Science.gov

Sample records for gamma spectrometry spectra

  1. The use of difference spectra with a filtered rolling average background in mobile gamma spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Cresswell, A. J.; Sanderson, D. C. W.

    2009-08-01

    The use of difference spectra, with a filtering of a rolling average background, as a variation of the more common rainbow plots to aid in the visual identification of radiation anomalies in mobile gamma spectrometry systems is presented. This method requires minimal assumptions about the radiation environment, and is not computationally intensive. Some case studies are presented to illustrate the method. It is shown that difference spectra produced in this manner can improve signal to background, estimate shielding or mass depth using scattered spectral components, and locate point sources. This approach could be a useful addition to the methods available for locating point sources and mapping dispersed activity in real time. Further possible developments of the procedure utilising more intelligent filters and spatial averaging of the background are identified.

  2. Analysis of spectra from portable handheld gamma-ray spectrometry for terrain comparative assessment.

    PubMed

    Dias, Flávio; Lima, Marco; Sanjurjo-Sánchez, Jorge; Alves, Carlos

    2016-04-01

    Geological characteristics can have impacts on societal development by, e.g., geotechnical issues and radiological hazard levels. Due to urban sprawl, there is an increasing need for detailed geological assessment. In this work are analysed data from portable handheld gamma-ray spectra (K, eU and eTh) obtained in granitic and Silurian metaclastic outcrops as well as in an profile, roughly N-S, on soil covered terrains transecting a mapped contact between these rock types (the profile's northern extremity is at locations mapped as granite). Estimations from gamma-ray spectra were studied by univariate and multivariate analyses. K, eU and eTh values were higher on granite in relation to Silurian metaclastic rocks. The northern extremity of the profile showed clearly higher contents of eTh and this contrast was supported by univariate statistical tools (normality plot and Wilk-Shapiro test; boxplots). A ternary plot with the contribution of the elements to gamma-ray absorbed dose showed the separation of granite from Silurian metaclastic rocks with the former being nearer the eTh vertex. The points in the northern extremity of the profile are nearer the eTh vertex than the other points on the profile. These visual suggestions were supported by hierarchical cluster analysis, which was able to differentiate between granite and metaclastic outcrops and separate portions of the profile located on different terrains. Portable gamma-ray spectrometry showed, hence, the potential to distinguish granite and metaclastic terrains at a scale useful for engineering works. These results can also be useful for a first comparative zoning of radiological hazards (which are higher for granite). PMID:26867098

  3. EML Gamma Spectrometry Data Evaluation Program

    SciTech Connect

    Decker, Karin M.

    2001-01-01

    This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV to 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these

  4. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  5. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  6. Uncertainties in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Lépy, M. C.; Pearce, A.; Sima, O.

    2015-06-01

    High resolution gamma-ray spectrometry is a well-established metrological technique that can be applied to a large number of photon-emitting radionuclides, activity levels and sample shapes and compositions. Three kinds of quantitative information can be derived using this technique: detection efficiency calibration, radionuclide activity and photon emission intensities. In contrast to other radionuclide measurement techniques gamma-ray spectrometry provides unambiguous identification of gamma-ray emitting radionuclides in addition to activity values. This extra information comes at a cost of increased complexity and inherently higher uncertainties when compared with other secondary techniques. The relative combined standard uncertainty associated with any result obtained by gamma-ray spectrometry depends not only on the uncertainties of the main input parameters but also on different correction factors. To reduce the uncertainties, the experimental conditions must be optimized in terms of the signal processing electronics and the physical parameters of the measured sample should be accurately characterized. Measurement results and detailed examination of the associated uncertainties are presented with a specific focus on the efficiency calibration, peak area determination and correction factors. It must be noted that some of the input values used in quantitative analysis calculation can be correlated, which should be taken into account in fitting procedures or calculation of the uncertainties associated with quantitative results. It is shown that relative combined standard uncertainties are rarely lower than 1% in gamma-ray spectrometry measurements.

  7. EML Gamma Spectrometry Data Evaluation Program

    SciTech Connect

    Decker, Karin M.

    1998-02-28

    This report represents the results of the analyses for the second EML Gamma Spectrometry Data Evaluation Program (August 1997). A calibration spectrum, a background spectrum and three sample spectra were included for each software format as part of the evaluation. The calibration spectrum contained nuclides covering the range from 59.5 keV to 1836 keV. The participants were told fallout and fission product nuclides as well as naturally occurring nuclides could be present. The samples were designed to test the detection and quantification of very low levels of nuclides and the ability of the software and user to properly resolve multiplets. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Twenty-nine sets of results were reported from a total of 70 laboratories who received the spectra. The percentage of the results within 1 F of the expected value was 76, 67, and 55 for samples 1, 2, and 3, respectively. From all three samples, 12% of the results were more than 3 F from the expected value. Sixty-two nuclides out of a total of 580 expected results were not reported for the three samples. Sixty percent of these false negatives were due to nuclides which were present at the minimum detectable activity level. There were 53 false positives reported with 60% of the responses due to problems with background subtraction. The results indicate that the Program is beneficial to the participating laboratories in that it provides them with analysis problems that are difficult to create with spiked samples due to the unavailability of many nuclides and the short half-lives of others. EML will continue its annual distribution, the third is to be held in March 1999.

  8. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  9. Covariance Analysis of Gamma Ray Spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-01

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  10. Covariance analysis of gamma ray spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-15

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  11. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGESBeta

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore » multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  12. Gamma-ray Output Spectra from 239Pu Fission

    NASA Astrophysics Data System (ADS)

    Ullmann, John

    2015-05-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  13. In situ gamma-spectrometry intercomparison exercise in Salzburg, Austria

    NASA Astrophysics Data System (ADS)

    Lettner, H.; Andrasi, A.; Hubmer, A. K.; Lovranich, E.; Steger, F.; Zombori, P.

    1996-02-01

    In situ gamma-spectrometry has become a useful method of assessing the nuclide concentrations of man-made and natural gamma-emitters in the soil. For the quality assurance of the measurements, periodically conducted intercomparison exercises are essential. Therefore exercises were organized in different European countries since 1990, the last one was conducted in Salzburg, Austria in September 1994. The participation of 27 measurement teams from all over Europe emphasizes the importance of the intercomparison. Salzburg was selected because the Province of Salzburg, Austria was among the most heavily contaminated regions outside the former USSR by the Chernobyl fallout. Two different typical sites were selected for the measurements: Site 1 was inside the urban area of Salzburg on intensively used grassland which had not been tilled since the deposition of the fallout. This site is representative for intensively used agricultural regions in the Province of Salzburg. Site 2 was in the mountainous regions of the Hohe Tauern at an elevated altitude of 1600 m, representing the agricultural soil- and contamination conditions of the Alpine regions in the Tauern. The two sites differ significantly in terms of soil characteristics, a crucial parameter for the evaluation of in situ gamma-spectra. The participants used different approaches for the evaluation of the gamma-spectra in terms of considering the depth distribution. In the paper the results from the 24 European teams are presented.

  14. Resonant Compton scattering and gamma-ray burst continuum spectra

    NASA Technical Reports Server (NTRS)

    Baring, M. G.

    1995-01-01

    The Thomson limit of resonant inverse Compton scattering in the strong magnetic fields of neutron stars is considered as a mechanism for producing gamma-ray burst continuum spectra. Photon production spectra and electron cooling rates are presented using the full magnetic Thomson cross-section. Model emission spectra are obtained as self-consistent solutions of a set of photon and electron kinetic equations, displaying spectral breaks and other structure at gamma-ray energies.

  15. Parametric Studies for 233U Gamma Spectrometry

    SciTech Connect

    Scheffing, C.C.; Krichinsky, A.

    2004-01-01

    Quantification of special nuclear material is a necessary aspect to assuring material accountability and is often accomplished using non-destructive gamma spectrometry. For 233U, gamma rays are affected by matrix and packaging attenuation and by a strong Compton continuum from decay products of 232U (inherently found in 233U) that obscure 233U gamma photopeaks. This project, based on current work at the national repository for separated 233U located at Oak Ridge National Laboratory (ORNL), explores the effects of various parameters on the quantification of 233U– including material form and geometry. Using an attenuation correction methodology for calculating the mass of 233U from NDA analysis, a bias of almost 75% less than the actual 233U mass was identified. The source of the bias needs to be understood at a more fundamental level for further use of this quantification method. Therefore, controlled experiments using well characterized packages of 233U were conducted at the repository and are presented in this paper.

  16. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  17. Use of new spectral analysis methods in gamma spectra deconvolution

    NASA Astrophysics Data System (ADS)

    Pinault, Jean Louis

    1991-07-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252Cf source; the detector is a BGO 3 in. × 8 in. scintillator. The principle of the method rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given.

  18. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    SciTech Connect

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  19. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    SciTech Connect

    Katakura, J. ); England, T.R. )

    1991-11-01

    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.

  20. The width of gamma-ray burst spectra

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus; Borgonovo, Luis

    2015-03-01

    The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper, we propose a new measure to describe spectra: the width of the EFE spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/Gamma-ray Burst Monitor (GBM) and Compton Gamma-ray Observatory/Burst and Transient Source Experiment (BATSE). The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability <10-6). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes - synchrotron and blackbody radiation - the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78 per cent of long GRBs and 85 per cent of short GRBs are incompatible with the minimum width of standard slow cooling synchrotron emission from a Maxwellian distribution of electrons, with fast cooling spectra predicting even wider spectra. Photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody.

  1. Spreadsheet analysis of gamma spectra for nuclear material measurements

    SciTech Connect

    Mosby, W.R.; Pace, D.M.

    1990-01-01

    A widely available commercial spreadsheet package for personal computers is used to calculate gamma spectra peak areas using both region of interest and peak fitting methods. The gamma peak areas obtained are used for uranium enrichment assays and for isotopic analyses of mixtures of transuranics. The use of spreadsheet software with an internal processing language allows automation of routine analysis procedures increasing ease of use and reducing processing errors while providing great flexibility in addressing unusual measurement problems. 4 refs., 9 figs.

  2. Features in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Stanek, Krzysztof Z.; Paczynski, Bohdan; Goodman, Jeremy

    1993-01-01

    Gravitational lensing of cosmological gamma-ray bursts by objects in the mass range about 10 exp 17 to 10 exp 20 g (femtolensing) may introduce complicated interference patterns that might be interpreted as absorption or emission lines in the bursts' spectra. This phenomenon, if detected, may be used as a unique probe of dark matter in the universe. The BATSE spectral data should allow one to detect such spectral features or to put significant upper limits on the cosmic density of a dark matter component that may be in the femtolensing range. Software to generate theoretical spectra has been developed, and it is accessible over the computer network with anonymous ftp.

  3. The sharpness of gamma-ray burst prompt emission spectra

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin

  4. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  5. Gamma-ray spectrometry of LDEF samples

    SciTech Connect

    Winn, W.G.

    1991-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of (sup 22)Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  6. A dedicated LIMS for routine gamma-ray spectrometry.

    PubMed

    Bruggeman, M; Verheyen, L; Vidmar, T

    2014-05-01

    We developed a Microsoft(®) Access-based LIMS (Laboratory Information and Management Systems), γ-LIMS, for the management of our gamma-spectrometry laboratory, in which thousands of routine, but high-quality analyses are performed each year. This paper explains the main features of the γ-LIMS and puts special attention on the interfacing methods and solutions for using the Genie™2000 spectrometry software in conjunction with the EFFTRAN package, which serves for efficiency transfer calculations, coincidence summing corrections and a procedure for uncertainty estimation. PMID:24332338

  7. Experimental simulation of A-bomb gamma ray spectra: revisited.

    PubMed

    Pattison, John E; Payne, Lester C; Hugtenburg, Richard P; Beddoe, Alun H; Charles, Monty W

    2004-01-01

    It has been reported recently that the A-bomb gamma ray spectra received by the colon of the average Japanese survivor of Hiroshima and Nagasaki may be experimentally simulated using a hospital-based Philips SL15 linear accelerator. The simulated A-bomb gamma radiation may be used in radiobiology experiments to determine, amongst other things, the biological effectiveness of the A-bomb gamma radiation. However, in that study, the electron beams from the linear accelerator were poorly defined and photon contamination was ignored. In the study reported here, a Varian Clinac 2100C linear accelerator has been used for the same purpose but with photon contamination included in better defined output electron beams. It is found that the A-bomb gamma radiation can still be matched to an acceptable degree (<10%). The cause of the slightly poorer fit was due mainly to the different ranges of energies available from the linear accelerators used. The absorbed dose received by model breasts was also estimated in this study for the same situations as in the previous study. The ratio of the breast to colon doses was found to be only (3.9 +/- 4.0)% low compared with the expected values of 1.17 and 1.16 for Hiroshima and Nagasaki, respectively. These results provide further confirmation of the acceptability of the simple cylindrically symmetrical body models employed in these studies to represent the average Japanese survivor. PMID:15254320

  8. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    NASA Astrophysics Data System (ADS)

    Pinault, Jean-Louis; Solis, Jose

    2009-04-01

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  9. Cyclotron scattering lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Preece, Robert D.

    1989-01-01

    If cyclotron scattering, rather than absorption, is responsible for the line features observed recently in two gamma-ray burst spectra (Murakami et al., 1988), then the second and higher harmonics are due to resonant scattering events that excite the electron to Landau levels above the ground state. Here, relativistic Compton scattering cross sections are used to estimate the expected ratio of third to second harmonics in the presence of Doppler broadening. At the field strength (1.7 TG) required to give first and second harmonics at 19 keV and 38 keV, there should be no detectable third harmonic in the spectrum.

  10. On gamma-ray bursts spectra: A possible theoretical understanding

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Popov, Mikhail; Chechetkin, Valery; Baranov, Andrey

    2015-12-01

    The study of spectra of gamma-ray burst is certainly a very promising part of the GRB studies. More and more data are available for GRBs and with time-sequence analysis it is possible also to propose a link with the other set of data represented by the light curves. Consequently, the explanation of the spectra requires both the local physical condition of the engine as well as the dynamic of the explosion process. In this view, we have analysed the GRB spectra with a specific model: black-body + thermal Bremsstrahlung. Our results show that this model is consistent with the observed GRB spectra. We can derive the temperature of the hot plasma needed to reproduce this spectrum consistent with the core of a very hot star ˜109 K. We have also found a correlation between the variation in time of this temperature and the variation of the spikes in luminosity of the light curves. This time profile each spike could be the correct fingerprint of the GRB physical process.Each spike, as a fingerprint, could keep the memory of the GRB physical process. If this model find a confirmation for other GRBs, this idea will ask us to open a new paradigm in GRB physics.

  11. Pulsed Bremsstrahlung Interrogation with Photoneutron - Gamma-Ray Spectrometry for Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Jones, James Litton

    A novel photoneutron-based nondestructive evaluation (NDE) technique which does not require a radioactive neutron source is presented. Some unique features of this technique include: 1) pulsed interrogation neutron production within, or very near, an inspected object, 2) spectrum tailoring of the source neutrons, and 3) compatibility with many existing high-energy, commercial x-ray inspection devices. Basic concept feasibility was first established by numerical methods. The pulsed photoneutron inspection technique performs nondestructive elemental analysis using gamma-ray spectrometry. Highly penetrating bremsstrahlung photons are produced by a pulsed electron accelerator capable of producing up to 16-MeV electrons. The photoneutrons are generated by the bremsstrahlung photons interacting with an inspected object and near-by beryllium metal. The interactions of the neutrons within an inspected item result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the gamma -rays acquired between accelerator pulses. A unique fast detection and acquisition system, using two 5.08 x 5.08 -cm organic scintillators, acquires gamma-ray emissions within 100 ns of each accelerator pulse. The fast system is capable of processing individual gamma-ray signals at count rates up to 40 MHz between accelerator pulses with a repetition rate up to 1 kHz. The system incorporates a unique x-ray flash recovery method which allows individual gamma-ray detection as soon as 75 ns after the start of each x-ray flash occurring within the detector. Conventional detection and data acquisition systems are used to acquire gamma-ray spectra for the time period between 1000 ns and the next accelerator pulse. Operational tests using a 30-ps pulse width, electron accelerator demonstrated the x-ray flash recovery methodology, gamma-ray detection, and data acquisition. Although, gamma -ray spectrometry performance was limited by x-ray flash -induced gain shifts in

  12. Gamma-ray Output Spectra from 239 Pu Fission

    SciTech Connect

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  13. On the Energy Spectra of Individual Terrestrial Gamma ray Flashes

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Briggs, M. S.; Cramer, E. S.; Connaughton, V.; Dwyer, J. R.; Fitzpatrick, G.

    2015-12-01

    The Fermi Gamma-ray Burst Monitor (GBM) receives enough photons from some TGFs that spectral fitting of individual TGFs is possible. Previous TGF spectral fits relied upon summing the data from many TGFs. However, this spectral analysis of individual GBM TGFs is difficult because the number of photons is only adequate and because the extreme intensity of TGFs requires the analysis to correct for spectral distortions caused by pulse pileup. For each TGF in the sample, we compare Monte Carlo simulated TGF spectra to the observed detector counts. For each comparison, the best fit intensity is found, including correcting the predicted spectrum for pulse pileup. Using likelihood, we determine which of the simulations are consistent with each TGF, thus constraining the properties (e.g., altitude, beam width, etc.) of the TGF.

  14. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  15. Basic characterization of highly enriched uranium by gamma spectrometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Cong Tam; Zsigrai, József

    2006-05-01

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low-background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  16. Gamma ray spectrometry of LDEF samples at SRL

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1992-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed.

  17. Gamma ray spectrometry of LDEF samples at SRS

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1991-01-01

    A total of 31 samples from Long Duration Exposure Facility (LDEF), including materials of Al, V, and steel trunnions were analyzed by ultralow level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include an end piece that collects noticeable Be-7 on its leading surface. No significant Be-7 was detected in the samples analyzed. The most sensitive analyses were performed with a 90 pct. efficient HPGe gamma ray detector, which is enclosed in a purged active/passive active shield.

  18. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  19. Understanding the Continuum Spectra of Short Soft Gamma Repeater Bursts

    NASA Technical Reports Server (NTRS)

    Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa; Finger, Mark H.; Lenter, Geoffrey; Patel, Sandeep K.; Swank, Jean

    2006-01-01

    The spectra of short soft gamma repeater (SGR) bursts at photon energies above -15 keV are often well described by an optically thin thermal bremsstrahlung model (i.e., F(E) - E^-1 * exp(-E/kT) ) with kT=20-40 keV. However, the spectral shape burst continuum at lower photon energies (down to -2 keV) is not well established. It is important to better understand the SGR burst spectral properties at lower energies since inadequate description of the burst spectral continuum could lead to incorrect conclusions, such as existence of spectral lines. Here, we present detailed spectral investigations (in 2-200 keV) of 163 bursts from SGR 1806-20, all detected with Rossi X-ray Timing Explorer during the 2004 active episode that included the giant flare on 27 December 2004. We find that the great majority of burst spectra are well represented by the combination of a blackbody plus a OTTB models.

  20. Gamma-ray spectra from neutron capture on /sup 87/Sr

    SciTech Connect

    Sullivan, R.E.; Becker, J.A.; Stelts, M.L.

    1981-07-01

    The gamma-ray spectrum following neutron capture on /sup 87/Sr was measured at 3 neutron energies: E/sub n/ = thermal, 2 keV, and 24 keV. Gamma rays were detected in a three-crystal Ge(Li)-NaI-NaI pair spectrometer. Gamma-ray intensities deduced from these spectra by spectral unfolding are presented.

  1. Efficiency Calibration for Environmental Gamma Spectrometry Using GATE.

    PubMed

    Alrefae, Tareq

    2016-06-01

    This work investigated the utility of performing efficiency calibration for environmental gamma spectrometry using the Monte Carlo based, free of charge GATE toolbox. The validity of this approach was tested by comparing output efficiency values of an in-house developed GATE-based program with experimental measurements covering various geometries and primary photon energies. The results of this comparison revealed relative deviations within ±20%, thus validating the employed computational approach. Moreover, the GATE-based method was able to predict quantities that are generally difficult to measure experimentally, such as the number of interactions preceding full energy absorption. These computationally obtained predictions were found to be in agreement with theory. PMID:27115226

  2. Guide to plutonium isotopic measurements using gamma-ray spectrometry

    SciTech Connect

    Lemming, J.F.; Rakel, D.A.

    1982-08-26

    Purpose of this guide is to assist those responsible for plutonium isotopic measurements in the application of gamma-ray spectrometry. Objectives are to promote an understanding of the measurement process, including its limitations and applicability, by reviewing the general features of a plutonium spectrum and identifying the quantities which must be extracted from the data; to introduce state-of-the-art analysis techniques by reviewing four isotopic analysis packages and identifying their differences; to establish the basis for measurement control and assurance by discussing means of authenticating the performance of a measurement system; and to prepare for some specific problems encountered in plutonium isotopic analyses by providing solutions from the practical experiences of several laboratories. 29 references, 12 figures, 17 tables.

  3. Low-level gamma spectrometry using beta coincidence and Compton suppression.

    PubMed

    Grigorescu, E L; De Felice, P; Razdolescu, Anamaria-Cristina; Luca, A

    2004-01-01

    A low-level gamma-ray spectrometry system was developed using a Ge(Li) detector with 6% relative efficiency coupled to a 2pi beta plastic detector for coincidence selection and a massive NaI(Tl) detector for Compton suppression. The integral background count rate for (50-1500)keV was 0.5 s(-1)kg(-1) (Ge), using only beta coincidences. With Compton suppression, a value of 0.25 s(-1)kg(-1) (Ge) was obtained. Spectra with and without Compton suppression were studied for 60Co, 137Cs and 152Eu point sources. Considerations are made concerning the Compton suppression advantages in different situations. PMID:15177343

  4. Comparison of Various Spectra Methods Used in Vehicle-Based Nai(Tl) Spectrometry Survey.

    PubMed

    Li, Huibin; Liu, Jun

    2016-08-01

    Vehicle-based NaI(Tl) spectrometry is widely used in searching for lost sources. There are several spectra methods can be used to detect abnormal radiation caused by manmade nuclides among a sequence of spectra. In order to test which method has the highest sensitivity, an experiment was done, and three commonly used spectra methods were used to process the acquired spectra. The result indicated that: the noise adjusted singular value decomposition method is more sensitive than other methods. Finally, its drawback was also discussed. PMID:27356163

  5. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  6. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-04-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  7. Spectra, fluxes, and observability of gamma rays from dark matter annihilation in the Galaxy

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Tylka, A. J.

    1989-01-01

    Details of the physics of gamma-ray production by the annihilation of dark matter particles in the Galaxy are presented. Improved gamma-ray spectra and fluxes are calculated and compared with present observational data on cosmic gamma-ray fluxes at high Galactic latitudes. A comparison with the gamma-ray flux from cosmic-ray interactions is made. It is found that gamma-rays from dark matter annihilation are most potentially observable from patches of the sky at high Galactic latitudes in directions having an unusually low total column density of gas and from a dark matter core at the Galactic center.

  8. Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

    SciTech Connect

    William Quam

    2001-09-01

    This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to large

  9. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  10. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    SciTech Connect

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  11. Neutron and gamma dose and spectra measurements on the Little Boy replica

    SciTech Connect

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.

  12. Neutron and gamma-ray spectra of 239PuBe and 241AmBe.

    PubMed

    Vega-Carrillo, Héctor René; Manzanares-Acuña, Eduardo; Becerra-Ferreiro, Ana María; Carrillo-Nuñez, Aureliano

    2002-08-01

    Neutron and gamma-ray spectra of 239PuBe and 241AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. The 239PuBe neutron spectrum was measured in an open environment, while the 241AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the 241AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity. PMID:12150274

  13. Waste Characterization Using Gamma Ray Spectrometry with Automated Efficiency Optimization - 13404

    SciTech Connect

    Bosko, A.; Venkataraman, R.; Bronson, F.L.; Ilie, G.; Russ, W.R.

    2013-07-01

    Gamma ray spectrometry using High Purity Germanium (HPGe) detectors is commonly employed in assaying radioactive waste streams from a variety of sources: nuclear power plants, Department of Energy (DOE) laboratories, medical facilities, decontamination and decommissioning activities etc. The radioactive material is typically packaged in boxes or drums (for e.g. B-25 boxes or 208 liter drums) and assayed to identify and quantify radionuclides. Depending on the origin of the waste stream, the radionuclides could be special nuclear materials (SNM), fission products, or activation products. Efficiency calibration of the measurement geometry is a critical step in the achieving accurate quantification of radionuclide content. Due to the large size of the waste items, it is impractical and expensive to manufacture gamma ray standard sources for performing a measurement based calibration. For well over a decade, mathematical efficiency methods such as those in Canberra's In Situ Object Counting System (ISOCS) have been successfully employed in the efficiency calibration of gamma based waste assay systems. In the traditional ISOCS based calibrations, the user provides input data such as the dimensions of the waste item, the average density and fill height of the matrix, and matrix composition. As in measurement based calibrations, the user typically defines a homogeneous matrix with a uniform distribution of radioactivity. Actual waste containers can be quite nonuniform, however. Such simplifying assumptions in the efficiency calibration could lead to a large Total Measurement Uncertainty (TMU), thus limiting the amount of waste that can be disposed of as intermediate or low activity level waste. To improve the accuracy of radionuclide quantification, and reduce the TMU, Canberra has developed the capability to optimize the efficiency calibration using the ISOCS method. The optimization is based on benchmarking the efficiency shape and magnitude to the data available in the

  14. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    SciTech Connect

    Jeon, Jong Ho Nakajima, Kazuhisa Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo; Rhee, Yong Joo; Shin, Jung Hun; Jo, Sung Ha; Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  15. Low level measurement of (60)Co by gamma ray spectrometry using γ-γ coincidence.

    PubMed

    Paradis, H; de Vismes Ott, A; Luo, M; Cagnat, X; Piquemal, F; Gurriaran, R

    2016-03-01

    This paper presents the latest development of the laboratory to measure the natural and artificial massic activities in environmental samples. The measurement method of coincident emitters by gamma-gamma coincidence using an anti-Compton device and its digital electronics is described. Results obtained with environmental samples are shown. Despite its low efficiency, this method decreases detection limits of (60)Co for certain samples compared to conventional gamma-ray spectrometry due to its very low background. PMID:26682892

  16. Analysis of Phobos mission gamma ray spectra from Mars

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Evans, L. G.; Starr, R.; Floyd, S. R.; Squyres, S. W.; Whelan, J. T.; Bamford, G. J.; Coldwell, R. L.; Rester, A. C.; Surkov, Iu. A.

    1992-01-01

    The determination of the elemental composition of the surface of a planetary body can be achieved, in many cases, by remote-sensing gamma ray spectroscopy. A gamma ray spectrometer was carried on the Soviet spacecraft Phobos-2, and obtained data while in an elliptical orbit around Mars. Results of two independent approaches to data analysis, one by the Soviet group and one by an American group are reported. The results for five elements are given for two different orbits of Mars. Major geologic units that contribute to the signal for each orbit have been identified. The results from the two techniques are in general agreement and there appear to be no geologically significant differences between the results for each orbit.

  17. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGESBeta

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  18. Gamma-ray spectra of individual components of decay series

    NASA Astrophysics Data System (ADS)

    Griffin, Henry

    2001-04-01

    In order to obtain high quality spectra to update the ``Heath Catalog" of spectra with Ge detectors, we (I and a group of Univ. of Michigan undergraduates*) have investigated the neutron activation and decay products related to natural thorium and natural uranium. We have used the UM Ford Nuclear Reactor for irradiations and the UM Phoenix Memorial Lab for the remaining work. Spectra have been obtained with a variety of detectors, some suitable for low energies (>5 keV) and others efficient (70%) for high energies. Sources have been obtained in a variety of forms, each of which has been characterized in comparison with a thin, point source. We will report on A=233 (Th, Pa, and U, and the Np-237 parent of Pa-233), A=234 (Th and the Pa isomers), and A=239 (U, Np, and the Am-243 parent of Np-239). *The 2000-01 undergrad research group consists of Jason Banker, Adam Berro, Adam Cole, Amelia Deschamps, Erik Epp, Ralph Pierre, and Emma Wong.

  19. Consistency of time dilation in temporal profiles and spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Noriss, J. P.; Nemiroff, R. J.; Bonnell, J. T.; Scargle, J. D.; Davis, S. P.; Kouveliotou, C.; Pendleton, G.; Fishman, G. J.; Meegan, C. A.; Paciesas, W. S.

    1995-01-01

    If gamma-ray bursters are at cosmological distances-a possibility suggested by their isotropic distribution and spatial inhomogeneity-then the temporal profiles and spectra of more distant sources will be time dilated compared to those of relatively nearby sources. Analyses of bright and dim Burst and Transient Source Experiment (BATSE) gamma-ray bursts yield a relative time-dilation factor of 2.3 on timescales of pulses and event durations. We redshift the spectra of time intervals near the intensity peaks of the bright sample on a trial grid and compare with spectra of the dim sample. A redshift factor of order two-with wide latitude permitted-brings the spectra of the two brightness groups into alignment. Thus there is coarse agreement with the time-dilation factor found in the temporal domain.

  20. Determination of uranium in aqueous attenuating samples using gamma-ray spectrometry.

    PubMed

    Agarwal, Chhavi; Kalsi, P C; Mhatre, A; Goswami, A

    2007-12-01

    In the present work, a method for determination of uranium concentration in aqueous solution in standard geometry from attenuating samples has been developed based on modification of the empirical approach of Venkataraman and Croft [2003. Determination of plutonium mass using gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. A 505, 527-530]. The method makes use of the multiple gamma (gamma)-rays emitted by 235U and depends on the empirical relation between apparent mass of the sample and gamma-ray energy. It was possible to determine uranium concentration in the range of 12-400mg/ml rapidly by this method without applying transmission corrections. PMID:17768057

  1. An iron absorption model of gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Kargatis, Vincent E.

    1994-01-01

    Most gamma-ray bursts (GRBs) exhibit deficits of X-rays below approximately 200 keV. Here we consider a spectral model in which the burst source is shielded by an optically thick layer of circumburster material (CBM) rich in iron-group elements whose photoelectric absorption opacity exceeds the Thomson opacity below approximately 120 keV. For power-law distributions of absorption depths along the lines of sight the absorbed spectrum can indeed mimic the typial GRB spectrum. This model predicts that (a) the spectrum should evolve monotonically from hard to soft during each energy release, which is observed in most bursts, especially in fast rise exponential decay bursts; (b) Fe spectral features near 7 keV may be present in some bursts; and (c) the ratio of burst distances to the CBM and to Earth should be approximately 10(exp -11) if the spectral evolution is purely due to Fe stripping by the photons.

  2. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation.

    PubMed

    Polf, J C; Peterson, S; McCleskey, M; Roeder, B T; Spiridon, A; Beddar, S; Trache, L

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy. PMID:19864704

  3. Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements.

    PubMed

    Done, L; Ioan, M-R

    2016-08-01

    In this paper there are described three different algorithms of Minimum Detectable Activity (MDA) calculus, and its use in high resolution gamma spectrometry. In the first part, few introductive theoretical aspects related to the MDA are presented. Further, the theory was applied to real gamma rays spectrometry measurements and the results were compared with the activities reference values. Two different gamma spectrometry systems, both of them using High Purity Germanium (HPGe) detectors, but having different efficiencies, were used. Samples having different geometries and radionuclides content were measured. The measured samples were made by dissolving of some acids containing anthropogenic radionuclides in water, obtaining a density of 1g/cm(3). Choosing this type of matrix was done because of its high homogeneity. PMID:27172893

  4. QUALITY CONTROL FOR ENVIRONMENTAL MEASUREMENTS USING GAMMA-RAY SPECTROMETRY

    EPA Science Inventory

    This report describes the quality control procedures, calibration, collection, analysis, and interpretation of data in measuring the activity of gamma ray-emitting radionuclides in environmental samples. Included in the appendices are basic data for selected gamma ray-emitting ra...

  5. High-pressure xenon detectors for gamma-ray spectrometry

    PubMed

    Dmitrenko; Gratchev; Ulin; Uteshev; Viasik

    2000-03-01

    The main results of long-term research on compressed xenon detector properties conducted at the laboratory of cosmic physics of MEPhI are given along with a description of the latest gamma-ray spectrometers based on this work. It is shown that using xenon as working substance, it is possible to create a gamma-ray spectrometer with high energy resolution. The construction and the main physical, technical and operation performances of xenon gamma-ray spectrometers based on ionization chambers of various configurations are described. For a gamma-ray spectrometer with a cylindrical ionization chamber and shielding grid, an energy resolution of about 14 keV (10 keV intrinsic resolution) for gamma-ray line of 662 keV is obtained. The characteristics of these detectors allow one to apply them in various fields of science and engineering, moreover, their good spectrometric properties provide the opportunity to use them for metrology measurements. PMID:10724434

  6. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  7. Calculated Neutron and Gamma-ray Spectra across the Prismatic Very High Temperature Reactor Core

    SciTech Connect

    James W. Sterbentz

    2008-05-01

    Neutron and gamma-ray flux spectra are calculated using the MCNP5 computer code and a one-sixth core model of a prismatic Very High Temperature Reactor based on the General Atomics Gas Turbine-Modular Helium Reactor. Spectra are calculated in the five inner reflector graphite block rings, three annular active core fuel rings, three outer graphite reflector block rings, and the core barrel. The neutron spectra are block and fuel pin averages and are calculated as a function of temperature and burnup. Also provided are the total, fast, and thermal radial profile fluxes and core barrel dpa rates.

  8. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Zhu, Yinghao; Liu, Yang

    2016-05-01

    The gamma-ray spectra of pentane (C5H12) and its two isomers, i.e., 2-Methylbutane (CH3C(CH3)HC2H5) and 2,2-Dimethylpropane (C(CH3)4) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron-electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron-electron annihilation process has also been suggested in the present work.

  9. The Dortmund Low Background Facility - Low-background gamma ray spectrometry with an artificial overburden.

    PubMed

    Gastrich, Holger; Gößling, Claus; Klingenberg, Reiner; Kröninger, Kevin; Neddermann, Till; Nitsch, Christian; Quante, Thomas; Zuber, Kai

    2016-06-01

    The Dortmund Low Background Facility is an instrument for low-level gamma ray spectrometry with an artificial overburden of ten meters of water equivalent, an inner shielding, featuring a neutron absorber, and an active muon veto. An integral background count rate between 40keV and 2700keV of (2.528±0.004)counts/(kgmin) enables low-background gamma ray spectrometry with sensitivities in the range of some 10mBq/kg within a week of measurement time. PMID:27082973

  10. ADONIS, high count-rate HP-Ge {gamma} spectrometry algorithm: Irradiated fuel assembly measurement

    SciTech Connect

    Pin, P.; Barat, E.; Dautremer, T.; Montagu, T.; Normand, S.

    2011-07-01

    ADONIS is a digital system for gamma-ray spectrometry, developed by CEA. This system achieves high count-rate gamma-ray spectrometry with correct dynamic dead-time correction, up to, at least, more than an incoming count rate of 3.10{sup 6} events per second. An application of such a system at AREVA NC's La Hague plant is the irradiated fuel scanning facility before reprocessing. The ADONIS system is presented, then the measurement set-up and, last, the measurement results with reference measurements. (authors)

  11. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  12. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    SciTech Connect

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  13. Portable computer to reduce gamma-ray spectra for plutonium isotopic ratios

    SciTech Connect

    Ruhter, W.D.; Camp, D.C.

    1981-05-15

    In response to Task A.63 of the International Safeguards Project Office (ISPO), to upgrade measurement technology used by the International Atomic Energy Agency (IAEA), a portable data-reduction microprocessor was designed and programmed which allows in-field reduction of gamma-ray spectra and interfaces with the IAEA's multichannel analyzers - the 1000 or 2000-channel memory Silena BS27/N. This report describes the components used in assembling the microprocessor unit: hardware, software used to control the unit, and the mathematical formulation used to obtain isotopic ratios from the gamma-ray data. A simple overview is presented of the unit's operation and the results of tests on gamma-ray spectra that sought to verify the unit's operating characteristics and to determine the precision and effectiveness of the software developed for data reduction.

  14. Plutonium isotopic determination from gamma-ray spectra

    SciTech Connect

    Skourikhine, A.N.; Strittmatter, R.B.; Zardecki, A.

    1998-12-31

    The use of low- and medium-resolution room-temperature detectors for the nondestructive assay of nuclear materials has widespread applications to the safeguarding of nuclear materials. The challenge to using these detectors is the inherent difficulty of the spectral analysis to determine the amount of specific nuclear materials in the measured samples. This is especially true for extracting plutonium isotopic content from low- and medium-resolution spectral lines that are not well resolved. In this paper, neural networks trained by stochastic and singular value decomposition algorithms are applied to retrieve the plutonium isotopic content from a simulated NaI spectra. The simulated sample consists of isotopes {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, and {sup 241}Am. It is demonstrated that the neutral network optimized by singular value decomposition (SVD) and stochastic training algorithms is capable of estimating plutonium content consistently resulting in an average error much smaller than the error previously reported.

  15. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  16. ON WEAK REDSHIFT DEPENDENCE OF GAMMA-RAY SPECTRA OF DISTANT BLAZARS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander

    2012-05-20

    Line-of-sight interactions of cosmic rays provide a natural explanation of the hard gamma-ray spectra of distant blazars, which are believed to be capable of producing both gamma rays and cosmic rays. For sources with redshifts z {approx}> 0.1, secondary gamma rays produced in cosmic-ray interactions with background photons close to an observer can dominate over primary gamma rays originating at the source. The transition from one component to another is accompanied by a change in the spectral index depending on the source redshift. We present theoretical predictions and show that they agree with the data from Fermi Large Area Telescope. This agreement, combined with the spectral data from Atmospheric Cherenkov Telescopes, provides evidence of cosmic-ray acceleration by active galactic nuclei and opens new opportunities for studying photon backgrounds and intergalactic magnetic fields.

  17. Prompt Fission Gamma-ray Spectra and Multiplicities for Various Fissioning Systems

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Regnier, David; Serot, Olivier

    The prompt fission gamma spectra (PFGS) and multiplicities (PFGM) are investigated from a Monte Carlo simulation of the fission fragment deexcitation. The fission fragment characteristics are sampled from mass, charge, kinetic energy, spin and parity distributions from experimental data or theoretical models. Initial excitation energy is shared between the two complementary fragments using a mass dependent temperature ratio law and a level density parameter law based on Ignatyuk's prescription. Details can be found elsewhere in the literature. The deexcitation process can be performed with different calculation schemes. The first one is based on a Weisskopf model for neutron evaporation and nuclear transition sampling (from level density and strength function models) for gamma evaporation. In this case, the competition between neutrons and gammas is taken into account by using a spin dependent excitation energy limit under which gamma emission takes place. The second one is based on an Hauser-Feshbach model for neutron/gamma evaporation based on neutron transmission coefficients (from optical model calculations) and the same model as above for gammas. The n/γ competition is then automatically taken into account at the very beginning of the primary fission fragments evaporation process. Fission observables, especially related to prompt fission gammas are presented and discussed for spontaneous fission (252Cf, 240Pu), thermal fission (235U+nth) and fast fission (238U+n1.8MeV). Comparisons with experimental data are shown when available.

  18. Simulation of gamma-ray spectra for a variety of user-specified detector designs

    NASA Technical Reports Server (NTRS)

    Rester, A. C., Jr.

    1994-01-01

    The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.

  19. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOEpatents

    Hartwell, Jack K.; Goodwin, Scott G.; Johnson, Larry O.; Killian, E. Wayne

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  20. Inclusive gamma-ray spectra from psi/3095/ and psi-prime/3684/ decays

    NASA Technical Reports Server (NTRS)

    Biddick, C. J.; Burnett, T. H.; Masek, G. E.; Miller, E. S.; Smith, J. G.; Stronski, J. P.; Sullivan, M. K.; Vernon, W.; Badtke, D. H.; Barnett, B. A.

    1977-01-01

    Inclusive gamma-ray experiments were carried out in a e(+)e(-) colliding-beam apparatus with NaI(Tl) arrays as detectors. The inclusive gamma-ray spectra, after cosmic-ray background subtraction, are shown as histograms for the decays of the psi(3095) and psi-prime(3684). The psi spectrum has no significant narrow structure, while the psi-prime spectrum shows at least four peaks. Three major radiative decays of the psi-prime(3684) are found, and their respective branching fractions are computed.

  1. High temperature matter and gamma ray spectra from microscopic black holes

    NASA Astrophysics Data System (ADS)

    Daghigh, Ramin; Kapusta, Joseph

    2002-03-01

    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.

  2. Deconvolution of gamma-ray spectra obtained with NAI(Tl) detector in a water tank.

    PubMed

    Rahman, M Sohelur; Cho, Gyuseong; Kang, Bo-Sun

    2009-07-01

    Maximum-likelihood fitting by the expectation maximization deconvolution method is presented to analyse gamma-ray spectra recorded using an NaI(Tl) detector for a water monitoring system. The applicability of the method was tested by deconvolving measured spectra taken using an industry standard 3'' x 3'' cylindrical NaI(Tl) detector in a model water tank with several calibration sources. The results show significant removal of the Compton continuum counts and efficient transfer of the counts into the corresponding photo-peaks. The peak-to-total count ratio and the number of counts in the photo-peaks in the deconvolved spectra increased approximately 4.67 and 5.29 times, respectively, compared with those of measured spectra taken using an NaI(Tl) scintillation detector in the case of (137)Cs. PMID:19502359

  3. Characterization of coal and charcoal by alpha-particle and gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Carrasco Lourtau, A. M.; Rubio Montero, M. P.; Jurado Vargas, M.

    2015-11-01

    Although coal and charcoal have similar physical and chemical characteristics, there are several crystallographic procedures used to distinguish and characterize them. But if the matrix is crushed, there is no standard procedure to distinguish coal from charcoal. In this work, a procedure to characterize coal and charcoal samples based on the radioactive content is proposed. The first assay is by gamma-ray spectrometry, which allows a part of the radioactive content to be determined rapidly and non-destructively. Then, alpha-particle spectrometry is applied to assay the content of those radionuclides which are difficult to determine precisely by gamma-ray spectrometry. This second technique requires prior chemical purification of the carbon sample in order to separate the corresponding radionuclides of interest.

  4. Measurement of Branching Fractions and Mass Spectra of B to K pi pi gamma

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-07-12

    The authors present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B {yields} K{pi}{pi}{gamma} in the range m{sub K{pi}{pi}} < 1.8 GeV/c{sup 2}. They reconstruct four final states: K{sup +}{pi}{sup -}{pi}{sup +}{gamma}, K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}, K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}{gamma}, and K{sub S}{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}, where K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}. Using 232 million e{sup +}e{sup -} {yields} B{bar B} events recorded by the BABAR experiment at the PEP-II asymmetric-energy storage ring, they measure the branching fractions {Beta}(B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +}{gamma}) = (2.95 {+-} 0.13(stat.) {+-} 0.20(syst)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}) = (4.07 {+-} 0.22(stat.) {+-} 0.31(syst.)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup +}{pi}{sup -}{gamma}) = (1.85 {+-} 0.21(stat.) {+-} 0.12(syst.)) x 10{sup -5}, and {Beta}(B{sup +} {yields} K{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}) = (4.56 {+-} 0.42(stat.) {+-} 0.31(syst.)) x 10{sup -5}.

  5. Thermal-neutron-capture prompt-gamma emission spectra of representative coals. [1. 5 to 11 MeV

    SciTech Connect

    Herzenberg, C L; Olson, I K

    1981-12-01

    Prompt gamma ray emission spectra have been calculated from 1.5 to 11 MeV for a wide range of coal compositions exposed to a thermal neutron flux. These include contributions to the spectra from all of the major and minor elements present in the coals. Characteristics of the spectra are discussed and correlated with the coal compositions.

  6. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  7. PHASE-AVERAGED SPECTRA AND LUMINOSITIES OF GAMMA-RAY EMISSIONS FROM YOUNG ISOLATED PULSARS

    SciTech Connect

    Li, X.; Jiang, Z. J.; Zhang, L.

    2013-03-10

    We study the phase-averaged spectra and luminosities of {gamma}-ray emissions from young, isolated pulsars within a revised outer gap model. In the revised version of the outer gap, there are two possible cases for the outer gaps: the fractional size of the outer gap is estimated through the photon-photon pair process in the first case (Case I), and is limited by the critical field lines in the second case (Case II). The fractional size is described by Case I if the fractional size at the null charge surface in Case I is smaller than that in Case II, and vice versa. Such an outer gap can extend from the inner boundary, whose radial distance to the neutron star is less than that of the null charge surface to the light cylinder for a {gamma}-ray pulsar with a given magnetic inclination. When the shape of the outer gap is determined, assuming that high-energy emission at an averaged radius of the field line in the center of the outer gap, with a Gaussian distribution of the parallel electric field along the gap height, represents typical emission, the phase-averaged {gamma}-ray spectrum for a given pulsar can be estimated in the revised model with three model parameters. We apply the model to explain the phase-averaged spectra of the Vela (Case I) and Geminga (Case II) pulsars. We also use the model to fit the phase-averaged spectra of 54 young, isolated {gamma}-ray pulsars, and then calculate the {gamma}-ray luminosities and compare them with the observed data from Fermi-LAT.

  8. Measurements of the Martian Gamma/Neutron Spectra with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Brinza, D.; Weigle, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Martin-Garcia, C.; Boehm, E.; Posner, A.; Rafkin, S. C.; Kortmann, O.

    2013-12-01

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover curiosity measures the energetic charged and neutral particle spectra and the radiation dose rate on the Martian surface. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first measurements of the Martian gamma/neutron spectra and compare them to theoretical predictions. We find that the shape of the gamma spectrum is very similar to the predicted one, but with a ~50% higher intensity. The measured neutron spectrum agrees well with prediction up to ~100 MeV, but shows a considerably increased intensity for higher energies. The measured neutron spectrum translates into a radiation dose rate of 25 μGy/day and a dose equivalent rate of 106 μSv/day. This corresponds to 10% of the total surface dose rate, and 15% of the biological relevant surface dose equivalent rate on Mars. Measuring the Martian neutron spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat. The contribution of neutrons to the dose equivalent increases considerably with shielding thickness, so our measurements provide an important figure to mitigate cancer risk.

  9. A digital spectrometer approach to obtaining multiple time-resolved gamma-ray spectra for pulsed spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, H.; Mitra, S.; Fallu-Labruyere, A.; Hennig, W.; Chu, Y. X.; Wielopolski, L.; Warburton, W. K.

    2007-10-01

    Neutron-induced gamma-ray emission and its detection using a pulsed neutron generator system is an established analytical technique for quantitative multi-element analysis. Traditional gamma-ray spectrometers used for this type of analysis are normally operated either in coincidence mode - for counting prompt gamma-rays following inelastic neutron scattering (INS) events when the neutron generator is ON, or in anti-coincidence mode - for counting prompt gamma-rays from thermal neutron capture (TNC) processes when the neutron generator is OFF. We have developed a digital gamma-ray spectrometer for concurrently measuring both the INS and TNC gamma-rays using a 14 MeV pulsed neutron generator. The spectrometer separates the gamma-ray counts into two independent spectra together with two separate sets of counting statistics based on the external gate level. Because the TNC gamma-ray yields are time dependent, additional accuracy in analyzing the data can be obtained by acquiring multiple time-resolved gamma-ray spectra at finer time intervals than simply ON or OFF. For that purpose we are developing a multi-gating system that will allow gamma-ray spectra to be acquired concurrently in real time with up to 16 time slots. The conceptual system design is presented, especially focusing on considerations for tracking counting statistics in multiple time slots and on the placement of pulse heights into multiple spectra in real time.

  10. Resolution enhancement of composite spectra using wavelet-based derivative spectrometry.

    PubMed

    Kharintsev, S S; Kamalova, D I; Salakhov, M Kh; Sevastianov, A A

    2005-01-01

    An approach based on the using of the continuous wavelet transform (CWT) in derivative spectrometry (DS) is considered. Within the framework of the approach we develop a numerical differentiation algorithm with continuous wavelets for improving resolution of composite spectra. The wavelet-based derivative spectrometry (WDS) method results in best contrast in differential curves compared to the conventional derivative spectrometry method. A main advantage is that, as opposed to DS, WDS gives stable estimations of derivative in the wavelet domain without using the regularization. A wavelet shape and the information redundancy are of the greatest importance when the continuous wavelet transform is used. As an appropriate wavelet we offer to utilize the nth derivative of a component with a priori known shape. The energy distribution into scales allows one to determine a unique wavelet projection and in that way to avoid the information redundancy. A comparative study of WDS and DS with the statistical regularization method (SRM) is made; in particular, limits of applicability of these are given. Examples of the application of both DS and WDS for improving resolution of synthetic composite bands and real-world composite ones coming from molecular spectroscopy are given. PMID:15556433

  11. Application of PERALS™ alpha spectrometry and gamma spectrometry for analysis and investigation of environmental spills at ISL uranium mining projects.

    PubMed

    Borysenko, A; Ostrowski, A; Bellifemine, D; Palmer, G; Haigh, P; Johnston, A

    2014-03-01

    Radiation protection and environmental monitoring in mining requires effective and reliable radionuclide analysis at all stages of the mine project-prior to mining, during operation and through to remediation and decommissioning. The approach presented in this paper was specially developed for the monitoring of radioactive waste resulting from spills during mining and mineral processing operations and uses a combination of high resolution gamma spectrometry, and PERALS™ alpha spectrometry to identify and reliably quantify the activity of the major members of the U-238 decay chain at activities down to 10 mBq g(-1) by direct radionuclide counting and by assessment of the activity of their decay products. This approach has reduced sample preparation and analysis time while providing effective analysis and quantification of naturally occurring radionuclides in environmental samples. It has been successfully applied to several in situ leach (ISL) mining-related projects involving investigations of process material spill impacts and also to routine environmental monitoring. PMID:24270399

  12. Use of MCNP + GADRAS in Generating More Realistic Gamma-Ray Spectra for Plutonium and HEU Objects

    SciTech Connect

    Rawool-Sullivan, Mohini; Mattingly, John; Mitchell, Dean

    2012-08-07

    The ability to accurately simulate high-resolution gamma spectra from materials that emit both neutrons and gammas is very important to the analysis of special nuclear materials (SNM), e.g., uranium and plutonium. One approach under consideration has been to combine MCNP and GADRAS. This approach is expected to generate more accurate gamma ray spectra for complex three-dimensional geometries than can be obtained from one-dimensional deterministic transport simulations (e.g., ONEDANT). This presentation describes application of combining MCNP and GADRAS in simulating plutonium and uranium spectra.

  13. Which Epeak? The Characteristic Energy of Gamma-ray Burst Spectra

    NASA Astrophysics Data System (ADS)

    Preece, Robert; Goldstein, Adam; Bhat, Narayana; Stanbro, Matthew; Hakkila, Jon; Blalock, Dylan

    2016-04-01

    A characteristic energy of individual gamma-ray burst (GRB) spectra can in most cases be determined from the peak energy of the energy density spectra (ν {{ F }}ν ), called “{E}{{peak}}.” Distributions of {E}{{peak}} have been compiled for time-resolved spectra from bright GRBs, as well as time-averaged spectra and peak flux spectra for nearly every burst observed by the Compton Gamma Ray Observatory Burst And Transient Source Experiment and the Fermi Gamma-ray Burst Monitor (GBM). Even when determined by an instrument with a broad energy band, such as GBM (8 keV to 40 MeV), the distributions themselves peak at around 240 keV in the observer’s frame, with a spread of roughly a decade in energy. {E}{{peak}} can have considerable evolution (sometimes greater than one decade) within any given burst, as amply demonstrated by single pulses in GRB 110721A and GRB 130427A. Meanwhile, several luminosity or energy relations have been proposed to correlate with either the time-integrated or peak flux {E}{{peak}}. Thus, when discussing correlations with {E}{{peak}}, the question arises, “Which {E}{{peak}}?” A single burst may be characterized by any of a number of values for {E}{{peak}} that are associated with it. Using a single-pulse simulation model with spectral evolution as a proxy for the type of spectral evolution observed in many bursts, we investigate how the time-averaged {E}{{peak}} emerges from the spectral evolution within a single pulse, how this average naturally correlates with the peak flux derived {E}{{peak}} in a burst, and how the distribution in {E}{{peak}} values from many bursts derives its surprisingly narrow width.

  14. Application of in-situ gamma spectrometry in the remediation of radioactively contaminated soil

    SciTech Connect

    Sutton, C.; Yesso, J.D.; Danahy, R.J.; Cox, T.

    1999-06-01

    The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Most of the remediation effort entails massive excavation of soil for disposal, both offsite and onsite, at an engineered disposal facility. In-situ gamma spectrometry is routinely used to support soil excavation operations to accurately and quickly identify soil areas as being above or below regulatory remediation criteria. Two different in-situ gamma spectrometry systems are used. The first is a sodium iodide (NaI) detector mounted either on a tractor or a jogging stroller, depending on the terrain to be measured. The NaI system allows the collection of a gamma energy spectrum which can be analyzed to identify and quantify radioactive isotopes which are present within the detector`s viewing area. Each energy spectrum is tagged by location coordinates provided by an on-board global positioning system (GPS) to precisely locate elevated contamination areas. The second is a tripod-mounted, high purity germanium detector (HPGe) gamma spectrometry system that is functionally similar to the NaI system. The principal advantage of the HPGe is its superior resolution, which allows much more accurate identification and quantification of radionuclide contaminants in soils. In order to effectively utilize the data quality objective process with these systems, three quality assurance (QA) elements had to be performed.

  15. Gamma ray spectrometry of LDEF samples at SRL

    NASA Astrophysics Data System (ADS)

    Winn, W. G.

    1991-07-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90 percent efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  16. Detection of Anomalous Gamma-Ray Spectra for On-Site Inspection

    SciTech Connect

    Seifert, Carolyn E.; Myjak, Mitchell J.; Pfund, David M.

    2009-05-29

    This work aims to solve some of the technical and logistical challenges inherent in performing On Site Inspection activities under the authority of the Comprehensive Nuclear-Test-Ban Treaty. Inspectors require equipment that can reliably identify the radionuclide signatures of nuclear test explosions amid a background of environmental contamination. Detection of these radiation anomalies by mobile search teams in the air or on the ground can narrow the search field and target specific areas for more detailed inspection or sampling. The need to protect confidential information of the inspected State Party, especially regarding past nuclear testing activities, suggests that full access to measured gamma-ray spectra should be limited. Spectral blinding techniques---in which only a fraction of the information derived from the spectra is displayed and stored---have the potential to meet the needs of both the OSI team and the State Party. In this paper, we describe one such algorithm that we have developed for identifying anomalous spectra from handheld, mobile, or aerial sensors. The algorithm avoids potential sensitivities by reducing the gamma-ray spectrum into a single number that is displayed and stored. A high value indicates that the spectrum is anomalous. The proposed technique does not rely on identifying specific radionuclides, operates well in the presence of high background variability, and can be configured to ignore specific spectral components. In previous work, the algorithm has proven very effective in classifying gamma-ray spectra as anomalous or not, even with poor statistical information. We performed a limited simulation of an airborne search scenario to demonstrate the potential algorithm for OSI missions. The technique successfully detected an injected source of interest whose count rate was an order of magnitude below background levels. We also configured the algorithm to ignore 137Cs as irrelevant to the mission. The resulting alarm metrics were

  17. Advances in room-temperature solid-state gamma-ray spectrometry

    SciTech Connect

    Iwanczyk, J.S.

    1983-01-01

    This article presents a review and analysis of different concepts of gamma-ray spectrometry using room-temperature solid-state detectors. The classical approach involving the use of a charge-sensitive preamplifier and attempting to collect all the ionization charge produced by the gamma ray is analyzed and discussed in terms of the charge transport parameters of the most promising compound semiconductor materials. It is concluded that compound semiconductor detector materials having a large disparity between the ..mu.. tau products for electrons and holes (such as HgI/sub 2/ and CdTe) will have rather poor energy resolution if the classical method of spectrometry requiring full charge collection is employed. 30 references.

  18. Similarity analysis of spectra obtained via reflectance spectrometry in legal medicine.

    PubMed

    Belenki, Liudmila; Sterzik, Vera; Bohnert, Michael

    2014-02-01

    In the present study, a series of reflectance spectra of postmortem lividity, pallor, and putrefaction-affected skin for 195 investigated cases in the course of cooling down the corpse has been collected. The reflectance spectrometric measurements were stored together with their respective metadata in a MySQL database. The latter has been managed via a scientific information repository. We propose similarity measures and a criterion of similarity that capture similar spectra recorded at corpse skin. We systematically clustered reflectance spectra from the database as well as their metadata, such as case number, age, sex, skin temperature, duration of cooling, and postmortem time, with respect to the given criterion of similarity. Altogether, more than 500 reflectance spectra have been pairwisely compared. The measures that have been used to compare a pair of reflectance curve samples include the Euclidean distance between curves and the Euclidean distance between derivatives of the functions represented by the reflectance curves at the same wavelengths in the spectral range of visible light between 380 and 750 nm. For each case, using the recorded reflectance curves and the similarity criterion, the postmortem time interval during which a characteristic change in the shape of reflectance spectrum takes place is estimated. The latter is carried out via a software package composed of Java, Python, and MatLab scripts that query the MySQL database. We show that in legal medicine, matching and clustering of reflectance curves obtained by means of reflectance spectrometry with respect to a given criterion of similarity can be used to estimate the postmortem interval. PMID:23897013

  19. Analyses of uranium and actinium gamma spectra: An application to measurements of environmental contamination

    NASA Astrophysics Data System (ADS)

    Momeni, Michael H.

    A system for the reduction of the complex gamma spectra of nuclides in the uranium, actinium, and thorium series, tailored to calculation of line intensities, analyses of errors, and identification of nuclides is described. This system provides an efficient technique for characterizing contamination in the environs of uranium mines and mills. Identification of the nuclides and calculation of their concentrations requires accurate knowledge of gamma energies and absolute quantum intensities. For some spectral lines, there are no reported measurements of absolute quantum intensities and in some cases where reports are available the measured intensities are not in agreement. In order to improve this data base, the spectra of gamma rays (of nuclides in the uranium and actinium series) with energies between 40 and 1400 keV were measured using high-resolution germanium detectors. A brief description of the spectroscopy system, computational algorithms for deconvolution, and methods of calibration for energy and efficiency, are described. The measured energies and absolute quantum intensities are compared with those reported in the literature.

  20. Analyses of uranium and actinium gamma spectra: an application to measurements of environmental contamination

    SciTech Connect

    Momeni, M.H.

    1981-01-01

    A system for the reduction of the complex gamma spectra of nuclides in the uranium, actinium, and thorium series, tailored to calculation of line intensities, analyses of errors, and identification of nuclides is described. This system provides an efficient technique for characterizing contamination in the environs of uranium mines and mills. Identification of the nuclides and calculation of their concentrations require accurate knowledge of gamma energies and absolute quantum intensities. For some spectral lines, there are no reported measurements of absolute quantum intensities and in some cases where reports are available the measured intensities are not in agreement. In order to improve this data base, the spectra of gamma rays (of nuclides in the uranium and actinium series) with energies between 40 and 1400 keV were measured using high-resolution germanium detectors. A brief description of the spectroscopy system, computational algorithms for deconvolution, and methods of calibration for energy and efficiency, are described. The measured energies and absolute quantum intensities are compared with those reported in the literature.

  1. Determination of impurities in (124)I samples by high resolution gamma spectrometry.

    PubMed

    de Almeida, M C M; da Silva, R L; Delgado, J U; Poledna, R; de Araújo, M T F; Laranjeira, A S; de Veras, E; Braghirolli, A M S; dos Santos, G R; Lopes, R T

    2016-03-01

    (124)I is a radionuclide used in the diagnosis of tumors. The National Health Agency requires identification and activity measurement of impurities. Using gamma spectrometry with an efficiency calibrated high-purity germanium detector, impurities (125)I and (126)I in an (1)(24)I production sample were identified. Activity ratios of (125)I and (126)I to (124)I were approximately 0.5% and 98%, respectively. PMID:26653211

  2. The potential of gamma-ray spectrometry as supplementary information for mapping central European soils

    NASA Astrophysics Data System (ADS)

    Schuler, U.; Bock, M.; Baritz, R.; Willer, J.; Pickert, E.; Kardel, K.; Herrmann, L.

    2012-04-01

    Permanently updated soil maps are needed inter alia for the prediction of landslide hazards, flooding and drought effects, land degradation monitoring, and precision farming. Since comprehensive and intensive field mapping is not affordable, alternative mapping approaches are required. A promising tool, with quite unrecognised potential for modern soil science is gamma-ray spectrometry. As the radioelements potassium, thorium and uranium respond differently to soil forming processes, it should be possible to infer from their concentration on weathering status, and after calibration on soil properties and types. This paper aims to investigate the potential of airborne gamma spectrometry for mapping of central European soils and soil properties. The study was conducted for a test site in Southern Saxony, Germany, 140*85 km wide, representing diverse soil landscapes. Seven different petrographic training and validation areas were chosen each. To assess the potential of gamma-ray spectrometry as additional data layer, predictions were carried out (i) with and (ii) without radiometric data. The outputs were compared with independent soil information of the validation areas. Both prediction runs used the following predictors: elevation, slope, curvature, planform curvature, profile curvature, terrain ruggedness index, relative altitude, vertical distance above drainage network, wetness index, and convergence index. As additional predictor parent material derived from a reclassification of the official geological map (1:1M scale) was used. As radiometric properties potassium, thorium and uranium were used. The radiometric raster datasets were generated by universal kriging using relative altitude as covariate. Training and validation datasets were selected from a comprehensive dataset representing more than 14.000 point data. Point data include soil types and substrates, and for more than 800 sites soil profiles with analysed texture, pH, exchangeable cations, nutrients

  3. Superluminal cascade spectra of TeV {gamma}-ray sources

    SciTech Connect

    Tomaschitz, Roman . E-mail: tom@geminga.org

    2007-03-15

    Astrophysical radiation sources are scrutinized in search of superluminal {gamma}-rays. The tachyonic spectral densities generated by ultra-relativistic electrons in uniform motion are fitted to the high-energy spectra of Galactic supernova remnants, such as RX J0852.0-4622 and the pulsar wind nebulae in G0.9+0.1 and MSH 15-52. The superluminal spectral maps of the unidentified TeV {gamma}-ray sources HESS J1303-631, TeV J2032+4130 and HESS J1825-137 are inferred from EGRET, HEGRA and HESS data. Tachyonic cascade spectra are quite capable of generating the spectral curvature seen in double-logarithmic plots, as well as the extended spectral plateaus defined by EGRET flux points in the GeV band. The curvature of the TeV spectra is intrinsic, caused by the Boltzmann factor in the source densities. The spectral averaging with thermal and exponentially cut power-law electron densities can be done in closed form, and systematic high- and low-temperature expansions of the superluminal spectral densities are derived. Estimates on the electron/proton populations generating the tachyon flux are obtained from the spectral fits, such as power-law indices, temperature and source counts. The cutoff temperatures of the source densities suggest ultra-high-energy protons in MSH 15-52, HESS J1825-137 and TeV J2032+4130.

  4. NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents

    SciTech Connect

    Mihalczo, J. T.; Mattingly, J. K.; Mullens, J. A.; Neal, J. S.

    2002-05-10

    The concept for the system described herein is an active/passive Nuclear Materials Identification System{sup 2} (NMIS) that incorporates gamma ray spectrometry{sup 3}. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure.

  5. The imprint of the extragalactic background light in the gamma-ray spectra of blazars.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Schady, P; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bellazzini, R; Blandford, R D; Bloom, E D; Borgland, A W; Bottacini, E; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Domínguez, A; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Jackson, M S; Jogler, T; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Tramacere, A; Nuss, E; Greiner, J; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reyes, L C; Ritz, S; Rau, A; Romoli, C; Roth, M; Sánchez-Conde, M; Sanchez, D A; Scargle, J D; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Stawarz, Łukasz; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ∼ 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band. PMID:23118013

  6. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Guirec, S.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Scargle, J. D.; Troja, E.

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  7. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  8. Expected gamma ray emission spectra from the lunar surface as a function of chemical composition.

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th, and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines are calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions are those of Reedy and Arnold (1972) and Lingenfelter et al. (1972). The areal resolution of the experiment is calculated to be around 70-140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method is described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  9. Evaluation of TASTEX task H: measurement of plutonium isotopic abundances by gamma-ray spectrometry

    SciTech Connect

    Gunnink, R.; Prindle, A.L.; Asakura, Y.; Masui, J.; Ishiguro, N.; Kawasaki, A.; Kataoka, S.

    1981-10-01

    This report describes a computer-based gamma spectrometer system that was developed for measuring isotopic and total plutonium concentrations in nitric acid solutions. The system was installed at the Tokai reprocessing plant where it is undergoing testing and evaluation as part of the Tokai Advanced Safeguards Exercise (TASTEX). Objectives of TASTEX Task H, High-Resolution Gamma Spectrometer for Plutonium Isotopic Analysis, the methods and equipment used, the installation and calibration of the system, and the measurements obtained from several reprocessing campaigns are discussed and described. In general, we find that measurements for gamma spectroscopy agree well with those of mass spectrometry and of other chemical analysis. The system measures both freshly processed plutonium from the product accountability tank and aged plutonium solutions from storage tanks. 14 figures, 15 tables.

  10. Testing of regolith of celestial bolides with active neutron gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Vostrukhin, Andrey; Mitrofanov, Igor; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton

    2015-04-01

    Current space instruments for studying planet's surface include gamma ray spectrometers that detect natural radioactive isotopes as well as gamma-rays induced in subsurface by galactic cosmic rays. When measuring from celestial body's surface, statistics and amount of detected elements can be dramatically increased with active methods, where soil exposed to artificial flux of particles. One good example is the Russian Dynamic Albedo of Neutron (DAN) instrument onboard Martian Science Laboratory mission (Curiosity rover) developed in 2005-2011. It is the first active neutron spectrometer flown to another planet as part of a landed mission to investigate subsurface water distribution and which has now successfully operated for more than two years on the Martian surface. Presentation describes a number of space instruments for different landers and rovers being developed in Russian Space Research Institute for studying Moon and Mars, as well as method of active neutron and gamma spectrometry overview.

  11. Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources

    SciTech Connect

    Sanchez-Conde, M. A.; Prada, F.; Paneque, D.; Bloom, E.; Dominguez, A.

    2009-06-15

    Axionlike particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as active galactic nuclei (AGNs). Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the extragalactic background light intensity at 3.6 {mu}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and

  12. Combinatorial approach for large-scale identification of linked peptides from tandem mass spectrometry spectra.

    PubMed

    Wang, Jian; Anania, Veronica G; Knott, Jeff; Rush, John; Lill, Jennie R; Bourne, Philip E; Bandeira, Nuno

    2014-04-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein-protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  13. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  14. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    SciTech Connect

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.; DeSimone, D.J.; Alimeti, A.; Roldan, C.F.; McKittrick, T.M.; Kim, D.-S.; Chen, X.; Tremblay, S.E.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fission event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.

  15. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    NASA Astrophysics Data System (ADS)

    Ji, Chuncheng; Kegel, G. H. R.; Egan, J. J.; DeSimone, D. J.; Alimeti, A.; Roldan, C. F.; McKittrick, T. M.; Kim, D.-S.; Chen, X.; Tremblay, S. E.

    2005-05-01

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fission event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.

  16. A Case Study Correlating Innovative Gamma Ray Scanning Detection Systems Data to Surface Soil Gamma Spectrometry Results - 13580

    SciTech Connect

    Thompson, Shannon; Rodriguez, Rene; Billock, Paul; Lit, Peter

    2013-07-01

    HydroGeoLogic (HGL), Inc. completed a United States Environmental Protection Agency (USEPA) study to characterize radiological contamination at a site near Canoga Park, California. The characterized area contained 470 acres including the site of a prototype commercial nuclear reactor and other nuclear design, testing, and support operations from the 1950's until 1988 [1]. The site history included radiological releases during operation followed by D and D activities. The characterization was conducted under an accelerated schedule and the results will support the project remediation. The project has a rigorous cleanup to background agenda and does not allow for comparison to risk-based guidelines. To target soil sample locations, multiple lines of evidence were evaluated including a gamma radiation survey, geophysical surveys, historical site assessment, aerial photographs, and former worker interviews. Due to the time since production and decay, the primary gamma emitting radionuclide remaining is cesium-137 (Cs-137). The gamma ray survey covered diverse, rugged terrain using custom designed sodium iodide thallium-activated (NaI(Tl)) scintillation detection systems. The survey goals included attaining 100% ground surface coverage and detecting gamma radiation as sensitively as possible. The effectiveness of innovative gamma ray detection systems was tested by correlating field Cs-137 static count ratios to Cs-137 laboratory gamma spectrometry results. As a case study, the area encompassing the former location of the first nuclear power station in the U. S. was scanned, and second by second global positioning system (GPS)-linked gamma spectral data were evaluated by examining total count rate and nuclide-specific regions of interest. To compensate for Compton scattering from higher energy naturally occurring radionuclides (U-238, Th-232 and their progeny, and K-40), count rate ratios of anthropogenic nuclide-specific regions of interest to the total count rate were

  17. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  18. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Wang, J. C. L.; Lamb, D. Q.; Loredo, T. J.; Wasserman, I. M.; Salpeter, E. E.

    1989-01-01

    Fits of theoretical spectra from Monte Carlo radiation-transfer calculations to dips at approximately 20 and 40 keV in a spectrum of the gamma-ray burst source GB 880 205 give best-fit values and 68 percent-confidence intervals for the magnetic field of (1.71 + or - 0.07) x 10 to the 12th G, the electron density of (1.2 + or - 0.6) x 10 to the 21st electrons/cm-squared, and the cosine of the viewing angle relative to the field of 0.31 + or - 0.05. The dips observed at approximately 20 keV in the spectra are interpreted as cyclotron resonant scattering, in which electrons undergo radiative 0 to 1 to 0 Landau transitions initiated by photons near the first harmonic. Physical self-consistency fixes the temperature, and the equilibrium temperature equals 5.3 + 0.3 or - 0.2 keV. These results suggest that this gamma-ray burst and many others which exhibit a low-energy dip originate from strongly magnetic neutron stars and are galactic in origin.

  19. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  20. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector

  1. The spectra and light curves of two gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Knight, F. K.; Matteson, J. L.; Peterson, L. E.

    1981-01-01

    Observations made by the Hard X-ray and Low Energy Gamma-Ray Experiment on board HEAO-1 of the spectra and light curves of two gamma-ray bursts for which localized arrival directions will become available are presented. The burst of October 20, 1977 is found to exhibit a fluence of 0.000031 + or - 0.000005 erg/sq cm over the energy range 0.135-2.05 MeV and a duration of 38.7 sec, while that of November 10, 1977 is found to have a fluence of 0.000021 + or - 0.000008 erg/sq cm between 0.125 and 3 MeV over 2.8 sec. The light curves of both bursts exhibit time fluctuations down to the limiting time resolution of the detectors. The spectrum of the October burst can be fit by a power law of index -1.93 + or -0.16, which is harder than any other gamma-burst spectrum yet reported. The spectrum of the second burst is softer (index -2.4 + or - 0.7), and is consistent with the upper index in the double power law fit to the burst of April 27, 1972.

  2. Measurements of gamma radiation levels and spectra in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Lo, B. T.; Brozek, K. P.; Angell, C. T.; Norman, E. B.

    2011-10-01

    Much of the radiation received by an average person is emitted by naturally-occurring radioactive isotopes from the thorium, actinium, and uranium decay series, or potassium. In this study, we have measured gamma radiation levels at various locations in the San Francisco Bay Area and the UC Berkeley campus from spectra taken using an ORTEC NOMAD portable data acquisition system and a large-volume coaxial HPGe detector. We have identified a large number of gamma rays originating from natural sources. The most noticeable isotopes are 214Bi, 40K, and 208Tl. We have observed variations in counting rates by factors of two to five between different locations due to differences in local conditions - such as building, concrete, grass, and soil compositions. In addition, in a number of outdoor locations, we have observed 604-, 662-, and 795-keV gamma rays from 134,137Cs, which we attribute to fallout from the recent Fukushima reactor accident. The implications of these results will be discussed. This work was supported in part by a grant from the U. S. Dept. of Homeland Security.

  3. Measurement of gamma radiation levels in soil samples from Thanjavur using gamma-ray spectrometry and estimation of population exposure.

    PubMed

    Senthilkumar, B; Dhavamani, V; Ramkumar, S; Philominathan, P

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides (232)Th, (238)U and (40)K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using gamma-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of (232)Th, (238)U and (40)K is 42.9+/-9.4 Bq.kg(-1), 14.7+/-1.7 Bq.kg(-1) and 149.5+/-3.1 Bq.kg(-1) respectively are derived from all the soil samples studied. The activity concentration of (232)Th, (238)U and (40)K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h(-1) and 59.1 nGy.h(-1) with an arithmetic mean of 43.3 +/-9 nGy.h(-1). This value is lesser than the population weighted world-averaged of 60 nGy.h(-1). Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 muSv.y(-1) with an arithmetic mean of 53.1+/-11 muSv.y(-1). The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels. PMID:20177570

  4. EPR spectra induced by gamma-irradiation of some dry medical herbs

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  5. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The "Multigroup γ-ray Analysis Method for Uranium" (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  6. A convenient method for discriminating between natural and depleted uranium by gamma-ray spectrometry.

    PubMed

    Shoji, M; Hamajima, Y; Takatsuka, K; Honoki, H; Nakajima, T; Kondo, T; Nakanishi, T

    2001-08-01

    A convenient method for discriminating between natural and depleted uranium reagent was developed by measuring and analyzing the gamma-ray spectra of some reagents with no standard source. The counting rates (R) of photoelectric peaks of gamma-rays from nuclides with the same radioactivity divided by their emission probability (B) are expressed as a function of gamma-ray energy. The radioactivities of 234Th and 234mPa and 21.72 times that of 235U are equal to the radioactivity of 235U in natural uranium. Therefore, the plot of 21.72-fold R/B for 235U should be on a curve fitted to the points for 234Th and 234mPa in natural uranium. Depleted uranium with a 235U isotopic composition of less than 0.68% could be discriminated from natural uranium in the case of a reagent containing 4.0 g of uranium. PMID:11393763

  7. Photon and neutrino spectra of time-dependent photospheric models of gamma-ray bursts

    SciTech Connect

    Asano, K.; Mészáros, P. E-mail: nnp@astro.psu.edu

    2013-09-01

    Thermal photons from the photosphere may be the primary source of the observed prompt emission of gamma-ray bursts (GRBs). In order to produce the observed non-thermal spectra, some kind of dissipation mechanism near the photosphere is required. In this paper we numerically simulate the evolution of the photon spectrum in a relativistically expanding shell with a time-dependent numerical code. We consider two basic models. One is a leptonic model, where a dissipation mechanism heats the thermal electrons maintaining their high temperature. The other model involves a cascade process induced by pp(pn)-collisions which produce high-energy electrons, modify the thermal spectrum, and emit neutrinos. The qualitative properties of the photon spectra are mainly determined by the optical depth at which the dissipation mechanism sets in. Too large optical depths lead to a broad and curved spectrum contradicting the observations, while for optical depths smaller than unity the spectral hardness becomes softer than observed. A significant shift of the spectral peak energy to higher energies due to a large energy injection can lead to an overly broad spectral shape. We show ideal parameter ranges for which these models are able to reproduce the observed spectra. For the pn-collision model, the neutrino fluence in the 10–100 GeV range is well above the atmospheric neutrino fluence, but its detection is challenging for presently available detectors.

  8. Radioactivity Levels and Gamma-Ray Dose Rate in Soil Samples from Kohistan (Pakistan) Using Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Hasan, M. Khan; Ismail, M.; K., Khan; Akhter, P.

    2011-01-01

    The analysis of naturally occurring radionuclides (226Ra, 232Th and 40K) and an anthropogenic radionuclide 137Cs is carried out in some soil samples collected from Kohistan district of N.W.F.P. (Pakistan), using gamma-ray spectrometry. The gamma spectrometry is operated using a high purity Germanium (HPGe) detector coupled with a computer based high resolution multi channel analyzer. The specific activity in soil ranges from 24.72 to 78.48Bq·kg-1 for 226Ra, 21.73 to 75.28Bq·kg-1 for 232Th, 7.06 to 14.9Bq·kg-1 for 137Cs and 298.46 to 570.77Bq·kg-1 for 40K with the mean values of 42.11, 43.27, 9.5 and 418.27Bq·kg-1, respectively. The radium equivalent activity in all the soil samples is lower than the safe limit set in the OECD report (370Bq·kg-1). Man-made radionuclide 137Cs is also present in detectable amount in all soil samples. Presence of 137Cs indicates that the samples in this remote area also receive some fallout from nuclear accident in Chernobyl power plant in 1986. The internal and external hazard indices have the mean values of 0.48 and 0.37 respectively. Absorbed dose rates and effective dose equivalents are also determined for the samples. The concentration of radionuclides found in the soil samples during the present study is nominal and does not pose any potential health hazard to the general public.

  9. In situ gamma spectrometry of piping in a CANDU heat transport system -- Application during decontamination

    SciTech Connect

    Husain, A.; Breckenridge, C.E.; Storey, D.

    1995-02-01

    An in situ pipe gamma spectrometry technique was applied to determine the activity within piping during various stages of CANDU reactor decontaminations. Measurements were performed in general radiation fields up to {approximately}500 mR/h and required both the detector and the pipe being scanned to be appropriately shielded from other neighboring piping. Measured counts were interpreted using a pipe source efficiency calibration with due regard to its distance dependence. Cobalt-60 was the dominant radionuclide on the piping before the decontamination. Deposition of {sup 124}Sb occurred on out-core piping surfaces during the decontamination. The spectrometry measurements were supplemented with contact radiation field measurements, which were performed using survey detectors housed within specially designed pipe shields. Radiation fields estimated from measured radionuclide activities were compared with the measured radiation fields. On average, the ratio of measured to estimated fields was {approximately}72%. Reasons for this discrepancy are discussed.

  10. Fluence Evaluations For Applications of In Situ Gamma-Ray Spectrometry in Non-Flat Terrain

    SciTech Connect

    Miller, Kevin M.

    1999-02-28

    Evaluations of gamma-ray fluence are made for source geometries that depart from the flat ground geometry that is used in standard applications of in situ spectrometry. Geometries considered include uniform source distributions for soil mounds on top of flat terrain, cylindrical wells, and rectangular trenches. The results indicate that scaling the standard fluence values for flat terrain by the ratio of solid angle subtended by the soil to 2π leads to fluence estimates that are accurate to within a few percent. Practical applications of in situ spectrometry in non-flat terrain also appears to be simplified by the fact that the angular correction factor for a typical coaxial detector in these geometries may typically be about the same as that computed for flat ground.

  11. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Okelley, G. D.

    1975-01-01

    Primordial and cosmogenic radionuclide concentrations are determined nondestructively by gamma-ray spectrometry in soil and rock samples from the returned Apollo 17 sample collection from Taurus-Littrow and Descartes. Geochemical evidence in support of field geology speculation concerning layering of the subfloor basalt flows is demonstrated along with a possible correlation of magmatic fractionation of K/U as a function of depth. The pattern of radionuclide concentrations observed in these samples is distinct due to proton bombardment by the intense solar flares of August 4-9, 1972. Such radionuclide determinations are used in determining lunar sample orientation and characterizing solar flare activity.

  12. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.

    PubMed

    Eleftheriou, G; Tsabaris, C; Androulakaki, E G; Patiris, D L; Kokkoris, M; Kalfas, C A; Vlastou, R

    2013-12-01

    The in-situ underwater gamma-ray spectrometry method is validated by inter-comparison with laboratory method. Deployments of the spectrometer KATERINA on a submarine spring and laboratory measurements of water samples with HPGe detector were performed. Efficiency calibrations, Monte Carlo simulations and the Minimum Detectable Activity (MDA) estimations were realized. MDAs varied from 0.19 to 10.4 (lab) and 0.05 to 0.35 (in-situ) Bq/L, while activity concentrations differed from 7% (for radon progenies) up to 10% (for (40)K), between the two methods. PMID:24103707

  13. Low Background Gamma-Ray Spectrometry in the 'Laboratoire Souterrain de Modane'

    SciTech Connect

    Hubert, Ph.; Hubert, F.

    2007-03-28

    Most of the underground experiments in physics and many studies in geology, biology or environmental sciences face a common requirement with the necessity of using experimental devices with ultra-low background radioactivity. Many developments involving many different techniques have been used in order to be able to measure extremely low levels of radioactivity in materials. This report will focus on low background gamma-ray spectrometry and will describe the work which has been carried out over the last fifteen years in the 'Laboratoire Souterrain de Modane' (LSM)

  14. Comparison of LabSOCS and GESPECOR codes used in gamma-ray spectrometry.

    PubMed

    Done, L; Tugulan, L C; Gurau, D; Dragolici, F; Alexandru, C

    2016-03-01

    Two dedicated software packages -LabSOCS and GESPECOR- for efficiency evaluation in gamma-ray spectrometry, were compared for equivalence. The detection efficiency and the coincidence-summing corrections coefficients were calculated for a specific HPGe detector, for different sample parameters and energies typically encountered in environmental radioactivity measurements. The discrepancy between the results obtained with the two codes were acceptable for most of the applications. Furthermore, the deviations between the values of the standard sources/ reference materials activities from the certificate and the values obtained after Monte Carlo simulation were less than 8% for LabSOCS and 9% for GESPECOR. PMID:26625727

  15. Isotopic analysis of uranium in U3O8 by passive gamma-ray spectrometry

    PubMed

    Nir-El

    2000-03-01

    Passive gamma-ray spectrometry was applied to analyze the isotopic composition of uranium in U3O8. Depleted and enriched U3O8 standard reference materials were used to calibrate the system. An independent calibration was performed by standard gamma-ray point sources. U3O8 SRM samples of the 950 series were analyzed. The present results show that the isotopic abundances of 235U in SRMs 950, 950a and 950b are higher by +3.6, +0.9 and +0.9% (relative deviation) than the natural value 0.7200%, while relative precisions were +/-0.4, +/-0.7 and +/-0.3%, respectively. PMID:10724436

  16. Evaluation of radiological data of some saturated fatty acids using gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.; Palani Selvam, T.

    2016-02-01

    Radiological parameters such as mass attenuation coefficients (μm), total attenuation cross section (σtot), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective electronic cross section (σt, el) of saturated fatty acids, namely butyric acid (C4H8O2), caproic acid (C6H12O2), enanthic acid (C7H14O2), caprylic acid (C8H16O2), pelargonic acid (C9H18O2) and valeric acid (C5H10O2) were measured using NaI(Tl)-based gamma spectrometry. Radioactive sources used in the study are 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na. Gamma ray transmission method in a narrow beam good geometry set up was used in the study. The measured data were compared against Win-XCOM-based data. The agreement is within 1%.

  17. In situ gamma-ray spectrometry: A tutorial for environmental radiation scientists

    SciTech Connect

    Miller, K.M.; Shebell, P.

    1993-10-01

    This tutorial is intended for those in the environmental field who perform assessments in areas where there is radioactive contamination in the surface soil. Techniques will be introduced for performing on-site quantitative measurements of gamma radiation in the environment using high resolution germanium detectors. A basic understanding of ionizing radiation principles is assumed; however, a detailed knowledge of gamma spectrometry systems is not required. Emphasized is the practical end of operations in the field and the conversion of measured full absorption peak count rates in a collected spectrum to meaningful radiological quantities, such as the concentration of a radionuclide in the soil, activity per unit area, and dose rate in the air. The theory of operation and calibration procedures will be covered in detail to provide the necessary knowledge to adapt the technique to site-specific problems. Example calculations for detector calibration are also provided.

  18. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.

    PubMed

    Alrefae, Tareq

    2014-11-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring airborne radioactivity collected on filter paper, was based on Monte Carlo simulations using the toolkit GEANT4. Experimentally, the efficiency values of an HPGe detector were calculated for a multi-gamma disk source. These efficiency values were compared to their counterparts produced by a computer code that simulated experimental conditions. Such comparison revealed biases of 24, 10, 1, 3, 7, and 3% for the radionuclides (photon energies in keV) of Ce (166), Sn (392), Cs (662), Co (1,173), Co (1,333), and Y (1,836), respectively. The output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:25271933

  19. Spectra of X-ray and Gamma-ray Bursts Produced by Stepping Lightning Leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity. TGFs were serendipitously discovered by BATSE detector aboard the Compton Gamma-Ray Observatory originally launched to perform observations of celestial gamma-ray sources [Fishman et al., Science, 264, 1313, 1994]. These events have also been detected by the RHESSI satellite [Smith et al., Science, 307, 1085, 2005], the AGILE satellite [Marisaldi et al., JGR, 115, A00E13, 2010], and the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010]. Moreover, measurements have correlated TGFs with initial development stages of normal polarity intra-cloud lightning that transports negative charge upward (+IC) [e.g, Lu et al., JGR, 116, A03316, 2011]. Photon spectra corresponding to well-established model of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. However, it has been suggested that high-potential +IC lightning leaders could produce a sufficient number of energetic electrons to explain TGFs [Celestin and Pasko, JGR, 116, A03315, 2011] and Xu et al. [GRL, 39, L08801, 2012] have shown that this mechanism could explain the TGF spectrum for lightning potentials higher than 100 MV. In addition to TGFs, X-ray bursts are produced by negative lightning leaders in association with stepping processes and are observed from the ground [Dwyer et al., GRL, 32, L01803, 2005]. However, the energy spectrum of X-ray bursts from lightning is still poorly known, mainly due to the low fluence detected from the ground. In this work, we use Monte Carlo models to study the acceleration of runaway electrons in the electric field produced around lightning leader tip and the associated bremsstrahlung photon spectra observed by low-orbit satellites in the case of high potential +IC discharges and from the ground in the

  20. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Reyss, J-L

    2010-07-01

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228Ra and 226Ra are usually measured using gamma spectrometry, short-lived Ra isotopes (224Ra and 223Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226Ra, 228Ra, 224Ra, 223Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccarès lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223Ra and 224Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes. PMID:20106569

  1. Measurement of uranium series radionuclides in rock and groundwater at the Koongarra ore deposit, Australia, by gamma spectrometry

    SciTech Connect

    Yanase, Nobuyuki; Sekine, Keiichi

    1995-12-31

    Gamma spectrometry without any self-absorption correction was developed to measure low energy gamma rays emitted by uranium and actinium series radionuclides in rock samples and groundwater residues collected at the Koongarra ore deposit, Australia. Thin samples were prepared to minimize the self-absorption by uranium in the samples. The present method gave standard deviations of 0.9 to 18% for the measurements of concentrations of uranium and actinium series radionuclides. The concentrations of {sup 238}U, {sup 230}Th and {sup 235}U measured by gamma spectrometry were compared with those by alpha spectrometry that requires a complicated chemical separation procedure. The results obtained by both methods were in fairly good agreement, and it was found that the gamma spectrometry is applicable to rock and groundwater samples having uranium content sup to 8.1% (10{sup 3} B1/g) and 3 Bq/l of {sup 238}U, respectively. The detection limits were calculated to be of the order of 10{sup {minus}2} Bq/g for rock samples and 10{sup {minus}1} Bq/l for groundwater samples. The concentrations of uranium and actinium series radionuclides can be determined precisely in these samples using gamma spectrometry without any self-absorption correction.

  2. Gamma-ray spectra and doses from the Little Boy replica

    SciTech Connect

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.

  3. GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

  4. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  5. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    NASA Astrophysics Data System (ADS)

    Campana, S.; Bernardini, M. G.; Braito, V.; Cusumano, G.; D'Avanzo, P.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2014-07-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of gamma-ray burst afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power-law shape with index 2.4. However, for real instruments, this value depends on their low-energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 105-106 counts in the 0.3-10 keV band are needed to constrain the redshift with 10 per cent accuracy. As a test case, we discuss the XMM-Newton observation of GRB 090618 at z = 0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  6. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGESBeta

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  7. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    SciTech Connect

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry

  8. The Multi-Isotope Process Monitor: Multivariate Analysis of Gamma Spectra

    SciTech Connect

    Orton, Christopher R.; Rutherford, Crystal E.; Fraga, Carlos G.; Schwantes, Jon M.

    2011-10-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). The time delay between sampling and subsequent DA provides a potential opportunity to divert the material out of the appropriate chemical stream. Leveraging new on-line nondestructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including the Multi-Isotope Process (MIP) Monitor. The MIP Monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. Recent efforts have been made to explore the basic limits of using multivariate analysis techniques on gamma-ray spectra. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technology.

  9. Modeling of Gamma-ray Spectra to Direct Efficient Chemical Separations

    SciTech Connect

    Douglas, Matthew; Friese, Judah I.; Warren, Glen A.; Bachelor, Paula P.; Farmer, Orville T.; Choiniere, Andrea D.; Schulte, Shannon M.; Aalseth, Craig E.

    2008-06-15

    In an age of heightened national security regarding nuclear terrorist threats, reliable and rapid analytical methods for the quantification of radionuclides in fission product samples are needed to provide forensic information and sample characterization. Measurement of characteristic gamma-ray emissions by high-purity germanium spectrometers offers one means of analysis. Due to the high-activity and complex nature of samples, chemical separations are necessary to reduce background continuum levels and instances of spectral interference. A project has been initiated at Pacific Northwest National Laboratory (PNNL) to model singles and coincident gamma-ray spectra that would result from various chemical separation strategies. The goal is to use these complementary counting techniques to tailor a series of efficient chemical separations that allow the rapid quantification of signature isotopes in samples. Modeling enables probable instances of spectral interference to be identified and aids in defining the temporal window of detection for radionuclides of interest following a given chemical separation. These data will help future analysts prioritize analytes of interest and separation strategies in the processing of real samples. A description of results to date is described here, demonstrating the utility of this approach for improved processing and analysis of fission product samples.

  10. Applications of gamma-ray spectrometry in the quantitative nondestructive assay of special nuclear materials

    SciTech Connect

    Sampson, T.E.; Parker, J.L.

    1990-04-16

    Nearly all applications of gamma-ray spectrometry in the quanitative assay of special nuclear materials can be grouped into five general categories. They are as follows: (1) Quanitative passive assay, of which transmission-corrected passive assay methods for measuring isotopic masses/concentrations are an important subset; (2) Enrichment measurements on infinitely thick'' samples for absolute determination of isotopic fractions/concentrations; (3) Measurements of isotopic ratios using relative detection efficiency principles resulting in absolute isotopic distributions without recourse to standards; (4) Absorption-edge densitometry measurements of elemental concentrations; and (5) X-ray fluorescence measurements of elemental concentrations. Careful and correct practice of these techniques can yield measurement accuracies in the range of 0.1% to 1.0% in favorable situations with measurement times generally in the range of 15 minutes to 1 hour. We present examples of these general categories with emphasis on those measurements and techniques exhibiting the best accuracy, as well as those which are not routinely practiced in many other applications of gamma-ray spectrometry. 20 refs., 6 fig.

  11. Effect of environmental variables upon in-situ gamma spectrometry data

    SciTech Connect

    Sutton, C.

    1999-06-01

    The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Fernald is a former uranium refinery which produced high quality uranium metal. Soil in the Fernald site is pervasively contaminated with uranium and secondarily with thorium and radium isotopes. In-situ gamma spectrometry is routinely utilized in soil excavation operations at Fernald to provide high quality and timely analytical data on radionuclide contaminants in soil. To understand the effect of environmental conditions upon in-situ gamma spectrometry measurements, twice daily measurements were made, weather permitting, with a tripod-mounted high purity germanium detector (HPGe) at a single field location (field quality control station) at the Fernald Environmental Management Project. Such measurements are the field analogue of a laboratory control standard. The basic concept is that measurement variations over an extended period of time at a single location can be related to environmental parameters. Trends, peaks, and troughs in data might be correlative to both long-term and short-term environmental conditions. In this paper environmental variables/ conditions refer to weather related phenomena such as soil moisture, rainfall, atmospheric humidity, and atmospheric temperature.

  12. Radioactivity of a Rock Profile from Rio do Rasto Formation Measured by High Resolution Gamma Spectrometry

    NASA Astrophysics Data System (ADS)

    Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, José P. P.

    2011-08-01

    Natural occurring radionuclides are present in different concentrations in sedimentary rocks. Generally, their distribution correlates reasonably with their geo-physicochemical behavior during sediment deposition and rock consolidation. This fact permits to study some geological characteristics of the rocks by analyzing the radionuclide distribution in the rocks, as it might reflect the origin of the sediments, the depositional environment, and more recent events such as weathering and erosion. In this work, rocks from an exposed profile of the Rio do Rasto Formation were collected and analyzed in laboratory by high resolution gamma spectrometry for 226Ra, 232Th and 40K determination. It was employed a standard gamma ray spectrometry electronic chain, with a 66% relative efficiency HPGe detector. The efficiency calibration, as well as its validation, was accomplished with eight International Atomic Energy Agency certified samples. The outcrop exposes layers of sandstone and siltstone and, secondarily, claystone, with varying colors (gray, red and green). The rocks were collected along this profile, each of them was dried in the open air during 48 hours, grounded, sieved through 4 mm mesh and sealed in cylindrical recipients. The 226Ra, 232Th and 40K activity concentrations are presented, their distribution and the possible relations among activities are analyzed. The general pattern of radionuclides distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  13. Nondestructive characterization of radioactive waste drums by gamma spectrometry: a Monte Carlo technique for efficiency calibration.

    PubMed

    Tzika, Faidra; Savidou, Anastasia; Stamatelatos, Ion E

    2007-11-01

    A semi-empirical non-destructive technique to assay radioactive waste drums is presented. The technique is based on gamma spectrometry performed using a portable NaI detector and Monte Carlo simulations using the MCNP code in order to derive the gamma ray detector efficiency for the volume source. The derivation of detector efficiency was performed assuming homogeneous distribution of the source activity within the matrix material. Moreover, the MCNP model was used to examine the effect of inhomogeneities in activity distribution, variation of matrix material density, and drum filling height on the accuracy of the technique, and to estimate the measurement bias. The technique was verified by estimating radioactivity levels in 25 drums containing ion exchange resin waste, and comparing the results of the non-destructive method against the analytical results of samples obtained from each drum. Satisfactory agreement between the two assay techniques was observed. The discussed technique represents a cost effective technology that can be used to assay low-activity, low-density waste drums provided the contribution to the gamma ray spectrum can be resolved. PMID:18049246

  14. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    NASA Astrophysics Data System (ADS)

    Burnett, J. L.; Davies, A. V.

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  15. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  16. Breaks in gamma-ray spectra of distant blazars and transparency of the Universe

    NASA Astrophysics Data System (ADS)

    Rubtsov, G. I.; Troitsky, S. V.

    2014-11-01

    Energetic gamma rays scatter on soft background radiation when propagating through the Universe, producing electron-positron pairs (A.I. Nikishov, Sov. Phys. JETP 14, 393 (1962)). Gamma rays with energies between 100 GeV and a few TeV interact mostly with infrared background photons whose amount is poorly known experimentally but safely constrained from below by account of the contribution of observed light from known galaxies (R.C. Keenan, A.J. Barger, L.L. Cowie, and W.-H. Wang, Astrophys. J. 723, 40 (2010); arXiv: 1102.2428). The expected opacity of the intergalactic space limits the mean free path of TeV gamma rays to dozens of Megaparsecs. However, TeV photons from numerous more distant sources have been detected (S.P. Wakely and D. Horan, http://tevcat.uchicago.edu/). This might be interpreted, in each particular case, in terms of hardening of the emitted spectrum caused by presently unknown mechanisms at work in the sources (S. Archambault et al. (VERITAS and Fermi LAT Collaborations), Astrophys. J. 785, L16 (2014); arXiv: 1403.4308). Here we show that this interpretation is not supported by the analysis of the ensemble of all observed sources. In the frameworks of an infrared-background model with the lowest opacity (R.C. Gilmore, R.S. Somerville, J.R. Primack, and A. Dominguez, Mon. Not. Roy. Astron. Soc. 422, 3189 (2012); arXiv: 1104.0671), we reconstruct the emitted spectra of distant blazars and find that upward spectral breaks appear precisely at those energies where absorption effects are essential. Since these energies are very different for similar sources located at various distances, we conclude that the breaks are artefacts of the incorrect account of absorption and, therefore, the opacity of the Universe for gamma rays is overestimated even in the most conservative model. This implies that some novel physical or astrophysical phenomena should affect long-distance propagation of gamma rays. A scenario in which a part of energetic photons is

  17. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  18. Summary of gamma spectrometry on local air samples from 1985--1995

    SciTech Connect

    Winn, W.G.

    1997-04-02

    This report summarizes the 1985--1995 results of low-level HPGe gamma spectrometry analysis of high-volume air samples collected at the Aiken Airport, which is about 25 miles north of SRS. The author began analyzing these samples with new calibrations using the newly developed GRABGAM code in 1985. The air sample collections were terminated in 1995, as the facilities at the Aiken Airport were no longer available. Air sample measurements prior to 1985 were conducted with a different analysis system (and by others prior to 1984), and the data were not readily available. The report serves to closeout this phase of local NTS air sample studies, while documenting the capabilities and accomplishments. Hopefully, the information will guide other applications for this technology, both locally and elsewhere.

  19. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry.

    PubMed

    Wang, T K; Peir, J J

    2000-01-01

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products 97Zr/97Nb, 132I, and 140La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by reirradiating the spent fuels in a nuclear reactor. Based on the measured activities, 235U burn-up values can be deduced by iterative calculations. The complication caused by 239Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products 137Cs, 134Cs/137Cs ratio and 106Ru/137Cs ratio. PMID:10670930

  20. Fast-ion energy resolution by one-step reaction gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Nocente, M.; Gorini, G.; Jacobsen, A. S.; Kiptily, V. G.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardocchi, M.; Contributors, JET

    2016-04-01

    The spectral broadening of γ-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space and quantify the velocity-space sensitivity of one-step reaction high-resolution GRS measurements in magnetized fusion plasmas. The weight functions suggest that GRS resolves the energies of fast ions directly without the need for tomographic inversion for selected one-step reactions at moderate plasma temperatures. The D(p,γ)3He reaction allows the best direct fast-ion energy resolution. We illustrate our general formalism using reactions with and without intrinsic broadening of the γ-rays for the GRS diagnostic at JET.

  1. Elemental compositions and ages of lunar samples by nondestructive gamma-ray spectrometry.

    PubMed

    O'kelley, G D; Eldridge, J S; Schonfeld, E; Bell, P R

    1970-01-30

    A gamma-ray spectrometry system with low background was used to determine the radioactivity of crystalline rocks, breccias, and fine material. Nuclides identified were (40)K, (232)Th, (238)U, (7)Be, (22)Na (26)A1, (44)Ti, (46)Sc, (48)V, (52)Mn, (54)Mn, and (56)Co. Concentrations of K, Th, and U ranged between 480 and 2550, 1.01 and 3.30, and 0.26 and 0.83 parts per million, respectively. Concentrations of thorium and uranium were those of terrestrial basalts, while the potassium concentrations were near values for chondrites. Products of low-energy nuclear reactions showed pronounced concentration gradients at rock surfaces. Concentrations of K and of (22)Na determined here were combined with concentrations of rare gases to estimate gas-retention ages and cosmic-ray exposure ages with ranges of 2200 to 3200 and 34 to 340 million years, respectively, for three rocks. PMID:17781504

  2. A review of the nationwide proficiency test on natural radioactivity measurements by gamma spectrometry.

    PubMed

    Şahin, N K; Yeltepe, E; Yücel, Ü

    2016-03-01

    This study is the review of the first proficiency test on radioactivity measurement organized in Turkey by Sarayköy Nuclear Research and Training Center (SANAEM) of Turkish Atomic Energy Authority (TAEK) in 2013. The objective of the test was to determine (226)Ra, (232)Th and (40)K activity concentrations in natural soil samples using gamma-ray spectrometry. The bulk material consisting of uranium- and thorium-rich soil and sand was milled, mixed thoroughly and sieved. Homogeneity of the final mix was tested with 6 randomly taken samples. 16 proficiency test samples were distributed to 16 participating laboratories. 12 laboratories reported results. The results were evaluated on the accuracy and precision criteria adopted by the IAEA Proficiency Testing Group. The percentage of acceptable scores was 49%. Some recommendations have been provided to the laboratories to improve the quality of their results. It is planned to extend these proficiency tests periodically for various radionuclides in various matrices. PMID:26750585

  3. The Sandwich spectrometer for ultra low-level gamma-ray spectrometry.

    PubMed

    Wieslander, J S Elisabeth; Hult, Mikael; Gasparro, Joël; Marissens, Gerd; Misiaszek, Marcin; Preusse, Werner

    2009-05-01

    The technical details and performance of the newly developed Sandwich spectrometer for ultra low-level gamma-ray spectrometry are presented. The spectrometer, which consists of two HPGe detectors, an active muon shield and a lead/copper shield with a convenient and rapid opening mechanism, is located in an underground laboratory at a depth of 500 m water equivalent. The data is collected in list mode, which enables off-line data analysis to identify muon-induced events and possible Ge detector crosstalk due to Compton scattering. The background count-rate from 40 to 2700 keV normalised to the mass of the Ge crystals is 220 day(-1)kg(-1). PMID:19246202

  4. Gamma-ray spectrometry analysis of pebble bed reactor fuel using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei; Hawari, Ayman I.; Zhao, Zhongxiang; Su, Bingjing

    2003-06-01

    Monte Carlo simulations were used to study the gamma-ray spectra of pebble bed reactor fuel at various levels of burnup. A fuel depletion calculation was performed using the ORIGEN2.1 code, which yielded the gamma-ray source term that was introduced into the input of an MCNP4C simulation. The simulation assumed the use of a 100% efficient high-purity coaxial germanium (HPGe) detector, a pebble placed at a distance of 100 cm from the detector, and accounted for Gaussian broadening of the gamma-ray peaks. Previously, it was shown that 137Cs, 60Co (introduced as a dopant), and 134Cs are the relevant burnup indicators. The results show that the 662 keV line of 137Cs lies in close proximity to the intense 658 keV of 197Nb, which results in spectral interference between the lines. However, the 1333 keV line of 60Co, and selected 134Cs lines (e.g., at 605 keV) are free from spectral interference, which enhances the possibility of their utilization as relative burnup indicators.

  5. NMIS with Imaging and Gamma Ray Spectrometry for Pu, HEU, HE and Other Materials

    SciTech Connect

    Mihalczo, John T; Mullens, James Allen

    2012-03-01

    The Nuclear Material Identification System (NMIS) has been under development at ORNL and the National Nuclear Security Administration (NNSA) Y-12 National Security Complex since 1984. In the mid-1990s, what is now the US Department of Energy (DOE) Office of Nuclear Verification (ONV) realized that it was a useful technology for future arms control treaty applications and supported further development of the system. In 2004, fast-neutron imaging was incorporated into the system. In 2007, the ONV decided to develop a fieldable version of the system, designated as FNMIS, for potential use in future treaties. The FNMIS is being developed to be compatible with the eventual incorporation of gamma-ray spectrometry and an information barrier. This report addresses how and what attributes could be determined by the FNMIS system with gamma-ray spectrometry. The NMIS is a time-dependent coincidence system that incorporates tomographic imaging (including mapping of the fission sites) and gamma-ray spectrometry. It utilizes a small, lightweight (30 lb), portable deuterium-tritium (DT) neutron (14.1 MeV) generator (4 x 10{sup 7} neutrons/second) for active interrogation and can also perform passive interrogation. A high-purity germanium (HPGe) gamma-ray detector with multichannel analysis can be utilized in conjunction with the source for active interrogation or passively. The system uses proton recoil scintillators: 32 small 2.5 x 2.5 x 10.2-cm-thick plastic scintillators for imaging and at least two 2 x 2 arrays of 27 x 27 x 10-cm-thick plastic scintillators that detect induced fission radiation. The DT generator contains an alpha detector that time and directionally tags a fan beam of some of the neutrons emitted and subdivides it into pixels. A fast (1 GHz) time correlation processor measures the time-dependent coincidence among all detectors in the system. A computer-controlled scanner moves the small detectors and the source appropriately for scanning a target object for

  6. Code System to Determine Pu Isotope Abundances from Multichannel Analyzer Gamma Spectra.

    Energy Science and Technology Software Center (ESTSC)

    2008-09-26

    Version 00 The MGA (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum, which is required and must be taken at a gain of 0.075 Kev/channel with a high resolution planar detector, contains the 0-300Kev energy region.more » The second spectrum, which is optional, must be taken at a gain of 0.25 Kev/channel; it becomes important when analyzing high burnup samples (concentration of Pu241 greater than one percent). Isotopic analysis precisions of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U235, U238, Np237, and Am241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system.« less

  7. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Xin; Lin, Hai-Nan; Sang, Yu; Wang, Ping; Wang, Sai

    2016-04-01

    In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation (LIV). As the most energetic explosions in the Universe, gamma-ray bursts (GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale M QG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M QG > 5.05 × 1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on M QG, although not as tight as previous results, is the safest and most reliable so far. Supported by National Natural Science Foundation of China (11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

  8. Peak fitting and identification software library for high resolution gamma-ray spectra

    NASA Astrophysics Data System (ADS)

    Uher, Josef; Roach, Greg; Tickner, James

    2010-07-01

    A new gamma-ray spectral analysis software package is under development in our laboratory. It can be operated as a stand-alone program or called as a software library from Java, C, C++ and MATLAB TM environments. It provides an advanced graphical user interface for data acquisition, spectral analysis and radioisotope identification. The code uses a peak-fitting function that includes peak asymmetry, Compton continuum and flexible background terms. Peak fitting function parameters can be calibrated as functions of energy. Each parameter can be constrained to improve fitting of overlapping peaks. All of these features can be adjusted by the user. To assist with peak identification, the code can automatically measure half-lives of single or multiple overlapping peaks from a time series of spectra. It implements library-based peak identification, with options for restricting the search based on radioisotope half-lives and reaction types. The software also improves the reliability of isotope identification by utilizing Monte-Carlo simulation results.

  9. Effects induced by gamma-irradiation and thermal treatment on the infrared spectra of ferrocene in its disordered state

    NASA Astrophysics Data System (ADS)

    Gaffar, M. A.; Abd-Elrahman, M. I.

    2004-10-01

    Lattice, rotation and intramolecular vibrations of ferrocene, Fe(C5H5)(2), crystallites of the C-2h(5) factor group in the disordered phase are calculated using the correlation theorem based on group theory. The correlation between the species of the C-1 site symmetry occupied by cyclopentadienyl molecules and those of the factor group C-2h, of the crystal are calculated. The number of lattice vibrations of the cyclopentadienyl molecules is found to be 12. with active modes in Raman and infrared (IR) spectra. The same number of rotations for the cyclopentadienyl molecules is expected to be allowed in both spectra. The active number of intramolecular vibrations for the cyclopentadienyl molecules having D-5 molecular symmetry is expected to be 80 vibrations in both the Raman and the IR spectra. The effect of gamma-irradiation with different doses and heat treatment at different temperatures on the IR spectra of ferrocene in the energy range 4000-200 cm(-1) is discussed. A number of bands continuously shifted their position, and a decrease in intensity with increasing gamma-dose is observed. New bands appeared in this spectral region for different annealing temperatures and different gamma-doses. These changes are discussed in terms of intermolecular interactions between molecules within the unit cell.

  10. High sensitivity gamma spectrometry of air samples near SRS during 1985-1995

    SciTech Connect

    Winn, W.G.; Cadieux, J.R.

    1997-07-01

    High sensitivity gamma analysis of off-site air samples near the Savannah River Site (SRS) is achieved by collecting large volume air samples for analysis by ultra-low-level gamma spectrometry. A review of the 1985-1995 measurements has highlighted local and distant releases of man-made radionuclides, along with cosmogenic radionuclides which correlate with both solar and seasonal phenomena. Measurements typically involve 2-day air collection of a 70,000 m{sup 3} sample on a 51 cm x 51 cm cellulose filter using a high-capacity pump. Short-lived radon background activity is allowed to decay a few days, and then the filter is configured into a smaller calibrated volume and counted 1-3 days on a 30 percent-efficient HPGe in the Ultra-Low-Level Counting Facility. Representative detection limits for this method are shown in Table 1, and even lower limits are achievable by counting on the low-background 160 percent-efficient HPGe of the Underground Counting Facility.

  11. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization

    NASA Astrophysics Data System (ADS)

    Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.

    2015-11-01

    Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.

  12. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. PMID:26868275

  13. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.

    PubMed

    Chagren, S; Ben Tekaya, M; Reguigui, N; Gharbi, F

    2016-01-01

    In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. PMID:26623928

  14. Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda

    2016-09-01

    The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.

  15. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    NASA Astrophysics Data System (ADS)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  16. Discriminating Nuclear Threats from Benign Sources in Gamma-ray Spectra using a Spectral Comparison Ratio Method

    SciTech Connect

    Anderson, Kevin K.; Jarman, Kenneth D.; Mann, Matthew L.; Pfund, David M.; Runkle, Robert C.

    2008-06-15

    This manuscript presents a method for categorizing gamma-ray spectra as benign or threatening. It is widely believed that the goal of segregating gamma-ray spectra into benign and threatening populations can achieved with fewer counts than are required for confident characterization of a spectrum’s isotopic composition, while still providing improvement over count-based algorithms. This has potentially important implications on the detection of radiological and nuclear threats, where decisions must be made from analysis of count-starved spectra that dominate the landscape of monitoring special nuclear material transport and lost-or-stolen source search. We report here the method of Spectral Comparison Ratios (SCRs) which is useful in the targeted detection of specific gamma-ray signatures or signature classes. SCRs discriminate between benign and target sources by comparing counts in broad, pre-defined energy bins that are pre-determined using statistical discrimination criteria. The integral component of the SCR algorithm is the location and interdependence of the energy bins, and we discuss the statistical methods used for choosing their locations along with the decision criteria that maximally separate targets from benign sources.

  17. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.

    PubMed

    Khan, A J; Semkow, T M; Beach, S E; Haines, D K; Bradt, C J; Bari, A; Syed, U-F; Torres, M; Marrantino, J; Kitto, M E; Menia, T; Fielman, E

    2014-08-01

    The results are described of an upgrade of the low-background gamma-ray spectrometry laboratory at New York State Department of Health by acquiring sensitivity to low-energy gamma rays. Tuning of the spectrometer and its low-energy response characteristics are described. The spectrometer has been applied to monitor the environment by measuring aerosols and water in New York State contaminated by the 2011 Fukushima accident plume. In addition, the spectrometer has been used to monitor radioactivity in food by performing a study of cesium in Florida milk. PMID:24836905

  18. gamma-Irradiation effects on the thermal decomposition behaviour and IR absorption spectra of piperacillin

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Gaffar, M. A.; Abu El-Fadl, A.; Hamad, Ar. G. K.

    2003-11-01

    The thermal decomposition behaviour of unirradiated and pre-gamma-irradiated piperacillin (pipril) as a semi-synthetic penicillin antibiotic has been studied in the temperature range of (273-1072 K). The decomposition was found to proceed through three major steps both for unirradiated and gamma-irradiated samples. Neither appearance nor disappearance of new bands in the IR spectrum of piperacillin was recorded as a result of gamma-irradiation but only a decrease in the intensity of most bands was observed. A degradation mechanism was suggested to explain the bond rupture and the decrease in the intensities of IR bands of gamma-irradiated piperacillin.

  19. Neutron-Capture Gamma-Ray Data for Obtaining Elemental Abundances from Planetary Spectra

    NASA Technical Reports Server (NTRS)

    Frankle, S. C.; Reedy, R. C.

    2001-01-01

    Newly compiled and evaluated energies and intensities of gamma rays made by the capture of thermal neutrons by elements from H to Zn plus Ge, Sm, and Gd are reported for use in determining elemental composition by planetary gamma-ray spectroscopy. Additional information is contained in the original extended abstract.

  20. Gamma-ray spectrometry across the Aalenian-Bajocian boundary in the Lusitanian Basin (Western Portugal)

    NASA Astrophysics Data System (ADS)

    Santos, Marisa; Henriques, Helena; Pena, Rui

    2016-04-01

    supply, which has enabled the faunal recovery, as well as the raise of deep infaunal foraminifers recorded at the latest part of the Discites Biochron. This could be related to the increase of calcareous nannofossil fluxes that coincide with a positive shift in carbon isotope compositions of bulk carbonate in the earliest Bajocian reported by some authors for the Murtinheira and other Iberian sections. In basin analysis of carbonate platforms the integration of major biotic turnovers and gamma-ray spectrometry data can be a useful tool in the improvement of correlation between wells and outcrops. Moreover, they assist in the interpretation of depositional environment and paleoclimatic constrains assigned to a basin.

  1. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    PubMed

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported. PMID:19243966

  2. Assessment of measurement result uncertainty in determination of (210)Pb with the focus on matrix composition effect in gamma-ray spectrometry.

    PubMed

    Iurian, A R; Pitois, A; Kis-Benedek, G; Migliori, A; Padilla-Alvarez, R; Ceccatelli, A

    2016-03-01

    Reference materials were used to assess measurement result uncertainty in determination of (210)Pb by gamma-ray spectrometry, liquid scintillation counting, or indirectly by alpha-particle spectrometry, using its daughter (210)Po in radioactive equilibrium. Combined standard uncertainties of (210)Pb massic activities obtained by liquid scintillation counting are in the range 2-12%, depending on matrices and massic activity values. They are in the range 1-3% for the measurement of its daughter (210)Po using alpha-particle spectrometry. Three approaches (direct computation of counting efficiency and efficiency transfer approaches based on the computation and, respectively, experimental determination of the efficiency transfer factors) were applied for the evaluation of (210)Pb using gamma-ray spectrometry. Combined standard uncertainties of gamma-ray spectrometry results were found in the range 2-17%. The effect of matrix composition on self-attenuation was investigated and a detailed assessment of uncertainty components was performed. PMID:26653212

  3. Detection of /sup 210/Pb in the lungs of smokers by in-vivo gamma spectrometry

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1982-09-01

    Since mainstream smoke is highly enriched in /sup 210/Pb, alpha radiation from inhaled cigarette smoke particles has been proposed as a cancer-producing agent in cigarette smokers. /sup 210/Po and /sup 210/Pb have been observed in tobacco, cigarette smoke and in the lungs of smokers. Since /sup 210/Pb is highly enriched in mainstream smoke, there have been estimates of yearly excesses of /sup 210/Pb in the lungs of one-pack-a-day smokers of 3 to 10 pCi (0.11 to 0.37 Bq). The ORNL Whole Body Counter was used to verify this estimate by the methodology of high-resolution, in vivo gamma spectrometry. Measurements were made on 113 adult male non-radiation workers who have either smoked at least one pack of cigarettes per day for at least five years, or have never smoked cigarettes. An analysis-of-variance table was generated based on the Pb-ratio for each individual which revealed that there was no statistically significant increase in the amount of /sup 210/Pb in the lungs of smokers over those of non-smokers. Sources of error are also discussed.

  4. Using gamma ray spectrometry for fingerprinting sources of estuarine and coastal sediment in Mukawa coast, Hokkaido, northern Japan

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Ohtsuka, J.; Murakami, Y.; Ishiya, T.; Hamamoto, S.

    2010-12-01

    To seek the geological tracers of environmental radionuclide for fingerprinting sources of estuarine and coastal sediment, the gamma ray spectrometry was conducted for the soil and sediment samples collected from subcatchments, rivers, estuaries and coast in Mukawa and Sarugawa river watersheds and Mukawa coast, Hokkaido, northern Japan. Gamma ray spectrometry was conducted to determine the activities of environmental radionuclides associated with each soil and sediment samples using HP Ge well-type detector. Gamma ray spectrometry could determine 15 environmental radionuclides, including U-series, Th-series, cesium-137 and potassium-40. Lead-210 excess was also determined by subtracting the activities of Pb-214 from that of Pb-210. The Kruskal-Wallis H test was conducted to assess the ability of each tracer property to discriminate between surface soil samples from the categories divided by subcatchment, geological era and period, suggesting that more than 11 tracer properties were available. Subsequently, the stepwise discriminant function analysis was conducted to identify which combination of tracer properties provides the best composite fingerprint for differentiating source materials on the basis of subcatchment and geology source groups. This analysis suggested that the composite fingerprints of Pb-212, Ac-228 and K-40 can classify the geology into 6 groups based on rock type. Using these tracer properties, the contribution of rock to estuarine and coastal sediment can be evaluated with the multivariate sediment mixing model.

  5. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil.

    PubMed

    de Castilhos, Natara D B; Melquiades, Fábio L; Thomaz, Edivaldo L; Bastos, Rodrigo Oliveira

    2014-10-15

    Physical and chemical properties of soils play a major role in the evaluation of different geochemical signature, soil quality, discrimination of land use type, soil provenance and soil degradation. The objectives of the present study are the soil elemental characterization and soil differentiation in topographic sequence and depth, using Energy Dispersive X-Ray Fluorescence (EDXRF) as well as gamma-ray spectrometry data combined with Principal Component Analysis (PCA). The study area is an agricultural region of Boa Vista catchment which is located at Guamiranga municipality, Brazil. PCA analysis was performed with four different data sets: spectral data from EDXRF, spectral data from gamma-ray spectrometry, concentration values from EDXRF measurements and concentration values from gamma-ray spectrometry. All PCAs showed similar results, confirmed by hierarchical cluster analysis, allowing the data grouping into top, bottom and riparian zone samples, i.e. the samples were separated due to its landscape position. The two hillslopes present the same behavior independent of the land use history. There are distinctive and characteristic patterns in the analyzed soil. The methodologies presented are promising and could be used to infer significant information about the region to be studied. PMID:25464179

  6. Measurement of Short-Lived Fission-Product Yields of URANIUM-235 Using High-Resolution Gamma Spectra.

    NASA Astrophysics Data System (ADS)

    Tipnis, Sameer Vijay

    Independent yields of short-lived fission products produced by the thermal neutron induced fission of ^{235}U were determined from the measurements of high resolution gamma spectra. Comparisons were made to the recommended yield values tabulated in the ENDF/B-VI evaluated fission-product data base. Measurements of the gamma spectra were made with a high purity germanium detector (HPGe) using a NaI(Tl) annulus for Compton suppression. Use of beta-gamma coincidence reduced the random background and also allowed a precise definition of the delay time. The experiment was carried out at the 5.5 MV Van de Graaff facility at the University of Massachusetts Lowell. Rapid transfer of the fission fragments to a low background counting environment, a crucial factor in determining the yields of short-lived fission products, was enabled by a helium -jet tape transport system. The recommended yields in the evaluated data file are a combination of experimental and model-predicted values. The latter source is used since data from many short-lived fission products is still missing or poorly known. The results presented here, especially the ones for the very short-lived isotopes may be used to reduce the uncertainties associated with some of the existing values or to replace model-predicted yields. Gaussian distributions of elemental yields, based on the set of experimentally determined independent yields were examined. The feasibility of predicting unmeasured yields on the basis of charge and mass complementarity was also addressed.

  7. Monte carlo simulation of in situ gamma-spectra recorded by NaI (Tl) detector in the marine environment

    NASA Astrophysics Data System (ADS)

    Wang, Yiming; Zhang, Yingying; Wu, Ning; Wu, Bingwei; Liu, Yan; Cao, Xuan; Wang, Qian

    2015-06-01

    To develop a NaI (Tl) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Carlo N-Particle ( MNCP ) code were performed to provide the response spectra of some interested radionuclides and the background spectra originating from the natural radionuclides in seawater recorded by a NaI (Tl) detector. A newly developed 75 mm × 75 mm NaI (Tl) detector was calibrated using four reference radioactive sources 137Cs, 60Co, 40K and 54Mn in the laboratory before the field measurements in seawater. A simulation model was established for the detector immersed in seawater. The simulated spectra were all broadened with Gaussian pulses to reflect the statistical fluctuations and electrical noise in the real measurement. The simulated spectra show that the single-energy photons into the detector are mostly scattering low-energy photons and the high background in the low energy region mainly originates from the Compton effect of the high energy ?-rays of natural radionuclides in seawater. The simulated background spectrum was compared with the experimental one recorded in field measurement and they seem to be in good agreement. The simulation method and spectra can be used for the accurate analysis of the filed measurement results of low concentration radioactivity in seawater.

  8. A NEW METHDOLOGY FOR DETERMINING FISSILE MASS IN INDIVIDUAL ACCOUNTING ITEMS WITH THE USE OF GAMMA-RAY SPECTROMETRY.

    SciTech Connect

    KANE,W.R.; VANIER,P.E.; ZUHOSKI,P.B.; LEMLEY,J.R.

    2000-07-16

    In the safeguards, arms control, and nonproliferation regimes measurements are required which give the quantity of fissile material in an accounting item, e.g., a standard container of plutonium or uranium oxide. Because of the complexity of modeling the absorption of gamma rays in high-Z materials, gamma-ray spectrometry is not customarily used for this purpose. Gamma-ray measurements can be used to determine the fissile mass when two conditions are met: (1) The material is in a standard container, and (2) The material is finely divided, or a solid item with a reproducible shape. The methodology consists of: (A) Measurement of the emitted gamma rays, and (B) Measurement of the transmission through the item of the high-energy gamma rays of Co-60 and Th-228. We have demonstrated that items containing nuclear materials possess a characteristic ''fingerprint'' of gamma rays which depends not only on the nuclear properties, but also on the mass, density, shape, etc.. The material's spectrum confirms its integrity, homogeneity, and volume as well. While there is attenuation of radiation from the interior, the residual radiation confirms the homogeneity of the material throughout the volume. Transmission measurements, where the attenuation depends almost entirely on Compton scattering, determine the material mass. With well-characterized standards, this methodology can provide an accurate measure of the contained fissile material.

  9. Gamma Spectra Resulting From the Annihilation of Positrons with Electrons in Single, Selected Core Levels of Cu, Ag and Au

    SciTech Connect

    Kim, S; Eshed, A; Goktepeli, S; Sterne, P A; Koymen, A R; Chen, W C; Weiss, A H

    2005-07-25

    The {gamma}-ray energy spectra due to positron annihilation with the 3p core-level of Cu, the 4p core-level of Ag, and 5p core level of Au were obtained separately from the total annihilation spectrum by measuring the energies of {gamma}-rays time coincident with Auger electrons emitted as a result of filling the core-hole left by annihilation. The results of these measurements are compared to the total annihilation spectra and with LDA based theoretical calculations. A comparison of area normalized momentum distributions with the individual cores extracted from the Doppler measurements shows good qualitative agreement, however, in all three spectra, the calculated values of the momentum density appears to fall below the measured values as the momentum increases. The discrepancies between theory and experiment are well outside the statistical uncertainties of the experiment and become more pronounced with increasing Z going down the column from Cu to Ag to Au. The comparison with the experimental results clearly indicates that the calculations are not predicting the correct ratio of high momentum to low momentum spectral weight and suggest the need to improve the treatment of many body electron-positron correlation effects in annihilation as they pertain to core levels.

  10. Analysis of gamma-irradiated melon, pumpkin, and sunflower seeds by electron paramagnetic resonance spectroscopy and gas chromatography-mass spectrometry.

    PubMed

    Sin, Della W M; Wong, Yiu Chung; Yao, Wai Yin

    2006-09-20

    Seeds of melon (Citrullus lanatus var. sp.), pumpkin (Cucurbita moschata), and sunflower (Heliantus annus) were gamma-irradiated at 1, 3, 5, and 10 kGy and analyzed by electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) according to EN1787:2000 and EN1785:2003, respectively. Distinguishable triplet signals due to the presence of induced cellulose radicals were found at 2.0010-2.0047 g in the EPR spectra. The gamma-irradiated radiolytic markers of 2-dodecylcyclobutanone (2-DCB) and 2-tetradecylcyclobutanone (2-TCB) were identified in all irradiated seed samples. Both the free radicals and the alkylcyclobutanones were found to increase with irradiation dose. In general, linear relationships between the amount of radicals and irradiation dosage could be established. Studies at an ambient temperature (20-25 degrees C) in a humidity-controlled environment showed a complete disappearance of the cellulosic peaks for irradiated samples upon 60 days of storage. Such instability behavior was considered to render the usefulness of using EPR alone in the determination of irradiated seed samples. On the other hand, 2-DCB and 2-TCB were also found to decompose rapidly (>85% loss after 120 days of storage), but the radiolytic markers remained quantifiable after 120 days of postirradiation storage. These results suggest that GC-MS is a versatile and complimentary technique for the confirmation of irradiation treatment to seeds. PMID:16968077

  11. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.; Wasserman, I.; Fenimore, E. E.

    1989-01-01

    Data on the GB880205 gamma-ray bursts are presented that have implications for the nature of gamma-ray burst sources. It is shown that cyclotron resonant scattering and Raman scattering account well for the positions, strengths, and shapes of the relative strengths of the first and second harmonics and their narrow widths. These results imply the existence of a superstrong (B of about 2 x 10 to the 12th G) magnetic field in the vicinity of the X-ray emission region of GB880205. Such a superstrong magnetic field points to a strongly magnetic neutron star as the origin of gamma-ray bursts, and to the fact that the gamma-ray sources belong to the Galaxy.

  12. Calculation of the decision thresholds for radionuclides identified in gamma-ray spectra by post-processing peak analysis results

    NASA Astrophysics Data System (ADS)

    Korun, Matjaž; Vodenik, Branko; Zorko, Benjamin

    2016-03-01

    A method for calculating the decision thresholds for gamma-ray emitters, identified in gamma-ray spectrometric analyses, is described. The method is suitable for application in computerized spectra-analyzing procedures. In the calculation, the number of counts and the uncertainty in the number of counts for the peaks associated with the emitter are used. The method makes possible to calculate decision thresholds from peaks on a curved background and overlapping peaks. The uncertainty in the number of counts used in the calculation was computed using Canberra's Standard Peak Search Program (Canberra, 1986, Peak Search Algorithm Manual 07-0064). For isolated peaks, the decision threshold exceeds the value calculated from the channel contents in an energy region that is 2.5 FWHM wide, covering the background in the immediate vicinity of the peak. The decision thresholds vary by approximately 20% over a dynamic range of peak areas of about 1000. In the case of overlapping peaks, the decision threshold increases considerably. For multi-gamma-ray emitters, a common decision threshold is calculated from the decision thresholds obtained from individual gamma-ray emissions, being smaller than the smallest of the individual decision thresholds.

  13. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  14. Hints of the Existence of Axion-Like-Particles From the Gamma-Ray Spectra of Cosmological Sources

    SciTech Connect

    Sanchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Dominguez, A.; /IAA, Granada /Seville U.

    2009-06-23

    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the EBL intensity at 3.6 {micro}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like

  15. SINGLE- AND TWO-COMPONENT GAMMA-RAY BURST SPECTRA IN THE FERMI GBM-LAT ENERGY RANGE

    SciTech Connect

    Veres, P.; Meszaros, P. E-mail: nnp@astro.psu.edu

    2012-08-10

    Most Fermi gamma-ray burst spectra appear as either a broken power law extending to GeV energies or as a broken power with a separate GeV power-law component. Here we show that such spectra can be understood in terms of magnetically dominated relativistic jets where a dissipative photosphere produces the prompt MeV emission, which is extended into the GeV range by inverse Compton scattering in the external shock, with possible contributions from a reverse shock as well. The bulk Lorentz factors required in these models are in the range of 300-600, and the MeV-GeV time delays arise naturally. In some cases an optical flash and a sub-dominant thermal component are also present.

  16. Neanderthal skeleton from Tabun: U-series data by gamma-ray spectrometry.

    PubMed

    Schwarcz, H P; Simpson, J J; Stringer, C B

    1998-12-01

    The Neanderthal hominid Tabun C1, found in Israel by Garrod & Bate, was attributed to either layer B or C of their stratigraphic sequence. We have used gamma-ray spectrometry to determine the 230Th/234U and 231Pa/235U ratios of two bones from this skeleton, the mandible and a femur. The ages calculated from these ratios depend on the uranium uptake history of the bones. Assuming a model of early U (EU) uptake the age of the Tabun C1 mandible is 34+/-5 ka. The EU age of the femur is 19+/-2 ka. The femur may have experienced continuous (linear) U uptake which would give an age of 33+/-4 ka, in agreement with the mandible's EU age, but implies marked inhomogeneity in U uptake history at the site. These new age estimates for the skeleton suggest that it was younger than deposits of layer C. This apparent age is less than those of other Neanderthals found in Israel, and distinctly younger than the ages of the Skhul and Qafzeh burials. This suggests that Neanderthals did not necessarily coexist with the earliest modern humans in the region. All of the more complete Neanderthal fossils from Israel are now dated to the cool period of the last glacial cycle, suggesting that Neanderthals may have arrived in this region as a result of the southward expansion of their habitable range. The young age determined for the Tabun skeleton would suggest that Neanderthals survived as late in the Levant as they did in Europe. PMID:9929173

  17. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  18. Effect of gamma-ray burst (GRB) spectra on the empirical luminosity correlations and the GRB Hubble diagram

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Chang, Zhe

    2016-07-01

    The spectra of gamma-ray bursts (GRBs) in a wide energy range can usually be well described by the Band function, which is a two smoothly jointed power laws cutting at a breaking energy. Below the breaking energy, the Band function reduces to a cut-off power law, while above the breaking energy it is a simple power law. However, for some detectors [such as the Swift-Burst Alert Telescope (BAT)] whose working energy is well below or just near the breaking energy, the observed spectra can be fitted to cut-off power law with enough precision. Besides, since the energy band of Swift-BAT is very narrow, the spectra of most GRBs can be fitted well even using a simple power law. In this paper, with the most up-to-date sample of Swift-BAT GRBs, we study the effect of different spectral models on the empirical luminosity correlations, and further investigate the effect on the reconstruction of GRB Hubble diagram. We mainly focus on two luminosity correlations, i.e. the Amati relation and Yonetoku relation. We calculate these two luminosity correlations in both cases that the GRB spectra are modelled by Band function and cut-off power law. It is found that both luminosity correlations only moderately depend on the choice of GRB spectra. Monte Carlo simulations show that Amati relation is insensitive to the high-energy power-law index of the Band function. As a result, the GRB Hubble diagram calibrated using luminosity correlations is almost independent on the GRB spectra.

  19. Spectra of Cosmic Ray Electrons and Diffuse Gamma Rays with the Constraints of AMS-02 and HESS Data

    NASA Astrophysics Data System (ADS)

    Chen, Ding; Huang, Jing; Jin, Hong-Bo

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746-2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  20. New capture Gamma-Ray library and Atlas of spectra for all elements

    SciTech Connect

    Firestone, R.B.; Revay, Zs.; Molnar, G.L.

    2003-01-01

    A new library comprising 30 thousand neutron capture gamma rays has been created by combining new measurements on natural elements from Budapest and literature data for all stable isotope targets. All energies and intensities are consistent in that they are based on the chlorine and nitrogen standards, respectively. Accurate neutron binding energies and thermal capture cross-sections could also be inferred for all cases where the level scheme is sufficiently complete. The new data can be used for nuclear structure investigations, reaction model calculations, and a number of applications, such as Prompt Gamma-ray Activation Analysis (PGAA).

  1. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    NASA Astrophysics Data System (ADS)

    Vo, D. T.; Russo, P. A.

    2002-07-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  2. Mapping the spatial distribution and activity of (226)Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data.

    PubMed

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2016-03-01

    Radium ((226)Ra) contamination derived from military, industrial, and pharmaceutical products can be found at a number of historical sites across the world posing a risk to human health. The analysis of spectral data derived using gamma-ray spectrometry can offer a powerful tool to rapidly estimate and map the activity, depth, and lateral distribution of (226)Ra contamination covering an extensive area. Subsequently, reliable risk assessments can be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally occurring radionuclide such as (226)Ra. As a result, conventional surveys tend to attribute the highest activities to the largest total signal received by a detector (Gross counts): an assumption that tends to neglect higher activities at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations, Principal Component Analysis and Machine Learning based algorithms to derive depth and activity estimates for (226)Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide, the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated by mapping depth and activity estimates at a case study site in Scotland. There the method identified significantly higher activity (<3 Bq g(-1)) occurring at depth (>0.4m), that conventional gross counting algorithms

  3. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  4. Local electron spectrum above 100 MeV derived from gamma-ray emissivity spectra

    NASA Technical Reports Server (NTRS)

    Strong, A. W.

    1985-01-01

    Two new determinations of the local gamma-ray emmissivity spectrum are in good accord and were used to derive constraints on the local electron spectrum. The requirement for an electron intensity above 1 GeV larger than previously believed is confirmed and no low energy upturn is then needed.

  5. The VHE gamma-ray spectra of several hard-spectrum blazars from long-term observations with the VERITAS telescope array

    NASA Astrophysics Data System (ADS)

    Madhavan, Arun

    2013-08-01

    Analysis is presented on VERITAS observations of the very high energy gamma-ray spectra of five high frequency peaked BL Lac objects over a range of redshifts. Each object has an unusually hard intrinsic GeV spectrum, and is expected to produce TeV gamma-ray emission into the optically- thick regime of the universe's diffuse extragalactic background light (EBL). Hard spectrum HBLs have recently emerged as an effective tool for measurement of the EBL spectrum, due to extinction of gamma-ray signals from blazars via the pair production interaction gamma-TeVgamma EBL → e+e -. The VERITAS collaboration has approved long term observations on several of these sources, with the specific intent of studying their spectra to probe for absorption features resulting from these interactions. An introduction to the field of particle astrophysics is presented, followed by an overview of the EBL and its relation to the evolution of the universe. The VERITAS gamma-ray telescope is described in detail, followed by a full overview of the analysis techniques used to derive gamma-ray spectra from VERITAS data. The analyses of the blazars themselves are presented, followed by a discussion of their application to further constraints of the EBL. Each blazar is de-absorbed with an assumed EBL spectrum. In each case the intrinsic TeV spectrum is consistent with lower-energy gamma-ray emission in the optically-thin regime of the EBL.

  6. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    NASA Astrophysics Data System (ADS)

    Metwally, W. A.; Gardner, R. P.

    2004-06-01

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  7. A revision factor to the Cutshall self-attenuation correction in (210)Pb gamma-spectrometry measurements.

    PubMed

    Jodłowski, Paweł

    2016-03-01

    The Cutshall transmission method of determination of self-attenuation correction in (210)Pb measurements by gamma-spectrometry gives the results burdened with errors of up to 10%. The author proposes introducing into the Cutshall correction Cs,Cuts an additional revision factor CCs,Cuts to eliminate errors. The proposed formula of the revision factor describes the CCs,Cuts value depending on the experimentally obtained Cs,Cuts correction. Formula holds true in wide ranges of the measurement geometries and linear attenuation coefficients of both the standard and the sample. PMID:26702546

  8. Gamma spectrometry efficiency calibration using Monte Carlo methods to measure radioactivity of 137Cs in food samples.

    PubMed

    Alrefae, T

    2014-12-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring the radioactivity of (137)Cs in food samples, was based on Monte Carlo simulations available in the free-of-charge toolkit GEANT4. Experimentally, the efficiency values of a high-purity germanium detector were calculated for three reference materials representing three different food items. These efficiency values were compared with their counterparts produced by a computer code that simulated experimental conditions. Interestingly, the output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:24214912

  9. A rapid dissolution procedure to aid initial nuclear forensics investigations of chemically refractory compounds and particles prior to gamma spectrometry.

    PubMed

    Reading, David G; Croudace, Ian W; Warwick, Phillip E; Britton, Richard

    2015-11-01

    A rapid and effective preparative procedure has been evaluated for the accurate determination of low-energy (40-200 keV) gamma-emitting radionuclides ((210)Pb, (234)Th, (226)Ra, (235)U) in uranium ores and uranium ore concentrates (UOCs) using high-resolution gamma ray spectrometry. The measurement of low-energy gamma photons is complicated in heterogeneous samples containing high-density mineral phases and in such situations activity concentrations will be underestimated. This is because attenuation corrections, calculated based on sample mean density, do not properly correct where dense grains are dispersed within a less dense matrix (analogous to a nugget effect). The current method overcomes these problems using a lithium tetraborate fusion that readily dissolves all components including high-density, self-attenuating minerals/compounds. This is the ideal method for dissolving complex, non-volatile components in soils, rocks, mineral concentrates, and other materials where density reduction is required. Lithium borate fusion avoids the need for theoretical efficiency corrections or measurement of matrix matched calibration standards. The resulting homogeneous quenched glass produced can be quickly dissolved in nitric acid producing low-density solutions that can be counted by gamma spectrometry. The effectiveness of the technique is demonstrated using uranium-bearing Certified Reference Materials and provides accurate activity concentration determinations compared to the underestimated activity concentrations derived from direct measurements of a bulk sample. The procedure offers an effective solution for initial nuclear forensic studies where complex refractory minerals or matrices exist. It is also significantly faster, safer and simpler than alternative approaches. PMID:26572834

  10. Use of a Shielded High Resolution Gamma Spectrometry System to Segregate LLW from Contact Handleable ILW Containing Plutonium - 13046

    SciTech Connect

    Lester, Rosemary; Wilkins, Colin; Chard, Patrick; Jaederstroem, Henrik; LeBlanc, Paul; Mowry, Rick; MacDonald, Sanders; Gunn, William

    2013-07-01

    Dounreay Site Restoration Limited (DSRL) have a number of drums of solid waste that may contain Plutonium Contaminated Material. These are currently categorised as Contact Handleable Intermediate Level Waste (CHILW). A significant fraction of these drums potentially contain waste that is in the Low Level Waste (LLW) category. A Canberra Q2 shielded high resolution gamma spectrometry system is being used to quantify the total activity of drums that are potentially in the LLW category in order to segregate those that do contain LLW from CHILW drums and thus to minimise the total volume of waste in the higher category. Am-241 is being used as an indicator of the presence of plutonium in the waste from its strong 59.54 keV gamma-ray; a knowledge of the different waste streams from which the material originates allows a pessimistic waste 'fingerprint' to be used in order to determine an upper limit to the activities of the weak and non-gamma-emitting plutonium and associated radionuclides. This paper describes the main features of the high resolution gamma spectrometry system being used by DSRL to perform the segregation of CHILW and LLW and how it was configured and calibrated using the Canberra In-Situ Object Counting System (ISOCS). It also describes how potential LLW drums are selected for assay and how the system uses the existing waste stream fingerprint information to determine a reliable upper limit for the total activity present in each measured drum. Results from the initial on-site commissioning trials and the first measurements of waste drums using the new monitor are presented. (authors)

  11. Comparison between the Spectra of Gamma Radiation for Climate Dry Periods and Rainy in the Southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Gomes, M. P.; Martin, I. M.

    2013-05-01

    Through this work, present themselves the results obtained for the spectra of ionizing radiation (X-rays and gamma) environmental southeast Brazil for the periods of dry and rainy climate, respectively. One of the objectives this work is promoting through analysis of the results a better understand, in the educational area, the physical processes related to the background radiation of the places where measurements were made. In Brazil, there is still little information about the radiation from soil, radon gas atmospheric, cosmic and artificial origin. Measurements of gamma radiation spectra were performed with a scintillator of NaI (Tl) (volume 300 cm3) mounted within an aluminum cell and coupled to a photomultiplier tube, which in turn is coupled through an interface to specify a notebook for storage of data. The measurement of X and gamma rays photons occur of way omnidirectional without distinction as to direction. The data acquisition was performed at fixed intervals of 1 minute continuously for the entire period of dry climate (June to October) and rainy (December 2012 to January 2013). Figures 1 and 2 show the results obtained for both periods, dry and rainy, respectively. Regarding the graph of Figure 1, is evidenced a cycle of 24 hours in the radiation spectrum. In this period without rain the radiation increases always between sunrise sunset until 11 - 12 hours local, due to the increased presence of radon gas (222Rn) which decays after 3.8 days in 214Pb and 214Bi, emitting photons in the range of energy the detector is measuring (0.030 to 3.0 MeV). The graph in Figure 2 shows that during the rainy period, there was a significant increase in radiation intensity, in addition to that already shown in the dry times that for certain time intervals. This increase is due to when occurs precipitation, the amount of radon gas increases because of the phenomenon of washing the lower atmosphere where the gas is suspended and diluted in water droplets. In the rainy

  12. Recent re-measurement of neutron and gamma-ray spectra 1080 meters from the APRD (Army Pulse Radiation Division) critical facility

    NASA Astrophysics Data System (ADS)

    Robitaille, H. A.; Hoffarth, B. E.

    1984-01-01

    Previously reported measurements of long-range air-transported neutron and gamma-ray spectra from the fast-critical facility at the US Army Aberdeen Proving Ground have been supplemented recently at the 1080-meter position. The results of these determinations are presented herein and compared to several recent calculations from other research establishments. In addition, a summary of all dosimetric measurements obtained in the period 1979-1982 are appended, as are new determinations of APRD soil composition. Integral quantities such as neutron and gamma-ray kermas are very well predicted by the latest calculations, however there still exist significant spectral differences. At short ranges calculated neutron spectra are somewhat softer than experimental measurements, but at the farthest range of 1080 meters agreement is surprisingly good. Gamma-ray spectra remain well-calculated at all ranges.

  13. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    NASA Astrophysics Data System (ADS)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo; Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Sung, Jae Hee; Lee, Seong Ku; Cho, Byoung Ick; Choi, Il Woo; Nam, Chang Hee

    2016-07-01

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1-10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  14. Analyses of the gamma-ray pulse-height spectra from the lunar surface

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.

    1973-01-01

    The method of inferring photon spectra from an analysis of the measured pulse-height spectrum is considered along with the spectrum shape and its variation energy. The case is examined where photoelastic absorption predominates, and Compton scattering and pair production are negligible. The analytic method for obtaining the elemental composition from the observed lunar surface spectrum is described, and theoretical and calculated weight fraction fluxes for average lunar composition are tabulated.

  15. Establishing the existence of harmonically-spaced lines in gamma-ray burst spectra using Bayesian inference. [GB 870303

    SciTech Connect

    Graziani, C.; Lamb, D.Q. ); Loredo, T.J. ); Fenimore, E.E. ); Murakami, T. ); Yoshida, A. )

    1993-07-05

    We use a rigorous method derived from Bayesian inference to establish the existence of lines in the spectra of [gamma]-ray bursts. Line detection involves a comparison of nested models. The method amounts to the calculation of the odds [ital O] favoring models with lines over models without lines. [ital O] is given by the product of the maximum likelihood ratio and a second factor which includes the ratio of the posterior uncertainty of the line parameters to their prior uncertainty. The maximum likelihood ratio always favors the more complex model, since the likelihood of the more complex model can never be larger than that of the simpler model. The second factor penalizes the more complex model, since the posterior uncertainty for the extra parameters is generally smaller than their prior uncertainty. Thus an Ockham's Razor'' automatically appears in Bayesian model comparison.

  16. Dating of sediments from four Swiss prealpine lakes with (210)Pb determined by gamma-spectrometry: progress and problems.

    PubMed

    Putyrskaya, V; Klemt, E; Röllin, S; Astner, M; Sahli, H

    2015-07-01

    In this paper the most important problems in dating lake sediments with unsupported (210)Pb are summarized and the progress in gamma-spectrometry of the unsupported (210)Pb is discussed. The main topics of these studies concern sediment samples preparation for gamma-spectrometry, measurement techniques and data analysis, as well as understanding of accumulation and sedimentation processes in lakes. The vertical distributions of artificial ((137)Cs, (241)Am, (239)Pu) and natural radionuclides ((40)K, (210,214)Pb, (214)Bi) as well as stable trace elements (Fe, Mn, Pb) in sediment cores from four Swiss lakes were used as examples for the interpretation, inter-comparison and validation of depth-age relations established by three (210)Pb-based models (CF-CSR, CRS and SIT). The identification of turbidite layers and the influence of the turbidity flows on the accuracy of sediment dating is demonstrated. Time-dependent mass sedimentation rates in lakes Brienz, Thun, Biel and Lucerne are discussed and compared with published data. PMID:25875007

  17. ON THERMALIZATION IN GAMMA-RAY BURST JETS AND THE PEAK ENERGIES OF PHOTOSPHERIC SPECTRA

    SciTech Connect

    Vurm, Indrek; Piran, Tsvi; Lyubarsky, Yuri

    2013-02-20

    The low-energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the thermalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, {approx}10{sup 10} to a few Multiplication-Sign 10{sup 11} cm, and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest E {sub pk} values. The least restrictive constraint for successful thermalization, {Gamma} {approx}< 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.

  18. On the Non-existence of a Sharp Cooling Break in Gamma-Ray Burst Afterglow Spectra

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2014-01-01

    Although the widely used analytical afterglow model of gamma-ray bursts (GRBs) predicts a sharp cooling break ν c in its afterglow spectrum, the GRB observations so far rarely show clear evidence for a cooling break in their spectra or a corresponding temporal break in their light curves. Employing a Lagrangian description of the blast wave, we conduct a sophisticated calculation of the afterglow emission. We precisely follow the cooling history of non-thermal electrons accelerated into each Lagrangian shell. We show that a detailed calculation of afterglow spectra does not in fact give rise to a sharp cooling break at ν c . Instead, it displays a very mild and smooth transition, which occurs gradually over a few orders of magnitude in energy or frequency. The main source of this slow transition is that different mini shells have different evolutionary histories of the comoving magnetic field strength B, so that deriving the current value of ν c of each mini shell requires an integration of its cooling rate over the time elapsed since its creation. We present the time evolution of optical and X-ray spectral indices to demonstrate the slow transition of spectral regimes and discuss the implications of our result in interpreting GRB afterglow data.

  19. On the non-existence of a sharp cooling break in gamma-ray burst afterglow spectra

    SciTech Connect

    Uhm, Z. Lucas; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-01-01

    Although the widely used analytical afterglow model of gamma-ray bursts (GRBs) predicts a sharp cooling break ν {sub c} in its afterglow spectrum, the GRB observations so far rarely show clear evidence for a cooling break in their spectra or a corresponding temporal break in their light curves. Employing a Lagrangian description of the blast wave, we conduct a sophisticated calculation of the afterglow emission. We precisely follow the cooling history of non-thermal electrons accelerated into each Lagrangian shell. We show that a detailed calculation of afterglow spectra does not in fact give rise to a sharp cooling break at ν {sub c}. Instead, it displays a very mild and smooth transition, which occurs gradually over a few orders of magnitude in energy or frequency. The main source of this slow transition is that different mini shells have different evolutionary histories of the comoving magnetic field strength B, so that deriving the current value of ν {sub c} of each mini shell requires an integration of its cooling rate over the time elapsed since its creation. We present the time evolution of optical and X-ray spectral indices to demonstrate the slow transition of spectral regimes and discuss the implications of our result in interpreting GRB afterglow data.

  20. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  1. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra.

    PubMed

    Yordanov, Nicola D; Pachova, Zdravka

    2006-03-13

    EPR spectra of dry, sugar containing fruits--raisins, sultanas, figs, dates, peaches, blue plums and chokeberry recorded before and after irradiation with gamma-rays, are reported. It is shown that weak singlet EPR line with 2.0031+/-0.0005 can be recorded before irradiation of seeds, stones or skin of chokeberry, figs and raisins as well as flesh of blue plum, raisins and peaches. EPR signals of various shape are distinguished after irradiation in different parts of the fruits, as well as in randomly cut pieces of them: As a result, randomly cut pieces of dry fruits suitable for EPR studies, containing various constituents, exhibit different in shape and intensity EPR spectra. Kinetic studies followed for 1 year on the time stability of all reported EPR signals indicate that intensity ratio between the simultaneously appearing EPR signals in particular fruit varies from 1:20 immediately after irradiation to 1:0.5 at the end of the period. These observations open a new possibility for identification of irradiated fruits - using the magnitude of the intensity ratio to find the approximate date of radiation processing in the first ca. 30-100 days. PMID:16497546

  2. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  3. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  4. A prototype of radioactive waste drum monitor by non-destructive assays using gamma spectrometry.

    PubMed

    Thanh, Tran Thien; Trang, Hoang Thi Kieu; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tran, Le Bao; Tam, Hoang Duc; Tao, Chau Van

    2016-03-01

    In this work, segmented gamma scanning and the gamma emission tomography were used to locate unknown sources in a radioactive waste drum. The simulated detector response function and full energy peak efficiency are compared to corresponding experimental data and show about 5.3% difference for an energy ranging from 81keV to 1332.5keV for point sources. Computation of the corresponding activity is in good agreement with the true values. PMID:26717796

  5. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    PubMed

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  6. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.

  7. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.; Sigg, R.

    1990-12-31

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.

  8. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    SciTech Connect

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-11-15

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education (ORISE) field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how “fit for use” this technology is for detecting discrete particles in soil.

  9. Mathematical model of gamma-ray spectrometry borehole logging for quantitative analysis

    USGS Publications Warehouse

    Schimschal, Ulrich

    1981-01-01

    A technique for analyzing gamma-ray spectral-logging data has been developed, in which a digital computer is used to calculate the effects of gamma-ray attentuation in a borehole environment. The computer model allows for the calculation of the effects of lithology, porosity, density, and the thickness of a horizontal layer of uniformly distributed radioactive material surrounding a centralized probe in a cylindrical borehole. The computer program also contains parameters for the calculation of the effects of well casing, drilling fluid, probe housing, and losses through the sodium-iodide crystal. Errors associated with the commonly used mathematical assumption of a point detector are eliminated in this model. (USGS)

  10. Calculation of the decision threshold in gamma-ray spectrometry using sum peaks.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2016-03-01

    In the presence of radon daughters, gamma rays from (88)Y with energies at 898.0keV or 1836.1keV appear on a high, continuous background or overlap with other peaks. Therefore a calculation of the decision threshold from the sum peak at 2734.1keV represents a useful alternative, because here the continuous background is low. The decision threshold calculated from this peak can attain a value being comparable to the decision threshold calculated from the gamma-ray peak at 898.0keV. PMID:26625726

  11. Dose rate constant of a Cesium-131 interstitial brachytherapy seed measured by thermoluminescent dosimetry and gamma-ray spectrometry

    SciTech Connect

    Chen, Z.; Bongiorni, P.; Nath, R.

    2005-11-15

    The aim of this work was to conduct an independent determination of the dose rate constant of the newly introduced Model CS-1 {sup 131}Cs seed. A total of eight {sup 131}Cs seeds were obtained from the seed manufacturer. The air-kerma strength of each seed was measured by the manufacturer whose calibration is traceable to the air-kerma strength standard established for the {sup 131}Cs seeds at the National Institute of Standards and Technology (1{sigma} uncertainty <1%). The dose rate constant of each seed was measured by two independent methods: One based on the actual photon energy spectrum emitted by the seed using gamma-ray spectrometry and the other based on the dose-rate measured by thermoluminescent dosimeter (TLD) in a Solid Water{sup TM} phantom. The dose rate constant in water determined by the gamma-ray spectrometry technique and by the TLD dosimetry are 1.066{+-}0.064 cGyh{sup -1}U{sup -1} and 1.058{+-}0.106 cGyh{sup -1}U{sup -1}, respectively, showing excellent agreement with each other. These values, however, are approximately 15% greater than a previously reported value of 0.915 cGyh{sup -1}U{sup -1} [Med. Phys. 31, 1529-1538 (2004)]. Although low-energy fluorescent x rays at 16.6 and 18.7 keV, originating from niobium present in the seed construction, were measured in the energy spectrum of the {sup 131}Cs seeds, their yields were not sufficient to lower the dose rate constant to the value of 0.915 cGyh{sup -1}U{sup -1}. Additional determinations of the dose rate constant may be needed to establish an AAPM recommended consensus value for routine clinical use of the {sup 131}Cs seed.

  12. In-situ ground gamma spectrometry — an effective tool for geological mapping (the Male Karpaty Mts., Slovakia)

    NASA Astrophysics Data System (ADS)

    Mojzeš, Andrej; Porubčanová, Barbara

    2016-06-01

    This contribution presents the results of profile in-situ gamma spectrometry measurements that sought to determine the content of natural radionuclides 40K, 238U and 232Th in a near surface horizon of rocks, their weathering cover and soils in the area of the Malé Karpaty Mts. It is widely established that the exploration of radioactivity of bedrocks and cover rocks can be a very effective and useful tool for both geological mapping, for identifying deposits of mineral resources, and even addressing the issues of structural and tectonic geology. This assertion is equally confirmed by the ground gamma spectrometry measurements carried out as part of this case study on larger scales, seeking more detailed geological structure solutions. The results obtained provide a welcome addition to an already existing database, which monitors the content of naturally occurring radionuclides individually for every rock lithotype of the Western Carpathians, by elaborating on the data collected by previous research and by updating this database for any future needs. The presented results confirmed the low to medium radioactivity levels of rocks and soils in the studied area. The highest values were detected in granitoids and metamorfic phyllitic rocks of the Malé Karpaty Mts. core; the lowest values were detected in carbonates, arenaceous sediments and, above all, amphibolite bodies. In this way, the presented results of the interpreted profile (P5) confirm the model of local geological structure as represented on the most up-to-date edition of the geological map of the Male Karpaty Mts. (Polak et al. 2011).

  13. Radiological Mapping of the Alkaline Intrusive Complex of Jombo, South Coastal Kenya by In-Situ Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Kaniu, Ian; Darby, Iain G.; Kalambuka Angeyo, Hudson

    2016-04-01

    Carbonatites and alkaline intrusive complexes are rich in a variety of mineral deposits such as rare earth elements (REEs), including Nb, Zr and Mn. These are often associated with U and Th bearing minerals, including monazite, samarskite and pyrochlore. Mining waste resulting from mineral processing activities can be highly radioactive and therefore poses a risk to human health and environment. The Jombo complex located in Kenya's south coastal region is potentially one of the richest sources of Nb and REEs in the world. It consists of the main intrusion at Jombo hill, three associated satellite intrusions at Mrima, Kiruku and Nguluku hills, and several dykes. The complex is highly heterogeneous with regard to its geological formation as it is characterized by alkaline igneous rocks and carbonatites which also influence its radio-ecological dynamics. In-situ gamma spectrometry offers a low-cost, rapid and spatially representative radioactivity estimate across a range of landscapes compared to conventional radiometric techniques. In this work, a wide ranging radiological survey was conducted in the Jombo complex as follow up on previous studies[1,2], to determine radiation exposure levels and source distributions, and perform radiological risk assessments. The in-situ measurements were carried out using a 2.0 l NaI(Tl) PGIS-2 portable detector from Pico Envirotec Inc integrated with GPS, deployed for ground (back-pack) and vehicular gamma-ray spectrometry. Preliminary results of radiological distribution and mapping will be presented. [1] Patel, J. P. (1991). Discovery and Innovation, 3(3): 31-35. [2] Kebwaro, J. M. et. al. (2011). J. Phys. Sci., 6(13): 3105-3110.

  14. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Pachova, Zdravka

    2006-03-01

    EPR spectra of dry, sugar containing fruits—raisins, sultanas, figs, dates, peaches, blue plums and chokeberry recorded before and after irradiation with gamma-rays, are reported. It is shown that weak singlet EPR line with 2.0031 ± 0.0005 can be recorded before irradiation of seeds, stones or skin of chokeberry, figs and raisins as well as flesh of blue plum, raisins and peaches. EPR signals of various shape are distinguished after irradiation in different parts of the fruits, as well as in randomly cut pieces of them: Seeds of raisins, chokeberry and figs give a singlet line. Stones from blue plums and peaches exhibit typical "cellulose-like" EPR signal consisting of an intense singlet line with g = 2.0033 ± 0.0005 and 2 week satellite lines situated ca. 30 G left and right to it. Stones of dates are the only sample in which "sugar-like" spectrum is recorded. Skin of raisins and figs exhibits "sugar-like" EPR spectrum whereas that of dates and chokeberry—a singlet line. Under the same experimental conditions skin of sultanas, peaches and blue plums are EPR silent. Flesh of raisins, sultanas, figs, dates and peaches exhibits "sugar-like" EPR spectrum, flesh of blue plums gives a singlet EPR line and that of chokeberry is EPR silent. As a result, randomly cut pieces of dry fruits suitable for EPR studies, containing various constituents, exhibit different in shape and intensity EPR spectra. Kinetic studies followed for 1 year on the time stability of all reported EPR signals indicate that intensity ratio between the simultaneously appearing EPR signals in particular fruit varies from 1:20 immediately after irradiation to 1:0.5 at the end of the period. These observations open a new possibility for identification of irradiated fruits - using the magnitude of the intensity ratio to find the approximate date of radiation processing in the first ca. 30-100 days.

  15. The influence of exogenous conditions on mobile measured gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-12-01

    In the past, gamma ray measurements have been used for geological surveys and exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Based on these applications and knowledge in combination with adjusted sensor systems, gamma ray measurements are used to derive soil parameters to create detailed soil maps e.g., in digital soil mapping (DSM) and monitoring of soils. Therefore, not only qualitative but also quantitative comparability is necessary. Grain size distribution, type of clay minerals and organic matter content are soil parameters which directly influence the gamma ray emitter concentration. Additionally, the measured concentration is influenced by endogenous processes like soil moisture variation due to raining events, foggy weather conditions, or erosion and deposition of material. A time series of gamma ray measurements was used to observe changes in gamma ray concentration on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different time steps shows similar structures with minor variation between the data ranges and shape of structures. However, the data measured during different soil moisture contents differ in absolute value. An average increase of soil moisture of 36% leads to a decrease of Th (by 20%), K (by 29%), and U (by 41%). These differences can be explained by higher attenuation of radiation during higher soil moisture content. The different changes in nuclide concentration will also lead to varying ratios. We will present our experiences concerning

  16. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy. PMID:20685128

  17. Some gamma-irradiation-induced aspects of the infrared spectra, X-ray fluorescence, luminescence spectra and electric conductivity of natural materials

    NASA Astrophysics Data System (ADS)

    Youssef, S. K.; El-Sakr, N. S.

    1995-09-01

    Infrared (IR) and X-ray fluorescence analyses of samples of quartz crystal were performed under various annealing conditions in the range 25-700° C for 1 h and gamma exposure doses from 10 0 to 10 7 Gy. The results show composition changes with change of the sample annealing temperature as well as gamma irradiation doses beyond 10 5 Gy. Data for IR and X-ray fluorescence analyses are also compared with those for gamma-induced response changes of thermoluminescence and electric conductivity of the quartz crystals.

  18. Simulation of gamma-ray spectra for a variety of user-specified detector designs. Semiannual technical report, 1 March-31 August 1994

    SciTech Connect

    Rester, A.C. Jr.

    1994-12-01

    The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.

  19. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  20. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume I. Data analysis methodology and hardware description

    SciTech Connect

    Ruhter, W.D.

    1984-05-01

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and had dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV /sup 241/Pu and 208-keV /sup 237/U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings.

  1. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume II. Software description and listings. [IAEAPU

    SciTech Connect

    Ruhter, W.D.

    1984-05-01

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and has dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV /sup 241/Pu and 208-keV /sup 237/U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings.

  2. Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure

    PubMed Central

    Senthilkumar, B.; Dhavamani, V.; Ramkumar, S.; Philominathan, P.

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides 232Th, 238U and 40K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using γ-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of 232Th, 238U and 40K is 42.9±9.4 Bq.kg−1, 14.7±1.7 Bq.kg−1 and 149.5±3.1 Bq.kg−1 respectively are derived from all the soil samples studied. The activity concentration of 232Th, 238U and 40K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h−1 and 59.1 nGy.h−1 with an arithmetic mean of 43.3 ±9 nGy.h−1. This value is lesser than the population weighted world-averaged of 60 nGy.h−1. Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 μSv.y−1 with an arithmetic mean of 53.1±11 μSv.y−1. The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels. PMID:20177570

  3. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; Azooz, M. A.; Ouis, M. A.; ElBatal, H. A.

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900 nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation.

  4. ENERGY-DEPENDENT LIGHT CURVES AND PHASE-RESOLVED SPECTRA OF HIGH-ENERGY GAMMA-RAYS FROM THE CRAB PULSAR

    SciTech Connect

    Li, X.; Zhang, L.

    2010-12-20

    Energy-dependent light curves and phase-resolved spectra of high-energy {gamma}-ray emission from the Crab pulsar have been detected recently by the Fermi Large Area Telescope (LAT). Within the framework of a two-pole, three-dimensional outer gap model, we calculate the energy-dependent light curves and phase-resolved spectra in the inertial observer's frame. Our results show that (1) the observed {gamma}-ray properties from both Fermi LAT and MAGIC can be reproduced well in this model; (2) the first peak of the light curves in the energy region less than {approx}10 GeV comes from the sum of emissions from both the north and south poles, and the second peak comes only from the emission from the south pole; however, the relative contribution of the two poles to the first peak changes with increasing {gamma}-ray energy, and the light curve in the energy region greater than {approx}20 GeV comes completely from the emission of the south pole; and (3) {gamma}-rays in the energy region greater than 100 MeV are produced through inverse Compton scattering from secondary pairs and the survival curvature photons, where the latter dominate over {gamma}-ray emission in the energy region greater than several GeV.

  5. Calculated gamma-ray spectra for keV neutron capture in /sup 240/Pu, /sup 242/Pu, and /sup 238/U

    SciTech Connect

    Reffo, G.; Fabbri, F.; Kappeler, F.; Wisshak, K.

    1983-03-01

    Capture gamma-ray spectra of /sup 240/Pu, /sup 242/Pu, and /sup 238/U were calculated in the framework of the spherical optical model and the statistical model. A consistent set of input parameters was determined from available experimental information or from model-guided systematics. The complete gamma-ray cascades were calculated considering all possible transitions up to multiplicity seven. All experimental information on level schemes and gamma-ray transition probabilities of the compound nuclei was explicitly included as input. The capture gamma-ray spectra were used to correct experimental data for the capture cross sections of /sup 240/Pu and /sup 242/Pu from a relative measurement using a Moxon-Rae detector with a graphite converter and with /sup 197/Au and /sup 238/U as standards. This correction is required to take into account that the detector efficiency is not exactly proportional to the gamma-ray energy. The resulting correction factors proved to be negligible for measurements relative to /sup 238/U; whereas, they are about 3% if gold is used as a standard.

  6. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  7. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Shuhaimi, Alif Imran Mohd

    2016-01-01

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results, two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software.

  8. Application of spectrum shifting methodology to restore NaI(Tl)-recorded gamma spectra, shifted due to temperature variations in the environment.

    PubMed

    Mitra, Pratip; Roy, Arup Singha; Verma, Amit K; Pant, Amar D; Prakasha, M S; Anilkumar, S; Kumar, A Vinod

    2016-01-01

    A method has been standardized for restoring a shifted differential pulse height spectrum from a scintillator based gamma ray spectrometer recorded at measurement temperature, to the position of a desired spectrum, recorded at a reference temperature. The method is based on the assumption that the spectrum obtained at measurement temperature represents the same statistical distribution as that at reference temperature but with different energy scales. A computer program has been developed for calculation of the transformation between the energy scales and for the restoration of the shifted spectrum. The method developed has been successfully applied for the restoration of gamma spectra measured at different temperatures. PMID:26492324

  9. Hydration of hyaluronan polysaccharide observed by IR spectrometry. II. Definition and quantitative analysis of elementary hydration spectra and water uptake.

    PubMed

    Haxaire, K; Maréchal, Y; Milas, M; Rinaudo, M

    2003-01-01

    We recorded a series of spectra of sodium hyaluronan (HA) films that were in equilibrium with their surrounding humid atmosphere. The hygrometry of this atmosphere extended from 0 to 0.97% relative humidity. We performed a quantitative analysis of the corresponding series of hydration spectra that are the difference spectra of the film at a defined hygrometry minus the spectrum of the dried film (hygrometry = 0). The principle of this analysis is to use this series of hydration spectra to define a limited number (four) of "elementary hydration spectra" over which we can decompose all hydration spectra with good accuracy. This decomposition, combined with the measurements of the numbers of H(2)O molecules at the origin in these elementary hydration spectra of the three characteristic vibrational bands of H(2)O, allowed us to calculate the hydration number under different relative humidity conditions. This number compares well with that determined by thermogravimetry. Furthermore, the decomposition defines for each hygrometry value which chemical mechanisms represented by elementary hydration spectra are active. This analysis is pursued by determining for the elementary hydration spectra the number of hydrogen bonds established by each of the four alcohol groups found in each disaccharide repeat unit before performing the same analysis for amide and carboxylate groups. These results are later utilized to discuss the structure of HA at various stages of hydration. PMID:12722111

  10. Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies: I. Electrospray Spectra of 2-Ring Isomers

    PubMed Central

    2015-01-01

    Purified methylenedianiline (MDA) regioisomers were structurally characterized and differentiated using tandem mass spectrometry (MS/MS), ion mobility-mass spectrometry (IM-MS), and IM-MS/MS in conjunction with computational methods. It was determined that protonation sites on the isomers can vary depending on the position of amino groups, and the resulting protonation sites play a role in the gas-phase stability of the isomer. We also observed differences in the relative distributions of protonated conformations depending on experimental conditions and instrumentation, which is consistent with previous studies on aniline in the gas phase. This work demonstrates the utility of a multifaceted approach for the study of isobaric species and elucidates why previous MDA studies may have been unable to detect and/or differentiate certain isomers. Such analysis may prove useful in the characterization of larger MDA multimeric species, industrial MDA mixtures, and methylene diphenyl diisocyanate (MDI) mixtures used in polyurethane synthesis. PMID:24678803

  11. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-04-10

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  12. Natural radioactivity and radiological hazard assessment of soil using gamma-ray spectrometry.

    PubMed

    Zubair, Mohd; Verma, Deepak; Azam, Ameer; Roy, Sukanta

    2013-08-01

    Natural radioactivity in soil samples collected from different places of Bulandshahr, Hapur and Meerut city of Uttar Pradesh, India, using a low-level counting multichannel gamma-ray spectrometer system comprising an NaI(Tl) crystal. The range of (238)U, (232)Th and (40)K activity concentrations varied from 29.6 to 69.2, from 34.9 to 93.8 and from 438.2 to 719.9 , respectively. The activity concentrations of (232)Th are higher than those of (238)U in all the samples. The absorbed dose rate ranges from 53.18 to 110.95 . The values of the annual effective dose indoors are found to vary from 0.26 to 0.54 , whereas outdoors are found to vary from 0.07 to 0.14 . The annual effective dose is marginally below the international recommended value of 1 for the general public. The external and internal hazard indexes of the soil samples are below the recommended limits. The values of the gamma index in soil samples varied from 0.41 to 0.88. The values of the alpha index varied from 0.15 to 0.35. All these values of and are <1.0. It is observed from the results that there is no significant radiation hazard due to natural radionuclides of the soil samples in the studied areas. PMID:23427204

  13. Modern aerial gamma-ray spectrometry and regional potassium map of the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.

    1990-01-01

    The aerial gamma-ray data were obtained as part of the National Uranium Resource Evaluation (NURE) Program sponsored by the U.S. Department of Energy during the period 1975-1983. References for the Open-File Reports that describe the surveys and data collection can be found in Bendix Field Engineering Corp. (1983). The aerial surveys were flown by contractors using fixed-wing and helicopter systems with 33-50 L (liters) of thallium-activated sodium iodide (NaI (TI)) crystals. The nominal survey altitude used is 122 m. The survey lines were generally east-west with line spacings of 1.6-10 km. Tie lines were flown perpendicular to the flight lines at intervals of 16- 30 km. The data were corrected for background from aircraft contamination and cosmic rays, altitude variations, airborne 214Bi, and Compton scattering. The gamma-ray systems were calibrated using the calibrations pads at Grand Junction, Colorado (Ward, 1978 ) and the dynamic test strip at Lake Mead, Arizona (Geodata International, Inc., 1977).  

  14. Pu abundances, concentrations, and isotopics by x- and gamma-ray spectrometry assay techniques

    SciTech Connect

    Camp, D.C.; Gunnink, R.; Ruhter, W.D.; Prindle, A.L.; Gomes, R.J.

    1986-10-24

    Two x- and gamma-ray systems were recently installed at-line in gloveboxes and will measure Pu solution concentrations from 5 to 105 g/L. These NDA technique, developed and refined over the past decade, are now used domestically and internationally for nuclear material process monitoring and accountability needs. In off- and at-line installations, they can measure solution concentrations to 0.2%. The K-XRFA systems use a transmission source to correct for solution density. The gamma-ray systems use peaks from 59- to 208-keV to determine solution concentrations and relative isotopics. A Pu check source monitors system stability. These two NDA techniques can be combined to form a new, NDA measurement methodology. With the instrument located outside of a glovebox, both relative Pu isotopics and absolute Pu abundances of a sample located inside a glovebox can be measured. The new technique works with either single or dual source excitation; the former for a detector 6 to 20 cm away with no geometric corrections needed; the latter requires geometric corrections or source movement if the sample cannot be measured at the calibration distance. 4 refs., 7 figs., 2 tabs.

  15. Derivation of a Relation for the Steepening of TeV Selected Blazar Gamma-Ray Spectra with Energy and Redshift

    NASA Technical Reports Server (NTRS)

    Stecker, F.

    2010-01-01

    We derive a relation for the steepening of blazar gamma-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source, and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar gamma-rays with low energy photons of the "intergalactic background light" (IBL). Given this relation, with good enough data on the mean gamma-ray SED of TeV Selected BL Lacs, the redshift evolution of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV selected blazars.

  16. Detection of frozen salt in pipes using gamma-ray spectrometry of potassium self-activity

    SciTech Connect

    Grena, Roberto; Scafe, Raffaele; Pisacane, Fabrizio; Pilato, Renzo; Crescenzi, Tommaso; Mazzei, Domenico

    2010-01-15

    Solar plants that use molten salts as heat transfer fluid need careful control to avoid the freezing of the salt in the pipes; if such a problem occurs, a diagnostic instrument to localize where is the frozen salt plug and to determine its length is useful. If the salt contains potassium (as is the case of the most common mixture used in solar plants, NaNO{sub 3}/KNO{sub 3} 60/40% by weight), the gamma decay of the natural unstable isotope {sup 40}K can be exploited to detect the frozen salt in a non-invasive way. Simulations and experimental results regarding the detectability of such plugs with different masses/lengths are presented. (author)

  17. Absorption-Mode Fourier Transform Mass Spectrometry: The Effects of Apodization and Phasing on Modified Protein Spectra

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P. A.; Barrow, Mark P.; Lin, Cheng; O'Connor, Peter B.

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  18. Absorption-Mode Fourier Transform Mass Spectrometry: the Effects of Apodization and Phasing on Modified Protein Spectra

    PubMed Central

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David. P. A.; Barrow, Mark P.; Lin, Cheng; O’Connor, Peter B.

    2014-01-01

    The method of phasing broadband FT-ICR spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed, and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by >100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode. PMID:23568027

  19. Measurement of Absolute Fission Yields in the Fast Neutron-Induced Fission of Actinides: {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 240}Pu, {sup 243}Am, and {sup 244}Cm by Track-Etch-cum-Gamma Spectrometry

    SciTech Connect

    Iyer, R.H.; Naik, H.; Pandey, A.K.; Kalsi, P.C.; Singh, R.J.; Ramaswami, A.; Nair, A.G.C.

    2000-07-15

    The absolute fission yields of 46 fission products in {sup 238}U (99.9997 at.%), 46 fission products in {sup 237}Np, 27 fission products in {sup 238}Pu (99.21 at.%), 30 fission products in {sup 240}Pu (99.48 at.%), 30 fission products in {sup 243}Am (99.998 at.%), and 32 fission products in {sup 244}Cm (99.43 at.%) induced by fast neutrons were determined using a fission track-etch-cum-gamma spectrometric technique. In the case of highly alpha-active and sparingly available actinides - e.g., {sup 238}Pu, {sup 240}Pu, {sup 243}Am, and {sup 244}Cm - a novel recoil catcher technique to collect the fission products on a Lexan polycarbonate foil followed by gamma-ray spectrometry was developed during the course of this work. This completely removed interferences from (a) gamma rays of daughter products in secular equilibrium with the target nuclide (e.g., {sup 243}Am-{sup 239}Np), (b) activation products of the catcher foil [e.g., {sup 24}Na from Al(n,{alpha})], and (c) activation products of the target [e.g., {sup 238}Np from {sup 237}Np(n,{gamma}) and {sup 239}Np from {sup 238}U(n,{gamma})] reactions, making the gamma spectrometric analysis very simple and accurate. The high-yield asymmetric fission products were analyzed by direct gamma spectrometry, whereas the low-yield symmetric products (e.g., Ag, Cd, and Sb) as well as some of the asymmetric fission products (e.g., Br) and rare earths (in the case of {sup 238}U and {sup 237}Np) were radiochemically separated and then analyzed by gamma-ray spectrometry. The neutron spectra in the irradiation positions of the reactors were measured and delineated in the thermal to 10-MeV region using threshold activation detectors. The present data were compared with the ENDF/VI and UKFY2 evaluated data files. From the measured cumulative yields, the mass-chain yields have been deduced using charge distribution systematics. The mass yields, along with similar data for other fast neutron-induced fissioning systems, show several

  20. Survey of the {sup 137}Cs contamination in Belgium by in-situ gamma spectrometry, a decade after the Chernobyl accident

    SciTech Connect

    Uyttenhove, J.; Pomme, S.; Hardenman, F.; Culot, J.P.

    1997-10-01

    The residual radiocesium concentration, nearly 10 y after the Chernobyl accident, is measured at different sites on the Belgian territory by means of in-situ gamma-spectrometry. A possible link between the rainfall at the beginning of May 1986 and the actual cesium concentration is investigated. The radiological impact of this contamination, even in the most affected regions in the Ardennes, is very small (<6 {mu}Sv y{sup -1}). 6 refs., 4 figs., 1 tab.

  1. Development and application of Marinelli beaker standards for monitoring radioactivity in Dairy-Products by gamma-ray spectrometry.

    PubMed

    Lavi, N; Alfassi, Z B

    2004-12-01

    Marinelli (reentrant) beakers are recommended for measurement of low-activity radioactive environmental samples, in both liquid and solid phase. The preparation of Marinelli beaker standards of milk powder containing 232ThO2 at secular equilibrium with its daughter radionuclides was studied. Standards were prepared by mixing of known amounts of solid ThO2 and milk powder. The densities of the standards were 0.5-0.7 kg dm(-3). Measurements of calibrated Marinelli beaker standards with HPGe detector showed that the energy dependence of the efficiency is similar to that of a point source, i.e. an almost linear dependence of log-efficiency vs. log-energy in the 200-2000 keV range, however the parabolic correlation fits better. The validity of these standards was checked by comparison with certified standard reference material IAEA-152-Milk powder containing radiocesium and radiopotassium. The results obtained were found to be in a good agreement with the published certified data. The limit of detection for the determination of radiocesium by gamma ray spectrometry under the prevailing experimental conditions is 0.03 Bq (i.e. 0.8 pCi), for samples of dairy products having lower densities of 0.7 kg dm(-1). PMID:15388145

  2. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry.

    PubMed

    Khandaker, M U; Jojo, P J; Kassim, H A; Amin, Y M

    2012-11-01

    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future. PMID:22887119

  3. Depleted uranium in Kosovo: results of a survey by gamma spectrometry on soil samples.

    PubMed

    Uyttenhove, J; Lemmens, M; Zizi, M

    2002-10-01

    The presence of depleted uranium in the soil of former Yugoslavia after the 1999 conflict raised great public concern all over the world. The so-called Balkan-syndrome is often linked with depleted uranium contamination. An excellent compilation of data about DU and its possible impact on health and environment can be found in the 1999 UNEP report and publications from the Swedish Radiation Protection Institute. Unfortunately, very few systematic and reliable data on the possible depleted uranium concentrations were until now available. Some of these rare data are only available on the web, without adequate information about the experimental procedure used. To clarify the situation, a systematic survey was started in the summer of 2000 as a collaborative effort between Ghent University (Physics Laboratory) and the Belgian Ministry of Defense (Medical Service). From 50 sites selected all over Kosovo, 150 soil samples were measured in the laboratory with a high-resolution gamma-spectrometer. Some sites (14) were explicitly selected based on military information on the use of depleted uranium munitions in the vicinity. After careful analysis we can conclude that there is no indication of any depleted uranium contamination on these 50 sites with a minimal detectable activity of 15 Bq; this corresponds approximately to 1 mg depleted uranium in a typical sample (100-150 g). PMID:12240731

  4. Determination of radionuclides and elemental composition of clay soils by gamma- and X-ray spectrometry.

    PubMed

    Omoniyi, Isinkaye M; Oludare, Shitta M B; Oluwaseyi, Oderinde M

    2013-12-01

    Radiochemical and elemental analysis of clay soils collected from different locations within Ekiti State have been performed in this study using gamma and XRF spectrometric measurements. The results of this study show that the mean concentrations of uranium ranged from 2.2 ± 1.0 mg/kg to 3.2 ± 1.1 mg/kg, that of thorium ranged from 4.0 ± 0.5 mg/kg to 5.7 ± 1.7 mg/kg, while potasium presented in % by weight ranged from 0.4 ± 0.2 to 1.3 ± 0.3 in all the locations. The overall mean concentrations of these radionuclides are comparable to values from other locations around the world. The XRF analysis revealed 4 major elements and 11 minor or trace elements present in the clay samples. The distribution of the various major and trace elements in all the sampling sites do not follow any systematic trend but vary from point to point. To assess the level of contamination and the possible anthropogenic impact in the clay soils, the enrichment factor (EF) and the geoaccumulation index (Igeo) were estimated for some potential hazardous elements. The results indicate that Cu, Zn, Ni and Mn have EF < 2 indicating minimal or no enrichment while Pb is moderately enriched in all the locations. PMID:23518799

  5. Evaluation of the Doppler-Broadening of Gamma-Ray Spectra from Neutron Inelastic Scattering on Light Nuclei

    SciTech Connect

    Womble, Phillip C.; Barzilov, Alexander; Novikov, Ivan; Howard, Joseph; Musser, Jason

    2009-03-10

    Neutron-induced gamma-ray reactions are extensively used in the nondestructive analysis of materials and other areas where the information about the chemical composition of a substance is crucial. The common technique to find the intensity of the gamma ray is to fit gamma-ray line shape with an analytical function, for example, a Gaussian. However, the Gaussian fitting may fail if the gamma-ray peak is Doppler-broadened since this leads to the miscalculation of the area of the peak and, therefore, to misidentification of the material. Due to momentum considerations, Doppler-broadening occurs primarily with gamma rays from neutron-induced inelastic scattering reactions with light nuclei. The recoiling nucleus of interest must have excited states whose lifetimes are much smaller than the time of flight in the material. We have examined various light nuclei bombarded by 14 MeV neutrons to predict when the peak shape of a neutron-induced gamma ray emitted from these nuclei will be Doppler-broadened. We have found that nearly all the gamma rays from neutron-induced gamma-ray reactions on light elements (A<20) are Doppler-broadened with only a few exceptions. This means that utilization of resolution curves derived from isotopic sources or thermal neutron capture reactions have little value in the analysis.

  6. Calculations of an effective solid angle including self-absorption correction applied to gamma-ray spectrometry analysis of natural samples

    NASA Astrophysics Data System (ADS)

    Fraczkiewicz, R.; Walkowiak, W.

    1992-09-01

    A new method is presented for determination of uranium and thorium contents in solid samples by gamma-ray spectrometry. The analytical procedure involved determination of uranium via the 63.288 keV gamma emission of its daughter 234Th and thorium on the basis of 238.578 keV 212Pb peak. The radiochemical equilibrium was assumed. Geometry effects and exact self-absorption were taken into account by measurements of sample linear absorption coefficients and calculation of effective solid angle. IAEA standards were used for determination of detector efficiency. The method provides reliable analytical measurements even for samples much different from standard reference materials in density and gamma absorption.

  7. 'Discrepant hardenings' in cosmic ray spectra: A first estimate of the effects on secondary antiproton and diffuse gamma-ray yields

    SciTech Connect

    Donato, Fiorenza; Serpico, Pasquale D.

    2011-01-15

    Recent data from CREAM seem to confirm early suggestions that primary cosmic ray spectra at few TeV/nucleon are harder than in the 10-100 GeV range. Also, helium and heavier nuclei spectra appear systematically harder than the proton fluxes at corresponding energies. We note here that if the measurements reflect intrinsic features in the interstellar fluxes (as opposed to local effects) appreciable modifications are expected in the sub-TeV range for the secondary yields, such as antiprotons and diffuse gamma rays. Presently, the ignorance on the origin of the features represents a systematic error in the extraction of astrophysical parameters as well as for background estimates for indirect dark matter searches. We find that the spectral modifications are appreciable above 100 GeV, and can be responsible for {approx}30% effects for antiprotons at energies close to 1 TeV or for gammas at energies close to 300 GeV, compared to currently considered predictions based on simple extrapolation of input fluxes from low-energy data. Alternatively, if the feature originates from local sources, uncorrelated spectral changes might show up in antiproton and high-energy gamma rays, with the latter ones likely dependent from the line of sight.

  8. Gamma-carboxylation and fragmentation of osteocalcin in human serum defined by mass spectrometry.

    PubMed

    Rehder, Douglas S; Gundberg, Caren M; Booth, Sarah L; Borges, Chad R

    2015-06-01

    Serum osteocalcin (Oc) concentration is a highly specific measure of bone turnover, but its circulating proteoform(s) have not been well defined. Based on immunological methods, the major forms are thought to be the intact polypeptide and a large N-terminal-mid molecule fragment for which there is no consensus on the precise sequence. Vitamin K-dependent gamma (γ)-carboxylated variants of Oc are also found in circulation but there have been no methods that can define how many of the three potential γ-carboxyglutamic acid (Gla) residues are γ-carboxylated or provide their relative abundances. Recent reports that uncarboxylated and partially γ-carboxylated Oc forms have hormonal function underscore the need for precise evaluation of Oc at all three potential γ-carboxylation sites. Herein, mass spectrometric immunoassay (MSIA) was used to provide qualitative and semiquantitative (relative percent abundance) information on Oc molecular variants as they exist in individual plasma and serum samples. Following verification that observable Oc proteoforms were accurately assigned and not simply ex vivo artifacts, MALDI-MSIA and ESI-MSIA were used to assess the relative abundance of Oc truncation and γ-carboxylation, respectively, in plasma from 130 patients enrolled in vitamin K supplementation trials. Human Oc was found to circulate in over a dozen truncated forms with each of these displaying anywhere from 0-3 Gla residues. The relative abundance of truncated forms was consistent and unaffected by vitamin K supplementation. In contrast, when compared with placebo, vitamin K supplementation dramatically increased the fractional abundance of Oc with three Gla residues, corresponding to a decrease in the fractional abundance of Oc with zero Gla residues. These findings unequivocally document that increased vitamin K intake reduces the uncarboxylated form of Oc. Several reports of a positive effect of vitamin K intake on insulin sensitivity in humans have shown that un

  9. Gamma-Carboxylation and Fragmentation of Osteocalcin in Human Serum Defined by Mass Spectrometry*

    PubMed Central

    Rehder, Douglas S.; Gundberg, Caren M.; Booth, Sarah L.; Borges, Chad R.

    2015-01-01

    Serum osteocalcin (Oc) concentration is a highly specific measure of bone turnover, but its circulating proteoform(s) have not been well defined. Based on immunological methods, the major forms are thought to be the intact polypeptide and a large N-terminal-mid molecule fragment for which there is no consensus on the precise sequence. Vitamin K-dependent gamma (γ)-carboxylated variants of Oc are also found in circulation but there have been no methods that can define how many of the three potential γ-carboxyglutamic acid (Gla) residues are γ-carboxylated or provide their relative abundances. Recent reports that uncarboxylated and partially γ-carboxylated Oc forms have hormonal function underscore the need for precise evaluation of Oc at all three potential γ-carboxylation sites. Herein, mass spectrometric immunoassay (MSIA) was used to provide qualitative and semiquantitative (relative percent abundance) information on Oc molecular variants as they exist in individual plasma and serum samples. Following verification that observable Oc proteoforms were accurately assigned and not simply ex vivo artifacts, MALDI-MSIA and ESI-MSIA were used to assess the relative abundance of Oc truncation and γ-carboxylation, respectively, in plasma from 130 patients enrolled in vitamin K supplementation trials. Human Oc was found to circulate in over a dozen truncated forms with each of these displaying anywhere from 0–3 Gla residues. The relative abundance of truncated forms was consistent and unaffected by vitamin K supplementation. In contrast, when compared with placebo, vitamin K supplementation dramatically increased the fractional abundance of Oc with three Gla residues, corresponding to a decrease in the fractional abundance of Oc with zero Gla residues. These findings unequivocally document that increased vitamin K intake reduces the uncarboxylated form of Oc. Several reports of a positive effect of vitamin K intake on insulin sensitivity in humans have shown that

  10. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    NASA Astrophysics Data System (ADS)

    Sergeyeva, Victoria; Domergue, Christophe; Destouches, Christophe; Girard, Jean Michel; Philibert, Hervé; Bonora, Jonathan; Thiollay, Nicolas; Lyoussi, Abdallah

    2016-02-01

    The CEA MADERE platform (Measurement Applied to DosimEtry in REactors) is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI). This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuous improvement process. Recently, two High Efficiency diodes have been integrated to the MADERE platform in order to manage the accurate low level activity measurements (few Bq per sample). This new equipment provides a good level of efficiency over the energy range from 60 keV to 2 MeV. The background continuum is reduced due to the use of a Ultra Low Background (ULB) lead shielding. Relative and absolute X-ray measurement techniques have been improved in order to facilitate absolute rhodium activity measurement (Rh103m) on solid samples. Additional efforts have been made to increase the accuracy of the relative niobium (Nb93m) activity measurement technique. The way of setting up an absolute measurement method for niobium is under investigation. After a presentation of the MADERE's measurement devices, this paper focuses on the technological options taken into account for the design of high efficiency measurement devices. Then, studies performed on X-ray measurement techniques are presented. Some details about the calculation of uncertainties and correction factors are also mentioned. Finally, future research and development axes are exposed.

  11. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    ElBatal, F. H.; Abdelghany, A. M.; ElBatal, H. A.

    2014-03-01

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe3+) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi3+) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi3+ ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  12. High Pressure Mass Spectrometry: The Generation of Mass Spectra at Operating Pressures Exceeding 1 Torr in a Microscale Cylindrical Ion Trap.

    PubMed

    Blakeman, Kenion H; Wolfe, Derek W; Cavanaugh, Craig A; Ramsey, J Michael

    2016-05-17

    We present the first demonstration of high pressure mass spectrometry (HPMS), which we define as mass spectrometry performed at pressures greater than 100 mTorr. Mass analysis is shown at operational pressures exceeding 1 Torr of helium buffer gas. A differentially pumped MS system was constructed for HPMS development consisting of two chambers. The first chamber (mass analysis chamber) was operated at pressures up to 1.2 Torr and contained the ionization source and a microscale cylindrical ion trap (CIT) mass analyzer. The CIT had critical dimensions of r0 = 500 μm and z0 = 650 μm. The second chamber was held at a lower pressure (≤10 mTorr) and contained an electron multiplier for detection. Mass spectra for xenon, 2-chloroethyl ethyl sulfide (CEES), and octane were acquired with helium buffer gas pressures ranging from 0.04 to 1.2 Torr in the mass analysis chamber. Full-width at half-maximum of mass spectral peaks was found to increase 143% for xenon, 40% for CEES, and 77% for octane over this pressure range, with maximum peak widths of 1.19, 1.26, and 0.82 Da, respectively. Data were fitted with an algebraic model that factors in ion-neutral collision peak broadening effects at high pressures. Experimental and theoretical peak broadening slopes showed good agreement at buffer gas pressures greater than 0.2 Torr. Experiments presented here demonstrate mass spectrometry at pressures orders of magnitude higher than conventionally practiced with any type of mass analyzer. The use of HPMS provides a way to eliminate turbo pumping requirements, leading to significant reduction in MS system size, weight, and power and facilitating a path toward compact/hand-held mass spectrometers with numerous potential applications. PMID:27109864

  13. Gamma Emission Spectra from Neutron Resonances in 234,236,238U Measured Using the Dance Detector at Lansce

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2013-03-01

    An accurate knowledge of the radiative strength function and level density is needed to calculate of neutron-capture cross sections. An additional constraint on these quantities is provided by measurements of γ-ray emission spectra following capture. We present γ-emission spectra from several neutron resonances in 234,236,238U, measured using the DANCE detector at LANSCE. The measurements are compared to preliminary calculations of the cascade. It is observed that the generalized Lorentzian form of the E1 strength function cannot reproduce the shape of the emission spectra, but a better description is made by adding low-lying M1 Lorentzian strength.

  14. DS02 fluence spectra for neutrons and gamma rays at Hiroshima and Nagasaki with fluence-to-kerma coefficients and transmission factors for sample measurements.

    PubMed

    Egbert, Stephen D; Kerr, George D; Cullings, Harry M

    2007-11-01

    Fluence spectra at several ground distances in Hiroshima and Nagasaki are provided along with associated fluence-to-kerma coefficients from the Dosimetry System 2002 (DS02). Also included are transmission factors for calculating expected responses of in situ sample measurements of neutron activation products such as (32)P,(36)Cl,(39)Ar,(41)Ca, (60)Co,(63)Ni,(152)Eu, and (154)Eu. The free-in-air (FIA) fluences calculated in 2002 are available for 240 angles, 69 energy groups, 101 ground distances, 5 heights, 4 radiation source components, 2 cities. The DS02 code uses these fluences partitioned to a prompt and delayed portion, collapsed to 58 energy groups and restricted to 97 ground distances. This is because the fluence spectra were required to be in the same format that was used in the older Dosimetry System 1986 (DS86) computer code, of which the DS02 computer code is a modification. The 2002 calculation fluences and the collapsed DS02 code fluences are presented and briefly discussed. A report on DS02, which is available on the website at the Radiation Effects Research Foundation, provides tables and figures of the A-bomb neutron and gamma-ray output used as the sources in the 2002 radiation transport calculations. While figures illustrating the fluence spectra at several ground ranges are presented in the DS02 Report, it does not include any tables of the calculated fluence spectra in the DS02 report. This paper provides, at several standard distances from the hypocenter, the numerical information which is required to translate the FIA neutron fluences given in DS02 to a neutron activation measurement or neutron and gamma-ray soft-tissue dose. PMID:17643260

  15. The MGA code for the determination of the isotopic composition of plutonium and MOX by gamma spectrometry — A performance study

    NASA Astrophysics Data System (ADS)

    Abousahl, S.; Michiels, A.; Bickel, M.; Gunnink, R.; Verplancke, J.

    1996-01-01

    Plutonium is a special nuclear material which must be accurately measured and accounted for, both with respect to mass and isotopic composition. The MGA code for evaluation of plutonium gamma spectra has been tested in this work with respect to its dependence on various instrumental and sample parameters. Results show that the code is generally reliable under the tested conditions. Recommendations for the equipment to be applied are given.

  16. A mass spectrometric analysis of {gamma}-GPS films

    SciTech Connect

    Dillingham, R.G.; Boerio, F.J.; Bertelsen, C.; Savina, M.R.; Lykke, K.R.; Calaway, W.F.

    1996-06-01

    {gamma}-glycidoxypropyltrimethoxysilane ({gamma}-GPS) is used for pre-treatment of grit-blasted aluminum before adhesive bonding. This paper discusses analysis of non-reflective grit-blasted surfaces using mass spectrometry of species that were either sputtered off using an ion beam or thermally desorbed as neutrals using a pulsed laser and then post-ionized using a secondary laser. Results show that fragmentation is excessive and structural information is difficult to obtain from the spectra.

  17. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry.

    PubMed

    Arnhard, Kathrin; Gottschall, Anna; Pitterl, Florian; Oberacher, Herbert

    2015-01-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become an indispensable analytical technique in clinical and forensic toxicology for detection and identification of potentially toxic or harmful compounds. Particularly, non-target LC-MS/MS assays enable extensive and universal screening requested in systematic toxicological analysis. An integral part of the identification process is the generation of information-rich product ion spectra which can be searched against libraries of reference mass spectra. Usually, 'data-dependent acquisition' (DDA) strategies are applied for automated data acquisition. In this study, the 'data-independent acquisition' (DIA) method 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) was combined with LC-MS/MS on a quadrupole-quadrupole-time-of-flight (QqTOF) instrument for acquiring informative high-resolution tandem mass spectra. SWATH performs data-independent fragmentation of all precursor ions entering the mass spectrometer in 21m/z isolation windows. The whole m/z range of interest is covered by continuous stepping of the isolation window. This allows numerous repeat analyses of each window during the elution of a single chromatographic peak and results in a complete fragment ion map of the sample. Compounds and samples typically encountered in forensic casework were used to assess performance characteristics of LC-MS/MS with SWATH. Our experiments clearly revealed that SWATH is a sensitive and specific identification technique. SWATH is capable of identifying more compounds at lower concentration levels than DDA does. The dynamic range of SWATH was estimated to be three orders of magnitude. Furthermore, the >600,000 SWATH spectra matched led to only 408 incorrect calls (false positive rate = 0.06 %). Deconvolution of generated ion maps was found to be essential for unravelling the full identification power of LC-MS/MS with SWATH. With the available software, however, only semi

  18. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  19. Resolvin D1, Protectin D1, and Related Docosahexaenoic Acid-Derived Products: Analysis via Electrospray/Low Energy Tandem Mass Spectrometry based on Spectra and Fragmentation Mechanisms

    PubMed Central

    Hong, Song; Lu, Yan; Yang, Rong; Gotlinger, Katherine H.; Petasis, Nicos P.; Serhan, Charles N.

    2009-01-01

    Resolvin D1 (RvD1) and Protectin D1 (Neuroprotectin D1, PD1/NPD1) are newly identified anti-inflammatory lipid mediators biosynthesized from docosahexaenoic acid (DHA). In this report, the spectra-structure correlations and fragmentation mechanisms were studied using electrospray low-energy collision-induced dissociation tandem mass spectrometry (MS/MS) for biogenic RvD1 and PD1, as well as mono-hydroxy-DHA and related hydroperoxy-DHA. The loss of H2O and CO2 in the spectra indicates the number of functional group(s). Chain-cut ions are the signature of the positions and numbers of functional groups and double-bonds. The observed chain-cut ion is equivalent to a hypothetical homolytic-segment (cc, cm, mc, or mm) with addition or extraction of up to 2 protons (H). The α-cleavage ions are equivalent to: [cc + H], with H from the hydroxyl through a β-ene or γ-ene rearrangement; [cm - 2H], with 2H from hydroxyls of PD1 through a γ-ene rearrangement, or one H from the hydroxyl and the other H from the α-carbon of mono-HDHA through an α-H-β-ene rearrangement; [mc – H], with H from hydroxyl through a β-ene or γ-ene rearrangement, or from the α-carbon through an α-H-β-ene rearrangement; or [mm] through charge-direct fragmentations. The β-ene or γ-ene facilitates the H shift to γ position and α-cleavage. Deuterium labeling confirmed the assignment of MS/MS ions and the fragmentation mechanisms. Based on the MS/MS spectra and fragmentation mechanisms, we identified RvD1, PD1, and mono-hydroxy-DHA products in human neutrophils and blood, trout head-kidney, and stroke-injury murine brain-tissues. PMID:17055291

  20. Monte Carlo based method for conversion of in-situ gamma ray spectra obtained with a portable Ge detector to an incident photon flux energy distribution.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    1998-02-01

    A Monte Carlo based method for the conversion of an in-situ gamma-ray spectrum obtained with a portable Ge detector to photon flux energy distribution is proposed. The spectrum is first stripped of the partial absorption and cosmic-ray events leaving only the events corresponding to the full absorption of a gamma ray. Applying to the resulting spectrum the full absorption efficiency curve of the detector determined by calibrated point sources and Monte Carlo simulations, the photon flux energy distribution is deduced. The events corresponding to partial absorption in the detector are determined by Monte Carlo simulations for different incident photon energies and angles using the CERN's GEANT library. Using the detector's characteristics given by the manufacturer as input it is impossible to reproduce experimental spectra obtained with point sources. A transition zone of increasing charge collection efficiency has to be introduced in the simulation geometry, after the inactive Ge layer, in order to obtain good agreement between the simulated and experimental spectra. The functional form of the charge collection efficiency is deduced from a diffusion model. PMID:9450590

  1. Speciation of Nitrogen-Bearing Species Using Negative and Positive Secondary Ion Spectra with Nano Secondary Ion Mass Spectrometry.

    PubMed

    Li, Kexue; Sinha, Baerbel; Hoppe, Peter

    2016-03-15

    In this study, we demonstrate that Nano Secondary Ion Mass Spectrometry (NanoSIMS) can be used to differentiate different nitrogen-containing species commonly observed in atmospheric aerosol particles with micrometer or submicrometer spatial resolution, on the basis of the relative intensity of secondary ion signals, both in negative and positive secondary ion mode, without the need to chemically or physically separate the samples. Compounds tested include nitrate, nitrite, ammonium salts, urea, amino acids, sugars, organic acids, amides, triazine, imidazole, protein, and biological tissue. We show that NO2(-) secondary ions are unique to the decomposition of nitrate and nitrite salts, whereas NH4(+) secondary ions are unique to samples containing ammonium ions, with low signal intensities observed from amino groups but none from biological tissue. CN(-) signals are obtained from all nitrogen-bearing compounds, but relative signal intensities are the highest for organic nitrogen-containing compounds. We demonstrate that quantitative determination of the elemental fractions of carbon, oxygen, and nitrate in nanometer-sized aerosol samples using normalized secondary ion intensities is possible. We further demonstrate that stable isotope ratios measured on in-house standards of unknown isotopic composition using the (12)C(15)N(-)/(12)C(14)N(-) ratio (all nitrogen-containing species), the (15)N(16)O2(-)/(14)N(16)O2(-) ratio (nitrate and nitrite species), and the (15)NH4(+)/(14)NH4(+) ratio (ammonium salts, amino acids, and urea) are stable and sufficiently precise for nitrogen isotope analysis. PMID:26854563

  2. Building-up a code for the purpose of TRUE coincidence summing correction in gamma-ray spectrometry with EGS4

    NASA Astrophysics Data System (ADS)

    Celik, Necati; Altin, Duygu; Cevik, Ugur

    2015-10-01

    In the presented study, a code was created for the purpose of true coincidence summing (TCS) correction factors for 134Cs. The created code was implemented in EGS4 Monte Carlo simulation package. TCS factors were determined for nine different energies for different detector-source geometries. The calculated results were successfully validated by an empirical method using a point 134Cs radioactive source and a p-type HPGe detector having 55% relative efficiency. Although the code created gives TCS factors only for 134Cs, the technique presented can be used to obtain the factors for any radionuclide used in gamma-ray spectrometry.

  3. A search for double-electron capture of 74Se to excited levels using coincidence/anticoincidence gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Ješkovský, M.; Frekers, D.; Kováčik, A.; Povinec, P. P.; Puppe, P.; Staníček, J.; Sýkora, I.; Šimkovic, F.; Thies, J. H.

    2015-09-01

    Evaluation of single, coincidence and anticoincidence gamma-ray spectrometry methods has been carried out with the aim to search for double-electron capture of 74Se to excited states. This process is unique, because there is probability for transition to the 2+ excited state in 74Ge (1204 keV), and de-excitation through two gamma-quanta cascade with energies of 595.9 keV and 608.4 keV. Long-term measurements with an anticosmic shielded HPGe (high purity Ge) spectrometer and a coincidence HPGe-NaI(Tl) spectrometer did not show any evidence for the double-electron capture in 74Se. The best limit for the half-life of the double electron capture in 74Se (both for the neutrinoless and two neutrino processes) was estimated to be >1.5×1019 yr.

  4. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    PubMed

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles. PMID:11542904

  5. Development of a neural network approach to characterise (226)Ra contamination at legacy sites using gamma-ray spectra taken from boreholes.

    PubMed

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul

    2015-02-01

    There are a large number of sites across the UK and the rest of the world that are known to be contaminated with (226)Ra owing to historical industrial and military activities. At some sites, where there is a realistic risk of contact with the general public there is a demand for proficient risk assessments to be undertaken. One of the governing factors that influence such assessments is the geometric nature of contamination particularly if hazardous high activity point sources are present. Often this type of radioactive particle is encountered at depths beyond the capabilities of surface gamma-ray techniques and so intrusive borehole methods provide a more suitable approach. However, reliable spectral processing methods to investigate the properties of the waste for this type of measurement have yet to be developed since a number of issues must first be confronted including: representative calibration spectra, variations in background activity and counting uncertainty. Here a novel method is proposed to tackle this issue based upon the interrogation of characteristic Monte Carlo calibration spectra using a combination of Principal Component Analysis and Artificial Neural Networks. The technique demonstrated that it could reliably distinguish spectra that contained contributions from point sources from those of background or dissociated contamination (homogenously distributed). The potential of the method was demonstrated by interpretation of borehole spectra collected at the Dalgety Bay headland, Fife, Scotland. Predictions concurred with intrusive surveys despite the realisation of relatively large uncertainties on activity and depth estimates. To reduce this uncertainty, a larger background sample and better spatial coverage of cores were required, alongside a higher volume better resolution detector. PMID:25461525

  6. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    SciTech Connect

    Ullmann, John L; Couture, A J; Keksis, A L; Vieira, D J; O' Donnell, J M; Jandel, M; Haight, R C; Rundberg, R S; Kawano, T; Chyzh, A; Baramsai, B; Wu, C Y; Mitchell, G E; Becker, J A; Krticka, M

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  7. The use of the bulk properties of gamma-ray burst prompt emission spectra for the study of cosmology

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam

    The study of bulk spectral properties of Gamma-Ray Bursts (GRBs) is important to understanding the physics behind these powerful explosions and may even be an aide in studying cosmology. The prompt emission spectral properties have long been studied by a growing community of researchers, and many theories have been developed since the discovery of GRBs. Even though the exact physics of these phenomena is not completely understood, GRBs have been proposed to give insight on other astrophysical phenomena from dark matter to the expansion of the universe. Obviously, using GRBs to study cosmology requires a large sample size to adequately constrain results and provide confident conjectures. For this reason, BATSE and GBM results are paramount to the study of the prompt emission of GRBs. Using results from both instruments, I study the bulk spectral properties of GRBs and describe analysis techniques that can be used to study cosmology.

  8. Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized CeBr3, LaBr3:Ce, and NaI:Tl Gamma-Ray Detectors

    SciTech Connect

    Guss, Paul; Reed, Michael; Yuan, Ding; Beller, Denis; Cutler, Matthew; Contreras, Chris; Mukhopadhyay, Sanjoy; Wilde, Scott UNLV

    2014-03-01

    Gamma-ray energy spectra were acquired for different sizes of cerium tribromide (CeBr3), cerium-doped lanthanum tribromide (LaBr3:Ce), and thallium-doped sodium iodide (NaI:Tl) detectors. A comparison was conducted of the energy resolution and detection efficiency of these scintillator detectors for different sizes of detectors. The results of this study are consistent with the observation that for each size detector, LaBr3:Ce offers better resolution than either a CeBr3 or NaI:Tl detector of the same size. In addition, CeBr3 and LaBr3:Ce detectors could resolve some closely spaced peaks in the spectra of several radioisotopes that NaI:Tl could not. As the detector size increased, all three detector materials exhibited higher efficiency, albeit with slightly reduced resolution. Significantly, the very low intrinsic activity of CeBr3 is also demonstrated in this study, which, when combined with energy resolution characteristics for a range of detector sizes, could lead to an improved ability to detect special nuclear materials compared to the other detectors.

  9. Method for the Compound Annotation of Conjugates in Nontargeted Metabolomics Using Accurate Mass Spectrometry, Multistage Product Ion Spectra and Compound Database Searching

    PubMed Central

    Ogura, Tairo; Bamba, Takeshi; Tai, Akihiro; Fukusaki, Eiichiro

    2015-01-01

    Owing to biotransformation, xenobiotics are often found in conjugated form in biological samples such as urine and plasma. Liquid chromatography coupled with accurate mass spectrometry with multistage collision-induced dissociation provides spectral information concerning these metabolites in complex materials. Unfortunately, compound databases typically do not contain a sufficient number of records for such conjugates. We report here on the development of a novel protocol, referred to as ChemProphet, to annotate compounds, including conjugates, using compound databases such as PubChem and ChemSpider. The annotation of conjugates involves three steps: 1. Recognition of the type and number of conjugates in the sample; 2. Compound search and annotation of the deconjugated form; and 3. In silico evaluation of the candidate conjugate. ChemProphet assigns a spectrum to each candidate by automatically exploring the substructures corresponding to the observed product ion spectrum. When finished, it annotates the candidates assigning a rank for each candidate based on the calculated score that ranks its relative likelihood. We assessed our protocol by annotating a benchmark dataset by including the product ion spectra for 102 compounds, annotating the commercially available standard for quercetin 3-glucuronide, and by conducting a model experiment using urine from mice that had been administered a green tea extract. The results show that by using the ChemProphet approach, it is possible to annotate not only the deconjugated molecules but also the conjugated molecules using an automatic interpretation method based on deconjugation that involves multistage collision-induced dissociation and in silico calculated conjugation. PMID:26819907

  10. Propagation of uncertainties in sample properties to the uncertainty of the counting efficiency in gamma-ray spectrometry.

    PubMed

    Korun, M

    2001-11-01

    Explicit expressions are derived describing the variance of the counting efficiency for a homogeneous cylindrical sample, placed coaxially on the detector's symmetry axis, in terms of the variances of the sample properties thickness, density and composition. In the derivation, the emission of gamma-rays parallel to the sample axis and the efficiency for an area source proportional to the solid angle subtended by the source from the effective point of interaction of the gamma-rays within the detector crystal are assumed. For the uncertainties of the mass attenuation coefficients, as well as for the uncertainties of concentrations of admixtures to the sample matrix, constant relative uncertainties are assumed. PMID:11573802

  11. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  12. Evaluation of comparison and proficiency test results of gamma ray spectrometry at Jožef Stefan Institute from 1986 to 2014.

    PubMed

    Glavič-Cindro, Denis; Korun, Matjaž; Nečemer, Marijan; Vodenik, Branko; Zorko, Benjamin

    2016-03-01

    One of the best ways to demonstrate the performance and capabilities of testing laboratories is to participate successfully in different international comparison schemes and proficiency tests. The overview of all results of such schemes in the field of high resolution gamma-ray spectrometry where the Laboratory for Radioactivity Measurements (LMR) of the Jožef Stefan Institute (JSI), Slovenia, participated in years 1986-2014 is presented. Different schemes are compared, strong points and drawbacks of different providers and schemes regarding evaluation procedures, determination of reference values, reporting time, sets of radionuclides included in the samples and range of activities of different radionuclides are discussed. One of the main conclusions is that the comparison and proficiency test samples normally contain substantially larger activities than are usually detected in environmental samples. Therefore the capability of determination of activities close to detection limits is usually covered only by few schemes. PMID:26706285

  13. Determination of thorium-232 in Canadian soils by gamma-ray spectrometry via lead-212 and actinium-228, interference from uranium

    SciTech Connect

    Zikovsky, L.; Blagoeva, R.

    1994-12-31

    Thorium-232 background levels in non-cultivated Canadian soils (southern and northern Quebec and the Northwest Territories) are presented. Gamma-ray spectrometry was used to determine the activity of {sup 232}Th by measuring the activities of {sup 228}Ac and {sup 212}Pb at 37 sites. The specific activity levels ranged from 2.7 to 95.5 Bq/kg with an overall mean of 24.0 {+-} 15.4 Bq/kg. This activity generated an annual absorbed dose equivalent in air of 0.1 mSv. The activities of {sup 228}Ac and {sup 212}Pb in the soil increased with increasing depth. IT was found that uranium, via its decay product radium, can interfere with the determination of thorium in the soil.

  14. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    PubMed

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps. PMID:21617292

  15. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    SciTech Connect

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  16. Assessing sample attenuation parameters for use in low-energy efficiency transfer in gamma-ray spectrometry.

    PubMed

    Bruggeman, M; Verheyen, L; Vidmar, T; Liu, B

    2016-03-01

    We present a numerical fitting method for transmission data that outputs an equivalent sample composition. This output is used as input to a generalised efficiency transfer model based on the EFFTRAN software integrated in a LIMS. The procedural concept allows choosing between efficiency transfer with a predefined sample composition or with an experimentally determined composition based on a transmission measurement. The method can be used for simultaneous quantification of low-energy gamma emitters like (210)Pb, (241)Am, (234)Th in typical environmental samples. PMID:26688363

  17. The natural radioactivity measurements in coastal sediment samples along the East Coast of Tamilnadu using gamma spectrometry technique

    SciTech Connect

    Chandramohan, J.; Tholkappian, M.; Harikrishnan, N.; Ravisankar, R.

    2015-08-28

    The natural radioactivity concentration in beach sediment samples collected from Pattipulam to Devanampattinam of East Coast of Tamilnadu have been determined by NaI (TI) gamma ray spectrometer. The specific activity concentrations range from ≤ 2.21 (BDL) to 37.02 Bq kg{sup −1} with a mean of 3.79 Bqkg{sup −1} for {sup 238}U, ≤ 2.11 (BDL) to 643.77 Bqkg{sup −1} with a mean of 49.60 Bqkg{sup −1} for {sup 232}Th and 300.34 Bqkg{sup −1} to 449.08 Bqkg{sup −1} with a mean of 360.23 Bqkg{sup −1} for {sup 40}K. The potential radiological hazards due to natural radionuclides content such as Radium Equivalent activity (Ra{sub eq}), Representative level index (RLI), External hazard index (H{sub ex}), absorbed gamma does rate (D{sub R}), and Annual effective dose rate (AEDR) are estimated to assess the radiation hazard associated with the sediments. The obtained data are compared with the recommended safety limits and international approved values. All the values are well below the recommended safety limits indicating that radiation levels do not poses any significant health hazard to the public in the area as a result of the natural radioactivity of beach sediments. This study may help the baseline data for more extensive works in the same subjects of future studies.

  18. The natural radioactivity measurements in coastal sediment samples along the East Coast of Tamilnadu using gamma spectrometry technique

    NASA Astrophysics Data System (ADS)

    Chandramohan, J.; Tholkappian, M.; Harikrishnan, N.; Ravisankar, R.

    2015-08-01

    The natural radioactivity concentration in beach sediment samples collected from Pattipulam to Devanampattinam of East Coast of Tamilnadu have been determined by NaI (TI) gamma ray spectrometer. The specific activity concentrations range from ≤ 2.21 (BDL) to 37.02 Bq kg-1 with a mean of 3.79 Bqkg-1 for 238U, ≤ 2.11 (BDL) to 643.77 Bqkg-1 with a mean of 49.60 Bqkg-1 for 232Th and 300.34 Bqkg-1 to 449.08 Bqkg-1 with a mean of 360.23 Bqkg-1 for 40K. The potential radiological hazards due to natural radionuclides content such as Radium Equivalent activity (Raeq), Representative level index (RLI), External hazard index (Hex), absorbed gamma does rate (DR), and Annual effective dose rate (AEDR) are estimated to assess the radiation hazard associated with the sediments. The obtained data are compared with the recommended safety limits and international approved values. All the values are well below the recommended safety limits indicating that radiation levels do not poses any significant health hazard to the public in the area as a result of the natural radioactivity of beach sediments. This study may help the baseline data for more extensive works in the same subjects of future studies.

  19. Investigation of the environmental impacts of naturally occurring radionuclides in the processing of sulfide ores for gold using gamma spectrometry.

    PubMed

    Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C

    2011-09-01

    The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment. PMID:21865616

  20. Evaluation of natural radioactivity content in high-volume surface water samples along the northern coast of Oman Sea using portable high-resolution gamma-ray spectrometry.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Omidi, Zohre; Khorambagheri, Mahdi; Mortazavi, Mohammad Seddigh; Ebrahimi, Mahmood; Akbarzadeh, Gholamali

    2015-06-01

    Portable high-resolution gamma-ray spectrometry was carried out to determine the natural radioactivity levels in high volume surface water samples of the northern coast of Oman Sea, covering the coastal strip from Hormoz strait to Goatr seaport, for the first time. The water samples from 36 coastal and near shore locations were collected for analysis. Analyses on the samples collected were carried out to determine (226)Ra, (232)Th and (40)K contents. The concentration of (226)Ra, (232)Th and (40)K in surface water samples ranged between 2.19 and 2.82 Bq/L, 1.66-2.17 Bq/L and 132.6-148.87 Bq/L, respectively. The activity profile of radionuclides shows low activity across the study area. The study also examined some radiation hazard indices. The external hazard index was found to be less than 1, indicating a low dose. The results of measurements will serve as background reference level for Oman Sea coastlines. PMID:25847859

  1. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Lansard, B; Bourquin, M; Reyss, J-L; von Ballmoos, P; Jean, P

    2013-02-01

    We describe a new underground laboratory, namely LAFARA (for "LAboratoire de mesure des FAibles RAdioactivités"), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ∼20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of (226)Ra in sedimentary barite (BaSO(4)), ii) determination of (227)Ac ((231)Pa) activities in marine sediment cores. PMID:23164692

  2. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry.

    PubMed

    Malczewski, D; Teper, L; Dorda, J

    2004-01-01

    The natural radioactivity of 40K, 208Ti, 212Pb, 214Pb, 228Ac, and the fallout of 137Cs in typical rocks and soils of Swieradów Zdrój area (Sudetes Mountains, Poland) were measured in situ using a portable gamma-ray spectrometry workstation. The measurement points were chosen for different regional lithology: within hornfelses of the Szklarska Poreba schist-belt, quartz rocks, gneisses of the Swieradów Zdrój unit, leucogranites, leptinites, mica schists of the Stara Kamienica belt, and finally the zones of the southern and northern contacts of the Stara Kamienica schist-belt with leucogranites and gneisses of the Lesna unit, respectively. 40K activity varied in the range from about 320 Bq kg(-1) (quartz) to 1200 Bq kg(-1) (gneisses). The activity concentrations associated with 228Ac (232Th series) varied in the range from 25 Bq kg(-1) (quartz) to 62 Bq kg(-1) (leucogranites), whereas activity concentration of 226Ra varied in the range from about 31 Bq kg(-1) (hornfelses) to 122 Bq kg(-1) (leucogranites). Relatively low deposits of 137Cs were noted in the investigated area, where the activity concentrations ranged from 4001 (hornfelses) Bq m(-2) to less than 154 Bq m(-2) (leucogranites). PMID:15050357

  3. Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry.

    PubMed

    Vargas, M Jurado; Timón, A Fernández; Díaz, N Cornejo; Sánchez, D Pérez

    2002-12-01

    Gamma-ray self-attenuation corrections in the energy range 60-2000 keV were evaluated by means of Monte Carlo calculations for environmental samples in a cylindrical measuring geometry. The dependence of the full-energy peak efficiency on the sample density was obtained for some particular photon energies and, as a result, the corresponding self-attenuation correction factors were obtained. The calculations were performed by assuming that natural materials have mass attenuation coefficients very similar to those of water in the energy range studied. Three different HpGe coaxial detectors were considered: an n-type detector with 44.3% relative efficiency and two p-type detectors of relative efficiencies 20.0% and 30.5%. Our calculations were in very good agreement with the self-attenuation correction factors obtained experimentally by other workers for environmental samples of different densities. This work demonstrates the reliability of Monte Carlo calculations for correcting photon self-attenuation in natural samples. The results also show that the corresponding correction factors are essentially unaffected by the specific coaxial detector used. PMID:12406634

  4. Systematic influences of gamma-ray spectrometry data near the decision threshold for radioactivity measurements in the environment.

    PubMed

    Zorko, Benjamin; Korun, Matjaž; Mora Canadas, Juan Carlos; Nicoulaud-Gouin, Valerie; Chyly, Pavol; Blixt Buhr, Anna Maria; Lager, Charlotte; Aquilonius, Karin; Krajewski, Pawel

    2016-07-01

    Several methods for reporting outcomes of gamma-ray spectrometric measurements of environmental samples for dose calculations are presented and discussed. The measurement outcomes can be reported as primary measurement results, primary measurement results modified according to the quantification limit, best estimates obtained by the Bayesian posterior (ISO 11929), best estimates obtained by the probability density distribution resembling shifting, and the procedure recommended by the European Commission (EC). The annual dose is calculated from the arithmetic average using any of these five procedures. It was shown that the primary measurement results modified according to the quantification limit could lead to an underestimation of the annual dose. On the other hand the best estimates lead to an overestimation of the annual dose. The annual doses calculated from the measurement outcomes obtained according to the EC's recommended procedure, which does not cope with the uncertainties, fluctuate between an under- and overestimation, depending on the frequency of the measurement results that are larger than the limit of detection. In the extreme case, when no measurement results above the detection limit occur, the average over primary measurement results modified according to the quantification limit underestimates the average over primary measurement results for about 80%. The average over best estimates calculated according the procedure resembling shifting overestimates the average over primary measurement results for 35%, the average obtained by the Bayesian posterior for 85% and the treatment according to the EC recommendation for 89%. PMID:27085965

  5. Radionuclides in the ground-level atmosphere in Vilnius, Lithuania, in March 2011, detected by gamma-ray spectrometry.

    PubMed

    Gudelis, A; Druteikienė, R; Lujanienė, G; Maceika, E; Plukis, A; Remeikis, V

    2012-07-01

    This study presents the ground-level air monitoring results obtained in Vilnius, the capital of Lithuania, on 14 March-14 April 2011 after the recent earthquake and subsequent Tsunami having a crucial impact on Japanese nuclear reactors at the Fukushima Daiichi Nuclear Power Plant (NPP) on 11 March 2011. To collect representative diurnal aerosol samples a powerful sampling system ensuring the air filtration rate of 5500 m(3) h(-1) was used. The following artificial gamma-ray emitting radionuclides have been determined: (129m)Te, (132)Te (in equilibrium with its daughter (132)I), (131)I, (134)Cs, (136)Cs and (137)Cs. Activity concentration of the globally distributed fission product (137)Cs has increased from a background value of 1.6 μBq m(-3) to the value of 0.9 mBq m(-3) at the beginning of April. The activity ratio (134)Cs/(137)Cs was found to be close to 1, with a slightly higher activity of (134)Cs. The maximum aerosol-associated (131)I activity concentration of 3.45 mBq m(-3) was by four orders of magnitude lower than that measured at the same location in April-May 1986 as a consequence of the Chernobyl NPP accident. The estimated gaseous fraction of iodine-131 constituted about 70% of the total (131)I activity. PMID:22541992

  6. Broad screening and identification of β-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search.

    PubMed

    Li, Tingting; Cao, Jingjing; Li, Zhen; Wang, Xian; He, Pingli

    2016-02-01

    Broad screening and identification of β-agonists in feed, serum, urine, muscle and liver samples was achieved in a quick and highly sensitive manner using ultra high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with a spectra library search. Solid-phase extraction technology was employed for sample purification and enrichment. After extraction and purification, the samples were analyzed using a Q-Orbitrap high-resolution mass spectrometer under full-scan and data-dependent MS/MS mode. The acquired mass spectra were compared with an in-house library (compound library and MS/MS mass spectral library) built with TraceFinder Software which contained the M/Z of the precursor ion, chemical formula, retention time, character fragment ions and the entire MS/MS spectra of 32 β-agonist standards. Screening was achieved by comparing 5 key mass spectral results and positive matches were marked. Using the developed method, the identification results from 10 spiked samples and 238 actual samples indicated that only 2% of acquired mass spectra produced false identities. The method validation results showed that the limit of detection ranged from 0.021-3.854 μg kg(-1)and 0.015-1.198 ng mL(-1) for solid and liquid samples, respectively. PMID:26304337

  7. The use of MCNP and gamma spectrometry in supporting the evaluation of NORM in Libyan oil pipeline scale

    NASA Astrophysics Data System (ADS)

    Habib, Ahmed S.; Bradley, D. A.; Regan, P. H.; Shutt, A. L.

    2010-07-01

    The accumulation of scales in production pipes is a common problem in the oil industry, reducing fluid flow and also leading to costly remedies and disposal issues. Typical materials found in such scale are sulphates and carbonates of calcium and barium, or iron sulphide. Radium arising from the uranium/thorium present in oil-bearing rock formations may replace the barium or calcium in these salts to form radium salts. This creates what is known as technologically enhanced naturally occurring radioactive material (TENORM or simply NORM). NORM is a serious environmental and health and safety issue arising from commercial oil and gas extraction operations. Whilst a good deal has been published on the characterisation and measurement of radioactive scales from offshore oil production, little information has been published regarding NORM associated with land-based facilities such as that of the Libyan oil industry. The ongoing investigation described in this paper concerns an assessment of NORM from a number of land based Libyan oil fields. A total of 27 pipe scale samples were collected from eight oil fields, from different locations in Libya. The dose rates, measured using a handheld survey meter positioned on sample surfaces, ranged from 0.1-27.3 μSv h -1. In the initial evaluations of the sample activity, use is being made of a portable HPGe based spectrometry system. To comply with the prevailing safety regulations of the University of Surrey, the samples are being counted in their original form, creating a need for correction of non-homogeneous sample geometries. To derive a detection efficiency based on the actual sample geometries, a technique has been developed using a Monte Carlo particle transport code (MCNPX). A preliminary activity determination has been performed using an HPGe portable detector system.

  8. Determination of gamma-hydroxybutyric acid in human urine by capillary electrophoresis with indirect UV detection and confirmation with electrospray ionization ion-trap mass spectrometry.

    PubMed

    Baldacci, Andrea; Theurillat, Regula; Caslavska, Jitka; Pardubská, Helena; Brenneisen, Rudolf; Thormann, Wolfgang

    2003-03-21

    Gamma-hydroxybutyric acid (GHB), a minor metabolite or precursor of gamma-aminobutyric acid (GABA), acts as a neurotransmitter/neuromodulator via binding to GABA receptors and to specific presynaptic GHB receptors. Based upon the stimulatory effects, GHB is widely abused. Thus, there is great interest in monitoring GHB in body fluids and tissues. We have developed an assay for urinary GHB that is based upon liquid-liquid extraction and capillary zone electrophoresis (CZE) with indirect UV absorption detection. The background electrolyte is composed of 4 mM nicotinic acid (compound for indirect detection), 3 mM spermine (reversal of electroosmosis) and histidine (added to reach a pH of 6.2). Having a 50 microm I.D. capillary of 40 cm effective length, 1-octanesulfonic acid as internal standard, solute detection at 214 nm and a diluted urine with a conductivity of 2.4 mS/cm, GHB concentrations > or = 2 microg/ml can be detected. Limit of detection (LOD) and limit of quantitation (LOQ) were determined to be dependent on urine concentration and varied between 2-24 and 5-60 microg/ml, respectively. Data obtained suggest that LOD and LOQ (both in microg/ml) can be estimated with the relationships 0.83 kappa and 2.1 kappa, respectively, where kappa is the conductivity of the urine in mS/cm. The assay was successfully applied to urines collected after administration of 25 mg sodium GHB/kg body mass. Negative electrospray ionization ion-trap tandem mass spectrometry was used to confirm the presence of GHB in the urinary extract via selected reaction monitoring of the m/z 103.1-->m/z 85.1 precursor-product ion transition. Independent of urine concentration, this approach meets the urinary cut-off level of 10 microg/ml that is required for recognition of the presence of exogenous GHB. Furthermore, data obtained with injection of plain or diluted urine indicate that CZE could be used to rapidly recognize GHB amounts (in microg/ml) that are > or = 4 kappa. PMID:12685588

  9. Ion Mobility Mass Spectrometry for Ion Recovery and Clean-Up of MS and MS/MS Spectra Obtained from Low Abundance Viral Samples

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Crispin, Max; Bonomelli, Camille; Scrivens, Jim H.

    2015-07-01

    Many samples of complex mixtures of N-glycans released from small amounts of material, such as glycoproteins from viruses, present problems for mass spectrometric analysis because of the presence of contaminating material that is difficult to remove by conventional methods without involving sample loss. This study describes the use of ion mobility for extraction of glycan profiles from such samples and for obtaining clean CID spectra when targeted m/z values capture additional ions from those of the target compound. N-glycans were released enzymatically from within SDS-PAGE gels, from the representative recombinant glycoprotein, gp120 of the human immunodeficiency virus, and examined by direct infusion electrospray in negative mode followed by ion mobility with a Waters Synapt G2 mass spectrometer (Waters MS-Technologies, Manchester, UK). Clean profiles of singly, doubly, and triply charged N-glycans were obtained from samples in cases where the raw electrospray spectra displayed only a few glycan ions as the result of low sample concentration or the presence of contamination. Ion mobility also enabled uncontaminated CID spectra to be obtained from glycans when their molecular ions displayed coincidence with ions from fragments or multiply charged ions with similar m/z values. This technique proved to be invaluable for removing extraneous ions from many CID spectra. The presence of such ions often produces spectra that are difficult to interpret. Most CID spectra, even those from abundant glycan constituents, benefited from such clean-up, showing that the extra dimension provided by ion mobility was invaluable for studies of this type.

  10. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  11. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  12. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  13. Purification of pharmaceutical preparations using thin-layer chromatography to obtain mass spectra with Direct Analysis in Real Time and accurate mass spectrometry.

    PubMed

    Wood, Jessica L; Steiner, Robert R

    2011-06-01

    Forensic analysis of pharmaceutical preparations requires a comparative analysis with a standard of the suspected drug in order to identify the active ingredient. Purchasing analytical standards can be expensive or unattainable from the drug manufacturers. Direct Analysis in Real Time (DART™) is a novel, ambient ionization technique, typically coupled with a JEOL AccuTOF™ (accurate mass) mass spectrometer. While a fast and easy technique to perform, a drawback of using DART™ is the lack of component separation of mixtures prior to ionization. Various in-house pharmaceutical preparations were purified using thin-layer chromatography (TLC) and mass spectra were subsequently obtained using the AccuTOF™- DART™ technique. Utilizing TLC prior to sample introduction provides a simple, low-cost solution to acquiring mass spectra of the purified preparation. Each spectrum was compared against an in-house molecular formula list to confirm the accurate mass elemental compositions. Spectra of purified ingredients of known pharmaceuticals were added to an in-house library for use as comparators for casework samples. Resolving isomers from one another can be accomplished using collision-induced dissociation after ionization. Challenges arose when the pharmaceutical preparation required an optimized TLC solvent to achieve proper separation and purity of the standard. Purified spectra were obtained for 91 preparations and included in an in-house drug standard library. Primary standards would only need to be purchased when pharmaceutical preparations not previously encountered are submitted for comparative analysis. TLC prior to DART™ analysis demonstrates a time efficient and cost saving technique for the forensic drug analysis community. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21548141

  14. Validation of in situ and laboratory gamma spectrometry measurements for determination of ²²⁶Ra, ⁴⁰K and ¹³⁷Cs in soil.

    PubMed

    Al-Masri, M S; Doubal, A W

    2013-05-01

    In situ and laboratory gamma spectrometry methods for determination of (226)Ra, (40)K and (137)Cs in soil have been validated and compared. Minimum detectable activity, repeatability, and reproducibility were the main validation parameters. Results have shown that soil humidity lower the in situ measurement results in comparison to laboratory measurements. Measurement uncertainties were also estimated and compared for both techniques. Uncertainty due to soil humidity (55%) using the in situ measurement was the main contributor to the total uncertainty, while the uncertainty due to net counting (71%) using the laboratory measurements was the largest contributor to the total uncertainty value. PMID:23455404

  15. Low-spin states of /sup 250/Cf populated in the electron capture decay of 2. 22-h /sup 250/Es. [ULTIPOLE TRANSITIONS; PARITY; ROTATIONAL STATES; SPIN; VIBRATIONAL STATES; GAMMA SPECTRA

    SciTech Connect

    Ahmad, I.; Sjoblom, R.K.

    1980-09-01

    Low-spin states of /sup 250/Cf have been investigated by measuring ..gamma.. rays and conversion electrons associated with the electron capture decay of 2.22-h /sup 250/Es. Mass-separated /sup 250/Es samples produced by the /sup 249/Cf(d,n) reaction were used for these measurements. The ..gamma..-ray spectra were measured with a 25-cm/sup 3/ coaxial Ge(Li) spectrometer and the electron spectra were measured with a cooled Si(Li) detector. Multipolarities of intense transitions in /sup 250/Cf were deduced and logft values of electron capture transitions were derived from measured electron capture intensities. On the basis of the results of the present investigation the following bandheads were identified in /sup 250/Cf: E (keV),K,I..pi..=871.6, 2,2-; 1031.9, 2,2+; 1154.2, 0,0+; 1175.5, 1,1-; 1210.0, 2,2-; 1244.4, 2,2+; 1266.5, 0,0+; and 1658.1, 2,2+. The 2.22-h state in /sup 250/Es has been given a spin-parity assignment of 1- with configuration )n(734)9/2-; p(633)7/2+)/sub 1//sub -/.

  16. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    DOE PAGESBeta

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore » component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  17. Fusion of time-dependent gamma production spectra from thermal neutron capture and fast neutron inelastic scattering to improve material detection

    NASA Astrophysics Data System (ADS)

    Gozani, T.; Elsalim, M.; Strellis, D.; Brown, D.

    2003-06-01

    Neutron-based inspection techniques are unique in their ability to provide material specific signatures, thus offering very high performance and automatic detection of explosives and other contraband. Thermal neutron capture gamma spectroscopy provides excellent sensitivities to hydrogen, nitrogen, chlorine, and other elements, which are characteristic to most explosives, drugs and other contraband that may be smuggled into the country. Fast neutron gamma production (mostly through inelastic scattering) provides good sensitivity to carbon and oxygen. When necessary, these two types of complementary interactions can be combined to yield a more accurate material determination inside small to medium size containers. Standard pulsed 14 MeV electronic neutron generators offer an efficient way to obtain these two types of interactions. Fast (14 MeV) neutrons are produced during the pulse. After the pulse, only the decaying thermal neutron population exists, and thus pure neutron capture gamma-rays are produced. Unfortunately, during the pulse (which is normally much longer than the neutron thermalization time) the fast neutron interactions are highly "contaminated" by the interactions of thermal neutrons within the object and the nearby gamma-ray detectors. This creates high background and spectral interferences in the common medium resolution detectors, such as NaI, BGO, etc. The use of an appropriate shielding, neutron spectrum tailoring, full spectral feature analysis as well as temporal information ("die-away" time) resulted in significant performance enhancements in detection of explosives, drugs and other contraband in difficult geometries.

  18. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  19. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N- alkyl-N-perfluoroacyl- α-amino acids and their methyl esters.

    PubMed

    Todua, Nino G; Tretyakov, Kirill V; Mikaia, Anzor I

    2015-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography-mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl](+). Homologous [HC≡N-aryl](+) cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [C(n)F(2n+1)-C≡N(+)C(n)H(2n+1)] and [CnF(2n+1)-C≡N(+)-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. L-Threonine and L-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the N(ω)- amino group in L-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  20. Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-07-01

    In the external Compton scenario, we investigate the formation of a very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution, N^' }_e({γ ^' })∝ {γ ^' }^{-p}, with spectral index p ˜ 1.3 is formed below the minimum energy of injection electrons when inverse Compton scattering takes place in the Klein-Nishina regime, i.e. inverse Compton scattering of relativistic electrons on broad-line region radiation in flat-spectrum radio quasars. This produces a very hard gamma-ray spectrum and can explain in reasonable fashion the very hard Fermi-Large Area Telescope (LAT) spectrum of the flat-spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  1. Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: a Monte Carlo simulation study.

    PubMed

    Khelifi, R; Nievaart, V A; Bode, P; Moss, R L; Krijger, G C

    2009-07-01

    A Monte Carlo calculation was carried out for boron neutron capture therapy (BNCT) of extra corporal liver phantom. The present paper describes the basis for a subsequent clinical application of the prompt gamma spectroscopy set-up aimed at in vivo monitoring of boron distribution. MCNP code was used first to validate the homogeneity in thermal neutron field in the liver phantom and simulate the gamma ray detection system (collimator and detector) in the treatment room. The gamma ray of 478 keV emitted by boron in small specific region can be detected and a mathematical formalism was used for the tomography image reconstruction. PMID:19394243

  2. Gamma Ray Spectrum Catalogs from Idaho National Laboratory (INL)

    DOE Data Explorer

    Heath, R. L.

    Gamma-ray spectrometry is widely applied as a tool for the assay of radioactive source material to identify the isotopes present and characterize radiation fields. Beginning with the startup of the world's first high-flux beam reactor, Materials Test Reactor (MTR), INL has pioneered the development of x-ray spectrometry for use in basic nuclear research and a variety of disciplines using radioisotopes and other radiation sources. Beginning in the early 1950s, a program was instituted to make the technique a precise laboratory tool. Standards were established for detectors and nuclear electronics to promote the production of commercial laboratory spectrometers. It was also necessary to produce a comprehensive collection of standard detector response functions for individual radio nuclides to permit the use of gamma-ray spectrometers for identification of radioisotopes present in radiation sources. This led to the publication of standard measurement methodology and a set of Gamma-Ray Spectrum Catalogues. These publications, which established standards for detector systems, experimental methods and reference spectra for both NaI (Tl) scintillation detectors and Ge(Li) - Si( Li) semiconductor devices, became standard reference works, distributed worldwide. Over 40,000 copies have been distributed by the Office of Science and Technical Information (OSTI). Unfortunately, although they are still very much in demand, they are all out of print at this time. The INL is converting this large volume of data to a format which is consistent with current information technology and meets the needs of the scientific community. Three are available online with the longest being more than 800 pages in length. Plotted spectra and decay data have been converted to digital formats and updated, including decay scheme graphics. These online catalogs are: • Ge(Li)-Si(Li) Gamma Spectrum Catalog (Published 3-29-1999) • NaI(Tl) Gamma Spectrum Catalog (Published 4-1-1997) • Gamma

  3. Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at lambda = 40 deg

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Gruber, D. E.

    1977-01-01

    Measurements of the spectral and angular distributions of atmospheric gamma sq cm rays in the energy range 0.3-10 MeV over Palestine, Texas, at residual depths of 2.5 and 70 g/sq cm are reported. In confirmation of the general features of a model prediction, the measurements show at 2.5 g/sq cm upward moving fluxes greater than the downward moving fluxes, the effect increasing with energy, and approximate isotropy at 70 g/sq cm. Numerous characteristic gamma-ray lines were observed, most prominently at 0.511, 1.6, 2.3, 4.4, and 6.1 MeV. Their intensities were also compared with model predictions. Observations were made with an actively shielded scintillator counter with two detectors, one of aperture 50 deg FWHM and the other of 120 deg FWHM. Above 1 MeV, contributions to the counting rate from photons penetrating the shield annulus and from neutron interactions were large; they were studied by means of a Monte Carlo code and are extensively discussed.

  4. Development activities of a CdTe/CdZnTe pixel detector for gamma-ray spectrometry with imaging and polarimetry capability in astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; Álvarez, L.; La Torre, M.; Caroli, E.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2013-05-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN).Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) are very attractive materials for gamma-ray detection, since they have already demonstrated their great performance onboard current space missions, such as IBIS/INTEGRAL and BAT/SWIFT, and future projects like ASIM onboard the ISS. However, the energy coverage of these instruments is limited up to a few hundred keV, and there has not been yet a dedicated instrument for polarimetry.Our research and development activities aim to study a gamma-ray imaging spectrometer in the MeV range based on CdTe detectors, suited either for the focal plane of a focusing mission or as a calorimeter for a Compton camera. In addition, our undergoing detector design is proposed as the baseline for the payload of a balloon-borne experiment dedicated to hard X- and soft gamma-ray polarimetry, currently under study and called CμSP (CZT μ-Spectrometer Polarimeter). Other research institutes such as INAF-IASF, DTU Space, LIP, INEM/CNR, CEA, are involved in this proposal. We will report on the main features of the prototype we are developing at the Institute of Space Sciences, a gamma-ray detector with imaging and polarimetry capabilities in order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution driven by the science.

  5. CAN WE PROBE THE LORENTZ FACTOR OF GAMMA-RAY BURSTS FROM GeV-TeV SPECTRA INTEGRATED OVER INTERNAL SHOCKS?

    SciTech Connect

    Aoi, Junichi; Nagataki, Shigehiro; Murase, Kohta; Takahashi, Keitaro; Ioka, Kunihito

    2010-10-10

    We revisit the high-energy spectral cutoff originating from the electron-positron pair creation in the prompt phase of gamma-ray bursts (GRBs) with numerical and analytical calculations. We show that the conventional exponential and/or broken power-law cutoff should be drastically modified to a shallower broken power law in practical observations that integrate emissions from different internal shocks. Since the steepening is tiny for observations, this 'smearing' effect can generally reduce the previous estimates of the Lorentz factor of the GRB outflows. We apply our formulation to GRB 080916C, recently detected by the Large Area Telescope detector on the Fermi satellite, and find that the minimum Lorentz factor can be {approx}600 (or even smaller values), which is below but consistent with the previous result of {approx}900. Observing the steepening energy (the so-called 'pair-break energy') is crucial to diagnosing the Lorentz factor and/or the emission site in future observations, especially current and future Cherenkov telescopes such as MAGIC, VERITAS, and CTA.

  6. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  7. The role of mass spectrometry in medicinal plant research.

    PubMed

    Héthelyi, E; Tétényi, P; Dabi, E; Dános, B

    1987-11-01

    In phytochemical and chemotaxonomic research work mass spectrometry plays an outstandingly important role. Using gas chromatography/mass spectrometry (GC/MS) we established the chemotaxa of Tanacetum vulgare L. Chemotypes with essential oils containing 60-90% of artemisia ketone, carveol, dihydrocarvone, myrtenol, umbellulone, terpinen-4-ol, davanone, and Tagetes species containing various essential oils can be clearly distinguished by their spectra; we examined many variations of Tagetes erecta, T. lucida, T. minuta, T. patula and T. tenuifolia. We have identified alpha-beta-pinene-, 1,8-cineol-, linalool-, camphor-, nerol-, geraniol- and gamma-gurjonene as components of Achillea distans L. Injecting the essential oil direct from the oil-secreting organs of T. minuta plants we identified using GC/MS 6-10 and 16% eugenol from the involucral bract and hypsophyll, respectively, as well as beta-ocimene, dihydrotagetone, tagetone, Z- and E-ocimenones. In the course of studies on essential fatty acids Borago officinalis and Lappula squarrosa were selected from 70 species of the family Boraginaceae to obtain seed oil as a source of gamma-linolenic acid, and for the PG synthesis we isolated several grams of gamma-linolenic acid, as well as C18:4, i.e. octadecatetraenic acid, from L. squarrosa on the basis of the mass spectra. From the seed oil of Aquilegia vulgaris C18:3 (5) from the oil of Limnanthes dougloasii C20:1 (5) and from the seed oils of Delphinium consolida and of Tropaeolum species (T. majus, T. minus, T. peregrinum) C20:1 (11) fatty acids were identified on the basis of spectra. PMID:2962668

  8. Antagonistic properties of a natural product - Bicuculline with the gamma-aminobutyric acid receptor: Studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B. P.

    2011-12-01

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap Δ E, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline.

  9. Using Gamma Spectrometry to Determine U, Th, and K Signatures in Cap Carbonates of the Death Valley Region and Their Relation to Other Carbonates

    NASA Astrophysics Data System (ADS)

    Hannon, M.; Lindberg, J.; Barrie, C.; Johnson, T.; Donatelle, A.; Goeden, J.; Holter, S.; Hickson, T.; Theissen, K.; Lamb, M.

    2004-05-01

    We collected spectral gamma data (K, U, Th) and measured sections in cap carbonates (Noonday dolomite) and cap-like carbonates (Beck Spring dolomite) of the Death Valley region in order to explore elemental changes in the post-snowball oceans. The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material; hence, we expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. However, based on our preliminary findings, cap carbonates of the Noonday dolomite and cap-like carbonates of the Beck Spring dolomite have values (0-1% for K, 0.2-6.0 ppm for U, and 0.6-6.9 ppm for Th) that fall within the published range for those measured in carbonates (presumably non-cap or cap-like carbonates). Possible explanations for this include: (a) dilution of any terrigeneous signal by the vast amount of carbonate precipitating in the oceans, or (b) any biological activity that might have an influence on chemical processes in the ocean. A preliminary comparison of our spectral gamma data measured in the Noonday dolomite with published δ 13C data from the same section indicate similar trends in both proxies, namely, a very gradual decrease in values through the majority of the section (Lower Noonday) followed by a more noticeable increase in values in the upper part of the section (Upper Noonday). Further work will be necessary to determine the significance of this possible correlation. Additionally, planned analysis of hand specimens using a high-resolution gamma spectrometer should provide more details about the composition of cap-carbonates and provide further information about the conditions under which they were formed.

  10. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    SciTech Connect

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.

  11. Quantification of the 2-deoxyribonolactone and nucleoside 5'-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA.

    PubMed

    Chan, Wan; Chen, Bingzi; Wang, Lianrong; Taghizadeh, Koli; Demott, Michael S; Dedon, Peter C

    2010-05-01

    The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC-MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1'-oxidation and the nucleoside 5'-aldehyde of 5'-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC-MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5'-aldehyde lesions. Further, the well-defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin gamma(1)(I), was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5'-aldehyde per 10(6) nt per microM in accord with its established minor 1'- and major 5'-oxidation chemistry. Calicheamicin unexpectedly caused 1'-oxidation at a low level of 10 2-deoxyribonolactone per 10(6) nt per microM in addition to the expected predominance of 5'-oxidation at 560 nucleoside 5'-aldehyde per 10(6) nt per microM. The two hydroxyl radical-mediated DNA oxidants, gamma-radiation and Fe(2+)-EDTA, produced nucleoside 5'-aldehyde at a frequency of 57 per 10(6) nt per Gy (G-value 74 nmol/J) and 3.5 per 10(6) nt per microM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, gamma-radiation and Fe(2+)-EDTA produced different proportions of 2

  12. Potential of natural gamma-ray spectrometry for mapping and environmental monitoring of black-sand beach deposits on the northern coast of Sinai, Egypt.

    PubMed

    Aboelkhair, Hatem; Zaaeimah, Mostafa

    2013-04-01

    The concentrations and distributions of naturally occurring radioactive materials were studied with the aim of detecting and mapping radioactive anomalies as well as monitoring the environment for black-sand beach deposits in Northern Sinai, Egypt. For this purpose, ground gamma-ray spectrometric surveys were conducted using a portable GS-512 spectrometer, with an NaI (Tl) detector, on an area 77.5 km(2) in surface area located between the cities of Rafah and Elareish on the Mediterranean Sea coast. The results revealed that the black-sand beach deposits could be differentiated according to their total-count (TC) radioactivity into five normally distributed interpreted radiometric lithologic (IRL) units denoted by U1, U2, U3, U4 and U5. The computed characteristic TC radiometric statistics of these five IRL units range from 4.67  to 9.96 Ur for their individual arithmetic means. The computed arithmetic means for the three radioelements K, eU and eTh reach 0.46 %, 2.25 and 6.17 ppm, respectively for the whole study area. Monitoring the environmental effects of radioelement concentrations on the study area showed that the mean natural equivalent radiation dose rate from the terrestrial gamma-radiation of the whole area attains 0.33 mSv y(-1). This average value remains on the safe side and within the maximum permissible safe radiation dose (<1.0 mSv y(-1)) without harm to the individual, except at three scattered points reaching more than these values. Some of the local inhabitants in the region sometimes use black sands as a building material. Consequently, they are not recommended for use as building materials, because the inhabitants will, then, receive a relatively high radioactive dose generated mainly by monazite and zircon minerals, two of the main constituents of black sands. PMID:22869819

  13. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  14. Topics in gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Ramaty, R.; Lingenfelter, R. E.

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  15. Exposure of the lysine in the gamma chain dodecapeptide of human fibrinogen is not enhanced by adsorption to poly(ethylene terephthalate) as measured by biotinylation and mass spectrometry.

    PubMed

    Ovod, Vitaliy; Scott, Evan A; Flake, Megan M; Parker, Stanley R; Bateman, Randall J; Elbert, Donald L

    2012-03-01

    Conformational changes in adsorbed fibrinogen may enhance the exposure of platelet adhesive sites that are inaccessible in solution. To test this hypothesis, mass spectrometric methods were developed to quantify chemical modification of lysine residues following adsorption of fibrinogen to biomaterials. The quantitative method used an internal standard consisting of isotope-labeled fibrinogen secreted by human HepG2 cells in culture. Lysine residues in the internal standard were partially reacted with NHS-biotin. For the experimental samples, normal human fibrinogen was adsorbed to poly(ethylene terephthalate) (PET) particles. The adsorbed fibrinogen was reacted with NHS-biotin and then eluted from the particles. Constant amounts of internal standard were added to sample fibrinogen and analyzed by liquid chromatography/tandem mass spectrometry. Biotinylation of the lysine residue in the platelet-adhesive gamma chain dodecapeptide (GCDP) was quantified by comparison with the internal standard. Approximately 80% of the GCDP peptides were biotinylated when fibrinogen was reacted with NHS-biotin in solution or adsorbed onto PET. These results are generally consistent with previous antibody binding studies and suggest that other regions of fibrinogen may be crucial in promoting platelet adhesion to materials. The results do not directly address but are consistent with the hypothesis that only activated platelets adhere to adsorbed fibrinogen. PMID:22213354

  16. Spatial mapping of soil and radioactivity redistribution at the hillslope scale using in-situ gamma spectrometry, terrestrial laser scanning and RFID tags after the Fukushima nuclear accident fallout.

    NASA Astrophysics Data System (ADS)

    Patin, Jeremy; Onda, Yuichi; Noguchi, Takehiro; Parsons, Anthony

    2013-04-01

    In March 2011, the Fukushima Daiichi Nuclear Power Plant disaster, triggered by the Tohoku earthquake and the consequent tsunami, released a large amount of radionuclides in the environment. To provide a rapid assessment of the soil contamination and its potential redistribution, intensive scientific monitoring has been conducted since July 2011 in our study site, located in the Yamakiya district of Kawamata town, in Fukushima prefecture, Japan, about 37 km from the power plant. In this paper, we summarize and analyze a dataset combining multiple innovative methods deployed inside a 5m x 22m bounded hillslope plot. In addition to runoff volumes and sediments radiocesium concentrations, each major rainfall event was followed by in situ gamma spectrometry measurements. In 2012, to trace the complex behavior of sediments inside the plot, about 300 RFID (Radio-Frequency IDentification) tags representing coarse sediments were scattered and their spatial position was periodically checked using a total station. Finally, several high resolutions Digital Elevation Models were acquired with a terrestrial laser scanner to assess the surface structure and changes. The observed processes at the event scale include interrill and rill erosion, as well as local deposition and remobilization phenomenon. Not only do they directly provide information on the erosion spatio-temporal variability and the associated radionuclides transfers, but combined together they can constitute a solid basis to improve and challenge process-based distributed erosion models.

  17. Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Fallahi Kapourchali, Maryam; Bagheri, Hashem; Khoram Bagheri, Mahdi; Abedini, Ali; Pakzad, Hamid Reza

    2016-02-01

    Measurements of natural radioactivity levels and heavy metals in sediment and soil samples of the Anzali international wetland were carried out by two HPGe-gamma ray spectrometry and atomic absorption spectroscopy techniques. The concentrations of (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs in sediment samples ranged between 1.05 ± 0.51-5.81 ± 0.61, 18.06 ± 0.63-33.36 ± .0.34, 17.57 ± 0.38-45.84 ± 6.23, 371.88 ± 6.36-652.28 ± 11.60, and 0.43 ± 0.06-63.35 ± 0.94 Bq/kg, while in the soil samples they vary between 2.36-5.97, 22.71-38.37, 29.27-42.89, 472.66-533, and 1.05-9.60 Bq/kg for (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. Present results are compared with the available literature data and also with the world average values. The radium equivalent activity was well below the defined limit of 370 Bq/kg. The external hazard indices were found to be less than 1, indicating a low dose. Heavy metal concentrations were found to decrease in order as Fe > Mn > Sr > Zn > Cu > Cr > Ni > Pb > Co > Cd. These measurements will serve as background reference levels for the Anzali wetland. PMID:26490904

  18. Small Scale Assessment of Spatial and Vertical Redistribution of Fukushima Fallouts Radiocaesium in Contaminated Soil Using in-situ HPGe Gamma Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Patin, J.; Onda, Y.; Yoda, H.; Kato, H.

    2011-12-01

    After Tohoku earthquake on March 11th 2011, the subsequent tsunami and the resulting Fukushima Daiichi Nuclear Power Plant disaster, gamma emitting particles, first release into the atmosphere, were quickly deposited on the soil surface, with potentially harmful level in the surroundings of the nuclear power plant. Thus, the evaluation of soil deposition pattern, depth migration and afterward radionuclides redistribution and export by erosion and hydrological processes is fundamental for contamination assessments and to plan future actions. Our study site is located 37km from Fukushima power plant, inside the evacuated zone. In this study, we used a bounded erosion plot of 22.1m x 5m to assess global export of sediments and 137Cs. This plot, previously cropped with tobacco, is morphologically divided into inter-rill areas separated by rills that formed into former wheel tracks. The bottom of the plot is subject to deposition of sediments. In order to determine and quantify the internal processes responsible of the export of sediment, the depth distribution of 137Cs is estimated using a portable High Purity Germanium (HPGe) detector. Such a portable device, associated to the high radiation levels, allow an acquisition of spatially distributed data within the plot in a reasonable time (1 min/sample). At the same time, depth distribution of 137Cs are measured using the scrapper plate technique, adapted to obtain a fine resolution in the first, highly contaminated, centimeters of soil. Finally, 137Cs depth profiles, associated with in situ and laboratory gamma spectrums acquired with the portable detector, allow for the detector calibration. Although the initial deposit can reasonably be supposed homogeneous at the plot scale, the dataset obtained 3 months later shows high spatial and temporal variability due to erosion processes. Measurements with the portable HPGe detector proved to be useful at this small scale, avoiding the needs of a large number of soil samples

  19. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE PAGESBeta

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  20. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    NASA Astrophysics Data System (ADS)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  1. Characterization of gamma-irradiated polyethylene terephthalate by liquid-chromatography mass-spectrometry (LC MS) with atmospheric-pressure chemical ionization (APCI)

    NASA Astrophysics Data System (ADS)

    Buchalla, Rainer; Begley, Timothy H.

    2006-01-01

    Low-molecular-weight (low-MW) constituents of polyethylene terephthalate (PET), irradiated with 60Co gamma rays at 25 and 50 kGy, were analyzed by HPLC-MS with atmospheric-pressure chemical ionization (APCI). Consistent with earlier results, the concentrations of the major compounds that are present in the non-irradiated PET do not change perceptibly. However, we find a small but significant increase in terephthalic acid ethylester, from less than 1 mg/kg in the non-irradiated control to ca. 2 mg/kg after 50 kGy, which has not been described before. The finding is important because it gives an impression of the sensitivity of the analytical method. Additionally, it shows that even very radiation-resistant polymers can form measurable amounts of low-MW radiolysis products. The potential and limitations of LC-MS for the analysis of radiolysis products and unidentified migrants are briefly discussed in the context of the question: How can we validate our analytical methods for unknown analytes?

  2. Gamma spectroscopy of environmental samples

    NASA Astrophysics Data System (ADS)

    Siegel, P. B.

    2013-05-01

    We describe experiments for the undergraduate laboratory that use a high-resolution gamma detector to measure radiation in environmental samples. The experiments are designed to instruct the students in the quantitative analysis of gamma spectra and secular equilibrium. Experiments include the radioactive dating of Brazil nuts, determining radioisotope concentrations in natural samples, and measurement of the 235U abundance in uranium rich rocks.

  3. An attempt to use aerial gamma-ray spectrometry results in petrochemical assessments of the volcanic and plutonic associations of Central Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, İbrahim; Aydoǧan, M. Selman; Oksum, Erdinç; Koçak, Ali

    2006-11-01

    Volcanic and magmatic rocks of Central Anatolia are fairly rich in radioelement concentrations. The aerial gamma-ray spectrometric survey data, gathered for the purpose of radioactive mineral exploration were utilized as an additional tool for the petrochemical classification of the volcanic and magmatics rocks and their environments. The survey data on acidic intrusions (e.g. granite, monzonite and syenite) have revealed radioelement concentrations to occur in wide ranges to be 2-6 wt per cent for potassium (K), 3-15 ppm for uranium (U) and 10-52 ppm for thorium (Th). The chain-like high and moderately high potassium, uranium and thorium anomalies on acid intrusives of the entire area show a halo-shaped feature. Locations and lithological compositions of the volcanic rocks namely lavas, tuffs, ignimbrites and basalts, appear to be reasonably effective on their radioelement concentrations. The highest potassium, uranium and thorium concentrations of the volcanic rocks are around 4 wt per cent, 10 ppm and 35 ppm, respectively. Consequently, depending on the location and composition, volcanics show a very wide range of air absorbed dose rate. The lowest rates, which vary between 10 and 120 nGy/hr, were calculated in the ophiolitic group, thick cultivated soil covering areas, particularly at the centre of the aerial survey area, metamorphosed rocks in the north and young basalts mostly in the Kayseri district. Their average radioelement concentrations were found to be very low, that is, 1.2 wt per cent, 2.3 ppm and 10 ppm for K, U and Th, respectively. Because of the accumulation of soluble uranium isotopes, air absorbed rates stemming from radioactivity of these isotopes at the vicinity of the Kozaklı hot spring reach 440 nGy/hr and exceed 150 nGy/hr at the vicinity of the Nevşehir geothermal field.

  4. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    PubMed Central

    Tayel, A.; Zaki, M.F.; El Basaty, A.B.; Hegazy, Tarek M.

    2014-01-01

    The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications. PMID:25750755

  5. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  6. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  7. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  8. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  9. Gamma-ray spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Peterson, L. E.; Metzger, A. E.; Trombka, J. I.

    1972-01-01

    The experiments in gamma-ray spectrometry to determine the geochemical composition of the lunar surface are reported. The theory is discussed of discrete energy lines of natural radioactivity, and the lines resulting from the bombardment of the lunar surface by high energy cosmic rays. The gamma-ray spectrometer used in lunar orbit and during transearth coast is described, and a preliminary analysis of the results is presented.

  10. Gamma Ray Pulsars: Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

  11. Infrared spectra of olivine polymorphs - Alpha, beta phase and spinel

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.

    1980-01-01

    The infrared absorption spectra of several olivines (alpha phase) and their corresponding beta phase (modified spinel) and spinel (gamma) high-pressure polymorphs are determined. Spectra were measured for ground and pressed samples of alpha and gamma A2SiO4, where A = Fe, Ni, Co; alpha and gamma Mg2GeO4; alpha Mg2SiO4; and beta Co2SiO4. The spectra are interpreted in terms of internal, tetrahedral and octagonal, and lattice vibration modes, and the spinel results are used to predict the spectrum of gamma Mg2SiO4. Analysis of spectra obtained from samples of gamma Mg2GeO4 heated to 730 and 1000 C provides evidence that partial inversion could occur in silicate spinels at elevated temperatures and pressures.

  12. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  13. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  14. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  15. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  16. Alpha particle analysis using PEARLS spectrometry

    SciTech Connect

    McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

    1984-01-01

    Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig.

  17. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  18. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  19. High resolution {gamma}-ray spectroscopy: The first 85 years

    SciTech Connect

    Deslattes, R.D.

    2000-02-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear {gamma} rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). The authors perspective is that of an instrumentalist hoping to convey a sense of intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and interatomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting {gamma}-ray wavelengths with optical wave-lengths associated with the Rydberg constant that only recently has allowed {gamma}-ray data to contribute to determine of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  20. Radioactinide Additions to the Electronic Gamma-ray Spectrum Catalogue

    SciTech Connect

    R.J. Gehrke; J.R. Davidson; P.J. Taylor; R.G. Helmer; J.W. Mandler

    2001-05-01

    With the completion of a CD ROM version of the original R. L. HEATH''s Gamma-ray Spectrum Catalogue, it became obvious that a number of radionuclides are missing which are important to various fields of nuclear science and technology. With a large amount of transuranic waste awaiting permanent disposal across the Department of Energy (DOE) complex and the need for its assay in order to dispose of it, it was decided that the addition of the radioactinides encountered in transuranic waste should be the first priority. In response to this need, the spectra of 233U, 235U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am and 243Am have been acquired with modern Ge detectors, and prepared for graphics presentation along with the parent and progeny decay chains and decay schemes. The associated tables of -ray energies and emission probabilities have been downloaded from the Evaluated Nuclear Structure Data file (ENSDF) database. This information is being incorporated into the Gamma-Ray Spectrometry Center Web Site at http://id.inel.gov/gamma

  1. Rare decay {eta}{r_arrow}{pi}{pi}{gamma}{gamma} in chiral perturbation theory

    SciTech Connect

    Knoechlein, G.; Scherer, S.; Drechsel, D.

    1996-04-01

    We investigate the rare radiative {eta} decay modes {eta}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma}{gamma} and {eta}{r_arrow}{pi}{sup 0}{pi}{sup 0}{gamma}{gamma} within the framework of chiral perturbation theory at {ital O}({ital p}{sup 4}). We present photon spectra and partial decay rates for both processes as well as a Dalitz contour plot for the charged decay. {copyright} {ital 1996 The American Physical Society.}

  2. Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2006-01-01

    We calculate the intergalactic photon density as a function of both energy and redshift for 0Gamma-rays in intergalactic space owing to interactions with low-energy photons and the 2.7 K cosmic microwave background radiation. We calculate the optical depth of the universe, Tau , for Gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from 0 to 5. We also give an analytic fit with numerical coefficients for approximating (E(Gamma), z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z=0.117 and compare it with the spectrum observed by the HESS air Cerenkov Gamma-ray telescope array.

  3. Erratum: Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2007-01-01

    Table 1 in our paper had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays; tau. The correct values for these parameters as described in the original text are given in the table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift.

  4. Online Spectral Fit Tool for Analyzing Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Penttilä, A.; Kohout, T.

    2015-11-01

    The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.

  5. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  6. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    SciTech Connect

    Heath, R.L.

    1997-11-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization. 8 refs., 8 figs.

  7. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  8. Gamma rays from the de-excitation of C-12 resonance 15.11 MeV and C-12 resonance 4.44 MeV as probes of energetic particle spectra

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1977-01-01

    The flux of 15.11 MeV gamma rays relative to the flux 4.44 MeV gamma rays was calculated from measured cross sections for excitation of the corresponding states of C-12 and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhances by low source-background continuum in this energy range.

  9. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  10. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  11. Infrared spectra of U.S. automobile original finishes (1998-2000). IX. identification of bismuth oxychloride and silver/white mica pearlescent pigments using extended range FT-IR spectroscopy, XRF spectrometry, and SEM/EDS analysis.

    PubMed

    Suzuki, Edward M

    2014-09-01

    Bismuth oxychloride (BiOCl) was the first viable synthetic pearl pigment developed 50 years ago. It was only used for a limited time period in automotive paint (model years 1998-2000), serving to produce luster for a single Chrysler black metallic color. Identification of this pigment in an unknown automotive paint can thus facilitate determination of the vehicle of origin. Bismuth oxychloride imparts effects similar to those produced by silver/white mica pearlescent pigments, and such a pigment was used together with bismuth oxychloride in at least one original equipment manufacturer (OEM) basecoat. Silver/white micas are now used primarily in white pearl tricoat systems. This article describes the identification of bismuth oxychloride and silver/white mica pearlescent pigments in automotive finishes using FT-IR spectroscopy, X-ray fluorescence (XRF) spectrometry, and SEM/EDS analysis. Data for some cadmium pigments, which were used in automotive paint several decades ago, are also presented as they produce infrared absorptions similar to that of bismuth oxychloride. PMID:24646090

  12. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  13. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  14. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  15. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  16. Xgremlin: Interferograms and spectra from Fourier transform spectrometers analysis

    NASA Astrophysics Data System (ADS)

    Nave, G.; Griesmann, U.; Brault, J. W.; Abrams, M. C.

    2015-11-01

    Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.

  17. Toward utilization of MCNP5 particle track output file for simulation problems in photon spectrometry

    NASA Astrophysics Data System (ADS)

    Stankovic, Jelena; Marinkovic, Predrag; Ciraj-Bjelac, Olivera; Kaljevic, Jelica; Arandjic, Danijela; Lazarevic, Djordje

    2015-10-01

    Pulse height distribution (PHD) registered by a spectrometer is influenced by various physical phenomena such as photon interactions as well as disturbance produced by the electronic circuits inside the spectrometer. Therefore, spectrometry measurements of gamma and X-ray radiation inaccurately represent primary spectra. In order to overcome spectrum disruption, spectrum unfolding has to be applied. One of the common tools used in the unfolding process is Monte Carlo simulation of spectrometer response to monochromatic photons. The purpose of this work is to develop a new method for simulating CdTe semiconductor spectrometer response to monochromatic photons that can be further used for the spectrum unfolding procedure. The method is based upon post-processing of the particle track (PTRAC) output file generated by the MCNP5 program. In addition to the spectrometry output, this method provides information for each specific photon interaction inside the spectrometer active volume, which is required when taking into account spectrometer charge collection. The PTRAC generated detector response and the measured spectrum were in good agreement. The results obtained showed that this method can be used to generate precise response functions of gamma and X-ray spectrometers.

  18. Gamma-ray peak shapes from cadmium zinc telluride detectors

    SciTech Connect

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  19. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  20. Study on Raman spectra of synthetic celluloses

    NASA Astrophysics Data System (ADS)

    Tong, Na; Zhu, Changjun; Zhang, Yixin

    2015-02-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of aliphatic polyamide fiber and polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The results show that Raman peaks beyond 1200 cm-1 appear for aliphatic polyamide fiber processed by sodium hydroxide, while the Raman peaks beyond 1000 cm-1 disappear for aliphatic polyamide fiber processed by sulfuric acid. Raman peaks beyond 1750 cm-1 decrease for polyethylene terephthalate processed by sodium hydroxide, while Raman peaks beyond 1000 cm-1 disappear, except weak peaks around 3000 cm-1 , for polyethylene terephthalate processed by sulfuric acid. The variations of the Raman spectra are primarily related to the changes of chemical bonds and molecular structures.

  1. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  2. An experimental setup for measurement of neutron energy spectra in lithium with collimated 14.7 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Ofek, R.; Tsechanski, A.; Profio, A. E.; Shani, G.

    1989-06-01

    Neutron energy spectra in an 88 cm diameter, 88 cm long lithium tank were measured with the Ben Gurion University experimental setup. In this setup, the lithium tank is separated from the DT neutron generator by a 120 cm thick paraffin wall with a 6 cm diameter collimator through it, along the axis of the neutron generator and the lithium tank. This enables unidirectionality and monoenergeticity of the neutrons penetrating the lithium tank. A neutron energy spectrum is obtained by unfolding with the code FORIST of proton-recoil spectra measured by an NE213 liquid scintillator. The important features of the spectrometry system, comprised of the NE213 scintillator and the attached electronic system, are the high pulse shape discrimination capability of the NE213 scintillator, which enables the separation of neutron and gamma events, relatively high energy resolution, and the system linearity. Also the simultaneous measurement of the low gain and high gain proton-recoil spectra prevents a distortion of the unfolded neutron spectrum. The neutron energy spectra are absolutely normalized and internormalized to each other by an absolutely calibrated, second NE213 scintillator, placed close to the neutron generator. The measured neutron energy spectra inside the lithium tank were compared to some preliminary calculations of the spectra, carried out with the discrete-ordinates transport code DOT4.2. Both spectra are in poor agreement. These discrepancies are assigned mainly to the inadequancy of the transport calculations. Finally, the distribution of the tritium production in the lithium tank, with the same experimental configurations, was calculated with the code DOT4.2 as well. The results indicate that the collimated neutron beam configuration is inappropriate for the purpose of tritium breeding ratio measurements.

  3. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leoniv, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  4. Field gamma dose-rate assessment in natural sedimentary contexts using LaBr3(Ce) and NaI(Tl) probes: a comparison between the "threshold" and "windows" techniques.

    PubMed

    Duval, M; Arnold, L J

    2013-04-01

    Results are presented for a series of replicate in situ gamma spectrometry measurements (n=20) made in natural sedimentary contexts using LaBr3(Ce) and NaI(Tl) probes. For both types of detectors, gamma dose rates were calculated using the "threshold" technique (Murray et al., 1978), and compared with results obtained previously by Arnold et al. (2012) using the "windows" technique (Aitken, 1985). Our results show that gamma dose rates obtained using these two techniques are consistent at 1σ for a given probe, and that the threshold technique yields reproducible results for the LaBr3(Ce) and NaI(Tl) probes. In comparison with the energy windows approach, the threshold approach offers an improvement in the precision with which gamma dose rates can be determined using the LaBr3(Ce) probe. The potential of an alternative threshold approach (the "energy threshold" approach of Guérin and Mercier, 2011) was also tested for both probe types, and the resultant gamma dose rates were found to be in agreement with those obtained using the standard threshold and energy windows techniques. Our results provide new insights into methods and instrumentation used for assessing in situ gamma dose rates in Electron Spin Resonance (ESR) and Luminescence dating. We conclude that LaBr3(Ce) probes can reliably be used for portable gamma dosimetry in low level activity sedimentary environments (500-1500μGy/a) when using the threshold approach, provided that their non-negligible internal background activities (equivalent to ∼758μGy/a for our probe) are accurately assessed and subtracted from gamma ray spectra measured in the field. Our results also suggest that there may be some minor merit in applying an internal background-subtraction procedure to NaI(Tl) gamma ray spectra when using the threshold technique, in spite of the lower intrinsic activities of NaI(Tl) detectors. PMID:23353090

  5. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  6. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts.

  7. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  8. Simultaneous beta/gamma digital spectroscopy

    NASA Astrophysics Data System (ADS)

    Farsoni, Abdollah T.

    A state-of-the-art radiation detection system for simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) built in our laboratory. The DPP board was designed to digitally capture the analog signal pulses and, following several digital preprocessing steps, transfer valid pulses to the host computer for further digital processing. A MATLAB algorithm was developed to digitally discriminate beta and gamma events and reconstruct separate beta and gamma-ray energy spectra with minimum crosstalk. The spectrometer proved to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  9. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  10. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  11. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complement of gamma gliadin genes expressed in the wheat cultivar Butte 86 was evaluated by analyzing publicly available expressed sequence tag (EST) data. Eleven contigs were assembled from 153 Butte 86 ESTs. Nine of the contigs encoded full-length proteins and four of the proteins contained an...

  12. Laser-desorption mass spectrometry/mass spectrometry and the mechanism of desorption ionization

    SciTech Connect

    Zakett, D.; Schoen, A.E.; Cooks, R.G.; Hemberger, P.H.

    1981-03-11

    This paper reports sucrose mass spectra obtained by combining laser desorption with mass spectrometry/mass spectrometry. Remarkable similarities in fragmentation behavior with secondary ion mass spectra (SIMS) provide evidence for mechanistic similarities between SIMS and laser desorption (LD). Attachment of alkali metals to organic molecules (cationization) is a common feature of desorption ionization. This process also occurs during laser desorption of involatile compounds which further indicates the existence of underlying similarities between LD and SIMS. Steady ion currents (several thousand ions per laser pulse) of cationized sucrose are obtained for relatively long periods (minutes).

  13. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  14. Alpha particle induced gamma yields in uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Swinhoe, Martyn T.; Miller, Karen A.

    2013-01-01

    Fluorine has a relatively large (α,n) production cross-section in the MeV range, the energy range of interest for special nuclear materials. In the uranium fuel cycle enriched UF6 in particular is a reasonably prolific source of (α,n) neutrons because along with 235U, 234U becomes enriched and it has a relatively short half-life. This enables the mass content of storage cylinders containing UF6 to be verified by neutron counting methods. In association with such measurements high resolution gamma-ray spectrometry (HRGS) measurements using a high-purity Ge detector are often undertaken to determine the 235U enrichment based off the intensity of the direct 186 keV line. The specific (α,n) neutron production, neutrons per second per gram of U, is sensitive to the relative isotopic composition, particularly the 234U concentration, and the traditional gross neutron counting approach is needed to quantitatively interpret the data. In addition to F(α,n) neutrons, α-induced reaction γ-rays are generated, notably at 110, 197, 582, 891, 1236 and 1275 keV. If one could observe 19F(α,xγ) gamma-lines in the HRGS spectra the thought was that perhaps the α-activity could be estimated directly, and in turn the 234U abundance obtained. For example, by utilizing the ratio of the detected 197-186 keV full energy peaks. However, until now there has been no readily available estimate of the expected strength of the reaction gamma-rays nor any serious consideration as to whether they might be diagnostic or not. In this work we compute the thick target yields of the chief reaction gamma-rays in UF6 using published thin target data. Comparisons are made to the neutron production rates to obtain γ/n estimates, and also to the 235U decay line at 186 keV which we take as a fiducial line. It is shown that the reaction gamma-rays are produced but are far too weak for practical safeguards purposes. Now that the underlying numerical data is readily available however, it can be used to

  15. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  16. Feature extraction and dimensionality reduction for mass spectrometry data.

    PubMed

    Liu, Yihui

    2009-09-01

    Mass spectrometry is being used to generate protein profiles from human serum, and proteomic data obtained from mass spectrometry have attracted great interest for the detection of early stage cancer. However, high dimensional mass spectrometry data cause considerable challenges. In this paper we propose a feature extraction algorithm based on wavelet analysis for high dimensional mass spectrometry data. A set of wavelet detail coefficients at different scale is used to detect the transient changes of mass spectrometry data. The experiments are performed on 2 datasets. A highly competitive accuracy, compared with the best performance of other kinds of classification models, is achieved. Experimental results show that the wavelet detail coefficients are efficient way to characterize features of high dimensional mass spectra and reduce the dimensionality of high dimensional mass spectra. PMID:19646687

  17. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  18. Galaxies and gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.

    1979-01-01

    The nature of the high-energy spectra of several types of active galaxies and their contribution to the measured diffuse gamma-ray emission between 1 and 150 MeV are considered, using X-ray spectra of active galaxies and SAS 2 data regarding the intensity upper limits to the gamma-ray emission above 35 MeV. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low energy gamma-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies; the power-law spectra observed in the X-ray range must steepen substantially between 50 keV and 50 MeV. In addition, a cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1-150 MeV diffuse background, even without significant evolution.

  19. Fast atom bombardment tandem mass spectrometry of carotenoids

    SciTech Connect

    van Breeman, R.B.; Schmitz, H.H.; Schwartz, S.J.

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  20. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  1. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  2. Solar flare gamma-ray line spectroscopy

    NASA Technical Reports Server (NTRS)

    Murphy, R. J.; Forrest, D. J.; Ramaty, R.; Kozlovsky, B.

    1985-01-01

    The techniques and the results of solar elemental abundance determinations using observations of gamma ray lines from the April 27 1981 olar flare were outlined. The techniques are elaborated on and observed and the best-fitting theoretical spectra are presented. Numerical values for the photon fluences and the total number of protons involved in the thick-target production of these gamma rays are derived.

  3. ADP study of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  4. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  5. Gamma Knife

    MedlinePlus

    ... results are sent to the Gamma Knife®'s planning computer system. Together, physicians ( radiation oncologists and neurosurgeons) and medical physicists delineate targets and normal anatomical structures. They use a planning computer program to determine the exact spatial relationship between ...

  6. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  7. Measurement of radionuclide activities induced in target components of an IBA CYCLONE 18/9 by gamma-ray spectrometry with HPGe and LaBr3: Ce detectors.

    PubMed

    Tomarchio, Elio

    2014-08-01

    Cyclotrons are used worldwide to produce radiopharmaceuticals by proton irradiation of a suitable target. The intense secondary neutron beam generated by proton interactions with the target induce high radionuclide activities in the target assembly parts that may result in an exposure to high dose levels of the operators during maintenance. The main goal of this work is to evaluate gamma-emitting radionuclide activities induced in Havar foils and titanium windows of a target assembly and carousel stripper forks of an IBA CYCLONE 18/9 cyclotron. The knowledge of radionuclide inventory for each component is required by many companies to assess risk for operators before waste handling and disposal. Gamma-ray spectrometric analyses were carried out with High Purity Germanium (HPGe) and Lanthanum bromide (LaBr3:Ce) scintillation detectors. HPGe is the most used detector for its high energy resolution although it is more suitable for use in a laboratory. The use of LaBr3:Ce can be considered a viable option, particularly in realizing a portable spectrometric system to perform "on-site" measurements and a fast dose rate evaluation before the disposal of activated parts. Due to a high activity of target assembly components replaced after a typical irradiation cycle (about 5000 μAh integrated beam current), gamma-ray spectrometric measurements were performed at a large distance from the detector, even more than 100 cm, or by using a purposely realized Lead-walled collimator. The identification of some key-radionuclides allows to evaluate through simple formulations the dose rate behavior for each component as function of decay time from the last irradiation. The knowledge of the dose rate behavior is a significant piece of information to health physicists for waste handling with safety at work. For an Havar™ foil, the dose rate will be reduced to about 1/1,000 of the starting value after a decay period of approximately 4 y (about 1,500 d), with a relatively safety at

  8. [Characteristics of Raman Spectra of Polyethylene Terephthalate].

    PubMed

    Tong, Na; Zhu, Chang-jun; Song, Li-xun; Zhang, Chong-hui; Zhang, Guo-qing; Zhang, Yi-xin

    2016-01-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1 750 cm(-1), while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1 750 cm(-1) and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated. The research results obtained by Atomic Force Microscopy show that the variations of the Raman spectra of PET fibers are closely related to. the chemical bonds and molecular structures of PET fibers. The surface of the PET treated with sodium hydroxide is rougher than that untreated, the surface roughness of the PET treated with sulfuric acid is reduced as compared to that untreated, while the surface roughness of the PET treated with copper sulphate is increased. The results obtained by Raman spectroscopy are consistent with those by Atomic Force Microscopy, indicating that the combination of Raman spectroscopy and Atomic Force Microscopy is expected to be a promising characterization technology for polymer characteristics. PMID:27228752

  9. Cascaded Gamma Rays as a Probe of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  10. Observation of infrared emission spectra from silicon combustion products

    NASA Astrophysics Data System (ADS)

    Smit, Kenneth J.; De Yong, Leo V.; Gray, Rodney

    1996-05-01

    The combustion of silicon based pyrotechnic compositions is observed with time resolved infrared spectrometry. This revealed the build up of strong emission at 9.1 ± 0.1 μm, which is associated with condensed silicon dioxide particulates. Time averaged spectra for compositions containing different oxidants or binders illustrate the dependence of SiO 2 emission intensity on composition.

  11. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  12. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  13. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  14. EPR investigation of some gamma-irradiated excipients

    NASA Astrophysics Data System (ADS)

    Aleksieva, Katerina; Yordanov, Nicola D.

    2012-09-01

    The results of electron paramagnetic resonance (EPR) studies on some excipients: lactose, microcrystalline cellulose (avicel), starch, dioxosilane (aerosil), talc and magnesium stearate before and after gamma-irradiation are reported. Before irradiation, all samples are EPR silent except talc. After gamma-irradiation, they show complex spectra except magnesium stearate, which is EPR silent. Studies show the influence of gamma-irradiation on EPR spectra and stability of gamma-induced radicals. Analysis of the EPR spectrum of gamma-irradiated talc shows that this material is radiation insensitive. Only lactose forms stable-free radicals upon gamma sterilization and can be used for identification of radiation processing for a long time period thereafter.

  15. The energy spectra of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Mcguire, R. E.; Von Rosenvinge, T. T.

    1984-01-01

    A survey of recent results on the shapes and relative slopes of the spectra of various solar energetic particle populations is presented, with emphasis on the more extensive results currently available for protons, alphas and electrons. From previous work, it is found that proton spectra 0.8 to more than 400 MeV and alpha spectra 1.4 to 80 MeV/nucleon are best characterized, on average, by a functional form involving a Bessel function in momentum/nucleon. However, proton and alpha spectral slopes using this form are not equal, and there is significant variation from event to event. From other studies, electrons 0.02 to 20 MeV are also found to have curved spectra, but seem to be better fit with a double power law in energy. The spectral properties in both cases correlate with other measures of solar particle acceleration; e.g. gamma-ray line production, hard X-ray burst spectra and microwave fluxes.

  16. The particle-gamma coincidence method: A brief introduction

    SciTech Connect

    Mayer, J.; Derya, V.; Endres, J.; Hennig, A.; Netterdon, L.; Pascu, S.; Pickstone, S. G.; Sauerwein, A.; Scholz, P.; Spieker, M.; Streit, T.-M.; Zilges, A.

    2013-06-10

    Excitation energy information from particle detectors can significantly improve the analysis process of {gamma}-ray spectra and result in more detailed nuclear structure information. Therefore, a new setup at the HORUS {gamma}-ray spectrometer at the University of Cologne has been installed, housing silicon particle detectors at up to eight positions.

  17. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  18. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  19. The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Arnold, Dirk; Blaauw, Menno; Fazinic, Stjepko; Kolotov, Vladimir P.

    2005-01-01

    The IAEA 2002 set of test spectra for low-level γ-ray spectrometry, reported on in a separate paper, was used in an intercomparison of widely available software packages, i.e. Anges 1.0, GammaVision 5.3, Gamma-W 1.68 for Windows, Ganaas 3.11, Genie2000 2.1, Hyperlab 2002.3.2.18, Interwinner 5.0 and UniSampo 1.97. With each program, efficiency curves were obtained for the two counting geometries (a 500 ml Marinelli beaker on a 33% relative efficiency HPGe detector, and a 100 ml pillbox on a 96.3% HPGe detector) and subsequently used to obtain radionuclide activities for the unknown samples. Both the calibration sources and the unknown samples contained radionuclides giving rise to cascade summing effects. Cascade summing correction factors as obtained with some of these programs, as well as with GESPECOR, were compared directly. After the intercomparison meeting, the activities obtained were compared with the certified activities that had been kept secret until then. In this paper, the results will be presented and suggestions made for further improvement of the software.

  20. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  1. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population.

    PubMed

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D

    2010-10-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of (238)U, (232)Th, and (40)K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of (238)U, (232)Th, and (40)K in the surface soil were 53.8, 44.2 and 464.2 Bq kg(-1) respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values. PMID:21170189

  2. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population

    PubMed Central

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D.

    2010-01-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of 238U, 232Th, and 40K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of 238U, 232Th, and 40K in the surface soil were 53.8, 44.2 and 464.2 Bq kg−1 respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values. PMID:21170189

  3. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    SciTech Connect

    Chyzh, A.; Dashdorj, D.; Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Becker, J. A.; Parker, W.; Wu, C. Y.; Becvar, F.; Kroll, J.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  4. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  5. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  6. Heavy meson mass-spectra by general relativistic methods (*)

    SciTech Connect

    Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.

    1984-11-01

    By applying the classical methods of general relativity to elementary particles, one can get-in a natural way-the observed confinement of their constituents, avoiding any recourse to phenomenological models such as the bag model and allowing the deduction of the heavy meson (i.e., charmonium (J/psi) and bottomonium (..gamma..)) mass-spectra.

  7. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  8. System and method for resolving gamma-ray spectra

    DOEpatents

    Gentile, Charles A.; Perry, Jason; Langish, Stephen W.; Silber, Kenneth; Davis, William M.; Mastrovito, Dana

    2010-05-04

    A system for identifying radionuclide emissions is described. The system includes at least one processor for processing output signals from a radionuclide detecting device, at least one training algorithm run by the at least one processor for analyzing data derived from at least one set of known sample data from the output signals, at least one classification algorithm derived from the training algorithm for classifying unknown sample data, wherein the at least one training algorithm analyzes the at least one sample data set to derive at least one rule used by said classification algorithm for identifying at least one radionuclide emission detected by the detecting device.

  9. Induced Radioactivity in Recovered Skylab Materials. [gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.

    1980-01-01

    Four radioactive isotopes found in aluminum and stainless steel samples from Skylab debris were recovered in Australia. The low-level activity was induced by high-energy protons and neutrons in the space environment. Measurements of the specific activities are given.

  10. Experimental Study of Level Density and {gamma}-strength Functions from Compound Nuclear Reactions

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Massey, T. N.; Schiller, A.; Guttormsen, M.; Siem, S.

    2008-04-17

    The current status of experimental study of level density and {gamma}-strength functions is reviewed. Three experimental techniques are used. These are measurements of particle evaporation spectra from compound nuclear reactions, the measurements of particle-{gamma} coincidences from inelastic scattering and pick-up reactions and the method of two-step {gamma}-cascades following neutron/proton radiative capture. Recent experimental data on level densities from neutron evaporation spectra are shown. The first results on the cascade {gamma}-spectrum from the {sup 59}Co(p,2{gamma}){sup 60}Ni reaction are presented.

  11. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  12. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  13. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  14. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    NASA Astrophysics Data System (ADS)

    Mladenova, Ralitsa B.; Firzov, Cyril; Yordanov, Nicola D.

    2010-09-01

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039±0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Еnoviton, Еnoviton С and Еnoviton СЕ, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Еnoviton С or Еnoviton СЕ due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Еnoviton С and Еnoviton СЕ). Gamma-induced free radicals exhibit long time stability—for a six months period the intensity of central peak decrease with 30-40%.

  15. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  16. Microdosimetric spectra measurements of JANUS neutrons

    SciTech Connect

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 ..mu..m) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs.

  17. Hadamard transform visible Raman spectrometry

    SciTech Connect

    Tilotta, D.C.; Freeman, R.D.; Fateley, W.G.

    1987-11-01

    The successful application of LC-SLM Hadamard transform spectrometry as a simultaneous multiwavelength detection system to Raman spectroscopy is presented. Multiplexed Raman data are obtained with the use of an Ar/sup +/ laser lasing at 514.5 nm and a room-temperature silicon photodiode. A conventional 90/sup 0/ scattering geometry is employed for measurements. It is demonstrated that the LC-SLM Hadamard transform Raman spectrometer possesses the capability of performing spectral subtraction and the ability to obtain depolarization ratios of Raman bands, and can function as a selectively tunable optical filter for both Rayleigh line rejection and optical band notching. It is also demonstrated that, for the Hadamard transform Raman experiment, the silicon photodiode used as the detector produces spectra with slightly better signal-to-noise ratios than those obtained with the photomultiplier tube (PMT) used as the detector, although the PMT shows an increase in sensitivity.

  18. Cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.

    1981-06-01

    The general characteristics of gamma-ray bursts are considered. During the period from 1967 to 1977 62 gamma-ray bursts were discovered. Between September 1978 and December 1980 more than 40 bursts were observed with the aid of interplanetary spacecraft, including the Pioneer Venus Orbiter, ISEE-C, Helios B, Vela, Prognoz 7, Venera 11, and Venera 12. The time structures are discussed along with the spectra, and the burst intensity distribution. Attention is given to events observed on March 5, April 6, November 4, and November 19, 1979, taking into account the location of each event. The implications of the more recent results are discussed. It is pointed out that for a better understanding of the origin of the emissions, it is necessary to have a coordinated observation program with several satellites separated by large distances.

  19. Iron and cadmium capture gamma-ray photofission measurements

    SciTech Connect

    Williamson, T.G. . Dept. of Nuclear Engineering); Lamaze, G.P.; Gilliam, D.M.; Eisenhauer, C.M. )

    1990-01-01

    Photofission measurements have been made in {sup 238}U, {sup 232}Th, and {sup 237}Np in iron and cadmium capture gamma-ray spectra in cylindrical neutron-driven gamma-ray sources in the thermal column of the National Bureau of Standards (NBS) Reactor. The gamma-ray source strength was measured with neutron activation foils and by direct counting of activations produced in the metal cylinders. Photofission measurements were made with NBS miniature fission chambers. The integral photofission cross sections were compared with differential measurements by integrating the capture gamma-ray spectra with measured cross-section shapes. The integral cross sections measured in the capture gamma-ray fields are lower than the cross sections calculated from measured differential data.

  20. A system for simultaneous beta and gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Farsoni, A. T.; Hamby, D. M.

    2007-08-01

    A state-of-the-art radiation detection system for real-time and simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) designed and built in our laboratory. The DPP board digitally captures the analog signal pulses and, following several digital preprocessing steps, transfers valid pulses to the host computer for further digital processing. A resolving algorithm also was developed to digitally discriminate beta and gamma events, and reconstruct separate beta and gamma-ray energy spectra with minimal crosstalk. The spectrometer has proven to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  1. Gamma-Ray Pulsar Studies with GLAST

    NASA Astrophysics Data System (ADS)

    Thompson, D. J.

    2008-02-01

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  2. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  3. Gamma-Ray Pulsar Studies with GLAST

    SciTech Connect

    Thompson, D. J.

    2008-02-27

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  4. Gamma-Rays from Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Madejski, Greg

    2016-07-01

    In this presentation, I will overview the properties of radio galaxies gleaned from observations of their gamma-ray emission, including that arising from the nuclear, and extended components. The gamma-ray spectra of radio galaxies measured by the Fermi-LAT and ground based Air Cerenkov telescopes will be considered in the context of their broad-band emission. The presentation will cover the most compelling models for emission processes, and will attempt to constrain the location of the nuclear gamma-ray emission. This will be compared to the observational properties of blazars, which are believed to be radio galaxies with jets pointing along our line of sight. Finally, I will discuss our best estimates for the contribution of unresolved radio galaxies to the diffuse gamma-ray emission.

  5. The multiplicity and the spectra of secondaries correlated with the leading particle energy

    NASA Technical Reports Server (NTRS)

    Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.

    1985-01-01

    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.

  6. Gamma spectroscopic analysis and associated radiation hazards of building materials used in Egypt.

    PubMed

    El-Taher, A

    2010-02-01

    Radiation exposure of the population can be increased appreciably by the use of building materials containing above-normal levels of naturally occurring radionuclides of terrestrial origin. Using gamma-ray spectrometry, the natural radioactivity levels of 55 samples of natural and manufactured Egyptian building materials have been investigated. The samples were collected from local market and construction sites. From the measured gamma-ray spectra, activity concentrations were determined. The activities were in the ranges 11.7-35.6, 12.4-55.2 and 60-350 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The activities are compared with available reported data from other countries and with the world average value for soils. The radium equivalent activity Ra(eq), the external hazard index H(ex) and the absorbed dose rate in air D in each sample was evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. All building materials have shown Ra(eq) (range from 37.76 to 116.87 Bq kg(-1)) lower than the limit of 370 Bq kg(-1) adopted by the Organization for Economic Cooperation and Development (OECD). The absorbed dose rate in indoor air is lower than the international recommended value of 55 nGy h(-1) for all test samples. All the materials examined are acceptable for use as building materials as defined by the OECD criterion. PMID:19841012

  7. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  8. Desorption electrospray ionisation mass spectrometry and tandem mass spectrometry of low molecular weight synthetic polymers.

    PubMed

    Jackson, Anthony T; Williams, Jonathan P; Scrivens, James H

    2006-01-01

    A range of low molecular weight synthetic polymers has been characterised by means of desorption electrospray ionisation (DESI) combined with both mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Accurate mass experiments were used to aid the structural determination of some of the oligomeric materials. The polymers analysed were poly(ethylene glycol) (PEG), polypropylene glycol (PPG), poly(methyl methacrylate) (PMMA) and poly(alpha-methyl styrene). An application of the technique for characterisation of a polymer used as part of an active ingredient in a pharmaceutical tablet is described. The mass spectra and tandem mass spectra of all of the polymers were obtained in seconds, indicating the sensitivity of the technique. PMID:16912984

  9. Apollo orbital geochemistry: Gamma rays

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.

    1973-01-01

    Lunar gamma ray spectra obtained during Apollo-15 and -16 flights show a natural radioactivity due to potassium, thorium, and uranium as well as a cosmic ray induced activity in the lunar surface due to high neutron interactions produced by (p,n) reaction in the lunar surface. The radioactivity is at a low in the highlands on the backside of the moon; most of the radioactivity is confined to the Oceanus Procellarum/Mare Imbrium region and to the Van de Graff area on the lunar backside.

  10. The POPOP4 library and codes for preparing secondary gamma-ray production cross sections

    NASA Technical Reports Server (NTRS)

    Ford, W. E., III

    1972-01-01

    The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.

  11. On the structural denaturation of biological analytes in trapped ion mobility spectrometry - mass spectrometry.

    PubMed

    Liu, Fanny C; Kirk, Samuel R; Bleiholder, Christian

    2016-06-01

    Key to native ion mobility/mass spectrometry is to prevent the structural denaturation of biological molecules in the gas phase. Here, we systematically assess structural changes induced in the protein ubiquitin during a trapped ion mobility spectrometry (TIMS) experiment. Our analysis shows that the extent of structural denaturation induced in ubiquitin ions is largely proportional to the amount of translational kinetic energy an ion gains from the applied electric field between two collisions with buffer gas particles. We then minimize the efficiency of the structural denaturation of ubiquitin ions in the gas phase during a TIMS experiment. The resulting "soft" TIMS spectra of ubiquitin are found largely identical to those observed on "soft" elevated-pressure ion mobility drift tubes and the corresponding calibrated cross sections are consistent with structures reported from NMR experiments for the native and A-state of ubiquitin. Thus, our analysis reveals that TIMS is useful for native ion mobility/mass spectrometry analysis. PMID:26998732

  12. Quality control for building libraries from electrospray ionization tandem mass spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2014-07-01

    Electrospray ionization (ESI) tandem mass spectrometry coupled with liquid chromatography is a routine technique for identifying and quantifying compounds in complex mixtures. The identification step can be aided by matching acquired tandem mass spectra (MS(2)) against reference library spectra as is routine for electron ionization (EI) spectra from gas chromatography/mass spectrometry (GC/MS). However, unlike the latter spectra, ESI MS(2) spectra are likely to originate from various precursor ions for a given target molecule and may be acquired at varying energies and resolutions and have characteristic noise signatures, requiring processing methods very different from EI to obtain complete and high quality reference spectra for individual analytes. This paper presents procedures developed for creating a tandem mass spectral library that addresses these factors. Library building begins by acquiring MS(2) spectra for all major MS(1) peaks in an infusion run, followed by assigning MS(2) spectra to clusters and creating a consensus spectrum for each. Intensity-based constraints for cluster membership were developed, as well as peak testing to recognize and eliminate suspect peaks and reduce noise. Consensus spectra were then examined by a human evaluator using a number of criteria, including a fraction of annotated peaks and consistency of spectra for a given ion at different energies. These methods have been developed and used to build a library from >9000 compounds, yielding 230,000 spectra. PMID:24896981

  13. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  14. Nuclear Magnetic Resonance Spectrometry.

    ERIC Educational Resources Information Center

    Wasson, John R.; Salinas, Jorge E.

    1980-01-01

    Reviews current research in NMR spectrometry, in the areas of apparatus and techniques, spectral analysis, computer applications, analytical applications, and selected organic and inorganic systems. Various aspects of NMR spectrometry are presented in tabular form, with 133 references. Listed also are 124 references from the discussions in the…

  15. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  16. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  17. Mass Spectrometry Based Identifications of LMW Glutenin Subunits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tandem mass spectrometry (MS/MS) is routinely used to identify wheat endosperm proteins. In this method, peptide fragmentation patterns generated by MS/MS are identified using a ‘search engine’ to compare the spectra to those generated in silico from protein sequence databases. Trypsin is a commonly...

  18. Mass spectrometry and hyphenated instruments in food analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass spectrometry (MS) has come a long way since the record of the first mass spectra of a simple low molecular weight substance by J.J. Thomson in 1912. Especially over the past decades, MS has been the subject of many developments. Particularly, the hyphenation of MS to gas chromatography (GC) a...

  19. Stars and their Spectra

    NASA Astrophysics Data System (ADS)

    Kaler, James B.

    1997-03-01

    This unique and informative text describes how stars are classified according to their spectral qualities and temperature. James Kaler explains the alphabet of stellar astronomy, running from cool M stars to hot O stars, and tells the story of their evolution. Before embarking on a voyage of cosmic discovery, the author discusses the fundamental properties of stars, their atomic structure and the formation of spectra. Then, Kaler considers each star type individually and explores its spectra in detail. A review of unusual, hard-to-classify stars, and a discussion of data related to the birth, life and death of stars round out the text. This book is an important resource for all amateur astronomers and students of astronomy. Professionals will find it a refreshing read as well.

  20. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  1. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  2. Multispectral processing without spectra

    NASA Astrophysics Data System (ADS)

    Drew, Mark S.; Finlayson, Graham D.

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America

  3. Multispectral processing without spectra.

    PubMed

    Drew, Mark S; Finlayson, Graham D

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. PMID:12868625

  4. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    SciTech Connect

    Phillips, J.R.; Halbig, J.K.; Lee, D.M.; Beach, S.E.; Bement, T.R.; Dermendjiev, E.; Hatcher, C.R.; Kaieda, K.; Medina, E.G.

    1980-05-01

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(..gamma..,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup.

  5. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  6. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  7. Recent progress in low-level gamma imaging

    SciTech Connect

    Mahe, C.; Girones, Ph.; Lamadie, F.; Le Goaller, C.

    2007-07-01

    The CEA's Aladin gamma imaging system has been operated successfully for several years in nuclear plants and during decommissioning projects with additional tools such as gamma spectrometry detectors and dose rate probes. The radiological information supplied by these devices is becoming increasingly useful for establishing robust and optimized decommissioning scenarios. Recent technical improvements allow this gamma imaging system to be operated in low-level applications and with shorter acquisition times suitable for decommissioning projects. The compact portable system can be used in places inaccessible to operators. It is quick and easy to implement, notably for onsite component characterization. Feasibility trials and in situ measurements were recently carried out under low-level conditions, mainly on waste packages and glove boxes for decommissioning projects. This paper describes recent low-level in situ applications. These characterization campaigns mainly concerned gamma emitters with {gamma} energy < 700 keV. In many cases, the localization of hot spots by gamma camera was confirmed by additional measurements such as dose rate mapping and gamma spectrometry measurements. These complementary techniques associated with advanced calculation codes (MCNP, Mercure 6.2, Visiplan and Siren) offer a mobile and compact tool for specific assessment of waste packages and glove boxes. (authors)

  8. [Determination of exogenous gamma-amylase residue in honey].

    PubMed

    Fei, Xiaoqing; Wu, Bin; Shen, Chongyu; Zhang, Rui; Ding, Tao; Li, Lihua

    2012-08-01

    A novel method for the determination of exogenous gamma-amylase residue in honey using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) was established. After pre-separation by gel column chromatography, the gamma-amylase in honey samples was separated from the sugars. The gamma-amylase was then used to catalyze maltose into glucose. This enzymatic reaction was under the conditions of 55 degrees C and 0.03 mol/L phosphate buffer solution (pH 4.5) for 48 h. The maltose and glucose in the above enzymatic reaction solution were separated using liquid chromatography. By measuring the content of glucose with isotope ratio mass spectrometry, the gamma-amylase in honey can be determined. The linear range of gamma-amylase was 5 - 200 U/kg with the quantification limit of 5 U/kg. The recoveries were between 89.6% and 108.2% with the relative standard deviations from 3.3% to 4.9%. This method was used to analyze 38 honey and rice syrup samples, and the detection rate of gamma-amylase was 76.3%. To further verify the detection capability of this method, an authentic honey was adulterated with 15% (mass fraction) rice syrup. The gamma-amylase content in this sample was 10.2 U/kg. This method can effectively identify honey adulteration with rice syrups from the perspective of enzymology. PMID:23256379

  9. Statistics of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.

    1992-01-01

    A phenomenological model of gamma-ray burst spectra is used to calculate the statistics of gamma-ray bursts originating at cosmological distances. A model of bursters with no source evolution in a q sub 0 = 1/2 Friedmann cosmology is in accord with recent observations of the differential V/Vmax distribution. The data are best fit with an average peak-burst luminosity of (4 +/- 2) x 10 exp 51 ergs/s and a present-day source emissivity of 940 +/- 440 bursts/(10 exp 10 yr) cu Mpc. A spectral test of the cosmological hypothesis is proposed.

  10. Cross sections and differential spectra for reactions of 2-20 MeV neutrons of /sup 27/Al

    SciTech Connect

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2-20 MeV on /sup 27/Al targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope.

  11. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  12. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  13. Nuclear-structure effects in proton evaporation spectra

    SciTech Connect

    Sarantites, D.G.; Baktash, C.; Nicolis, N.G.; Garcia-Bermudez, G.; Abenante, V.; Beene, J.R.; Johnson, N.R.; Halbert, M.L.; Hensley, D.C.; McGowan, F.K.; Griffin, H.C.; Lee, I.Y.; Majka, Z.; Riley, M.A.; Semkow, T.M.; Stracener, D.W.; Virtanen, A. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109)

    1990-04-30

    Energy spectra and angular distributions of evaporated protons from the reaction {sup 52}Cr({sup 34}S, 2{ital p}2{ital n}){sup 82}Sr at 130 MeV were measured in coincidence with discrete {gamma} transitions. Large shifts and changes in the shape of the proton spectra were observed when high-spin states in different rotational bands are populated. They are interpreted as due to near-yrast stretched proton emission, which preferentially populates the yrast band by subbarrier protons.

  14. Artificial neural networks technology for neutron spectrometry and dosimetry.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Manzanares-Acuña, E; Gallego, E; Lorente, A; Iñiguez, M P

    2007-01-01

    Artificial Neural Network Technology has been applied to unfold neutron spectra and to calculate 13 dosimetric quantities using seven count rates from a Bonner Sphere Spectrometer with a (6)LiI(Eu). Two different networks, one for spectrometry and another for dosimetry, were designed. To train and test both networks, 177 neutron spectra from the IAEA compilation were utilised. Spectra were re-binned into 31 energy groups, and the dosimetric quantities were calculated using the MCNP code and the fluence-to-dose conversion coefficients from ICRP 74. Neutron spectra and UTA4 response matrix were used to calculate the expected count rates in the Bonner spectrometer. Spectra and H(10) of (239)PuBe and (241)AmBe were experimentally obtained and compared with those determined with the artificial neural networks. PMID:17522034

  15. The gamma-ray telescope Gamma-1

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Nesterov, V. E.; Rodin, V. G.; Kalinkin, L. F.; Balibanov, V. M.; Prilutsky, O. F.; Leikov, N. G.; Bielaoussov, A. S.; Dobrian, L. B.; Poluektov, V. P.

    1985-01-01

    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented.

  16. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial.

    PubMed

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland; Jacob, Daniela

    2015-08-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856

  17. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial

    PubMed Central

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland

    2015-01-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856

  18. Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra.

    SciTech Connect

    Frank, Ari M; Monroe, Matthew E; Shah, Anuj R; Carver, Jeremy J; Bandeira, Nuno; Moore, Ronald J; Anderson, Gordon A; Smith, Richard D; Pevzner, Pavel A

    2011-07-01

    Tandem mass spectrometry (MS/MS) experiments yield multiple, nearly identical spectra of the same peptide in various laboratories, but proteomics researchers typically do not leverage the unidentified spectra produced in other labs to decode spectra they generate. We propose a spectral archives approach that clusters MS/MS datasets, representing similar spectra by a single consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and unidentified spectra in the same way and maintaining information about peptide spectra that are common across species and conditions. Thus archives offer both traditional library spectrum similarity-based search capabilities along with new ways to analyze the data. By developing a clustering tool, MS-Cluster, we generated a spectral archive from ~1.18 billion spectra that greatly exceeds the size of existing spectral repositories. We advocate that publicly available data should be organized into spectral archives rather than be analyzed as disparate datasets, as is mostly the case today.

  19. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  20. Einstein spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.

    1988-01-01

    The results of the initial stage of the CfA survey of quasar energy distributions are reviewed. Einstein imaging proportional counter spectra of 33 quasars have been studied by fitting a single power law slope and absorption by an equivalent column density of neutral hydrogen. Comparison with the higher energy HEAO-A2 data leads to a two-component model for the X-ray spectrum. The X-ray column density is systematically lower than the 21-cm measured Galactic column density along the same line of sight.

  1. Alpha particle spectrometry using superconducting microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert; Ullom, Joel; Beall, James; Hilton, Gene; Stiehl, Gregory; Irwin, Kent; Plionis, Alexander; Lamont, Stephen; Rudy, Clifford; Rabin, Michael

    2009-03-01

    Alpha spectrometry is the preferred technique for analyzing trace samples of radioactive material because the alpha particle flux can be significantly higher than the gamma-ray flux from nuclear materials of interest. Traditionally, alpha spectrometry is performed with Si detectors whose resolution is at best 8 keV FWHM. Here, we describe the design and operation of a microcalorimeter alpha detector with an energy resolution of 1.06 keV FWHM at 5 MeV. We demonstrate the ability of the microcalorimeter to clearly resolve the alpha particles from Pu-239 and Pu-240, whose ratio differentiates reactor-grade Pu from weapons-grade. We also show the first direct observation of the decay of Po-209 to the ground state of Pb-205 which has traditionally been obscured by a much stronger alpha line 2 keV away. Finally, the 1.06 keV resolution observed for alpha particles is far worse than the 0.12 keV resolution predicted from thermal fluctuations and measurement of gamma-rays. The cause of the resolution degradation may be ion damage in the tin. Hence, alpha particle microcalorimeters may provide a novel tool for studying ion damage and lattice displacement energies in bulk materials.

  2. Environmental Analysis by ab Initio Quantum Mechanical Computation and Gas Chromatography/Fourier Transform Infrared Spectrometry.

    PubMed

    Gurka, D F; Titus, R; Robins, K; Wong, A; Wurrey, C J; Durig, J R; Shen, Z; Burkhard, L P

    1996-12-01

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrared spectra was performed with the Gaussian quantum chemistry software. The Hartree-Fock/6-31G* level of theory was employed, with IR frequencies scaled by a standard factor of 0.89. This approach shows great promise as a means of characterizing or confirming environmental analyte identifications when standard spectra, or pure standards required to measure standard spectra, are unavailable. PMID:21619333

  3. Infrared spectra of molybdenum-modified aluminum oxide

    SciTech Connect

    Chukin, G.D.; Sergienko, S.A.; Seleznev, Yu.L.; Malevich, V.I.; Radchenko, E.D.

    1988-03-01

    IR spectra were recorded and the acid centers were detected with anhydrous pyridine Py. The spectra from the hydroxyl cover on gamma-Al/sub 2/O/sub 3/ were assessed. Measurements on dehydroxylation and rehydroxylation of gamma-Al/sub 2/O/sub 3/ showed that the surface groups react with fluorine and chlorine anions, with sodium cations, and with neutral Py and NH/sub 3/; vacuum heat treatment removed hydroxyl from the coordination sphere of Al/sup 3 +/, which increased the intensity for the PyL bands after Py adsorption. Raman spectroscopy showed that MoO/sub 3/ is formed at the surface of Al/sub 2/O/sub 3/ starting at concentrations of 8-10 mass %, which is the level at which PyH/sup +/ bands appear on Py adsorption.

  4. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  5. Uncoiling collagen: a multidimensional mass spectrometry study.

    PubMed

    Simon, H J; van Agthoven, M A; Lam, P Y; Floris, F; Chiron, L; Delsuc, M-A; Rolando, C; Barrow, M P; O'Connor, P B

    2016-01-01

    Mass spectrometry can be used to determine structural information about ions by activating precursors and analysing the resulting series of fragments. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) is a technique that correlates the mass-to-charge (m/z) ratio of fragment and precursor ions in a single spectrum. 2D FT-ICR MS records the fragmentation of all ions in a sample without the need for isolation. To analyse specific precursors, horizontal cross-sections of the spectrum (fragment ion scans) are taken, providing an alternative to conventional tandem mass spectrometry (MS/MS) experiments. In this work, 2D FT-ICR MS has been used to study the tryptic digest of type I collagen, a large protein. Fragment ion scans have been extracted from the 2D FT-ICR MS spectrum for precursor m/z ratios: 951.81, 850.41, 634.34, and 659.34, and 2D FT-ICR MS spectra are compared with a set of 1D MS/MS spectra using different fragmentation methods. The results show that two-dimensional mass spectrometry excells at MS/MS of complex mixtures, simplifying spectra by eliminating contaminant peaks, and aiding the identification of species in the sample. Currently, with desktop computers, 2D FT-ICR MS is limited by data processing power, a limitation which should be alleviated using cluster parallel computing. In order to explore 2D FT-ICR MS for collagen, with reasonable computing time, the resolution in the fragment ion dimension is limited to 256k data points (compared to 4M data points in 1D MS/MS spectra), but the vertical precursor ion dimension has 4096 lines, so the total data set is 1G data points (4 Gbytes). The fragment ion coverage obtained with a blind, unoptimized 2D FT-ICR MS experiment was lower than conventional MS/MS, but MS/MS information is obtained for all ions in the sample regardless of selection and isolation. Finally, although all 2D FT-ICR MS peak assignments were made with the aid of 1D FT-ICR MS data, these results

  6. Theoretical Studies of Molecular Spectra

    NASA Technical Reports Server (NTRS)

    McKay, Christopher (Technical Monitor); Freedman, Richard S.

    2002-01-01

    This summary describes the research activities of the principal investigator during the reporting period. The research includes spectroscopy, management of molecular databases, and generation of spectral line profiles and opacity data. The spectroscopy research includes oxygen broadening of nitric oxide (NO), analysis of CO2 spectra, analysis of HNO3 spectra, and analysis of CO spectra.

  7. Proton energy spectra in the nonmesonic weak decay of 12lambdaC and 28lambdaSi hypernuclei.

    PubMed

    Hashimoto, O; Ajimura, S; Aoki, K; Bhang, H; Hasegawa, T; Hotchi, H; Kim, Y D; Kishimoto, T; Maeda, K; Noumi, H; Ohta, Y; Omata, K; Outa, H; Park, H; Sato, Y; Sekimoto, M; Shibata, T; Takahashi, T; Youn, M

    2002-01-28

    Numbers of protons per Gamma hypernuclear weak decay were measured as a function of proton energy above 40 MeV, explicitly identifying production of Gamma hypernuclei by the (pi+,K+) reaction. The ratios between the neutron-stimulated to proton-stimulated nonmesonic decay widths, Gamma((Lambda)n-->nn)/Gamma((Lambda)p-->np) ( = Gamma(n)/Gamma(p)) were extracted by fitting the proton energy spectra. The present result claims that the proton yields are suppressed and the Gamma(n)/Gamma(p) ratios are close to 1 both for 12LambdaC and 28LambdaSi in contradiction to theoretical expectations based on meson exchange models. PMID:11801115

  8. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  9. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  10. Stability of an injectable disulfiram formulation sterilized by gamma irradiation

    SciTech Connect

    Phillips, M.; Agarwal, R.P.; Brodeur, R.J.; Garagusi, V.F.; Mossman, K.L.

    1985-02-01

    Stability of an injectable disulfiram suspension sterilized by gamma(gamma) irradiation was tested. Single doses of disulfiram powder in plastic syringes were subjected to 50,000 rads of gamma radiation. Culture media were inoculated with the irradiated drug to test for growth of bacteria, fungi, and mycobacteria. The irradiated drug and nonirradiated controls were analyzed by high-performance liquid chromatography (HPLC) for disulfiram and its major degradation product, diethyldithiocarbamate (DDC). Ultraviolet absorption spectra of irradiated and nonirradiated disulfiram were obtained. No organisms grew in any of the culture media. HPLC analysis indicated that disulfiram content of the irradiated specimens was not reduced, and DDC was not detected. There were no important differences between the ultraviolet spectra of the irradiated and nonirradiated samples. Disulfiram can be sterilized by gamma irradiation without chemical degradation.

  11. Analysis of fissionable material using delayed gamma rays from photofission

    SciTech Connect

    Hollas, C.L.; Close, D.A.; Moss, C.E.

    1986-09-01

    The energetic gamma-ray spectra from the fission products of photofission have been investigated to determine whether photofission can identify heavily shielded fissionable material. Target samples of natural thorium, 93% enriched /sup 235/U, natural uranium, and 93% enriched /sup 239/Pu were irradiated with bremsstrahlung gamma rays produced by 10-MeV electrons from a small linear accelerator. The gamma-ray spectra for each of the four isotopes studied reveals a distinctive intensity distribution. For example, the intensity ratio of the pair of gamma rays at 1436 keV (/sup 138/Cs) and 1428 keV (/sup 94/Sr) is 1.9 for /sup 235/U, 2.4 for /sup 238/U, 1.7 for /sup 232/Th and 1.4 for /sup 239/Pu. 6 refs., 2 figs., 1 tab.

  12. Stability of an injectable disulfiram formulation sterilized by gamma irradiation.

    PubMed

    Phillips, M; Agarwal, R P; Brodeur, R J; Garagusi, V F; Mossman, K L

    1985-02-01

    Stability of an injectable disulfiram suspension sterilized by gamma(gamma) irradiation was tested. Single doses of disulfiram powder in plastic syringes were subjected to 50,000 rads of gamma radiation. Culture media were inoculated with the irradiated drug to test for growth of bacteria, fungi, and mycobacteria. The irradiated drug and nonirradiated controls were analyzed by high-performance liquid chromatography (HPLC) for disulfiram and its major degradation product, diethyldithiocarbamate (DDC). Ultraviolet absorption spectra of irradiated and nonirradiated disulfiram were obtained. No organisms grew in any of the culture media. HPLC analysis indicated that disulfiram content of the irradiated specimens was not reduced, and DDC was not detected. There were no important differences between the ultraviolet spectra of the irradiated and nonirradiated samples. Disulfiram can be sterilized by gamma irradiation without chemical degradation. PMID:2983546

  13. Cosmic Ray Spectra in Nambu-Goldstone Dark Matter Models

    SciTech Connect

    Ibe, Masahiro; Murayama, Hitoshi; Shirai, Satoshi; Yanagida, Tsutomu T.; ,

    2010-06-11

    We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone dark matter models. The recent observed positron/electron excesses at PAMELA and Fermi experiments are well fitted by the dark matter with a mass of 3TeV for the annihilating model, while with a mass of 6TeV for the decaying model. We also show that the Nambu-Goldstone dark matter models predict a distinctive gamma-ray spectrum in a certain parameter space.

  14. Gamma ray spectrometry of LDEF samples: Results of 1992 analyses

    SciTech Connect

    Winn, W.G.

    1993-09-01

    In January 1990, NASA retrieved the Long Duration Exposure Facility (LDEF), which had orbited the Earth since April 1984. The satellite had become slightly radioactive due to cosmic exposure, and the SRTC Underground Counting Facility was used to analyze LDEF samples of Al and Ta for activations of {sup 22}Na, {sup 172}Lu, and {sup 173}Lu. Background steel trunnion samples, not irradiated in space, were analyzed for {sup 60}Co. This report summarizes results for 15 samples analyzed in 1992.

  15. A new versatile underground gamma-ray spectrometry system.

    PubMed

    Lutter, Guillaume; Hult, Mikael; Marissens, Gerd; Andreotti, Erica; Rosengård, Ulf; Misiaszek, Marcin; Yüksel, Ayhan; Sahin, Namik

    2013-11-01

    The newest development in IRMM's underground analytical facility is a large lead shield lined with copper that is versatile and can host several detectors of different types. The characteristics and the background performance of the shield are described for four different detector configurations involving HPGe-detectors and NaI-detectors. The shield has been designed to swap detectors, while still maintaining a low background. This enables testing of detectors for other experiments and optimisation of detection limits for specific radionuclides in different projects. PMID:23743483

  16. Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.

  17. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  18. Biological particle analysis by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Vilker, V. L.; Platz, R. M.

    1983-01-01

    An instrument that analyzes the chemical composition of biological particles in aerosol or hydrosol form was developed. Efforts were directed toward the acquisition of mass spectra from aerosols of biomolecules and bacteria. The filament ion source was installed on the particle analysis by mass spectrometry system. Modifications of the vacuum system improved the sensitivity of the mass spectrometer. After the modifications were incorporated, detailed mass spectra of simple compounds from the three major classes of biomolecules, proteins, nucleic acids, and carbohydrates were obtained. A method of generating bacterial aerosols was developed. The aerosols generated were collected and examined in the scanning electron microscope to insure that the bacteria delivered to the mass spectrometer were intact and free from debris.

  19. Separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriaini, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2015-10-01

    The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is ∼10-3 at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of ∼4 × 105 for vertical incident particles and ∼3 × 105 for particles with initial inclination of 30° in the electron energy range from 50 GeV to 1 TeV.

  20. Earth formation density measurement from natural gamma ray spectral logs

    SciTech Connect

    Smith Jr., H. D.

    1985-07-02

    Naturally occurring gamma radiations from earth formations in the vicinity of a well borehole are detected and spectrally separated into six energy regions or bands. Borehole compensation techniques are applied to the gamma ray spectra and the attenuation coefficient /eta/ is determined as a result thereof. The attenuation coefficient is used along with predetermined borehole, casing and cement parameters to derive a measure of the density of the earth formations.