These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

An approximation of gamma-ray buildup factors by modified geometrical progression  

Microsoft Academic Search

The empirical formula of gamma-ray buildup factors by a geometric-progression (G-P) method was modified by presenting the K parameter as a function of the penetrating distance from the source. The values of the parameters are given for the modified G-P method fitted to the exposure and absorbed dose buildup factor data for air, water, concrete, and iron calculated by a

Harima

1983-01-01

2

An iterative method for calculating gamma-ray build-up factors in multi-layer shields.  

PubMed

Point kernel codes that simulate gamma-ray transport often use build-up factors to take scattered photons into account. This study introduces a new method, for computing multi-layer shield build-up factors. This method, based on an empirical formula for calculating double-layer shield build-up factors, is iterative. For an N-layer shield, each iteration of the method treats the first and the second layer of the shield. It replaces these layers by a single equivalent layer composed of an appropriate material and, hence, it turns the N-layer shield into an (N - 1)-layer shield. In order to determine the equivalent layer of an appropriate material, a neural network approach is developed: some neural networks trained on a large set of various configurations provide the equivalent material for any double-layer configuration. The method is implemented into MERCURE-6.3 straight-line attenuation code and is validated by comparison between MERCURE-6.3 results and reference data for one-dimensional geometries. Reference data obtained from transport calculations performed using the Sn transport code TWODANT. The comparisons prove the accuracy and sturdiness of the method. PMID:16604684

Suteau, C; Chiron, M

2005-01-01

3

A 3D point-kernel multiple scatter model for parallel-beam SPECT based on a gamma-ray buildup factor  

Microsoft Academic Search

A three-dimensional (3D) point-kernel multiple scatter model for point spread function (PSF) determination in parallel-beam single-photon emission computed tomography (SPECT), based on a dose gamma-ray buildup factor, is proposed. This model embraces nonuniform attenuation in a voxelized object of imaging (patient body) and multiple scattering that is treated as in the point-kernel integration gamma-ray shielding problems. First-order Compton scattering is

Predrag Marinkovic; Radovan Ilic; Rajko Spaic

2007-01-01

4

Improvement of MERCURE-6's General Formalism for Calculating Gamma-Ray Buildup Factors in Multilayer Shields  

SciTech Connect

This study proposes an improvement of the general formalism for calculating gamma-ray buildup factors in multilayer shields developed by Assad et al. The main modification concerns the treatment of the double-layer shield formed by the two first layers of a multilayer shield. Instead of replacing the double-layer shield with an equivalent thickness of the layer of the second material, the improved general formalism replaces it with a single-layer shield made of an appropriate material. The determination of the appropriate material is implemented into MERCURE-6.1 thanks to neural networks trained on a large set of various configurations.One-dimensional comparisons with the TWODANT transport S{sub n} code shows the accuracy of the new formalism for shields composed of three and five layers. Indeed, for three-layer shields with an infinitesimal second layer and for multilayer shields composed of numerous thin layers (more than 15), MERCURE-6.1 matches the reference data quite well. The MERCURE-6.1 ability to solve three-dimensional realistic cases is highlighted by comparisons to the TRIPOLI-4 and MCNP-4C Monte Carlo codes.

Suteau, Christophe; Chiron, Maurice; Arnaud, Gilles [Commissariat a l'Energie Atomique (France)

2004-05-15

5

Reduction of the Buildup Contribution in Gamma Ray Attenuation Measurements and a New Way to Study This Experiment in a Student Laboratory  

ERIC Educational Resources Information Center

In continuation of our investigation into the buildup phenomenon appearing in gamma ray attenuation measurements in laboratory experiments we study the dependence of the buildup factor on the area of the absorber in an effort to reduce the buildup of photons. Detailed measurements are performed for up to two mean free paths of [superscript 60]Co…

Adamides, E.; Kavadjiklis, A.; Koutroubas, S.K.; Moshonas, N.; Tzedakis, A.; Yiasemides, K.

2014-01-01

6

Development and Evaluation of a Fast Calculation Method for Gamma Ray Skyshine Dose Using Data Libraries  

Microsoft Academic Search

A fast calculation method for gamma ray skyshine dose was developed. Four data libraries including anisotropy factors and buildup factors in the gamma ray transport calculation in air and the buildup flux energy spectrum and edge correction factor in the calculation of the precise energy spectrum of gamma ray flux penetrating through the upper shields were used. The anisotropy factors

Yoshitaka YOSHIDA; Akinao SHIMIZU; Yoshiko HARIMA; Kotaro UEKI

2011-01-01

7

Dose buildup factor formula for double-layered shields  

SciTech Connect

In radiation shielding, health physics, and radioactive waste management, it is very important to know buildup factors for various materials and their combinations used as multilayer shields. In this work, a general formula that computes buildup factors for double-layer shields was developed on the basis of Monte Carlo photon transport using the MCNP code. Formulas for buildup factors for double-layer shields have been developed in the past with various degrees of success and limitations. The GP formula is excellent but applies to single-layer materials only. In this work, gamma-ray dose buildup factors for double-layer shields have been computed using the MCNP code. A point monoenergetic isotropic source was used with energy from 0.5 to 6 MeV. The source was placed at the center of the first spherical materials, surrounded by a second one. Detectors were placed on the surface of the second material and used to tally the photon flux in a six-energy-group structure. The shielding materials considered were water, lead, steel, concrete, and some of their combinations for double-layered shields ranging in thickness from 1 to 10 mean free paths (mfp).

Guvendik, M.; Tsoulfanidis, N.

1999-07-01

8

The gamma-ray and neutron shielding factors of fly-ash brick materials.  

PubMed

A comprehensive study of gamma-ray exposure build-up factors (EBFs) of fly-ash brick materials has been carried out for photon energies of 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path) by a geometrical progression (GP) fitting method. The EBF values of the fly-ash brick materials were found to be dependent upon the photon energy, penetration depth and chemical composition, and were found to be higher than the values for mud bricks and common bricks. Above a photon energy of 3 MeV for large penetration depths (>10 mfp), the EBF becomes directly proportional to Zeq. EBFs of fly-ashes were found to be less than or equal to those of concrete for low penetration depths (<10 mfp) for intermediate photon energies up to 1.5 MeV. The EBF values of fly-ash materials were found to be almost independent of Si concentration. The fast neutron removal cross sections of the fly-ash brick materials, mud bricks and common bricks were also calculated to understand their shielding effectiveness. The shielding effectiveness of the fly-ash materials against gamma-ray radiation was lower than that of common and mud bricks. PMID:24270465

Singh, Vishwanath P; Badiger, N M

2014-03-01

9

Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry  

NASA Astrophysics Data System (ADS)

Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

Singh, Vishwanath P.; Badiger, N. M.

2014-11-01

10

A study of the energy absorption and exposure buildup factors of some anti-inflammatory drugs.  

PubMed

Human radiation exposure is increasing due to radiation development in science and technology. The development of radioprotective agents is important for protecting patients from the side effects of radiotherapy and for protecting the public from unwanted irradiation. Radioprotective agents are used to reduce the damage caused by radiation in healthy tissues. There are several classes of radioprotective compounds that are under investigation. Analgesics and anti-inflammatory compounds are being considered for treating or preventing the effects of damage due to radiation exposure, or for increasing the chance of survival after exposure to a high dose of radiation. In this study, we investigated the radioprotective effects of some analgesic and anti-inflammatory compounds by evaluating buildup factors. The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) were calculated to select compounds in a 0.015-15 MeV energy region up to a penetration depth of 40 mfp (mean free path). Variations of EABF and EBF with incident photon energy and penetration depth elements were also investigated. Significant variations in both EABF and EBF values were observed for several compounds at the moderate energy region. At energies below 0.15 MeV, EABF and EBF values increased with decreasing equivalent atomic number (Z(eq)) of the samples. In addition, EABF and EBF were the largest for ibuprofen, aspirin, paracetamol, naproxen and ketoprofen at 0.05 and 0.06 MeV, respectively, and the EABF value was 0.1 MeV for aceclofenac. From these results, we concluded that the buildup of photons is less for aceclofenac compared to other materials. PMID:24859334

Ekinci, Neslihan; Kavaz, Esra; Özdemir, Yüksel

2014-08-01

11

Improvement of Photon Buildup Factors for Radiological Assessment  

SciTech Connect

Slant-path buildup factors for photons between 1 keV and 10 MeV for nine radiation shielding materials (air, aluminum, concrete, iron, lead, leaded glass, polyethylene, stainless steel, and water) are calculated with the most recent cross-section data available using Monte Carlo and discrete ordinates methods. Discrete ordinates calculations use a 244-group energy structure that is based on previous research at Los Alamos National Laboratory (LANL), but extended with the results of this thesis, and its focused studies on low-energy photon transport and the effects of group widths in multigroup calculations. Buildup factor calculations in discrete ordinates benefit from coupled photon/electron cross sections to account for secondary photon effects. Also, ambient dose equivalent (herein referred to as dose) buildup factors were analyzed at lower energies where corresponding response functions do not exist in literature. The results of these studies are directly applicable to radiation safety at LANL, where the dose modeling tool Pandemonium is used to estimate worker dose in plutonium handling facilities. Buildup factors determined in this thesis will be used to enhance the code's modeling capabilities, but should be of interest to the radiation shielding community.

F.G. Schirmers

2006-07-01

12

Hepatocyte growth factor protects endothelial cells against gamma ray irradiation-induced damage  

PubMed Central

Aim: To investigate the effect of HGF on proliferation, apoptosis and migratory ability of human vascular endothelial cells against gamma ray irradiation. Methods: ECV304 cells derived from adult human umbilical vein endothelial cells (HUVEC) were irradiated with a single gamma ray dose of 20 Gy. Immunocytochemistry and Western blot analysis were used to detect c-Met protein expression and HGF/c-Met signal pathway. In the HGF-treated groups, ECV304 cells were incubated with HGF (20 or 40 ng/mL) 3 h prior to irradiation. At 48 h post-irradiation, the proliferation of ECV304 cells was measured by MTT assay, the apoptosis was assessed by flow cytometry, and the migratory ability of ECV304 cells was measured by transwell chamber assay. Results: c-Met protein is expressed in ECV304 cells and can be activated by HGF. Gamma ray irradiation inhibits proliferation and migration of ECV304 cells in a dose-dependent manner. HGF significantly promoted the proliferation of ECV304 cells, and flow cytometry revealed that HGF can inhibit apoptosis of ECV304 cells. Transwell chamber assay also showed that HGF increases migration activity of endothelial cells. Conclusion: HGF may afford protection to vascular endothelial cells against gamma ray irradiation-induced damage. PMID:19749787

Hu, Shun-ying; Duan, Hai-feng; Li, Qing-fang; Yang, Yue-feng; Chen, Jin-long; Wang, Li-sheng; Wang, Hua

2009-01-01

13

Energy Absorption and Exposure Buildup Factors of Essential Amino Acids  

PubMed Central

The effective atomic number and effective electron density in amino acids are of significant interest due to their use in various applications. The energy absorption buildup factors, exposure buildup factors, effective atomic numbers, and electron densities of essential amino acids such as Leucine (C6H13NO2), Lysine (C6H14N2O2), Methionine (C5H11NO2S), Phenylalanine (C9H11NO2), Threonine (C4H9NO3), Tryptophan (C11H12N2O2), Valine (C5H11NO2), Arginine (C6H14N4O2), and Histidine (C6H9N3O2) were determined theoretically in the energy range 0.015–15?MeV. PMID:24605325

Bursal?oglu, Ertugrul; Balkan, Begum; Kavanoz, H. Birtan; Okutan, Mustafa; Yalc?n, Zeynel

2014-01-01

14

The Study of Equilibrium factor between Radon-222 and its Daughters in Bangkok Atmosphere by Gamma-ray Spectrometry  

NASA Astrophysics Data System (ADS)

To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.56±0.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.56±0.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand

Rujiwarodom, Rachanee

2010-05-01

15

High energy gamma ray astronomy  

NASA Technical Reports Server (NTRS)

The SAS-2 gamma ray experiment and its detection of celestial gamma rays are described. Data also cover intensity of high energy gamma rays, gamma ray distribution, gamma ray origin, and diffuse radiation.

Fichtel, C. E.

1974-01-01

16

Temperature dependence and anharmonicity of the Debye-Waller factor in sodium metal using Moessbauer. gamma. -ray diffraction  

SciTech Connect

The Debye-Waller factor of sodium has been measured as a function of temperature from 80 to 295 K using Moessbauer ..gamma..-ray scattering. The high energy resolution provided by this technique allowed experimental separation of the elastic scattering from the inelastic thermal diffuse scattering. The results were compared with the harmonic model using integrations over dispersion curves from the neutron-scattering measurements of Woods et al. and the lattice-dynamics calculations of Glyde and Taylor. The Debye-Waller exponent was shown to exceed the harmonic prediction by 23% at room temperature. This difference is attributed to anharmonic terms in the interatomic potential.

Crow, M.L.; Schupp, G.; Yelon, W.B.; Mullen, J.G.; Djedid, A.

1989-01-15

17

Computational techniques in gamma-ray Skyshine analysis  

NASA Astrophysics Data System (ADS)

Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified to use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead.

George, Darin L.

1988-12-01

18

Computational techniques in gamma-ray skyshine analysis  

SciTech Connect

Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified to use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs.

George, D.L.

1988-12-01

19

GRAYSKY-A new gamma-ray skyshine code  

SciTech Connect

This paper describes a new prototype gamma-ray skyshine code GRAYSKY (Gamma-RAY SKYshine) that has been developed at BNFL, as part of an industrially based master of science course, to overcome the problems encountered with SKYSHINEII and RANKERN. GRAYSKY is a point kernel code based on the use of a skyshine response function. The scattering within source or shield materials is accounted for by the use of buildup factors. This is an approximate method of solution but one that has been shown to produce results that are acceptable for dose rate predictions on operating plants. The novel features of GRAYSKY are as follows: 1. The code is fully integrated with a semianalytical point kernel shielding code, currently under development at BNFL, which offers powerful solid-body modeling capabilities. 2. The geometry modeling also allows the skyshine response function to be used in a manner that accounts for the shielding of air-scattered radiation. 3. Skyshine buildup factors calculated using the skyshine response function have been used as well as dose buildup factors.

Witts, D.J.; Twardowski, T.; Watmough, M.H. (British Nuclear Fuels Ltd., Cheshire (United Kingdom))

1993-01-01

20

Applications of Monte Carlo Codes to a Study of Gamma-Ray Buildup Factors, Skyshine and Duct Streaming  

NASA Astrophysics Data System (ADS)

It has become possible to apply a Monte Carlo code to a specified shielding calculation, including deep-penetration problems, within a reasonable CPU time along with a recent drastic increase in computational power. It is, however, not reasonable to apply a Monte Carlo code to all shielding calculations at each step.

Hirayama, H.

21

Gamma ray transients  

NASA Technical Reports Server (NTRS)

The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

Cline, Thomas L.

1987-01-01

22

Gamma Ray Bursts Sudden, intense flashes of gamma rays  

E-print Network

Gamma Ray Bursts #12;The Case Sudden, intense flashes of gamma rays come from nowhere and disappear with out a trace. Incredibly powerful: A single gamma ray burst is hundreds of times brighter a supernova #12;Who Vela (1960's) Looking for arms testing, found gamma ray bursts Compton Gamma Ray Observatory

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

23

Gamma ray detector shield  

DOEpatents

A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

Ohlinger, R.D.; Humphrey, H.W.

1985-08-26

24

Gamma-ray Astronomy  

E-print Network

The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

Jim Hinton

2007-12-20

25

Gamma Ray Pulsars: Observations  

NASA Technical Reports Server (NTRS)

High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

Thompson, David J.; White, Nicholas E. (Technical Monitor)

2000-01-01

26

Gamma ray astronomy  

NASA Technical Reports Server (NTRS)

Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

Paciesas, William S.

1991-01-01

27

Gamma ray optics  

SciTech Connect

Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G. [Institut Laue-Langevin, F38042 Grenoble (France); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching, Germany and Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

2012-07-09

28

The gamma-ray observatory  

NASA Technical Reports Server (NTRS)

An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

1991-01-01

29

Photoabsorption of Gamma Rays in Relativistic Jets  

E-print Network

A derivation of the \\gamma\\gamma --> e^+ e^- optical depth for \\gamma rays produced in a comoving spherical emitting region is presented. Employing a simplified expression for the \\gamma\\gamma absorption cross section, analytic expressions for the minimum Doppler factor implied by the requirement of gamma-ray transparency are derived for a broken power-law spectrum of target photons which are isotropically distributed in the comoving frame. Application to specific systems is illustrated.

Charles Dermer

2004-02-18

30

Gamma ray camera  

DOEpatents

A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

Perez-Mendez, Victor (Berkeley, CA)

1997-01-01

31

Gamma ray camera  

DOEpatents

A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

Perez-Mendez, V.

1997-01-21

32

Gamma-ray bursts.  

PubMed

Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

Gehrels, Neil; Mészáros, Péter

2012-08-24

33

Gamma Ray Bursts  

NASA Technical Reports Server (NTRS)

Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

Gehrels, Neil; Meszaros, Peter

2012-01-01

34

Gamma Ray Bursts  

E-print Network

Gamma-ray bursts have been detected at photon energies up to tens of GeV. We review some recent developments in the X-ray to GeV photon phenomenology in the light of Swift and Fermi observations, and some of the theoretical models developed to explain them, with a view towards implications for C.T.A.

Peter Mészáros

2012-04-09

35

Celestial gamma ray study  

NASA Technical Reports Server (NTRS)

This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

Michelson, Peter F.

1995-01-01

36

Solar Flares: Gamma Rays  

E-print Network

We briefly review the theory of gamma ray production in solar flares and present the highlights of the observations and their implications. Specifically: (i) the gamma ray data show that a large fraction of the released flare energy is in accelerated ions, mostly around 1 MeV/nucleon; (ii) the accelerated He-3, heavy ion, and relativistic electron abundances are enriched, implying that the particle acceleration is dominated by stochastic gyroresonant interactions with plasma turbulence; (iii) there is evidence for the enhancement of the abundances of ambient chromospheric elements with low first ionization potentials; (iv) the observed Li-7 and Be-7 lines, at 0.429 MeV and 0.478 MeV due to alpha-alpha interactions, show that both the accelerated alpha particle and the ambient He abundances are significantly enhanced.

Reuven Ramaty; Natalie Mandzhavidze

1998-10-06

37

Gamma ray astronomy  

NASA Technical Reports Server (NTRS)

The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

Paciesas, William S.

1994-01-01

38

Gamma-ray Bursts  

Microsoft Academic Search

Since their discovery in 1967, Gamma-ray bursts (GRBs) have been puzzling to astrophysicists. With the advent of a new generation\\u000a of X-ray satellites in the late 90’s, it was possible to carry out deep multi-wavelength observations of the counterparts\\u000a associated with the long duration GRBs class just within a few hours of occurrence, thanks to the observation of the fading

Alberto J. Castro-Tirado

39

Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars  

SciTech Connect

One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

2012-04-02

40

UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS  

SciTech Connect

One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

Massaro, F.; Ajello, M. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D'Abrusco, R.; Paggi, A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, 06123 Perugia (Italy); Gasparrini, D. [ASI Science Data Center, ESRIN, I-00044 Frascati (Italy)

2012-06-10

41

Gamma-Ray Bursts  

NASA Technical Reports Server (NTRS)

Gamma-ray burst (GRB) have been an unsolved mystery in high-energy astrophysics for the last 30 years. Immediately after GRB were discovered, scientists tried to understand the mechanism that causes these events and where they come from. Since than, many theories have been suggested to explain GRB which have durations spanning five orders of magnitude (ranging between a few milliseconds and minutes) and spectrals that peak generally in the range of 0.1 to 1 MeV. Given this numbers, most theorists would think of processes occurring near neutron stars in our galaxy, many of which are known sources of rapidly varying, high-energy photon emission.

Kouveliotou, Chryssa

1997-01-01

42

{gamma} ray astronomy with muons  

SciTech Connect

Although {gamma} ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard {gamma} ray spectra there is a relative {open_quotes}enhancement{close_quotes} of muons from {gamma} ray primaries as compared to that from nucleon primaries. All shower {gamma} rays above the photoproduction threshold contribute to the number of muons N{sub {mu}}, which is thus proportional to the primary {gamma} ray energy. With {gamma} ray energy 50 times higher than the muon energy and a probability of muon production by the {gamma}{close_quote}s of about 1{percent}, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10{sup 4}. The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by {gamma} ray detectors such as MILAGRO. TeV muons from {gamma} ray primaries, on the other hand, are rare because they are only produced by higher energy {gamma} rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. {copyright} {ital 1997} {ital The American Physical Society}

Halzen, F. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Stanev, T. [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States)] [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States); Yodh, G.B. [Department of Physics and Astronomy, University of California, Irvine, California 92715 (United States)] [Department of Physics and Astronomy, University of California, Irvine, California 92715 (United States)

1997-04-01

43

Digital Pulse Processing and Gamma Ray Tracking  

NSDL National Science Digital Library

Two of the big changes in new generations of Nuclear Physics instrumentation will be the incorporation of digital processing and the use of gamma ray tracking. The Nuclear Physics Group at Daresbury has set up a project to investigate digital pulse processing for gamma ray detectors and how best to implement gamma ray tracking in large Germanium gamma ray detectors. Topics on this site include but are not limited to: gamma ray tracking, overview of the Gamma Ray Tracking Project, pictures of one of the tracking gamma ray detectors (TIGRE), pictures of test experiment, gamma ray tracking project publications, and links to other gamma ray tracking pages.

2010-09-21

44

Gamma-ray burst observations  

Microsoft Academic Search

Gamma-ray bursts (GRBs) are the most luminous known objects in the Universe. Their brief, random appearance in the gamma-ray region had made their study difficult since their discovery, over thirty years ago. There is a rich diversity in the duration and morphology of GRB time profiles. The spectra are characterized by a smooth continuum, usually peaking in the range from

Gerald J. Fishman

2000-01-01

45

Planar imaging quantification using 3D attenuation correction data and Monte Carlo simulated buildup factors  

NASA Astrophysics Data System (ADS)

A new method to correct for attenuation and the buildup of scatter in planar imaging quantification is presented. The method is based on the combined use of 3D density information provided by computed tomography to correct for attenuation and the application of Monte Carlo simulated buildup factors to correct for buildup in the projection pixels. CT and nuclear medicine images were obtained for a purpose-built nonhomogeneous phantom that models the human anatomy in the thoracic and abdominal regions. The CT transverse slices of the phantom were converted to a set of consecutive density maps. An algorithm was developed that projects the 3D information contained in the set of density maps to create opposing pairs of accurate 2D correction maps that were subsequently applied to planar images acquired from a dual-head gamma camera. A comparison of results obtained by the new method and the geometric mean approach based on published techniques is presented for some of the source arrangements used. Excellent results were obtained for various source - phantom configurations used to evaluate the method. Activity quantification of a line source at most locations in the nonhomogeneous phantom produced errors of less than 2%. Additionally, knowledge of the actual source depth is not required for accurate activity quantification. Quantification of volume sources placed in foam, Perspex and aluminium produced errors of less than 7% for the abdominal and thoracic configurations of the phantom.

Miller, Collie; Filipow, Larry; Jackson, Stuart; Riauka, Terence

1996-08-01

46

Physics of Gamma Ray Emitting AGN  

NASA Astrophysics Data System (ADS)

The TANAMI program has been studying the physics of relativistic jets of gamma-ray emitting AGN since November 2007 and was converted to a 5-year Large Proposal from Oct 2009. We propose to continue VLBI monitoring of these sources contemporaneously with observations at gamma-ray frequencies by the Fermi satellite which is continuously monitoring the full sky for the next 5 to 10 years. TANAMI has met all goals of its first 2.5 years, in particular by producing high-quality dual-frequency images and setting up a baseline for morphological and kinematic studies of Southern-Hemisphere gamma-ray sources/candidates. With its associated optical/UV and X-ray programs and its unique VLBI dual-frequency characteristics, TANAMI has become one of the major multiwavelength resources for the Fermi mission and the only one covering sources south of -30 degrees. The continuation of our program will establish critical jet parameters, including speeds and Doppler factors, which all depend on multi-year VLBI data. Tracking new jet components and associating their ejection epochs with gamma-ray flares will be possible and promises to pin down the origin and nature of the elusive high energy emission from AGN.

Ojha, Roopesh; Lovell, Jim; Edwards, Philip; Kadler, Matthias; Monitoringteam, Gamma Ray Blazar; Tingay, Steven

2010-10-01

47

High energy gamma ray astronomy  

NASA Technical Reports Server (NTRS)

High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

Fichtel, Carl E.

1987-01-01

48

Gamma rays at airplane altitudes  

SciTech Connect

An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. (University of Washington, Seattle, WA 98195 USA (US))

1990-03-20

49

Gamma-Ray Burst Lines  

E-print Network

The evidence for spectral features in gamma-ray bursts is summarized. As a guide for evaluating the evidence, the properties of gamma-ray detectors and the methods of analyzing gamma-ray spectra are reviewed. In the 1980's, observations indicated that absorption features below 100 keV were present in a large fraction of bright gamma-ray bursts. There were also reports of emission features around 400 keV. During the 1990's the situation has become much less clear. A small fraction of bursts observed with BATSE have statistically significant low-energy features, but the reality of the features is suspect because in several cases the data of the BATSE detectors appear to be inconsistent. Furthermore, most of the possible features appear in emission rather than the expected absorption. Analysis of data from other instruments has either not been finalized or has not detected lines.

Michael S. Briggs

1999-10-20

50

Gamma Ray Bursts and CETI  

E-print Network

Gamma ray burst sources are isotropically distributed. They could be located at distances $\\sim 1000$ AU. (Katz \\cite{JK92}) GRB signals have many narrow peaks that are unresolved at the millisecond time resolution of existing observations. \\cite{JK87} CETI could use stars as gravitational lenses for interstellar gamma ray laser beam communication. Much better time resolution of GRB signals could rule out (or confirm?) the speculative hypothesis that GRB = CETI.

Frank D. Smith Jr

1993-02-10

51

Lightning Generated Gamma Ray Bursts  

NASA Technical Reports Server (NTRS)

The prime focus of this effort is to advance the state of understanding of correlation between lightning strokes and gamma-ray flashes. key issue addressed was the revision of the existing models of runaway breakdown in the stratosphere due to low altitude lightning, which are related to the source of gamma-ray flashes. The revision includes the assessment of the effect due to geomagnetic field on the development of runaway discharge.

Milikh, Gennady

1996-01-01

52

Phenomenology of Gamma-Ray Jets  

E-print Network

We discuss some phenomenological aspects of $\\gamma$-ray emitting jets. In particular, we present calculations of the $\\gamma$-sphere and $\\pi$-sphere for various target photon fields, and employ them to demonstrate how $\\gamma$-ray observations at very high energies can be used to constraint the Doppler factor of the emitting plasma and the production of VHE neutrinos. We also consider the implications of the rapid TeV variability observed in M87 and the TeV blazars, and propose a model for the very rapid TeV flares observed with HESS and MAGIC in some blazars,that accommodates the relatively small Doppler factors inferred from radio observations. Finally, we briefly discuss the prospects for detecting VHE neutrinos from relativistic jets.

Amir Levinson

2007-09-10

53

Modeling gamma-ray bursts  

NASA Astrophysics Data System (ADS)

Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. This shell model code can be used to constrain broadband observations of GRB 090926A, which showed two flares in both the Swift UVOT and XRT bands. Using the prompt emission fluence to constrain the total energy contained in the blastwave, the internal shock model requires that Lorentz factors of the shells causing flares must be less than the Lorentz factor of the blastwave when the shells are ejected. Recent observations of Gamma-Ray Bursts (GRBs) by the Fermi Large Area Telescope (LAT) revealed a power law decay feature of the high energy emission (above 100 MeV), which led to the suggestion that it originates from an external shock. We analyze four GRBs (080916C, 090510, 090902B and 090926A) jointly detected by Fermi LAT and Gamma-ray Burst Monitor (GBM), which have high quality lightcurves in both instrument energy bands. Using the MeV prompt emission (GBM) data, we can record the energy output from the central engine as a function of time. Assuming a constant radiative efficiency, we are able to track energy accumulation in the external shock using our internal/external shell model code and show that the late time lightcurves fit well within the external shock model, but the early time lightcurves are dominated by the internal shock component which has a shallow decay phase due to the initial pile-up of shells onto the blast wave.

Maxham, Amanda

54

Unveiling the secrets of gamma ray bursts  

Microsoft Academic Search

Gamma Ray Bursts are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a

Andreja Gomboc

2012-01-01

55

Gamma ray bursts ROBERT S MACKAY  

E-print Network

Gamma ray bursts ROBERT S MACKAY COLIN ROURKE We propose that a gamma ray burst is a kinematic Gamma ray bursts are intense flashes of electromagnetic radiation of cosmic origin lasting from ten accepted mechanism. We propose that a gamma ray burst is simply a kinematic effect, namely the effect

Rourke, Colin

56

Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift  

E-print Network

Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing ZhangGehrels, et al), et al) #12;Gamma-ray bursts: the mostGamma-ray bursts: the most violent explosions fireball central photosphere internal external shocks engine (shocks) (reverse) (forward) gamma-ray UV

California at Santa Cruz, University of

57

Comparison of dose estimates using the buildup-factor method and a Baryon transport code (BRYNTRN) with Monte Carlo results  

NASA Technical Reports Server (NTRS)

Continuing efforts toward validating the buildup factor method and the BRYNTRN code, which use the deterministic approach in solving radiation transport problems and are the candidate engineering tools in space radiation shielding analyses, are presented. A simplified theory of proton buildup factors assuming no neutron coupling is derived to verify a previously chosen form for parameterizing the dose conversion factor that includes the secondary particle buildup effect. Estimates of dose in tissue made by the two deterministic approaches and the Monte Carlo method are intercompared for cases with various thicknesses of shields and various types of proton spectra. The results are found to be in reasonable agreement but with some overestimation by the buildup factor method when the effect of neutron production in the shield is significant. Future improvement to include neutron coupling in the buildup factor theory is suggested to alleviate this shortcoming. Impressive agreement for individual components of doses, such as those from the secondaries and heavy particle recoils, are obtained between BRYNTRN and Monte Carlo results.

Shinn, Judy L.; Wilson, John W.; Nealy, John E.; Cucinotta, Francis A.

1990-01-01

58

The Gamma-ray Sky with Fermi  

NASA Technical Reports Server (NTRS)

Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

Thompson, David

2012-01-01

59

Analytical expressions for the gate utilization factors of passive multiplicity counters including signal build-up  

SciTech Connect

In the realm of nuclear safeguards, passive neutron multiplicity counting using shift register pulse train analysis to nondestructively quantify Pu in product materials is a familiar and widely applied technique. The approach most commonly taken is to construct a neutron detector consisting of {sup 3}He filled cylindrical proportional counters embedded in a high density polyethylene moderator. Fast neutrons from the item enter the moderator and are quickly slowed down, on timescales of the order of 1-2 {micro}s, creating a thermal population which then persists typically for several 10's {micro}s and is sampled by the {sup 3}He detectors. Because the initial transient is of comparatively short duration it has been traditional to treat it as instantaneous and furthermore to approximate the subsequent capture time distribution as exponential in shape. With these approximations simple expressions for the various Gate Utilization Factors (GUFs) can be obtained. These factors represent the proportion of time correlated events i.e. Doubles and Triples signal present in the pulse train that is detected by the coincidence gate structure chosen (predelay and gate width settings of the multiplicity shift register). More complicated expressions can be derived by generalizing the capture time distribution to multiple time components or harmonics typically present in real systems. When it comes to applying passive neutron multiplicity methods to extremely intense (i.e. high emission rate and highly multiplying) neutron sources there is a drive to use detector types with very fast response characteristics in order to cope with the high rates. In addition to short pulse width, detectors with a short capture time profile are also desirable so that a short coincidence gate width can be set in order to reduce the chance or Accidental coincidence signal. In extreme cases, such as might be realized using boron loaded scintillators, the dieaway time may be so short that the build-up (thermalization transient) within the detector cannot be ignored. Another example where signal build-up might be observed is when a {sup 3}He based system is used to track the evolution of the time correlated signal created by a higher multiplying item within a reflective configuration such as the measurement of a spent fuel assembly. In this work we develop expressions for the GUFs which include signal build-up.

Croft, Stephen [Los Alamos National Laboratory; Evans, Louise G [Los Alamos National Laboratory; Schear, Melissa A [Los Alamos National Laboratory

2010-01-01

60

Gamma-ray Imaging Methods  

SciTech Connect

In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

2006-10-05

61

Neutrinos from Gamma Ray Bursts  

E-print Network

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07

62

The basic parameters of gamma-ray-loud blazars  

E-print Network

We determined the basic parameters, such as the central black hole mass ($M$), the boosting factor (or Doppler factor) ($\\delta$), the propagation angle ($\\Phi$) and the distance along the axis to the site of $\\gamma$-ray production ($d$) for 23 $\\gamma$-ray-loud blazars using their available variability timescales. In this method, the absorption effect depends on the $\\gamma$-ray energy, emission size and property of the accretion disk. Using the intrinsic $\\gamma$-ray luminosity as a fraction $\\lambda$ of the Eddington luminosity, $L^{in}_{\\gamma}=\\lambda L_{Ledd.}$ and the optical depth equal to unity, we can determine the upper limit of the central black hole masses. We found that the black hole masses range between $10^{7}M_{\\odot}$ and $10^{9}M_{\\odot}$ when $\\lambda$ = 0.1 and 1.0 are adopted. Since this method is based on gamma-ray emissions and the short time-scale of the sources, it can also be used for central black hole mass determination of high redshift gamma-ray sources. In the case of the upper limit of black hole mass there is no clear difference between BLs and FSRQs, which suggests that the central black hole masses do not play an important role in the evolutionary sequence of blazars.

J. H. Fan

2005-03-31

63

Upgrade of the JET Gamma-Ray Cameras  

SciTech Connect

The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas /1,2/. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and {sup 6}Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the JET GRC. The modelling was dedicated to the estimation of neutron and (plasma-emitted) gamma-ray attenuation, neutron-induced gamma-ray background and the neutron in-scattering impact on the neutron detectors due to the attenuator in the parking location. A numerical study of the gamma-ray detector (CsI(Tl)) was done by means of the IST Monte Carlo code. It provided preliminary results on the detector efficiency and response function.

Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E. [Association EURATOM-MEdC, National Institute for Cryogenics and Isotopic Technologies, Rm. Valcea (Romania); Zoita, V.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I. [Association EURATOM-MEdC, National Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania); Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V.; Syme, B.; Thompson, V. [Association EURATOM-UKAEA/JOC, Culham Science Centre, Abingdon (United Kingdom)] (and others)

2008-03-12

64

Hard Gamma Ray Emission from the Starburst Galaxy NGC 253  

NASA Technical Reports Server (NTRS)

We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture of gamma-ray acceleration by supernovae.

Jackson, James M.; Marscher, Alan M.

1996-01-01

65

Cosmological gamma-ray bursts  

NASA Technical Reports Server (NTRS)

The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

Paczynski, Bohdan

1991-01-01

66

On Gamma-Ray Bursts  

E-print Network

(Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model. [...] We then turn to the special role of the baryon loading in discriminating between "genuine" short and long or "fake" short GRBs [...] We finally turn to the GRB-Supernova Time Sequence (GSTS) paradigm: the concept of induced gravitational collapse. [...] We then present some general conclusions.

Remo Ruffini; Maria Grazia Bernardini; Carlo Luciano Bianco; Letizia Caito; Pascal Chardonnet; Christian Cherubini; Maria Giovanna Dainotti; Federico Fraschetti; Andrea Geralico; Roberto Guida; Barbara Patricelli; Michael Rotondo; Jorge Armando Rueda Hernandez; Gregory Vereshchagin; She-Sheng Xue

2008-04-17

67

Swift's 500th Gamma Ray Burst  

NASA Video Gallery

On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

68

The Gamma-ray Universe through Fermi  

NASA Technical Reports Server (NTRS)

Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

Thompson, David J.

2012-01-01

69

NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS  

SciTech Connect

Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra'anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

2013-09-01

70

Portable compton gamma-ray detection system  

DOEpatents

A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

Rowland, Mark S. (Alamo, CA); Oldaker, Mark E. (Pleasanton, CA)

2008-03-04

71

Light Curves of Swift Gamma Ray Bursts  

E-print Network

Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short - long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars.

Paolo Cea

2006-06-05

72

Gamma ray astrophysics. [emphasizing processes and absorption  

NASA Technical Reports Server (NTRS)

Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

Stecker, F. W.

1974-01-01

73

High Energy Neutrinos from Gamma Ray Bursts  

E-print Network

We treat high-energy neutrino production in GRBs. Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > 10 TeV neutrinos from GRBs with Doppler factors > 200, inferred from gamma-ray observations, would support the supranova model. Detection of 3x10^{-4} erg/cm^2 offer a realistic prospect for detection of muon neutrinos.

Dermer, C D; Dermer, Charles D.; Atoyan, Armen

2003-01-01

74

High Energy Neutrinos from Gamma Ray Bursts  

E-print Network

We treat high-energy neutrino production in GRBs. Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > 10 TeV neutrinos from GRBs with Doppler factors > 200, inferred from gamma-ray observations, would support the supranova model. Detection of 3x10^{-4} erg/cm^2 offer a realistic prospect for detection of muon neutrinos.

Charles D. Dermer; Armen Atoyan

2003-01-02

75

Feasibility study of gamma-ray medical radiography.  

PubMed

This research explores the feasibility of using gamma-ray radiography in medical imaging. We will show that gamma-ray medical radiography has the potential to provide alternative diagnostic medical information to X-ray radiography. Approximately one Ci Am-241 radioactive source which emits mono-energetic 59.5 keV gamma rays was used. Several factors that influence the feasibility of this study were tested. They were the radiation source uniformity, image uniformity, and image quality parameters such as contrast, noise, and spatial resolution. In addition, several gamma-ray and X-ray images were acquired using humanoid phantoms. These images were recorded on computed radiography image receptors and displayed on a standard monitor. Visual assessments of these images were then conducted. The Am-241 radioactive source provided relatively uniform radiation exposure and images. Image noise and image contrast were mainly dependent on the exposure time and source size, whereas spatial resolution was dependent on source size and magnification factor. The gamma-ray humanoid phantom images were of lower quality than the X-ray images mainly due to the low radioactivity used and not enough exposure time. Nevertheless, the gamma-ray images displayed most of the main structures contained in the humanoid phantoms. Higher exposure rates and thus lower exposure times were estimated for different pure Am-241 source sizes that are hypothesized to provide high quality images similar to X-ray images. For instance, a 10mm source size of pure Am-241 with 7s exposure time should produce images similar in contrast and noise to X-ray images. This research paves the way for the production and usage of a highly radioactive Am-241 source with the potential to lead to the feasibility of acceptable quality medical gamma-ray radiography. PMID:23208227

Alyassin, Abdalmajeid M; Maqsoud, Hamza A; Mashat, Ahmad M; Al-Mohr, Al-Sayed; Abdulwajid, Subhan

2013-02-01

76

Determination of the elemental distribution in a sample using neutron induced gamma-ray emission tomography  

Microsoft Academic Search

The factors that affect accurate, quantitative results to be obtained by neutron induced gamma-ray emission tomography are stated. The technique, which is a combination of neutron activation analysis with computerised gamma-ray emission tomography, would be enhanced by the use of multiple detector assemblies, in geometrical configurations, which simultaneously record the gamma-rays emitted and improve detection efficiency. Developments in the past

N. M. Spyrou; J. M. Sharaf; S. Rajeswaran; E. Mesbahi

1997-01-01

77

Terrestrial Gamma-Ray Flashes (TGFs)  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

Fishman, Gerald J.

2010-01-01

78

Gamma rays from globular clusters  

NASA Technical Reports Server (NTRS)

Globular clusters are known to contain a relatively large number of pulsars whose individual and collective emission in the X-ray and gamma-ray energy bands may be detectable by the instruments on board the Compton Gamma-Ray Observatory (CGRO), ROSAT, and possibly SIGMA. We discuss the several types of high-energy emission expected from isolated and interacting binary pulsars in globular clusters. Individual or collective high-energy emission from isolated pulsars is expected to be too low to be detected with current instruments. However, a class of high-luminosity hidden millisecond pulsars enshrouded in the evaporating material from irradiated companion stars can produce unpulsed shock emission detectable by the high-sensitivity instruments of ROSAT and CGRO. Establishing upper limits of high-energy emission from globular clusters will be valuable in constraining models for the formation of cluster millisecond pulsars.

Tavani, Marco

1993-01-01

79

Significance of medium energy gamma ray astronomy in the study of cosmic rays  

NASA Technical Reports Server (NTRS)

Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

1975-01-01

80

Afterglows as Diagnostics of Gamma Ray Burst Beaming  

E-print Network

If gamma ray bursts are highly collimated, radiating into only a small fraction of the sky, the energy requirements of each event may be reduced by several (up to 4 - 6) orders of magnitude, and the event rate increased correspondingly. The large Lorentz factors (Gamma > 100) inferred from GRB spectra imply relativistic beaming of the gamma rays into an angle 1/Gamma. We are at present ignorant of whether there are ejecta outside this narrow cone. Afterglows allow empirical tests of whether GRBs are well-collimated jets or spherical fireballs. The bulk Lorentz factor decreases and radiation is beamed into an ever increasing solid angle as the burst remnant expands. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. In addition, a burst whose ejecta are beamed into angle zeta undergoes a qualitative change in evolution when Gamma < 1/zeta: Before this, Gamma ~ r^{-3/2}, while afterwards, Gamma decays exponentially with r. This change results in a potentially observable break in the afterglow light curve. Successful application of either test would eliminate the largest remaining uncertainty in the energy requirements and space density of gamma ray bursters.

James E. Rhoads

1997-12-03

81

Comprehensive study on energy absorption buildup factors and exposure buildup factors for photon energy 0.015 to 15 MeV up to 40 mfp penetration depth for gel dosimeters  

NASA Astrophysics Data System (ADS)

The gel dosimeter comprises of phantom, dosimetric material and three-D spatial dose distribution has advantages over one- and two-D dosimeters. Energy absorption buildup factor (EABF) and exposure buildup factor (EBF) values of sixteen gel dosimeters have been computed for photon energy 0.015 to 15 MeV up to 40 mfp (mean free path) penetration depths. Kerma of the gel dosimeters were computed for photon energy 1 keV to 20 MeV. The water and PMMA phantom equivalence of the gel dosimeters was evaluated using EABF, and large difference was noted below 1 MeV photon energy. This study should be useful for estimation of effective dose to the human organs and simulation of the dose for radiation therapy and various medical applications.

Singh, Vishwanath P.; Badiger, N. M.

2014-10-01

82

Physics of Gamma Ray Burst Sources  

NASA Technical Reports Server (NTRS)

During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

Meszaros, Peter

2004-01-01

83

Cannonballs in the context of Gamma Ray Bursts: Formation sites ?  

E-print Network

We investigate possible formation sites of the cannonballs (in the gamma ray bursts context) by calculating their physical parameters, such as density, magnetic field and temperature close to the origin. Our results favor scenarios where the cannonballs form as instabilities (knots) within magnetized jets from hyperaccreting disks. These instabilities would most likely set in beyond the light cylinder where flow velocity with Lorentz factors as high as 2000 can be achieved. Our findings challenge the cannonball model of gamma ray bursts if these indeed form inside core-collapse supernovae (SNe) as suggested in the literature; unless hyperaccreting disks and the corresponding jets are common occurrences in core-collapse SNe.

Jan E. Staff; Christian Fendt; Rachid Ouyed

2005-12-05

84

Gamma-Ray Bursts: History and Observations  

Microsoft Academic Search

\\u000a Gamma-ray bursts (GRBs) are the most luminous objects known in the Universe. Their brief, random appearance in the gamma-ray\\u000a region had made their study difficult since their discovery over thirty years ago. The discovery of counterparts to gamma-ray\\u000a bursts and afterglow radiation in other wavelengths has provided the long-sought breakthrough in the direct determination\\u000a of their distance and luminosity scales.

G. J. Fishman

85

Gamma-Ray Bursts: an Overview  

Microsoft Academic Search

A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedence in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed

Gerald J. Fishman

1995-01-01

86

Gamma-Ray Astronomy Technology Needs  

NASA Technical Reports Server (NTRS)

In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

Gehrels, N.; Cannizzo, J. K.

2012-01-01

87

GAMCIT: A gamma ray burst detector  

NASA Technical Reports Server (NTRS)

The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

1992-01-01

88

Black Stars and Gamma Ray Bursts  

E-print Network

Stars that are collapsing toward forming a black hole but are frozen near the Schwarzschild horizon are termed ``black stars''. Collisions of black stars, in contrast to black hole collisions, may be sources of gamma ray bursts, whose basic parameters are estimated quite simply and are found to be consistent with observed gamma ray bursts. Black star gamma ray bursts should be preceded by gravitational wave emission similar to that from the coalescence of black holes.

Tanmay Vachaspati

2007-06-08

89

Computer determination of calibration and environmental corrections for a natural spectral gamma ray logging system  

SciTech Connect

Pulse-height spectra recorded by a passive spectral gamma-ray logging system were simulated by radiation-transport calculations for several combinations of gamma ray sources and tool environments. Derived from the calculated log responses were (1) source- and energy-dependent environmental corrections and (2) calibration factors and an environmental correction method for three-window potassium/uranium/thorium analysis.

Koizumi, C.J.

1988-09-01

90

GRI: The Gamma-Ray Imager mission  

NASA Astrophysics Data System (ADS)

Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

Knödlseder, J.; Gri Consortium

91

Future prospects for gamma-ray  

NASA Technical Reports Server (NTRS)

Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

Fichtel, C.

1980-01-01

92

Cosmic gamma-ray bursts  

NASA Technical Reports Server (NTRS)

A review of the cosmic gamma-ray burst phenomenon is presented. Both the light curves and the energy spectra of these short transient events display a great diversity. However, rapid rise times and periodicities sometimes observed in the light curves suggest a compact object origin. Similarly, absorption and emission features in the energy spectra argue strongly in favor of this interpretation. Counterparts to gamma-bursters in other energy ranges, such as optical and sort x-ray, have still not been identified, however, leading to a large uncertainty in the distances to bursters. Although gamma-ray burst sources have not yet been observed to repeat, numerous bursts from three objects which may be related to the gamma-bursters, called Soft Gamma Repeaters, have been recorded; there is weak evidence that they may be relatively distant on a galactic scale. Future missions, particularly those emphasizing high energy, time, and/or spatial resolution, as well as a multiwavelength approach, are likely to advance our understanding of this enigmatic phenomenon.

Hurley, K.

1991-01-01

93

Gamma-ray bursts: nature's brightest explosions  

NASA Astrophysics Data System (ADS)

During the roughly 20 seconds it shines brightest, a gamma-ray burst (GRB) is over a billion times brighter, in electromagnetic radiation, than an ordinary supernova. The key difference is that GRBs emit some appreciable fraction of their kinetic energy in channeled ultra-relativistic outflows (Lorentz factor ? > 200). Currently credible models point to rotation as the key factor required to generate the outflows. We explore here the collapse of the core a massive, rotating star to a black hole and accretion disk and the subsequent propagation of relativistic jets through the star. A variety of high energy transients may be observed based upon the energy of the jet and the angle at which the explosion is observed, but there may be a minimum energy for GRBs that last only tens of seconds.

Zhang, W.; Woosley, S. E.; MacFadyen, A. I.

2006-09-01

94

Constraints on relativity violations from gamma-ray bursts.  

PubMed

Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million. PMID:25167393

Kostelecký, V Alan; Mewes, Matthew

2013-05-17

95

The Universe Viewed in Gamma-Rays 1 Gamma-ray Signatures of Dark Matter Particles  

E-print Network

The Universe Viewed in Gamma-Rays 1 Gamma-ray Signatures of Dark Matter Particles Lars Bergstr@physto.se Abstract Indirect detection methods of dark matter particles are discussed. In particular, detection of supersymmetric dark matter through annihilation into gamma-rays is described. Aspects of the density structure

Enomoto, Ryoji

96

Optical and Gamma Ray Space Observations  

NASA Technical Reports Server (NTRS)

Results of the first year of data acquired from several Earth observatories concerning the optical counterparts gamma ray bursts (GRB) are presented. From the present statistics, it seems to be obvious that typical GRB's have optical emission at the time of the burst at a level at least below 1/(F(sub gamma)/F(sub opt)) approximately equal to 1/0.5 and optical emission a few hours after the burst is lower by a factor of 10 to 200 than the simultaneous emission. Given the fact that GRB spectra are rather broad over the observed energy range of say 20 keV up to 100 MeV, the observations indicate that the broad spectral shape may not continue into the optical range. After the confirmation of the isotropic distribution of GRB's by the BATSE experiment the interpretation now tends to put the sources at cosmological distances.

1992-01-01

97

Gamma Rays from Classical Novae  

NASA Technical Reports Server (NTRS)

NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

1997-01-01

98

Concept of new gamma ray detector  

E-print Network

We present a concept of a new gamma ray detector in order to observe undetected TeV gamma ray background. We measure a track of an electron-positron pair made by a pair creation in a magnet. By using Si as a tracker in a magnetic field 3 T, an energy range is up to 10 TeV.

S. Osone

2002-11-29

99

Gamma rays from extragalactic astrophysical sources  

NASA Astrophysics Data System (ADS)

Presently there are several classes of detected gamma-ray extragalactic sources. They are mostly associated to active galactic nuclei (AGN) and (at soft gamma rays) to gamma-ray bursts (GRB), but not only.Active galactic nuclei consist of accreting supermassive black holeshosted by a galaxy that present in some cases powerful relativistic jet activity. Thesesources, which have been studied in gamma rays for several decades, areprobably the most energetic astrophysical objects, and their appearancedepends much on whether their jets point to us. Gamma-ray bursts, thought to be associated to collapsing or merging stellar-mass objects atcosmological distances, are also accreting highly relativistic jet sources that shine strongly at high energies. These are very short-duration events, but they are also the most luminous. Recently, star formation galaxies have turned out to be also gamma-ray emitters.On the other hand, clusters of galaxies have not been detected beyond X-rays yet. These are the largest knownstructures in the Universe; in their formation through accretion andmerging, shocks and turbulence are generated, which may lead to gamma-ray production. In thiswork, the gamma-ray physics of AGNs is briefly presented, as well as that of starburst galaxies, GRBs and clusters of galaxies.Afterwards, we consider some particular cases ofgamma-ray production in non-blazar AGN jets interacting with their medium at different scales.

Bosch-Ramon, V.

2011-11-01

100

What are gamma-ray bursters?  

Microsoft Academic Search

Gamma-ray bursters have defied explanation since their discovery over 15 years ago. These objects are luminous for only a few seconds at a time, mostly emitting gamma rays that are hundreds of thousands or even millions of times more energetic than photons of visible light. Then they lapse back into quiescence and remain invisible at all wavelengths for many years.

Kevin Hurley

1990-01-01

101

The Soft Gamma-Ray Repeaters  

Microsoft Academic Search

The Soft Gamma-Ray Repeaters (SGR) are sources of brief intense outbursts of low energy gamma rays. Most likely they are a new manifestation of neutron stars. Three sources were known prior to the launch of CGRO, and bursts from two of these have been seen by BATSE. However, no new sources have been discovered, which means that they are either

I. A. Smith

1997-01-01

102

Gamma ray lines from dark matter annihilation  

SciTech Connect

If direct annihilation of dark matter particles into a pair of photons occurs in the galactic halo, a narrow {gamma}-ray line can be discovered at future {gamma}-ray detectors sensitive to the GeV region. The signals predicted by different dark matter candidates are analyzed. 16 refs., 3 figs.

Giudice, G.F.

1989-08-01

103

Gamma rays from hidden millisecond pulsars  

NASA Technical Reports Server (NTRS)

The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

Tavani, Marco

1992-01-01

104

A Plasma Instability Theory of Gamma-Ray Burst Emission  

NASA Technical Reports Server (NTRS)

A plasma instability theory is presented for the prompt radiation from gamma-ray bursts. In the theory, a highly relativistic shell interacts with the interstellar medium through the filamentation and the two-stream instabilities to convert bulk kinetic energy into electron thermal energy and magnetic field energy. The processes are not efficient enough to satisfy the Rankine-Hugoniot conditions, so a shock cannot form through this mechanism. Instead, the interstellar medium passes through the shell, with the electrons radiating during this passage. Gamma-rays are produced by synchrotron self-Compton emission. Prompt optical emission is also produced through this mechanism, while prompt radio emission is produced through synchrotron emission. The model timescales are consistent with the shortest burst timescales. To emit gamma-rays, the shell's bulk Lorentz factor must be $\\simg 10(exp 3)$. For the radiative processes to be efficient, the interstellar medium density must satisfy a lower limit that is a function of the bulk Lorentz factor. Because the limits operate as selection effects, bursts that violate them constitute new classes. In particular, a class of optical and ultraviolet bursts with no gamma-ray emission should exist. The lower limit on the density of the interstellar medium is consistent with the requirements of the Compton attenuation theory, providing an explanation for why all burst spectra appear to be attenuated. Several tests of the theory are discussed, as are the next theoretical investigations that should be conducted.

Brainerd, Jerome J.

1999-01-01

105

Unveiling the Secrets of Gamma Ray Bursts  

E-print Network

Gamma Ray Bursts (GRBs) are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a multi-wavelength picture of these events has revealed that they are the most energetic explosions since the Big Bang and are connected with stellar deaths in other galaxies. However, in spite of exceptional observational and theoretical progress in the last 15 years, recent observations raise many questions which challenge our understanding of these elusive phenomena. Gamma Ray Bursts therefore remain one of the hottest topics in modern astrophysics.

Gomboc, A

2012-01-01

106

Gamma-Ray Bursts: An Overview  

NASA Technical Reports Server (NTRS)

A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

Fishman, Gerald J.

1995-01-01

107

Simulation fidelity issues when using gamma-ray simulators for tree testing  

SciTech Connect

Factors that influence the fidelity of gamma-ray TREE testing have been investigated. Specifically, package-induced dose enhancement in 256 K CMOS SRAMs and dose enhancement from finite-range electrons produced (by gamma-ray interactions) in materials external to the SRAM packages have been studied. Two gamma-ray simulators with significantly different spectra were used in the studies. The spectral differences produced less change in SRAM upset levels than did surrounding materials of equal mass density but differing atomic number. The implication for gamma-ray simulation testing is that individual devices within electronic systems may respond quite differently in gamma-ray TREE testing because of the structural materials within the system than when tests are performed on these individual devices without the system present.

Hartman, E.F.; Browning, J.S.; Drumm, C.R. (Sandia National Labs., Albuquerque, NM (USA))

1990-12-01

108

Observations of Gamma-Ray Bursts  

NASA Technical Reports Server (NTRS)

Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

Fishman, G. J.

1995-01-01

109

Gamma-Ray Burst Physics with GLAST  

SciTech Connect

The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

Omodei, N.; /INFN, Pisa

2006-10-06

110

Gamma-ray Astronomy and GLAST  

NASA Technical Reports Server (NTRS)

The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

McEnery, Julie

2007-01-01

111

IR observations in gamma-ray blazars  

NASA Technical Reports Server (NTRS)

The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

1997-01-01

112

Fermi Gamma-Ray Space Telescope  

NASA Technical Reports Server (NTRS)

The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

2012-01-01

113

Cosmic gamma-ray lines - Theory  

NASA Technical Reports Server (NTRS)

The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

Lingenfelter, R. E.; Ramaty, R.

1980-01-01

114

Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients  

NASA Technical Reports Server (NTRS)

Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

Ramaty, R.; Lingenfelter, R. E.

1980-01-01

115

Imaging Neutron Activation Analysis and Multiplexed Gamma Ray Spectrometry.  

NASA Astrophysics Data System (ADS)

This work demonstrates for the first time the feasibility of Imaging Neutron Activation Analysis (Imaging NAA) and of multiplexed gamma-ray spectrometry. The two techniques are based on position sensitive beta -gamma coincidence measurement using a gamma-ray detector, a charged particle imaging detector and a coincidence system. Imaging NAA is a technique for determining the 2-dimensional elemental distributions in heterogeneous samples. With multiplexed gamma-ray spectrometry it is possible to count an array of samples simultaneously which results in a substantial reduction in total counting time and also low background because of the coincidence measurement. Two distinctly different charged particle imaging detectors were investigated for electron localization. They were: (1) an electron optics based system for low energy secondary electron imaging and (2) a Position Sensitive Photomultiplier Tube (PSPMT) coupled to a thin plastic scintillator for beta imaging. The secondary electron imaging system offers a spatial resolution of 30 ?m but its active imaging area is only 1 mm in diameter, and the beta detection efficiency is less than 10%. The PSPMT gives a spatial resolution of 2.5 mm FWHM with a 60 x 55 mm^2 active area and a beta detection efficiency of up to 36%. The secondary electron imaging system is suitable for element mapping of small continuous heterogeneous samples, while the PSPMT is suitable for multiplexed gamma-ray spectrometry of discrete samples. Results show that using the PSPMT it is possible to multiplex 100 samples, which results in up to a factor of 36 gain in total counting time compared to counting the samples individually. Experimental results that demonstrate the two techniques are presented for various radionuclides that undergo beta, alpha or EC decay followed by coincident gamma -ray emission.

Dewaraja, Yuni Kamalika

116

Geolocation of Terrestrial Gamma Ray Flashes in Gamma Rays Using the Fermi Large Area Telescope  

NASA Astrophysics Data System (ADS)

We derive geolocations of bright Terrestrial Gamma ray Flashes (TGFs) directly in gamma rays using the Fermi Large Area Telescope (LAT) and compare with geolocations derived from LF and VLF (radio) networks. Imaging of the gamma ray direction is made possible by the fine spatial resolution of the LAT instrument, which is intended to make maps of the high-energy gamma ray astrophysical sky. Simulations show that LAT can geolocate very bright TGFs in favorable geometries with accuracies of several tens of km. Recent work by Connaughton et al. (2013) strongly suggests that the broadband radio signal is produced by the same bulk flow of relativistic electrons that create the gamma ray signal through bremsstrahlung interactions in the atmosphere. Our analysis confirms this picture by establishing that the radio and gamma ray signals are both temporally and spatially coincident. This work was performed at NRL and sponsored by NASA DPR S-15633-Y.

Schaal, Meagan; Grove, J. E.; Chekhtman, A.; Xiong, S.; Fitzpatrick, G.; Cummer, S.; Holzworth, R. H.

2014-01-01

117

Neutron Detection Gamma Ray Sensitivity Criteria  

SciTech Connect

The shortage of 3He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The ratio GARRn is defined, and it is proposed that the requirement for neutron detection be 0.9 < GARRn < 1.1 at a 10 mR/h exposure rate. An example of results from a 3He based neutron detector are provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

2011-10-21

118

Thermal neutron capture gamma-rays  

SciTech Connect

The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

Tuli, J.K.

1983-01-01

119

Diffuse gamma-rays from galactic halos  

E-print Network

Here we review our current knowledge on diffuse gamma-rays from galactic halos. Estimates of the relative contribution of the various emission processes at low and high latitudes are compared to the data over 6 decades in energy. The observed spectral shape differs from what was expected, especially at ver low and very high energies. In the latter case, above 1 GeV, the sky emission related to gas exceeds the expected pi^0 decay spectrum. At energies below 1 MeV the relatively high gamma-ray intensity indicates at high density of nearly relativistic electrons which would have a strong influence on the energy and ionisation balance of the interstellar medium. Given the EGRET results for the Magellanic Clouds the gamma-ray emissivity in the outer halo is probably small, so that a substantial amount of baryonic dark matter may be hidden at 20-50 kpc radius without inducing observable gamma-ray emission.

M. Pohl

1996-03-12

120

Prospects of gamma-ray laser development  

SciTech Connect

In this paper the authors briefly present the current thrust of gamma-ray laser research. The authors discuss the major proposals of developing such lasers based on nuclear transitions and electron and positron beams.

Gupta, G.; Husain, J. (Dept. of Applied Physics, Faculty of Engineering and Technology, A.M. Univ., Aligarh UP 202 002 (IN))

1991-06-01

121

Overview Animation of Gamma-ray Burst  

NASA Video Gallery

Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

122

Gamma Rays in a Spectrum from the Mars Odyssey Gamma-Ray Spectrometer  

NASA Technical Reports Server (NTRS)

The gamma-ray spectrum from a long sum over the middle latitudes of Mars measured by the Mars Odyssey Gamma Ray Spectrometer was analyzed. About 250 peaks and features were observed, including many seen during the cruise to Mars. The sources of about 85% of these gamma rays were identified. Most were background lines from the Ge detector or from Ti, Mg, and Zn near the detector.

Reedy, R. C.; Evans, L. G.; Brueckner, J.; Kim, K. J.; Boynton, W. V.

2003-01-01

123

GRI: the gamma-ray imager mission  

NASA Astrophysics Data System (ADS)

Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

Knödlseder, Jürgen

2006-06-01

124

The Gamma-Ray Imager GRI  

NASA Astrophysics Data System (ADS)

Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

Wunderer, Cornelia B.; GRI Collaboration

2006-09-01

125

Research in cosmic and gamma ray astrophysics  

NASA Technical Reports Server (NTRS)

Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

1989-01-01

126

Standoff 3D Gamma-Ray Imaging  

Microsoft Academic Search

We present a new standoff imaging technique able to provide 3-dimensional (3D) images of gamma-ray sources distributed in the environment. Unlike standard 3D tomographic methods, this technique does not require the radioactive sources to be bounded within a predefined physical space. In the present implementation, the gamma-ray imaging system is based on two large planar HPGe double sided segmented detectors,

Lucian Mihailescu; Kai Vetter; Daniel Chivers

2009-01-01

127

Gamma Ray Bursts from Ordinary Cosmic Strings  

E-print Network

We give an upper estimate for the number of gamma ray bursts from ordinary (non-superconducting) cosmic strings expected to be observed at terrestrial detectors. Assuming that cusp annihilation is the mechanism responsible for the bursts we consider strings arising at a GUT phase transition and compare our estimate with the recent BATSE results. Further we give a lower limit for the effective area of future detectors designed to detect the cosmic string induced flux of gamma ray bursts.

R. H. Brandenberger; A. T. Sornborger; M. Trodden

1993-02-12

128

Gamma-Ray Bursts: Old and New  

E-print Network

Gamma-ray bursts are sudden releases of energy that for a duration of a few seconds outshine even huge galaxies. 30 years after the first detection of a gamma-ray burst their origin remains a mystery. Here I first review the ``old'' problems which have baffled astronomers over decades, and then report on the ``new'' exciting discoveries of afterglow emission at longer wavelengths which have raised more new questions than answered old ones.

Jochen Greiner

1998-02-17

129

Gamma-ray albedo of the moon  

E-print Network

We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 4 GeV (600 MeV for the inner part of the Moon disc). Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

Igor V. Moskalenko; Troy A. Porter

2007-05-25

130

Emission of Radio Waves in Gamma Ray Bursts and Axionic Boson Stars  

E-print Network

We point out that the bursts of photons with the energy of the axion mass may appear coincidentally with gamma ray bursts if the gamma ray bursts are caused by collisions between neutron stars and axionic boson stars. In this mechanism, jets are formed in the collisions with large Lorentz factors $\\geq 10^2$. We explain qualitatively time-dependent complex structures of gamma ray bursts as well as the large energy problem. Therefore, with detection of the monochromatic photons we can test the model and determine the axion mass.

Aiichi Iwazaki

1999-08-26

131

Supernovae and Gamma-Ray Bursts  

NASA Astrophysics Data System (ADS)

Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the global properties of the Universe B. Schmidt; How good are SNe Ia as standard candles? A. Sandage, G. Tammann and A. Saha; Type Ia supernovae and their implications for cosmology M. Livio; Conference summary: supernovae and gamma-ray bursts J. Wheeler.

Livio, Mario; Panagia, Nino; Sahu, Kailash

2001-07-01

132

Historical aspects of gamma-ray astronomy  

NASA Astrophysics Data System (ADS)

Over the entire 20th century, Cosmic Rays proved to be the watershed of fundamental knowledge from which poured out several streams that made us familiar with aspects of the universe that could never have been known through optical and radio astronomies alone. Cosmic ray interaction studies opened up the field of elementary particles and high energy physical processes. Gamma-ray astronomy enabled us to study celestial environments characterised by the dominance of high energy particles and their interactions with matter, magnetic and electric fields in the neighbourhood of these special environments. While neutrino astronomy is still in its infancy, it has the potential of becoming the most exciting field of study in the current century. Gamma-ray astronomy has had a chequered career. In the early part of the 20th century, Millikan proposed that cosmic rays are merely gamma rays. This was disproved by Compton, through the establishment of the latitude effect. The soviet astrophysicist Shklovskii pointed out at the III International conference on cosmic rays held at Guanjuato, Mexico, the possibility of supernova remants like the Crab Nebula being sources of TeV gamma rays. This was based on his realisation that the high degree of polarized light from the Crab could be due to Synchrotron emission by TeV energy electrons spiralling round the filamentary magnetic fields of the nebula. He argued that the same mechanism that accelerated electrons could also accelerate the protons which through their interaction with the surrounding matter generate pi-zero measons that would immediately decay into gamma rays. However, the efforts by the soviet experimentalists, who used the night air cerenkov technique for detection of the TeV gamma rays, proved negative; only upper limits could be set on the fluxew of TeV gamma rays from several of the SN-remnants; the negative results were first reported at the 7th ICRC held at Jaipur, India in 1963. High energy gamma ray astronomy had a remarkable revival with the discovery of Pulsars in 1967 and their identification with Neutron stars. The field has thrived since then has been extended even to the PeV range. Beginning with 1965, gamma ray astronomy in the energy range MeV to tens of GeV has also been successfully pursued with ballons, and satellites. The most perplexing in this energy range has been the discovery of the Gamma ray bursts. In the keynote address the historical aspects of this field will be covered with some references to the work in India.

Sreekantan, B. V.

2002-03-01

133

Emission mechanism of GeV-quiet soft gamma-ray pulsars: a case for peculiar geometry?  

NASA Astrophysics Data System (ADS)

There is a growing new class of young spin-down powered pulsars called GeV-quiet soft gamma-ray pulsar; (1) spectral turnover appears around 10 MeV, (2) the X-ray spectra of below 20 keV can be described by power law with a photon index of around 1.2 and (3) the light curve in X-ray/soft gamma-ray bands shows single broad pulse. Their emission properties are distinct from the normal gamma-ray pulsars, for which the spectral peak in ?F? appears in GeV energy bands and the X-ray/gamma-ray light curves show sharp and double (or more) peaks. In this paper, we discuss that X-ray/soft gamma-ray emissions of the GeV-quiet soft gamma-ray pulsars are caused by the synchrotron radiation of the electron/positron pairs, which are created by the magnetic pair-creation process near the stellar surface. In our model, the viewing geometry is a crucial factor to discriminate between the normal gamma-ray pulsars and soft gamma-ray pulsars. Our model suggests that the difference between the magnetic inclination angle (?) and the Earth viewing angle (?) of the soft gamma-ray pulsars is small, so that the synchrotron emissions from the high magnetic field region around the polar cap region dominate in the observed emissions. Furthermore, the inclination angle of the soft gamma-ray pulsar is relatively small, ? ? 30°, and our line of sight is out of the gamma-ray beam emitted via the curvature radiation process in the outer gap. We also analyse the six year Fermi data for four soft gamma-ray pulsars to determine the upper limit of the GeV flux.

Wang, Y.; Ng, C. W.; Takata, J.; Leung, Gene C. K.; Cheng, K. S.

2014-11-01

134

CONSTRAINTS ON VERY HIGH ENERGY GAMMA-RAY EMISSION FROM GAMMA-RAY BURSTS R. Atkins,1,2  

E-print Network

CONSTRAINTS ON VERY HIGH ENERGY GAMMA-RAY EMISSION FROM GAMMA-RAY BURSTS R. Atkins,1,2 W. Benbow,3 11; accepted 2005 June 3 ABSTRACT The Milagro Gamma-Ray Observatory employs a water Cerenkov detector emission from gamma-ray bursts (GRBs) during the prompt emission phase. Detection of >100 GeV counterparts

California at Santa Cruz, University of

135

Prompt gamma rays from thermal-neutron capture  

Microsoft Academic Search

A catalog of ..gamma..-rays emitted following thermal-neutron capture in natural elements is presented. In Table I, ..gamma..-rays are arranged in order of increasing energy. Each line contains the ..gamma..-ray energy, intensity, element identification, thermal-neutron radiative-capture cross section, and the energies and intensities of two of the more abundant ..gamma..-rays associated with that element. In Table II, ..gamma..-rays are arranged by

M. A. Lone; R. A. Leavitt; D. A. Harrison

1981-01-01

136

Astrophysics with the 3DTI Gamma-Ray Telescope  

Microsoft Academic Search

Despite notable progress in gamma-ray astronomy, understanding the astrophysical sources of medium energy (MeV-range) gamma-rays still remains somewhat of a mystery. Medium-energy gamma-ray observations require diverse measurement techniques since the objects that produce these gamma- rays are both extended and point-like, transient and steady, and include both continuum and line emissions. The challenge is to develop a future gamma-ray instrument

S. D. Hunter; L. M. Barbier; P. F. Bloser

2008-01-01

137

Mercuric iodine room temperature gamma-ray detectors  

NASA Technical Reports Server (NTRS)

high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

1990-01-01

138

The Gamma-Ray Imager GRI  

NASA Astrophysics Data System (ADS)

Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

Wunderer, Cornelia B.; GRI Collaboration

2008-03-01

139

Diffuse continuum gamma rays from the Galaxy observed by COMPTEL  

NASA Technical Reports Server (NTRS)

The diffuse Galactic continuum gamma-ray emission has been studied using the full Sky Survey from COMPTEL on the Compton Observatory CGRO. The diffuse emission appears to be visible in the whole 0.75-30 MeV range covered by the instrument, although a considerable contribution from unresolved point sources cannot be excluded. A correlation analysis using HI and CO surveys of the Galaxy is used to derive the Galactic emissivity spectrum, and this is consistent with a smooth continuation to the spectrum at higher energies derived by a similar analysis of COS-B data. The apparent conversion factor from integrated CO temperature to molecular hydrogen column density can also be determined from the correlation analysis. The value obtained is consistent with results from COS-B and other non-gamma-ray methods. Calculations of the emissivity spectrum from bremsstrahlung from a cosmic-ray electron spectrum based on propagation models are compared with the observations.

Strong, A. W.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Morris, D.; Schonfelder, V.; Stacy, J. G.; De Vries, C.; Varendorff, M.

1994-01-01

140

Gamma-ray bursts from sheared Alfven waves  

NASA Technical Reports Server (NTRS)

The physical process by which sheared Alfven waves can accelerate electrons to a Lorentz factor of 10,000 to 100,000 within 5 km of the stellar surface is applied to a study of gamma-ray bursts, taking both resonant and nonresonant scattering into account. Several very encouraging features of the model are discussed. Although the field is oscillatory, virtually all the charges are ejected from the system, resulting in very little backheating of the stellar surface. The particle number density is accounted for naturally in terms of BA0 and m, which in principle are known from the physical manifestation of the agent causing the crustal disturbance. The resulting gamma-ray spectrum compares very favorably with the observation. The model restricts the geometry of the emission region, in the sense that only the Compton upscattering of soft photons from a warm polar cap can produce the correct spectral shape.

Melia, Fulvio; Fatuzzo, Marco

1991-01-01

141

Determination of the gamma-ray spectrum in a strong neutron/gamma-ray mixed field  

NASA Astrophysics Data System (ADS)

The knowledge of gamma-ray spectrum highly affects the accuracy of the correspondingly derived gamma-ray dose and the correctness of calculated neutron dose in the neutron/gamma-ray mixed field dosimetry when using the paired ionization chambers technique. It is of our interest to develop a method to determine the gamma-ray spectrum in a strong neutron/gamma-ray mixed field. The current type detector, Mg(Ar) ionization chamber with 6 different thick caps incorporated with the unfolding technique, was used to determine the gamma-ray spectrum in the THOR epithermal neutron beam, which contains intense neutrons and gamma rays. The applied caps had nominal thicknesses from 1 to 6 mm. Detector response functions of the applied Mg(Ar) chamber with different caps were calculated using MCNP5 with a validated chamber model. The spectrum unfolding process was performed using the well-known SAND-II algorithm. The unfolded result was found much softer than the originally calculated spectrum at the design stage. A large portion of low energy continuum was shown in the adjusted spectrum. This work gave us a much deeper insight into the THOR epithermal neutron beam and also showed a way to determine the gamma-ray spectrum.

Liu, Yuan-Hao; Lin, Yi-Chun; Nievaart, Sander; Chou, Wen-Tsae; Liu, Hong-Ming; Jiang, Shiang-Huei

2011-10-01

142

Development Of A Prompt Gamma-ray Analysis Combined With Multiple Gamma-ray Detection  

SciTech Connect

By applying the multiple gamma ray detection method to PGA, the interference from strong gamma ray can be reduced, therefore quantification limits of trace elements are improved significantly. MPGA detector system is constructed at the guide-hall of JRR-3M in JAERI. Several standard samples were measured by MPGA detector system.

Toh, Y.; Oshima, M.; Koizumi, M.; Osa, A.; Kimura, A. [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

2006-03-13

143

Gamma-ray Burst Energetics an the Gamma-ray Burst Hubble Diagram: Promises and Limitations  

NASA Technical Reports Server (NTRS)

We present a complete sample of 29 gamma-ray bursts (GRBs) for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically corrected gamma-ray energies about 1.33 x 10(exp 51) ergs; the burst-to-burst variance about this value is 0.35 dex, a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams that the current sample cannot place meaningful constraints upon the fundamental parameters of the universe. Indeed, for GRBs to ever be useful in cosmographic measurements, we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically derived and physically ill-understood distance indicators (such as those based upon prompt burst time-profiles and spectra). Second, a more homogeneous set should be constructed by culling subclasses from the larger sample. These subclasses, although now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new subclass of GRBs (" f-GRBs ") that appear both underluminous by factors of at least 10 and exhibit a rapid fading (f(sub nu is proportional to t(sup -2) at early times (t < or = 0.5 day). About 10%-20% of observed long-duration bursts appear to be f-GRBs.

Bloom, J. S.; Frail, D. A.; Kulkarni, S. R.

2003-01-01

144

The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment  

SciTech Connect

The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

Chiu, H.K.

1991-10-01

145

Luminosity Evolution of Gamma-Ray Pulsars  

NASA Astrophysics Data System (ADS)

We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

Hirotani, Kouichi

2013-04-01

146

Gamma-ray burster recurrence timescales  

NASA Technical Reports Server (NTRS)

Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

Schaefer, B. E.; Cline, T. L.

1984-01-01

147

Gamma rays, cosmic rays and galactic structure  

NASA Technical Reports Server (NTRS)

Working primarily from the recent SAS-2 observations of galactic gamma rays, the relation of these observations to the large scale distribution of cosmic rays and interstellar gas in the galaxy is reviewed and reexamined. Starting with a discussion of production rates, the case for pion decay being the predominant production mechanism in the galactic disk above 100 MeV is reestablished and it is also pointed out that Compton gamma rays can be a significant source. To facilitate discussion, the concepts of four distinct galactic regions are defined, viz. the nebulodisk, ectodisk, radiodisk and exodisk. Bremsstrahlung and pion decay gamma rays are associated with the first two (primarily the first) regions, and Compton gamma rays and synchrotron radiation are associated with the latter two regions. On a large scale, the cosmic rays, interstellar gas (primarily H2 clouds in the inner galaxy) and gamma ray emissivity all peak in a region between 5 and 6 kpc from the galactic center. This correlation is related to correlation with other population I phenomena and is discussed in terms of the density wave concept of galactic structure. The singular nature of the HI distribution appears to follow the supernova remnant and pulsar distributions in the galaxy.

Stecker, F. W.

1976-01-01

148

Tabulated data from the SAS-2 high energy gamma ray telescope  

NASA Technical Reports Server (NTRS)

The second small astronomy satellite (SAS-2) carried a high energy gamma ray telescope into an equitorial orbit with a 2 D inclination, an apogee of 610 km, and a perigee of 440 km. The energy threshold of the instrument was about 30 MeV, the energy of the gamma rays could be measured up to about 200 MeV, and the integral intensity above 200 MeV could also be measured. Summary tables of the gamma ray data are presented in two energy bands, 35-100 MeV and 100 MeV. The sky was divided into 144 solid angle elements, and, in each solid angle element for which data exist, the number of gamma rays observed is given and also the exposure factor. Information is provided to permit conversion of these data into approximate intensities.

Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Tuner, T.; Ozel, M. E.

1978-01-01

149

Automated krypton-85 gamma ray stack monitor  

SciTech Connect

A Ge(Li) ..gamma..-ray detector, housed in a lead cave, was used in conjunction with a six-liter pressurized (60 psia) well spectroscopy cell to selectively detect /sup 85/Kr stack emissions. This system was calibrated so as to relate the 514 keV ..gamma..-ray counting rate to /sup 85/Kr concentration. Counting rate, or concentration, was continuously recorded using a count rate meter/strip chart recorder combination and was also time averaged over 15 minute intervals using a programmable multi-channel analyzer system with cassette readout. Being completely automated, this ..gamma..-analysis system required little more than liquid nitrogen service and data record retrieval throughout a four-month long sampling period. The sensitivity of this ..gamma..-ray analytical system was such as to achieve a minimum detectable /sup 85/Kr stack concentration of 2 ..mu..Ci/m/sup 3/ for 15 minute counting intervals.

Goles, R.W.; Brauer, F.P.

1980-09-01

150

Technology Needs for Gamma Ray Astronomy  

NASA Technical Reports Server (NTRS)

Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

Gehrels, Neil

2011-01-01

151

Gamma rays from pulsar wind shock acceleration  

NASA Technical Reports Server (NTRS)

A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

Harding, Alice K.

1990-01-01

152

THE fermi gamma-ray burst monitor  

NASA Astrophysics Data System (ADS)

The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from ~8 keV to ~40 MeV over the full unocculted sky. The onboard trigger threshold is ~0.7 photons cm-2 s-1 (50-300 keV, 1 s peak). GBM generates onboard triggers for ~250 GRBs per year.

Meegan, Charles; Lichti, Giselher; Bhat, P. N.; Bissaldi, Elisabetta; Briggs, Michael S.; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Hoover, Andrew S.; van der Horst, Alexander J.; von Kienlin, Andreas; Kippen, R. Marc; Kouveliotou, Chryssa; McBreen, Sheila; Paciesas, W. S.; Preece, Robert; Steinle, Helmut; Wallace, Mark S.; Wilson, Robert B.; Wilson-Hodge, Colleen

2009-09-01

153

Ground-Based Gamma Ray Astronomy  

NASA Astrophysics Data System (ADS)

This paper is the write-up of a rapporteur talk given by the author at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil, in 2013. It attempts to summarize results and developments in ground-based gamma-ray observations and instrumentation from among the ˜300 submissions to the gamma-ray sessions of the meeting. Satellite observations and theoretical developments were covered by a companion rapporteur (Stawarz, L., 33rd ICRC, Rio de Janeiro, Brazil, Rapporteur talk: Space-based Gamma-Ray Astronomy, 2013). Any review of this nature is unavoidably subjective and incomplete. Nevertheless, the article should provide a useful status report for those seeking an overview of this exciting and fast-moving field.

Holder, Jamie

2014-10-01

154

Ground-Based Gamma Ray Astronomy  

NASA Astrophysics Data System (ADS)

This paper is the write-up of a rapporteur talk given by the author at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil, in 2013. It attempts to summarize results and developments in ground-based gamma-ray observations and instrumentation from among the ˜300 submissions to the gamma-ray sessions of the meeting. Satellite observations and theoretical developments were covered by a companion rapporteur (Stawarz, L., 33rd ICRC, Rio de Janeiro, Brazil, Rapporteur talk: Space-based Gamma-Ray Astronomy, 2013). Any review of this nature is unavoidably subjective and incomplete. Nevertheless, the article should provide a useful status report for those seeking an overview of this exciting and fast-moving field.

Holder, Jamie

2014-08-01

155

Recent Results from Gamma-Ray Energy Tracking Array GRETINA  

NASA Astrophysics Data System (ADS)

The gamma-ray energy tracking array GRETINA uses 28 Ge crystals, each with 36 segments, to cover .5ex1 -.1em/ -.15em.25ex4 of the 4? solid angle. The gamma ray tracking technique uses detailed pulse shape information from each of the segments. These pulses are analyzed to determine the energy, time, and three-dimensional positions of all gamma-ray interactions. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. Tracking arrays will give higher efficiency, better peak-to-total ratio and much higher position resolution, and thus increases the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, for fast beam experiments tracking will provide spectra quality comparable to that from a Compton suppressed array, such as Gammasphere, while having the position resolution needed for the accurate Doppler correction comparable to detectors designed for good position resolution such as SeGA. GRETINA construction at the 88-Inch Cyclotron at LBNL was completed in March 2011. Extensive engineering and commissioning runs were carried out using radioactive sources, and beams from the Cyclotron until March 2012. The data obtained have been used to debug and improve its performance. After the commissioning period, GRETINA was moved to NSCL MSU and installed at the target position of the S800 spectrograph. The experimental program with a total of twenty four experiments will start in July 2012 after successful commissioning runs. I will present preliminary results from these runs and discuss future research plans.

Lee, I.-Yang

2012-10-01

156

FERMI Observations of Gamma -Ray Emission From the Moon  

NASA Technical Reports Server (NTRS)

We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

2012-01-01

157

Accuracy of a simplified method for shielded gamma-ray skyshine sources  

SciTech Connect

Rigorous transport or Monte Carlo methods for estimating far-field gamma-ray skyshine doses generally are computationally intensive. consequently, several simplified techniques such as point-kernel methods and methods based on beam response functions have been proposed. For unshielded skyshine sources, these simplified methods have been shown to be quite accurate from comparisons to benchmark problems and to benchmark experimental results. For shielded sources, the simplified methods typically use exponential attenuation and photon buildup factors to describe the effect of the shield. However, the energy and directional redistribution of photons scattered in the shield is usually ignored, i.e., scattered photons are assumed to emerge from the shield with the same energy and direction as the uncollided photons. The accuracy of this shield treatment is largely unknown due to the paucity of benchmark results for shielded sources. In this paper, the validity of such a shield treatment is assessed by comparison to a composite method, which accurately calculates the energy and angular distribution of photons penetrating the shield.

Bassett, M.S.; Shultis, J.K. (Kansas State Univ., Manhattan (USA))

1989-11-01

158

Gamma-ray binaries: pulsars in disguise?  

Microsoft Academic Search

Context: .LS 5039 and LS I+61°303 are unique amongst high-mass X-ray binaries (HMXB) for their spatially-resolved radio emission and their counterpart at >GeV gamma-ray energies, canonically attributed to non-thermal particles in an accretion-powered relativistic jet. The only other HMXB known to emit very high-energy (VHE) gamma-rays, PSR B1259-63, harbours a non-accreting millisecond pulsar. Aims: .The purpose is to investigate whether

Guillaume Dubus; Marie Curie

2006-01-01

159

VHE Gamma-ray Supernova Remnants  

SciTech Connect

Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

Funk, Stefan; /KIPAC, Menlo Park

2007-01-22

160

Gamma ray spectrometer for Lunar Scout 2  

NASA Technical Reports Server (NTRS)

We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

1993-01-01

161

The gamma-ray laser project  

NASA Astrophysics Data System (ADS)

Recent approaches to the problem of the gamma-ray laser have focused on upconversion techniques in which metastable nuclei are pumped with long wavelength radiation. At the nuclear level the storage of energy can approach tera-Joules (10 to the 12th power J) per liter for thousands of years. However, any plan to use such a resource for a gamma-ray laser poses problems of a broad interdisciplinary nature requiring the fusion of concepts taken from relatively unrelated fields of physics.

Collins, Carl B.

1987-07-01

162

A supersymmetric model of gamma ray bursts  

E-print Network

We propose a model for gamma ray bursts in which a star subject to a high level of fermion degeneracy undergoes a phase transition to a supersymmetric state. The burst is initiated by the transition of fermion pairs to sfermion pairs which, uninhibited by the Pauli exclusion principle, can drop to the ground state of minimum momentum through photon emission. The jet structure is attributed to the Bose statistics of sfermions whereby subsequent sfermion pairs are preferentially emitted into the same state (sfermion amplification by stimulated emission). Bremsstrahlung gamma rays tend to preserve the directional information of the sfermion momenta and are themselves enhanced by stimulated emission.

L. Clavelli; G. Karatheodoris

2004-03-22

163

Neutrinos and Nucleosynthesis in Gamma Ray Bursts  

SciTech Connect

Gamma-ray bursts, while rare, may be important contributors to galactic nucleosynthesis. Here we consider the types of nucleosynthesis that can occur as material is ejected from a gamma-ray burst accretion disk. We calculate the composition of material within the disk as it dissociates into protons and neutrons and then use a parameterized outflow model to follow nuclear recombination in the wind. From the resulting nucleosynthesis we delineate the disk and outflow conditions in which iron peak, r-process, or light p-process nuclei may form. In all cases the neutrinos have an important impact on the final abundance distributions.

Surman, Rebecca [Union College; Mclaughlin, Gail C [North Carolina State University; Hix, William Raphael [ORNL

2006-01-01

164

Gamma ray line observations with OSSE  

NASA Technical Reports Server (NTRS)

Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

1997-01-01

165

Gamma-ray Burst Skymap Website  

NSDL National Science Digital Library

The Gamma-ray Burst Skymap website automatically updates for each gamma-ray burst as it occurs, whether detected by Swift or other orbiting satellites. For each burst, the location on the sky, star map, constellation and detecting mission are generated automatically. It is then quickly updated by hand to include a written description of the burst properties and scientific significance, as observations continue. Note: In order to view the content of the website, users need to download and install Silverlight on their computers.

166

Nucleosynthesis in gamma-ray bursts outflows  

E-print Network

It is shown that fusion of neutrons and protons to He-4 nuclei occurs in gamma-ray burst outflows in a process similar to big-bang nucleosynthesis in the early Universe. Only the surviving free neutrons can then decouple kinematically from the charged fluid so that the multi-GeV neutrino signal predicted from inelastic nuclear n-p collisions is significantly reduced. It is also argued that a sizeable fraction of ultra-high energy cosmic rays accelerated in gamma-ray bursts should be He-4 nuclei.

M. Lemoine

2002-05-07

167

Fermi Gamma-ray Haze via Dark Matter and Millisecond Pulsars  

E-print Network

We study possible astrophysical and dark matter (DM) explanations for the Fermi gamma-ray haze in the Milky Way halo. As representatives of various DM models, we consider DM particles annihilating into W+W-, b-bbar, and e+e-. In the first two cases, the prompt gamma-ray emission from DM annihilations is significant or even dominant at E > 10 GeV, while inverse Compton scattering (ICS) from annihilating DM products is insignificant. For the e+e- annihilation mode, we require a boost factor of order 100 to get significant contribution to the gamma-ray haze from ICS photons. Possible astrophysical sources of high energy particles at high latitudes include type Ia supernovae (SNe) and millisecond pulsars (MSPs). Based on our current understanding of Ia SNe rates, they do not contribute significantly to gamma-ray flux in the halo of the Milky Way. As the MSP population in the stellar halo of the Milky Way is not well constrained, MSPs may be a viable source of gamma-rays at high latitudes provided that there are ~ 20 000 - 60 000 of MSPs in the Milky Way stellar halo. In this case, pulsed gamma-ray emission from MSPs can contribute to gamma-rays around few GeV's while the ICS photons from MSP electrons and positrons may be significant at all energies in the gamma-ray haze. The plausibility of such a population of MSPs is discussed. Consistency with the Wilkinson Microwave Anisotropy Probe (WMAP) microwave haze requires that either a significant fraction of MSP spin-down energy is converted into e+e- flux or the DM annihilates predominantly into leptons with a boost factor of order 100.

Dmitry Malyshev; Ilias Cholis; Joseph D. Gelfand

2010-02-03

168

Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator  

USGS Publications Warehouse

A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

1984-01-01

169

How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma Ray Bursts  

E-print Network

If gamma ray bursts are highly collimated, the energy requirements of each event may be reduced by several (~ 4-6) orders of magnitude, and the event rate increased correspondingly. Extreme conditions in gamma ray bursters lead to highly relativistic motions (bulk Lorentz factors Gamma > 100). This results in strong forward beaming of the emitted radiation in the observer's rest frame. Thus, all information on gamma ray bursts comes from those ejecta emitted in a narrow cone (opening angle 1/Gamma) pointing towards the observer. We are at present ignorant of whether there are ejecta outside that cone or not. The recent detection of longer wavelength transients following gamma ray bursts allows an empirical test of whether gamma ray bursts are collimated jets or spherical fireballs. The bulk Lorentz factor of the burst ejecta will decrease with time after the event, as the ejecta sweep up the surrounding medium. Thus, radiation from the ejecta is beamed into an ever increasing solid angle as the burst remnant evolves. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. Published supernova searches may contain enough data to test the most extreme models of gamma ray beaming. We close with a brief discussion of other possible consequences of beaming, including its effect on the evolution of burst remnants.

James E. Rhoads

1997-05-21

170

Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties  

NASA Technical Reports Server (NTRS)

The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

2010-01-01

171

Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs  

NASA Technical Reports Server (NTRS)

The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

2010-01-01

172

Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry.  

PubMed

Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone. The optimum solution would be a low-background counting station capable of both singles and gamma-gamma coincidence spectrometry. PMID:22037206

Konki, J; Greenlees, P T; Jakobsson, U; Jones, P; Julin, R; Juutinen, S; Ketelhut, S; Hauschild, K; Kontro, R; Leppänen, A-P; Lopez-Martens, A; Mattila, A; Nieminen, P; Nyman, M; Peräjärvi, K; Peura, P; Rahkila, P; Ruotsalainen, P; Sarén, J; Scholey, C; Sorri, J; Toivonen, H; Turunen, J; Uusitalo, J

2012-02-01

173

Ultrahigh Energy Cosmic Rays and Prompt TeV Gamma Rays from Gamma Ray Bursts  

E-print Network

Gamma Ray Bursts (GRBs) have been proposed as one {\\it possible} class of sources of the Ultrahigh Energy Cosmic Ray (UHECR) events observed up to energies $\\gsim10^{20}\\ev$. The synchrotron radiation of the highest energy protons accelerated within the GRB source should produce gamma rays up to TeV energies. Here we briefly discuss the implications on the energetics of the GRB from the point of view of the detectability of the prompt TeV gamma rays of proton-synchrotron origin in GRBs in the up-coming ICECUBE muon detector in the south pole.

Pijushpani Bhattacharjee; Nayantara Gupta

2003-05-12

174

E1 and E2 S factors of {sup 12}C({alpha},{gamma}{sub 0}){sup 16}O from {gamma}-ray angular distributions with a 4 {pi}-detector array  

SciTech Connect

A new experiment to determine the thermonuclear cross section of the {sup 12}C({alpha},{gamma}){sup 16}O reaction has been performed in regular kinematics using an intense {alpha}-particle beam of up to 340 {mu}A from the Stuttgart DYNAMITRON. For the first time, a 4{pi}-germanium-detector setup has been used to measure the angular distribution of the {gamma} rays at all angles simultaneously. It consisted of an array of nine EUROGAM high-purity Ge detectors in close geometry, actively shielded individually with bismuth germanate crystals. The {sup 12}C targets were isotopically enriched by magnetic separation during implantation. The depth profiles of the implanted carbon in the {sup 12}C targets were determined by Rutherford backscattering for purposes of cross-section normalization and absolute determination of the E1 and E2 S factors. Angular distributions of the {gamma} decay to the {sup 16}O ground state were measured in the energy range E{sub c.m.}=1.30-2.78 MeV and in the angular range (lab.) 30 deg. -130 deg. . From these distributions, astrophysical E1 and E2 S-factor functions vs energy were calculated, both of which are indispensable to the modeling of this reaction and the extrapolation toward lower energies. The separation of the E1 and E2 capture channels was done both by taking the phase value {phi}{sub 12} as a free parameter and by fixing it using the results of elastic {alpha}-particle scattering on {sup 12}C in the same energy range.

Assuncao, M.; Lefebvre-Schuhl, A.; Kiener, J.; Tatischeff, V.; Boukari-Pelissie, C.; Coc, A.; Correia, J.J.; Grama, C.; Hannachi, F.; Korichi, A.; LeDu, D.; Lopez-Martens, A.; Meunier, R.; Thibaud, J.P. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), UMR8609, CNRS/IN2P3, Universite Paris-Sud, F-91405 Orsay-Campus (France); Fey, M.; Hammer, J.W.; Kunz, R.; Malcherek, D. [Institut fuer Strahlenphysik (IfS), Universitaet Stuttgart, D-70550 Stuttgart (Germany); Beck, C.; Courtin, S. [Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, Departement de Recherches Subatomiques, CNRS/IN2P3, Universite Louis Pasteur - Strasbourg I, 23 rue du Loess, B.P. 28, F-67037 Strasbourg Cedex, 2 (France)] (and others)

2006-05-15

175

Gamma-ray bursts: Restarting the Engine  

E-print Network

Recent gamma-ray burst observations have revealed late-time, highly energetic events which deviate from the simplest expectations of the standard fireball picture. Instead they may indicate that the central engine is active or restarted at late times. We suggest that fragmentation and subsequent accretion during the collapse of a rapidly rotating stellar core offers a natural mechanism for this.

Andrew King; Paul T. O'Brien; Michael R. Goad; Julian Osborne; Emma Olsson; Kim Page

2005-08-04

176

Gamma Rays From Rotation-Powered Pulsars  

E-print Network

The seven known gamma-ray pulsars represent a very small fraction of the more than 1000 presently known radio pulsars, yet they can give us valuable information about pulsar particle acceleration and energetics. Although the theory of acceleration and high-energy emission in pulsars has been studied for over 25 years, the origin of the pulsed gamma rays is a question that remains unanswered. Characteristics of the pulsars detected by the Compton Gamma-Ray Observatory could not clearly distinguish between an emission site at the magnetic poles (polar cap models) and emission from the outer magnetosphere (outer gap models). There are also a number of theoretical issues in both type of model which have yet to be resolved. The two types of models make contrasting predictions for the numbers of radio-loud and radio-quiet gamma-ray pulsars and of their spectral characteristics. GLAST will probably detect at least 50 radio-selected pulsars and possibly many more radio-quiet pulsars. With this large sample, it will be possible to fully test the model predictions and finally resolve this longstanding question.

Alice K. Harding

2002-08-22

177

Gamma-Ray Pulsars: Models and Predictions  

E-print Network

Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

Alice K. Harding

2000-12-12

178

GAMMA RAY IMAGING FOR ENVIRONMENTAL REMEDIATION  

EPA Science Inventory

The research is a three year development program to apply high resolution gamma-ray imaging technologies to environmental remediation of radioactive hazards. High resolution, position-sensitive germanium detectors are being developed at the Naval Research Laboratory for space app...

179

Search for Soft Gamma-Ray Events  

NASA Technical Reports Server (NTRS)

The support provided under this grant covered several projects, based on observations made with the Compton Gamma Ray Observatory, particularly with the Burst And Transient Source Experiment BATSE. The results of our work were published in 23 papers, 18 Circulars of the International Astronomical Union, and one popular article. I report on these projects separately.

vanParadijs, J. A.

1998-01-01

180

Current segmented gamma-ray scanner technology  

SciTech Connect

A new generation of segmented gamma-ray scanners has been developed at Los Alamos for scrap and waste measurements at the Savannah River Plant and the Los Alamos Plutonium Facility. The new designs are highly automated and exhibit special features such as good segmentation and thorough shielding to improve performance.

Bjork, C.W.

1987-01-01

181

A Compton scatter attenuation gamma ray spectrometer  

NASA Technical Reports Server (NTRS)

Compton attenuation technique, utilizing semiconductor sum-Compton detectors, has been proposed for gamma ray spectrometer capable of gamma spectral measurements in radition fields of 100 R/hr to one million R/hr. Spectrometer consists of two or more separate detectors, with only primary detector exposed to primary incident photon flux.

Austin, W. E.

1972-01-01

182

Gamma-ray bursts as cosmological probes  

NASA Astrophysics Data System (ADS)

Gamma-ray bursts (GRBs) are short, intense burstsof gamma-rays which during seconds to minutes outshine all other sources of gamma-ray emission in the sky.Following the prompt gamma-ray emission, an `afterglow' of emission from the X-ray range to radio wavelengthspersists up to months after the initial burst. The association of the class of long GRBs with the explosion of broad-line type Ic SNe GRBs allow galaxies to be selected independently oftheir emission properties (independently of dust obscuration and, uniquely, independently of their brightnesses atany wavelength) and they also permit the study of the gas in the interstellar medium (ISM) systematically and at anyredshift by the absorption lines present in the afterglow spectra. Moreover, the fading nature of GRBs and theprecise localization of the afterglow allow a detailed investigation of the emission properties of the GRB hostgalaxy once the afterglow has vanished. GRBs therefore constitute a unique tool to understand the link between theproperties of the ISM in the galaxy and the star formation activity, and this at any redshift. This is a unique wayto reveal the physical processes that trigger galaxy formation. The SVOM space mission project is designed to improve the use GRBs as cosmological probes.

Vergani, S. D.

2013-11-01

183

Evaluation of gamma-Ray Intensities.  

National Technical Information Service (NTIS)

Results of literature survey and evaluation of relative intensities and intensities per decay of gamma rays are presented. Evaluations were made for exp 22 Na, exp 24 Na, exp 46 Sc, exp 48 Sc, exp 48 V, exp 54 Mn, exp 57 Co, exp 60 Co, exp 85 Sr, exp 88 Y...

Y. Yoshizawa, H. Inoue, M. Hoshi, K. Shzuma, Y. Iwata

1978-01-01

184

Study of gamma-ray strength functions  

SciTech Connect

The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

1980-08-07

185

Delayed Nickel Decay in Gamma Ray Bursts  

E-print Network

Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce an observable gamma ray burst due to beaming.

G. C. McLaughlin; R. A. M. J. Wijers

2002-05-19

186

Gamma-ray Pulsars: Models and Predictions  

NASA Technical Reports Server (NTRS)

Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

Harding Alice K.; White, Nicholas E. (Technical Monitor)

2000-01-01

187

Gamma Ray and Neutron Detector Interactive  

NSDL National Science Digital Library

This product illustrates how scientists learn about the composition of an asteroid by studying energy and neutrons that emanate from it. The Dawn spacecraft contains three instruments -- the Gamma Ray and Neutro Detector (GRaND), the Visible Infrared Spectrometer, and the Framing Camera -- that will provide answers to questions about the formation and evolution of the early solar system.

Ristvey, John

2009-04-22

188

Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs  

E-print Network

Pressure Buildup - Type Curve Plot, Cr = 1 104 The Effect of Damage on a Pressure Buildup-Type Curve Plot, Cr = 1000 Square Root of Time Graph of Cinco's Solutions for Finite Conductivity Vertical Fractures The Fractional Backflow of Injected Fluid... importantly the authors presented a dimensionless pressure versus the square root of dimensionless time plot from a Cinco type curve which defined the linear flow region in dimensionless parameters. The plot illustrated that as dimensionless fracture...

Montgomery, Kevin Todd

2012-06-07

189

Interstellar protons in the TeV gamma-ray SNR HESS J1731-347:Possible evidence for the coexistence of hadronic and leptonic gamma-rays  

E-print Network

HESS J1731-347 (G353.6-0.7) is one of the TeV gamma-ray SNRs which shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the 12CO(J=1-0) and HI datasets. The results indicate that the TeV gamma-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from -90 km/s to -75 km/s, and the distance corresponding to the velocity range is ~5.2 kpc, a factor of 2 larger than the previous figure 3 kpc. The total mass of the interstellar protons is estimated to be 6.4x10^4 M_sun, 25 % of which is atomic gas. We have identified the cold HI gas observed as self-absorption which shows significant correspondence with the northeastern gamma-ray peak. While the good correspondence between the interstellar protons and TeV gamma-rays in the north of the SNR lends support to the hadronic scenario for the TeV gamma-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of...

Fukuda, T; Sano, H; Torii, K; Yamamoto, H; Acero, F; Fukui, Y

2014-01-01

190

Gamma ray constraints on the Galactic supernova rate  

NASA Technical Reports Server (NTRS)

We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

1991-01-01

191

Gamma-Ray Pulsars in the GLAST Era  

Microsoft Academic Search

A gamma-ray pulsar is a rotating neutron star that emits gamma-ray photons. The EGRET experiment has found seven so far. Gamma-ray pulsars exhibit a range of characteristics with some emitting at radio wavelengths and others not at all. The upcoming GLAST mission will dramatically improve on EGRET's flux sensitivity and energy range. In this talk gamma-ray pulsar models will be

Marcus Ziegler

2006-01-01

192

Quasars, Blazars, and the Gamma-Ray Sky  

Microsoft Academic Search

The statistical properties of gamma-ray emitting AGN are discussed, based on radio sources stronger than 1 Jy at 5 GHz that have been detected by the EGRET experiment on the Compton Gamma Ray Observatory. Most strong gamma-ray sources are radio quasars; radio galaxies are a small component of the population. Among the 1 Jy quasars, gamma-ray detections have stronger than

Chris Impey

1996-01-01

193

Simultaneous optical/gamma-ray observations of GRBs  

NASA Technical Reports Server (NTRS)

Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

1994-01-01

194

Very High-Energy Gamma-Ray Sources.  

ERIC Educational Resources Information Center

Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

Weekes, Trevor C.

1986-01-01

195

Gamma-ray spectra from neutron capture on Sr  

Microsoft Academic Search

The gamma-ray spectrum following neutron capture on Sr was measured at 3 neutron energies: E\\/sub n\\/ = thermal, 2 keV, and 24 keV. Gamma rays were detected in a three-crystal Ge(Li)-NaI-NaI pair spectrometer. Gamma-ray intensities deduced from these spectra by spectral unfolding are presented.

R. E. Sullivan; J. A. Becker; M. L. Stelts

1981-01-01

196

Results from the Milagro Gamma-Ray Observatory  

E-print Network

Results from the Milagro Gamma-Ray Observatory E. Blaufuss for the Milagro Collaboration a,1 , aUniversity of Maryland, College Park, MD 20742, USA Abstract The Milagro Gamma-Ray Observatory, located at an altitude- tor capable of continuously monitoring the overhead sky for sources of TeV gamma rays. At the center

California at Santa Cruz, University of

197

THE MILAGRO GAMMA RAY OBSERVATORY: Gaurang B. Yodh  

E-print Network

THE MILAGRO GAMMA RAY OBSERVATORY: Gaurang B. Yodh for the Milagro Collaboration Department from AGN's such as MRK 421. Milagro will be the first VHE detector capable of recording Gamma Ray meters. 1. Inroduction The EGRET detector on the Compton Gamma Ray Observatory(CGRO) has observed gamma

California at Santa Cruz, University of

198

Very High Energy Gamma Ray Observations with the MAGIC  

E-print Network

Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte The non-thermal universe in VHE gamma-rays GRBs AGNs Origin of cosmic rays Cosmology Dark matter Space Physik / Humboldt Universität Berlin VHE gamma-ray sources status ICRC 2007 Rowell 71 known sources

California at Santa Cruz, University of

199

How Far Away Are Gamma-Ray Bursters?  

Microsoft Academic Search

The positions of over 1000 gamma-ray bursts detected with the BATSE experiment on board of the Compton Gamma Ray Observatory are uniformly and randomly distributed in the sky, with no significant concentration to the galactic plane or to the galactic center. The strong gamma-ray bursts have an intensity distribution consistent with a number density independent of distance in Euclidean space.

Bohdan Paczynski

1995-01-01

200

Celestial Gamma Ray Bursts Detector Development and Model Simulations  

Microsoft Academic Search

Celestial gamma-ray bursts are a poorly understood astrophysical phenomenon. These transient events were discovered over twenty years ago, yet their origin is still an unsolved mystery. At present no quiescent counterpart to a gamma ray burst source has been conclusively identified, partly because the poor angular resolution of gamma ray detectors and the short durations of the bursts make it

Patrick Charles Mock

1993-01-01

201

Viewing the Sky at Nuclear Gamma-Ray Wavelengths  

Microsoft Academic Search

I discuss our changed view of the gamma -ray sky as a result of measurements made by the gamma -ray spectrometer (GRS) on the Solar Maximum Mission satellite. This highly successful instrument was developed at UNH and MPE (Germany) to study solar flares and operated from 1980 February to 1989 November. The number of flares detected in nuclear gamma -rays

Gerald H. Share

1992-01-01

202

Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes  

NASA Technical Reports Server (NTRS)

The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

Gehrels, Neil; Cannizzo, John K.

2010-01-01

203

Ultraviolet observations of the gamma-ray blazer 3C 279 following the gamma-ray flare of 1991 June  

Microsoft Academic Search

Ultraviolet observations of the gamma-ray blazar 3C 279 were carried out in 1991 July with the International Ultraviolet Explorer (IUE) satellite, 28 days after the outburst of intense gamma-ray emission detected from this source with the high-energy Energetic Gamma Ray Experiment Telescope (EGRET) instrument aboard the Compton Gamma-Ray Observatory. IUE observations were conducted over the wavelength range 1200-3200 A (5-10

Jerry T. Bonnell; W. Thomas Vestrand; J. Gregory Stacy

1994-01-01

204

The Universe Viewed in Gamma-Rays 1 Galactic Diffuse Gamma-ray Spectrum from Cosmic-ray In-  

E-print Network

The Universe Viewed in Gamma-Rays 1 Galactic Diffuse Gamma-ray Spectrum from Cosmic-ray In- teractions with Gas Clouds Michiko OHISHI and Masaki MORI Institute for Cosmic Ray Research, University, Australia Abstract Gamma-ray spectra from cosmic-ray proton and electron interactions with gas clouds have

Mori, Masaki

205

THE REMARKABLE {gamma}-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211  

SciTech Connect

We report the extraordinary {gamma}-ray activity (E > 100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z = 2.507) detected by AGILE between 2010 October and November. On October 14, the source experienced a factor of {approx}12 flux increase with respect to its average value and remained brightest at this flux level ({approx}500 x 10{sup -8} photons cm{sup -2} s{sup -1}) for about four days. The one-month {gamma}-ray light curve across the flare showed a mean flux F(E > 100 MeV) = 200 x 10{sup -8} photons cm{sup -2} s{sup -1}, which resulted in a factor of four enhancement with respect to the average value. Following the {gamma}-ray flare, the source was observed in near-IR (NIR)-optical energy bands at the Cerro Tololo Inter-American Observatory and in X-Rays by Swift/X-Ray Telescope and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in {gamma}-rays does not have a significant counterpart at lower frequencies: no variation greater than a factor of {approx}1.5 appeared in the NIR and X-Ray energy bands. PKS 1830-211 is then a good '{gamma}-ray only flaring' blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.

Donnarumma, I.; De Rosa, A.; Vittorini, V.; Tavani, M.; Striani, E.; Pacciani, L. [INAF/IASF-Roma, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Miller, H. R.; Eggen, J.; Maune, J. [Department of Physics and Astronomy Georgia State University, GA 30303-3083 (United States); Popovic, L. C. [Astronomical Observatory, Volgina 7, 11160, Belgrade 74 (Serbia); Simic, S. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Kuulkers, E. [European Space Astronomy Centre, SRE-O, Villanueva de la Canada, Madrid (Spain); Vercellone, S. [INAF/IASF Palermo Via Ugo La Malfa 153, 90146 Palermo (Italy); Pucella, G. [ENEA-Frascati, Via E. Fermi 45, I-00044 Frascati, Roma (Italy); Verrecchia, F.; Pittori, C.; Giommi, P. [ASI-ASDC, Via G. Galilei, I-00044 Frascati, Roma (Italy); Barbiellini, G. [Dipartimento di Fisica and INFN Trieste, Via Valerio 2, I-34127 Trieste (Italy); Bulgarelli, A. [INAF/IASF-Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Cattaneo, P. W., E-mail: immacolata.donnarumma@iasf-roma.inaf.it [INFN-Pavia, Via Bassi 6, I-27100 Pavia (Italy)

2011-08-01

206

Research in cosmic and gamma ray astrophysics  

NASA Technical Reports Server (NTRS)

Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

1992-01-01

207

The Gamma-Ray Burst Next Door  

NASA Technical Reports Server (NTRS)

I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

Wanjek, Christopher

2003-01-01

208

EBT-P gamma ray shielding analysis  

SciTech Connect

First, a one-dimensional scoping study was performed for the gamma ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose equivalent results are analyzed as a function of the radiation shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed. Next, a three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat load per coil from the gamma ray sources. Also, a detailed biological dose survey was performed which included: a) the dose equivalent inside and outside the building, b) the dose equivalent from the two mazes of the building, and c) the skyshine contribution to the dose equivalent.

Gohar, Y.

1983-09-01

209

Cosmic-Rays and Gamma Ray Bursts  

NASA Astrophysics Data System (ADS)

Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

Meli, A.

2013-07-01

210

Gamma Ray Observatory (GRO): Emergency support  

NASA Technical Reports Server (NTRS)

The Gamma Ray Observatory (GRO) is an Earth orbiting satellite that studies sources of localized, galactic, and extragalactic gamma rays. It will be carried into a near-circular orbit by the Space Shuttle, following which it will be placed in its operational orbit by its on-board hydrazine propulsion system. Formal orbit parameters are 350 km x 450 km x 28.5 degrees with a period of 93 minutes. Deep Space Network coverage will be provided during emergencies that would prevent communications via the normal Tracking and Data Relay Satellite System (TDRSS)-White Sands data link. Emergency support will be provided by the DSN's 26-meter antenna subnetwork. Information is given in tabular form for DSN support, frequency assignments, telemetry, and command.

Schauer, K.; Madden, J.

1991-01-01

211

Gamma ray spectroscopic measurements of Mars.  

PubMed

A gamma ray spectrometer placed in orbit around Mars is expected to yield significant compositional data which can be related to the evolution of that planet. Components of the observable gamma ray flux come from the Martian surface, galactic and intergalactic space, and the spacecraft itself. The flux can be detected by a scintillation crystal or solid state detector, either of which combines efficiency of detection with energy resolution, and returns information to the earth as a pulse height distribution in order to detect characteristic energy line structure. The data will be evaluated for evidence of elemental differentiation with reference to terrestrial, meteoritic, solar, and lunar abundances. A lengthy mission will allow the surface of Mars to be mapped in a search for possible correlations between composition and topography or albedo. PMID:20076376

Metzger, A E; Arnold, J R

1970-06-01

212

Ground-Based Gamma-Ray Astronomy  

E-print Network

Ground-based gamma-ray astronomy has become an active astrophysical discipline with four confirmed sources of TeV gamma rays, two plerionic supernova remnants (SNRs) and two BL Lac objects (BL Lacs). An additional nine objects (one plerion, three shell-type SNRs, one X-ray binary, and four BL Lacs) have been detected but have not been confirmed by independent detections. None of the galactic sources require the presence of hadronic cosmic rays, so definitive evidence of their origin remains elusive. Mrk 421 and Mrk 501 are weak EGRET sources but they exhibit extremely variable TeV emission with spectra that extend beyond 10 TeV. They also exhibit correlations with lower energy photons during multi-wavelength campaigns, providing tests of emission models. Next generation telescopes like VERITAS hold the promise of moving this field dramatically forward.

Michael Catanese

1999-11-09

213

Gamma rays and large scale galactic structure  

NASA Technical Reports Server (NTRS)

Gamma ray astronomy is now beginning to provide a new look at the galactic structure and the distribution of cosmic rays, both electrons and nucleons, within the galaxy. The observations are consistent with a galactic spiral-arm model in which the cosmic rays are linearly coupled to the interstellar gas on the scale of the spiral arms. The agreement between the predictions of the model and the observations for regions of the plane where both 21-cm and 2.6-mm CO surveys exist emphasizes the need to extend these observations to include the entire plane. Future gamma-ray observations with more sensitivity and better angular resolutions, combined with these radio surveys, should shed new light on the distribution of cosmic rays, the nature of the galaxy, and the location and intensity of the spiral arms.

Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

1977-01-01

214

Nucleosynthesis and astrophysical gamma ray spectroscopy  

NASA Technical Reports Server (NTRS)

The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

Jacobson, Allan S.

1987-01-01

215

Gamma rays, cosmic rays, and galactic structure  

NASA Technical Reports Server (NTRS)

Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

Stecker, F. W.

1977-01-01

216

Solar flare gamma-ray line shapes  

NASA Technical Reports Server (NTRS)

A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

Werntz, C.; Kim, Y. E.; Lang, Frederick L.

1990-01-01

217

The GAMCIT gamma ray burst detector  

NASA Technical Reports Server (NTRS)

The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

1993-01-01

218

Real time gamma-ray signature identifier  

DOEpatents

A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

Rowland, Mark (Alamo, CA); Gosnell, Tom B. (Moraga, CA); Ham, Cheryl (Livermore, CA); Perkins, Dwight (Livermore, CA); Wong, James (Dublin, CA)

2012-05-15

219

The Blackholic energy: long and short Gamma-Ray Bursts (New perspectives in physics and astrophysics from the theoretical understanding of Gamma-Ray Bursts, II)  

Microsoft Academic Search

We outline the confluence of three novel theoretical fields in our modeling of Gamma-Ray Bursts (GRBs): 1) the ultrarelativistic regime of a shock front expanding with a Lorentz gamma factor ~ 300; 2) the quantum vacuum polarization process leading to an electron-positron plasma originating the shock front; and 3) the general relativistic process of energy extraction from a black hole

Remo Ruffini; Maria Grazia Bernardini; Carlo Luciano Bianco; Pascal Chardonnet; Federico Fraschetti; Vahe Gurzadyan; Luca Vitagliano; She-Sheng Xue

2005-01-01

220

Gamma rays from active galactic nuclei  

NASA Technical Reports Server (NTRS)

The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

Kazanas, Demosthenes

1990-01-01

221

Benchmark gamma-ray skyshine experiment  

Microsoft Academic Search

A benchmark gamma-ray skyshine experiment is descibed in which ⁶°Co sources were either collimated into an upward 150-deg conical beam or shielded vertically by two different thicknesses of concrete. A NaI(Tl) spectrometer and a high pressure ion chamber were used to measure, respectively, the energy spectrum and the 4..pi..-exposure rate of the air-reflected gamma photons up to 700 m from

R. R. Nason; J. K. Shultis; R. E. Faw; C. E. Clifford

1982-01-01

222

EBT-P gamma ray shielding analysis  

Microsoft Academic Search

First, a one-dimensional scoping study was performed for the gamma ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose equivalent results are analyzed as a function of the radiation shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding

Gohar

1983-01-01

223

Prospects for Nuclear-gamma-ray Astronomy  

NASA Technical Reports Server (NTRS)

An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

Clayton, D. D.

1973-01-01

224

Beacons at the gamma ray horizon  

Microsoft Academic Search

Blazars with redshifts z<=0.1 are likely candidates for detection at energies in the range 300GeV-50TeV with Cerenkov telescopes and scintillator arrays. We present gamma-ray flux predictions for a sample of 15 nearby flat-spectrum radio sources fitting the proton blazar model of Mannheim (1993A&A...269...67M) to their observed broad-band spectral energy distributions. At high energies, we use fluxes or flux limits measured

K. Mannheim; S. Westerhoff; H. Meyer; H.-H. Fink

1996-01-01

225

Status of the Milagro Gamma Ray Observatory  

Microsoft Academic Search

The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in the mountains of northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between 250 GeV and 50 TeV. With ± a high duty-cycle, large detector area, and wide field-of-view

Joseph McCullough; W. Benbow; D. Berley; M.-L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

1999-01-01

226

Gamma-Ray Line Observations with RHESSI  

E-print Network

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has been observing gamma-ray lines from the Sun and the Galaxy since its launch in February 2002. Here I summarize the status of RHESSI observations of solar lines (nuclear de-excitation, neutron capture, and positron annihilation), the lines of $^{26}$Al and $^{60}$Fe from the inner Galaxy, and the search for positron annihilation in novae.

David M. Smith

2004-04-30

227

The cannonball model of gamma ray bursts  

E-print Network

The cannonball model (CB) of gamma ray bursts (GRBs) is incredibly more successful than the standard blast-wave models (SM) of GRBs, which suffer from profound inadequacies and limited predictive power. The CB model is falsifiable in its hypothesis and results. Its predictions are summarized in simple analytical expressions, derived, in fair approximations, from first principles. It provides a good description on a universal basis of the properties of long-duration GRBs and of their afterglows (AGs).

Arnon Dar

2003-01-20

228

Are Gamma-Ray Bursts Standard Candles?  

E-print Network

By dividing a sample of 48 long-duration gamma-ray bursts (GRBs) into four groups with redshift from low to high and fitting each group with the Amati relation log Eiso = a + b log Epeak, I find that parameters a and b vary with the mean redshift of the GRBs in each group systematically and significantly. The results suggest that GRBs evolve strongly with the cosmic redshift and hence are not standard candles.

Li-Xin Li

2007-05-30

229

Nucleosynthesis and Gamma Ray-Line Astronomy  

E-print Network

The most energetic part of the electromagnetic spectrum bears the purest clues to the synthesis of atomic nuclei in the universe. The decay of radioactive species, synthesized in stellar environments and ejected into the interstellar medium, gives rise to specific gamma ray lines. The observations gathered up to now show evidence for radioactivities throughout the galactic disk, in young supernova remnants (Cas A, Vela), and in nearby extragalactic supernovae (SN 1987A, SN 1991T and SN1998bu), in the form of specific gamma ray lines resulting, respectively, from the radioactive decay of 26Al, 44Ti and 56Co. The various astrophysical sites of thermal nucleosynthesis of the radioactive nuclei were discussed: AGB and Wolf-Rayet stars, novae, and type Ia and type II supernovae. Nuclear excitations by fast particles also produce gamma ray lines which have been observed in great detail from solar flares, and more hypothetically from active star forming regions where massive supernovae and WR stars abound. This non thermal process and its nucleosynthetic consequences was reviewed. The 511 keV line arising from e+ + e- annihilation also provides important information on explosive nucleosynthesis, as well as on the nature of the interstellar medium where the positrons annihilate. INTEGRAL, the main mission devoted to high resolution nuclear spectroscopy, should lead to important progress in this field.

Elisabeth Vangioni-Flam; Reuven Ramaty; Michel Casse

1999-02-04

230

The Most Remote Gamma-Ray Burst  

NASA Astrophysics Data System (ADS)

ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few seconds is larger than that of the Sun during its entire life time (about 10,000 million years). "Gamma-ray bursts" are in fact by far the most powerful events since the Big Bang that are known in the Universe. While there are indications that gamma-ray bursts originate in star-forming regions within distant galaxies, the nature of such explosions remains a puzzle. Recent observations with large telescopes, e.g. the measurement of the degree of polarization of light from a gamma-ray burst in May 1999 with the VLT ( ESO PR 08/99), are now beginning to cast some light on this long-standing mystery. The afterglow of GRB 000131 ESO PR Photo 28a/00 ESO PR Photo 28a/00 [Preview - JPEG: 400 x 475 pix - 41k] [Normal - JPEG: 800 x 949 pix - 232k] [Full-Res - JPEG: 1200 x 1424 pix - 1.2Mb] ESO PR Photo 28b/00 ESO PR Photo 28b/00 [Preview - JPEG: 400 x 480 pix - 67k] [Normal - JPEG: 800 x 959 pix - 288k] [Full-Res - JPEG: 1200 x 1439 pix - 856k] Caption : PR Photo 28a/00 is a colour composite image of the sky field around the position of the gamma-ray burst GRB 000131 that was detected on January 31, 2000. It is based on images obtained with the ESO Very Large Telescope at Paranal. The object is indicated with an arrow, near a rather bright star (magnitude 9, i.e., over 1 million times brighter than the faintest objects visible on this photo). This and other bright objects in the field are responsible for various unavoidable imaging effects, caused by optical reflections (ring-shaped "ghost images", e.g. to the left of the brightest star) and detector saturation effects (horizontal and vertical straight lines and coloured "coronae" at the bright objects, and areas of "bleeding", e.g. below the bright star). PR Photo 28b/00 shows the rapid fading of the optical counterpart of GRB 000131 (slightly left of the centre), by means of exposures with the VLT on February 4 (upper left), 6 (upper right), 8 (lower left) and March 5 (lower right). It is no longer visible on the last photo. Techni

2000-10-01

231

The Properties of Gamma-ray Binaries  

NASA Astrophysics Data System (ADS)

There are a small but growing number of high mass X-ray binaries (HMXBs) that also exhibit emission above 100 MeV. All of these "gamma-ray binaries" exhibit variable emission across the electromagnetic spectrum, from radio to TeV energies, that is modulated with the binary orbital period. The optical stellar companions in these gamma-ray binaries fall into a range of spectral classes: Wolf-Rayet, O main sequence, B supergiant, and Be. Their high energy emission is probably powered by the collision of stellar wind or disk outflows with relativistic pulsar winds in a shock region. These sources present a unique opportunity to study particle acceleration in nearby, Galactic sources. I will review the observed multiwavelength properties of known gamma-ray binaries and discuss the population in the context of the late stages of massive star evolution. I am grateful for support from the Fermi Cycle 4 program through NASA grant NNX11AO41G and from NSF grant AST-1109247.

McSwain, M. Virginia

2013-06-01

232

Positron annihilation in gamma-ray bursts  

NASA Technical Reports Server (NTRS)

Emission features appear at energies of 350 to 450 keV in the spectra of a number of gamma ray burst sources. These features were interpreted as electron-positron annihilation lines, redshifted by the gravitational field near the surface of a neutron star. Evidence that gamma ray bursts originate at neutron stars with magnetic field strengths of approx. 10(exp 12) Gauss came from recent observations of cyclotron scattering harmonics in the spectra of two bursts. Positrons could be produced in gamma ray burst sources either by photon-photon pair production or by one-photon pair production in a strong magnetic field. The annihilation of positrons is affected by the presence of a strong neutron star magnetic field in several ways. The relaxation of transverse momentum conservation causes an intrinsic broadening of the two-photon annihilation line and there is a decrease in the annihilation cross section below the free-space value. An additional channel for one-photon annihilation also becomes possible in high magnetic fields. The physics of pair production and annihilation near strongly magnetized neutron stars will be reviewed. Results from a self-consistent model for non-thermal synchrotron radiation and pair annihilation are beginning to identify the conditions required to produce observable annihilation features from strongly magnetized plasmas.

Harding, Alice K.

1990-01-01

233

THE FERMI GAMMA-RAY BURST MONITOR  

SciTech Connect

The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

Meegan, Charles [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse Postfach 1312, Garching 85748 (Germany); Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Fishman, Gerald; Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Hoover, Andrew S.; Kippen, R. Marc; Wallace, Mark S. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Van der Horst, Alexander J. [NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); McBreen, Sheila [University College, Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland)] (and others)

2009-09-01

234

Hadronic Gamma Rays from Supernova Remnants  

E-print Network

A gas cloud near a supernova remnant (SNR) provides a target for pp-collisions leading to subsequent gamma-ray emission through neutral pion decay. The assumption of a power-law ambient spectrum of accelerated particles with index near -2 is usually built into models predicting the spectra of very-high energy (VHE) gamma-ray emission from SNRs. However, if the gas cloud is located at some distance from the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with the injection energy gradually decreasing as the SNR ages. In the GLAST energy range the gamma-ray spectrum resulting from particle interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.

I. V. Moskalenko; T. A. Porter; M. A. Malkov; P. H. Diamond

2007-05-25

235

Solar gamma rays. [in solar flares  

NASA Technical Reports Server (NTRS)

The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

1974-01-01

236

Physical constraints on models of gamma-ray bursters  

SciTech Connect

This report deals with the constraints that can be placed on models of gamma-ray burst sources based on only the well-established observational facts and physical principles. The premise is developed that the very hard x-ray and gamma-ray continua spectra are well-established aspects of gamma-ray bursts. Recent theoretical work on gamma-ray bursts are summarized with emphasis on the geometrical properties of the models. Constraints on the source models which are implied by the x-ray and gamma-ray spectra are described. The allowed ranges for the luminosity and characteristic dimension for gamma-ray burst sources are shown. Some of the deductions and inferences about the nature of the gamma-ray burst sources are summarized. 67 refs., 3 figs.

Epstein, R.I.

1985-01-01

237

Lithium-6 and Gamma Rays: Complementary Constraints on Cosmic-Ray History  

E-print Network

The rare isotope 6Li is made only by cosmic rays, dominantly in alpha+alpha fusion reactions with ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays in our Galaxy. The same hadronic cosmic-ray interactions also produce high-energy gamma rays (mostly via neutral pion production). Thus, hadronic gamma-rays and 6Li are intimately linked. Specifically, 6Li directly encodes the local cosmic-ray fluence over cosmic time, while extragalactic hadronic gamma rays encode an average cosmic-ray fluence over lines of sight out to the horizon. We examine this link and show how 6Li and gamma-rays can be used together to place important model-independent limits on the cosmic-ray history of our Galaxy and the universe. We first constrain gamma-ray production from ordinary Galactic cosmic rays, using the local 6Li abundance. We find that the solar 6Li abundance demands an accompanying extragalactic pionic gamma-ray intensity which exceeds that of the entire observed EGRB by a factor of 2-6. Possible explanations for this discrepancy are discussed. We then constrain Li production using recent determinations of extragalactic gamma-ray background (EGRB). We note that cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metal-poor halo stars. We find the uncertainties in the observed EGRB are so large that we cannot exclude a pre-Galactic Li which is comparable to primordial 7Li. Our limits and their more model-dependent extensions will improve significantly with additional observations of 6Li in halo stars, and with improved measurements of the EGRB spectrum by GLAST. (Abriged abstract)

Brian D. Fields; Tijana Prodanovic

2004-07-15

238

The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory  

NASA Technical Reports Server (NTRS)

The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

Ryan, James M.; Lockwood, John A.

1989-01-01

239

Observation of contemporaneous optical radiation from a gamma-ray burst  

E-print Network

The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.

C. Akerlof; R. Balsano; S. Barthelmy; J. Bloch; P. Butterworth; D. Casperson; T. Cline; S. Fletcher; F. Frontera; G. Gisler; J. Heise; J. Hills; R. Kehoe; B. Lee; S. Marshall; T. McKay; R. Miller; L. Piro; W. Priedhorsky; J. Szymanski; J. Wren

1999-03-17

240

Discrimination of gamma rays due to inelastic neutron scattering in AGATA  

E-print Network

Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find 'fingerprints' of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

A. Ataç; A. Ka?ka?; S. Akkoyun; M. ?enyi?it; T. Hüyük; S. O. Kara; J. Nyberg

2009-06-06

241

GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy  

NASA Astrophysics Data System (ADS)

We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig. 1). These gamma-ray observations will be complemented by observations in the soft X-ray and (near-)infrared region with the corresponding telescopes placed on a separate satellite. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (" GRIPS") mission with its three instruments Gamma-Ray Monitor (GRM), X-Ray Monitor (XRM) and InfraRed Telescope (IRT) addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate ?-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.

Greiner, Jochen; Mannheim, Karl; Aharonian, Felix; Ajello, Marco; Balasz, Lajos G.; Barbiellini, Guido; Bellazzini, Ronaldo; Bishop, Shawn; Bisnovatij-Kogan, Gennady S.; Boggs, Steven; Bykov, Andrej; DiCocco, Guido; Diehl, Roland; Elsässer, Dominik; Foley, Suzanne; Fransson, Claes; Gehrels, Neil; Hanlon, Lorraine; Hartmann, Dieter; Hermsen, Wim; Hillebrandt, Wolfgang; Hudec, Rene; Iyudin, Anatoli; Jose, Jordi; Kadler, Matthias; Kanbach, Gottfried; Klamra, Wlodek; Kiener, Jürgen; Klose, Sylvio; Kreykenbohm, Ingo; Kuiper, Lucien M.; Kylafis, Nikos; Labanti, Claudio; Langanke, Karlheinz; Langer, Norbert; Larsson, Stefan; Leibundgut, Bruno; Laux, Uwe; Longo, Francesco; Maeda, Kei'ichi; Marcinkowski, Radoslaw; Marisaldi, Martino; McBreen, Brian; McBreen, Sheila; Meszaros, Attila; Nomoto, Ken'ichi; Pearce, Mark; Peer, Asaf; Pian, Elena; Prantzos, Nikolas; Raffelt, Georg; Reimer, Olaf; Rhode, Wolfgang; Ryde, Felix; Schmidt, Christian; Silk, Joe; Shustov, Boris M.; Strong, Andrew; Tanvir, Nial; Thielemann, Friedrich-Karl; Tibolla, Omar; Tierney, David; Trümper, Joachim; Varshalovich, Dmitry A.; Wilms, Jörn; Wrochna, Grzegorz; Zdziarski, Andrzej; Zoglauer, Andreas

2012-10-01

242

Opacity Build-up in Impulsive Relativistic Sources  

SciTech Connect

Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production ({gamma}{gamma} {yields} e{sup +}e{sup -}) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, {tau}{gamma}{gamma}, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R{sub 0} {le} R {le} R{sub 0}+{Delta}R. This is particularly relevant for GRB internal shocks. We find that in an impulsive source ({Delta}R {approx}< R{sub 0}), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy {var_epsilon}1(T) where t{gamma}{gamma}({var_epsilon}1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy {var_epsilon}1* {approx} {var_epsilon}1({Delta}T) where {Delta}T is the duration of the emission episode. Furthermore, photons with energies {var_epsilon} > {var_epsilon}1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth {tau}{gamma}{gamma}({var_epsilon}) initially increases with time and {var_epsilon}1(T) correspondingly decreases with time, so that photons of energy {var_epsilon} > {var_epsilon}1* are able to escape the source mainly very early on while {var_epsilon}1(T) > {var_epsilon}. As the source approaches a quasi-steady state ({Delta}R >> R0), the time integrated spectrum develops an exponential cutoff, while the power-law tail becomes increasingly suppressed.

Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

2007-09-28

243

Off-Beam Gamma-Ray Pulsars and Unidentified EGRET Sources in the Gould Belt  

E-print Network

We investigate whether gamma-ray pulsars viewed at a large angle to the neutron star magnetic pole could contribute to the new population of galactic unidentified EGRET sources associated with the Gould Belt. The faint, soft nature of these sources is distinctly different from both the properties of unidentified EGRET sources along the galactic plane and of the known gamma-ray pulsars. We explore the possibility, within the polar cap model, that some of these sources are emission from pulsars seen at lines of sight that miss both the bright gamma-ray cone beams and the radio beam. The off-beam gamma-rays come from high-altitude curvature emission of primary particles, are radiated over a large solid angle and have a much softer spectrum than that of the main beams. We estimate that the detectability of such off-beam emission is about a factor of 4-5 higher than that of the on-beam emission. At least some of the radio-quiet Gould Belt sources detected by EGRET could therefore be such off-beam gamma-ray pulsars. GLAST should be able to detect pulsations in most of these sources.

Alice K. Harding; Bing Zhang

2000-11-28

244

A STATISTICAL MODEL FOR THE {gamma}-RAY VARIABILITY OF THE CRAB NEBULA  

SciTech Connect

A statistical scenario is proposed to explain the {gamma}-ray variability and flares of the Crab Nebula, which were observed recently by the Fermi/LAT. In this scenario electrons are accelerated in a series of knots, whose sizes follow a power-law distribution. These knots presumably move outward from the pulsar and have a distribution in the Doppler boost factor. The maximal electron energy is assumed to be proportional to the size of the knot. Fluctuations at the highest energy end of the overall electron distribution will result in variable {gamma}-ray emission via the synchrotron process in the {approx}100 MeV range. Since highly boosted larger knots are rarer than smaller knots, the model predicts that the variability of the synchrotron emission increases with the photon energy. We realize such a scenario with a Monte Carlo simulation and find that the model can reproduce both the two {gamma}-ray flares over a period of {approx}1 year and the monthly scale {gamma}-ray flux fluctuations as observed by the Fermi/LAT. The observed {gamma}-ray spectra in both the steady and flaring states are also well reproduced.

Yuan Qiang; Yin Pengfei; Bi Xiaojun [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Xuefeng; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Liu Siming [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

2011-04-01

245

Constraining the Location of Gamma-Ray Flares in Luminous Blazars  

E-print Network

Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta ~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling co...

Nalewajko, Krzysztof; Sikora, Marek

2014-01-01

246

GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES  

SciTech Connect

Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

2012-08-20

247

Gamma ray burst outflows and afterglows  

NASA Astrophysics Data System (ADS)

We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

Morsony, Brian J.

2008-08-01

248

Common Gamma-ray Glows above Thunderclouds  

NASA Astrophysics Data System (ADS)

Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

2013-04-01

249

Correlation Analysis of Prompt Emission from Gamma Ray Bursts  

NASA Astrophysics Data System (ADS)

Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

Pothapragada, Sriharsha

250

Learning about jet physics from gamma-ray blazars  

NASA Technical Reports Server (NTRS)

The spectral properties of the MeV radiation-dominated blazars are used to place constraints on the physical parameters of relativistic jets in quasars. The luminosities and positions of high energy and low energy spectral components are used to derive constraints on the jet speeds, magnetic fields and the distances at which most of the nonthermal radiation is produced. By comparing the theoretically predicted bulk-Compton radiation with the observed soft X-ray luminosities, upper limits on the optical thickness and lower limits on the distance where the relativistic jet is formed and collimated, are identified. The results show that these jets should be Thomson optically thin and, in the case of gamma ray production dominated by the external radiation Compton process, favor proton-electron jets. Weaker constraints on the pair production are provided if the gamma ray production is dominated by the synchrotron self Compton (SSC) process. The values of the jet Lorentz factors predicted by the SSC models are smaller than those observed in quasars.

Sikora, M.; Moderski, R.; Madejski, G.; Poutanen, J.

1997-01-01

251

Gamma ray spectroscopy and timing using LSO and PIN photodiodes  

SciTech Connect

The high density, high light output, and short decay time of LSO (lutetium orthosilicate, Lu{sub 2}SiO{sub 5}:Ce) make it an attractive scintillator for gamma ray spectroscopy. The low cost, small size, high quantum efficiency, and ruggedness of silicon photodiodes make them attractive photodetectors for this same application, although their high noise (Compared to a photomultiplier tube) reduces their appeal. In this work the authors measure the gamma ray energy resolution, timing accuracy, and conversion factor from gamma energy to number of electron-hole pairs produced with a 3 x 3 x 22 mm{sup 3} LSO scintillator crystal read out with a 3 x 3 mm{sup 2} silicon PIN photodiode. When the detector is excited with 511 keV photons, a photopeak centered at 1,940 e{sup {minus}} with 149 keV fwhm is observed and a timing signal with 35 ns fwhm jitter is produced. When the detector is excited with 1,275 keV photons, a photopeak centered at 4,910 e{sup {minus}} with 149 keV fwhm is observed and a timing signal with 25 ns fwhm jitter is produced. While these performance measures are inferior to those obtained with photomultiplier tubes, they are acceptable for some applications.

Moses, W.W.; Derenzo, S.E. [Lawrence Berkeley Lab., CA (United States); Melcher, C.L.; Manente, R.A. [Schlumberger-Doll Research, Ridgefield, CT (United States)

1994-11-01

252

Gamma ray spectroscopy and timing using LSO and PIN photodiodes  

SciTech Connect

The high density, high light output, and short decay time of LSO (lutetium orthosilicate, Lu{sub 2}SiO{sub 5}:Ce) make it an attractive scintillator for gamma ray spectroscopy. The low cost, small size, high quantum efficiency, and ruggedness of silicon photodiodes make them attractive photodetectors for this same application, although their high noise (compared to a photomultiplier tube) reduces their appeal. In this work the authors measure the gamma ray energy resolution, timing accuracy, and conversion factor from gamma energy to number of electron-hole pairs produced with a 3 x 3 x 22 mm{sup 3} LSO scintillator crystal read out with a 3 x 3 mm{sup 2} silicon PIN photodiode. When the detector is excited with 511 keV photons, a photopeak centered at 4,910 e{sup {minus}} with 149 keV fwhm is observed and a timing signal with 25 ns fwhm jitter is produced. While these performance measures are inferior to those obtained with photomultiplier tubes, they are acceptable for some applications.

Moses, W.W.; Derenzo, S.E. [Lawrence Berkeley Lab., CA (United States)] [Lawrence Berkeley Lab., CA (United States); Melcher, C.L.; Manente, R.A. [Schlumberger-Doll Research, Ridgefield, CT (United States)] [Schlumberger-Doll Research, Ridgefield, CT (United States)

1995-08-01

253

Instrumental background in gamma-ray spectrometers flown in low earth orbit  

NASA Technical Reports Server (NTRS)

Techniques are presented for calculating the instrumental continuum background in gamma-ray spectrometers flown in low earth orbit (LEO), with special attention given to simple methods developed for scaling from the better-understood measurements and calculations of background in balloon-borne instruments to LEO (Gehrels, 1985). Results are presented in the form of predictions of the background and its components for spectrometers in LEO. These predictions are compared to the measured background for the HEAO 3 gamma-ray spectrometer (Mahoney et al., 1980), and predictions are made for the International Gamma-Ray Astrophysics Laboratory mission and the Nuclear Astrophysics Explorer (Matteson et al., 1990) spectrometers. A comparison is made of various orbit options. It is shown that a critical factor is the number of times the instrument passes through the South Atlantic Anomaly (which is the region of enhanced trapped particle fluxes in LEO) and the depth of penetration on each pass.

Gehrels, Neil

1992-01-01

254

A detailed study of sheared Alfven waves and their possible application to gamma-ray bursts  

NASA Technical Reports Server (NTRS)

Strong particle acceleration in neutron-star environments may result in the upscattering of soft photons to gamma-ray energies. Sheared Alfven waves, which may be generated by several plausible disturbances in the stellar crust, can energize the charges to Lorentz factors in excess of 10 exp 5. However, a full understanding of the physics of these MHD waves is lacking due to the complications arising from the charge separation within the sheared region. Here, we present a detailed study of this mechanism, with particular attention to a comparison of the nonrelativistic and relativistic domains. We find that the charge separation is consistent with our previous classical MHD solutions and that it provides a natural description of the sheared current via a relativistic flow. These waves can apparently produce the particle distributions that are necessary to produce the gamma-ray fluxes observed in gamma-ray bursts, regardless of whether the sources are Galactic or extragalactic.

Fatuzzo, Marco; Melia, Fulvio

1993-01-01

255

Can Naked Singularities Yield Gamma Ray Bursts?  

E-print Network

Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\\approx2\\times 10^{16} ergs, where M_p is the Planck mass.

H. M. Antia

1998-07-09

256

Gamma-Ray Fuel Gauges for Airplanes  

NASA Technical Reports Server (NTRS)

Accurate system overcomes problems of capacitance gauges. Feasibility study conducted on use of attenuation of gamma rays to measure quantities of fuel in tanks. Studies with weak Am241 59.5-keV radiation source indicate it is possible to monitor continuously fuel quantity in tanks to accuracy of better than 1 percent. Measurements also indicate easily measurable differences in physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. Am241-based densitometers currently in use aboard some aircraft . Estimated complete system, including microprocessor and associated display devices, assembled at cost of less than $10,000 per fuel tank.

Singh, Jag J.; Sprinkle, Danny R.; Mall, Gerald H.; Chegini, Hoshang

1987-01-01

257

Multiwavelength Studies of gamma-ray Binaries  

NASA Astrophysics Data System (ADS)

High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long period (> 100 d) system.

Aragona, Christina

258

Benchmark gamma-ray skyshine experiment  

SciTech Connect

A benchmark gamma-ray skyshine experiment is descibed in which /sup 60/Co sources were either collimated into an upward 150-deg conical beam or shielded vertically by two different thicknesses of concrete. A NaI(Tl) spectrometer and a high pressure ion chamber were used to measure, respectively, the energy spectrum and the 4..pi..-exposure rate of the air-reflected gamma photons up to 700 m from the source. Analyses of the data and comparison to DOT discrete ordinates calculations are presented.

Nason, R.R.; Shultis, J.K.; Faw, R.E.; Clifford, C.E.

1982-01-01

259

Gamma ray emission and solar flares  

NASA Technical Reports Server (NTRS)

Solar gamma ray line and continuum emission provide information about particle acceleration and its temporal behavior; the energy spectrum, composition and directivity of the accelerated particles; and the composition, density and temperatures of the ambient medium. These data, coupled with the comprehensive photon and particle observations available for the sun, give a detailed picture of the particle acceleration and flare energy release processes. Additional information on elemental and isotopic abundances, surface nuclear reactions and coronal heating mechanisms can be obtained. Implications of present observations and the potential return from future observational are discussed.

Lin, R. P.; Ramaty, R.

1978-01-01

260

Do gamma-ray burst sources repeat?  

NASA Technical Reports Server (NTRS)

The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic ad the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the bursts cannot be excluded.

Meegan, C. A.; Hartmann, D. H.; Brainerd, J. J.; Briggs, M.; Paciesas, W. S.; Pendleton, G.; Kouveliotou, C.; Fishman, G.; Blumenthal, G.; Brock, M.

1994-01-01

261

Gamma Ray Bursts: an Enigma Being Unraveled  

SciTech Connect

The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

De Rujula, Alvaro (Boston University and CERN) [Boston University and CERN

2003-05-14

262

Neutrino Event Rates from Gamma Ray Bursts  

E-print Network

We recalculate the diffuse flux of high energy neutrinos produced by Gamma Ray Bursts (GRB) in the relativistic fireball model. Although we confirm that the average single burst produces only ~10^{-2} high energy neutrino events in a detector with 1 km^2 effective area, i.e. about 10 events per year, we show that the observed rate is dominated by burst-to-burst fluctuations which are very large. We find event rates that are expected to be larger by one order of magnitude, likely more, which are dominated by a few very bright bursts. This greatly simplifies their detection.

F. Halzen; D. W. Hooper

1999-08-12

263

Beaming Effects in Gamma-Ray Bursts  

E-print Network

Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.

Y. F. Huang; T. Lu; Z. G. Dai; K. S. Cheng

2002-07-29

264

Gamma-Ray Bursts observed by INTEGRAL  

E-print Network

During the first six months of operations, six Gamma Ray Bursts (GRBs) have been detected in the field of view of the INTEGRAL instruments and localized by the INTEGRAL Burst Alert System (IBAS): a software for the automatic search of GRBs and the rapid distribution of their coordinates. I describe the current performances of IBAS and review the main results obtained so far. The coordinates of the latest burst localized by IBAS, GRB 031203, have been distributed within 20 s from the burst onset and with an uncertainty radius of only 2.7 arcmin.

S. Mereghetti

2003-12-12

265

Gamma Ray Bursts as Cosmological Probes  

E-print Network

We discuss the prospects of using Gamma Ray Bursts (GRBs) as high-redshift distance estimators, and consider their use in the study of two dark energy models, the Generalized Chaplygin Gas (GCG), a model for the unification of dark energy and dark matter, and the XCDM model, a model where a generic dark energy fluid like component is described by the equation of state, $p= \\omega \\rho$. Given that the GRBs range of redshifts is rather high, it turns out that they are not very sensitive to the dark energy component, being however, fairly good estimators of the amount of dark matter in the Universe.

O. Bertolami; P. T. Silva

2006-01-23

266

Comptonization of gamma rays by cold electrons  

NASA Technical Reports Server (NTRS)

An analytic method is developed for calculating the emergent spectrum of gamma-rays and X-rays scattered in a homogeneous medium with low-temperature electrons. The Klein-Nishina corrections of the scattering cross section and absorption processes are taken in account. The wavelength relaxation and the spatial diffusion problems are solved separately, and the emergent spectrum is calculated by convolving the evolution function of the spectrum in an infinite medium with the photon luminosity resulting from the spatial diffusion in a finite sphere. The analytic results are compared with that of Monte Carlo calculations and it is concluded that the analytic result is quite accurate.

Xu, Yueming; Ross, Randy R.; Mccray, Richard

1991-01-01

267

Gamma ray lines from interstellar grains  

NASA Technical Reports Server (NTRS)

The existence of very narrow (FWHM or approximately = 5 KeV) gamma ray line emission from interstellar grains is pointed out. The prime candidate for detection is the line at 6.129 Mev from O-16, but other very narrow lines could also be detected at 0.847, 1.369, 1.634, 1.779 and 2.313 Mev from Fe-56, Mg-24, Ne-20, Si-28 and N-14. Measurements of this line emission can provide information on the composition, size and spatial distribution of interstellar grains.

Lingenfelter, R. E.; Ramaty, R.

1976-01-01

268

Gamma-ray lines from interstellar grains  

NASA Technical Reports Server (NTRS)

The letter points out the existence of a hitherto unknown component of gamma-ray line emission: very narrow (FWHM less than 5 keV) lines from interstellar grains. The prime candidate for detection is the line at 6.129 MeV from O-16, but other very narrow lines could also be detected at 0.847, 1.369, 1.634, 1.779, and 2.313 MeV from Fe-56, Mg-24, Ne-20, Si-28, and N-14. Measurements of this line emission can provide information on the composition, size, and spatial distribution of interstellar grains.

Lingenfelter, R. E.; Ramaty, R.

1977-01-01

269

Highlights of GeV Gamma-Ray Astronomy  

NASA Technical Reports Server (NTRS)

Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

Thompson, David J.

2010-01-01

270

A model of the diffuse galactic gamma ray emission  

NASA Technical Reports Server (NTRS)

The galaxy was observed to be a source of high energy gamma rays as shown by the two successful satellite experiments, SAS-2 and COS-B. It is generally understood that these diffuse gamma rays result from interactions between energetic cosmic rays and interstellar gas. This work makes use of the most recent data on the distribution of atomic and molecular hydrogen in the galaxy along with new estimates of gamma ray production functions to model the diffuse galactic gamma ray emission. The model allows various spatial distributions for cosmic rays in the Galaxy including non-axisymmetric ones. In the light of the expected data from EGRET (Energetic Gamma-Ray Experiment Telescope), an improved model of cosmic ray-matter-gamma ray interaction will provide new insights into the distribution of cosmic rays and the strength of its coupling to matter.

Sreekumar, Parameswaran

1990-01-01

271

SAS-2 galactic gamma ray results. 2. Localized sources  

NASA Technical Reports Server (NTRS)

Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

1976-01-01

272

Gamma rays from dark matter annihilations strongly constrain the substructure in halos.  

PubMed

To fit recent data, e(+/-) from dark matter (DM) needs a boosted annihilation rate. This may imply an observable level of gamma rays from nearby galaxy clusters for the Fermi satellite. Using EGRET data, we limit the minimum mass of DM substructures to be about 5x10(3) times larger than for cold DM, meaning a cutoff similar to, e.g., warm DM. We numerically simulate clusters to reliably model the background. If we assume no anomalous boost factor, we find comparable levels of gamma-ray emission from DM and cosmic ray interactions, giving a chance with future data to characterize the DM. PMID:19905798

Pinzke, Anders; Pfrommer, Christoph; Bergström, Lars

2009-10-30

273

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

SciTech Connect

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Isabelle Grenier

2009-04-01

274

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

SciTech Connect

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Grenier, Isabelle (University Paris Diderot and CEA Saclay, France) [University Paris Diderot and CEA Saclay, France

2009-04-01

275

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

ScienceCinema

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Isabelle Grenier

2010-01-08

276

Computational techniques in gamma-ray Skyshine analysis  

Microsoft Academic Search

Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which

Darin L. George

1988-01-01

277

Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping  

NASA Technical Reports Server (NTRS)

Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

1993-01-01

278

Two Classes of Gamma-Ray--emitting Active Galactic Nuclei  

Microsoft Academic Search

We interpret recent gamma-ray observations of active galactic nuclei (AGNs) made with the Whipple Observatory, Granat and especially the Compton Gamma Ray Observatory. The gamma-ray data show that there are two distinct classes of AGNs defined by their redshift and luminosity distributions and high-energy spectral properties. Sources in the first class, which are generally associated with AGNs classified in other

Charles D. Dermer; Neil Gehrels

1995-01-01

279

Recommended standards for gamma-ray energy calibration  

Microsoft Academic Search

A consistent set of gamma-ray energies, generally with uncertainties of less than 10ppm, has been prepared for use in the energy calibration of gamma-ray spectra. The energy scale used for the previously recommended standards (1979) has been modified to take into account subsequent adjustments in the fundamental constants (-7.71ppm) and in the gamma-ray wavelengths deduced from a revised estimate of

R. G. Helmer; C. van der Leun

1999-01-01

280

Measurements of Gamma-Ray Bursts with GLAST  

Microsoft Academic Search

The next large NASA mission in the field of gamma-ray astronomy is the Gamma-Ray Large Area Space Telescope (GLAST), which is scheduled for a launch end of 2007. This satellite consists of the main instrument LAT (Large-Area Telescope) which is sensitive in the energy range between 10 MeV and >300 GeV, and a secondary instrument, the Gamma-Ray Burst Monitor (GBM),

Helmut Steinle; N. P. Bhat; M. S. Briggs; V. Connaughton; R. Diehl; G. J. Fishman; J. Greiner; R. M. Kippen; A. Von Kienlin; C. Kouveliotou; G. G. Lichti; C. A. Meegan; W. S. Paciesas; R. D. Preece; R. B. Wilson

2006-01-01

281

Gamma-Ray Bursts and Afterglows: The Fireball Shock Model  

Microsoft Academic Search

\\u000a Gamma-ray bursts (GRB) are detected about once a day, and while they are on, they outshine everything else in the gamma-ray\\u000a sky, including the Sun. A major advance occurred in 1992 with the launch of the Compton Gamma-Ray Observatory, whose superb\\u000a results were summarized in a review by Fishman & Meegan (1995; see also Fishman, these proceedings). The all-sky survey

P. Mészáros

2001-01-01

282

Recommended standards for gamma-ray energy calibration (1999)  

Microsoft Academic Search

A consistent set of gamma-ray energies, generally with uncertainties of less than 10ppm, is recommended for use in the energy calibration of gamma-ray spectra. The energy scale used for the previously recommended standards (1979) has been modified to take into account subsequent adjustments in the fundamental constants (-7.71ppm) and in the gamma-ray wavelengths deduced from a revised estimate of the

R. G. Helmer; C. van der Leun

2000-01-01

283

Neutron-Capture gamma Rays from Various Elements  

Microsoft Academic Search

Neutron-capture gamma-ray spectra have been measured in the energy range 0.3 to 3 Mev by means of a two-crystal Compton scintillation spectrometer. The efficiency of the instrument as a function of energy was determined experimentally. The uniqueness of the 2.23-Mev gamma ray following capture of a neutron by hydrogen has been confirmed, and this gamma ray was used as a

T. H. Braid

1956-01-01

284

Fermi GBM Observations of Terrestrial Gamma-Ray Flashes  

NASA Technical Reports Server (NTRS)

This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

2010-01-01

285

Gamma Ray Bursts, Neutron Star Quakes, and the Casimir Effect  

E-print Network

We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into $\\gamma$--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

C. Carlson; T. Goldman; J. Perez-Mercader

1994-11-25

286

Digital gamma-ray tracking algorithms in segmented germanium detectors  

Microsoft Academic Search

A gamma-ray tracking algorithm has been implemented and tested, using simulated data, for gamma rays with energies between 0.1 and 2 MeV, and its performance evaluated for a 90-mm-long, 60-mm-diameter, cylindrical, 36 (6 × 6) segment detector. The performance of the algorithm in two areas was determined: Compton suppression and Doppler shift correction. It was found that for gamma rays

C. J. Pearson; J. J. Valiente Dobón; P. H. Regan; P. J. Sellin; E. Morton; P. J. Nolan; A. Boston; M. Descovich; J. Thornhill; J. Cresswell; I. Lazarus; J. Simpson

2002-01-01

287

Nucleonic gamma-ray production in pulsar wind nebulae  

Microsoft Academic Search

\\u000a Observations of the inner radian of the Galactic disk at very high energy (VHE) gamma-rays have revealed at least 16 new sources.\\u000a Besides shell type super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source population in the catalogue\\u000a of VHE gamma-ray sources. Except for the Crab nebula, the newly discovered PWN are resolved at VHE gamma-rays to

D. Horns; F. Aharonian; A. I. D. Hoffmann; A. Santangelo

288

Nucleonic gamma-ray production in pulsar wind nebulae  

Microsoft Academic Search

Observations of the inner radian of the Galactic disk at very high energy (VHE) gamma-rays have revealed at least 16 new sources.\\u000a Besides shell type super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source population in the catalogue\\u000a of VHE gamma-ray sources. Except for the Crab nebula, the newly discovered PWN are resolved at VHE gamma-rays to

D. Horns; F. Aharonian; A. I. D. Hoffmann; A. Santangelo

2007-01-01

289

Sensitivity of Gamma-Ray Detectors to Polarization  

E-print Network

Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

I. -A. Yadigaroglu

1996-12-13

290

MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy  

NASA Technical Reports Server (NTRS)

Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.

2004-01-01

291

Fermi Large Area Telescope Bright Gamma-ray Source List  

SciTech Connect

Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors.; ,

2009-05-15

292

Gamma ray constraints on the galactic supernova rate  

NASA Technical Reports Server (NTRS)

Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

1992-01-01

293

Radio and gamma-ray emission from pulsars  

E-print Network

The radiation of pulsars have been observed for many years. A few pulsars are discovered to have both radio and gamma-ray emission. Many models on pulsar radiation have been developed, but so far we are still lacking an elaborate model which can explain the emission from radio to gamma-rays in detail. In this paper we present a joint model for radio and gamma-ray emission, in which both the dominate emission mechanisms are inverse Compton scattering. The pulse profiles at radio and gamma-ray bands are reproduced for the Crab-like, Vela-like and Geminga-like pulsars, in good agreement with observations.

G. J. Qiao; K. J. Lee; H. G. Wang; R. X. Xu

2003-03-11

294

Soft gamma rays from black holes versus neutron stars  

NASA Technical Reports Server (NTRS)

The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

Liang, Edison P.

1992-01-01

295

Gamma ray bursts triggered by turbulent reconnection  

NASA Astrophysics Data System (ADS)

Understanding of the nature of gamma-ray bursts (GRBs) is one of the challenging problem facing the astrophysics community. Magnetic reconnection plays a crucial roles in the physics of GRBs, particularly, for those highly magnetized ones. Similar process can happen, as those on solar surface. I shall present our model of GRBs based on turbulent reconnection process. Turbulence fluctuations accumulates through shell collisions and triggers a bursty reconnection event once the turbulence reaches the critical condition, resulting in a runway release of the stored magnetic field energy. Particles are accelerated either directly in the reconnection zone, or stochastically in the turbulent regions, which radiate synchrotron photons that power the observed gamma rays. Within this model, the observed GRB variability timescales could have two components, one slow component associated with the central engine time history, and another fast component associated with relativistic magnetic turbulence in the emission region. The model may be applied to the GRBs that have time-resolved, featureless Band-function spectra.

Yan, Huirong

2012-07-01

296

The transient gamma-ray spectrometer  

NASA Astrophysics Data System (ADS)

The authors describe the Transient Gamma-Ray Spectrometer (TGRS) to be flown onboard the WIND spacecraft. This instrument is designed to detect cosmic gamma-ray bursts over the energy range of 20 keV to 10 MeV with an expected spectroscopic resolution of 2 keV at 1 MeV (E/Delta-E = 500). The active detection element is a 215-cu cm high-purity n-type Ge crystal cooled to cryogenic temperatures by a passive radiative cooler. The geometric field of view (FOV) defined by the cooler is 170 deg FWFM. Burst data are stored directly in an onboard 2.75-Mb burst memory with an absolute timing accuracy of +/-1.5 ms. This capacity is sufficient to store the entire spectral data set of all but the largest bursts. In addition to burst measurements, the instrument will also study solar flares, search for possible diffuse background lines, and monitor the 511-keV positron annihilation radiation from the galactic center. The experiment is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on December 31, 1992.

Owens, A.; Baker, R.; Cline, T. L.; Gehrels, N.; Jermakian, J.; Nolan, T.; Ramaty, R.; Smith, G.; Stilwell, D. E.; Teegarden, B. J.

1991-04-01

297

Gamma Ray Fresnel lenses - why not?  

E-print Network

Fresnel lenses offer the possibility of concentrating the flux of X-rays or gamma-rays flux falling on a geometric area of many square metres onto a focal point which need only be a millimetre or so in diameter (and which may even be very much smaller). They can do so with an efficiency that can approach 100%, and yet they are easily fabricated and have no special alignment requirements. Fresnel lenses can offer diffraction-limited angular resolution, even in a domain where that limit corresponds to less than a micro second of arc. Given all these highly desirable attributes, it is natural to ask why Fresnel gamma ray lenses are not already being used, or at least why there is not yet any mission that plans to use the technology. Possible reasons (apart from the obvious one that nobody thought of doing so) include the narrow bandwidth of simple Fresnel lenses, their very long focal length, and the problems of target finding. It is argued that none of these is a "show stopper" and that this technique should be seriously considered for nuclear astrophysics.

G. K. Skinner

2006-02-03

298

Iron K Lines from Gamma Ray Bursts  

NASA Technical Reports Server (NTRS)

We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

Kallman, T. R.; Meszaros, P.; Rees, M. J.

2003-01-01

299

Spectral modeling of gamma-ray blazars  

E-print Network

We present model calculations reproducing broadband spectra of $\\gamma$-ray blazars by a relativistic leptonic jet, combining the EIC and the SSC model. To this end, the evolution of the particle distribution functions inside a relativistic pair jet and of the resulting photon spectra is investigated. Inverse-Compton scattering of both external (EIC) as well as synchrotron photons (SSC) is treated using the full Klein-Nishina cross-section and the full angle-dependence of the external photon source. We present model fits to the broadband spectra of Mrk~421 and 3C279 and the X-ray and $\\gamma$-ray spectrum of PKS~1622-297. We find that the most plausible way to explain both the quiescent and the flaring states of these objects consists of a model where EIC and SSC dominate the observed spectrum in different frequency bands. For both Mrk~421 and 3C279 the flaring states can be reproduced by a harder spectrum of the injected pairs.

M. Boettcher; H. Mause; R. Schlickeiser

1997-06-23

300

Gamma-Ray Bursts and Cosmology  

NASA Technical Reports Server (NTRS)

The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

Norris, Jay P.

2003-01-01

301

IS CALVERA A GAMMA-RAY PULSAR?  

SciTech Connect

Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

Halpern, J. P., E-mail: jules@astro.columbia.edu [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States)

2011-07-20

302

Peak energy and efficiency of Gamma Ray Bursts  

NASA Astrophysics Data System (ADS)

We present an analysis of the Internal Shock Model of GRBs, where gamma-rays are produced by internal shocks within a relativistic wind. We show that observed GRB characteristics impose stringent constraints on wind and source parameters. We find that, contrary to common claims and in agreement with observations, a significant fraction, of order 20 the wind kinetic energy can be converted to radiation, provided the distribution of Lorentz factors within the wind has a large variance and provided the minimum Lorentz factor is >100. For a high efficiency wind, a radiation spectral energy break in the 0.1--1 MeV range is obtained due to pair-production optical depth for source sizes R/c<1 ms, suggesting a possible explanation for the observed clustering of spectral break energies in the 0.1--1 MeV range.

Guetta, D.; Spada, M.; Waxman, E.

2000-12-01

303

PULSAR OUTER-GAP ELECTRODYNAMICS: HARDENING OF SPECTRAL SHAPE IN THE TRAILING PEAK IN THE GAMMA-RAY LIGHT CURVE  

SciTech Connect

The spectral characteristics of the pulsed gamma-ray emission from outer-magnetospheric particle accelerators are investigated. Either positrons or electrons are accelerated outward by the magnetic-field-aligned electric field to emit gamma rays via the curvature process. Since the particles move along relatively straight paths in the trailing side of a rotating magnetosphere, they attain higher Lorentz factors to emit more energetic gamma rays than those in the leading side. It is first demonstrated that the cutoff energy of the curvature radiation evolves with the rotation phase owing to the variation of the curvature radii of the particle paths and maximizes at a slightly later phase of the trailing peak in the gamma-ray light curve.

Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw [TIARA, Department of Physics, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (China)

2011-06-01

304

Guest Investigator Studies with the Compton Gamma Ray Observatory  

NASA Technical Reports Server (NTRS)

The cumulative all-sky survey by the Compton Gamma Ray Observatory (CGRO), composed of data acquired during the first three years of the mission, included a number of regions of very limited exposure. The most glaring deficiency in coverage was toward the region of the South Galactic Pole (SGP), which received significantly less exposure than other directions- by a factor of at least 2 to 3. Furthermore, nearly all of the SGP exposure was accumulated during the first year of the mission. Since blazars are known to be time-variable, and of unknown duty cycle, a pointing of the CCRO in that direction was considered highly desirable, and long overdue. In addition, data gathered from a pointing toward the SGP and its comparison with comprehensive data available for the North Galactic Pole would be extremely valuable to investigators studying the extragalactic diffuse emission. The reasons outlined above prompted our initiation of a Cycle 4 campaign to systematically search with EGRET and COMPTEL for gamma-ray emission from sources near the South Galactic Pole. The Cycle 4 SGP campaign consisted of tnvo 14-day observations separated in in time by approximately 10 months. The temporal separation of the observations was requested to allow a test for possible variations in the detected sources. Our primary targets were 38 FSRQs which lie within 30 degrees of the SGP, and which satisfy the basic criteria for candidate gamma-ray AGNs,flat-spectrum radio sources, many of which exhibit blazar-type properties). These targets were selected from the standard references, and from the available on-line databases (e.g., the NASA Extragalactic Database, NED), as the most promising AGN targets in the vicinity of the SGP. A 30 radius from the SGP was chosen as the boundary of our survey, since the selected targets would then fall within the most sensitive portion of the fields of view of EGRET and COMPTEL (i.e., within a 30 zenith angle), for a CGRO pointing directed exactly at the SGP. Our South Galactic Pole Survey yielded a number of exciting results. The EGRET data were analyzed using the maximum likelihood techniques to estimate the intensity, spectrum, and position of gamma-ray sources in the field of view. Our analysis revealed four sources at energies greater than 100 MeV with likelihood ratios corresponding to greater than 30 detections (Vestrand et al. 1996). One of the sources is associated with the well known gamma-ray blazar PKS 0208-512, but the other three were previously unknown. Among the new detections was PKS 2155-304 which is often considered a prototype of the x-ray selected BL Lacs. PKS 2155-304, which was also detected at hard x-ray energies by CGRO/OSSE, is one of the brightest BL Lac objects in the sky at optical through x-ray energies and has a history of rapid, strong multiwavelength variability. As such, it has been the subject of intensive, contemporaneous, multiwavelength monitoring covering radio frequencies to x-ray energies.

Vestrand, W. T.

1998-01-01

305

Ultraviolet observations of the gamma-ray blazar 3C 279 following the gamma-ray flare of June 1991  

Microsoft Academic Search

Ultraviolet observations of the gamma-ray blazar 3C 279 were carried out in July 1991 with the International Ultraviolet Explorer (IUE) satellite, 28 d after the outburst of intense gamma-ray emission detected from this source with the high-energy EGRET instrument aboard the Compton Gamma Ray Observatory (CGRO). IUE observations were conducted over the wavelength range 1200 - 3200 Å (5 -

J. T. Bonnell; W. T. Vestrand; J. G. Stacy

1994-01-01

306

Ultraviolet observations of the Gamma-Ray Blazar 3C 279 following the gamma-ray flare of June 1991  

Microsoft Academic Search

Ultraviolet observations of the gamma-ray blazar 3C 279 were carried out in July 1991 with the International Ultraviolet Explorer (IUE) satellite, 28 days after the outburst of intense gamma-ray emission detected from this source with the high-energy EGRET instrument aboard the Compton Gamma Ray Observatory (CGRO). IUE observations were conducted over the wavelength range 1200–3200 A? (5–10 eV), and are

Jerry T. Bonnell; W. Thomas Vestrand; J. Gregory Stacy

1994-01-01

307

Gamma Ray Bursts from Interaction of Relativistic Flows with Radiation Fields  

E-print Network

Relativistic flows resulting from sudden explosive events upscatter ambient interstellar photons of local radiation fields. For Lorentz factor $ > 100$ and dense optical - UV radiation fields the emergent signal is a typical gamma ray burst. Presumably the explosions occur in dense globular clusters or in galactic nuclei, at cosmological distances.

Amotz Shemi

1994-04-20

308

Systematic Effects in Extracting a "Gamma-Ray Haze" from Spatial Templates  

E-print Network

Recent claims of a gamma-ray excess in the diffuse galactic emission detected by the Fermi Large Area Telescope with a morphology similar to the WMAP haze were based on the assumption that spatial templates of the interstellar medium (ISM) column density and the 408 Mhz sky are good proxies for neutral pion and inverse Compton (IC) gamma-ray emission, respectively. We identify significant systematic effects in this procedure that can artificially induce an additional diffuse component with a morphology strikingly similar to the claimed gamma-ray haze. To quantitatively illustrate this point we calculate sky-maps of the ratio of the gamma-ray emission from neutral pions to the ISM column density, and of IC to synchrotron emission, using detailed galactic cosmic-ray models and simulations. In the region above and below the galactic center, the ISM template underestimates the gamma-ray emission due to neutral pion decay by approximately 20%. Additionally, the synchrotron template tends to under-estimate the IC emission at low energies (few GeV) and to over-estimate it at higher energies (tens of GeV) by potentially large factors that depend crucially on the assumed magnetic field structure of the Galaxy. The size of the systematic effects we find are comparable to the size of the claimed "Fermi haze" signal. We thus conclude that a detailed model for the galactic diffuse emission is necessary in order to conclusively assess the presence of a gamma-ray excess possibly associated to the WMAP haze morphology.

Tim Linden; Stefano Profumo

2010-02-26

309

The High-energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134  

NASA Technical Reports Server (NTRS)

We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approx. = 1.7-1.8 and column density N(sub H) approx. = 5 x 10(exp 21)/ sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approx. 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with Energetic Gamma Ray Experiment Telescope (EGRET). The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approx. = 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approx. 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.; VonMintigny, C.

1997-01-01

310

MilagroA TeV Observatory for Gamma Ray Bursts  

E-print Network

Milagro­A TeV Observatory for Gamma Ray Bursts B.L. Dingus and the Milagro Collaboration Los- servatory sensitive to gamma-rays above 100 GeV. This unique detector is ideal for observing the highest energy gamma-rays from gamma-ray bursts. The highest energy gamma rays supply very strong constraints

California at Santa Cruz, University of

311

Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data  

E-print Network

Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data D. A. Williams to search for high energy emission from a sample of 98 gamma-ray bursts (GRB) detected from January 2000: gamma-ray sources; gamma-ray bursts; astronomical observations: gamma-ray PACS: 98.70.Rz,95.85.Pw Air

California at Santa Cruz, University of

312

The remarkable gamma-ray activity in the gravitationally lensed blazar PKS 1830-211  

E-print Network

We report the extraordinary gamma-ray activity (E>100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z=2.507) detected by AGILE between October and November 2010. The source experienced on October 14 a flux increase of a factor of ~ 12 with respect to its average value and kept brightest at this flux level (~ 500 x 10^{-8} ph cm^-2 sec^-1) for about 4 days. The 1-month gamma-ray light curve across the flare showed a mean flux F(E>100 MeV)= 200 x 10^{-8} ph cm^-2 sec^-1, which resulted in an enhancement by a factor of 4 with respect to the average value. Following the gamma-ray flare, the source was observed in NIR-Optical energy bands at the Cerro Tololo Inter-American Observatory and in X-rays by Swift/XRT and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in gamma-rays has not a significant counterpart at lower frequencies: no variation greater than a factor of ~ 1.5 resulted in NIR and X-ray energy bands. PKS 1830-211 is then a good "gamm...

Donnarumma, I; Vittorini, V; Miller, H R; Popovic, L C; Simic, S; Tavani, M; Eggen, J; Maune, J; Kuulkers, E; Striani, E; Vercellone, S; Pucella, G; Verrecchia, F; Pittori, C; Giommi, P; Pacciani, L; Barbiellini, G; Bulgarelli, A; Cattaneo, P W; Chen, A W; Costa, E; Del Monte, E; Evangelista, Y; Feroci, M; Fuschino, F; Gianotti, F; Giuliani, A; Giusti, M; Lazzarotto, F; Longo, F; Lucarelli, F; Pellizzoni, A; Piano, G; Soffitta, P; Trifoglio, M; Trois, A

2011-01-01

313

GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR  

NASA Technical Reports Server (NTRS)

The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and ASSEMBLER and has been implemented on a VAX 11/780 under VMS 4.5. It has a virtual memory requirement of 255k. GROSS was developed in 1986.

Garrick, J.

1994-01-01

314

Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources  

NASA Astrophysics Data System (ADS)

Context. Spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims: In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods: We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from the Fermi gamma-ray Space Telescope, making weekly averages. Results: Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index ?ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. The gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (?peak) of the synchrotron emission. A table of the photometry is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A2

Nesci, R.; Tosti, G.; Pursimo, T.; Ojha, R.; Kadler, M.

2013-07-01

315

Influence of gamma-ray skyshine on nuclear facilities design  

SciTech Connect

In safety analysis of nuclear facilities, skyshine dose rate at site boundary is one of the most important shielding design problems. For nuclear power stations in Japan, the skyshine dose rate at the site boundary has been specified not to exceed 5 mR/yr by the authorities, including total dose contribution from all structures on site, and this guide is commonly applied to other nuclear fuel cycle facilities. Therefore the design criterion dose of each structure on site is, considering plot planning, shielding condition, and so on, defined as a value <5 mR/yr. The purpose of this study is to investigate how skyshine dose standards or other factors have an influence on the design of nuclear facilities, in a parametric survey of gamma-ray skyshine.

Ohta, M.; Tsuji, M.; Kimura, Y.

1986-01-01

316

Gravitational wave memory of gamma-ray burst jets  

SciTech Connect

Gamma-ray bursts (GRBs) are now considered as relativistic jets. We analyze the gravitational waves from the acceleration stage of the GRB jets. We show that (i) the point mass approximation is not appropriate if the opening half-angle of the jet is larger than the inverse of the Lorentz factor of the jet; (ii) the gravitational waveform has many step function like jumps, and (iii) the practical DECIGO and BBO may detect such an event if the GRBs occur in the Local Group. We found that the light curve of GRBs and the gravitational waveform are anticorrelated so that the detection of the gravitational wave is indispensable to determine the structure of GRB jets.

Sago, Norichika; Yamazaki, Ryo [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043 (Japan); Ioka, Kunihito [Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Nakamura, Takashi [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

2004-11-15

317

Low intensity X-ray and gamma-ray spectrometer  

NASA Technical Reports Server (NTRS)

A low intensity X-ray and gamma ray spectrometer for imaging, counting, and energy resolving of single invisible radiation particles is described. The spectrometer includes a converting device for converting single invisible radiation particles to visible light photons. Another converting device converts the visible light photons to photoelectrons. A fiber optics coupling device couples together the two converting devices. An intensifying device intensifies the photoelectrons by an average gain factor of between 10 to the 4th power and 10 to the 7th power. The tensifying device is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device displays the intensified photoelectrons. The displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles.

Yin, L. I. (inventor)

1982-01-01

318

The Astrophysics of the Most Energetic Gamma-Ray Bursts  

NASA Astrophysics Data System (ADS)

The Large Area Telescope (LAT) of Fermi has found a sample of highly relativistic gamma-ray bursts (GRBs), which may be among the most energetic bursts ever discovered. Here we propose to use Chandra and HST to follow the late time X-ray and optical light curves of a LAT detected burst that also has excellent early multiwavelength coverage. Our observations, in conjunction with the Fermi data, will allow us to measure the energy and the bulk Lorentz factor of the explosion. Recent work on some of the most powerful GRBs begins to substantially constrain physical models of the progenitors. The energetics of the highly relativistic LAT bursts may greatly strengthen these constraints and provide new insight into the currently unknown mechanism that determines the energy of a GRB.

Fruchter, Andrew

2014-09-01

319

Particle Acceleration in Gamma-Ray Burst Jets  

E-print Network

Gradual shear acceleration of energetic particles in gamma-ray burst (GRB) jets is considered. Special emphasis is given to the analysis of universal structured jets, and characteristic acceleration timescales are determined for a power-law and a Gaussian evolution of the bulk flow Lorentz factor $\\gamma_b$ with angle $\\phi$ from the jet axis. The results suggest that local power-law particle distributions may be generated and that higher energy particles are generally concentrated closer to the jet axis. Taking several constraints into account we show that efficient electron acceleration in gradual shear flows, with maximum particle energy successively decreasing with time, may be possible on scales larger than $r \\sim 10^{15}$ cm, provided the jet magnetic field becomes sufficiently weak and/or decreases rapidly enough with distance, while efficient acceleration of protons to ultra-high energies $> 10^{20}$ eV may be possible under a wide range of conditions.

Frank M. Rieger; Peter Duffy

2005-09-16

320

Rarefaction acceleration in magnetized gamma-ray burst jets  

E-print Network

Relativistic jets associated with long/soft gamma-ray bursts are formed and initially propagate in the interior of the progenitor star. Because of the subsequent loss of their external pressure support after they cross the stellar surface, these flows can be modeled as moving around a corner. A strong steady-state rarefaction wave is formed, and the sideways expansion is accompanied by a rarefaction acceleration. We investigate the efficiency and the general characteristics of this mechanism by integrating the steady-state, special relativistic, magnetohydrodynamic equations, using a special set of partial exact solutions in planar geometry (r self-similar with respect to the "corner"). We also derive analytical approximate scalings in the ultrarelativistic cold/magnetized, and hydrodynamic limits. The mechanism is more effective in magnetized than in purely hydrodynamic flows. It substantially increases the Lorentz factor without much affecting the opening of the jet; the resulting values of their product ca...

Sapountzis, Konstantinos

2014-01-01

321

Perspectives on Gamma-Ray Pulsar Emission  

SciTech Connect

Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

Baring, Matthew G. [Department of Physics and Astronomy, MS-108, Rice University, P. O. Box 1892, Houston, TX 77251-1892 (United States)

2011-09-21

322

Gamma Ray Burst Discoveries with SWIFT  

NASA Technical Reports Server (NTRS)

Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. There has been tremendous recent progress in our understanding of bursts with the new data from the SWIFT mission. SWIFT was launched in November 2004 and is an international multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Findings from the mission will be presented with emphasis on the relativistic outflows from GRBs. A huge step forward has been made in our understanding of the mysterious short GRBs. High redshift bursts have been detected from enormous explosions early in the universe. GRBs have been found with giant X-ray flares occurring in their afterglow, challenging predictions of the fireball model. These, and other topics, will be discussed.

Gehrels, Neil

2007-01-01

323

A Compton scatter attenuation gamma ray spectrometer  

NASA Technical Reports Server (NTRS)

A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

Austin, W. E.

1972-01-01

324

Gamma Ray Bursts:. Some Facts and Ideas  

NASA Astrophysics Data System (ADS)

Gamma Ray Bursts (GRBs) are the most explosive events after the big bang: their energy output corresponds to a sizeable fraction of a solar mass entirely converted into energy in a few seconds. Although many questions about their progenitors remain to be answered, it is likely that they are generated by a newly formed and fast spinning black hole. The colossal power characterizing GRBs is carried by a surprisingly small amount of matter, which is accelerated to speeds differing from c by one part in ten thousands. GRBs are then the most (special and general) relativistic objects we know of. Since GRBs are the brightest sources at high redshift, albeit for a limited amount of time, they are also the best torchlights we have to shine the far universe.

Ghisellini, Gabriele

2003-01-01

325

Do gamma-ray burst sources repeat?  

NASA Technical Reports Server (NTRS)

The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

1995-01-01

326

Host Galaxies of Gamma-Ray Bursts  

NASA Astrophysics Data System (ADS)

Host galaxies are an excellent means of probing the natal environments that generate gamma-ray bursts (GRBs). Recent work on the host galaxies of short-duration GRBs has offered new insights into the parent stellar populations and ages of their enigmatic progenitors. Similarly, surveys of long-duration GRB (LGRB) host environments and their ISM properties have produced intriguing new results with important implications for long GRB progenitor models. These host studies are also critical in evaluating the utility of LGRBs as potential tracers of star formation and metallicity at high redshifts. I will summarize the latest research on LGRB host galaxies, and discuss the resulting impact on our understanding of these events' progenitors, energetics, and cosmological applications.

Levesque, Emily M.

2012-09-01

327

The Swift Gamma Ray Burst Mission  

NASA Technical Reports Server (NTRS)

The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include: 1) a large-area gamma-ray detector us- ing the new CdZnTe detectors; 2) an autonomous rapid slewing spacecraft; 3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments; 4) an observing program coordinated with other ground-based and space-based observatories; and 5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 years of operations and the spacecraft will have a lifetime to orbital decay of approx. 8 years.

Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

2004-01-01

328

Gamma ray constraints on decaying dark matter  

NASA Astrophysics Data System (ADS)

We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range of dark matter masses and a variety of decay modes, excluding half-lives up to ˜1026 to few 1027seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e± spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices are adopted. We also discuss future prospects for CTA bounds from Fornax which, contrary to the present H.E.S.S. constraints of (ii), may allow for an interesting improvement and may become better than those from the current or future extragalactic Fermi data.

Cirelli, Marco; Moulin, Emmanuel; Panci, Paolo; Serpico, Pasquale D.; Viana, Aion

2012-10-01

329

The High Altitude Gamma Ray Observatory, HAWC  

NASA Astrophysics Data System (ADS)

The Volcano Sierra Negra in Puebla, Mexico was selected to host HAWC (High Altitude Water Cherenkov), a unique obervatory of wide field of view (2? sr) capable of observing the sky continously at energies from 0.5 TeV to 100 TeV. HAWC is an array of 300 large water tanks (7.3 m diameter × 5 m depth) at an altitude of 4100 m. a. s. l. Each tank is instrumented with three upward-looking photomultipliers tubes. The full array will be capable of observing the most energetic gamma rays from the most violent events in the universe. HAWC will be 15 times more sensitive than its predecesor, Milagro. We present HAWC, the scientific case and capabilities.

González, M. M.

2011-10-01

330

Pulsar gamma rays from polar cap regions  

NASA Technical Reports Server (NTRS)

The production is studied of pulsar gamma rays by energetic electrons flowing in the open field region above pulsar polar caps. The propagation was followed of curvature radiation from primary electrons, as well as hard synchrotron radiation generated by secondary pairs, through the pulsar magnetosphere for vacuum dipole open field geometries. Using data from radio and optical observations, models were constructed for the specific geometries and viewing angles appropriate to particular pulsars. These detailed models produce normalized spectra above 10 MeV, pulse profiles, beaming fractions and phase resolved spectra appropriate for direct comparison with COS-B and GRO data. Models are given for the Crab, Vela, and other potentially detectable pulsars; general agreement with existing data is good, although perturbations to the simplified models are needed for close matches. The calculations were extended to the millisecond pulsar range, which allows the production of predictions for the flux and spectra of populations of recycled pulsars and search strategies are pointed out.

Chiang, James; Romani, Roger W.

1992-01-01

331

Constraining Lorentz violations with Gamma Ray Bursts  

E-print Network

Gamma ray bursts are excellent candidates to constrain physical models which break Lorentz symmetry. We consider deformed dispersion relations which break the boost invariance and lead to an energy-dependent speed of light. In these models, simultaneously emitted photons from cosmological sources reach Earth with a spectral time delay that depends on the symmetry breaking scale. We estimate the possible bounds which can be obtained by comparing the spectral time delays with the time resolution of available telescopes. We discuss the best strategy to reach the strongest bounds. We compute the probability of detecting bursts that improve the current bounds. The results are encouraging. Depending on the model, it is possible to build a detector that within several years will improve the present limits of 0.015 m_pl.

Maria Rodriguez Martinez; Tsvi Piran

2006-01-10

332

Super Luminous Supernova and Gamma Ray Bursts  

E-print Network

We use a simple analytical model to derive a closed form expression for the bolometric light-curve of super-luminus supernovae (SLSNe) powered by a plastic collision between the fast ejecta from core collapse supernovae (SNe) of types Ib/c and IIn and slower massive circum-stellar shells, ejected during the late stage of the life of their progenitor stars preceding the SN explosion. We demonstrate that this expression reproduces well the bolometric luminosity of SLSNe with and without an observed gamma ray burst (GRB), and requires only a modest amount ($M < 0.1\\,M_\\odot$) of radioactive $^{56}$Ni synthesized in the SN explosion in order to explain their late-time luminosity. Long duration GRBs can be produced by ordinary SNe of type Ic rather than by 'hypernovae' - a subclass of superenergetic SNeIb/c.

Shlomo Dado; Arnon Dar

2012-07-16

333

The GLAST Gamma-Ray Observatory  

SciTech Connect

GLAST is a space mission that will observe the gamma-ray sky between 20MeV and 1TeV with unprecedented resolution and sensitivity. The Large Area Telescope (LAT), the main instrument onboard the GLAST satellite, is built with state-of-the-art particle physics detectors, and combines a large area is-strip tracker-converter, that will measure direction of incoming photons to an imaging CsI e.m. calorimeter for measurements of photon energies; an outer, segmented Anti-Coincidence Detector will reject charged particle background. In this paper they give an overview of the many physics goals and potential reach of the GLAST observatory and describe in detail the instrument design and performance.

Latronico, L.

2004-10-27

334

Gamma-ray bursts and cosmology.  

PubMed

I review the current status of the use of gamma-ray bursts (GRBs) as probes of the early Universe and cosmology. I describe the promise of long GRBs as probes of the high redshift (z>4) and very high redshift (z>5) Universe, and several key scientific results that have come from observations made possible by accurate, rapid localizations of these bursts by Swift. I then estimate the fraction of long GRBs that lie at very high redshifts and discuss ways in which it may be possible to rapidly identify-and therefore study-a larger number of these bursts. Finally, I discuss the ways in which both long and short GRBs can be made 'standard candles' and used to constrain the properties of dark energy. PMID:17301023

Lamb, D Q

2007-05-15

335

Gamma-ray bursts - The current status  

NASA Astrophysics Data System (ADS)

The field of gamma ray burst astronomy is reviewed with emphasis on the results obtained since 1978 by numerous spacecraft experiments. Burst energy spectra are now known to display complex and rapidly varying shapes; however, the detection of line emission poses both experimental and theoretical problems. The log N-log S curves, when properly corrected for instrumental effects, are substantially in agreement at high intensities, although the shape of the curves is inconsistent with the observed spatial distribution of the bursts. Precise localizations using the method of arrival time analysis between widely separated spacecraft have given small error boxes which have in many cases been searched down to magnitude 23.5 and beyond. The results of these searches, as well as those of archival and real-time optical searches, are reviewed.

Hurley, K.

336

SAS-2 galactic gamma ray results, 1  

NASA Technical Reports Server (NTRS)

Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

1976-01-01

337

Very High Energy Gamma Ray Extension of GRO Observations  

NASA Technical Reports Server (NTRS)

The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

Weekes, Trevor C.

1994-01-01

338

Discoveries by the Fermi Gamma Ray Space Telescope  

NASA Technical Reports Server (NTRS)

Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

Gehrels, Neil

2011-01-01

339

Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin  

Microsoft Academic Search

Detectors aboard the Compton Gamma Ray Observatory have observed an unexplained terrestrial phenomenon: brief, intense flashes of gamma rays. These flashes must originate in the atmosphere at altitudes above at least 30 kilometers in order to escape atmospheric absorption and reach the orbiting detectors. At least a dozen such events have been detected over the past 2 years. The photon

G. J. Fishman; P. N. Bhat; R. Mallozzi; J. M. Horack; T. Koshut; C. Kouveliotou; G. N. Pendleton; C. A. Meegan; R. B. Wilson; W. S. Paciesas; S. J. Goodman; H. J. Christian

1994-01-01

340

GRAYSKY-A new gamma-ray skyshine code  

Microsoft Academic Search

This paper describes a new prototype gamma-ray skyshine code GRAYSKY (Gamma-RAY SKYshine) that has been developed at BNFL, as part of an industrially based master of science course, to overcome the problems encountered with SKYSHINEII and RANKERN. GRAYSKY is a point kernel code based on the use of a skyshine response function. The scattering within source or shield materials is

D. J. Witts; T. Twardowski; M. H. Watmough

1993-01-01

341

QUALITY CONTROL FOR ENVIRONMENTAL MEASUREMENTS USING GAMMA-RAY SPECTROMETRY  

EPA Science Inventory

This report describes the quality control procedures, calibration, collection, analysis, and interpretation of data in measuring the activity of gamma ray-emitting radionuclides in environmental samples. Included in the appendices are basic data for selected gamma ray-emitting ra...

342

The Gamma-Ray Luminosity Function of Radio Pulsars  

NASA Technical Reports Server (NTRS)

This final report is a study of gamma-ray luminosity function of radio pulsars. The goal is to constrain certain parameters in order to address such diverse issues as the high energy emission mechanism in pulsars and the fraction of the Galaxy's gamma ray emission attributable to these objects.

Helfand, David J.

1998-01-01

343

Gamma-ray astronomy: Promise for the future  

Microsoft Academic Search

We are in a very active period in gamma-ray astronomy due primarily to new discoveries from the Compton Gamma Ray Observatory (CGRO). While the near future looks bright with the ESA INTEGRAL mission scheduled for launch in ~2001, there are currently no major missions being planned beyond INTEGRAL and none being planned at all by NASA. This paper reviews current

Neil Gehrels; Daryl Macomb

1997-01-01

344

Coordinated UV Observations of Gamma-Ray Selected Blazars  

Microsoft Academic Search

We propose to use the unique capabilities of the IUE satellite to make UV observations as part of a large international multiwavelength campaign to monitor gamma-ray selected blazars. This program is being coordinated by Hartman with the Compton Gamma Ray Observatory (CGRO) phase 4 time line to obtain simultaneous observations of blazars over the entire electromagnetic spectrum. Multiwavelength observations are

Robert C. Hartman

1994-01-01

345

Science with the new generation high energy gamma- ray experiments  

Microsoft Academic Search

This Conference is the fifth of a series of Workshops on High Energy Gamma- ray Experiments, following the Conferences held in Perugia 2003, Bari 2004, Cividale del Friuli 2005, Elba Island 2006. This year the focus was on the use of gamma-ray to study the Dark Matter component of the Universe, the origin and propagation of Cosmic Rays, Extra Large

M. Alvarez; D. D'Armiento; G. Agnetta; A. Alberdi; A. Antonelli; A. Argan; P. Assis; E. A. Baltz; C. Bambi; G. Barbiellini; H. Bartko; M. Basset; D. Bastieri; P. Belli; G. Benford; L. Bergstrom; R. Bernabei; G. Bertone; A. Biland; B. Biondo; F. Bocchino; E. Branchini; M. Brigida; T. Bringmann; P. Brogueira; A. Bulgarelli; J. A. Caballero; G. A. Caliandro; P. Camarri; F. Cappella; P. Caraveo; R. Carbone; M. Carvajal; S. Casanova; A. J. Castro-Tirado; O. Catalano; R. Catena; F. Celi; A. Celotti; R. Cerulli; A. Chen; R. Clay; V. Cocco; J. Conrad; E. Costa; A. Cuoco; G. Cusumano; C. J. Dai; B. Dawson; B. De Lotto; G. De Paris; A. de Ugarte Postigo; E. Del Monte; C. Delgado; A. Di Ciaccio; G. Di Cocco; S. Di Falco; G. Di Persio; B. L. Dingus; A. Dominguez; F. Donato; I. Donnarumma; M. Doro; J. Edsjo; J. M. Espino Navas; M. C. Espirito Santo; Y. Evangelista; C. Evoli; D. Fargion; C. Favuzzi; M. Feroci; M. Fiorini; L. Foggetta; N. Fornengo; T. Froysland; M. Frutti; F. Fuschino; J. L. Gomez; M. Gomez; D. Gaggero; N. Galante; M. I. Gallardo; M. Galli; J. E. Garcia; M. Garczarczyk; F. Gargano; M. Gaug; F. Gianotti; S. Giarrusso; B. Giebels; N. Giglietto; P. Giommi; F. Giordano; A. Giuliani; J. Glicenstein; P. Goncalves; D. Grasso; M. Guerriero; H. L. He; A. Incicchitti; J. Kirk; H. H. Kuang; A. La Barbera; G. La Rosa; C. Labanti; G. Lamanna; I. Lapshov; F. Lazzarotto; S. Liberati; F. Liello; P. Lipari; F. Longo; F. Loparco; M. Lozano; P. G. Lucentini De Sanctis; J. M. Ma; M. C. Maccarone; L. Maccione; V. Malvezzi; A. Mangano; M. Mariotti; M. Marisaldi; I. Martel; A. Masiero; E. Massaro; M. Mastropietro; E. Mattaini; F. Mauri; M. N. Mazziotta; S. Mereghetti; T. Mineo; S. Mizobuchi; A. Moiseev; M. Moles; C. Monte; F. Montecchia; E. Morelli; A. Morselli; I. Moskalenko; F. Nozzoli; J. F. Ormes; M. A. Peres-Torres; L. Pacciani; A. Pellizzoni; F. Perez-Bernal; F. Perotti; P. Picozza; L. Pieri; M. Pietroni; M. Pimenta; A. Pina; C. Pittori; C. Pontoni; G. Porrovecchio; F. Prada; M. Prest; D. Prosperi; R. Protheroe; G. Pucella; J. M. Quesada; J. M. Quintana; J. R. Quintero; S. Raino; M. Rapisarda; M. Rissi; J. Rodriguez; E. Rossi; G. Rowell; A. Rubini; F. Russo; M. Sanchez-Conde; B. Sacco; V. Scapin; M. Schelke; A. Segreto; A. Sellerholm; X. D. Sheng; A. Smith; P. Soffitta; R. Sparvoli; P. Spinelli; V. Stamatescu; L. S. Stark; M. Tavani; G. Thornton; L. G. Titarchuk; B. Tome; A. Traci; M. Trifoglio; A. Trois; P. Vallania; E. Vallazza; S. Vercellone; S. Vernetto; V. Vitale; N. Wild; Z. P. Ye; A. Zambra; F. Zandanel; D. Zanello

2007-01-01

346

Images of Simultaneous Gamma-Ray Burst Optical Counterpart  

NSDL National Science Digital Library

Astronomers have observed a visible light emitted at the same time as a gamma-ray burst for the first time on January 27, 1999. Six images of this gamma-ray burst are provided at the University of Michigan site.

1999-01-01

347

Diagram of the Apollo 15 & 16 Gamma-ray Detector  

NSDL National Science Digital Library

This is a diagram of the Apollo 15 & 16 Gamma-ray Detector from the NASA website. Primarily intended to study the Moon's radioactivity, it made measurements of the cosmic gamma-ray background during its trip. It shows measurements in millimeters.

2010-05-05

348

Crystal diffraction lens telescope for focusing nuclear gamma rays  

Microsoft Academic Search

A crystal diffraction lens was constructed at Argonne National Laboratory for use as a telescope to focus nuclear gamma rays. It consists of 600 single crystals of germanium arranged in 8 concentric rings. The mounted angle of each crystal was adjusted to intercept and diffract the incoming gamma rays with an accuracy of a few arcsec. The performance of the

Robert K. Smither; Patricia B. Fernandez; Timothy Graber; Peter von Ballmoos; Juan E. Naya; Francis Albernhe; Gilbert Vedrenne; Mohamed Faiz

1996-01-01

349

Gamma rays from accretion onto rotating black holes  

NASA Technical Reports Server (NTRS)

Ionized matter falling onto an isolated, rotating black hole will be heated sufficiently that proton-proton collisions will produce mesons, including neutral pions, which decay into gamma rays. For massive (1000 M sub circled dot), black holes, the resulting gamma-ray luminosity may exceed 10 to the 36th power engs/s, with a spectrum peaked near 20 MeV.

Collins, M. S.

1978-01-01

350

Gamma-ray Bursts as Probes of Galaxy Evolution  

E-print Network

Gamma-ray Bursts as Probes of Galaxy Evolution Daniele Malesani, Dark Cosmology Centre and the X to ongoing star formation "Naked-eye" GRB 080319B GRBs explode within star-forming galaxies Gamma-ray bursts formation rate (you "only" need a redshift) Includes "invisible" star formation: - SF in faint galaxies

Â?umer, Slobodan

351

SAS-2 galactic gamma-ray results. 2: Localized sources  

NASA Technical Reports Server (NTRS)

Gamma ray emission was detected from the radio pulsars PSR 1818-04 and PSR 1747-46, in addition to the previously reported gamma ray emission from the Crab and Vela pulsars. Because the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma ray observations suggest a uniquely gamma ray phenomenon occurring in a fraction of the radio pulsars. PSR 1818-04 has a gamma ray luminosity comparable to that of the Crab pulsar, whereas the luminosities of PSR 1747-46 and the Vela pulsar are approximately an order of magnitude lower. SAS-2 data for pulsar correlations yielded upper limits to gamma ray luminosity for 71 other radio pulsars. For five of the closest pulsars, upper limits for gamma ray luminosity are found to be at least three orders of magnitude lower than that of the Crab pulsar. Gamma ray enhancement near the Milky Way satellite galaxy and the galactic plane in the Cygnus region is also discussed.

Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

1977-01-01

352

LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS  

SciTech Connect

In the collapsar model for common gamma-ray bursts (GRBs), the formation of a centrifugally supported disk occurs during the first {approx}10 s following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur-blue supergiants with low mass-loss rates, tidally interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common GRB. A broad range of powers is possible, 10{sup 47}-10{sup 50} erg s{sup -1}, and this brightness could be enhanced by beaming. Such events were probably more frequent in the early universe where mass-loss rates were lower. Indeed, this could be one of the most common forms of gamma-ray transients in the universe and could be used to study first generation stars. Several events could be active in the sky at any one time. Recent examples of this sort of event may have been the Swift transients Sw-1644+57, Sw-2058+0516, and GRB 101225A.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Heger, Alexander, E-mail: woosley@ucolick.org, E-mail: alex@physics.umn.edu [Minnesota Institute of Astrophysics, School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, MN 55455 (United States)

2012-06-10

353

Gamma-Ray Bursts: Pulses and Populations  

NASA Astrophysics Data System (ADS)

We describe ongoing work on two projects that are enabling more thorough and accurate use of archival BATSE data for elucidating the nature of GRB sources; the methods and tools we are developing will also be valuable for analyzing data from other missions. The first project addresses modeling the spectro-temporal behavior of prompt gamma ray emission from GRBs by modeling gamma ray count and event data with a population of pulses, with the population drawn from one or more families of single-pulse kernels. Our approach is built on a multilevel nonparametric probabilistic framework we have dubbed "Bayesian droplets," and offers several important advances over previous pulse decomposition approaches: (1) It works in the pulse-confusion regime, quantifying uncertainty in the number, locations, and shapes of pulses, even when there is strong overlap. (2) It can self-consistently model pulse behavior across multiple spectral bands. (3) It readily handles a variety of spatio-temporal kernel shapes. (4) It reifies the idea of a burst as a population of pulses, enabling explicit modeling and estimation of the pulse population distribution. We describe the framework and present analyses of prototypical simple and complex GRB light curves. The second project aims to enable accurate demographic modeling of GRBs using the BATSE catalog. We present new calculations of the BATSE sky exposure, encompassing the full duration of the BATSE catalog for the first time, with many improvements over the currently available exposure map. A similar calculation of the detection efficiency is in progress. We also describe public Python software enabling access and accurate modeling of BATSE GRB data. The software enables demographic studies (e.g., modeling log N - log S distributions) with accurate accounting of both selection effects and measurement errors. It also enables spectro-temporal modeling of detailed data from individual GRBs. These projects are supported by NASA through the AISR and ADAP programs.

Loredo, Thomas J.; Hakkila, J. E.; Broadbent, M.; Wasserman, I. M.; Wolpert, R. L.

2013-04-01

354

Gamma-ray bursts and collisionless shocks  

E-print Network

Particle acceleration in collisionless shocks is believed to be responsible for the production of cosmic-rays over a wide range of energies, from few GeV to >10^{20}eV, as well as for the non-thermal emission of radiation from a wide variety of high energy astrophysical sources. A theory of collisionless shocks based on first principles does not, however, exist. Observations of gamma-ray burst (GRB) "afterglows" provide a unique opportunity for diagnosing the physics of relativistic collisionless shocks. Most GRBs are believed to be associated with explosions of massive stars. Their "afterglows," delayed low energy emission following the prompt burst of gamma-rays, are well accounted for by a model in which afterglow radiation is due to synchrotron emission of electrons accelerated in relativistic collisionless shock waves driven by the explosion into the surrounding plasma. Within the framework of this model, some striking characteristics of collisionless relativistic shocks are implied. These include the generation of downstream magnetic fields with energy density exceeding that of the upstream field by ~8 orders of magnitude, the survival of this strong field at distances ~10^{10} skin-depths downstream of the shock, and the acceleration of particles to a power-law energy spectrum, d\\log n/d\\log E ~ -2, possibly extending to 10^{20}eV. I review in this talk the phenomenological considerations, based on which these characteristics are inferred, and the challenges posed to our current models of particle acceleration and magnetic field generation in collisionless shocks. Some recent theoretical results derived based on the assumption of a self-similar shock structure are briefly discussed.

E. Waxman

2006-07-15

355

Magnetic Structures in Gamma-Ray Burst Jets Probed by Gamma-Ray Polarization  

NASA Astrophysics Data System (ADS)

We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of ? = 70 ± 22% with statistical significance of 3.7? for GRB 110301A, and ? = 84+16 - 28% with 3.3? confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

Yonetoku, Daisuke; Murakami, Toshio; Gunji, Shuichi; Mihara, Tatehiro; Toma, Kenji; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Toukairin, Noriyuki; Fujimoto, Hirofumi; Kodama, Yoshiki

2012-10-01

356

In situ elemental analysis using neutron-capture gamma-ray spectroscopy  

NASA Astrophysics Data System (ADS)

In situ chemical analysis has become increasingly important in many areas of geochemical exploration and environmental monitoring. However, the determination of absolute or relative concentrations by neutron-gamma techniques can be difficult because of the variety of materials that can be encountered. Changes in concentration of neutron moderators, particularly water, and of strong absorbers, such as iron, can result in spatial and energy distribution variations of the neutron flux in the material. These lead to changes in the measured gamma-ray spectrum. We have been developing analytical procedures which allow the absolute and relative abundances of major and minor elements to be determined from the measured neutron-induced gamma-ray spectrum. Calculations are made using the one-dimensional neutron and gamma transport code ANISN. From the calculations, conversion factors are obtained that can be used to convert gamma-ray count rates to elemental concentrations. Once these conversion factors are determined as a function of water content and the macroscopic cross section, they can be used to determine compositions of unknown samples. To explore the application of these analytical methods, a number of different experimental test programs have been initiated to collect measured gamma-ray spectra. Field tests have been conducted in soils of various compositions using a 120 cm 3 HPGe detector and a 14 MeV pulsed neutron generator.

Evans, Larry G.; Lapides, Jeffrey R.; Trombka, Jacob I.; Jensen, Dal H.

357

The supernova-gamma-ray burst-jet connection.  

PubMed

The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general. PMID:23630379

Hjorth, Jens

2013-06-13

358

Polarization mesurements of gamma ray bursts and axion like particles  

E-print Network

A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of axion like particles (ALPs). Based on evidences of polarized gamma ray emission detected in several gamma ray bursts we estimated the level of ALPs induced dichroism, which could take place in the magnetized fireball environment of a GRB. This allows to estimate the sensitivity of polarization measurements of GRBs to the ALP-photon coupling. This sensitivity $\\gag\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the ALP mass $m_a=10^{-3}~{\\rm eV}$ and MeV energy spread of gamma ray emission is competitive with the sensitivity of CAST and becomes even stronger for lower ALPs masses.

Andre Rubbia; Alexander Sakharov

2008-09-03

359

Gamma ray irradiation for sludge solubilization and biological nitrogen removal  

NASA Astrophysics Data System (ADS)

This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD 5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

Kim, Tak-Hyun; Lee, Myunjoo; Park, Chulhwan

2011-12-01

360

Multiwavelength observations of unidentified high energy gamma-ray sources  

NASA Technical Reports Server (NTRS)

As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with catalogued objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. This two year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x-ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. This second year was devoted to studies of unidentified gamma-ray sources from the first EGRET catalog, similar to previous observations. Efforts have concentrated on the sources at low and intermediate Galactic latitudes, which are the most plausible pulsar candidates.

Halpern, Jules P.

1995-01-01

361

The Diffuse Gamma-Ray Flux Associated with Sub-PeV/PeV Neutrinos from Starburst Galaxies  

NASA Astrophysics Data System (ADS)

One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E_\

Chang, Xiao-Chuan; Wang, Xiang-Yu

2014-10-01

362

International Gamma-Ray Astrophysics Laboratory (INTEGRAL): a future ESA mission for gamma-ray astronomy  

Microsoft Academic Search

The INTEGRAL observatory, due for launch in 2001, will address the fine spectroscopy (2 keV FWHM 1 MeV) and accurate imaging (12 arcminute FWHM) of celestial gamma-ray sources in the important 15 keV to 10 MeV energy range. The fine spectroscopy will permit spectral features to be uniquely identified and line profiles to be determined for in-depth studies of the

Neil A. Gehrels; Christoph Winkler

1996-01-01

363

Gamma-ray lens development status for a European Gamma-Ray Imager  

E-print Network

A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan "Cosmic Vision 2015-2025".

F. Frontera; A. Pisa; V. Carassiti; F. Evangelisti; G. Loffredo; D. Pellicciotta; K. H. Andersen; P. Courtois; L. Amati; E. Caroli; T. Franceschini; G. Landini; S. Silvestri; J. B. Stephen

2006-11-15

364

High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST  

SciTech Connect

Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

Fan, Yi-Zhong; Piran, Tsvi

2011-11-29

365

Physics of Gamma-ray Bursts and Multi-messenger Signals from Double Neutron Star Mergers.  

E-print Network

??My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission… (more)

Gao, He

2014-01-01

366

Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes.  

National Technical Information Service (NTIS)

The diffuse galactic (gamma)-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indi...

A. A. Abdo, B. Anderson, M. Ackermann, M. Ajello, M. Axelsson, W. B. Atwood

2012-01-01

367

Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra  

SciTech Connect

Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing early science results.

Carraminana, Alberto [Instituto Nacional de Astrofisica, Optica y Electronica Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico); Collaboration: HAWC Collaboration

2013-06-12

368

Gamma-ray bursts from synchrotron self-Compton emission  

E-print Network

The emission mechanism of the gamma-ray bursts (GRBs) is still a matter of debates. The standard synchrotron energy spectrum of cooling electrons F_E ~ E^{-1/2} is much too soft to account for the majority of the observed spectral slopes. An alternative in the form of quasi-thermal Comptonization in a high compactness source has difficulties in reproducing the peak of the observed photon distribution below a few hundred keV. We show here that for typical parameters expected in the GRB ejecta the observed spectra in the 20-1000 keV BATSE energy range can be produced by inverse Compton scattering of the synchrotron radiation in a partially self-absorbed regime. If the particles are continuously accelerated/heated over the life-time of a source rather than being instantly injected, a prominent peak develops in their distribution at a Lorentz factor gamma ~ 30-100, where synchrotron and inverse-Compton losses are balanced by acceleration and heating due to synchrotron self-absorption. The synchrotron peak should be observed at 10-100 eV, while the self-absorbed low-energy tail with F_E ~ E^2 can produce the prompt optical emission (like in the case of GRB 990123). The first Compton scattering radiation by nearly monoenergetic electrons can then be as hard as F_E ~ E^1 reproducing the hardness of most of the observed GRB spectra. The second Compton peak should be observed in the high energy gamma-ray band, possibly being responsible for the emission detected by EGRET in GRB 941017. A significant electron-positron pair production reduces the available energy per particle, moving the spectral peaks to lower energies as the burst progresses. The regime is very robust, operates in a broad range of parameter space and can explain most of the observed GRB spectra and their temporal evolution.

Boris E. Stern; Juri Poutanen

2004-05-25

369

The First Science Flight of the Gamma-RAy Polarimeter Experiment (GRAPE)  

NASA Astrophysics Data System (ADS)

The Gamma-RAy Polarimeter Experiment (GRAPE) is a Compton polarimeter designed to measure the polarization of astronomical sources in the soft gamma-ray band (50 - 500 keV) from a high-altitude balloon platform. Although designed primarily for studies of gamma-ray bursts over the entire sky, the instrument can also be combined with a collimator for pointed observations. The first science flight of the payload, in the collimated configuration, was launched from Ft. Sumner, NM, on September 23, 2011. Although the polarization sensitivity was limited by several factors, the instrument and payload performed well during 26 hours at float altitude, performing observations of the Crab Nebula and two M-Class solar flares. We describe the instrument, payload, science observations, and data analysis procedures, and present our upper limits for the soft gamma-ray polarization of the Crab and the solar flares. A second flight, with greatly improved sensitivity, is currently scheduled for the Fall of 2014.

Bloser, Peter F.; McConnell, M. L.; Connor, T.; Ertley, C.; Legere, J. S.; Ryan, J. M.

2013-04-01

370

The Gamma-Ray Large-Area Space Telescope: An Astro-Particle Mission to Explore the High-Energy Gamma-Ray Sky  

SciTech Connect

The Gamma Ray Large Area Space Telescope (GLAST) is a space mission that will detect photons from the gamma ray sky, in the rich yet poorly explored high energy band between 20MeV and 1TeV. Main instrument on board is the Large Area Telescope (LAT), a gamma-ray pair-conversion telescope, that will measure direction and energy of incoming photons by means of a very large (11.000 sensors), low pitch (228 {micro}m) Silicon strip Tracker and an imaging CsI e.m. calorimeter, supported in the rejection of charged particles background by an outer, segmented Anti-Coincidence Detector built with plastic scintillators. The superior angular resolution of the LAT, coupled to its very large field of view, results in a sensitivity advance of a factor 30 or more with respect to previously flown instruments. This will allow GLAST to locate currently unresolved gamma ray sources and to detect potential new classes of sources. Study of the residual gamma ray background will have a crucial role in connection to cosmological models, supersymmetric dark matter and relics of exotic particle decay searches. An accurate spectroscopy of all gamma ray emitters will be possible with the high energy resolution of the calorimeter, improving our knowledge of the mechanisms that power the cores of blazars and AGNs, and enabling tens of different pulsar emission models. The GLAST mission will have the instrumental capabilities to locate and analyze sources of cosmic rays and investigate on their acceleration mechanism. As for transient phenomena studies, like the spectacular GRBs, known to be the most energetic natural events, GLAST is in a prominent position. This is due to the minimum detection dead time (<100 {micro}s), typical of the silicon detectors used for the LAT tracker, and to the increased field of view and alert capabilities of the second GLAST instrument, the Gamma Burst Monitor (GBM), essentially conceived as a fast transients trigger for the more accurate observations from the LAT and from other space and earth missions sensitive to other wavelengths. In this paper we give an overview of the many physics goals and potential reach of the GLAST observatory, we describe in detail the detector design and performances and report on the status of the LAT tracker construction.

Spandre, Gloria; /INFN, Pisa

2009-05-12

371

Gamma-ray Astronomy: Implications for Fundamental Physics  

E-print Network

Gamma-ray Astronomy studies cosmic accelerators through their electromagnetic radiation in the energy range between ~100 MeV and ~100 TeV. The present most sensitive observations in this energy band are performed, from space, by the Large Area Telescope onboard the Fermi satellite and, from Earth, by the Imaging Air Cherenkov Telescopes MAGIC, H.E.S.S. and VERITAS. These instruments have revolutionized the field of Gamma-ray Astronomy, discovering different populations of gamma-ray emitters and studying in detail the non-thermal astrophysical processes producing this high-energy radiation. The scientific objectives of these observatories include also questions of fundamental physics. With gamma-ray instruments we study the origin of Galactic cosmic rays, testing the hypothesis or whether they are mainly produced in supernova explosions. Also, we obtain the most sensitive measurement of the cosmic electron-positron spectrum between 20 GeV and 5 TeV. By observing the gamma-ray emission from sources at cosmological distances, we learn about the intensity and evolution of the extragalactic background light, and perform tests of Lorentz Invariance. Moreover, we can search for dark matter by looking for gamma-ray signals produced by its annihilation or decay in over-density sites. In this paper, we review the most recent results produced with the current generation of gamma-ray instruments in these fields of research.

Javier Rico

2011-11-28

372

The Gamma-ray Albedo of the Moon  

E-print Network

We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

Igor V. Moskalenko; Troy A. Porter

2007-08-21

373

Gamma-Ray Observatory - The next great observatory in space  

NASA Technical Reports Server (NTRS)

The Gamma-Ray Observatory (GRO) which is part of NASA's Great Observatories space program is presented. The GRO is equipped with the Burst and Transient Source Experiment (which detects low-energy gamma-ray photons from 20 keV to 600 keV and locates sources of gamma-ray bursts), the Oriented Scintillation Spectrometer Experiment (which detects celestial gamma rays from 100 keV to 10 MeV and identifies the elements producing these rays by measuring the ray's spectra and time variability), the Imaging Compton Telescope (which images gamma rays with energies from 1 to 30 MeV created when cosmic rays interact with interstellar matter), and the Energetic Gamma-Ray Experiment Telescope (which detects high-energy photons associated with the most energetic processes occurring in nature). After the energies of photons from each source are classified, the gamma-ray mechanisms can be modelled. Nuclei, radioactive isotopes, and nuclear reactions can be identified, and the physical conditions at the radiation's source can also be modelled. From these models, theories can be developed about the creation of elements in the explosion and collapse of giant stars, the acceleration of charged particles to velocities approaching the speed of light, and the destruction of matter and antimatter.

Neal, Valerie; Fishman, Gerald; Kniffen, Donald

1990-01-01

374

Instrument Requirements for Type Ia Supernova Gamma-Ray Studies  

NASA Astrophysics Data System (ADS)

Thermonuclear supernovae are widely used as distance indicators, which yields profound implications, yet details of their progenitor systems and explosion physics remain elusive. It has been argued for thirty-five years that these thoroughly radioactive objects can be understood through detailed gamma-ray line studies, but despite twenty years of gamma-ray instruments in orbit, no Type Ia supernova (SN Ia) has been detected in gamma-ray lines. Still the great promise of gamma-ray studies of SN Ia remains, but the instrument requirements, especially on line sensitivity, are substantial. Finally, a second-generation gamma-ray spectrometer, known now as the Advanced Compton Telescope, is being planned. Considering current SN Ia models of various types, including deflagrations, delayed detonations, and sub-Chandrasekhar-mass detonations, we outline the gamma-ray instrument requirements, especially line flux sensitivity and energy resolution, needed to discriminate among the possible models. We consider realistic SN Ia rates and distributions in space, plausible observing intervals and durations, and the information available from both gamma-ray photometry and spectroscopy. For example, we find that a wide-field compton telescope with energy resolution E/? E= 100 in a scanning mode would require broad line sensitivity of 7×10-7 cm-2 s-1 at 847 keV to distinguish deflagration models from delayed detonation models at the rate of one per year.

Leising, M.; Milne, P.; Lara, J.; The, L.

2004-12-01

375

Gamma-ray transfer and energy deposition in supernovae  

NASA Technical Reports Server (NTRS)

Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

1995-01-01

376

GLAST and Ground-Based Gamma-Ray Astronomy  

NASA Technical Reports Server (NTRS)

The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

McEnery, Julie

2008-01-01

377

X-ray and gamma ray astronomy detectors  

NASA Technical Reports Server (NTRS)

X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

1994-01-01

378

BL Lac contribution to the Extragalactic Gamma-Ray Background  

E-print Network

Very high energy gamma-rays(E>20GeV) from blazars traversing cosmological distances through the metagalactic radiation field can convert to electron-positron pairs in photon-photon collisions. The converted gamma-rays initiate electromagnetic cascades driven by inverse-Compton scattering off the microwave background photons. The cascades shift the injected gamma ray spectrum to MeV-GeV energies. Randomly oriented magnetic fields rapidly isotropize the secondary electron-positron beams resulting from the beamed blazar gamma ray emission, leading o faint gamma-ray halo. Using a model for the time-dependent metagalactic radiation field consistent with all currently available far-infrared-to-optical data, we compute (i) the expected gamma-ray attenuation in blazar spectra, and (ii) the cascade contribution from faint, unresolved blazars to the extragalactic gamma-ray background as measured by EGRET, assuming a generic emitted spectrum extending to an energy of 10 TeV. The latter cascade contribution to the EGRET background is fed by the assumed >20 GeV emission from the hitherto undiscovered sources, and we estimate their dN-dz distribution taking into account that the nearby (z<0.2) fraction of these sources must be consistent with the known (low) numbers of sources above 300 GeV.

Tanja Kneiske; Karl Mannheim

2004-11-05

379

Dawn's Gamma Ray and Neutron Detector  

NASA Astrophysics Data System (ADS)

The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.

Prettyman, Thomas H.; Feldman, William C.; McSween, Harry Y.; Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.; Hendricks, John S.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.

2011-12-01

380

NDA via gamma-ray active and passive computed tomography  

SciTech Connect

Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known and accurately reproducible translation, rotation, and elevation positions in order to obtain gamma-ray data that is reconstructed by computer into images that represent waste contents. [ROB94] The two measurements modes are called active (A) and passive (P) CT. In the ACT mode, a collimated gamma-ray source external to the waste container emits multiple, mono-energetic gamma rays that pass through the container and are detected on the opposite side. The attenuated gamma-rays transmitted are measured as a function of both energy and position of the container. Thus, container contents are `mapped` via the measured amount of attenuation suffered at each gamma-ray energy. In effect, a three dimensional (3D) image of gamma- ray attenuation versus waste content is obtained. In the PCT measurement mode, the external radioactive source is shuttered turned- off, and the waste container, is moved through similar positions used for the ACT measurements. However, this time the radiation detectors record any gamma-rays emitted by radioactive sources on the inside of the waste container. Thus, internal radioactive content is mapped or 3D-imaged in the same tomographic manner as the attenuating matrix materials were in the ACT measurement mode.

Decman, D.J.; Martz, H.E.; Roberson, G.P.; Johansson, E.

1996-10-01

381

Energy sources in gamma-ray burst models  

NASA Technical Reports Server (NTRS)

The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

Taam, Ronald E.

1987-01-01

382

Spectral gamma-ray signatures of cosmological dark matter annihilations.  

PubMed

We propose a new signature for weakly interacting massive particle (WIMP) dark matter, a spectral feature in the diffuse extragalactic gamma-ray radiation. This feature, a sudden drop of the gamma-ray intensity at an energy corresponding to the WIMP mass, comes from the asymmetric distortion of the line due to WIMP annihilation into two gamma rays caused by the cosmological redshift. Unlike other proposed searches for a line signal, this method is not very sensitive to the exact dark matter density distribution in halos and subhalos. PMID:11736555

Bergström, L; Edsjö, J; Ullio, P

2001-12-17

383

HESS VHE Gamma-Ray Sources Without Identified Counterparts  

Microsoft Academic Search

The detection of gamma rays in the very-high-energy (VHE) energy range (100\\u000aGeV--100 TeV) provides a direct view of the parent population of\\u000aultra-relativistic particles found in astrophysical sources. For this reason,\\u000aVHE gamma rays are useful for understanding the underlying astrophysical\\u000aprocesses in non-thermal sources. We investigate unidentified VHE gamma-ray\\u000asources that have been discovered with HESS in the

F. Aharonian

2007-01-01

384

Pulsar gamma-rays: Spectra luminosities and efficiencies  

NASA Technical Reports Server (NTRS)

The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

Harding, A. K.

1980-01-01

385

Directionality of continuum gamma rays from solar flares  

NASA Technical Reports Server (NTRS)

Using hard X-ray burst spectrometer total counts as calibration, the changes in the brightness of gamma rays above 300 keV as a function of the heliocentric angle of a flare are investigated. The normalized gamma-ray brightness, on the average, increases with the heliocentric angle; a flare at the limb is estimated to be 13 times brighter in beam gamma rays than a similar flare near the central meridian. Both pancakelike electron distributions and downward beam distributions can be adjusted to produce the deduced limb brightening.

Bai, Taeil

1988-01-01

386

Gamma-ray emission from young neutron stars  

NASA Technical Reports Server (NTRS)

The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

1991-01-01

387

Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars from the MOJAVE Program  

NASA Technical Reports Server (NTRS)

We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -300 during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.

Lister, M.L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; Ackermann, M.; McEnery, Julie E.

2011-01-01

388

{gamma}-RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM  

SciTech Connect

We investigate the Fermi Large Area Telescope {gamma}-ray and 15 GHz Very Long Baseline Array radio properties of a joint {gamma}-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 Degree-Sign during this period, and thus probes the full range of {gamma}-ray loudness ({gamma}-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing {gamma}-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the {gamma}-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-{gamma}-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.

Lister, M. L.; Hovatta, T. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Aller, M.; Aller, H. [Department of Astronomy, University of Michigan, 817 Dennison Building, Ann Arbor, MI 48 109 (United States); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Kovalev, Y. Y. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Meyer, E. T. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Pushkarev, A. B.; Ros, E. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Antolini, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D., E-mail: mlister@purdue.edu, E-mail: moritz.boeck@sternwarte.uni-erlangen.de [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy)

2011-11-20

389

Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds  

NASA Technical Reports Server (NTRS)

With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NS's are inefficient at producing gamma-rays; or (2) the gamma-rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Cloud like our own is not higher than a few percent.

Shull, J. Michael; Stern, S. Alan

1994-01-01

390

Gamma-Ray Burst Prompt Emission  

NASA Astrophysics Data System (ADS)

The origin of gamma-ray burst (GRB) prompt emission, bursts of ?-rays lasting from shorter than one second to thousands of seconds, remains not fully understood after more than 40 years of observations. The uncertainties lie in several open questions in the GRB physics, including jet composition, energy dissipation mechanism, particle acceleration mechanism and radiation mechanism. Recent broad-band observations of prompt emission with Fermi sharpen the debates in these areas, which stimulated intense theoretical investigations invoking very different ideas. I will review these debates, and argue that the current data suggest the following picture: A quasi-thermal spectral component originating from the photosphere of the relativistic ejecta has been detected in some GRBs. Even though in some cases (e.g. GRB 090902B) this component dominates the spectrum, in most GRBs, this component either forms a sub-dominant "shoulder" spectral component in the low energy spectral regime of the more dominant "Band" component, or is not detectable at all. The main "Band" spectral component likely originates from the optically thin region due to synchrotron radiation. The diverse magnetization in the GRB central engine is likely the origin of the observed diverse prompt emission properties among bursts.

Zhang, Bing

2014-12-01

391

Swift Observations of Gamma Ray Bursts  

SciTech Connect

Since its launch on 20 November 2004, the Swift mission is detecting {approx}100 gamma-ray bursts (GRBs) each year, and immediately (within {approx}90 s) starting X-ray and UV/optical observations of the afterglow. It has already collected an impressive database including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows, and rapid follow-up by other observatories notified through the GCN. The detection of X-ray afterglows have been found to have complex temporal shapes including tails emission from the prompt phase and bright flares. X-ray afterglows from short bursts has led to accurate localizations. It is found that they can occur in non-star forming galaxies or regions, whereas long GRBs are strongly concentrated within star forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z{approx}5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova. The prospects for future progress are excellent give the >10 year orbital lifetime of the Swift satellite.

Gehrels, Neil [Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States)

2008-01-10

392

The electromagnetic model of Gamma Ray Bursts  

E-print Network

I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

Maxim Lyutikov

2005-12-13

393

Gamma-Ray Studies of Blazars: Synchro-Compton Analysis of Flat Spectrum Radio Quasars  

E-print Network

We extend a method for modeling synchrotron and synchrotron self-Compton radiations in blazar jets to include external Compton processes. The basic model assumption is that the blazar radio through soft X-ray flux is nonthermal synchrotron radiation emitted by isotropically-distributed electrons in the randomly directed magnetic field of outflowing relativistic blazar jet plasma. Thus the electron distribution is given by the synchrotron spectrum, depending only on the Doppler factor $\\delta_{\\rm D}$ and mean magnetic field $B$, given that the comoving emission region size scale $R_b^\\prime \\lesssim c \\dD t_v/(1+z)$, where $t_v$ is variability time and $z$ is source redshift. Generalizing the approach of Georganopoulos, Kirk, and Mastichiadis (2001) to arbitrary anisotropic target radiation fields, we use the electron spectrum implied by the synchrotron component to derive accurate Compton-scattered $\\gamma$-ray spectra throughout the Thomson and Klein-Nishina regimes for external Compton scattering processes. We derive and calculate accurate $\\gamma$-ray spectra produced by relativistic electrons that Compton-scatter (i) a point source of radiation located radially behind the jet, (ii) photons from a thermal Shakura-Sunyaev accretion disk and (iii) target photons from the central source scattered by a spherically-symmetric shell of broad line region (BLR) gas. Calculations of broadband spectral energy distributions from the radio through $\\gamma$-ray regimes are presented, which include self-consistent $\\gamma\\gamma$ absorption on the same radiation fields that provide target photons for Compton scattering. Application of this baseline flat spectrum radio/$\\gamma$-ray quasar model is considered in view of data from $\\gamma$-ray telescopes and contemporaneous multi-wavelength campaigns.

Charles D. Dermer; Justin D. Finke; Hannah Krug; Markus Boettcher

2008-08-25

394

The High-Energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134  

NASA Technical Reports Server (NTRS)

We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approximate 1.7-1.8 and column density N(sub H) approximately 5 x 10(exp 21) /sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approximately 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with EGRET. The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approximately 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approximately 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.

1997-01-01

395

Low and medium energy galactic gamma-ray observations  

NASA Technical Reports Server (NTRS)

Observation of 0.2-100 MeV diffuse gamma radiation emitted from the Galaxy can provide information on the intensities of 5-50 MeV/nucleon cosmic-rays and 50 MeV electrons in interstellar space. Recent measurements of gamma-rays emitted from the galactic center region provide evidence for a diffuse continuum between 10 and 100 MeV. The intensities of the recently reported nuclear line gamma rays, also observed in the direction of the galactic center, require the presence of intense fluxes of low-energy cosmic-rays in the inner Galaxy if the gamma-rays are produced on a galactic scale. Current detection techniques for 0.1-100 MeV gamma-ray measurements are summarized and their capabilities for measuring the diffuse galactic emission are evaluated.

Share, G. H.

1976-01-01

396

Low- and medium-energy galactic gamma-ray observations  

NASA Technical Reports Server (NTRS)

Observation of 0.2 to 100 MeV-diffuse gamma-radiation emitted from a galaxy provides information on the intensities of 5 to 50 MeV/nucleon cosmic-rays and approximately less than 50-MeV electrons in interstellar space. Recent measurements of gamma-rays emitted from the galactic center region provide evidence for a diffuse continuum between 10 and 100 MeV, which is dominant over the pi-decay emission generated in high-energy nuclear collisions. The intensities of the recently reported nuclear line gamma-rays, also observed in the direction of the galactic center, require the presence of intense fluxes of low energy cosmic rays in the inner galaxy if the gamma-ray are produced on a galactic scale. Current detection techniques for 0.1 to 100 MeV gamma-ray measurements are summarized, and their capabilities for measuring the diffuse galactic emission are evaluated.

Share, G. H.

1977-01-01

397

Gamma Ray Burst Discoveries with the Swift Mission  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the current understanding of Gamma Ray Bursts. It covers the Long GRBs, our current understanding of Collapsar, Short GRBs, afterglows, and reduced trigger threshold. It also discusses the Hard X-ray Sky Survey.

Gehrels, Neil

2007-01-01

398

Prompt Optical Observations of Gamma-ray Bursts  

E-print Network

The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 square degree or better produced no detections. The earliest limiting sensitivity is m(ROTSE) > 13.1 at 10.85 seconds (5 second exposure) after the gamma-ray rise, and the best limit is m(ROTSE) > 16.0 at 62 minutes (897 second exposure). These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

Carl Akerlof; Richard Balsano; Scott Barthelmy; Jeff Bloch; Paul Butterworth; Don Casperson; Tom Cline; Sandra Fletcher; Fillippo Frontera; Galen Gisler; John Heise; Jack Hills; Kevin Hurley; Robert Kehoe; Brian Lee; Stuart Marshall; Tim McKay; Andrew Pawl; Luigi Piro; John Szymanski; Jim Wren

2000-01-25

399

Gamma-ray bursts and radio pulsar glitches  

NASA Technical Reports Server (NTRS)

Upper limits to gamma-ray fluxes produced in conjunction with a radio pulsar glitch are presented. The glitch occurred on the Vela pulsar on December 24, 1988 and was the first to be observed as it occurred. Sensitive gamma-ray burst detectors aboard the Phobos 2 spacecraft were operating at this time, but recorded no significant burst at the time of the glitch. It is concluded that if a gamma-ray burst was generated in the energy range to which the Phobos detectors were sensitive, and if it was not beamed away from the spacecraft, the efficiency of glitch energy conversion into gamma-rays could not have exceeded 10 exp -4.

Hartmann, D.; Hurley, K.; Niel, M.

1992-01-01

400

Gamma-ray burst theory: Back to the drawing board  

NASA Technical Reports Server (NTRS)

Gamma-ray bursts have always been intriguing sources to study in terms of particle acceleration, but not since their discovery two decades ago has the theory of these objects been in such turmoil. Prior to the launch of Compton Gamma-Ray Observatory and observations by Burst and Transient Source Experiment (BATSE), there was strong evidence pointing to magnetized Galactic neutron stars as the sources of gamma-ray bursts. However, since BATSE the observational picture has changed dramatically, requiring much more distant and possibly cosmological sources. I review the history of gamma-ray burst theory from the era of growing consensus for nearby neutron stars to the recent explosion of halo and cosmological models and the impact of the present confusion on the particle acceleration problem.

Harding, Alice K.

1994-01-01

401

Recent developments in semiconductor gamma-ray detectors  

SciTech Connect

The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

2003-10-28

402

Antimatter in the Universe: constraints from gamma-ray astronomy  

NASA Astrophysics Data System (ADS)

We review gamma-ray observations that constrain antimatter - both baryonic and leptonic - in the Universe. Antimatter is probed through ordinary matter, with the resulting annihilation gamma-rays providing indirect evidence for its presence. Although it is generally accepted that equal amounts of matter and antimatter have been produced in the Big Bang, gamma-rays have so far failed to detect substantial amounts of baryonic antimatter in the Universe. Conversely, positrons are abundantly observed through their annihilation in the central regions of our Galaxy and, although a wealth of astrophysical sources are plausible, their very origin is still unknown. As both antimatter questions - the source of the Galactic positrons and the baryon asymmetry in the Universe - can be investigated through the low energy gamma-ray channel, the mission concept of a dedicated space telescope is sketched out.

von Ballmoos, Peter

2014-02-01

403

History of gamma-ray telescopes and astronomy  

NASA Astrophysics Data System (ADS)

Gamma-ray astronomy is devoted to study nuclear and elementary particle astrophysics and astronomical objects under extreme conditions of gravitational and electromagnetic forces, and temperature. Because signals from gamma rays below 1 TeV cannot be recorded on ground, observations from space are required. The photoelectric effect is dominant <100 keV, Compton scattering between 100 keV and 10 MeV, and electron-positron pair production at energies above 10 MeV. The sun and some gamma ray burst sources are the strongest gamma ray sources in the sky. For other sources, directionality is obtained by shielding / masks at low energies, by using the directional properties of the Compton effect, or of pair production at high energies. The power of angular resolution is low (fractions of a degree, depending on energy), but the gamma sky is not crowded and sometimes identification of sources is possible by time variation. The gamma ray astronomy time line lists Explorer XI in 1961, and the first discovery of gamma rays from the galactic plane with its successor OSO-3 in 1968. The first solar flare gamma ray lines were seen with OSO-7 in 1972. In the 1980’s, the Solar Maximum Mission observed a multitude of solar gamma ray phenomena for 9 years. Quite unexpectedly, gamma ray bursts were detected by the Vela-satellites in 1967. It was 30 years later, that the extragalactic nature of the gamma ray burst phenomenon was finally established by the Beppo-Sax satellite. Better telescopes were becoming available, by using spark chambers to record pair production at photon energies >30 MeV, and later by Compton telescopes for the 1-10 MeV range. In 1972, SAS-2 began to observe the Milky Way in high energy gamma rays, but, unfortunately, for a very brief observation time only due to a failure of tape recorders. COS-B from 1975 until 1982 with its wire spark chamber, and energy measurement by a total absorption counter, produced the first sky map, recording galactic continuum emission, mainly from interactions of cosmic rays with interstellar matter, and point sources (pulsars and unidentified objects). An integrated attempt at observing the gamma ray sky was launched with the Compton Observatory in 1991 which stayed in orbit for 9 years. This large shuttle-launched satellite carried a wire spark chamber “Energetic Gamma Ray Experiment Telescope” EGRET for energies >30 MeV which included a large Cesium Iodide crystal spectrometer, a “Compton Telescope” COMPTEL for the energy range 1-30 MeV, the gamma ray “Burst and Transient Source Experiment” BATSE, and the “Oriented Scintillation-Spectrometer Experiment” OSSE. The results from the “Compton Observatory” were further enlarged by the SIGMA mission, launched in 1989 with the aim to closely observe the galactic center in gamma rays, and INTEGRAL, launched in 2002. From these missions and their results, the major features of gamma ray astronomy are: Diffuse emission, i.e. interactions of cosmic rays with matter, and matter-antimatter annihilation; it is found, “...that a matter-antimatter symmetric universe is empirically excluded....”

Pinkau, Klaus

2009-08-01

404

Gamma-Ray Pulse Tube Cooler Development and Testing  

NASA Technical Reports Server (NTRS)

For a variety of space-science applications, such as gamma-ray spectroscopy, the introduction of cryogenic cooling via a cryocooler can greatly increase the potential science return by allowing the use of more sensitive and lower noise detectors.

Ross, R.; Johnson, D.; Kotsubo, V.; Evtimov, B.; Olson, J.; Nast, T.; Rawlings, R.

2000-01-01

405

8th INTEGRAL Workshop "The Restless Gamma-ray Universe"  

NASA Astrophysics Data System (ADS)

The main goal of this workshop is to present and to discuss (via invited and contributed talks and posters) latest results obtained in the field of high energy astrophysics using the International Gamma-Ray Astrophysics Laboratory INTEGRAL, as well as results from related observations from other ground- and space-based high energy observatories. Topics: X-ray binaries (IGR sources, black holes, neutron stars, white dwarfs) Isolated neutron stars (gamma-ray pulsars, magnetars) Nucleosynthesis (SNe and SNRs), gamma-ray lines, diffuse line and continuum emission Massive black holes in AGNs, elliptical galaxies, nucleus of the Galaxy Surveys, source populations and unidentified sources Cosmic background radiation Gamma-ray bursts Coordinated observations with other ground- and space-based observatories Science data processing and analysis (posters only) Future instruments and missions (posters only)

406

VHE Gamma Rays from PKS 2155-304  

E-print Network

The close X-ray selected BL Lac PKS 2155-304 has been observed using the University of Durham Mark 6 very high energy (VHE) gamma ray telescope during 1996 September/October/November and 1997 October/November. VHE gamma rays with energy > 300 GeV were detected from this object with a time-averaged integral flux of (4.2 +/- 0.7 (stat) +/- 2.0 (sys)) x 10^(-11) per cm2 per s. There is evidence for VHE gamma ray emission during our observations in 1996 September and 1997 October/November, with the strongest emission being detected in 1997 November, when the object was producing the largest flux ever recorded in high-energy X-rays and was detected in > 100 MeV gamma-rays. The VHE and X-ray fluxes show evidence of a correlation.

P. M. Chadwick; K. Lyons; T. J. L. McComb; K. J. Orford; J. L. Osborne; S. M. Rayner; S. E. Shaw; K. E. Turver; G. J. Wieczorek

1998-10-14

407

The Hardness Distribution of Gamma-Ray Bursts  

E-print Network

It is often stated that gamma-ray bursts (GRBs) have typical energies of several hundreds $\\keV$, where the typical energy may be characterized by the hardness H, the photon energy corresponding to the peak of $\

Ehud Cohen; Tsvi Piran; Ramesh Narayan

1997-10-07

408

Unidentified gamma-ray sources: new source classes with GLAST  

E-print Network

New source classes are expected to appear in the GLAST/LAT Catalog. Here, the problems faced for their identification are summarized, and some key features of the most likely new populations of the $\\gamma$-ray sky are mentioned.

Diego F. Torres

2007-03-20

409

AI Gamma-Ray Burst Classification: Methodology/Preliminary Results  

E-print Network

Artificial intelligence (AI) classifiers can be used to classify unknowns, refine existing classification parameters, and identify/screen out ineffectual parameters. We present an AI methodology for classifying new gamma-ray bursts, along with some preliminary results.

Jon Hakkila; David J. Haglin; Richard J. Roiger; Robert S. Mallozzi; Geoffrey N. Pendleton; Charles A. Meegan

1997-12-04

410

Gamma-Ray Large Area Space Telescope- GLAST Mission Overview  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the Gamma-ray Large Area Space Telescope (GLAST), and the instrumentation that will be on the spacecraft: Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). The presentation revierws in detail the LAT instrument.

Moiseev, Alexander A.

2007-01-01

411

The sensitivity of EGRET to gamma ray polarization  

NASA Technical Reports Server (NTRS)

A Monte Carlo simulation shows that EGRET (Energetic Gamma-Ray Experimental Telescope) does not even have sufficient sensitivity to detect 100 percent polarized gamma-rays. This is confirmed by analysis of calibration data. A Monte Carlo study shows that the sensitivity of EGRET to polarization peaks around 100 MeV. However, more than 10 (exp 5) gamma-ray events with 100 percent polarization would be required for a 3 sigma significance detection - more than available from calibration, and probably more than will result from a single score source during flight. A drift chamber gamma ray telescope under development (Hunter and Cuddapah 1989) will offer better sensitivity to polarization. The lateral position uncertainty will be improved by an order of magnitude. Also, if pair production occurs in the drift chamber gas (xenon at 2 bar) instead of tantalum foils, the effects of multiple Coulomb scattering will be reduced.

Mattox, John R.

1990-01-01

412

Gamma-ray Astrophysics: a New Look at the Universe  

NASA Technical Reports Server (NTRS)

Gamma-ray astronomy which includes the spectral region from above approximately 100 keV to greater than or equal to 1000 GeV permits investigation of the most energetic photons originating in our galaxy and beyond and provides the most direct means of studying the largest transfers of energy occurring in astrophysical processes. Of all the electromagnetic spectrum, high-energy gamma-ray astronomy measures most directly the presence and dynamic effects of the energetic charged cosmic ray particles, element synthesis, and particle acceleration. Further, gamma rays suffer negligible absorption or scatterings as they travel in straight paths; hence, they may survive billions of years and still reveal their source. The high energy processes in stellar objects (including our Sun), the dynamics of the cosmic-ray gas, the formation of clouds and nebulae, galactic evolution and even certain aspects of cosmology and the origin of the universe may be explored by gamma-ray observations.

Trombka, J. I.; Fichtel, C. E.; Grindlay, J.; Hofstadter, R.

1978-01-01

413

Diffuse Gamma-Ray Background from Type Ia Supernovae.  

National Technical Information Service (NTIS)

The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate ...

A. Lien, B. D. Fields

2012-01-01

414

CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION  

SciTech Connect

Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe, through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.

Wang Xiangyu; Liu Ruoyu [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Aharonian, Felix [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

2011-08-01

415

Prospects in space-based gamma-ray astronomy  

NASA Astrophysics Data System (ADS)

Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

Knödlseder, J.

2005-12-01

416

Catalog of Gamma Rays from Radioactive Decay, Part I  

Microsoft Academic Search

The catalog is arranged in two parts. Part II is a listing by nuclide of emitted gamma rays and other properties; it also includes some information on stable nuclides which bear on radionuclide production or decay studies. Information given for radioactive nuclides includes half-life, decay mode(s) and branching ratio(s), genetic relationships, spin and parity, literature references, and gamma-ray and x-ray

U. Reus; W. Westmeier

1983-01-01

417

Energy distribution of Compton-scattered gamma rays  

E-print Network

ENERGY DISTRIBUTION OF COMPTON- SCATTERED GAMMA RAYS A Thesis by RICHARD WAYNE MORELAND Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1966... - Curve 2 Fig. 20 71 ENERGY DISTRIBUTIONS OF COMPTON SCATTERED GANNA RAYS CHAPTER I INTRODUCTION A beam of monochromatic gamma rays observed after scattering by electrons at a well defined scattering angle suffers a change of wave- length...

Moreland, Richard Wayne

2012-06-07

418

The Blackholic energy and the canonical Gamma-Ray Burst  

Microsoft Academic Search

Gamma-Ray Bursts (GRBs) represent very likely ``the'' most extensive computational, theoretical and observational effort ever carried out successfully in physics and astrophysics. The extensive campaign of observation from space based X-ray and gamma-ray observatory, such as the Vela, CGRO, BeppoSAX, HETE-II, INTEGRAL, Swift, R-XTE, Chandra, XMM satellites, have been matched by complementary observations in the radio wavelength (e.g. by the

Remo Ruffini; Maria Grazia Bernardini; Carlo Luciano Bianco; Letizia Caito; Pascal Chardonnet; Maria Giovanna Dainotti; Federico Fraschetti; Roberto Guida; Michael Rotondo; Gregory Vereshchagin; Luca Vitagliano; She-Sheng Xue

2007-01-01

419

COMPACT, TUNABLE COMPTON SCATTERING GAMMA-RAY SOURCES  

Microsoft Academic Search

Recent progress in accelerator physics and laser technology have enabled the development of a new class of gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness,

F V Hartemann; F Albert; G G Anderson; S G Anderson; A J Bayramian; S M Betts; T S Chu; R R Cross; C A Ebbers; S E Fisher; D J Gibson; A S Ladran; R A Marsh; M J Messerly; K L ONeill; V A Semenov; M Y Shverdin; C W Siders; D P McNabb; C J Barty; A E Vlieks; E N Jongewaard; S G Tantawi; T O Raubenheimer

2009-01-01

420

OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS  

Microsoft Academic Search

Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development

F V Hartemann; F Albert; G G Anderson; S G Anderson; A J Bayramian; S M Betts; T S Chu; R R Cross; C A Ebbers; S E Fisher; D J Gibson; A S Ladran; R A Marsh; M J Messerly; K L ONeill; V A Semenov; M Y Shverdin; C W Siders; D P McNabb; C P Barty; A E Vlieks; E N Jongewaard; S G Tantawi; T O Raubenheimer

2010-01-01

421

More data on (possible) gamma ray (point) sources  

Microsoft Academic Search

The 2CG catalog of gamma ray sources was compiled before detailed knowledge was available on the fine-scale structure of the diffuse Galactic gamma-ray emission. Two independent analyses to discriminate sources which are either compact objects of due to very local and strong enhancements in the Galactic cosmic-ray distribution from those which are artifacts due to the clumpy gas distribution are

W. Hermsen

1990-01-01

422

The COS-B experiment for gamma ray astronomy  

Microsoft Academic Search

The experimental package on-board the COS-B satellite is described. Extraterrestrial gamma radiation sources are investigated by observing of gamma rays with energies in excess of 20 MeV. Major areas studied are: the angular structure of gamma ray emission from the galactic plane, the flux of the isotropic radiation from high galactic latitudes believed to be of extragalactic origin, point sources

G. F. Bignami; G. Boella; J. J. Burger; P. Keirle; H. A. Mayer-Hasselwander; J. A. Paul; E. Pfeffermann; L. Scarsi; B. N. Swanenburg; B. G. Taylor; W. Voges; R. D. Wills

1974-01-01

423

Gamma-ray observations with Swift and their impact  

Microsoft Academic Search

The Swift gamma-ray burst explorer was launched on Nov. 20, 2004 from Cape Canaveral, Florida. The .rst instrument onboard became fully operational less than a month later. Since that time the Burst Alert Telescope (BAT) on Swift has detected more than 180 gamma-ray bursts (GRBs), most of which have also been observed within two minutes by the Swift narrow-.eld instruments:

Hans Krimm

2007-01-01

424

Radiation effect on PMMA POF under gamma-ray irradiation  

Microsoft Academic Search

An irradiation test was performed for polymethylmethacrylate plastic optical fibers under gamma-ray irradiation in order to use the fiber in low-level radiation environments. Under gamma-ray irradiation at a high dose rate, only a large radiation-induced transmission loss at wavelengths less than 700 nm was observed. Under irradiation at a low dose rate, the loss was small and other two characteristic

K. Toh; S. Nagata; B. Tsuchiya; T. Shikama

2007-01-01

425

The COS-B experiment for gamma-ray astronomy  

Microsoft Academic Search

The COS-B satellite will carry a single large experiment, capable of detecting gamma-rays with energies in excess of 20 MeV in order to study in detail the sources of extraterrestrial gamma radiation. The principal objectives of the study will be to investigate the angular structure of gamma-ray emission from the galactic plane, to measure the flux of the isotropic radiation

G. F. Bignami; G. Boella; J. J. Burger; B. G. Taylor; P. Keirle; J. A. Paul; H. A. Mayer-Hasselwander; E. Pfeffermann; L. Scarsi; B. N. Swanenburg

1975-01-01

426

Gamma ray satellite to be launched from Africa  

NASA Technical Reports Server (NTRS)

The announcement is presented of the launch of NASA's Small Astronomy Satellite B (SAS-B) on 2 Nov. 1972, to study gamma rays. The launch is to be from the Italian-operated San Marco Equatorial Range in the Indian Ocean for ease in acquiring an equatorial orbit. The spacecraft systems described include: stabilization and control, communication, and spark chamber gamma ray telescope. The results of Uhuru (Explorer 42) are also presented.

Allaway, H. G.; Senstad, K.

1972-01-01

427

Detection of a fast, intense and unusual gamma ray transient  

NASA Technical Reports Server (NTRS)

An unusual transient pulse of approximately 50 keV was detected by the gamma-ray burst sensor network using nine space probes and satellites. Its characteristics are unlike those of the known variety of gamma-ray bursts and therefore suggest that it was formed either by a completely different origin species or in a very different manner. It is identified with the LMC supernova remnant N49.

Cline, T. L.; Desai, U. D.; Pizzichini, G.; Teegarden, B. J.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Hurley, K.; Niel, M.; Vedrenne, G.

1979-01-01

428

Gamma rays from the Crab and Vela pulsars  

NASA Technical Reports Server (NTRS)

Gamma ray pulsed emission from the Crab and Vela pulsars are discussed. Emphasis is placed on use of current and future Gamma Ray Observatory observations as diagnostics to examine and constrain theoretical models. Issues on the spectra and pulse profile are discussed. Specifically, the absence and possibly significant time variability of pulsed emission below 10 MeV from the Vela pulsar represents a serious challenge to current astronomical models. Theoretical implication of this 'peculiarity' is addressed.

Ho, Cheng

1992-01-01

429

Gamma-ray measurements at the WNR white neutron source  

SciTech Connect

Photon production data have been acquired in the incident neutron energy range, 1 < E{sub n} < 400 MeV, for a number of target nuclei, gamma-ray energy ranges, and reactions, using the continuous-energy neutron beam of the WNR facility at Los Alamos. Gamma-ray production measurements using high resolution Ge detectors have been employed for gamma-rays in the energy range, 0.1 < E{sub {gamma}} < 10 MeV. These measurements allow identification of reactions from the known energies of the gamma-ray transitions between low-lying states in the final nucleus. Some of the targets studied include: N, O, Al, Na, {sup 56}Fe, and {sup 207,208}Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in {sup 41}Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 < E{sub {gamma}} < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented.

Nelson, R.O.; Wender, S.A.; Mayo, D.R.

1994-12-31

430

Very High Energy Gamma Rays from the VELA Pulsar Direction  

Microsoft Academic Search

We have observed the Vela pulsar region at TeV energies using the 3.8 m imaging Cerenkov telescope near Woomera, South Australia between 1993 January and 1995 March. Evidence of an unpulsed gamma-ray signal has been detected at the 5.8 sigma level. The detected gamma-ray flux is (2.9 +\\/- 0.5 +\\/- 0.4) x 10-12 photons cm-2 s-1 above 2.5 +\\/- 1.0

T. Yoshikoshi; T. Kifune; S. A. Dazeley; P. G. Edwards; T. Hara; Y. Hayami; F. Kakimoto; T. Konishi; A. Masaike; Y. Matsubara; T. Matsuoka; Y. Mizumoto; M. Mori; H. Muraishi; Y. Muraki; T. Naito; K. Nishijima; S. Oda; S. Ogio; T. Ohsaki; J. R. Patterson; M. D. Roberts; G. P. Rowell; T. Sako; K. Sakurazawa; R. Susukita; A. Suzuki; T. Tamura; T. Tanimori; G. J. Thornton; S. Yanagita; T. Yoshida

1997-01-01

431

Population Studies of Radio and Gamma-Ray Pulsars  

NASA Technical Reports Server (NTRS)

Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

2004-01-01

432

X- and gamma-ray tomography for nondestructive material testing  

Microsoft Academic Search

Various apparatus for x and (gamma) -ray computed tomography (CT) have been constructed by us during the last 20 years, with the aim of producing simple and low-cost systems for nondestructive testing. The first one was constructed in 1980 and used an Am241 radioactive source emitting 59.6 keV (gamma) -rays and a single NaI(Tl)-x ray detector. Successively, the radioactive source

Roberto Cesareo; Antonio Brunetti; Ricardo T. Lopes; Gianfranco Galli; Donepudi V. Rao; Alfredo Castellano; Giovanni E. Gigante; Sergio Mascarenhas; Rene Robert; Vitoldo S. Filho; Marco Gilardoni; Hamilton P. da Silva; Piero Q. Colosso

1999-01-01

433

Gamma-ray imaging with position-sensitive HPGe detectors  

Microsoft Academic Search

Due to advances in manufacturing large and highly segmented HPGe detectors along with the availability of fast and high-precision digital electronics, it is now possible to build efficient and high-resolution Compton cameras. Two-dimensionally segmented semi-conductor detectors along with pulse-shape analysis allow to obtain three-dimensional positions and energies of individual gamma-ray interactions. By employing gamma-ray tracking procedures it is possible to

K. Vetter; M. Burks; L. Mihailescu

2004-01-01

434

Gamma Vector Camera: A Gamma Ray and Neutron Directional Detector  

Microsoft Academic Search

We have built a proof-of-concept gamma-ray camera capable of imaging the Compton recoil electron tracks in 3D, and reconstructing the gamma-ray source direction and energy spectrum from those tracks. The electrons are tracked in a fiber-optic scintillating block made from polystyrene fibers arranged in alternating, orthogonal layers, and viewed by image intensifiers and CCD cameras. We have also demonstrated the

M. M. Hindi; L. Klynn; H. Demroff

2008-01-01

435

NDA via gamma-ray active and passive computed tomography  

Microsoft Academic Search

Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known

D. J. Decman; H. E. Martz; G. P. Roberson; E. Johansson

1996-01-01

436

Science with the new generation high energy gamma- ray experiments  

E-print Network

This Conference is the fifth of a series of Workshops on High Energy Gamma- ray Experiments, following the Conferences held in Perugia 2003, Bari 2004, Cividale del Friuli 2005, Elba Island 2006. This year the focus was on the use of gamma-ray to study the Dark Matter component of the Universe, the origin and propagation of Cosmic Rays, Extra Large Spatial Dimensions and Tests of Lorentz Invariance.

M. Alvarez; D. D'Armiento; G. Agnetta; A. Alberdi; A. Antonelli; A. Argan; P. Assis; E. A. Baltz; C. Bambi; G. Barbiellini; H. Bartko; M. Basset; D. Bastieri; P. Belli; G. Benford; L. Bergstrom; R. Bernabei; G. Bertone; A. Biland; B. Biondo; F. Bocchino; E. Branchini; M. Brigida; T. Bringmann; P. Brogueira; A. Bulgarelli; J. A. Caballero; G. A. Caliandro; P. Camarri; F. Cappella; P. Caraveo; R. Carbone; M. Carvajal; S. Casanova; A. J. Castro-Tirado; O. Catalano; R. Catena; F. Celi; A. Celotti; R. Cerulli; A. Chen; R. Clay; V. Cocco; J. Conrad; E. Costa; A. Cuoco; G. Cusumano; C. J. Dai; B. Dawson; B. De Lotto; G. De Paris; A. de Ugarte Postigo; E. Del Monte; C. Delgado; A. Di Ciaccio; G. Di Cocco; S. Di Falco; G. Di Persio; B. L. Dingus; A. Dominguez; F. Donato; I. Donnarumma; M. Doro; J. Edsjo; J. M. Espino Navas; M. C. Espirito Santo; Y. Evangelista; C. Evoli; D. Fargion; C. Favuzzi; M. Feroci; M. Fiorini; L. Foggetta; N. Fornengo; T. Froysland; M. Frutti; F. Fuschino; J. L. Gomez; M. Gomez; D. Gaggero; N. Galante; M. I. Gallardo; M. Galli; J. E. Garcia; M. Garczarczyk; F. Gargano; M. Gaug; F. Gianotti; S. Giarrusso; B. Giebels; N. Giglietto; P. Giommi; F. Giordano; A. Giuliani; J. Glicenstein; P. Goncalves; D. Grasso; M. Guerriero; H. L. He; A. Incicchitti; J. Kirk; H. H. Kuang; A. La Barbera; G. La Rosa; C. Labanti; G. Lamanna; I. Lapshov; F. Lazzarotto; S. Liberati; F. Liello; P. Lipari; F. Longo; F. Loparco; M. Lozano; P. G. Lucentini De Sanctis; J. M. Ma; M. C. Maccarone; L. Maccione; V. Malvezzi; A. Mangano; M. Mariotti; M. Marisaldi; I. Martel; A. Masiero; E. Massaro; M. Mastropietro; E. Mattaini; F. Mauri; M. N. Mazziotta; S. Mereghetti; T. Mineo; S. Mizobuchi; A. Moiseev; M. Moles; C. Monte; F. Montecchia; E. Morelli; A. Morselli; I. Moskalenko; F. Nozzoli; J. F. Ormes; M. A. Peres-Torres; L. Pacciani; A. Pellizzoni; F. Perez-Bernal; F. Perotti; P. Picozza; L. Pieri; M. Pietroni; M. Pimenta; A. Pina; C. Pittori; C. Pontoni; G. Porrovecchio; F. Prada; M. Prest; D. Prosperi; R. Protheroe; G. Pucella; J. M. Quesada; J. M. Quintana; J. R. Quintero; S. Raino; M. Rapisarda; M. Rissi; J. Rodriguez; E. Rossi; G. Rowell; A. Rubini; F. Russo; M. Sanchez-Conde; B. Sacco; V. Scapin; M. Schelke; A. Segreto; A. Sellerholm; X. D. Sheng; A. Smith; P. Soffitta; R. Sparvoli; P. Spinelli; V. Stamatescu; L. S. Stark; M. Tavani; G. Thornton; L. G. Titarchuk; B. Tome; A. Traci; M. Trifoglio; A. Trois; P. Vallania; E. Vallazza; S. Vercellone; S. Vernetto; V. Vitale; N. Wild; Z. P. Ye; A. Zambra; F. Zandanel; D. Zanello

2007-12-04

437

Resonant Compton scattering and gamma-ray burst continuum spectra  

NASA Technical Reports Server (NTRS)

The Thomson limit of resonant inverse Compton scattering in the strong magnetic fields of neutron stars is considered as a mechanism for producing gamma-ray burst continuum spectra. Photon production spectra and electron cooling rates are presented using the full magnetic Thomson cross-section. Model emission spectra are obtained as self-consistent solutions of a set of photon and electron kinetic equations, displaying spectral breaks and other structure at gamma-ray energies.

Baring, M. G.

1995-01-01

438

Simultaneous optical/gamma ray observations of GRB's  

NASA Technical Reports Server (NTRS)

The photographic sky patrols of the Observatories Sonneberg (FRG), Ondrejov (CSFR), Odessa (Ukraine) are used to look for patrol plates which were exposed simultaneously with a gamma-ray burst (GRB) detected by gamma ray observations. The results for the first year of data are presented. For several GRB plates which contain the GRB location, and the exposure time of which contains the time of the GRB are presented. The results of the research for optical flashes on these simultaneous plates are discussed.

Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Paciesas, W. S.; Wilson, R. B.; Greiner, J.; Wenzel, W.; Hudec, R.; Pravec, P.; Rezek, T.

1992-01-01

439