumed surface layers through the average atomic mass and the macroscopic scattering and absorption cross sections. copyright American Geophysical Union 1988

  14. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  15. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial

    PubMed Central

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland

    2015-01-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856

  16. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial.

    PubMed

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland; Jacob, Daniela

    2015-08-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856

  17. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    SciTech Connect

    Phillips, J.R.; Halbig, J.K.; Lee, D.M.; Beach, S.E.; Bement, T.R.; Dermendjiev, E.; Hatcher, C.R.; Kaieda, K.; Medina, E.G.

    1980-05-01

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(..gamma..,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup.

  18. Biological particle analysis by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Vilker, V. L.; Platz, R. M.

    1983-01-01

    An instrument that analyzes the chemical composition of biological particles in aerosol or hydrosol form was developed. Efforts were directed toward the acquisition of mass spectra from aerosols of biomolecules and bacteria. The filament ion source was installed on the particle analysis by mass spectrometry system. Modifications of the vacuum system improved the sensitivity of the mass spectrometer. After the modifications were incorporated, detailed mass spectra of simple compounds from the three major classes of biomolecules, proteins, nucleic acids, and carbohydrates were obtained. A method of generating bacterial aerosols was developed. The aerosols generated were collected and examined in the scanning electron microscope to insure that the bacteria delivered to the mass spectrometer were intact and free from debris.

  19. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  20. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  1. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques. PMID:26070716

  2. The Study of the Cosmic Gamma-Emission Nonstationary Fluxes Characteristics by the AVS-F Apparatus Data

    NASA Astrophysics Data System (ADS)

    Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.

    The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25? up to +30?. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and ?-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones ?-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to ? ?-lines, annihilation line, nuclear lines, and neutron capture line on1H (2.223 MeV). In the spectrum of the January 20, 2005 solar flare the feature in the range of 15-21 MeV was detected for the first time. It can be associated with lines of 15.11 MeV (12C +16O) or 20.58 MeV (from neutron radiative capture on3He), or with their combination. Also several e-dominant flares without any gamma-lines in energy spectra were identified. All detected faint solar flares were e-dominant according to the preliminary data analysis.Thin structure with characteristic timescale of 30-160 s was observed at 99 % significance level on some solar flares stronger than M1.0 temporal profiles in the low-energy gamma-band in the energy ranges corresponding to the identified spectral features or whole gamma-band energy boundaries. According to the results of the preliminary analysis during the flare of January 20, 2005, thin structure with timescale from 7 ms to 35 ms was detected at 99 % confidence level in the energy range of 0.1-20 MeV. Some thin structure with characteristic timescale 50-110 s was observed on temporal profiles of several faint events.About 3 % of the identified events were gamma-ray bursts. During some bursts high-energy gamma-emission was observed, for example Emax = 147 3 MeV for GRB050525.

  3. Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra.

    SciTech Connect

    Frank, Ari M.; Monroe, Matthew E.; Shah, Anuj R.; Carver, Jeremy J.; Bandeira, Nuno; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.; Pevzner, Pavel A.

    2011-07-01

    Tandem mass spectrometry (MS/MS) experiments yield multiple, nearly identical spectra of the same peptide in various laboratories, but proteomics researchers typically do not leverage the unidentified spectra produced in other labs to decode spectra they generate. We propose a spectral archives approach that clusters MS/MS datasets, representing similar spectra by a single consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and unidentified spectra in the same way and maintaining information about peptide spectra that are common across species and conditions. Thus archives offer both traditional library spectrum similarity-based search capabilities along with new ways to analyze the data. By developing a clustering tool, MS-Cluster, we generated a spectral archive from ∼1.18 billion spectra that greatly exceeds the size of existing spectral repositories. We advocate that publicly available data should be organized into spectral archives rather than be analyzed as disparate datasets, as is mostly the case today.

  4. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  5. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1989-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  6. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1988-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  7. IUE archived spectra

    NASA Technical Reports Server (NTRS)

    Sullivan, Edward C.; Bohlin, Ralph C.; Heap, Sara R.; West, Donald K.; Schmitz, Marion

    1988-01-01

    The International Ultraviolet Explorer (IUE) Satellite has been in continuous operation since January 26, 1978. To date, approximately 65,000 spectra have been stored in an archive at Goddard Space Flight Center in Greenbelt, MD. A number of procedures have been generated to facilitate access to the data in the IUE spectral archive. This document describes the procedures which include on-line quick look of the displays, search of an observation data base for selected observations, and several methods for ordering data from the archive.

  8. IUE archived spectra

    SciTech Connect

    Sullivan, E.C.; Bohlin, R.C.; Heap, S.R.; West, D.K.; Schmitz, M.

    1988-06-01

    The International Ultraviolet Explorer (IUE) Satellite has been in continuous operation since January 26, 1978. To date, approximately 65,000 spectra have been stored in an archive at Goddard Space Flight Center in Greenbelt, MD. A number of procedures have been generated to facilitate access to the data in the IUE spectral archive. This document describes the procedures which include on-line quick look of the displays, search of an observation data base for selected observations, and several methods for ordering data from the archive.

  9. Phosphorescence spectra of bacteriochlorophylls

    SciTech Connect

    Takiff, L.; Boxer, S.G.

    1988-06-22

    The authors wish to report phosphorescence spectra of the lowest triplet state of a number of bacteriochlorophylls (BChls) which provide the first accurate values for the triplet state energies of these chromophores. There have been many previous attempts to estimate the triplet state energies of bacteriochlorins motivated by the possible importance of triplet states in photosynthesis, the utility of these chromophores as sensitizers and quenchers of singlet oxygen, model studies of electron transfer, and intrinsic theoretical interest in the excited state energies of extended conjugated macrocycles.

  10. Einstein spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.

    1988-01-01

    The results of the initial stage of the CfA survey of quasar energy distributions are reviewed. Einstein imaging proportional counter spectra of 33 quasars have been studied by fitting a single power law slope and absorption by an equivalent column density of neutral hydrogen. Comparison with the higher energy HEAO-A2 data leads to a two-component model for the X-ray spectrum. The X-ray column density is systematically lower than the 21-cm measured Galactic column density along the same line of sight.

  11. IMPLEMENTING THE STANDARD SPECTRUM METHOD FOR ANALYSIS OF ?-? COINCIDENCE SPECTRA

    SciTech Connect

    Biegalski, S.; Flory, Adam E.; Schrom, Brian T.; Ely, James H.; Haas, Derek A.; Bowyer, Ted W.; Hayes, James C.

    2011-09-14

    The standard deconvolution analysis tool (SDAT) algorithms were developed and tested at the University of Texas at Austin. These algorithms utilize the standard spectrum technique for spectral analysis of {beta}-{gamma} coincidence spectra for nuclear explosion monitoring. Work has been conducted under this contract to implement these algorithms into a useable scientific software package with a graphical user interface. Improvements include the ability to read in PHD formatted data, gain matching, and data visualization. New auto-calibration algorithms were developed and implemented based on 137Cs spectra for assessment of the energy vs. channel calibrations. Details on the user tool and testing are included.

  12. Measurements of Natural Radionuclides in Vegetables by Gamma Spectrometry

    NASA Astrophysics Data System (ADS)

    Saeed, M. A.; Zainal, N. Jenal; Hossain, I.; Javed, M. A.; Mubarak, A. A.

    2014-07-01

    This article reports the activity of natural radionuclides uranium, thorium, and potassium, in different vegetables in Malaysia, measured with a p-type high-purity germanium detector (HPGe). Potassium radionuclides were the most prevalent element in the tested samples, whose activity ranges from 138.89 to 2660.31 Bq/kg. Meanwhile, the activity of uranium was found to be within the minimum detection limit (MDL) to 46.94 Bq/kg, and thorium from < MDL to 192.98 Bq/kg. The annual dose was in the range 0.001 to 0.06 mSv, within the worldwide range of 0.29 mSv/year for ingestion of vegetables.

  13. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  14. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  15. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  16. Vibrational spectra of dipropylsulfoxide.

    PubMed

    Markarian, Shiraz A; Gabrielian, Liana S; Bonora, Sergio

    2007-12-31

    FTIR and Raman spectra analysis of pure dipropylsulfoxide (DPSO), binary mixtures of DPSO/CCl(4), and DPSO/water has been first performed. The complex pattern of spectra has been explained on the basis of molecular interactions between DPSO and other molecules and, in the aqueous solutions, the role of both hydrophilic and hydrophobic interactions have been discussed depending on the concentrations. The changes in the intensities and in the frequencies of DPSO bands on concentration have been considered. The curve fitting procedure has been performed for both SO and C-H stretching region, and, on the basis of deconvolution results different type of molecular interactions have been considered. Density function theory DFT/(B3LYP) method has been used to determine the optimized geometry for free DPSO and for 1 DPSO:1 water complex. On the basis of the 6-31+G(d) quality sets parameters, the DFT calculated bond parameters and harmonic vibrations are in a very good agreement with experimental data. PMID:17350885

  17. Theoretical Studies of Molecular Spectra

    NASA Technical Reports Server (NTRS)

    McKay, Christopher (Technical Monitor); Freedman, Richard S.

    2002-01-01

    This summary describes the research activities of the principal investigator during the reporting period. The research includes spectroscopy, management of molecular databases, and generation of spectral line profiles and opacity data. The spectroscopy research includes oxygen broadening of nitric oxide (NO), analysis of CO2 spectra, analysis of HNO3 spectra, and analysis of CO spectra.

  18. Underwater gamma surveys of Mururoa and Fangataufa lagoons.

    PubMed

    Osvath, I; Povinec, P; Huynh-Ngoc, L; Comanducci, J F

    1999-09-30

    Underwater gamma-ray spectrometry is an effective alternative or complement to traditional sampling and laboratory analyses for applications such as contamination assessment in emergency situations, long-term monitoring of radioactive releases or investigation of sunken radioactive objects. This technique was recently used in a seabed contamination study undertaken at the South Pacific nuclear weapons test sites of the Mururoa and Fangataufa atolls in order to guide and focus sediment core sampling in the areas with highest gamma-emitting radionuclide levels. 60Co inventories estimated on the basis of the underwater gamma-ray spectrometry survey were in good agreement with results previously obtained by traditional sediment sampling and laboratory analysis. PMID:10568282

  19. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  20. Negative ion mass spectra of some polychlorinated 2-phenoxyphenols.

    PubMed Central

    Busch, K L; Norström, A; Nilsson, C A; Bursey, M M; Hass, J R

    1980-01-01

    Polychlorinated 2-phenoxyphenols were studied by negative ion mass spectrometry. Common to almost all of the methane enhanced negative ion mass spectra were (M-1)-, (M-36-)-., (M-37)-, (M-72)-., and chorinated quinoxide ions. The (M-36)-. ion does not apparently form in a mechanism analogous to the thermal or photochemical ring closure of these compounds to form the chlorinated dioxins. The chlorinated quinoxide ion reflects the number of chlorines on the ring with hydroxy substituent. Collision-induced dissociation mass-analyzed ion kinetic energy spectra (CID-MIKES) from different isomers were qualitatively different in both the normal and charge reversed mode of operation. Comparison of these spectra with those from other classes of polychlorinated aromatic hydrocarbons such as the dioxins or the furans may reveal a common negative ion gas phase chemistry. PMID:7428741

  1. High-Resolution Spectroscopy of Gamma-Ray Bursts with the Transient Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    2000-11-01

    A search for spectral lines in gamma-ray bursts detected with the Transient Gamma-Ray Spectrometer has been unable to confirm their existence. The spectrometer, aboard the Wind spacecraft, has detected gamma-ray bursts and other transients since 1995. We have performed a systematic search for narrow spectral lines in gamma-ray bursts detected with this instrument that augments and extends the results of a similar search of bursts detected with BATSE. This search procedure tests for statistically significant lines at all possible times and durations during a burst using the method of maximum likelihood and C-statistic. Simulations demonstrated the effectiveness of this procedure, particularly on Poisson distributed data, for distinguishing real features from statistical fluctuations. The most promising line candidates were consistent with chance fluctuations, given the large number of spectra searched.

  2. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  3. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  4. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  5. Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.

  6. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    PubMed

    Seku?a, Justyna; Nizio?, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging. PMID:26247064

  7. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  8. Brain G protein gamma subunits contain an all-trans-geranylgeranylcysteine methyl ester at their carboxyl termini

    SciTech Connect

    Yamane, H.K.; Farnsworth, C.C.; Xie, H.Y.; Howald, W.; Fung, B.K.; Clarke, S.; Gelb, M.H.; Glomset, J.A. )

    1990-08-01

    We have shown previously that guanine nucleotide-binding protein (G protein) beta gamma complexes purified from bovine brain membranes are methyl esterified on a C-terminal cysteine residue of the gamma polypeptide. In the present study, 3H-methylated G beta gamma complexes cleaved to their constituent amino acids by exhaustive proteolysis were shown to contain radiolabeled material that coeluted with geranylgeranylcysteine methyl ester on reversed-phase HPLC and two TLC systems. Further treatment by performic acid oxidation yielded radiolabeled material that coeluted with L-cysteic acid methyl ester, verifying that the prenyl modification occurs on a C-terminal cysteine residue. Analysis by gas chromatography-coupled mass spectrometry of material released from purified G beta gamma by treatment with Raney nickel positively identified the covalently bound lipid as an all-trans-geranylgeranyl (C20) isoprenoid moiety. To delineate the distribution of this modification among gamma subunits, purified G beta gamma complexes were separated into 5-kDa (gamma 5) and 6-kDa (gamma 6) forms of the gamma polypeptide by reversed-phase HPLC. Gas chromatography-coupled mass spectrometry analyses of Raney nickel-treated purified gamma 5 and gamma 6 subunits showed that both polypeptides were modified by geranylgeranylation. These results demonstrate that at least two forms of brain gamma subunit are posttranslationally modified by geranylgeranylation and carboxyl methylation. These modifications may be important for targeting G beta gamma complexes to membranes.

  9. Cluster analysis on mass spectra of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Spindler, C.; Kiendler-Scharr, A.; Kleist, E.; Mensah, A.; Mentel, T.; Tillmann, R.; Wildt, J.

    2009-04-01

    Biogenic secondary organic aerosols (BSOA) are of high importance in the atmosphere. The formation of SOA from the volatile organic compound (VOC) emissions of selected trees was investigated in the JPAC (Jlich Plant Aerosol Chamber) facility. The VOC (mainly monoterpenes) were transferred into a reaction chamber where vapors were photo-chemically oxidized and formed BSOA. The aerosol was characterized by aerosol mass spectrometry (Aerodyne Quadrupol-AMS). Inside the AMS, flash-vaporization of the aerosol particles and electron impact ionization of the evaporated molecules cause a high fragmentation of the organic compounds. Here, we present a classification of the aerosol mass spectra via cluster analysis. Average mass spectra are produced by combination of related single mass spectra to so-called clusters. The mass spectra were similar due to the similarity of the precursor substances. However, we can show that there are differences in the BSOA mass spectra of different tree species. Furthermore we can distinguish the influence of the precursor chemistry and chemical aging. BSOA formed from plants exposed to stress can be distinguished from BSOA formed under non stressed conditions. Significance and limitations of the clustering method for very similar mass spectra will be demonstrated and discussed.

  10. TDS spectra analysis

    NASA Astrophysics Data System (ADS)

    Tomkov, E.

    1996-05-01

    Methods of TDS spectra analysis start usually from the Polanyi-Wigner desorption rate equation. The Redhead approximative solution of the equation can be rearranged into a reduced form in which it serves as an analytical expression for the desorption rate versus time or temperature. Fitting the analytical form to an experimental curve we can confirm or deny the invariability of kinetic parameters a desorption energy Ed and a preexponential factor ?l and determine their values. If the parameters depend on surface coverage ? the application of the reduced form allows us to determine their values at ??0 and ?? ?0 and estimate the dependence Ed( ?), ?(?) from a single TDS spectrum. The method proposed in this paper is valid for the first-order kinetics of desorption; for the estimation mentioned above an assumption is made that desorption sites are identical and that E d as well as ?l changes with ? monotonously.

  11. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  12. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  13. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  14. X-Ray Spectra of Young Pulsars and Their Wind Nebulae: Dependence on Spin-Down Energy Loss Rate

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.

    2003-01-01

    An observational model is presented for the spectra of young rotation-powered pulsars and their nebulae based on a study of nine bright Crab-like pulsar systems observed with the Chandra X-ray observatory. A significant correlation is discovered between the X-ray spectra of these pulsars and that of their associated pulsar wind nebulae, both of which are observed to be a function of the spin-down energy loss rate, E. The 2-10 keV spectra of these objects are well characterized by an absorbed power-law model with photon indices, Gamma, in the range of 0.6 < Gamma (sub PSR) < 2.1 and 1.3 < Gamma(sub PWN) < 2.3, for the pulsars and their nebulae, respectively. A linear regression fit relating these two sets of indexes yields Gamma(sub PWN) = 0.91 +/- 0.18 + (0.66 +/- 0.11) Gamma (sub PSR), with a correlation coefficient of r = 0.97. The spectra of these pulsars are found to steepen as Gamma = Gamma(sub max) + alpha E (exp -1/2), with Gamma(sub max) providing an observational limit on the spectral slopes of young rotation-powered pulsars. These results reveal basic properties of young pulsar systems, allow new observational constraints on models of pulsar wind emission, and provide a means of predicting the energetics of pulsars lacking detected pulsations.

  15. Understanding soft gamma-ray repeaters in the context of the extragalactic radio pulsar origin of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1993-01-01

    Gamma-ray burst (GRB) sources and soft gamma-ray repeaters (SGRs) may be neutron stars undergoing structural adjustments that produce transient gamma-ray events. A unified scenario is proposed in which young radio pulsars are responsible for SGRs and classical GRB sources. The radiative emission associated with a pulsar 'glitch' is seen as a GRB or an SGR event depending on the direction of our line of sight. Burst spectra, energetics, and statistics of GRBs and SGRs are discussed. It is shown that classical GRB spectra arise from Compton upscattering by charges accelerated along the viewing direction and SGR burst spectra are due to the thermalization of Alfven wave energy away from this direction. If crustal adjustments occur within the first 50,000 years of a pulsar's lifetime, the model predicts two SGR sources within the galaxy, in agreement with current observations.

  16. Separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriaini, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2015-10-01

    The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is ∼10-3 at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of ∼4 × 105 for vertical incident particles and ∼3 × 105 for particles with initial inclination of 30° in the electron energy range from 50 GeV to 1 TeV.

  17. Search for spectral lines in cosmic gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Messina, Daniel C.; Share, Gerald H.

    1992-01-01

    Time-integrated spectra from 177 gamma-ray bursts observed by the Gamma Ray Spectrometer (GRS) on NASA's Solar Maximum Mission satellite (SMM) have been systematically searched for evidence of emission lines in the range 300 keV and higher. The distribution of fitted line strengths is consistent with what is expected from a random sample of data, suggesting that there are no statistically significant narrow or moderately broadened line features in any of the bursts.

  18. Gamma rays from the Crab and Vela pulsars

    NASA Technical Reports Server (NTRS)

    Ho, Cheng

    1992-01-01

    Gamma ray pulsed emission from the Crab and Vela pulsars are discussed. Emphasis is placed on use of current and future Gamma Ray Observatory observations as diagnostics to examine and constrain theoretical models. Issues on the spectra and pulse profile are discussed. Specifically, the absence and possibly significant time variability of pulsed emission below 10 MeV from the Vela pulsar represents a serious challenge to current astronomical models. Theoretical implication of this 'peculiarity' is addressed.

  19. (n,{gamma}) Experiments on tin isotopes

    SciTech Connect

    Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Rusev, G.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Becvar, F.; Krticka, M.; Kroll, J.; Agvaanluvsan, U.; Dashdorj, D.; Erdenehuluun, B.; Tsend-Ayush, T.

    2013-04-19

    Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spins of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.

  20. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  1. Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS

    NASA Astrophysics Data System (ADS)

    Scapin, Marcos A.; Duarte, Celina L.; Bustillos, Jos Oscar W. V.; Sato, Ivone M.

    2009-07-01

    The hydrocarbons degradation by gamma irradiation of the waste automotive lubricating oil at different absorbed doses has was investigated. The waste automotive oil in a Brazilian oil recycling company was collected. This sample was fractioned and 50% and 70% (v/v) Milli-Q water were added. Each sample was irradiated with 100, 200 and 500 kGy doses using a gamma source Co-60GAMMACELL type, with 510 3 Ci total activity. Gas chromatography-mass spectrometry (GC/MS) was used to identify degraded organic compounds. The mass spectra were analyzed using the mass spectral library from NIST, installed in the spectrometer. The sample irradiated at 500 kGy dose with 70% (v/v) Milli-Q water addition formed eight degradation products, namely diethanolmethylamine (C 5H 13NO), diethyldiethylene glycol (C 8H 18O 3), 1-octyn-3-ol, 4-ethyl (C 10H 18O) and 1.4-pentanediamine, N1, N1-diethyl (C 9H 22N 2). The color changing of the waste lubricating oil, for different absorbed doses, was determined by UV/VIS spectrophotometer. The related sample showed the lowest absorbance value evidencing the formation of 2-ethoxyethyl ether (C 8H 18O 3) compound.

  2. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis, FY14 Extended Annual Report

    SciTech Connect

    Friedrich, S.

    2015-02-06

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K or below offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. We are developing cryogenic γ–detectors based on metallic magnetic calorimeters (MMCs), which have the potential of higher resolution, faster count rates and better linearity than other cryogenic detector technologies. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. Here we discuss the fabrication of a new generation of MMC γ–detectors in FY2014, and the resulting improvements in energy resolution and linearity of the new design. As an example of the type of NDA that cryogenic detectors enable, we demonstrate the direct detection of Pu-242 emissions with our MMC γ–detectors in the presence of Pu-240, and show that a quantitative NDA analysis agrees with the mass spectrometry

  3. The essence of DNA sample preparation for MALDI mass spectrometry.

    PubMed

    Sauer, Sascha

    2007-03-10

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has become an important analytical technique in nucleic acid research. MALDI is used for quality control of oligonucleotides as well as for analyzing DNA markers. Sample preparation of nucleic acids is crucial for obtaining high-quality mass spectra. Sample purity, solvent content, suitable matrices, and substrate surfaces, as well as laboratory conditions affect spectra quality. This review presents essential information with regard to sample preparation, DNA modification chemistry, and DNA purification, along with a discussion of instrumental advances, which facilitate and extend the applicability of MALDI in genomics. PMID:17137632

  4. Natural gamma radiation from long-lived actinide isotopes

    SciTech Connect

    Dupree, S.A.; Sanger, H.M.

    1987-06-01

    The purpose of this report is to describe a method, developed at Sandia National Laboratories, for calculating volumetric, unshielded, gamma radiation source spectra with arbitrary energy group structures from essentially arbitrary mixtures of actinide isotopes. The computer code and data base are combined as INRAD. These spectra can be used to describe the source for gamma radiation transport codes. Coupled with this source routine is a special version of the one-dimensional, discrete ordinates, radiation transport code XSDRN that uses the spectrum generating routine to define sources in an appropriate energy group structure. 15 refs., 34 figs., 10 tabs.

  5. Spectra of hot stars

    NASA Astrophysics Data System (ADS)

    Hillier, D. John

    2015-08-01

    Non-LTE modeling is essential for interpreting the spectra of O stars and their decendents, and much progress has been made. The major uncertainty associated with analyzing photospheric spectra of O stars arises from issues related to microturbulence and macroturbulence. Many supergiants, for example, have microturbulent velocities that approach the sound speed, while macroturbulent velocities are often several times the sound speed. The cause of this turbulence is unknown, but may be related to pulsation, an underlying convection zone associated with the Fe opacity bump, or feedback from the stellar wind. Determining accurate abundances in O stars is hampered by the lack of lines belonging to low-z elements. Many species only have a few observable lines, and some of these are subject to complex non-LTE effects. A characteristic of massive stars is the existence of a stellar wind which is driven by radiation pressure. Radiation driving is inherently unstable, and this leads to winds with an inhomogeneous structure. Major issues that are still unresolved include: How are winds driven through the sonic point? What is the nature of the inhomogeneities, and how do the properties of these inhomogeneities change with density and velocity? How important is spatial porosity, and porosity in velocity space? What is the structure of the shocks, and in what stars do the shocks fail to cool? With Wolf-Rayet (W-R) stars the major uncertainty arises because the classic spectroscopic radius (i.e., the location where ? = 2/3) often refers to a location in the wind not necessarily the stellar radius associated with stellar evolution models. Derived radii are typically several times those predicted by stellar evolution calculations, although for strong-lined W-R stars it is possible to construct models that are consistent with evolution calculations. The driving of the winds in these stars is strongly coupled to the closeness of the stars to the Eddington limit and to their inhomogeneities, and the latter have not been derived from first principles. Theoretically, it is possible that the radii of the stars are inflated due to the Fe opacity bump.

  6. Identification of metabolites of hexazinone by mass spectrometry.

    PubMed

    Reiser, R W; Belasco, I J; Rhodes, R C

    1983-11-01

    The metabolites of hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione ] obtained in the rat and in plants were identified by mass spectrometry. Rat urine metabolites were identified from direct probe spectra obtained on metabolites separated by thin-layer chromatography. Sugarcane metabolites were identified by gas chromatography mass spectrometry of the trimethylsilyl derivatives. The major metabolic routes were found to be hydroxylation of the cyclohexyl group and demethylation. All identifications were confirmed by synthesis and direct comparison of chromatographic data and mass spectra. Hexazinone is metabolized quickly and extensively in the biological systems studied, and is relatively nonpersistent in the environment. PMID:6661503

  7. NCBI Peptidome: a new repository for mass spectrometry proteomics data.

    PubMed

    Ji, Li; Barrett, Tanya; Ayanbule, Oluwabukunmi; Troup, Dennis B; Rudnev, Dmitry; Muertter, Rolf N; Tomashevsky, Maxim; Soboleva, Alexandra; Slotta, Douglas J

    2010-01-01

    Peptidome is a public repository that archives and freely distributes tandem mass spectrometry peptide and protein identification data generated by the scientific community. Data from all stages of a mass spectrometry experiment are captured, including original mass spectra files, experimental metadata and conclusion-level results. The submission process is facilitated through acceptance of data in commonly used open formats, and all submissions undergo syntactic validation and curation in an effort to uphold data integrity and quality. Peptidome is not restricted to specific organisms, instruments or experiment types; data from any tandem mass spectrometry experiment from any species are accepted. In addition to data storage, web-based interfaces are available to help users query, browse and explore individual peptides, proteins or entire Samples and Studies. Results are integrated and linked with other NCBI resources to ensure dissemination of the information beyond the mass spectroscopy proteomics community. Peptidome is freely accessible at http://www.ncbi.nlm.nih.gov/peptidome. PMID:19942688

  8. Gamma rays interaction with copper doped lithium phosphate glasses

    NASA Astrophysics Data System (ADS)

    ElBatal, Hatem A.; ElMandouh, Zeinab E.; Zayed, Hamdia A.; Marzouk, Samir Y.; Elkomy, Gihan M.; Hosny, Ahmed

    2013-12-01

    Undoped and copper-doped lithium phosphate glasses were prepared. CuO-doped glasses possess characteristic greenish color which deepens with the increase of CuO content. Experimental optical absorption spectra of the undoped lithium phosphate glasses reveal strong ultraviolet absorption bands and no visible bands are observed. These strong UV bands are assumed to originate from unavoidable trace iron ions contamination within the chemicals used for the preparation of the glass. The optical absorption spectra of the CuO-doped phosphate glasses reveal the same UV absorption as observed in the undoped samples beside an extra broad visible absorption band which splits to some component peaks. Such visible spectra are related to the presence of divalent copper (Cu2+) ions in distorted octahedral coordination. Gamma irradiation of the undoped sample produces induced defects generated through the liberation of pairs of electrons and positive holes. CuO-doped glasses show some shielding behavior towards successive gamma irradiation especially at high CuO contents. FTIR absorption spectra of the studied glasses indicate the appearance of characteristic vibrational bands due to phosphate groups. Gamma irradiation causes minor effects on the FTIR spectra, but the bands due to water molecules are strongly affected by gamma irradiation because of loose bonding within the glass network.

  9. Reflection spectra and magnetochemistry of iron oxides and natural surfaces

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1978-01-01

    The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.

  10. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  11. Interpreting chromosome aberration spectra.

    PubMed

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-03-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH (multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry. PMID:17456013

  12. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  13. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  14. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  15. MASS SPECTROMETRY OF RNA

    PubMed Central

    Meng, Zhaojing; Limbach, Patrick A.

    2008-01-01

    Ribonucleic acids (RNAs) are continuing to attract increased attention as they are found to play pivotal roles in biological system. Just as genomics and proteomics have been enabled by the development of effective analytical techniques and instrumentation, the large-scale analysis of non-protein coding (nc)RNAs will benefit as new analytical methodologies are developed which are appropriate to RNA analysis. Mass spectrometry offers a number of advantageous for RNA analysis arising from its ability to provide mass and sequence information starting with limited amounts of sample. This Briefings will highlight recent developments in the field that enable the characterization of RNA modification status, RNA tertiary structures, and ncRNA expression levels. These developments will also be placed in perspective of how mass spectrometry of RNAs can help elucidate the link between the genome and proteome. PMID:16769684

  16. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  17. Neutron spectrometry for radiation protection: Three examples

    SciTech Connect

    Goldhagen, P.

    1995-12-31

    Workers and the general public are exposed to neutron radiation from a variety of sources, including fission and fusion reactors, accelerators, the nuclear fuel and nuclear weapons cycles, and cosmic rays in space, in aircraft and on the earth. Because the health effects of neutrons depend strongly on their energy, neutron spectrometry is essential for accurate risk-related neutron dosimetry. In addition, the penetration of neutrons through protective shielding changes their energy and can be difficult to calculate reliably, so the measurement of energy spectra is often needed to verify neutron transport calculations. The Environmental Measurements Laboratory has been measuring neutron energy spectra for over 20 years, primarily with multisphere (or Bonner sphere) spectrometers. Because of this experience, the Laboratory has responded to a number of requests to provide reference neutron energy spectra at critical locations in or near nuclear facilities and radiation fields. This talk will describe the author`s instruments and three recent examples of their use: outside the Princeton Tokamak Fusion Test Reactor (TFTR), up to two kilometers from the Army Pulse Radiation Facility (APRF) bare reactor, and in a Canadian Forces jet aircraft at commercial aviation altitudes. All of these studies have implications beyond routine occupational radiation protection. For example, the APRF measurements are part of the broad effort to resolve the discrepancy between measured and calculated thermal neutron activation at Hiroshima, one of the most important unsolved problems in radiation dosimetry.

  18. Mass Spectrometry and Glycomics

    PubMed Central

    2010-01-01

    Abstract Glycosylation defines the adhesive properties of animal cell surfaces and the surrounding extracellular environments. Because cells respond to stimuli by altering glycan expression, glycan structures vary according to spatial location in tissue and temporal factors. These dynamic structural expression patterns, combined with the essential roles glycans play in physiology, drive the need for analytical methods for glycoconjugates. In addition, recombinant glycoprotein drug products represent a multibillion dollar market. Effective analytical methods are needed to speed the identification of new targets and the development of industrial glycoprotein products, both new and biosimilar. Mass spectrometry is an enabling technology in glycomics. This review summarizes mass spectrometry of glycoconjugate glycans. The intent is to summarize appropriate methods for glycans given their chemical properties as distinct from those of proteins, lipids, and small molecule metabolites. Special attention is given to the uses of mass spectral profiling for glycomics with respect to the N-linked, O-linked, ganglioside, and glycosaminoglycan compound classes. Next, the uses of tandem mass spectrometry of glycans are summarized. The review finishes with an update on mass spectral glycoproteomics. PMID:20443730

  19. Gamma Detector Response and Analysis Software - Detector Response Function

    Energy Science and Technology Software Center (ESTSC)

    2014-05-13

    GADRAS-DRF uses a Detector Response Function (DRF) to compute the response of gamma-ray detectors incident radiation. The application includes provision for plotting measured and computed spectra and for characterizing detector response parameters based on measurements of a series of calibration sources (e.g., Ba-133, Cs-137, Co-60, and Th-228). An application program interface enables other programs to access the dynamic-link library that is used to compute spectra.

  20. Post-translational modifications of connexin26 revealed by mass spectrometry.

    PubMed

    Locke, Darren; Bian, Shengjie; Li, Hong; Harris, Andrew L

    2009-12-15

    Gap junctions play important roles in auditory function and skin biology; mutations in the Cx26 (connexin26) gene are the predominant cause of inherited non-syndromic deafness and cause disfiguring skin disorders. Mass spectrometry (MS) was used to identify PTMs (post-translational modifications) of Cx26 and to determine whether they occur at sites of disease-causing mutations. Cx26 was isolated from transfected HeLa cells by sequential immunoaffinity and metal chelate chromatography using a tandem C-terminal haemagglutinin epitope and a (His-Asn)6 sequence. In-gel and in-solution enzymatic digestions were carried out in parallel with trypsin, chymotrypsin and endoproteinase GluC. Peptides were fractionated using a reversed-phase matrix by stepwise elution with increasing concentrations of organic solvent. To improve detection of low-abundance peptides and to maximize sequence coverage, MALDI-TOF-MS (matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; MS) and MALDI-TOF/TOF-MS/MS (matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry; MS/MS) spectra were acquired from each elution step using an Applied Biosystems 4800 tandem mass spectrometer. Acquisition, processing and interpretation parameters were optimized to improve ionization and fragmentation of hydrophobic peptides. MS and MS/MS coverage of Cx26 was significantly above that reported for other membrane proteins: 71.3% by MS, with 29.9% by MS/MS. MS coverage was 92.6% if peptides resulting from in-source collisions and/or partial enzymatic cleavages were considered. A variety of putative PTMs of Cx26 were identified, including acetylation, hydroxylation, gamma-carboxyglutamation, methylation and phosphorylation, some of which are at sites of deafness-causing mutations. Knowledge of the PTMs of Cx26 will be instrumental in understanding how alterations in the cellular mechanisms of Cx26 channel biogenesis and function lead to losses in auditory function and disfiguring skin disorders. PMID:19775242