Science.gov

Sample records for gamma-ray buildup factors

  1. Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures

    NASA Astrophysics Data System (ADS)

    Sharaf, J. M.; Saleh, H.

    2015-05-01

    The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.

  2. Finite and infinite system gamma ray buildup factor calculations with detailed physics.

    PubMed

    Atak, Haluk; Çelikten, Osman ?ahin; Tombako?lu, Mehmet

    2015-11-01

    Examination of physical interactions of photons in materials is a significant subject for buildup factor studies. In most of the buildup calculations, by default, coherent (Rayleigh) scattering is ignored and the Compton scattering is modeled by free-electron Klein-Nishina formula with "simple physics" treatment. In this work, photon buildup factors are calculated for many different cases including "detailed physics" by taking into account coherent and bound-electron Compton scatterings with the Monte Carlo code, MCNP5, and the results are compared with the literature values. They are computed for point isotropic photon sources up to depths of 20 mean free paths and at the three photon energies most widely used (0.06, 0.6 and 6MeV). Calculations are made for both finite and infinite homogeneous ordinary water media. It is concluded that Coherent scattering is very dominant at low energies and for deep penetrations and assumed physical approximation (simple/detailed, finite/infinite) is the critical point for determining shielding material dimensions. After all, it can be stated that all parametric assumptions should be clearly given and indicated in the tabulation of photon buildup factors. PMID:26218451

  3. Reduction of the Buildup Contribution in Gamma Ray Attenuation Measurements and a New Way to Study This Experiment in a Student Laboratory

    ERIC Educational Resources Information Center

    Adamides, E.; Kavadjiklis, A.; Koutroubas, S.K.; Moshonas, N.; Tzedakis, A.; Yiasemides, K.

    2014-01-01

    In continuation of our investigation into the buildup phenomenon appearing in gamma ray attenuation measurements in laboratory experiments we study the dependence of the buildup factor on the area of the absorber in an effort to reduce the buildup of photons. Detailed measurements are performed for up to two mean free paths of [superscript 60]Co…

  4. Accumulation and dissipation of positive charges induced on a PMMA build-up cap of an ionisation chamber by (60)Co gamma-ray irradiation.

    PubMed

    Morishita, Y; Takata, N

    2013-07-01

    The signal current from an ionisation chamber with a PMMA build-up cap decreases with irradiation time due to electric fields produced by positive charges induced on the cap. In the present study, it was confirmed that the signal current decreases faster for irradiation using narrower (60)Co gamma-ray beams. This is because the number of secondary electrons that are emitted from surrounding materials and penetrate the build-up cap is smaller in a narrower gamma-ray beam, so that fewer positive charges are neutralised. The ionisation chamber was first subjected to continuous gamma-ray irradiation for 24 h, following which it was irradiated with shorter periodic gamma-ray bursts while measuring the current signal. This allowed the coefficients of positive charge accumulation and dissipation to be determined. It was found that the dissipation coefficient has a large constant value during gamma-ray irradiation and decreases asymptotically to a small value after irradiation is stopped. From the coefficients, the minimum signal current was calculated, which is the value when accumulation and dissipation balance each other under continuous irradiation. The time required for the signal current to recover following irradiation was also calculated. PMID:23390147

  5. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, ??)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. PMID:24446508

  6. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  7. Estimates for Lorentz factors of gamma-ray bursts from early optical afterglow observations

    SciTech Connect

    Hascoët, Romain; Beloborodov, Andrei M.; Daigne, Frédéric; Mochkovitch, Robert

    2014-02-10

    The peak time of optical afterglow may be used as a proxy to constrain the Lorentz factor ? of the gamma-ray burst (GRB) ejecta. We revisit this method by including bursts with optical observations that started when the afterglow flux was already decaying; these bursts can provide useful lower limits on ?. Combining all analyzed bursts in our sample, we find that the previously reported correlation between ? and the burst luminosity L {sub ?} does not hold. However, the data clearly show a lower bound ?{sub min} that increases with L {sub ?}. We suggest an explanation for this feature: explosions with large jet luminosities and ? < ?{sub min} suffer strong adiabatic cooling before their radiation is released at the photosphere; they produce weak bursts, barely detectable with present instruments. To test this explanation, we examine the effect of adiabatic cooling on the GRB location in the L {sub ?} – ? plane using a Monte Carlo simulation of the GRB population. Our results predict detectable on-axis 'orphan' afterglows. We also derive upper limits on the density of the ambient medium that decelerates the explosion ejecta. We find that the density in many cases is smaller than expected for stellar winds from normal Wolf-Rayet progenitors. The burst progenitors may be peculiar massive stars with weaker winds, or there might exist a mechanism that reduces the stellar wind a few years before the explosion.

  8. Correction factors to account for minor sample height variations in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Jod?owski, P.

    2007-09-01

    It often happens in gamma-ray spectrometry measurements that there is less sample material than required for the given measuring geometry. One approach to this problem is to stick to the original geometry, though a correction factor is to be introduced to account for the difference in the height of the sample material. This correction factor Ch is expressed as the ratio of spectrometer efficiency for the nominal sample height ?( h0) to that obtained for the actual height ?( h). The author determined the correction factor Ch for several radiation energies E, 81.0, 356.0, 661.7 and 1173.2 keV. Two measurement geometries were considered: a Marinelli beaker 710 cm 3 in volume, and a cylindrical sample 31.5 mm in height. The correction factors were obtained experimentally and by Monte Carlo simulation method for h falling within the range h0±8 mm. Ch values obtained by these two methods are consistent. For E?356 keV, Ch value almost does not depend on energy. Ch value varies linearly with d h. For Marinelli beaker for E?356 keV, the correction is 0.9% (1.0% for E=81 keV) for each millimeter of sample height change; for a cylindrical geometry the correction is 1.5% (1.7%). Monte Carlo method was further used to compute Ch values for several other cylindrical geometries. The lower the nominal height of the cylindrical samples, the more sensitive the method to sample height variations. The knowledge of the value Ch enables us to estimate the uncertainty of the measurements, associated with the sample height uncertainty.

  9. A study of the energy absorption and exposure buildup factors of some anti-inflammatory drugs.

    PubMed

    Ekinci, Neslihan; Kavaz, Esra; Özdemir, Yüksel

    2014-08-01

    Human radiation exposure is increasing due to radiation development in science and technology. The development of radioprotective agents is important for protecting patients from the side effects of radiotherapy and for protecting the public from unwanted irradiation. Radioprotective agents are used to reduce the damage caused by radiation in healthy tissues. There are several classes of radioprotective compounds that are under investigation. Analgesics and anti-inflammatory compounds are being considered for treating or preventing the effects of damage due to radiation exposure, or for increasing the chance of survival after exposure to a high dose of radiation. In this study, we investigated the radioprotective effects of some analgesic and anti-inflammatory compounds by evaluating buildup factors. The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) were calculated to select compounds in a 0.015-15 MeV energy region up to a penetration depth of 40 mfp (mean free path). Variations of EABF and EBF with incident photon energy and penetration depth elements were also investigated. Significant variations in both EABF and EBF values were observed for several compounds at the moderate energy region. At energies below 0.15 MeV, EABF and EBF values increased with decreasing equivalent atomic number (Z(eq)) of the samples. In addition, EABF and EBF were the largest for ibuprofen, aspirin, paracetamol, naproxen and ketoprofen at 0.05 and 0.06 MeV, respectively, and the EABF value was 0.1 MeV for aceclofenac. From these results, we concluded that the buildup of photons is less for aceclofenac compared to other materials. PMID:24859334

  10. Improvement of Photon Buildup Factors for Radiological Assessment

    SciTech Connect

    F.G. Schirmers

    2006-07-01

    Slant-path buildup factors for photons between 1 keV and 10 MeV for nine radiation shielding materials (air, aluminum, concrete, iron, lead, leaded glass, polyethylene, stainless steel, and water) are calculated with the most recent cross-section data available using Monte Carlo and discrete ordinates methods. Discrete ordinates calculations use a 244-group energy structure that is based on previous research at Los Alamos National Laboratory (LANL), but extended with the results of this thesis, and its focused studies on low-energy photon transport and the effects of group widths in multigroup calculations. Buildup factor calculations in discrete ordinates benefit from coupled photon/electron cross sections to account for secondary photon effects. Also, ambient dose equivalent (herein referred to as dose) buildup factors were analyzed at lower energies where corresponding response functions do not exist in literature. The results of these studies are directly applicable to radiation safety at LANL, where the dose modeling tool Pandemonium is used to estimate worker dose in plutonium handling facilities. Buildup factors determined in this thesis will be used to enhance the code's modeling capabilities, but should be of interest to the radiation shielding community.

  11. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  12. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  13. CONSTRAINING THE BULK LORENTZ FACTOR OF GAMMA-RAY BURST OUTFLOW IN THE MAGNETIC-DOMINATED JET MODEL

    SciTech Connect

    Chang Zhe; Lin Hainan; Jiang Yunguo E-mail: linhn@ihep.ac.cn

    2012-11-10

    Recent observations by the Fermi-LAT showed that there are delayed arrivals of GeV photons relative to the onset of MeV photons in some gamma-ray bursts (GRBs). In order to avoid a large optical depth, the minimal value of the Lorentz factor has been estimated to be higher than 1000 in some of the brightest bursts. In this paper, we present a detailed calculation of the time delay between the MeV and GeV photons in the framework of the magnetic-dominated jet model. We find that the time delay strongly depends on the saturated bulk Lorentz factor of the jet. Inspired by this fact, we use this model to calculate the Lorentz factors of the four brightest Fermi bursts. The results indicate that the Lorentz factors are much smaller than those obtained from the 'single-zone' scenario. The short burst GRB 090510 has a minimal Lorentz factor of 385, while the three long bursts, GRB 080916c, GRB 090902b, and GRB 090926, have almost the same Lorentz factors with an average value near 260. Another interesting result is that, for long bursts, GeV photons are emitted after the bulk Lorentz factor saturates. For the short GRB, however, MeV and GeV photons are emitted at the same phase, i.e., either in the expansion phase or in the coasting phase.

  14. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  15. Gamma-Ray Bursts

    SciTech Connect

    Paciesas, W.S. ); Fishman, G.J. )

    1992-01-01

    This proceedings represents the works presented at the Gamma-Ray Bursts Workshop -- 1991 which was held on the campus of theUniversity of Alabama in Huntsville, October 16-18. The emphasis ofthe Workshop was to present and discuss new observations of gamma-ray bursts made recently by experiments on the Compton Gamma-RayObservatory (CGRO), Granat, Ginga, Pioneer Venus Orbiter, Prognozand Phobos. These presentations were complemented by some groundbased observations, reanalysis of older data, descriptions offuture gamma-ray burst experiments and a wide-ranging list oftheoretical discussions. Over seventy papers are included in theproceedings. Eleven of them are abstracted for the database. (AIP)

  16. Measuring Ambient Densities and Lorentz Factors of Gamma-Ray Bursts from GeV and Optical Observations

    E-print Network

    Hascoët, Romain; Beloborodov, Andrei M

    2015-01-01

    Fermi satellite discovered that cosmological gamma-ray bursts (GRBs) are accompanied by long GeV flashes. In two GRBs, an optical counterpart of the GeV flash has been detected. Recent work suggests that the GeV+optical flash is emitted by the external blast wave from the explosion in a medium loaded with copious $e^\\pm$ pairs. The full light curve of the flash is predicted by a first-principle radiative transfer simulation and can be tested against observations. Here we examine a sample of 7 bursts with best GeV+optical data and test the model. We find that the observed light curves are in agreement with the theoretical predictions and allow us to measure three parameters for each burst: the Lorentz factor of the explosion, its isotropic kinetic energy, and the external density. With one possible exception of GRB 090510 (which is the only short burst in the sample) the ambient medium is consistent with a wind from a Wolf-Rayet progenitor. The wind density parameter $A=\\rho r^2$ varies in the sample around $1...

  17. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  18. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (editor); Trombka, J. I. (editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  19. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  20. Measuring Ambient Densities and Lorentz Factors of Gamma-Ray Bursts from GeV and Optical Observations

    NASA Astrophysics Data System (ADS)

    Hascoët, Romain; Vurm, Indrek; Beloborodov, Andrei M.

    2015-11-01

    The Fermi satellite detected GeV flashes from cosmological gamma-ray bursts (GRBs). In two GRBs, an optical counterpart of the GeV flash was detected. Such flashes are predicted by the model of a blast wave running into a medium loaded with copious {e}+/- pairs. Here we examine a sample of seven bursts with the best GeV+optical data and further test the model. We find that the observed light curves are in agreement with the theoretical predictions, which allows us to measure three parameters for each burst: the Lorentz factor of the explosion, its isotropic kinetic energy, and the external density. With the possible exception of GRB 090510 (the only short burst in the sample), the ambient medium is consistent with a wind from a Wolf–Rayet progenitor. The wind density parameter A=? {r}2 varies in the sample around 1011 g cm?1. The initial Lorentz factor of the blast wave varies from 200 to 540, and correlates with the burst luminosity. Radiative efficiency of the prompt emission varies between 0.1 and 0.8. For the two bursts with a detected optical flash, GRB 120711A and GRB 130427A, we also estimate the magnetization of the external blast wave. Remarkably, despite its small number of free parameters, the model reproduces the entire optical light curve of GRB 120711A (with its sharp peak, fast decay, plateau, and break) as well as the GeV data. The spectra of GeV flashes are predicted to extend above 0.1 TeV, where they can be detected by ground-based Cherenkov telescopes.

  1. Gamma-ray Astronomy

    E-print Network

    Jim Hinton

    2007-12-20

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  2. GRB 090510: A DISGUISED SHORT GAMMA-RAY BURST WITH THE HIGHEST LORENTZ FACTOR AND CIRCUMBURST MEDIUM

    SciTech Connect

    Muccino, M.; Ruffini, R.; Bianco, C. L.; Izzo, L.; Penacchioni, A. V.; Pisani, G. B.

    2013-07-20

    GRB 090510, observed by both Fermi and AGILE satellites, is the first bright short-hard gamma-ray burst (GRB) with an emission from the keV up to the GeV energy range. Within the Fireshell model, we interpret the faint precursor in the light curve as the emission at the transparency of the expanding e {sup +} e {sup -} plasma: the Proper-GRB. From the observed isotropic energy, we assume a total plasma energy E{sup tot}{sub e{sup +}e{sup -}}=(1.10{+-}0.06) Multiplication-Sign 10{sup 53} erg and derive a Baryon load B = (1.45 {+-} 0.28) Multiplication-Sign 10{sup -3} and a Lorentz factor at transparency {Gamma}{sub tr} = (6.7 {+-} 1.6) Multiplication-Sign 10{sup 2}. The main emission {approx}0.4 s after the initial spike is interpreted as the extended afterglow, due to the interaction of the ultrarelativistic baryons with the CircumBurst Medium (CBM). Using the condition of fully radiative regime, we infer a CBM average spherically symmetric density of (n{sub CBM}) = (1.85 {+-} 0.14) Multiplication-Sign 10{sup 3} particles cm{sup -3}, one of the highest found in the Fireshell model. The value of the filling factor, 1.5 Multiplication-Sign 10{sup -10}{<=}R{<=}3.8 Multiplication-Sign 10{sup -8}, leads to the estimate of filaments with densities n{sub fil} = n{sub CBM}/R approx. (10{sup 6}-10{sup 14}) particles cm{sup -3}. The sub-MeV and the MeV emissions are well reproduced. When compared to the canonical GRBs with (n{sub CBM}) Almost-Equal-To 1 particles cm{sup -3} and to the disguised short GRBs with (n{sub CBM}) Almost-Equal-To 10{sup -3} particles cm{sup -3}, the case of GRB 090510 leads to the existence of a new family of bursts exploding in an overdense galactic region with (n{sub CBM}) Almost-Equal-To 10{sup 3} particles cm{sup -3}. The joint effect of the high {Gamma}{sub tr} and the high density compresses in time and 'inflates' in intensity the extended afterglow, making it appear as a short burst, which we here define as a 'disguised short GRB by excess'. The determination of the above parameter values may represent an important step toward the explanation of the GeV emission.

  3. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  4. High Energy Gamma Rays

    E-print Network

    R. Mukherjee

    2000-09-22

    This article reviews the present status of high energy gamma-ray astronomy at energies above 30 MeV. Observations in the past decade using both space- and ground-based experiments have been primarily responsible for giving a tremendous boost to our knowledge of the high energy Universe. High energy gamma-rays have been detected from a wide range of Galactic and extragalactic astrophysical sources, such as gamma-ray bursters, pulsars, and active galaxies. These observations have established high energy gamma-ray astronomy as a vital and exciting field, that has a bright future. This review summarizes the experimental techniques, observations and results obtained with recent experiments, and concludes with a short description of future prospects.

  5. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  6. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  7. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor (Berkeley, CA)

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  8. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  9. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha

    2015-10-01

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (?m); half value layer (HVL); tenth value layer (TVL); effective atomic number (Zeff), electron density (Nel), effective atomic weight (Aeff) and buildup factor. For gamma rays, the accurate measurements of ?m (cm2 g-1) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of ?m. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on ?m of six low-Z (10gamma-ray energies 661.66 keV, 1173.24 keV and 1332.50 keV. A computer program (GRIC2-toolkit) was designed for theoretical evaluation of shielding parameters of any material. Good agreement of theoretical and measured values of ?m was observed for all absorbers with thickness ?0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays.

  10. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  11. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  12. Gamma-ray events thunderclouds

    E-print Network

    California at Berkeley, University of

    Gamma-ray events from thunderclouds Joseph R. Dwyer Department of Physics and Space Sciences-ray bursts are associated with leader stepping #12;A ground level gamma-ray flash observed during the initial stage of rocket-triggered lightning #12;The gamma-ray flash occurred at the same time the upward leader

  13. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    SciTech Connect

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-15

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  14. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  15. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  16. Gamma-ray spectroscopy - Status and prospects

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.

    Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10 to the -4th to 10 to the -3rd ph/sq cm-sec have been achieved for steady sources and 10 to the -2nd to 1 ph/sq cm-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.

  17. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  18. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  19. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    SciTech Connect

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Bulgarelli, A.; Trifoglio, M.; Di Cocco, G.; Gianotti, F.; Argan, A.; De Paris, G.; Trois, A.; Del Monte, E.; Costa, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Rubini, A.; Sabatini, S.

    2010-09-17

    Terrestrial gamma-ray flashes (TGFs) are very short bursts of high-energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of {approx}5-10 deg. at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the subsatellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  20. Noiseless coding for the Gamma Ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rice, R.; Lee, J. J.

    1985-01-01

    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor.

  1. {gamma} ray astronomy with muons

    SciTech Connect

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-04-01

    Although {gamma} ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard {gamma} ray spectra there is a relative {open_quotes}enhancement{close_quotes} of muons from {gamma} ray primaries as compared to that from nucleon primaries. All shower {gamma} rays above the photoproduction threshold contribute to the number of muons N{sub {mu}}, which is thus proportional to the primary {gamma} ray energy. With {gamma} ray energy 50 times higher than the muon energy and a probability of muon production by the {gamma}{close_quote}s of about 1{percent}, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10{sup 4}. The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by {gamma} ray detectors such as MILAGRO. TeV muons from {gamma} ray primaries, on the other hand, are rare because they are only produced by higher energy {gamma} rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. {copyright} {ital 1997} {ital The American Physical Society}

  2. A UNIFORM CORRELATION BETWEEN SYNCHROTRON LUMINOSITY AND DOPPLER FACTOR IN GAMMA-RAY BURSTS AND BLAZARS: A HINT OF SIMILAR INTRINSIC LUMINOSITIES?

    SciTech Connect

    Wu Qingwen; Zou Yuanchuan; Wang Dingxiong; Cao Xinwu; Chen Liang E-mail: zouyc@hust.edu.cn E-mail: cxw@shao.ac.cn

    2011-10-10

    We compile 23 gamma-ray bursts (GRBs) and 21 blazars with estimated Doppler factors, and the Doppler factors of GRBs are estimated from their Lorentz factors by assuming their jet viewing angles {theta} {yields} 0{sup 0}. Using the conventional assumption that the prompt emission of GRBs is dominated by the synchrotron radiation, we calculate the synchrotron luminosity of GRBs from their total isotropic energy and burst duration. Intriguingly, we discover a uniform correlation between the synchrotron luminosity and Doppler factor, L{sub syn}{proportional_to}D{sup 3.1}, for GRBs and blazars, which suggests that they may share some similar jet physics. One possible reason is that GRBs and blazars have, more or less, similar intrinsic synchrotron luminosities and both of them are strongly enhanced by the beaming effect. After Doppler and redshift correction, we find that the intrinsic peak energy of the GRBs ranges from 0.1 to 3 keV with a typical value of 1 keV. We further correct the beaming effect for the observed luminosity of GRBs and find that a positive correlation exists between the intrinsic synchrotron luminosity and peak energy for GRBs, which is similar to that of blazars. Our results suggest that both the intrinsic positive correlation and the beaming effect may be responsible for the observed tight correlation between the isotropic energy and the peak energy in GRBs (the so-called Amati relation).

  3. GeV AND HIGHER ENERGY PHOTON INTERACTIONS IN GAMMA-RAY BURST FIREBALLS AND SURROUNDINGS

    E-print Network

    Zhang, Bing

    arising in gamma-ray burst internal shocks, using exact cross sections for the relevant processes. We find large fireball bulk Lorentz factors, the fireball is optically thin at all energies. Both for self-absorbed on the intergalactic magnetic field strength. Subject headinggs: gamma rays: bursts -- gamma rays: theory -- radiation

  4. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  5. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. There has been tremendous recent progress in our understanding of bursts with the new data from the Swift mission. Swift was launched in November 2004 and is a multiwave length observatory designed to determine the origin of bursts and use them to probe the early Universe. It was developed and is being operated by an international team of scientists from the US, UK and Italian. The first year of findings from the mission will be presented. A large step forward has been made in our understanding of the mysterious short GRBs. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  6. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  7. Gamma-Ray Pulsar Revolution

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia A.

    2014-08-01

    Isolated neutron stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. In the 1970s, only two sources had been identified, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space in both the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star (NS) magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting INS, adding a new dimension to the INS family. We are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known gamma-ray-emitting NSs. The 100 mark was crossed in 2011, and we are now over 150. The gamma-ray-emitting NS population exhibits roughly equal numbers of radio-loud and radio-quiet young INSs, plus an astonishing, and unexpected, group of isolated and binary millisecond pulsars (MSPs). The number of MSPs is growing so rapidly that they are on their way to becoming the most numerous members of the family of gamma-ray-emitting NSs. Even as these findings have set the stage for a revolution in our understanding of gamma-ray-emitting NSs, long-term monitoring of the gamma-ray sky has revealed evidence of flux variability in the Crab Nebula as well as in the pulsed emission from PSR J2021+4026, challenging a four-decades-old, constant-emission paradigm. Now we know that both pulsars and their nebulae can, indeed, display variable emission.

  8. WIDE RADIO BEAMS FROM {gamma}-RAY PULSARS

    SciTech Connect

    Ravi, V.; Manchester, R. N.; Hobbs, G.

    2010-06-10

    We investigate the radio and {gamma}-ray beaming properties of normal and millisecond pulsars (MSPs) by selecting two samples from the known populations. The first, Sample G, contains pulsars which are detectable in blind searches of {gamma}-ray data from the Fermi Large Area Telescope. The second, Sample R, contains pulsars detectable in blind radio searches which have spin-down luminosities E>10{sup 34} erg s{sup -1}. We analyze the fraction of the {gamma}-ray-selected Sample G which have detectable radio pulses and the fraction of the radio-selected Sample R which have detectable {gamma}-ray pulses. Twenty of our 35 Sample G pulsars have already observed radio pulses. This rules out low-altitude polar-cap beaming models if, as is currently believed, {gamma}-ray beams are generated in the outer magnetosphere and are very wide. We further find that, for the highest-E pulsars, the radio and {gamma}-ray beams have comparable beaming factors, i.e., the beams cover similar regions of the sky as the star rotates. For lower-E {gamma}-ray emitting pulsars, the radio beams have about half of the {gamma}-ray sky coverage. These results suggest that, for high-E young and MSPs, the radio emission originates in wide beams from regions high in the pulsar magnetosphere, probably close to the null-charge surface and to the {gamma}-ray emitting regions. Furthermore, it suggests that for these high-E pulsars, as in the {gamma}-ray case, features in the radio profile represent caustics in the emission beam pattern.

  9. HIGH-ENERGY GAMMA-RAY AFTERGLOWS FROM LOW-LUMINOSITY GAMMA-RAY BURSTS

    SciTech Connect

    He Haoning; Wang Xiangyu; Yu Yunwei; Meszaros, Peter

    2009-12-01

    The observations of gamma-ray bursts (GRBs) such as 980425, 031203 and 060218, with luminosities much lower than those of other classic bursts, lead to the definition of a new class of GRBs-LL-GRBs. The nature of the outflow responsible for them is not yet clear. Two scenarios have been suggested: one is the conventional relativistic outflow with initial Lorentz factor of order of GAMMA{sub 0} approx> 10 and the other is a trans-relativistic outflow with GAMMA{sub 0} approx = 1-2. Here, we compare the high-energy gamma-ray afterglow emission from these two different models, taking into account both synchrotron self-inverse Compton (SSC) scattering and the external inverse Compton scattering due to photons from the cooling supernova or hypernova envelope (SNIC). We find that the conventional relativistic outflow model predicts a relatively high gamma-ray flux from SSC at early times (<10{sup 4} s for typical parameters) with a rapidly decaying light curve, while in the trans-relativistic outflow model, one would expect a much flatter light curve of high-energy gamma-ray emission at early times, which could be dominated by both the SSC emission and the SNIC emission, depending on the properties of the underlying supernova and the shock parameter epsilon{sub e} and epsilon{sub B}. The Fermi Gamma-ray Space Telescope should be able to distinguish between the two models in the future.

  10. Cloaked Gamma Ray Bursts

    E-print Network

    Eichler, David

    2014-01-01

    It is suggested that many $\\gamma$-ray bursts (GRBs) are cloaked by an ultra-relativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include a) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and b) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an {\\it exposed} GRB, in contrast to those cloaked by baryonic shells. \\end{abstract}

  11. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  12. Gamma Rays from Dark Matter

    E-print Network

    R. J. Protheroe

    2000-11-02

    I give a brief review of high energy gamma-ray signatures of dark matter. The decay of massive $X$-particles and subsequent hadronization have been suggested as the origin of the highest energy cosmic rays. Propagation over cosmological distances to Earth (as would be the case in some topological defect origin models for the $X$-particles) results in potentially observable gamma-ray fluxes at GeV energies. Massive relic particles on the other hand, would cluster in galaxy halos, including that of our Galaxy, and may give rise to anisotropic gamma ray and cosmic ray signals at ultra high energies. Future observations above 100 Gev of gamma rays due to WIMP annihilation in the halo of the Galaxy may be used to place constraints on supersymmetry parameter space.

  13. Gamma Ray Bursts and CETI

    E-print Network

    Frank D. Smith Jr

    1993-02-10

    Gamma ray burst sources are isotropically distributed. They could be located at distances $\\sim 1000$ AU. (Katz \\cite{JK92}) GRB signals have many narrow peaks that are unresolved at the millisecond time resolution of existing observations. \\cite{JK87} CETI could use stars as gravitational lenses for interstellar gamma ray laser beam communication. Much better time resolution of GRB signals could rule out (or confirm?) the speculative hypothesis that GRB = CETI.

  14. Gamma-ray burst early optical afterglows: implications for the initial Lorentz factor and the central engine

    E-print Network

    Bing Zhang; Shiho Kobayashi; Peter Meszaros

    2003-06-06

    Early optical afterglows have been observed from GRB 990123, GRB 021004, and GRB 021211, which reveal rich emission features attributed to reverse shocks. It is expected that Swift will discover many more early afterglows. Here we investigate in a unified manner both the forward and the reverse external shock emission components, and introduce a straightforward recipe for directly constraining the initial Lorentz factor of the fireball using early optical afterglow data. The scheme is largely independent of the shock microphysics. We identify two types of combinations of the reverse and forward shock emission, and explore their parameter regimes. We also discuss a possible diagnostic for magnetized ejecta. There is evidence that the central engine of GRB 990123 is strongly magnetized.

  15. Comparison of dose estimates using the buildup-factor method and a Baryon transport code (BRYNTRN) with Monte Carlo results

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.; Nealy, John E.; Cucinotta, Francis A.

    1990-01-01

    Continuing efforts toward validating the buildup factor method and the BRYNTRN code, which use the deterministic approach in solving radiation transport problems and are the candidate engineering tools in space radiation shielding analyses, are presented. A simplified theory of proton buildup factors assuming no neutron coupling is derived to verify a previously chosen form for parameterizing the dose conversion factor that includes the secondary particle buildup effect. Estimates of dose in tissue made by the two deterministic approaches and the Monte Carlo method are intercompared for cases with various thicknesses of shields and various types of proton spectra. The results are found to be in reasonable agreement but with some overestimation by the buildup factor method when the effect of neutron production in the shield is significant. Future improvement to include neutron coupling in the buildup factor theory is suggested to alleviate this shortcoming. Impressive agreement for individual components of doses, such as those from the secondaries and heavy particle recoils, are obtained between BRYNTRN and Monte Carlo results.

  16. Gamma-ray flares from the Crab Nebula.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. PMID:21212321

  17. Analytical expressions for the gate utilization factors of passive multiplicity counters including signal build-up

    SciTech Connect

    Croft, Stephen; Evans, Louise G; Schear, Melissa A

    2010-01-01

    In the realm of nuclear safeguards, passive neutron multiplicity counting using shift register pulse train analysis to nondestructively quantify Pu in product materials is a familiar and widely applied technique. The approach most commonly taken is to construct a neutron detector consisting of {sup 3}He filled cylindrical proportional counters embedded in a high density polyethylene moderator. Fast neutrons from the item enter the moderator and are quickly slowed down, on timescales of the order of 1-2 {micro}s, creating a thermal population which then persists typically for several 10's {micro}s and is sampled by the {sup 3}He detectors. Because the initial transient is of comparatively short duration it has been traditional to treat it as instantaneous and furthermore to approximate the subsequent capture time distribution as exponential in shape. With these approximations simple expressions for the various Gate Utilization Factors (GUFs) can be obtained. These factors represent the proportion of time correlated events i.e. Doubles and Triples signal present in the pulse train that is detected by the coincidence gate structure chosen (predelay and gate width settings of the multiplicity shift register). More complicated expressions can be derived by generalizing the capture time distribution to multiple time components or harmonics typically present in real systems. When it comes to applying passive neutron multiplicity methods to extremely intense (i.e. high emission rate and highly multiplying) neutron sources there is a drive to use detector types with very fast response characteristics in order to cope with the high rates. In addition to short pulse width, detectors with a short capture time profile are also desirable so that a short coincidence gate width can be set in order to reduce the chance or Accidental coincidence signal. In extreme cases, such as might be realized using boron loaded scintillators, the dieaway time may be so short that the build-up (thermalization transient) within the detector cannot be ignored. Another example where signal build-up might be observed is when a {sup 3}He based system is used to track the evolution of the time correlated signal created by a higher multiplying item within a reflective configuration such as the measurement of a spent fuel assembly. In this work we develop expressions for the GUFs which include signal build-up.

  18. Theories of. gamma. -ray bursts

    SciTech Connect

    Katz, J.I.

    1983-01-01

    ..gamma..-ray bursts have remained an enigma for a decade. This is attributable to the difficulty of obtaining accurate positions, the low duty cycle of burst sources which prevents planned observations, and their low mean power which rules out arguments based on gross energetics. Several lines of evidence now point to an origin in neutron star magnetospheres, confirming early speculations largely based on the availability of high energy density. The evidence includes spectral features interpreted as cyclotron and gravitationally redshifted annihilation lines, and temporal periodicity interpreted as rotation. The reason for the outbursts remains as much a mystery as when they were first discovered. It is unclear whether ..gamma..-ray bursters are located in binary stars, or whether this is incidental or essential to their activity. It is not known if there is any evolutionary connection or physical resemblance between ..gamma..-ray bursters and pulsars or accretional ..gamma..-ray sources. Some of the problems which arise in constructing models for ..gamma..-ray bursters are discussed, with particular attention to the event of March 5, 1979, physical processes at high energy density, and the role of electron-positron pairs in producing line and continuum radiation. 21 references.

  19. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  20. Gamma rays from molecular clouds

    E-print Network

    Stefano Gabici; Felix Aharonian; Pasquale Blasi

    2006-10-02

    It is believed that the observed diffuse gamma ray emission from the galactic plane is the result of interactions between cosmic rays and the interstellar gas. Such emission can be amplified if cosmic rays penetrate into dense molecular clouds. The propagation of cosmic rays inside a molecular cloud has been studied assuming an arbitrary energy and space dependent diffusion coefficient. If the diffusion coefficient inside the cloud is significantly smaller compared to the average one derived for the galactic disk, the observed gamma ray spectrum appears harder than the cosmic ray spectrum, mainly due to the slower penetration of the low energy particles towards the core of the cloud. This may produce a great variety of gamma ray spectra.

  1. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  2. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  3. New Fermi-LAT Event Reconstruction Reveals More High-energy Gamma Rays from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Atwood, W. B.; Baldini, L.; Bregeon, J.; Bruel, P.; Chekhtman, A.; Cohen-Tanugi, J.; Drlica-Wagner, A.; Granot, J.; Longo, F.; Omodei, N.; Pesce-Rollins, M.; Razzaque, S.; Rochester, L. S.; Sgrò, C.; Tinivella, M.; Usher, T. L.; Zimmer, S.

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  4. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    SciTech Connect

    Atwood, W. B.; Baldini, L.; Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M.; Bruel, P.; Cohen-Tanugi, J.; Granot, J.; Longo, F.; Razzaque, S.; Zimmer, S. E-mail: nicola.omodei@stanford.edu

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  5. Quasars, blazars, and gamma rays.

    PubMed

    Dermer, C D; Schlickeiser, R

    1992-09-18

    Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature. PMID:17841159

  6. Skeletons and gamma ray radiosurgery

    E-print Network

    Murty, Ram

    Skeletons and gamma ray radiosurgery The Mathematics of Shapes #12;What is gamma-knife surgery be targeted, the problem can be formulated mathematically as follows: #12;The skeleton of a region Let |X-Y| denote the Euclidean distance between two points in the plane or in space. #12;Two dimensional skeletons

  7. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  8. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  9. On Gamma-Ray Bursts

    E-print Network

    Remo Ruffini; Maria Grazia Bernardini; Carlo Luciano Bianco; Letizia Caito; Pascal Chardonnet; Christian Cherubini; Maria Giovanna Dainotti; Federico Fraschetti; Andrea Geralico; Roberto Guida; Barbara Patricelli; Michael Rotondo; Jorge Armando Rueda Hernandez; Gregory Vereshchagin; She-Sheng Xue

    2008-04-17

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model. [...] We then turn to the special role of the baryon loading in discriminating between "genuine" short and long or "fake" short GRBs [...] We finally turn to the GRB-Supernova Time Sequence (GSTS) paradigm: the concept of induced gravitational collapse. [...] We then present some general conclusions.

  10. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  11. Light Curves of Swift Gamma Ray Bursts

    E-print Network

    Paolo Cea

    2006-09-22

    Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short - long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars.

  12. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  13. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (editor); Ramaty, R. (editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  14. High Energy Neutrinos from Gamma Ray Bursts

    E-print Network

    Charles D. Dermer; Armen Atoyan

    2003-07-09

    We treat high-energy neutrino production in GRBs. Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > 10 TeV neutrinos from GRBs with Doppler factors > 200, inferred from gamma-ray observations, would support the supranova model. Detection of powerful bursts at fluence levels > 3x10^{-4} erg/cm^2 offer a realistic prospect for detection of muon neutrinos.

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  17. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  18. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  19. Astrophysical Gamma Ray Emission Lines

    E-print Network

    R. Ramaty; R. E. Lingenfelter

    1995-03-10

    We review the wide range of astrophysical observations of gamma ray emission lines and we discuss their implications. We consider line emission from solar flares, the Orion molecular cloud complex, supernovae 1987A and 1991T, the supernova remnants Cas A and Vela, the interstellar medium, the Galactic center region and several Galactic black hole candidates. The observations have important, and often unique, implications on particle acceleration, star formation, processes of nucleosynthesis, Galactic evolution and compact object physics.

  20. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  1. Gev Gamma-ray Astronomy in the Era of GLAST

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) is a high energy astronomy mission planned for launch in 2005. GLAST features two instruments; the Large Area Telescope (LAT) operating from 20 MeV - 300 GeV and the Gamma-ray Burst Monitor (GBM) operating from 10 keV - 25 MeV. GLAST observations will contribute to our understanding of active galactic nuclei and their jets, gamma-ray bursts, extragalactic and galactic diffuse emissions, dark matter, supernova remnants, pulsars, and the unidentified high energy gamma-ray sources. The LAT sensitivity is 4 x 10(exp -9) photons per square centimeter per second (greater than 100 MeV) for a one year all-sky survey, which is a factor of greater than 20 better than CGRO/EGRET. GLAST spectral observations of gamma-ray bursts cover over 6 orders of magnitude in energy thanks to the context observations of the GBM. The upper end of the LAT energy range merges with the low energy end of ground-based observatories to provide a remarkable new perspective on particle acceleration in the Universe.

  2. The diffuse gamma-ray flux associated with sub-PEV/PEV neutrinos from starburst galaxies

    SciTech Connect

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2014-10-01

    One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E{sub ?}{sup ?2} neutrino spectrum, we find that the diffuse gamma-ray flux contributes about 20% of the observed diffuse gamma-ray background in the 100 GeV range. However, for a steeper neutrino spectrum, this synchrotron loss effect is less important, since the energy fraction in absorbed gamma rays becomes lower.

  3. Gamma-ray spectrometer utilizing xenon at high pressure

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-08-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166{degrees}C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen.

  4. Gamma rays and cosmic rays at Venus: The Pioneer Venus gamma ray detector and considerations for future measurements

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Lawrence, David J.

    2015-05-01

    We draw attention to, and present a summary archive of the data from, the Pioneer Venus Orbiter Gamma-ray Burst Detector (OGBD), an instrument not originally conceived with Venus science in mind. We consider the possibility of gamma-ray flashes generated by lightning and model the propagation of gamma rays in the Venusian atmosphere, finding that if gamma rays originate at the upper range of reported cloud top altitudes (75 km altitude), they may be attenuated by factors of only a few, whereas from 60 km altitude they are attenuated by over two orders of magnitude. The present archive is too heavily averaged to reliably detect such a source (and we appeal to investigators who may have retained a higher-resolution archive), but the data do provide a useful and unique record of the cosmic ray flux at Venus 1978-1993. We consider other applications of future orbital gamma ray data, such as atmospheric occultations and the detection of volcanic materials injected high in the atmosphere.

  5. Non-association of a celestial gamma ray source with the new Milky Way satellite galaxy

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.; Thompson, D. J.; Fichtel, C. E.

    1975-01-01

    The newly discovered satellite galaxy located in the Milky Way galactic anti-center region is discussed along with the possibility that a nearby gamma ray source is associated with it. The factors which led to the conclusion that the gamma ray excess is not associated with the galaxy are considered.

  6. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  7. Gamma-ray burst reprocessing

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1988-01-01

    A review of three theoretical models for the generation of transient optical emission thought to accompany the gamma-ray bursts is presented. The physics of reprocessing by Compton-heated electrons in the magnetosphere of a highly magnetized neutron star, the surface layers of a companion star, and an accretion disk are discussed. The spectral shapes, time scales, and arrival time delays between low and high energy photons predicted by the models are compared. These predictions are so different that broad band monitoring could be used to indicate which of the three scenarios (if any) is correct.

  8. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  9. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  10. SU-E-T-59: Calculations of Collimator Scatter Factors (Sc) with and Without Custom-Made Build-Up Caps for CyberKnife

    SciTech Connect

    Wokoma, S; Yoon, J; Jung, J; Lee, S

    2014-06-01

    Purpose: To investigate the impact of custom-made build-up caps for a diode detector in robotic radiosurgery radiation fields with variable collimator (IRIS) for collimator scatter factor (Sc) calculation. Methods: An acrylic cap was custom-made to fit our SFD (IBA Dosimetry, Germany) diode detector. The cap has thickness of 5 cm, corresponding to a depth beyond electron contamination. IAEA phase space data was used for beam modeling and DOSRZnrc code was used to model the detector. The detector was positioned at 80 cm source-to-detector distance. Calculations were performed with the SFD, with and without the build-up cap, for clinical IRIS settings ranging from 7.5 to 60 mm. Results: The collimator scatter factors were calculated with and without 5 cm build-up cap. They were agreed within 3% difference except 15 mm cone. The Sc factor for 15 mm cone without buildup was 13.2% lower than that with buildup. Conclusion: Sc data is a critical component in advanced algorithms for treatment planning in order to calculate the dose accurately. After incorporating build-up cap, we discovered differences of up to 13.2 % in Sc factors in the SFD detector, when compared against in-air measurements without build-up caps.

  11. Constraints on relativity violations from gamma-ray bursts.

    PubMed

    Kostelecký, V Alan; Mewes, Matthew

    2013-05-17

    Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million. PMID:25167393

  12. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  13. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  14. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  15. Gamma rays from star-forming regions

    E-print Network

    Gustavo E. Romero

    2008-10-15

    Star-forming regions have been tentatively associated with gamma-ray sources since the early days of the COS B satellite. After the Compton Gamma-Ray Observatory, the statistical evidence for such an association has became overwhelming. Recent results from Cherenkov telescopes indicate that some high-energy sources are produced in regions of active star formation like Cygnus OB2 and Westerlund 2. In this paper I will briefly review what kind of stellar objects can produce gamma-ray emission in star-forming regions and I will suggest that the formation process of massive stars could in principle result in the production of observable gamma rays.

  16. Gamma rays from compact binary system

    E-print Network

    Josep M. Paredes

    2008-10-24

    Some of the very high energy (VHE) gamma-ray sources detected with the modern generation of Cherenkov telescopes have been identified with previously known X-ray binary systems. These detections demonstrate the richness of non-thermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. Recently, the well-known microquasar Cygnus X-3 seems to be associated with a gamma-ray source detected with AGILE. Here I summarise the main observational results on gamma-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE gamma-rays.

  17. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts. PMID:17293332

  18. GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.

  19. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  20. GAMMA-RAY LARGE AREA SPACE TELESCOPE

    E-print Network

    Nishikawa, Ken-Ichi

    SPACE FLIGHT CENTER GREENBELT, MARYLAND #12;433-PLAN-0009 ii GAMMA-RAY LARGE AREA SPACE TELESCOPE (GLAST) OBSERVATORY PROJECT DATA MANAGEMENT PLAN December 20, 2007 NASA Goddard Space Flight Center Greenbelt Ground Network GRB Gamma-Ray Burst GSFC Goddard Space Flight Center GSSC GLAST Science Support Center GUG

  1. Capabilities of germanium detectors. [gamma ray spectoscopy

    NASA Technical Reports Server (NTRS)

    Willett, J. B.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.

    1978-01-01

    The gamma ray detection efficiency and energy resolution of germanium detectors is reviewed. A general sensitivity equation for gamma-ray detectors is presented and calculated sensitvity curves are shown for a large volume balloon-borne spectrometer using germanium detectors. Improvement anticipated from a planned satellite experiment using germanium detectors is discussed.

  2. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  3. Calibration of Gamma-Ray Brachytherapy Sources.

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey Ford

    The intensity of ('137)Cs, ('192)Ir, and ('226)Ra brachytherapy sources is currently specified in terms of exposure rate as measured in a scatter-free geometry utilizing a long source to detector distance. For reasons of convenience, such sources are routinely calibrated using some type of re-entrant ionization chamber such as the dose calibrator investigated in this thesis. Although it is known that the calibrator response (reading/unit exposure rate) varies significantly from one source to another, this phenomenon is usually attributed to the intrinsic energy response of the instrument. However, investigation by empirical, analytic, and Monte Carlo methodologies shows that source filtration depresses dose calibrator response in the range of 2% for ('137)Cs (0.65mm stainless steel filtration) to 10.5% for a platinum-clad ('192)Ir seed, relative to an unfiltered point source having the same (gamma)-ray spectrum as the given filtered source. Only the Monte Carlo simulation accurately predicted the filtration effect. The analytic model, derived from the Sievert integral, underestimated the effect by 1 to 3.5%. These results demonstrate that an exposure calibrated standard source is required to establish calibrator response for each clinically used filtration as well as (gamma)-ray spectrum. A more general consequence of this analysis is that the accuracy of computed exposure rate distributions for filtered sources significantly improves, given uncertainties in filtration corrections and spectroscopic data, when source intensity is measured in terms of exposure rate rather than absolute activity. The dosimetric error introduced by the Sievert approximation, relative to the more rigorous Monte Carlo results, is reduced by a factor of 2-3 when exposure rate, rather than activity calibration, is adopted. Similarly, exposure calibration is shown to reduce the sensitivity of computed exposure rate to spectroscopic uncertainty by a factor of 75-100.

  4. Gamma-Ray Line Astrophysics

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.

    2011-05-01

    Nuclear gamma-ray lines provide a unique window on the high energy Universe, especially so for supernovae and nuclear astrophysics. The potential for significant contributions to the understanding of SNe Ia, as well as the large potential for new discoveries, has long been recognized, but technical progress in this challenging energy band has been slow. I will review the groundbreaking discoveries of CGRO and INTEGRAL, and discuss how these have inspired and driven the development of powerful new instrumentation over the past decade. I will preview the expected results from NuSTAR, where the next major advances in nuclear line astronomy will be achieved. In addition I will look forward to the next generation of MeV instruments currently under development, including wide-field Compton and focusing Laue lens telescopes.

  5. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  6. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  7. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  8. Gamma-ray pulsars: a gold mine

    E-print Network

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  9. Failed gamma-ray bursts and orphan afterglows

    E-print Network

    Y. F. Huang; Z. G. Dai; T. Lu

    2002-03-06

    It is believed that orphan afterglow searches can help to measure the beaming angle in gamma-ray bursts (GRBs). Great expectations have been put on this method. We point out that the method is in fact not as simple as we originally expected. Due to the baryon-rich environment that is common to almost all popular progenitor models, there should be many failed gamma-ray bursts, i.e., fireballs with Lorentz factor much less than 100 -- 1000, but still much larger than unity. In fact, the number of failed gamma-ray bursts may even be much larger than that of successful bursts. Owing to the existence of these failed gamma-ray bursts, there should be many orphan afterglows even if GRBs are due to isotropic fireballs, then the simple discovery of orphan afterglows never means that GRBs be collimated. Unfortunately, to distinguish a failed-GRB orphan and a jetted but off-axis GRB orphan is not an easy task. The major problem is that the trigger time is unknown. Some possible solutions to the problem are suggested.

  10. Gamma rays and the origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  11. Are 0. 1%-accurate gamma-ray assays possible for /sup 235/U solutions

    SciTech Connect

    Parker, J.L.

    1983-01-01

    The factors influencing the accuracy of passive gamma-ray assay of uniform, homogeneous solution samples have been studied in some detail, particularly for the assay of /sup 235/U in uranium solutions. Factors considered are the overall long-term electronic stability, the information losses caused by the rate-related electronic processes of pulse pileup and dead-time, and the self-attenuation of gamma rays within the samples. Both experimental and computational studies indicate that gamma-ray assay procedures for solution samples of moderate size (from approx. 10 to perhaps a few hundred milliliters) are now capable of accuracies approaching 0.1% in many practical cases.

  12. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  13. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  14. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  15. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  16. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  17. HEAO-1 observations of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Hueter, G. J.; Matteson, J. L.

    1985-01-01

    A search of data from the High Energy X-Ray and Low Energy Gamma Ray Experiment on HEAO-1 uncovered 14 gamma ray bursts. Nine of these events are reported for the first tiome. Except for the faintest events, all of the bursts detected by this experiment have been measured above an MeV, thereby confirming the hard spectral character of gamma ray burst spectra reported by SMM. Results give a burst rate of at least 105 per year above 6 times 10 to the minus 7th power ergs, which is consistent with previous measurements of burst frequency.

  18. Atmospheric Cherenkov Gamma-ray Telescopes

    E-print Network

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  19. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  20. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  1. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  2. Gamma-ray Burst Cosmology

    E-print Network

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  3. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Barbieri, C.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cuoco, A.; Cutini, S.; D’Ammando, F.; Desiante, F. de Palma R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hagiwara, K.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Johnson, T. J.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Marshall, F.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naletto, G.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Parkinson, P. M. Saz; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Uchiyama, Y.; Vianello, G.; Wood, K. S.; Wood, M.; Zampieri, L.

    2015-11-01

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga–electron volt gamma rays from the young pulsar PSR J0540–6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar’s by a factor of 20. PSR J0540–6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  4. Emission of Radio Waves in Gamma Ray Bursts and Axionic Boson Stars

    E-print Network

    Aiichi Iwazaki

    1999-08-26

    We point out that the bursts of photons with the energy of the axion mass may appear coincidentally with gamma ray bursts if the gamma ray bursts are caused by collisions between neutron stars and axionic boson stars. In this mechanism, jets are formed in the collisions with large Lorentz factors $\\geq 10^2$. We explain qualitatively time-dependent complex structures of gamma ray bursts as well as the large energy problem. Therefore, with detection of the monochromatic photons we can test the model and determine the axion mass.

  5. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. PMID:26564852

  6. Gamma Rays in a Spectrum from the Mars Odyssey Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Evans, L. G.; Brueckner, J.; Kim, K. J.; Boynton, W. V.

    2003-01-01

    The gamma-ray spectrum from a long sum over the middle latitudes of Mars measured by the Mars Odyssey Gamma Ray Spectrometer was analyzed. About 250 peaks and features were observed, including many seen during the cruise to Mars. The sources of about 85% of these gamma rays were identified. Most were background lines from the Ge detector or from Ti, Mg, and Zn near the detector.

  7. Mining Gamma-Ray Burst Data

    E-print Network

    Jon Hakkila; Richard J. Roiger; David J. Haglin; Robert S. Mallozzi; Geoffrey N. Pendleton; Charles A. Meegan

    2000-11-30

    Gamma-ray bursts provide what is probably one of the messiest of all astrophysical data sets. Burst class properties are indistinct, as overlapping characteristics of individual bursts are convolved with effects of instrumental and sampling biases. Despite these complexities, data mining techniques have allowed new insights to be made about gamma-ray burst data. We demonstrate how data mining techniques have simultaneously allowed us to learn about gamma-ray burst detectors and data collection, cosmological effects in burst data, and properties of burst subclasses. We discuss the exciting future of this field, and the web-based tool we are developing (with support from the NASA AISR Program). We invite others to join us in AI-guided gamma-ray burst classification (http://grb.mnsu.edu/grb/).

  8. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  9. Gamma-ray emission from thermonuclear supernovae

    SciTech Connect

    Isern, J.; Bravo, E.; Hirschmann, A.

    2007-08-21

    The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. Nevertheless, there is a wide agreement that high amounts of radioactive nuclei are produced during these events and that they are expected to be strong {gamma}-ray emitters. In this paper we investigate the use of this {gamma}-rays as a diagnostic tool. For this purpose we have performed a complete study of the {gamma}-ray spectra associated with all the different scenarios currently proposed: detonation, deflagration, delayed detonation, and pulsating delayed detonation. Our study shows that the {gamma}-ray emission from SNIa is, effectively, a promising tool but that has to be carefully used since it can lead to misinterpretations. We also show that 3D effects can be relevant in some circumstances and that they can provide important information about the exploding system and the thermonuclear burning front mechanism if high resolution spectra could be obtained.

  10. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  11. Neutron detection gamma ray sensitivity criteria

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-10-01

    The shortage of 3He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9

  12. Neutron Detection Gamma Ray Sensitivity Criteria

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-10-21

    The shortage of 3He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The ratio GARRn is defined, and it is proposed that the requirement for neutron detection be 0.9 < GARRn < 1.1 at a 10 mR/h exposure rate. An example of results from a 3He based neutron detector are provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  13. Gamma-Rays from Decaying Dark Matter

    E-print Network

    Gianfranco Bertone; Wilfried Buchmuller; Laura Covi; Alejandro Ibarra

    2007-10-11

    We study the prospects for detecting gamma-rays from decaying Dark Matter (DM), focusing in particular on gravitino DM in R-parity breaking vacua. Given the substantially different angular distribution of the predicted gamma-ray signal with respect to the case of annihilating DM, and the relatively poor (of order 0.1$^\\circ$) angular resolution of gamma-ray detectors, the best strategy for detection is in this case to look for an exotic contribution to the gamma-ray flux at high galactic latitudes, where the decaying DM contribution would resemble an astrophysical extra-galactic component, similar to the one inferred by EGRET observations. Upcoming experiments such as GLAST and AMS-02 may identify this exotic contribution and discriminate it from astrophysical sources, or place significant constraints on the mass and lifetime of DM particles.

  14. Optical reprocessing of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Melia, F.; Rappaport, S.; Joss, P. C.

    1986-01-01

    One model for the optical flashes associated with three cosmic gamma-ray burst sources invokes the reprocessing of some of the gamma-radiation emitted by a hypothesized collapsed object in the surface layers of a nearby companion star. This model was investigated by carrying out detail, fully hydrodynamical calculations of such reprocessing in the surface layers of very low mass stars. It is found that, at most, 7 percent of the gamma-ray fluence incident on the companion star is reprocessed into the blue band; the time scale for this reprocessing is typically 100 s, which is long compared to the duration of the gamma-ray burst itself. Using this result, it is shown that there is marginal agreement between the observed and calculated ratios of gamma-ray fluence to optical fluence at earth.

  15. Gamma-ray emission from thunderstorm discharges

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Chubenko, A. P.; Karashtin, A. N.; Mitko, G. G.; Naumov, A. S.; Ptitsyn, M. O.; Ryabov, V. A.; Shepetov, A. L.; Shlyugaev, Yu. V.; Vildanova, L. I.; Zybin, K. P.

    2011-04-01

    Fine features of gamma-ray radiation registered during a thunderstorm at Tien-Shan Mountain Cosmic Ray Station are presented. Long duration (100-600 ms) gamma-ray bursts are found. They are for the first time identified with atmospheric discharges (lighting). Gamma-ray emission lasts all the time of the discharge and is extremely non-uniform consisting of numerous flashes. Its peak intensity in the flashes exceeds the gamma-ray background up to two orders of magnitude. Exclusively strong altitude dependence of gamma radiation is found. The observation of gamma radiation at the height 4-8 km could serve as a new important method of atmospheric discharge processes investigation.

  16. Thermal neutron capture gamma-rays

    SciTech Connect

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  17. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  18. Dissecting the Gamma-Ray Background in Search of Dark Matter

    SciTech Connect

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

  19. Dissecting the gamma-ray background in search of dark matter

    SciTech Connect

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D. E-mail: dhooper@fnal.gov

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ? 5–10.

  20. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  1. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  2. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential of gamma-ray spectroscopy for understanding supernovae.

  3. Gamma-ray albedo of the moon

    E-print Network

    Igor V. Moskalenko; Troy A. Porter

    2007-08-15

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 4 GeV (600 MeV for the inner part of the Moon disc). Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  4. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  5. A Combined Gamma-Ray and Neutron Detector for Measuring the Chemical Composition of Comets and Other Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Lawrence, D. J.; Barraclough, B. L.; Feldman, W. C.; Prettyman, T. H.; Wiens, R. C.

    2001-01-01

    Galactic cosmic rays (GCR) constantly impinge all planetary bodies and produce characteristic gamma-ray lines and leakage neutrons as reaction products. Together with gamma-ray lines produced by radioactive decay, these nuclear emissions provide a powerful technique for remotely measuring the chemical composition of airless planetary surfaces. While lunar-ray spectroscopy was first demonstrated with Apollo Gamma-Ray (AGR) measurements, the full value of combined Gamma-ray and neutron spectroscopy was shown for the first time with the Lunar Prospector Gamma-Ray (LP-GRS) and Neutron Spectrometers (LP-NS). Analysis of other elements such as Ca, Mg, O, Al, and U should soon be completed using LP-GRS data. Furthermore, it has been shown that measurements of thermal neutrons provide an important correction (up to a factor of 3) to measurements of neutron-capture gamma-ray lines such as those from Fe and Ti. With the inclusion of a gamma-ray instrument on the NEAR mission, and gamma-ray and neutron instruments on missions to Mars and Mercury, it is clear that gamma-ray and neutron spectroscopy (GR/NS) is becoming a standard technique for planetary science missions. While we are focusing here on using GR/NS for future cometary missions, these techniques will also provide powerful ways of measuring the surface composition on rocky and icy moons and asteroids. Additional information is contained in the original extended abstract.

  6. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  7. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  8. Fireball/Blastwave Model and Soft Gamma-ray Repeaters

    E-print Network

    Y. F. Huang; Z. G. Dai; T. Lu

    2005-02-24

    Soft gamma-ray repeaters are at determined distances and their positions are known accurately. If observed, afterglows from their soft gamma-ray bursts will provide important clues to the study of the so called "classical gamma-ray bursts". On applying the popular fireball/blastwave model of classical gamma-ray bursts to soft gamma-ray repeaters, it is found that their X-ray and optical afterglows are detectable. Monitoring of the three repeaters is solicited.

  9. On the bizarre gamma-ray spectrum of SS 433

    NASA Technical Reports Server (NTRS)

    Helfer, H. L.; Savedoff, M. P.

    1984-01-01

    Lamb et al. (1983) have announced the discovery of a pair of gamma-ray lines interpretable as emission of the 1.368 MeV line of Mg-24 in the two oppositely directed relativistic jets of SS 433. The mass loss rate related to the Mg-24 and the kinetic energy flux of the Mg-24 are considered. In the present investigation, it is shown that the mass loss flux must be well in excess of 0.00001 solar mass per yr, while the abundance of the gamma-emitting nucleus is extremely high. Attention is given to the calculation of the gamma-ray production efficiency factor, the size of the emitting region, reaction processes, and X-ray luminosity. It is concluded that for plasma beam models, there must be a substantial overabundance, by a factor of 100 to approximately 1000, of the gamma-line producing nucleus. The association of the gamma-ray lines with Mg-24 is reasonable but not secure.

  10. Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift

    E-print Network

    California at Santa Cruz, University of

    Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing Zhang. M.D. M. WeiWei (PMO)(PMO) Swift collaboration (D. Burrows, P.Swift collaboration (D. Burrows, P-Response Observations of Transient Targets Milestone 4: 2004-2005Milestone 4: 2004-2005 (Swift era)(Swift era) Launched

  11. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    SciTech Connect

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

  12. Jets in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Sari, R.; Piran, T.; Halpern, Jules P.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    In the afterglows of several gamma-ray bursts (GRBs), rapid temporal decay, which is inconsistent with spherical (isotropic) blast-wave models, is observed. In particular, GRB 980519 had the most rapidly fading of the well-documented GRB afterglows, with t(sup -2.05 +/- 0.04) in optical as well as in X-rays. We show that such temporal decay is more consistent with the evolution of a jet after it slows down and spreads laterally, for which t(sup -P) decay is expected (where p is the index of the electron energy distribution). Such a beaming model would relax the energy requirements on some of the more extreme GRBs by a factor of several hundred. It is likely that a large fraction of the weak- (or no-) afterglow observations are also due to the common occurrence of beaming in GRBs and that their jets have already transitioned. to the spreading phase before the first afterglow observations were made. With this interpretation, a universal value of p approx. = 2.4 is consistent with all data.

  13. ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2013-09-20

    Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

  14. Tabulated data from the SAS-2 high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Tuner, T.; Ozel, M. E.

    1978-01-01

    The second small astronomy satellite (SAS-2) carried a high energy gamma ray telescope into an equitorial orbit with a 2 D inclination, an apogee of 610 km, and a perigee of 440 km. The energy threshold of the instrument was about 30 MeV, the energy of the gamma rays could be measured up to about 200 MeV, and the integral intensity above 200 MeV could also be measured. Summary tables of the gamma ray data are presented in two energy bands, 35-100 MeV and 100 MeV. The sky was divided into 144 solid angle elements, and, in each solid angle element for which data exist, the number of gamma rays observed is given and also the exposure factor. Information is provided to permit conversion of these data into approximate intensities.

  15. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  16. Short gamma-ray bursts: A review

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.

    2015-09-01

    Gamma-Ray Bursts (GRBs) are rapid, bright flashes of radiation peaking in the gamma-ray band occurring at an average rate of one event per day at cosmological distances. They are characterized by a collimated relativistic outflow pushing through the interstellar medium shining in gamma-rays powered by a central engine. This prompt phase is followed by a fading afterglow emission at longer wavelength, powered in part by the expanding outflow, and in part by continuous energy injection by the central engine. The observed evidences of supernovae associated to long GRBs (those with a duration of the gamma-ray emission > 2 s) brought to a general consensus on indicating the core collapse of massive stars as the progenitor of these events. Following the most accredited model, short GRBs (the events with a duration of the gamma-ray emission ? 2 s) originate from the coalescence of compact binary systems (two neutron stars or neutron star-black hole systems). This paper presents a review of the observational properties of short GRBs and shows how the study of these properties can be used as a tool to unveil their elusive progenitors and provide information on the nature of the central engine powering the observed emission. The increasing evidence for compact object binary progenitors makes short GRBs one of the most promising sources of gravitational waves for the forthcoming Advanced LIGO/Virgo experiments.

  17. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  18. Searching for Dark Matter with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Albert, Andrea

    2015-04-01

    There is overwhelming evidence that non-baryonic dark matter constitutes about 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce gamma rays via annihilation or decay in the Universe. These gamma rays would be detected by space-based detectors like the Fermi Large Area Telescope or by ground-based arrays like VERITAS and H.E.S.S. A detection of gamma rays from WIMPs would not only confirm the existence of dark matter through a non-gravitational force, but also indicate the existence of physics beyond the Standard Model. I will present recent results from WIMP searches including looking for gamma-ray spectral lines and gamma-ray excesses in areas of large dark matter concentration like the Galactic center and dwarf spheroidal galaxies. We have entered an exciting era of dark matter searches since we are becoming sensitive to the natural cross section for WIMPs in some mass ranges and annihilation channels.

  19. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  20. A Possible Energy Mechanism for Cosmological Gamma-ray Bursts

    E-print Network

    K. S. Cheng; Y. Lu

    1999-06-16

    We suggest that an extreme Kerr black hole with a mass $\\sim 10^6M_\\odot$, a dimensionless angular momentum $A\\sim 1$ and a marginal stable orbital radius $r_{ms}\\sim 3r_s\\sim 10^{12}M_6 cm$ located in a normal galaxy, may produced a Gamma-ray Burst by capturing and disrupting a star. During this period, a transient accretion disk is formed and a strong transient magnetic field $\\sim 2.4\\times 10^9M_6^{-1/2}$ Gauss, lasting for $r_{ms}/c\\sim 30 M_6 s$, may be produced in the inner boundary of the accretion disk. A large amount of rotational energy of the black hole is extracted and released in the ultra relativistic jet with a bulk Lorentz factor $\\Gamma$ larger than $10^3$ via Blandford-Znajek process. The relativistic jet energy can be converted into $\\gamma$-ray radiation via internal shock mechanism. The gamma-ray burst (GRB) duration should be the same as that of the life time of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be $r_{ms}/h\\sim (10 - 10^2)$ because the disk material is likely broken into pieces with the size about the thickness of the disk $h$ at the cusp ($2r_s\\le r \\le 3r_s$). The shortest rising time of the burst estimated from this model is $\\sim h/\\Gamma c\\sim 3\\times 10^{-4}\\Gamma^{-1}_3(h/r)_{-2}M_6$ s. The model gamma-ray burst density rate is also estimated.

  1. Gamma-ray boxes from axion-mediated dark matter

    SciTech Connect

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel; Lee, Hyun Min; Park, Wan-Il E-mail: hyun.min.lee@cern.ch E-mail: wipark@kias.re.kr

    2013-05-01

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future ?erenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies.

  2. Gamma-ray boxes from axion-mediated dark matter

    E-print Network

    Alejandro Ibarra; Hyun Min Lee; Sergio López Gehler; Wan-Il Park; Miguel Pato

    2013-05-15

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future Cherenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies.

  3. FERMI Observations of Gamma -Ray Emission From the Moon

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  4. Integrated neutron/gamma-ray portal monitors for nuclear safeguards

    SciTech Connect

    Fehlau, P.E.

    1993-09-01

    Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. We compared the influence of the two methods of integration on detecting neutrons and gamma rays, and we examined the effectiveness of other design factors and the methods for signal detection as well.

  5. Study of SMM flares in gamma-rays and neutrons

    NASA Technical Reports Server (NTRS)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  6. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  7. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  8. Gamma Ray Spectroscopy of U-235

    NASA Astrophysics Data System (ADS)

    Gutman, Eric

    2002-10-01

    It had recently been noted at Lawrence Livermore National Laboratory that some intensity values in the gamma ray spectrum of U-235 above 300 keV might differ slightly from previously reported data [1], from a few degrees up to an order of magnitude. Consequently this experiment was undertaken to re-examine the spectral data, and compare with previously published figures. The gamma rays of four samples of U-235, each with a distinct isotopic purity were counted for various lengths of time and at different distances from a high-purity germanium detector. The resulting data was analyzed, and is currently being compared with what had been previously measured. The newly acquired information of the gamma ray spectrum of U-235 will have various applications, including stockpile stewardship, environmental science, and radiation detection. [1] Richard B. Firestone, Table of Isotopes, 8th ed., Vol. II, (John Wiley and Sons, NY, 1996) pp. 2759-64.

  9. High Energy Radiation from Gamma Ray Bursts

    E-print Network

    Charles D. Dermer; James Chiang

    1999-12-08

    Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \\gamma\\gamma transparency arguments imply relativistic beaming. The parameters that go into the external shock model are stated, and we show numerical simulation results of gamma-ray light curves from relativistic blast waves with different amounts of baryon loading. A distinct component due to the synchrotron self-Compton process produces significant emission at GeV and TeV energies. Predictions for spectral and temporal evolution at these energies are presented for a blast wave expanding into uniform surroundings. Observations of the slow decay of GeV-TeV radiation provide evidence for ultra-high energy cosmic ray acceleration in GRBs.

  10. E1 and E2 S factors of {sup 12}C({alpha},{gamma}{sub 0}){sup 16}O from {gamma}-ray angular distributions with a 4 {pi}-detector array

    SciTech Connect

    Assuncao, M.; Lefebvre-Schuhl, A.; Kiener, J.; Tatischeff, V.; Boukari-Pelissie, C.; Coc, A.; Correia, J.J.; Grama, C.; Hannachi, F.; Korichi, A.; LeDu, D.; Lopez-Martens, A.; Meunier, R.; Thibaud, J.P.; Beck, C.; Courtin, S.

    2006-05-15

    A new experiment to determine the thermonuclear cross section of the {sup 12}C({alpha},{gamma}){sup 16}O reaction has been performed in regular kinematics using an intense {alpha}-particle beam of up to 340 {mu}A from the Stuttgart DYNAMITRON. For the first time, a 4{pi}-germanium-detector setup has been used to measure the angular distribution of the {gamma} rays at all angles simultaneously. It consisted of an array of nine EUROGAM high-purity Ge detectors in close geometry, actively shielded individually with bismuth germanate crystals. The {sup 12}C targets were isotopically enriched by magnetic separation during implantation. The depth profiles of the implanted carbon in the {sup 12}C targets were determined by Rutherford backscattering for purposes of cross-section normalization and absolute determination of the E1 and E2 S factors. Angular distributions of the {gamma} decay to the {sup 16}O ground state were measured in the energy range E{sub c.m.}=1.30-2.78 MeV and in the angular range (lab.) 30 deg. -130 deg. . From these distributions, astrophysical E1 and E2 S-factor functions vs energy were calculated, both of which are indispensable to the modeling of this reaction and the extrapolation toward lower energies. The separation of the E1 and E2 capture channels was done both by taking the phase value {phi}{sub 12} as a free parameter and by fixing it using the results of elastic {alpha}-particle scattering on {sup 12}C in the same energy range.

  11. Ground-based Gamma Ray Astronomy

    E-print Network

    Holder, Jamie

    2014-01-01

    This paper is the write-up of a rapporteur talk given by the author at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil, in 2013. It attempts to summarize results and developments in ground-based gamma-ray observations and instrumentation from among the $\\sim300$ submissions to the gamma-ray sessions of the meeting. Satellite observations and theoretical developments were covered by a companion rapporteur. Any review of this nature is unavoidably subjective, and incomplete. Nevertheless, the article should provide a useful status report for those seeking an overview of this exciting and fast-moving field.

  12. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  13. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  14. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  15. Evidence for a Galactic gamma ray halo

    E-print Network

    D. D. Dixon; D. H. Hartmann; E. D. Kolaczyk; J. Samimi; R. Diehl; G. Kanbach; H. Mayer-Hasselwander; A. W. Strong

    1998-08-19

    We present quantitative statistical evidence for a $\\gamma$-ray emission halo surrounding the Galaxy. Maps of the emission are derived. EGRET data were analyzed in a wavelet-based non-parametric hypothesis testing framework, using a model of expected diffuse (Galactic + isotropic) emission as a null hypothesis. The results show a statistically significant large scale halo surrounding the center of the Milky Way as seen from Earth. The halo flux at high latitudes is somewhat smaller than the isotropic gamma-ray flux at the same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1 GeV).

  16. Nucleosynthesis in gamma-ray bursts outflows

    E-print Network

    M. Lemoine

    2002-06-19

    It is shown that fusion of neutrons and protons to He-4 nuclei occurs in gamma-ray burst outflows in a process similar to big-bang nucleosynthesis in the early Universe. Only the surviving free neutrons can then decouple kinematically from the charged fluid so that the multi-GeV neutrino signal predicted from inelastic nuclear n-p collisions is significantly reduced. It is also argued that a sizeable fraction of ultra-high energy cosmic rays accelerated in gamma-ray bursts should be He-4 nuclei.

  17. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  18. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  19. Absorption of 10--200 Gev Gamma Rays by Radiation from BLR in Blazars

    E-print Network

    H. T. Liu; J. M. Bai

    2008-07-20

    In this paper, we study the photon-photon pair production optical depth for gamma-rays with energies from 10 to 200 GeV emitted by powerful blazars due to the diffuse radiation field of broad line region (BLR). There are four key parameters in the BLR model employed to determine the $\\gamma-\\gamma$ attenuation optical depth of these gamma-rays. They are the gamma-ray emitting radius $R_{\\gamma}$, the BLR luminosity $L_{\\rm{BLR}}$, the BLR half thickness $h$ and the ratio $\\tau_{\\rm{BLR}}/f_{\\rm{cov}}$ of the Thomson optical depth to the covering factor of BLR. For FSRQs, on average, it is impossible for gamma-rays with energies from 10 to 200 GeV to escape from the diffuse radiation field of the BLR. If $\\it GLAST$ could detect these gamma-rays for most of FSRQs, the gamma-ray emitting region is likely to be outside the cavity formed by the BLR. Otherwise, the emitting region is likely to be inside the BLR cavity. As examples, we estimate the photon-photon absorption optical depth of gamma-rays with energies from 10 to 200 GeV for two powerful blazars, HFSRQ PKS 0405$-$123 and FSRQ 3C 279. Comparing our results with $\\it GLAST$ observations in the future could test whether the model employed and the relevant assumptions in this paper are reliable and reasonable, and then limit constraints on the position of the gamma-ray emitting region relative to the BLR and the properties of the BLR.

  20. Fitting and Updating Gamma-Ray Energies

    SciTech Connect

    Guimaraes-Filho, Zwinglio O.; Helene, Octaviano; Vanin, Vito R.; Maidana, Nora L.

    2005-05-24

    The procedure for obtaining the updated version of the recommended gamma-ray transition energies for detector calibration is described. The energies were recalculated to account for the 2002 CODATA Recommended Values of Fundamental Physical Constants. The re-evaluation methodology considered the statistical correlations and used the appropriate covariance matrices in all steps.

  1. GAMMA RAY IMAGING FOR ENVIRONMENTAL REMEDIATION

    EPA Science Inventory

    The research is a three year development program to apply high resolution gamma-ray imaging technologies to environmental remediation of radioactive hazards. High resolution, position-sensitive germanium detectors are being developed at the Naval Research Laboratory for space app...

  2. HYPERNUCLEAR STRUCTURE FROM GAMMA-RAY SPECTROSCOPY.

    SciTech Connect

    MILLENER,D.J.

    2003-10-14

    The energies of p-shell hypernuclear {gamma} rays obtained from recent experiments using the Hyperball at BNL and KEK are used to constrain the YN interaction which enters into shell-model calculations which include both {Lambda} and {Sigma} configurations.

  3. High redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Salvaterra, Ruben

    2015-09-01

    Ten years of operations of the Swift satellite have allowed us to collect a small sample of long Gamma-Ray Bursts (GRBs) at redshift larger than 6. I will review here the present status of this research field and discuss the possible use of GRBs as a fundamental new tool to explore the early Universe, complementary to quasar and galaxy surveys.

  4. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  5. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  6. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  7. Study of gamma-ray strength functions

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

    1980-08-07

    The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

  8. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  9. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  10. Swift's 500th Gamma Ray Burst - Duration: 64 seconds.

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  11. Investigation of gamma rays from the galactic center

    NASA Technical Reports Server (NTRS)

    Helmken, H. F.

    1973-01-01

    Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.

  12. Gamma-ray luminosity function of Gamma-ray bright AGNs

    E-print Network

    Bhattacharya, D; Mukherjee, R

    2008-01-01

    Detection of Gamma-ray emission from a class of active galactic nuclei (viz blazars), has been one of the important findings from the Compton Gamma Ray Observatory (CGRO). However, their Gamma-ray luminosity function has not been well determined. Few attempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper we investigated the evolution and Gamma-ray luminosity function of FSRQs and BL Lacs separately. Our investigation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolution models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with upper limit. BL Lac luminosity function shows no signature of break. As a consistency check, the model source distributions deriving from these luminosity functions show no significant departur...

  13. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  14. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  15. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  16. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  17. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  18. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  19. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  20. THE REMARKABLE {gamma}-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211

    SciTech Connect

    Donnarumma, I.; De Rosa, A.; Vittorini, V.; Tavani, M.; Striani, E.; Pacciani, L.; Popovic, L. C.; Simic, S.; Kuulkers, E.; Vercellone, S.; Verrecchia, F.; Pittori, C.; Giommi, P.; Barbiellini, G.; Bulgarelli, A.

    2011-08-01

    We report the extraordinary {gamma}-ray activity (E > 100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z = 2.507) detected by AGILE between 2010 October and November. On October 14, the source experienced a factor of {approx}12 flux increase with respect to its average value and remained brightest at this flux level ({approx}500 x 10{sup -8} photons cm{sup -2} s{sup -1}) for about four days. The one-month {gamma}-ray light curve across the flare showed a mean flux F(E > 100 MeV) = 200 x 10{sup -8} photons cm{sup -2} s{sup -1}, which resulted in a factor of four enhancement with respect to the average value. Following the {gamma}-ray flare, the source was observed in near-IR (NIR)-optical energy bands at the Cerro Tololo Inter-American Observatory and in X-Rays by Swift/X-Ray Telescope and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in {gamma}-rays does not have a significant counterpart at lower frequencies: no variation greater than a factor of {approx}1.5 appeared in the NIR and X-Ray energy bands. PKS 1830-211 is then a good '{gamma}-ray only flaring' blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.

  1. DISCOVERY OF LOCALIZED TEV GAMMA-RAY SOURCES AND DIFFUSE TEV GAMMA-RAY EMISSION FROM THE GALACTIC

    E-print Network

    California at Santa Cruz, University of

    DISCOVERY OF LOCALIZED TEV GAMMA-RAY SOURCES AND DIFFUSE TEV GAMMA-RAY EMISSION FROM THE GALACTIC OF PHILOSOPHY Department of Physics and Astronomy 2007 #12;ABSTRACT DISCOVERY OF LOCALIZED TEV GAMMA-RAY SOURCES detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources

  2. The Universe Viewed in Gamma-Rays 1 Galactic Diffuse Gamma-ray Spectrum from Cosmic-ray In-

    E-print Network

    Mori, Masaki

    The Universe Viewed in Gamma-Rays 1 Galactic Diffuse Gamma-ray Spectrum from Cosmic-ray In- teractions with Gas Clouds Michiko OHISHI and Masaki MORI Institute for Cosmic Ray Research, University, Australia Abstract Gamma-ray spectra from cosmic-ray proton and electron interactions with gas clouds have

  3. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or colliding compact objects in distant galaxies. The pieces of the puzzle are beginning to fall into place and yet the story isn't quite finished. I will frame the history of gamma-ray bursts as a mystery story and will end with a description of what we still don't know and what we'll have to do to get the next clues.

  4. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    SciTech Connect

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor streams can be especially challenging to identify. The super cooled detectors have a marked improvement in energy resolution, allowing the possibility of deconvolution of mixtures of gamma rays that was unavailable with high purity germanium detectors. Isotopic analysis codes require libraries of gamma rays. In certain situations, isotope identification can be made in the field, sometimes with a short turnaround time, depending on the choice of detector and software analysis package. Sodium iodide and high purity germanium detectors have been successfully used in field scenarios. The newer super cooled detectors offer dramatically increased resolution, but they have lower efficiency and so can require longer collection times. The different peak shapes require software development for the specific detector type and field application. Libraries can be tailored to specific scenarios; by eliminating isotopes that are certainly not present, the analysis time may be shortened and the accuracy may be increased. The intent of this project was to create one accurate library of gamma rays emitted from isotopes of interest to be used as a reliable reference in safeguards work. All simulation and spectroscopy analysis codes can draw upon this best library to improve accuracy and cross-code consistency. Modeling codes may include MCNP and COG. Gamma-ray spectroscopy analysis codes may include MGA, MGAU, U235 and FRAM. The intent is to give developers and users the tools to use in nuclear energy safeguards work. In this project, the library created was limited to a selection of actinide isotopes of immediate interest to reactor technology. These isotopes included {sup 234-238}U, {sup 237}Np, {sup 238-242}Pu, {sup 241,243}Am and {sup 244}Cm. These isotopes were examined, and the best of gamma-ray data, including line energies and relative strengths were selected.

  5. CdZnTe gamma ray spectrometer for orbital planetary missions

    SciTech Connect

    Feldman, W. C.; Storms, S. A.; Fuller, K. R.; Moss, C. E.; Browne, M. C.; Lawrence, David J. ,; Ianakiev, K. D.; Prettyman, T. H.

    2001-01-01

    Knowledge of surface elemental composition is needed to understand the formation and evolution of planetary bodies. Gamma rays and neutrons produced by the interaction of galactic cosmic rays with surface materials can be detected from orbit and analyzed to determine composition. Using gamma ray spectroscopy, major rock forming elements such as Fe, Ti, Al, Si, Mg, and Ca can be detected. The accuracy of elemental abundance is limited by the resolution of the spectrometer. For space missions, scintillators such as BGO and NaI(Tl) have been used for gamma ray spectroscopy. New planetary science missions are being planned to explore Mars, Mercury, the asteroid belt, and the outer planets. Significant improvements in the pulse height resolution relative to scintillation detectors can be made using CdZnTe, a new room temperature detector technology. For an orbiting instrument, a CdZnTe detector at least 16 cm{sup 3} in size is needed. A 4 x 4 array of 1-cm{sup 3} coplanar grid detectors can be manufactured that meets requirements for resolution and counting efficiency. The array will shielded from gamma rays produced in the spacecraft by a BGO detector. By improving pulse height resolution by a factor of three at low energy, the CdZnTe detector will be able to make accurate measurements of elements that are currently difficult to measure using scintillation technology. The BGO shield will provide adequate suppression of gamma rays originating in the spacecraft, enabling the gamma ray spectrometer to be mounted on the deck of a spacecraft. To test this concept, we are constructing a flight qualified, prototype CdZnTe detector array. The prototype consists of a 2 x 2 array of coplanar grid detectors. We will present the results of mechanical and electronic testing and radiation damage tests, and the performance of the array for gamma ray spectroscopy.

  6. Discrimination of gamma rays due to inelastic neutron scattering in AGATA

    E-print Network

    A. Ataç; A. Ka?ka?; S. Akkoyun; M. ?enyi?it; T. Hüyük; S. O. Kara; J. Nyberg

    2009-06-10

    Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find 'fingerprints' of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

  7. Gamma rays and neutrinos from point sources

    SciTech Connect

    Tomozawa, Y. )

    1993-07-05

    We examine the prediction that the energy spectrum from point sources such as AGN (Active Galactic Nuclei) and GBHC (Galactic Black Hole Candidates) is universal, irrespective of the nature of the emitted particles. [gamma]-rays from quasars observed by CGRO (Compton Gamma Ray Observatory) are reported in this symposium. The average of the photon indices from 11 quasars is compared with that of cosmic rays at the source. The former is 2.1[plus minus]0.1 while the latter is 2.2[plus minus]0.1. The compilation of the observed neutrino data by Kamiokande and IMB yields 1.2 for the ratio of [nu][sub [mu

  8. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  9. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  10. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  11. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  12. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  13. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark (Alamo, CA); Gosnell, Tom B. (Moraga, CA); Ham, Cheryl (Livermore, CA); Perkins, Dwight (Livermore, CA); Wong, James (Dublin, CA)

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  14. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  15. Synchrotron emission and gamma-ray bursts

    SciTech Connect

    Brainerd, J.J.; Lamb, D.Q.

    1987-02-01

    The parameter space within which synchrotron emission models for gamma-ray burst spectra are valid is evaluated in the cases of thermal and power-law particle distributions. The spectra emitted by noncooling and cooling thermal and power-law particle distributions are modeled numerically over relativistic and nonrelativistic regimes. The structure of the radiation is defined near the fundamental and the continuum up to the 1000th harmonic. Comparisons are made with burst event data collected during the Apollo 16, Venera, SMM, Pioneer Venus Orbiter and Hackucho missions. A two-component synchrotron model is proposed for gamma-ray burst events. The electron-positron distribution is projected to have a thermal component and a nonthermal power-law tail. 71 references.

  16. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  17. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-01-01

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  18. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-12-31

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  19. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  20. The gamma ray north-south effect

    NASA Technical Reports Server (NTRS)

    White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.

    1988-01-01

    Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.

  1. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  2. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  3. Lorentz violation from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Ma, Bo-Qiang

    2015-02-01

    The constancy of light speed is a basic assumption in Einstein’s special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-dependent due to the Lorentz invariance violation (LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass 8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.

  4. Gamma ray spectroscopic measurements of Mars.

    PubMed

    Metzger, A E; Arnold, J R

    1970-06-01

    A gamma ray spectrometer placed in orbit around Mars is expected to yield significant compositional data which can be related to the evolution of that planet. Components of the observable gamma ray flux come from the Martian surface, galactic and intergalactic space, and the spacecraft itself. The flux can be detected by a scintillation crystal or solid state detector, either of which combines efficiency of detection with energy resolution, and returns information to the earth as a pulse height distribution in order to detect characteristic energy line structure. The data will be evaluated for evidence of elemental differentiation with reference to terrestrial, meteoritic, solar, and lunar abundances. A lengthy mission will allow the surface of Mars to be mapped in a search for possible correlations between composition and topography or albedo. PMID:20076376

  5. Gamma Ray Signatures from Ordinary Cosmic Strings

    E-print Network

    Jane H. MacGibbon; Robert H. Brandenberger

    1992-06-19

    We calculate the flux of ultra high energy photons from individual ordinary (i.e. non-superconducting) cosmic strings and compare the results with the sensitivity of current and proposed TeV and EeV telescopes. Our calculations give only upper limits for the gamma ray flux, since the source of the photons, jets from particle production at cusps, may be weakened by back reaction effects. For the usual cosmic distribution of strings, the predicted bursts from strings with the value of mass per unit length associated with galaxy formation or light strings may just be detectable. A diffuse gamma ray background from light strings may also be seen by the Fly's Eye detector at above $7 \\times 10^{10}$ GeV.

  6. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  7. Gamma-ray Output Spectra from 239Pu Fission

    NASA Astrophysics Data System (ADS)

    Ullmann, John

    2015-05-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  8. Are Gamma-Ray Bursts Standard Candles?

    E-print Network

    Li-Xin Li

    2007-05-30

    By dividing a sample of 48 long-duration gamma-ray bursts (GRBs) into four groups with redshift from low to high and fitting each group with the Amati relation log Eiso = a + b log Epeak, I find that parameters a and b vary with the mean redshift of the GRBs in each group systematically and significantly. The results suggest that GRBs evolve strongly with the cosmic redshift and hence are not standard candles.

  9. Gamma-Ray Bursts, new cosmological beacons

    E-print Network

    V. Avila-Reese; C. Firmani; G. Ghisellini; J. I. Cabrera

    2008-02-22

    Long Gamma-Ray Bursts (GRBs) are the brightest electromagnetic explosions in the Universe, associated to the death of massive stars. As such, GRBs are potential tracers of the evolution of the cosmic massive star formation, metallicity, and Initial Mass Function. GRBs also proved to be appealing cosmological distance indicators. This opens a unique opportunity to constrain the cosmic expansion history up to redshifts 5-6. A brief review on both subjects is presented here.

  10. The Gamma-Ray Burst Mystery

    E-print Network

    David L. Band

    1997-12-15

    Gamma-ray bursts are transient events from beyond the solar system. Besides the allure of their mysterious origin, bursts are physically fascinating because they undoubtedly require exotic physics. Optical transients coincident with burst positions show that some, and probably all, bursts originate at cosmological distances, and not from a large Galactic halo. Observations of these events' spectral and temporal behavior will guide and constrain the study of the physical processes producing this extragalactic phenomenon.

  11. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  12. Gamma-Ray Line Observations with RHESSI

    E-print Network

    David M. Smith

    2004-04-30

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has been observing gamma-ray lines from the Sun and the Galaxy since its launch in February 2002. Here I summarize the status of RHESSI observations of solar lines (nuclear de-excitation, neutron capture, and positron annihilation), the lines of $^{26}$Al and $^{60}$Fe from the inner Galaxy, and the search for positron annihilation in novae.

  13. Cosmological Time Dilation in Gamma Ray Bursts?

    E-print Network

    David Band

    1994-07-01

    Norris et al. (1994) report that the temporal structure of faint gamma ray bursts is longer than that of bright bursts, as expected for time dilation in the cosmological models of burst origin. I show that the observed trends can easily be produced by a burst luminosity function and thus may not result from cosmological effects. A cosmological signature may be present, but the tests Norris et al. present are not powerful enough to detect these signatures.

  14. Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E. (inventor)

    1973-01-01

    A gamma ray spectrometer is described for use in intense radiation fields such as those in the vicinity of a rocket engine exhaust. A collimated radiation beam is Compton scattered toward shielded spectrometers to reduce the energy and intensity of the radiation and is energy selective among the spectrometers. The scattering targets are changeable to control the percentage of the radiation scattered. Sum-Compton coincidence techniques are employed for data selection.

  15. Beacons at the Gamma Ray Horizon

    E-print Network

    K. Mannheim; S. Westerhoff; H. Meyer; H. -H. Fink

    1996-05-17

    Blazars with redshifts z<0.1 are likely candidates for detection at energies in the range 300 GeV - 50 TeV with Cerenkov telescopes and scintillator arrays. We present gamma-ray flux predictions for a sample of 15 nearby flat-spectrum radio sources fitting the proton blazar model of Mannheim (1993a) to their observed broad-band spectral energy distributions. At high energies, we use fluxes or flux limits measured by ROSAT, CGRO and the Whipple Observatory to constrain their spectra. We take into account absorption of the gamma-rays by pair production with low energy photons of the diffuse infrared-to-optical photon background produced by galaxies (cosmic absorption) and with low energy synchrotron photons of the blazar radiation field (internal absorption). Typically, the theoretical spectra decrease much faster above TeV (photon index s~3) than between GeV and TeV (s~2) owing to internal absorption. The predicted fluxes are confronted with flux limits in the 20-50 TeV energy range obtained by the High Energy Gamma Ray Astronomy (HEGRA) experiment. Without cosmic absorption, the fluxes are about equal to the current sensitivity of HEGRA. Improved gamma/hadron separation techniques could render a detection by HEGRA possible, if cosmic absorption by the far-infrared background at wavelengths ~100 mu is not exceedingly strong.

  16. Solution To The Gamma Ray Burst Mystery?

    E-print Network

    Nir J. Shaviv; Arnon Dar

    1996-08-21

    Photoexcitation and ionization of partially ionized heavy atoms in highly relativistic flows by interstellar photons, followed by their reemission in radiative recombination and decay, boost star-light into beamed $\\gamma$ rays along the flow direction. Repeated excitation/decay of highly relativistic baryonic ejecta from merger or accretion induced collapse of neutron stars in dense stellar regions (DSRs), like galactic cores, globular clusters and super star-clusters, can convert enough kinetic energy in such events in distant galaxies into cosmological gamma ray bursts (GRBs). The model predicts remarkably well all the main observed temporal and spectral properties of GRBs. Its success strongly suggests that GRBs are $\\gamma$ ray tomography pictures of DSRs in galaxies at cosmological distances with unprecedented resolution: A time resolution of $dt\\sim 1~ms$ in a GRB can resolve stars at a Hubble distance which are separated by only $D\\sim 10^{10}cm$. This is equivalent to the resolving power of an optical telescope with a diameter larger than one Astronomical Unit!

  17. Solar gamma rays. [in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1974-01-01

    The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

  18. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  19. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few seconds is larger than that of the Sun during its entire life time (about 10,000 million years). "Gamma-ray bursts" are in fact by far the most powerful events since the Big Bang that are known in the Universe. While there are indications that gamma-ray bursts originate in star-forming regions within distant galaxies, the nature of such explosions remains a puzzle. Recent observations with large telescopes, e.g. the measurement of the degree of polarization of light from a gamma-ray burst in May 1999 with the VLT ( ESO PR 08/99), are now beginning to cast some light on this long-standing mystery. The afterglow of GRB 000131 ESO PR Photo 28a/00 ESO PR Photo 28a/00 [Preview - JPEG: 400 x 475 pix - 41k] [Normal - JPEG: 800 x 949 pix - 232k] [Full-Res - JPEG: 1200 x 1424 pix - 1.2Mb] ESO PR Photo 28b/00 ESO PR Photo 28b/00 [Preview - JPEG: 400 x 480 pix - 67k] [Normal - JPEG: 800 x 959 pix - 288k] [Full-Res - JPEG: 1200 x 1439 pix - 856k] Caption : PR Photo 28a/00 is a colour composite image of the sky field around the position of the gamma-ray burst GRB 000131 that was detected on January 31, 2000. It is based on images obtained with the ESO Very Large Telescope at Paranal. The object is indicated with an arrow, near a rather bright star (magnitude 9, i.e., over 1 million times brighter than the faintest objects visible on this photo). This and other bright objects in the field are responsible for various unavoidable imaging effects, caused by optical reflections (ring-shaped "ghost images", e.g. to the left of the brightest star) and detector saturation effects (horizontal and vertical straight lines and coloured "coronae" at the bright objects, and areas of "bleeding", e.g. below the bright star). PR Photo 28b/00 shows the rapid fading of the optical counterpart of GRB 000131 (slightly left of the centre), by means of exposures with the VLT on February 4 (upper left), 6 (upper right), 8 (lower left) and March 5 (lower right). It is no longer visible on the last photo. Techni

  20. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  1. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopa?, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  2. Opacity Build-up in Impulsive Relativistic Sources

    SciTech Connect

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-09-28

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production ({gamma}{gamma} {yields} e{sup +}e{sup -}) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, {tau}{gamma}{gamma}, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R{sub 0} {le} R {le} R{sub 0}+{Delta}R. This is particularly relevant for GRB internal shocks. We find that in an impulsive source ({Delta}R {approx}< R{sub 0}), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy {var_epsilon}1(T) where t{gamma}{gamma}({var_epsilon}1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy {var_epsilon}1* {approx} {var_epsilon}1({Delta}T) where {Delta}T is the duration of the emission episode. Furthermore, photons with energies {var_epsilon} > {var_epsilon}1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth {tau}{gamma}{gamma}({var_epsilon}) initially increases with time and {var_epsilon}1(T) correspondingly decreases with time, so that photons of energy {var_epsilon} > {var_epsilon}1* are able to escape the source mainly very early on while {var_epsilon}1(T) > {var_epsilon}. As the source approaches a quasi-steady state ({Delta}R >> R0), the time integrated spectrum develops an exponential cutoff, while the power-law tail becomes increasingly suppressed.

  3. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  4. Gravitational waves and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Predoi, Valeriu

    2012-07-01

    Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched{filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW{GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis and present results from a GW search around 12 short gamma-ray bursts detected by the InterPlanetary Network (IPN) between 2006 and 2007. The IPN{detected bursts usually have extended localization error boxes and a search for GW was performed at different sky locations across these error regions. Since no GW detection was made, we set upper limits on the distances to the GRB progenitors; we briefly discuss the implications that two IPN GRBs error regions overlap two nearby galaxies.

  5. Gravitational waves and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Predoi, Valeriu

    Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC), either double neutron stars or neutron star black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis and present results from a GW search around 12 short gamma-ray bursts detected by the InterPlanetary Network (IPN) between 2006 and 2007. The IPN detected bursts usually have extended localization error boxes and a search for GW was performed at different sky locations across these error regions. Since no GW detection was made, we set upper limits on the distances to the GRB progenitors; we briefly discuss the implications that two IPN GRBs error regions overlap two nearby galaxies.

  6. Monte Carlo correction factors for a Farmer 0.6 cm3 ion chamber dose measurement in the build-up region of the 6 MV clinical beam.

    PubMed

    Pena, J; Sánchez-Doblado, F; Capote, R; Terrón, J A; Gómez, F

    2006-03-21

    Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm(3) ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface. PMID:16510960

  7. Implications of the VHE {gamma}-Ray Detection of 3C279

    SciTech Connect

    Boettcher, M.

    2008-12-24

    We present simultaneous optical (BVRI) and X-ray (RXTE PCA) data on the quasar 3C279 from the day of the recent VHE detection by MAGIC and discuss the implications of the snap-shot spectral energy distribution (SED) for leptonic jet models of blazars. A one-zone synchrotron-self-Compton origin of the SED up to VHE {gamma}-rays can be ruled out. The VHE emission could, in principle, be interpreted as Compton upscattering of external radiation (e.g., from the broad-line regions) in a one-zone leptonic model. However, such an interpretation would require either an unusually low magnetic field of B{approx}0.03 G, or (in order to achieve approximate equipartition between magnetic field at B{approx}0.25 G and relativistic electrons) an unrealistically high Doppler factor of {gamma}{approx}140. In addition, such a model fails to reproduce the observed X-ray flux. We therefore conclude that a simple one-zone, homogeneous leptonic jet model is not able to plausibly reproduce the SED of 3C279 including the recently detected VHE {gamma}-ray emission. This as well as the lag of correlated variability in the optical with the VHE {gamma}-ray emission suggests a multi-zone model in which the optical emission is produced in a different region than the VHE {gamma}-ray emission. Alternatively, also a hadronic origin of the VHE {gamma}-rays seems plausible.

  8. A fireworks model for Gamma-Ray Bursts

    E-print Network

    Barbiellini, Guido; Longo, F

    2003-01-01

    The angular distribution of the shells emitted by a Gamma-Ray Burst (GRB) source is derived in analogy with the in-flight decay of an elementary particle. In the hypothesis that the shells evolve in two distinct phases, the first one occurs close to the engine and is responsible of energizing and collimating the shells. The second one consists of a radiation dominated expansion, correspondingly accelerates the relativistic photon--particle fluid and ends at the transparency time. This mechanism predicts that the observed Lorentz factor is determined by the product of the Lorentz factor of the shell close to the engine and the Lorentz factor derived by the expansion. The angular distribution of the emitted shells is determined by the bulk Lorentz factor at the end of the collimation phase.

  9. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases: (1) four PMT-based channels mounted to the outside of the target chamber at {approx}6m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and (2) several channels located just inside the target bay shield wall at 15 m from TCC (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. Multiple channels at each phase will allow for increased redundancy, reliability, accuracy and flexibility. This suite of diagnostics will make possible exploration of interesting {gamma}-ray physics well beyond the ignition campaign.

  10. Solar gamma ray and neutron observations. [analysis of gamma ray spectrometer data obtained on OSO-7

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.

    1973-01-01

    The present status of knowledge concerning the impulsive and the continuous emission of solar gamma rays and neutrons is reviewed in the light of the recent solar activity in early August 1972. The gamma ray spectrometer on Orbiting Solar Observatory-7 (OSO-7) has observed the sun continuously for most of the activity period except for occultation by the earth. In association with the 2B flare on August 4, 1972, and the 3B flare on August 7, 1972, the monitor provides evidence for solar gamma ray line emission in the energy range from 300 keV to 10 MeV. A summary of all the results available from preliminary analysis of the data will be given.

  11. High energy gamma-ray emission from Gamma-Ray Bursts -- before GLAST

    E-print Network

    Yi-Zhong Fan; Tsvi Piran

    2009-05-06

    Gamma-ray bursts (GRBs) are short and intense emission of soft gamma-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high energy gamma-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high energy emission from GRBs. Special attention is given to the expected high energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  12. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  13. The Ulysses Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts

    E-print Network

    K. Hurley; M. S. Briggs; R. M. Kippen; C. Kouveliotou; C. Meegan; G. Fishman; T. Cline; M. Boer

    1998-11-30

    We present Interplanetary Network localization information for 218 gamma-ray bursts in the 3rd BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma-Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 7 arcseconds and 32 arcminutes, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area of a factor of 30.

  14. The Ulysses Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.

    1998-01-01

    We present Interplanetary Network Localization information for 219 gamma-ray burst of the 3rd BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (triangulation) results in an annulus of possible arrival directions whose width varies between 7 arcseconds and 32 arcminutes, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area by a factor of 30.

  15. Predicted gamma-ray line emission from the Cygnus complex

    E-print Network

    Martin, Pierrick; Meynet, Georges; Diehl, Roland

    2010-01-01

    The Cygnus region harbours a huge complex of massive stars at a distance of 1.0-2.0kpc from us. About 170 O stars are distributed over several OB associations, among which the Cyg OB2 cluster is by far the most important with about 100-120 O stars. These massive stars inject large quantities of radioactive nuclei into the interstellar medium, such as 26Al and 60Fe, and their gamma-ray line decay signals can provide insight into the physics of massive stars and core-collapse supernovae. Past studies of the nucleosynthesis activity of Cygnus have concluded that the level of 26Al decay emission as deduced from CGRO/COMPTEL observations was a factor 2-3 above the predictions based on the theoretical yields available at that time and on the observed stellar content of the Cygnus region. We reevaluate the situation from new measurements of the gamma-ray decay fluxes with INTEGRAL/SPI and new predictions based on recently improved stellar models including some of the effects of stellar rotation for the higher mass s...

  16. Gamma ray spectroscopy and timing using LSO and PIN photodiodes

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1995-08-01

    The high density, high light output, and short decay time of LSO (lutetium orthosilicate, Lu{sub 2}SiO{sub 5}:Ce) make it an attractive scintillator for gamma ray spectroscopy. The low cost, small size, high quantum efficiency, and ruggedness of silicon photodiodes make them attractive photodetectors for this same application, although their high noise (compared to a photomultiplier tube) reduces their appeal. In this work the authors measure the gamma ray energy resolution, timing accuracy, and conversion factor from gamma energy to number of electron-hole pairs produced with a 3 x 3 x 22 mm{sup 3} LSO scintillator crystal read out with a 3 x 3 mm{sup 2} silicon PIN photodiode. When the detector is excited with 511 keV photons, a photopeak centered at 4,910 e{sup {minus}} with 149 keV fwhm is observed and a timing signal with 25 ns fwhm jitter is produced. While these performance measures are inferior to those obtained with photomultiplier tubes, they are acceptable for some applications.

  17. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  18. High-Energy Spectral Signatures in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Baring, Matthew D.

    1999-01-01

    One of the principal results obtained by the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) was the detection of several gamma-ray bursts (GRBs) above 100 MeV. The broad-band spectra obtained for these bursts gave no indication of any high-energy spectral attenuation that might preclude detection of bursts by ground-based Cerenkov telescopes (ACTs), thus motivating several TeV observational programs. This paper explores the expectations for the spectral properties in the TeV and sub-TeV bands for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive spectral signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. These characteristics define palpable observational goals for ACT programs, and strongly impact the observability of bursts in the TeV band.

  19. High-Energy Spectral Signatures in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    One of the principal results obtained by the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) was the detection of several gamma-ray bursts (GRBs) above 100 MeV. The broad-band spectra obtained for these bursts gave no indication of any high energy spectral attenuation that might preclude detection of bursts by ground-based Cerenkov telescopes (ACTs), thus motivating several TeV observational programs. This paper explores the expectations for the spectral properties in the TeV and sub-TeV bands for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive spectral signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. These characteristics define palpable observational goals for ACT programs, and strongly impact the observability of bursts in the TeV band.

  20. MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.

    2004-01-01

    Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

  1. Gamma-ray burst data from DMSP satellites

    SciTech Connect

    Terrell, J.; Klebesadel, R.W.; Lee, P.; Griffee, J.W.

    1991-12-31

    A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

  2. Gamma-ray burst data from DMSP satellites

    SciTech Connect

    Terrell, J.; Klebesadel, R.W.; Lee, P. ); Griffee, J.W. )

    1991-01-01

    A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

  3. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  4. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, ?; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-01

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields. PMID:20360067

  5. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGESBeta

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore »multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  6. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  7. Gamma ray emission and solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Ramaty, R.

    1978-01-01

    Solar gamma ray line and continuum emission provide information about particle acceleration and its temporal behavior; the energy spectrum, composition and directivity of the accelerated particles; and the composition, density and temperatures of the ambient medium. These data, coupled with the comprehensive photon and particle observations available for the sun, give a detailed picture of the particle acceleration and flare energy release processes. Additional information on elemental and isotopic abundances, surface nuclear reactions and coronal heating mechanisms can be obtained. Implications of present observations and the potential return from future observational are discussed.

  8. Beaming Effects in Gamma-Ray Bursts

    E-print Network

    Y. F. Huang; T. Lu; Z. G. Dai; K. S. Cheng

    2002-08-15

    Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.

  9. Gamma-Ray Fuel Gauges for Airplanes

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Mall, Gerald H.; Chegini, Hoshang

    1987-01-01

    Accurate system overcomes problems of capacitance gauges. Feasibility study conducted on use of attenuation of gamma rays to measure quantities of fuel in tanks. Studies with weak Am241 59.5-keV radiation source indicate it is possible to monitor continuously fuel quantity in tanks to accuracy of better than 1 percent. Measurements also indicate easily measurable differences in physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. Am241-based densitometers currently in use aboard some aircraft . Estimated complete system, including microprocessor and associated display devices, assembled at cost of less than $10,000 per fuel tank.

  10. Gamma Ray Spectrum Unfolding Using Derivative Kernels

    E-print Network

    D. S. Vlachos; O. T. Kosmas

    2009-05-04

    The unfolding of a gamma ray spectrum experience many difficulties due to noise in the recorded data, that is based mainly on the change of photon energy due to scattering mechanisms (either in the detector or the medium), the accumulation of recorded counts in a fixed energy interval (the channel width of the detector) and finally the statistical fluctuation inside the detector. In order to deal with these problems, a new method is developed which interpolates the ideal spectrum with the use of special designed derivative kernels. Preliminary simulation results are presented and show that this approach is very effective even in spectra with low statistics.

  11. Gamma-ray burster counterparts - Radio

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cline, Thomas L.; Desai, U. D.; Teegarden, B. J.; Atteia, J.-L.; Barat, C.; Estulin, I. V.; Evans, W. D.; Fenimore, E. E.; Hurley, K.

    1989-01-01

    Many observers and theorists have suggested that gamma-ray bursters (GRBs) are related to highly magnetized rotating, neutron stars, in which case an analogy with pulsars implies that GRBs would be prodigious emitters of polarized radio emission during quiescence. The paper reports on a survey conducted with the Very Large Array radio telescope of 10 small GRB error regions for quiescent radio emission at wavelengths of 2, 6, and 20 cm. The sensitivity of the survey varied from 0.1 to 0.8 mJy. The observations did indeed reveal four radio sources inside the GRB error regions.

  12. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  13. Interpretation of the pulsed gamma ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma ray emission is produced by synchrotron radiation near the speed of light cylinder. This model can explain the energy flux, double pulse structure, and phase shift with respect to the radio of the gamma ray emission and offers approximate quantitative predictions for other X-ray and gamma-ray fluxes.

  14. Interpretation of the pulsed gamma-ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma-ray emission is produced by synchrotron radiation near the speed-of-light cylinder. This model can explain the energy flux, double pulse structure, and phase shift (with respect to the radio) of the gamma-ray emission, and offers approximate quantitative predictions for other X- and gamma-ray fluxes.

  15. Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

    1993-01-01

    Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

  16. Stratigraphic framework of productive carbonate buildups

    SciTech Connect

    Greenlee, S.M.; Lehmann, P.J. )

    1990-05-01

    Hydrocarbon-productive carbonate buildups are found within a relatively narrow window of geologic time and stratigraphic settings. Because buildups are common exploration objectives in frontier and mature basins, an understanding of their stratigraphic occurrence permits them to be more accurately explored. Based on a worldwide survey, most production occurs in isolated periods of geologic time: Middle Silurian-Late Silurian, late Middle and Late Devonian, Late Pennsylvanian and Early Permian, Late Cretaceous, Paleocene, and Miocene. The authors results suggest that many factors of successful buildup plays are predictable on the basis of geohistory analysis and of basin-filling stratal patterns. Deposition of extensive source beds and thick buildups coincide with second-order eustatic rises. Other primary controls on the temporal distribution of buildups include reef-building organism type, mineralogy, and paleolatitude. Geohistory analysis indicates that periods immediately prior to or during the earliest portion of rapid increases of accommodation correspond to times of productive buildup growth. During this time, shelf margins step landward and buildups become progressively more areally restricted. Buildups eventually are unable to keep pace with high rates of accommodation increase and often are overlain by distal toes of clinoforms within regressive wedges deposited during subsequent periods with lower rates of accommodation increase. The result is a stratigraphic juxtaposition of mounded reservoir carbonate and deep-marine sealing shale. This basin-fill position accounts for over 70% of known buildup-reservoired hydrocarbons. Buildups deposited in overlying regressive wedges are often lower relief and prone to seal problems.

  17. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Isabelle Grenier

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  18. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Grenier, Isabelle

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  19. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2010-01-08

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  20. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  1. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  2. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  3. Simultaneous Radio, Optical and Gamma-Ray Observations of TGFs

    NASA Astrophysics Data System (ADS)

    Jarvis, C.; Briggs, M. S.; Xiong, S.; Christian, H. J.; Bitzer, P. M.; Buechler, D. E.; Holzworth, R. H.; Cummer, S. A.

    2013-12-01

    One of the largest mysteries surrounding terrestrial gamma ray flashes (TGFs) is their causal relation to lightning. Observations suggest that TGFs occur early in IC lightning. Previously only a single TGF has been simultaneously measured in the radio, optical, and gamma ray bands -- results of which support that TGFs occur early on. A thorough analysis of data from the Lightning Imaging Sensor (LIS), the Gamma Ray Burst Monitor (GBM), and Duke University LF radio sensors has yielded four new TGFs measured in optical and gamma-ray, and one in all three. Presented are the results of these newly discovered matches which stand to affirm that TGFs occur early in IC lightning.

  4. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  5. The gamma ray spectrometer for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Chupp, E. L.; Ryan, J. M.; Cherry, M. L.; Gleske, I. U.; Reppin, C.; Pinkau, K.; Rieger, E.; Kanbach, G.; Kinzer, R. L.

    1980-01-01

    The paper describes an actively shielded, multicrystal scintillation spectrometer for measurement of the solar gamma ray flux used by the Solar Maximum Mission Gamma Ray Experiment. The instrument provides a 476-channel pulse height spectrum every 16.38 s over the 0.3-9 MeV energy range; the gamma ray spectral analysis can be extended to at least 15 MeV on command. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines, the intensity of extremely broadened lines, and the photon continuum.

  6. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars therefore provides a fresh perspective on the early evolution of the luminosity and beam width of the gamma-ray emission from young pulsars, calling for thin and more luminous gaps.

  7. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  8. Guest Investigator Studies with the Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.

    1998-09-01

    The cumulative all-sky survey by the Compton Gamma Ray Observatory (CGRO), composed of data acquired during the first three years of the mission, included a number of regions of very limited exposure. The most glaring deficiency in coverage was toward the region of the South Galactic Pole (SGP), which received significantly less exposure than other directions- by a factor of at least 2 to 3. Furthermore, nearly all of the SGP exposure was accumulated during the first year of the mission. Since blazars are known to be time-variable, and of unknown duty cycle, a pointing of the CCRO in that direction was considered highly desirable, and long overdue. In addition, data gathered from a pointing toward the SGP and its comparison with comprehensive data available for the North Galactic Pole would be extremely valuable to investigators studying the extragalactic diffuse emission. The reasons outlined above prompted our initiation of a Cycle 4 campaign to systematically search with EGRET and COMPTEL for gamma-ray emission from sources near the South Galactic Pole. The Cycle 4 SGP campaign consisted of tnvo 14-day observations separated in in time by approximately 10 months. The temporal separation of the observations was requested to allow a test for possible variations in the detected sources. Our primary targets were 38 FSRQs which lie within 30 degrees of the SGP, and which satisfy the basic criteria for candidate gamma-ray AGNs,flat-spectrum radio sources, many of which exhibit blazar-type properties). These targets were selected from the standard references, and from the available on-line databases (e.g., the NASA Extragalactic Database, NED), as the most promising AGN targets in the vicinity of the SGP. A 30 radius from the SGP was chosen as the boundary of our survey, since the selected targets would then fall within the most sensitive portion of the fields of view of EGRET and COMPTEL (i.e., within a 30 zenith angle), for a CGRO pointing directed exactly at the SGP. Our South Galactic Pole Survey yielded a number of exciting results. The EGRET data were analyzed using the maximum likelihood techniques to estimate the intensity, spectrum, and position of gamma-ray sources in the field of view. Our analysis revealed four sources at energies greater than 100 MeV with likelihood ratios corresponding to greater than 30 detections (Vestrand et al. 1996). One of the sources is associated with the well known gamma-ray blazar PKS 0208-512, but the other three were previously unknown. Among the new detections was PKS 2155-304 which is often considered a prototype of the x-ray selected BL Lacs. PKS 2155-304, which was also detected at hard x-ray energies by CGRO/OSSE, is one of the brightest BL Lac objects in the sky at optical through x-ray energies and has a history of rapid, strong multiwavelength variability. As such, it has been the subject of intensive, contemporaneous, multiwavelength monitoring covering radio frequencies to x-ray energies.

  9. The interplanetary gamma ray burst network

    NASA Astrophysics Data System (ADS)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  10. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  11. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  12. Very high energy gamma ray astrophysics

    SciTech Connect

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  13. Classification of Swift's gamma-ray bursts

    E-print Network

    Horváth, I; Bagoly, Z; Veres, P

    2008-01-01

    Two classes of gamma-ray bursts have been identified in the BATSE catalogs characterized by durations shorter and longer than about 2 seconds. There are, however, some indications for the existence of a third class. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for gamma-ray bursts. Therefore, it is worth to reanalyze the durations and their distribution. We analyze, the maximum likelihood estimation, the bursts duration distribution, published in The First BAT Catalog, whether it contains two, three or more groups. The three log-normal fit is significantly (99.54% probability) better than the two for the duration distribution. Monte-Carlo simulations also confirm this probability (99.2%). Similarly, in previous results we found that the fourth component is not needed. The relative frequencies of the distribution of the groups are 7% short 35% intermediate and 58% long. Although the relative frequencies of the groups are different than in the BATSE GRB sample, the differenc...

  14. Gamma ray tests of Minimal Dark Matter

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-01

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  15. Environments of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Roming, Peter; Tobler, Jennifer

    2016-01-01

    The death of some of the most massive stars are manifest as long gamma-ray bursts (GRBs). Studying their light curves and spectra are uncovering some of the properties of the "central engine" that remains after the progenitor star collapses, as well as the environment in which they reside. Much of our current understanding comes from data obtained in the gamma-ray to X-ray. Despite this progress in the high-energy regime, our understanding of the soft-energy component (UV/optical) is lacking, particularly with regards to UV/optical flaring from the central engine and distinguishing between interstellar material and wind environments. Although these questions have been addressed for individual bursts, no systematic study in the UV/optical has been done due to the lack of a large homogenous sample. The Swift Ultra-Violet/Optical Telescope (UVOT) has observed more GRBs in the UV/optical than any other telescope. From these observations we have generated a homogenous UV/optical GRB afterglow catalog. From this catalog and coupled with archival Swift X-Ray Telescope (XRT) data, we examine the spectral evolution of GRBs in order to probe the circumburst environment and to test current progenitor models.

  16. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  17. Constraining the location of gamma-ray flares in luminous blazars

    SciTech Connect

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-07-10

    Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor ? of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter ?? ? 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L{sub SSC} ? L{sub X}, and from an upper limit on the efficient cooling photon energy E{sub cool,obs} ? 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L{sub d}. The commonly used intrinsic pair-production opacity constraint on ? is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter ?? ? 0.1-0.7. Typical values of r corresponding to moderate values of ? ? 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t{sub var,obs}. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t{sub var,obs} ? a few days are located at r ? 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be provided by determination of the synchrotron self-absorption frequency for correlated synchrotron and gamma-ray flares.

  18. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    NASA Astrophysics Data System (ADS)

    Nesci, R.; Tosti, G.; Pursimo, T.; Ojha, R.; Kadler, M.

    2013-07-01

    Context. Spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims: In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods: We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from the Fermi gamma-ray Space Telescope, making weekly averages. Results: Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index ?ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. The gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (?peak) of the synchrotron emission. A table of the photometry is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A2

  19. Constraints on Dark Energy Models Including Gamma Ray Bursts

    E-print Network

    Hong Li; Meng Su; Zuhui Fan; Zigao Dai; Xinmin Zhang

    2007-11-12

    In this paper we analyze the constraints on the property of dark energy from cosmological observations. Together with SNe Ia Gold sample, WMAP, SDSS and 2dFGRS data, we include 69 long Gamma-Ray Bursts (GRBs) data in our study and perform global fitting using Markov Chain Monte Carlo (MCMC) technique. Dark energy perturbations are explicitly considered. We pay particular attention to the time evolution of the equation of state of dark energy parameterized as $w_{DE}=w_0+w_a(1-a)$ with $a$ the scale factor of the universe, emphasizing the complementarity of high redshift GRBs to other cosmological probes. It is found that the constraints on dark energy become stringent by taking into account high redshift GRBs, especially for $w_a$, which delineates the evolution of dark energy.

  20. Low intensity X-ray and gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (inventor)

    1982-01-01

    A low intensity X-ray and gamma ray spectrometer for imaging, counting, and energy resolving of single invisible radiation particles is described. The spectrometer includes a converting device for converting single invisible radiation particles to visible light photons. Another converting device converts the visible light photons to photoelectrons. A fiber optics coupling device couples together the two converting devices. An intensifying device intensifies the photoelectrons by an average gain factor of between 10 to the 4th power and 10 to the 7th power. The tensifying device is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device displays the intensified photoelectrons. The displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles.

  1. The Prompt and High Energy Emission of Gamma Ray Bursts

    SciTech Connect

    Meszaros, P.

    2009-05-25

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  2. Self Attenuation of Gamma Rays in Titanite, Zircon and Apatite

    NASA Astrophysics Data System (ADS)

    Walsh, C. N.; Baskaran, M.; Brownlee, S. J.; Eakin, M.

    2013-12-01

    Several of the gamma-emitting U-Th series, cosmogenic and anthropogenic radionuclides (210Pb, 234Th, 226Ra, 228Ra, 7Be, 137Cs, etc) have been widely utilized as tracers and chronometers in environmental studies. Precise measurements of these nuclides using gamma-ray spectrometry in environmental matrices require that the proper correction factors for self- and external-absorption be applied. In this study, we examine factors associated with absorption and self attenuation of gamma-rays of 210Pb (46.5 keV), 234Th (63 keV), 226Ra (via 214Pb and 214Bi, 351.9 and 609 keV) and 228Ra (via 228Ac, 338.3 and 911.2 keV) using a well-type germanium gamma-ray detector. Samples of three naturally occurring minerals (titanite, apatite and zircon) were separated into 5 size fractions (<63 ?m, 63-125 ?m, 125-250 ?m, 250-500 ?m, and >500 ?m) and analyzed for 210Pb, 234Th, 226Ra, and 228Ra. We also analyzed two synthetic silica standards (RGU-1, RGTH-1) that have a relatively uniform grain size of 63 ?m. These minerals were chosen based on their varying chemical compositions and densities. Chosen samples are of an age that isotopes of 238U and 232Th are expected to be in secular equilibrium with their daughter products. However, the measured activity ratios between members of the family vary widely. In the case of titanite, the 210Pb/226Ra ratios in 5 size fractions varied between 0.44×0.03 and 0.53×0.03, while in apatite it varied between 0.54×0.03 and 0.67×0.04, without applying any self- and external-absorption correction factors. Using the attenuation coefficients of constituent elements at different energies, we estimate the attenuation coefficient for each of these 4 minerals and determine the self- and external-absorption correction factors. The self- and external-absorption corrected activities agree with the expected activities in these minerals. Our data suggests that variations in the activity levels are dependent on chemical composition, density, and grain-size fraction. The ratios of activities in the < 63 ?m size-fraction to that in the > 500 ?m size-fraction for gamma energies between 46 and 609 keV varied between 1.67 and 1.75 for titanite, while this ratio varied between 5.23 and 6.99 for apatite. These results demonstrate that self- and external-absorption for apatite is much stronger than for titanite. We will present our method of quantification of the self- and external-absorption corrections for a suite of gamma-ray energies for titanite, apatite, and zircon.

  3. Particle Acceleration in Gamma-Ray Burst Jets

    E-print Network

    Frank M. Rieger; Peter Duffy

    2005-11-02

    Gradual shear acceleration of energetic particles in gamma-ray burst (GRB) jets is considered. Special emphasis is given to the analysis of universal structured jets, and characteristic acceleration timescales are determined for a power-law and a Gaussian evolution of the bulk flow Lorentz factor $\\gamma_b$ with angle $\\phi$ from the jet axis. The results suggest that local power-law particle distributions may be generated and that higher energy particles are generally concentrated closer to the jet axis. Taking several constraints into account we show that efficient electron acceleration in gradual shear flows, with maximum particle energy successively decreasing with time, may be possible on scales larger than $r \\sim 10^{15}$ cm, provided the jet magnetic field becomes sufficiently weak and/or decreases rapidly enough with distance, while efficient acceleration of protons to ultra-high energies $> 10^{20}$ eV may be possible under a wide range of conditions.

  4. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  5. On the origin of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Al Dallal, S.

    Since their discovery some thirty years ago by military satellites, gamma-ray bursts (GRBs) have endured as one of astronomy's greatest mysteries. In this paper we review the existing models to explain the origin of gamma ray bursts and highlight the difficulties associated with these models. We proceed then to consider the general features of the GRBs and propose a new model of their origin that is closely related to the initial phase of the big bang itself. Even though the position of some gamma ray events are found to coincide with that of galaxies, their distribution on the sky is random and is not correlated with the distribution of galaxies or galactic clusters. Another important aspect of GRBs is that these are occurring at great distances stretching to billions of light years away. It then becomes tempting to ask why they are not occurring in the nearby clusters of galaxies. Furthermore, GRBs fall into two categories: long ones lasting from a couple of seconds to few minutes, and short ones lasting less than 2 seconds, sometimes less than 0.1 second. However, there is no cutting edge between the two categories and their numbers, when traced versus duration, form a continuous pattern, which is very difficult to explain in terms of the existing models. In fact, their distribution in distance may allow us to see further back into cosmic history than anything else. Some GRBs likely come from very high red shifts, corresponding to the era when the very first stars were formed. Another trend in this regard is that more distant a GRB is - and hence the earlier in the universe it happened - the more intrinsically powerful it generally turns out to be. In this paper we argue that GRBs are related to the initial phase of the big bang when quantum fluctuations dominate the expanding fireball. A model explaining how GRBs are initiated and evolved in the early stage of the big bang is presented. Recent data obtained from WMAP satellite are shown to be consistent with our model.

  6. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and ASSEMBLER and has been implemented on a VAX 11/780 under VMS 4.5. It has a virtual memory requirement of 255k. GROSS was developed in 1986.

  7. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  8. Measuring high-energy {gamma} rays with Ge detectors

    SciTech Connect

    Lipoglavsek, M.; Likar, A.; Vencelj, M.; Vidmar, T.; Bark, R. A.; Gueorguieva, E.; Komati, F.; Lawrie, J. J.; Maliage, S. M.; Mullins, S. M.; Murray, S. H. T.; Ramashidzha, T. M.

    2006-04-26

    Gamma rays with energies up to 21 MeV were measured with Ge detectors. Such {gamma} rays were produced in the 208Pb(p,{gamma})209Bi reaction. The position of the 2g9/2 single proton orbit in 209Bi has been determined indicating the size of the Z=126 shell gap.

  9. Gamma-ray Bursts as Probes of Galaxy Evolution

    E-print Network

    ?umer, Slobodan

    Gamma-ray Bursts as Probes of Galaxy Evolution Daniele Malesani, Dark Cosmology Centre and the X to ongoing star formation "Naked-eye" GRB 080319B GRBs explode within star-forming galaxies Gamma-ray bursts formation rate (you "only" need a redshift) Includes "invisible" star formation: - SF in faint galaxies

  10. Solving the Mystery of Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.

  11. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  12. QUALITY CONTROL FOR ENVIRONMENTAL MEASUREMENTS USING GAMMA-RAY SPECTROMETRY

    EPA Science Inventory

    This report describes the quality control procedures, calibration, collection, analysis, and interpretation of data in measuring the activity of gamma ray-emitting radionuclides in environmental samples. Included in the appendices are basic data for selected gamma ray-emitting ra...

  13. HEAO C-1 gamma-ray spectrometer. [experimental design

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  14. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  15. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed.

  16. Predicted gamma-ray line emission from the Cygnus complex

    NASA Astrophysics Data System (ADS)

    Martin, P.; Knödlseder, J.; Meynet, G.; Diehl, R.

    2010-02-01

    Context. The Cygnus region harbours a huge complex of massive stars at a distance of 1.0-2.0 kpc from us. About 170 O stars are distributed over several OB associations, among which the Cyg OB2 cluster is by far the most important with about 100-120 O stars. These massive stars inject large quantities of radioactive nuclei into the interstellar medium, such as 26Al and 60Fe, and their gamma-ray line decay signals can provide insight into the physics of massive stars and core-collapse supernovae. Aims: Past studies of the nucleosynthesis activity of Cygnus have concluded that the level of 26Al decay emission as deduced from CGRO/COMPTEL observations was a factor 2-3 above the predictions based on the theoretical yields available at that time and on the observed stellar content of the Cygnus region. We reevaluate the situation from new measurements of the gamma-ray decay fluxes with INTEGRAL/SPI (presented in a previous paper) and new predictions based on recently improved stellar models. Methods: We built a grid of nucleosynthesis yields from recent models of massive stars. Compared to previous works, our data include some of the effects of stellar rotation for the higher mass stars and a coherent estimate of the contribution from SNIb/c. We then developed a population synthesis code to predict the nucleosynthesis activity and corresponding decay fluxes of a given stellar population of massive stars. Results: The observed decay fluxes from the Cygnus complex are found to be consistent with the values predicted by population synthesis at solar metallicity; and yet, when extrapolated to the possible subsolar metallicity of the Cygnus complex, our predictions fail to account for the INTEGRAL/SPI measurements. The observed extent of the 1809 keV emission from Cygnus is found to be consistent with the result of a numerical simulation of the diffusion of 26Al inside the superbubble blown by Cyg OB2. Conclusions: Our work indicates that the past dilemma regarding the gamma-ray line emission from Cygnus resulted from an overestimate of the 1809 keV flux of the Cygnus complex, combined with an underestimate of the nucleosynthesis yields. Our results illustrate the importance of stellar rotation and SNIb/c in the nucleosynthesis of 26Al and 60Fe. The effects of binarity and metallicity may also be necessary to account for the observations satisfactorily.

  17. Balloon-borne gamma-ray polarimetry

    E-print Network

    Pearce, Mark

    2011-01-01

    The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.

  18. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include: 1) a large-area gamma-ray detector us- ing the new CdZnTe detectors; 2) an autonomous rapid slewing spacecraft; 3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments; 4) an observing program coordinated with other ground-based and space-based observatories; and 5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 years of operations and the spacecraft will have a lifetime to orbital decay of approx. 8 years.

  19. Nuclear gamma rays from stellar flares

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1978-01-01

    Solar flare observations are consistent with the phenomenological description that a loop of magnetic flux is convected to the surface of the star and twisted. The resulting inductive current parallel to the field is dissipated at an enhanced rate throughout the field volume by current limiting instabilities. The steady state balance between joule heating and thermal conduction along the field lines of force to the denser, cooler surface establishes a temperature distribution. The expansion of heated and ionized surface layers leads to a pressure balance and hence predictable density and X-ray emission measure. The current limitation instabilities result observationally in the parallel current being transferred to run-away ions that reach a kinetic energy of some finite fraction of the inductive potential drop. The nuclear excitation gamma rays produced by such a run-away ion current are calculated for a white dwarf flare.

  20. Do Gamma-Ray Burst Sources Repeat?

    E-print Network

    Charles A. Meegan; Dieter H. Hartmann; J. J. Brainerd; Michael S. Briggs; William S. Paciesas; Geoffrey Pendleton; Chryssa Kouveliotou; Gerald Fishman; George Blumenthal; Martin Brock

    1995-04-04

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb 1993; Wang and Lingenfelter 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  1. Lorentz invariance violation with gamma rays

    E-print Network

    Michael Daniel; for the CTA Consortium

    2015-01-05

    The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.

  2. The Chase to Capture Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.

  3. Gamma-ray pulsars: A gold mine

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Harding, Alice K.

    2015-08-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to ? rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of ?-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic ? rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing ?-ray observations and magnetospheric models in more detail. xml:lang="fr"

  4. Gamma-ray induced displacement in D20 reactors

    SciTech Connect

    Baumann, N.P.

    1990-05-01

    Gamma-ray damage to tank walls is typically more severe in D{sub 2}O than in H{sub 2}O moderated lattices because of the much higher ratios of slow-to-fast neutron flux. To estimate this effect it was first necessary to develop energy dependent gamma-ray displacement cross sections for iron. These, along with coupled neutron-gamma-ray transport computations, provided a measure of displacement damage from this source in SRS reactor tank walls. Gamma-ray displacements originating from high energy gammas from neutron capture in and near the tank wall exceeded those from gamma rays created in the reactor core. The displacements from the combined gamma sources ranged from 13% to 16% of that due to iron atom recoil following neutron capture. 8 refs., 2 figs., 2 tabs.

  5. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    NASA Astrophysics Data System (ADS)

    Kim, Tak-Hyun; Lee, Myunjoo; Park, Chulhwan

    2011-12-01

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD 5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  6. Evaluation of Potash Grade with Gamma-ray Logs

    USGS Publications Warehouse

    Nelson, Philip H.

    2007-01-01

    Potassium is an emitter of gamma-ray radiation, consequently deposits of potash can be detected and evaluated using gamma-ray logs. A method originally designed to evaluate uranium deposits in boreholes can also be applied to potash deposits. The method equates the depth-integral of a gamma-ray log to the grade-thickness product of a potash-bearing bed or series of beds. The average grade of a bed is then determined by dividing by the overall bed thickness, which can also be obtained from the gamma-ray log. The method was tested using gamma-ray logs and potash assays from boreholes near Carlsbad, New Mexico.

  7. Search for medium-energy gamma-ray pulsars

    SciTech Connect

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29 are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.

  8. Gamma-Ray Bursts: Pulses and Populations

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.; Hakkila, J. E.; Broadbent, M.; Wasserman, I. M.; Wolpert, R. L.

    2013-04-01

    We describe ongoing work on two projects that are enabling more thorough and accurate use of archival BATSE data for elucidating the nature of GRB sources; the methods and tools we are developing will also be valuable for analyzing data from other missions. The first project addresses modeling the spectro-temporal behavior of prompt gamma ray emission from GRBs by modeling gamma ray count and event data with a population of pulses, with the population drawn from one or more families of single-pulse kernels. Our approach is built on a multilevel nonparametric probabilistic framework we have dubbed "Bayesian droplets," and offers several important advances over previous pulse decomposition approaches: (1) It works in the pulse-confusion regime, quantifying uncertainty in the number, locations, and shapes of pulses, even when there is strong overlap. (2) It can self-consistently model pulse behavior across multiple spectral bands. (3) It readily handles a variety of spatio-temporal kernel shapes. (4) It reifies the idea of a burst as a population of pulses, enabling explicit modeling and estimation of the pulse population distribution. We describe the framework and present analyses of prototypical simple and complex GRB light curves. The second project aims to enable accurate demographic modeling of GRBs using the BATSE catalog. We present new calculations of the BATSE sky exposure, encompassing the full duration of the BATSE catalog for the first time, with many improvements over the currently available exposure map. A similar calculation of the detection efficiency is in progress. We also describe public Python software enabling access and accurate modeling of BATSE GRB data. The software enables demographic studies (e.g., modeling log N - log S distributions) with accurate accounting of both selection effects and measurement errors. It also enables spectro-temporal modeling of detailed data from individual GRBs. These projects are supported by NASA through the AISR and ADAP programs.

  9. LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS

    SciTech Connect

    Woosley, S. E.; Heger, Alexander E-mail: alex@physics.umn.edu

    2012-06-10

    In the collapsar model for common gamma-ray bursts (GRBs), the formation of a centrifugally supported disk occurs during the first {approx}10 s following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur-blue supergiants with low mass-loss rates, tidally interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common GRB. A broad range of powers is possible, 10{sup 47}-10{sup 50} erg s{sup -1}, and this brightness could be enhanced by beaming. Such events were probably more frequent in the early universe where mass-loss rates were lower. Indeed, this could be one of the most common forms of gamma-ray transients in the universe and could be used to study first generation stars. Several events could be active in the sky at any one time. Recent examples of this sort of event may have been the Swift transients Sw-1644+57, Sw-2058+0516, and GRB 101225A.

  10. Characteristics of the Telescope for High Energy Gamma-ray Astronomy Selected for Definition Studies on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Hofstadter, R.; Johansson, A.; Rolfe, J.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1979-01-01

    The high energy gamma-ray selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  11. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  12. Analysis of Data from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.; Elliott, William W.

    1999-01-01

    The final report consists of summaries of work proposed, work accomplished, papers and presentations published and continuing work regarding the cooperative agreement. The work under the agreement is based on high energy gamma ray source data analysis collected from the Energetic Gamma-Ray Experiment Telescope (EGRET).

  13. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  14. Excess gamma-rays in the direction of the rho Ophiuchi cloud: An exotic object?

    NASA Technical Reports Server (NTRS)

    Montmerle, T.; Andre, P.; Feigelson, E. D.

    1985-01-01

    The COS-B X-ray data in the direction of the rho Oph dark cloud show an extended structure; at the same time, the region of highest intensity has a spatial distribution compatible with a localized source; 2CG353+16 which is designated Oph gamma. The possibility of an excess gamma ray flux over what is expected on the basis of the interaction of average density cosmic rays with an estimated cloud mass of 2 to 4 000 M is still open, pending an extended CO survey matching the gamma ray data. Estimates for this excess factor are in the range 2 to 4. While the cloud mass may be underestimated, it should be noted that an excess of the same order appears to be present in the nearby Oph-Sag area, well surveyed in CO with the Columbia dish. Possible reasons for a gamma ray excess, in view of two recent observational developments: an Einstein X-ray survey and a VLA radio survey, both covering the approx 2 deg diameter Oph gamma error box. Current interpretations link the gamma ray excess to the cloud gas, in which some active agent is present: stellar winds, or interaction with the North Polar Spur.

  15. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2?. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  16. Overall Evolution of Jetted Gamma-ray Burst Ejecta

    E-print Network

    Y. F. Huang; L. J. Gou; Z. G. Dai; T. Lu

    2000-05-24

    Whether gamma-ray bursts are highly beamed or not is a very difficult but important problem that we are confronted with. Some theorists suggest that beaming effect usually leads to a sharp break in the afterglow light curve during the ultra-relativistic phase, with the breaking point determined by $\\gamma = 1 / \\theta_0$, where $\\gamma$ is the Lorentz factor of the blastwave and $\\theta_0$ is the initial half opening angle of the ejecta, but numerical studies tend to reject the suggestion. We note that previous studies are uniformly based on dynamics that is not proper for non-relativistic blastwaves. Here we investigate the problem in more detail, paying special attention to the transition from the ultra-relativistic phase to the non-relativistic phase. Due to some crucial refinements in the dynamics, we can follow the overall evolution of a realistic jet till its velocity is as small as $\\beta c \\sim 10^{-3} c$. We find no obvious break in the optical light curve during the relativistic phase itself. However, an obvious break does appear at the transition from the relativistic phase to the Newtonian phase if the physical parameters involved are properly assumed. Generally speaking, the Newtonian phase is characterized by a sharp decay of optical afterglows, with the power law timing index $\\alpha \\sim 1.8$ - 2.1. This is due to the quick lateral expansion at this stage. The quick decay of optical afterglows from GRB 970228, 980326, and 980519, and the breaks in the optical light curves of GRB 990123 and 990510 may indicate the presence of highly collimated $\\gamma$-ray burst ejecta.

  17. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    SciTech Connect

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    2013-06-12

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing early science results.

  18. The Gamma-Ray Large-Area Space Telescope: An Astro-Particle Mission to Explore the High-Energy Gamma-Ray Sky

    SciTech Connect

    Spandre, Gloria; /INFN, Pisa

    2009-05-12

    The Gamma Ray Large Area Space Telescope (GLAST) is a space mission that will detect photons from the gamma ray sky, in the rich yet poorly explored high energy band between 20MeV and 1TeV. Main instrument on board is the Large Area Telescope (LAT), a gamma-ray pair-conversion telescope, that will measure direction and energy of incoming photons by means of a very large (11.000 sensors), low pitch (228 {micro}m) Silicon strip Tracker and an imaging CsI e.m. calorimeter, supported in the rejection of charged particles background by an outer, segmented Anti-Coincidence Detector built with plastic scintillators. The superior angular resolution of the LAT, coupled to its very large field of view, results in a sensitivity advance of a factor 30 or more with respect to previously flown instruments. This will allow GLAST to locate currently unresolved gamma ray sources and to detect potential new classes of sources. Study of the residual gamma ray background will have a crucial role in connection to cosmological models, supersymmetric dark matter and relics of exotic particle decay searches. An accurate spectroscopy of all gamma ray emitters will be possible with the high energy resolution of the calorimeter, improving our knowledge of the mechanisms that power the cores of blazars and AGNs, and enabling tens of different pulsar emission models. The GLAST mission will have the instrumental capabilities to locate and analyze sources of cosmic rays and investigate on their acceleration mechanism. As for transient phenomena studies, like the spectacular GRBs, known to be the most energetic natural events, GLAST is in a prominent position. This is due to the minimum detection dead time (<100 {micro}s), typical of the silicon detectors used for the LAT tracker, and to the increased field of view and alert capabilities of the second GLAST instrument, the Gamma Burst Monitor (GBM), essentially conceived as a fast transients trigger for the more accurate observations from the LAT and from other space and earth missions sensitive to other wavelengths. In this paper we give an overview of the many physics goals and potential reach of the GLAST observatory, we describe in detail the detector design and performances and report on the status of the LAT tracker construction.

  19. Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars from the MOJAVE Program

    NASA Technical Reports Server (NTRS)

    Lister, M.L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; Ackermann, M.; McEnery, Julie E.

    2011-01-01

    We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -300 during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.

  20. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  1. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  2. Gamma-ray Astronomy: Implications for Fundamental Physics

    E-print Network

    Javier Rico

    2011-11-28

    Gamma-ray Astronomy studies cosmic accelerators through their electromagnetic radiation in the energy range between ~100 MeV and ~100 TeV. The present most sensitive observations in this energy band are performed, from space, by the Large Area Telescope onboard the Fermi satellite and, from Earth, by the Imaging Air Cherenkov Telescopes MAGIC, H.E.S.S. and VERITAS. These instruments have revolutionized the field of Gamma-ray Astronomy, discovering different populations of gamma-ray emitters and studying in detail the non-thermal astrophysical processes producing this high-energy radiation. The scientific objectives of these observatories include also questions of fundamental physics. With gamma-ray instruments we study the origin of Galactic cosmic rays, testing the hypothesis or whether they are mainly produced in supernova explosions. Also, we obtain the most sensitive measurement of the cosmic electron-positron spectrum between 20 GeV and 5 TeV. By observing the gamma-ray emission from sources at cosmological distances, we learn about the intensity and evolution of the extragalactic background light, and perform tests of Lorentz Invariance. Moreover, we can search for dark matter by looking for gamma-ray signals produced by its annihilation or decay in over-density sites. In this paper, we review the most recent results produced with the current generation of gamma-ray instruments in these fields of research.

  3. Effect of gamma ray irradiation on sodium borate single crystals

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  4. The Gamma-ray Albedo of the Moon

    E-print Network

    Igor V. Moskalenko; Troy A. Porter

    2007-08-21

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  5. The Gamma-Ray Albedo of the Moon

    SciTech Connect

    Moskalenko, I.V.; Porter, T.A.; /UC, Santa Cruz

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  6. High Energy Gamma-Ray Emission From Blazars: EGRET Observations

    E-print Network

    R. Mukherjee

    1999-01-17

    We will present a summary of the observations of blazars by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO). EGRET has detected high energy gamma-ray emission at energies greater than 100 MeV from more that 50 blazars. These sources show inferred isotropic luminosities as large as $3\\times 10^{49}$ ergs s$^{-1}$. One of the most remarkable characteristics of the EGRET observations is that the gamma-ray luminosity often dominates the bolometric power of the blazar. A few of the blazars are seen to exhibit variability on very short time-scales of one day or less. The combination of high luminosities and time variations seen in the gamma-ray data indicate that gamma-rays are an important component of the relativistic jet thought to characterize blazars. Currently most models for blazars involve a beaming scenario. In leptonic models, where electrons are the primary accelerated particles, gamma-ray emission is believed to be due to inverse Compton scattering of low energy photons, although opinions differ as to the source of the soft photons. Hardronic models involve secondary production or photomeson production followed by pair cascades, and predict associated neutrino production.

  7. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  8. The Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  9. Studies of Cosmic Rays with GeV Gamma Rays

    E-print Network

    Hiroyasu Tajima; Tuneyoshi Kamae; Stefano Finazzi; Johann Cohen-Tanugi; James Chiang

    2007-05-10

    We describe the role of GeV gamma-ray observations with GLAST-LAT (Gamma-ray Large Area Space Telescope - Large Area Telescope) in identifying interaction sites of cosmic-ray proton (or hadrons) with interstellar medium (ISM). We expect to detect gamma rays from neutral pion decays in high-density ISM regions in the Galaxy, Large Magellanic Cloud, and other satellite galaxies. These gamma-ray sources have been detected already with EGRET (Energetic Gamma Ray Experiment Telescope) as extended sources (eg. LMC and Orion clouds) and GLAST-LAT will detect many more with a higher spatial resolution and in a wider spectral range. We have developed a novel image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT observation of extended sources. Our algorithm calculates PSF (point spread function) for each event. This step is very important for GLAST-LAT and EGRET image analysis since PSF varies more than one order of magnitude from one gamma ray to another depending on its energy as well as its impact point and angle in the instrument. The GLAST-LAT and EGRET image analysis has to cope with Poisson fluctuation due to low number of detected photons for most sources. Our technique incorporates wavelet filtering to minimize effects due to the fluctuation. Preliminary studies on some EGRET sources are presented, which shows potential of this novel image restoration technique for the identification and characterisation of extended gamma-ray sources.

  10. Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1994-01-01

    With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NS's are inefficient at producing gamma-rays; or (2) the gamma-rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Cloud like our own is not higher than a few percent.

  11. NDA via gamma-ray active and passive computed tomography

    SciTech Connect

    Decman, D.J.; Martz, H.E.; Roberson, G.P.; Johansson, E.

    1996-10-01

    Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known and accurately reproducible translation, rotation, and elevation positions in order to obtain gamma-ray data that is reconstructed by computer into images that represent waste contents. [ROB94] The two measurements modes are called active (A) and passive (P) CT. In the ACT mode, a collimated gamma-ray source external to the waste container emits multiple, mono-energetic gamma rays that pass through the container and are detected on the opposite side. The attenuated gamma-rays transmitted are measured as a function of both energy and position of the container. Thus, container contents are `mapped` via the measured amount of attenuation suffered at each gamma-ray energy. In effect, a three dimensional (3D) image of gamma- ray attenuation versus waste content is obtained. In the PCT measurement mode, the external radioactive source is shuttered turned- off, and the waste container, is moved through similar positions used for the ACT measurements. However, this time the radiation detectors record any gamma-rays emitted by radioactive sources on the inside of the waste container. Thus, internal radioactive content is mapped or 3D-imaged in the same tomographic manner as the attenuating matrix materials were in the ACT measurement mode.

  12. An Emerging Class of Gamma-ray Flares from Blazars: Beyond One-zone Models

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Vittorini, V.; Cavaliere, A.

    2015-11-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {{? }}? 10, closely aligned along our line of sight. In a number of blazars of the flat-spectrum radio quasar type, such as 3C 454.3 and 3C 279, gamma-ray flares have recently been detected with very high luminosity and few or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad-line region (BLR). The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton upscattering of surrounding soft photons. To meet the challenge, we present here a model based on primary synchrotron photons emitted in the BLR by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outside the BLR and an alternative provided by a moving mirror geometry. We show that mirroring phenomena can locally enhance the density and anisotropy with associated relativistic boosting of soft photons within the jet, so as to trigger bright inverse Compton gamma-ray transients from nearly steady optical/X-ray synchrotron emissions. In this picture we interpret the peculiarly asymmetric light curves of the recently detected gamma-ray flares from 3C 279. Our scenario provides a promising start to understanding the widening class of bright and transient gamma-ray activities in blazars.

  13. Implications of the VHE Gamma-Ray Detection of the Quasar 3C279

    E-print Network

    Markus Boettcher; Anita Reimer; Alan P. Marscher

    2009-08-11

    The MAGIC collaboration recently reported the detection of the quasar 3C279 at > 100 GeV gamma-ray energies. Here we present simultaneous optical (BVRI) and X-ray (RXTE PCA) data from the day of the VHE detection and discuss the implications of the snap-shot spectral energy distribution for jet models of blazars. A one-zone synchrotron-self-Compton origin of the entire SED, including the VHE gamma-ray emission can be ruled out. The VHE emission could, in principle, be interpreted as Compton upscattering of external radiation (e.g., from the broad-line regions). However, such an interpretation would require either an unusually low magnetic field of B ~ 0.03 G or an unrealistically high Doppler factor of Gamma ~ 140. In addition, such a model fails to reproduce the observed X-ray flux. This as well as the lack of correlated variability in the optical with the VHE gamma-ray emission and the substantial gamma-gamma opacity of the BLR radiation field to VHE gamma-rays suggests a multi-zone model. In particular, an SSC model with an emission region far outside the BLR reproduces the simultaneous X-ray -- VHE gamma-ray spectrum of 3C279. Alternatively, a hadronic model is capable of reproducing the observed SED of 3C279 reasonably well. However, the hadronic model requires a rather extreme jet power of L_j ~ 10^{49} erg s^{-1}, compared to a requirement of L_j ~ 2 X 10^{47} erg s^{-1} for a multi-zone leptonic model.

  14. Dawn's Gamma Ray and Neutron Detector

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Feldman, William C.; McSween, Harry Y.; Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.; Hendricks, John S.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.

    2011-12-01

    The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.

  15. Gamma-Ray Bursts 2012 Conference

    NASA Astrophysics Data System (ADS)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference will bring together astrophysicists, neutrino physicists and gravitational wave scientists to discuss the latest data and theories, to build synergistic collaborations between the fields and across wavelengths, and beyond better understanding the GRB phenomenon to develop GRBs as a powerful probe of a variety of fundamental questions in present-day research.

  16. Lunar gamma-ray emission observed by FERMI

    E-print Network

    Giglietto, N

    2009-01-01

    FERMI-LAT is performing an all-sky gamma-ray survey from 30 MeV to 300 GeV with unprecedented sensitivity and angular resolution. FERMI has detected high-energy gamma rays from the Moon produced by interactions of cosmic rays with the lunar surface. This radiation was previously observed by EGRET on CGRO with significantly lower statistical significance. We present the lunar analysis for the first six months of the Mission and showing images of the lunar gamma-ray emission. We also compare the flux measurements with models the earlier EGRET measurements.

  17. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  18. Novel Features of Gamma Ray from Dark Matter

    E-print Network

    Tang, Yong

    2015-01-01

    In this study, we present some general and novel features of gamma ray from dark matter. We find that gamma-ray spectra with sharp features exist in a wide class of dark matter models and mimic the gamma line signals. The generated gamma rays would generally have polynomial-type spectra or power-law with positive index. We illustrate our results in a model-independent framework with generic kinematic analysis. Similar results can also apply for cosmic rays or neutrino cases.

  19. Photon energy conversion efficiency in gamma-ray spectrometry.

    PubMed

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed. PMID:26474210

  20. Pseudoscalar Conversion and Gamma-Rays from Supernovae

    E-print Network

    Eduard Masso

    1997-04-07

    A light pseudoscalar coupled to two photons would be copiously emitted by the core of a supernova and part of this flux would be converted to gamma-rays by the galactic magnetic field. Measurements on the SN1987A gamma-ray flux by the Gamma-Ray Spectrometer on the Solar Maximum Mission satellite imply stringents bounds on such process. The improved generation of satellite-borne detectors, like EGRET or the projegeneration of satellite-borne detectors, like EGRET or the project GLAST, could be able to detect a pseudoscalar-to-photon signal from a nearby supernova.

  1. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  2. Consistency of time dilation in temporal profiles and spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Noriss, J. P.; Nemiroff, R. J.; Bonnell, J. T.; Scargle, J. D.; Davis, S. P.; Kouveliotou, C.; Pendleton, G.; Fishman, G. J.; Meegan, C. A.; Paciesas, W. S.

    1995-01-01

    If gamma-ray bursters are at cosmological distances-a possibility suggested by their isotropic distribution and spatial inhomogeneity-then the temporal profiles and spectra of more distant sources will be time dilated compared to those of relatively nearby sources. Analyses of bright and dim Burst and Transient Source Experiment (BATSE) gamma-ray bursts yield a relative time-dilation factor of 2.3 on timescales of pulses and event durations. We redshift the spectra of time intervals near the intensity peaks of the bright sample on a trial grid and compare with spectra of the dim sample. A redshift factor of order two-with wide latitude permitted-brings the spectra of the two brightness groups into alignment. Thus there is coarse agreement with the time-dilation factor found in the temporal domain.

  3. Self-Amplified Gamma-Ray Laser on Positronium Atoms from a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avetissian, A. K.; Mkrtchian, G. F.

    2014-07-01

    A scheme of an intense coherent gamma-ray source based on the spontaneous radiation of positronium atoms in a Bose-Einstein condensate (BEC) due to two-photon collective annihilation decay is investigated analytically arising from the second quantized formalism. It is shown that because of the intrinsic instability of annihilation decay of BEC, the spontaneously emitted entangled photon pairs are amplified, leading to an exponential buildup of a macroscopic population into end-fire modes at a certain shape of the elongated condensate. The considered scheme may also be applied to a BEC of atoms or quasiparticles as a laser mechanism with double coherence to create entangled photonic beams with a macroscopic number of photons.

  4. Self-amplified gamma-ray laser on positronium atoms from a Bose-Einstein condensate.

    PubMed

    Avetissian, H K; Avetissian, A K; Mkrtchian, G F

    2014-07-11

    A scheme of an intense coherent gamma-ray source based on the spontaneous radiation of positronium atoms in a Bose-Einstein condensate (BEC) due to two-photon collective annihilation decay is investigated analytically arising from the second quantized formalism. It is shown that because of the intrinsic instability of annihilation decay of BEC, the spontaneously emitted entangled photon pairs are amplified, leading to an exponential buildup of a macroscopic population into end-fire modes at a certain shape of the elongated condensate. The considered scheme may also be applied to a BEC of atoms or quasiparticles as a laser mechanism with double coherence to create entangled photonic beams with a macroscopic number of photons. PMID:25062185

  5. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    2011-08-01

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe, through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.

  6. Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source

    E-print Network

    Felix A. Aharonian; Luis A. Anchordoqui; Dmitry Khangulyan; Teresa Montaruli

    2006-05-19

    The recent detection of TeV gamma-rays from the microquasar LS 5039 by HESS is one of the most exciting discoveries of observational gamma-ray astronomy in the very high energy regime. This result clearly demonstrates that X-ray binaries with relativistic jets (microquasars) are sites of effective acceleration of particles (electrons and/or protons) to multi-TeV energies. Whether the gamma-rays are of hadronic or leptonic origin is a key issue related to the origin of Galactic Cosmic Rays. We discuss different possible scenarios for the production of gamma-rays, and argue in favor of hadronic origin of TeV photons, especially if they are produced within the binary system. If so, the detected gamma-rays should be accompanied by a flux of high energy neutrinos emerging from the decays of \\pi^\\pm mesons produced at pp and/or p \\gamma interactions. The flux of TeV neutrinos, which can be estimated on the basis of the detected TeV gamma-ray flux, taking into account the internal \\gamma \\gamma \\to e^+e^- absorption, depends significantly on the location of gamma-ray production region(s). The minimum neutrino flux above 1 TeV is expected to be at the level of 10^{-12} cm^{-2} s^{-1}; however, it could be up to a factor of 100 larger. The detectability of the signal of multi-TeV neutrinos significantly depends on the high energy cutoff in the spectrum of parent protons; if the spectrum of accelerated protons continues to 1 PeV and beyond, the predicted neutrino fluxes can be probed by the planned km^3-scale neutrino detector.

  7. The electromagnetic model of Gamma Ray Bursts

    E-print Network

    Maxim Lyutikov

    2005-12-13

    I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

  8. Plutonium Isotopic Gamma-Ray Analysis

    Energy Science and Technology Software Center (ESTSC)

    1992-01-08

    The MGA8 (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum, which is required and must be taken at a gain of 0.075 Kev/channel with a high resolution planar detector, contains the 0-300 Kev energy region. Themore »second spectrum, which is optional, must be taken at a gain of 0.25 Kev/channel; it becomes important when analyzing high burnup samples (concentration of Pu241 greater than one percent). Isotopic analysis precisions of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U235, U238, Np237, and Am241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system.« less

  9. The SVOM gamma-ray burst mission

    E-print Network

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N

    2015-01-01

    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  10. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  11. Wavelet-Based Techniques for the Gamma-Ray Sky

    E-print Network

    McDermott, Samuel D; Cholis, Ilias; Lee, Samuel K

    2015-01-01

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  12. COSMIC GAMMA-RAY BACKGROUND FROM STAR-FORMING GALAXIES

    SciTech Connect

    Fields, Brian D.; Vasiliki Pavlidou; Prodanovic, Tijana

    2010-10-20

    The origin of the extragalactic gamma-ray background is a pressing cosmological mystery. The Fermi Gamma-Ray Space Telescope has recently measured the intensity and spectrum of this background; both are substantially different from previous measurements. We present a novel calculation of the gamma-ray background from normal star-forming galaxies. Contrary to long-standing expectations, we find that numerous but individually faint normal galaxies may comprise the bulk of the Fermi signal, rather than rare but intrinsically bright active galaxies. This result has wide-ranging implications, including: the possibility to probe the cosmic star formation history with gamma rays; the ability to infer the cosmological evolution of cosmic rays and galactic magnetic fields; and an increased likelihood of identifying subdominant components from rare sources (e.g., dark matter clumps) through their large anisotropy.

  13. GLAST and Ground-Based Gamma-Ray Astronomy

    SciTech Connect

    Funk, S.; Carson, J.E.; Giebels, B.; Longo, F.; McEnery, J.E.; Paneque, D.; Reimer, O.; Reyes, L.C.

    2007-10-10

    The launch of the Gamma-ray Large Area Space Telescope (GLAST) in 2007 will open the possibility of combined studies of astrophysical sources with existing ground-based VHE {gamma}-ray experiments such as H.E.S.S., VERITAS and MAGIC. Ground-based {gamma}-ray observatories provide complementary capabilities for spectral, temporal, spatial and population studies of high-energy {gamma}-ray sources. Joint observations cover a huge energy range, from 20 MeV to over 50 TeV. The LAT will survey the entire sky every three hours, allowing us to perform long-term monitoring of variable sources under uniform observation conditions and to detect flaring sources promptly. Imaging atmospheric Cherenkov telescopes (IACTs) will complement these observations with high-sensitivity pointed observations on regions of interest.

  14. Very high energy gamma ray extension of GRO observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1992-01-01

    This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.

  15. Wavelet-Based Techniques for the Gamma-Ray Sky

    E-print Network

    Samuel D. McDermott; Patrick J. Fox; Ilias Cholis; Samuel K. Lee

    2015-11-30

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  16. Monte Carlo Simulation of the Milagro Gamma-ray Observatory

    NASA Astrophysics Data System (ADS)

    Vasileiou, V.

    The Milagro gamma-ray observatory is a water-Cherenkov detector capable of observing air showers produced by very high energy gamma-rays. The sensitivity and performance of the detector is determined by a detailed Monte Carlo simulation and verified through the observation of gamma-ray sources and the isotropic cosmic-ray background. Corsika is used for simulating the extensive air showers produced by either hadrons (background) and gamma rays (signal). A GEANT4 based application is used for simulating the response of the Milagro detector to the air shower particles reaching the ground. The GEANT4 simulation includes a detailed description of the optical properties of the detector and the response of the photomultiplier tubes. Details and results from the Milagro Monte Carlo simulation will be presented.

  17. Exploring the extreme gamma-ray sky with HESS

    SciTech Connect

    Sol, Helene

    2006-11-03

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond.

  18. Low and medium energy galactic gamma-ray observations

    NASA Technical Reports Server (NTRS)

    Share, G. H.

    1976-01-01

    Observation of 0.2-100 MeV diffuse gamma radiation emitted from the Galaxy can provide information on the intensities of 5-50 MeV/nucleon cosmic-rays and 50 MeV electrons in interstellar space. Recent measurements of gamma-rays emitted from the galactic center region provide evidence for a diffuse continuum between 10 and 100 MeV. The intensities of the recently reported nuclear line gamma rays, also observed in the direction of the galactic center, require the presence of intense fluxes of low-energy cosmic-rays in the inner Galaxy if the gamma-rays are produced on a galactic scale. Current detection techniques for 0.1-100 MeV gamma-ray measurements are summarized and their capabilities for measuring the diffuse galactic emission are evaluated.

  19. Low- and medium-energy galactic gamma-ray observations

    NASA Technical Reports Server (NTRS)

    Share, G. H.

    1977-01-01

    Observation of 0.2 to 100 MeV-diffuse gamma-radiation emitted from a galaxy provides information on the intensities of 5 to 50 MeV/nucleon cosmic-rays and approximately less than 50-MeV electrons in interstellar space. Recent measurements of gamma-rays emitted from the galactic center region provide evidence for a diffuse continuum between 10 and 100 MeV, which is dominant over the pi-decay emission generated in high-energy nuclear collisions. The intensities of the recently reported nuclear line gamma-rays, also observed in the direction of the galactic center, require the presence of intense fluxes of low energy cosmic rays in the inner galaxy if the gamma-ray are produced on a galactic scale. Current detection techniques for 0.1 to 100 MeV gamma-ray measurements are summarized, and their capabilities for measuring the diffuse galactic emission are evaluated.

  20. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    This viewgraph presentation reviews the current understanding of Gamma Ray Bursts. It covers the Long GRBs, our current understanding of Collapsar, Short GRBs, afterglows, and reduced trigger threshold. It also discusses the Hard X-ray Sky Survey.

  1. The Hardness Distribution of Gamma-Ray Bursts

    E-print Network

    Ehud Cohen; Tsvi Piran; Ramesh Narayan

    1998-02-04

    It is often stated that gamma-ray bursts (GRBs) have typical energies of several hundreds $\\keV$, where the typical energy may be characterized by the hardness H, the photon energy corresponding to the peak of $\

  2. Nonrelativistic phase in gamma-ray burst afterglows

    E-print Network

    Y. F. Huang; T. Lu; K. S. Cheng

    2007-07-27

    The discovery of multiband afterglows definitely shows that most $\\gamma$-ray bursts are of cosmological origin. $\\gamma$-ray bursts are found to be one of the most violent explosive phenomena in the Universe, in which astonishing ultra-relativistic motions are involved. In this article, the multiband observational characteristics of $\\gamma$-ray bursts and their afterglows are briefly reviewed. The standard model of $\\gamma$-ray bursts, i.e. the fireball model, is described. Emphasis is then put on the importance of the nonrelativistic phase of afterglows. The concept of deep Newtonian phase is elaborated. A generic dynamical model that is applicable in both the relativistic and nonrelativistic phases is introduced. Based on these elaborations, the overall afterglow behaviors, from the very early stages to the very late stages, can be conveniently calculated.

  3. Gamma-ray Astrophysics: a New Look at the Universe

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Fichtel, C. E.; Grindlay, J.; Hofstadter, R.

    1978-01-01

    Gamma-ray astronomy which includes the spectral region from above approximately 100 keV to greater than or equal to 1000 GeV permits investigation of the most energetic photons originating in our galaxy and beyond and provides the most direct means of studying the largest transfers of energy occurring in astrophysical processes. Of all the electromagnetic spectrum, high-energy gamma-ray astronomy measures most directly the presence and dynamic effects of the energetic charged cosmic ray particles, element synthesis, and particle acceleration. Further, gamma rays suffer negligible absorption or scatterings as they travel in straight paths; hence, they may survive billions of years and still reveal their source. The high energy processes in stellar objects (including our Sun), the dynamics of the cosmic-ray gas, the formation of clouds and nebulae, galactic evolution and even certain aspects of cosmology and the origin of the universe may be explored by gamma-ray observations.

  4. Gamma-ray Large Area Space Telescope Science Instrument -Spacecraft

    E-print Network

    Rhoads, James

    Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements............................................................................................................3 3.1 Definition of Flight Systems...............................................................................3 3.1.1 System and Subsystem Definitions

  5. INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS

    E-print Network

    Vanderspek, Roland K.

    Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified ...

  6. The Extragalactic Gamma-ray Sky in the Fermi era

    E-print Network

    Massaro, F; Ferrara, E C

    2015-01-01

    The Universe is largely transparent to $\\gamma$ rays in the GeV energy range, making these high-energy photons valuable for exploring energetic processes in the cosmos. After seven years of operation, the Fermi {\\it Gamma-ray Space Telescope} has produced a wealth of information about the high-energy sky. This review focuses on extragalactic $\\gamma$-ray sources: what has been learned about the sources themselves and about how they can be used as cosmological probes. Active galactic nuclei (blazars, radio galaxies, Seyfert galaxies) and star-forming galaxies populate the extragalactic high-energy sky. Fermi observations have demonstrated that these powerful non-thermal sources display substantial diversity in energy spectra and temporal behavior. Coupled with contemporaneous multifrequency observations, the Fermi results are enabling detailed, time-dependent modeling of the energetic particle acceleration and interaction processes that produce the $\\gamma$ rays, as well as providing indirect measurements of t...

  7. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  8. The Biggest Bangs The Mystery of Gamma-Ray Bursts,

    E-print Network

    Katz, Jonathan I.

    a Gamma-Ray Burst Kill the Dinosaurs? Will a Burst Kill Us? · Glossary · Sources · Index viii #12;Chapter surplus hut (purchased from a scrap dealer) the size of a large closet, it consists of a cluster of four

  9. Very High Energy Gamma Ray Observations with the MAGIC

    E-print Network

    California at Santa Cruz, University of

    Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte Berlin The MAGIC site #12;8A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

  10. The AGATA Spectrometer: next generation gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Simpson, J.; AGATA Collaboration

    2015-05-01

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. The spectrometer will have an unparalleled level of detection power for electromagnetic nuclear radiation. The tracking technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances and the spectrometer is now operational. AGATA has been operated in a series of scientific campaigns at Legnaro National Laboratory in Italy and GSI in Germany and is presently being assembled at GANIL in France. The status of the instrument will be reviewed.

  11. Probable optical counterpart of a Gamma-ray burster

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.

    1981-01-01

    Sixteen million seconds, or over a half year, of optical monitoring of three Gamma-ray burst positions using the Harvard College Observatory collection of archival plates are described. The probable optical counterpart of the November 19, 1978 Gamma-ray burster has been discovered on a blue emulsion plate exposed in 1928. Optical searches indicate that the absolute magnitude of the Gamma-ray burst system at quiescence is fainter than 13, and a recurrence rate of about 10 to the -7.5/sec is found from Gamma-ray and optical data. Such a high recurrence rate precludes any model which uses a collision between a neutron star and an asteroid-like body, as well as any model requiring accretion from the interstellar matter onto a neutron star.

  12. Gravitational waves from gamma-ray pulsar glitches

    SciTech Connect

    Stopnitzky, Elan; Profumo, Stefano

    2014-06-01

    We use data from pulsar gamma-ray glitches recorded by the Fermi Large Area Telescope as input to theoretical models of gravitational wave signals the glitches might generate. We find that the typical peak amplitude of the gravity wave signal from gamma-ray pulsar glitches lies between 10{sup –23} and 10{sup –35} in dimensionless units, with peak frequencies in the range of 1 to 1000 Hz, depending on the model. We estimate the signal-to-noise ratio (S/N) for all gamma-ray glitches, and discuss detectability with current gravity wave detectors. Our results indicate that the strongest predicted signals are potentially within reach of current detectors, and that pulsar gamma-ray glitches are promising targets for gravity wave searches by current and next-generation detectors.

  13. Overview Animation of Gamma-ray Burst - Duration: 56 seconds.

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  14. Jet Shockwaves Produce Gamma Rays - Duration: 20 seconds.

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  15. Doppler effect of gamma-ray bursts in the fireball framework

    E-print Network

    Yi-Ping Qin; Fu-Wen Zhang

    2004-07-13

    The influence of the Doppler effect in the fireball framework on the spectrum of gamma-ray bursts is investigated. The study shows that the shape of the expected spectrum of an expanding fireball remains almost the same as that of the corresponding rest frame spectrum for constant radiations of the bremsstrahlung, Comptonized, and synchrotron mechanisms as well as for that of the GRB model. The peak flux spectrum and the peak frequency are obviously correlated. When the value of the Lorentz factor becomes 10 times larger, the flux of fireballs would be several orders of magnitude larger. The expansion speed of fireballs is a fundamental factor of the enhancement of the flux of gamma-ray bursts.

  16. General relativistic corrections in the gamma-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Gonthier, P. L.; Harding, A. K.

    1994-01-01

    We examine the importance of general relativistic corrections to the production of gamma rays near the surface of a neutron star. Due to the change in the magnetic dipole field in curved spacetime, the polar cap angle decreases by 30% compared to flat spacetime. However, the curved photon trajectories compensate for the decrease in the polar cap angle, and, as a result, the pulse profile of the photons emitted parallel to the field is expected to be very similar in curved spacetime and in flat spacetime. We find that the curved spacetime metric significantly increases the magnitude of the magnetic field and, therefore, the attenuation coefficients of curvature radiation gamma rays for pair production in a magnetic field can be increased by factors as large as 100. As a resutl the survival distance of 1 GeV photons for pair production is decreased by a factor of 2 for B is approximately 10(exp 12) G.

  17. Dipole-interacting fermionic dark matter in positron, antiproton, and gamma-ray channels

    NASA Astrophysics Data System (ADS)

    Heo, Jae Ho; Kim, C. S.

    2013-01-01

    Cosmic ray signals from dipole-interacting dark matter annihilation are considered in the positron, antiproton, and photon channels. The predicted signals in the positron channel could nicely account for the excess of positron fraction from Fermi LAT, PAMELA, HEAT, and AMS-01 experiments for the dark matter mass larger than 100 GeV with a boost (enhancement) factor of 30-80. No excess of antiproton over proton ratio at the experiments also gives a severe restriction for this scenario. With the boost factors, the predicted signals from Galactic halo and signals as monoenergetic gamma-ray lines (monochromatic photons) for the region close to the Galactic center are investigated. The gamma-ray excess of recent tentative analyses based on Fermi LAT data and the potential probe of the monochromatic lines at a planned experiment, AMS-02, are also considered.

  18. Gamma-ray optical counterpart search experiment (GROCSE)

    SciTech Connect

    Akerlof, C.; Fatuzzo, M.; Lee, B.; Bionta, R.; Ledebuhr, A.; Park, H.S.; Barthelmy, S.; Cline, T.; Gehrels, N.

    1993-12-15

    The requirements of a gamma-ray burst optical counterpart detector are reviewed. By taking advantage of real-time notification of bursts, new instruments can make sensitive searches while the gamma-ray transient is still in progress. A wide field of view camera at Livermore National Laboratories has recently been adapted for detecting GRB optical counterparts to a limiting magnitude of 8. A more sensitive camera, capable of reaching m{sub upsilon} = 14, is under development.

  19. Resonant Compton scattering and gamma-ray burst continuum spectra

    NASA Technical Reports Server (NTRS)

    Baring, M. G.

    1995-01-01

    The Thomson limit of resonant inverse Compton scattering in the strong magnetic fields of neutron stars is considered as a mechanism for producing gamma-ray burst continuum spectra. Photon production spectra and electron cooling rates are presented using the full magnetic Thomson cross-section. Model emission spectra are obtained as self-consistent solutions of a set of photon and electron kinetic equations, displaying spectral breaks and other structure at gamma-ray energies.

  20. A directional gamma-ray detector based on scintillator plates

    NASA Astrophysics Data System (ADS)

    Hanna, D.; Sagnières, L.; Boyle, P. J.; MacLeod, A. M. L.

    2015-10-01

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  1. Gamma-ray measurements at the WNR white neutron source

    SciTech Connect

    Nelson, R.O.; Wender, S.A.; Mayo, D.R.

    1994-12-31

    Photon production data have been acquired in the incident neutron energy range, 1 < E{sub n} < 400 MeV, for a number of target nuclei, gamma-ray energy ranges, and reactions, using the continuous-energy neutron beam of the WNR facility at Los Alamos. Gamma-ray production measurements using high resolution Ge detectors have been employed for gamma-rays in the energy range, 0.1 < E{sub {gamma}} < 10 MeV. These measurements allow identification of reactions from the known energies of the gamma-ray transitions between low-lying states in the final nucleus. Some of the targets studied include: N, O, Al, Na, {sup 56}Fe, and {sup 207,208}Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in {sup 41}Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 < E{sub {gamma}} < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented.

  2. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma-ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in the low-energy gamma-ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms were proposed.

  3. Automatic Energy Calibration of Gamma-Ray Spectrometers

    Energy Science and Technology Software Center (ESTSC)

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user?s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore »simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies?together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  4. Physics and astrophysics with gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; Fermi LAT Collaboration

    2012-08-01

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At ˜TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At ˜GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  5. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  6. Performance of the EGRET astronomical gamma ray telescope

    SciTech Connect

    Nolan, P.L.; Hofstadter, R.; Hughes, E.B.; Lin, Y.C.; Michelson, P.F. ); Bertsch, D.L.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Mattox, J.R.; Sreekumar, P.; Thompson, D.J. . Goddard Space Flight Center)

    1992-08-01

    On April 5, 1991, the Space Shuttle Atlantis carried the Compton Gamma Ray Observatory (CGRO) into orbit, deploying the satellite on April 7. This paper reports on the EGRET instrument which was activated on April 15, and the first month of operations was devoted to verification of the instrument performance. Measurements made during that month and in the subsequent sky survey phase have verified that the instrument time resolution, angular resolution, and gamma ray detection efficiency are all within nominal limits.

  7. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. Each activity is described, followed by a bibliography. The research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the earth and other planets. These investigations were performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  8. Gamma ray satellite to be launched from Africa

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.; Senstad, K.

    1972-01-01

    The announcement is presented of the launch of NASA's Small Astronomy Satellite B (SAS-B) on 2 Nov. 1972, to study gamma rays. The launch is to be from the Italian-operated San Marco Equatorial Range in the Indian Ocean for ease in acquiring an equatorial orbit. The spacecraft systems described include: stabilization and control, communication, and spark chamber gamma ray telescope. The results of Uhuru (Explorer 42) are also presented.

  9. Statistical evaluation of gamma-ray line observations

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Chupp, E. L.; Dunphy, P. P.; Forrest, D. J.; Ryan, J. M.

    1980-01-01

    The statistical reliability of reported positive observations of solar and cosmic gamma-ray lines has been evaluated. The relative probability that each measurement is due to a real source rather than to an accidental fluctuation in the background has been determined, and it is found that the results are statistically compelling in only a small fraction of the reported observations. At present, extreme caution must be exercised in drawing astrophysical conclusions from reports of the detection of cosmic gamma-ray lines.

  10. Gamma-ray emission expected from Kepler's SNR

    E-print Network

    E. G. Berezhko; L. T. Ksenofontov; H. J. Voelk

    2006-03-31

    Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to investigate the properties of Kepler's SNR and, in particular, to predict the gamma-ray spectrum expected from this SNR. Observations of the nonthermal radio and X-ray emission spectra as well as theoretical constraints for the total supernova (SN) explosion energy E_sn are used to constrain the astronomical and particle acceleration parameters of the system. Under the assumption that Kepler's SN is a type Ia SN we determine for any given explosion energy E_sn and source distance d the mass density of the ambient interstellar medium (ISM) from a fit to the observed SNR size and expansion speed. This makes it possible to make predictions for the expected gamma-ray flux. Exploring the expected distance range we find that for a typical explosion energy E_sn=10^51 erg the expected energy flux of TeV gamma-rays varies from 2x10^{-11} to 10^{-13} erg/(cm^2 s) when the distance changes from d=3.4 kpc to 7 kpc. In all cases the gamma-ray emission is dominated by \\pi^0-decay gamma-rays due to nuclear CRs. Therefore Kepler's SNR represents a very promising target for instruments like H.E.S.S., CANGAROO and GLAST. A non-detection of gamma-rays would mean that the actual source distance is larger than 7 kpc.

  11. Gamma-ray emission from binaries in context

    E-print Network

    Dubus, Guillaume

    2015-01-01

    More than a dozen binary systems are now established as sources of variable, high energy (HE, 0.1-100 GeV) gamma rays. Five are also established sources of very high energy (VHE, >100 GeV) gamma rays. The mechanisms behind gamma-ray emission in binaries are very diverse. My current understanding is that they divide up into four types of systems: gamma-ray binaries, powered by pulsar rotation; microquasars, powered by accretion onto a black hole or neutron star; novae, powered by thermonuclear runaway on a white dwarf; colliding wind binaries, powered by stellar winds from massive stars. Some of these types had long been suspected to emit gamma rays (microquasars), others have taken the community by surprise (novae). My purpose here is to provide a brief review of the current status of gamma-ray emission from binaries, in the context of related objects where similar mechanisms are at work (pulsar wind nebulae, active galactic nuclei, supernova remnants).

  12. A microquasar model applied to unidentified gamma-ray sources

    E-print Network

    V. Bosch-Ramon; J. M. Paredes; G. E. Romero; D. F. Torres

    2006-01-12

    Among unidentified gamma-ray sources in the galactic plane, there are some that present significant variability and have been proposed to be high-mass microquasars. To deepen the study of the possible association between variable low galactic latitude gamma-ray sources and microquasars, we have applied a leptonic jet model based on the microquasar scenario that reproduces the gamma-ray spectrum of three unidentified gamma-ray sources, 3EG J1735-1500, 3EG J1828+0142 and GRO J1411-64, and is consistent with the observational constraints at lower energies. We conclude that if these sources were generated by microquasars, the particle acceleration processes could not be as efficient as in other objects of this type that present harder gamma-ray spectra. Moreover, the dominant mechanism of high-energy emission should be synchrotron self-Compton (SSC) scattering, and the radio jets may only be observed at low frequencies. For each particular case, further predictions of jet physical conditions and variability generation mechanisms have been made in the context of the model. Although there might be other candidates able to explain the emission coming from these sources, microquasars cannot be excluded as counterparts. Observations performed by the next generation of gamma-ray instruments, like GLAST, are required to test the proposed model.

  13. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  14. Gamma-ray Albedo of Small Solar System Bodies

    SciTech Connect

    Moskalenko, I.V.

    2008-03-25

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For details of our calculations and references see [1].

  15. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  16. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  17. INVERSE COMPTON EMISSION FROM THE PROMPT OPTICAL EMISSION REGION IN GAMMA-RAY BURSTS

    SciTech Connect

    Zhao, X. H.; Dai, Z. G.; Liu, T.; Bai, J. M.

    2010-01-10

    Prompt optical emission accompanying gamma-ray emission has been detected in several gamma-ray bursts (GRBs), and its origin is still under debate. A plausible interpretation is that the prompt optical emission is generated by internal shocks but from regions different from the prompt gamma-ray one. Based on this model, we investigate in detail the inverse Compton (IC) emission including the synchrotron self-Compton (SSC) and second inverse Compton (2IC) ones from the optical emission region. We expect that this study could provide a clue to the origin of prompt optical emission. We first explore the dependence of IC Y factor on some uncertain parameters such as the magnetic field equipartition factor and the Lorentz factor of GRB ejecta. The results indicate that the 2IC emission associated with strong optical flashes (such as GRB 080319b) may be easily detected by Fermi for general parameters. If the SSC peak energy is in the range of tens-to-hundreds keV but generally much weaker than the prompt gamma-ray emission, the component may be detectable by Swift (BAT). For moderately bright optical flashes, the 2IC emission is marginally detectable while the SSC is not. For weak optical flashes, both the 2IC and SSC components are undetectable. We then carry out a numerical calculation of the expected spectrum including synchrotron, SSC, and the 2IC emission for various parameters, which verifies the analytical results. Finally, taking GRB 080319b as an example, we make a simple case study. We find that the detection of the 2IC emission optical region by Fermi is promising. The future simultaneous detection of optical and high energy (MeV-GeV) from the emissions will possibly reveal the nature of the prompt optical emission and allow us to measure the quantities presently unknown such as the bulk Lorentz factor, radiative electrons energy, and magnetic field.

  18. Method to calibrate an ionization chamber for measuring indoor radon concentrations with standard gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yuzuru; Tokumori, Kenji; Iwata, Toru; Sakae, Takeji; Ishibashi, Kenji; Katase, Akira

    1989-06-01

    Most instruments for measuring radon concentrations in the air should be calibrated using air with known radon concentrations, obtained from a solution of radium. However, safe handling of such a solution of alpha-active elements can be troublesome. Standard gamma-ray sources of low activity are handled more safely and typically used to obtain the absolute detection efficiency of a Ge detector with high accuracy. A new method has been developed to calibrate a radon detector with such sources. A radon exhalation rate for a substance containing a small amount of radium is measured with the radon detector to be calibrated. After this, the vessel containing the radium is sealed so that the radon does not escape from it. The buildup of the activity of 214Bi in it is obtained from gamma-ray measurements and gives the radon exhalation rate on the basis of the activity of the standard sources. From the comparison between the two values of the exhalation rate, the radon detector is calibrated. A plane multiwire-electrode ionization chamber is used as a radon detector, and its detection efficiency is calculated from its geometrical form. The radon exhalation rate computed from the calculated efficiency agrees with that determined from the activity of the standard gamma-ray sources within their specified 6% error.

  19. Measurement of 0.511-MeV gamma rays with a balloon-borne Ge/Li/ spectrometer

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.

    1977-01-01

    A collimated high-resolution gamma ray spectrometer was flown on a balloon over Palestine, Texas, on June 10, 1974, to obtain measurements of the terrestrial and extraterrestrial 0.511-MeV gamma rays. The spectrometer consists of four 40-cu-cm Ge(Li) crystals operating in the energy range 0.06-10 MeV; this cluster of detectors is surrounded by a CsI(Na) anticoincidence shield. This system is used primarily to allow measurements of the two escape peaks associated with high-energy gamma ray lines. It also allows a measurement of the background component of the 0.511-MeV flux produced by beta(+) decays in materials inside the CsI(Na) shield. It is shown that the measurements of the atmospheric fluxes are consistent with earlier results after allowance is made for an additional component of the background due to beta(+) decays produced by neutron- and proton-initiated interactions with materials in and near the detector. Results of the extraterrestrial flux require an extensive detailed analysis of the time-varying background because of activation buildup and balloon spatial drifts.

  20. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Briggs, M. S.; Connaughton, V.; Stanbro, M.; Zhang, B.; Bhat, N.; Fishman, G. J.; Roberts, O.; Fitzpatrick, G.; McBreen, S.; Grove, J. E.; Chekhtman, A.

    2014-12-01

    We present summary results from the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Space Telescope. The catalog is expected to contain about 2600 TGFs and will be released both online, to conveniently provide the community with TGF parameters, and as a publication. Since the launch of Fermi in 2008 the TGF detection sensitivity of GBM has been improved several times, both in the flight software and in ground analysis. Starting in 2010 July individual photons were downloaded for portions of the orbits, enabling an off-line search that found weaker and shorter TGFs. Since 2012 November 26 this telemetry mode has been extended to continuous coverage -- in the first year of this data mode 841 TGFs were detected. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog will include times (UTC and solar), spacecraft geographic positions, durations, count intensities and other parameters (e.g., see the Bayesian Block analysis by O. Roberts). There will be separate tables for bright TGFs detected by the flight software and Terrestrial Electron Beams (TEBs).

  1. Analysis of data from the energetic gamma-ray experiment of the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1995-01-01

    The work under the Grant has involved continued participation with the Compton Gamma Ray Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) Team in the analysis of data obtained during instrument operations and the preparation of scientific papers and proposals for future observations. The EGRET team continues to submit IAU Astronomical telegrams and present many papers at scientific meetings. The EGRET Team was also successful on many proposals for the Cycle 4 portion of the mission, including long high galactic latitude studies of the diffuse extragalactic radiation in both the Northern and Southern Galactic Sky. These studies will be used in an effort to establish whether this radiation is truly diffuse or the sum of radiation from unresolved discrete sources such as radio-loud quasars. Data analysis is complete for papers on behalf of the EGRET Team by the author on general sources in the anticenter region of the galaxy, with galactic latitudes from 125 to 220 deg. A paper on this subject is in preparation for publication in the Astrophysical Journal. Another is being prepared on EGRET observations of the COS-B source 2CG135. Work is in progress for a third on the contribution of unresolved pulsars to the galactic diffuse radiations; two other papers are in analysis phase. A number of papers have been published in the last reporting period, and several others are in press currently. A summary of the publications is described.

  2. Analysis of data from the energetic gamma-ray experiment on the gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1993-01-01

    The work under the Grant has involved continued participation with the Compton Gamma Ray Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) Team in the analysis of data obtained during instrument operations and the preparation of scientific papers and proposals for future observations. The EGRET team was also successful on many proposals for the Phase 3 portion of the mission, including long high galactic latitude studies of the diffuse extragalactic radiation. These studies will be used in a effort to establish whether this radiation is truly diffuse or the sum of radiation from unresolved discrete sources such as radio-loud quasars. The effort involved working remotely by internet connection on the Goddard Space Flight Center Computers where the EGRET data are archived. Students have monitored instrument performance and analyzed data remotely and will continue to do so. The PI has completed the detailed analysis of five viewing periods to search for point sources and this work has been used in developing the first EGRET catalog of sources, soon to be released.

  3. Analysis of Data from the Energetic Gamma-ray Experiment on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1996-01-01

    The work under the Grant has involved participation with the Compton Gamma Ray Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) Team in the analysis of data obtained during instrument operations and the preparation of scientific papers and proposals for future observations. The Principal Investigator (PI) has been a co-author on a total of 90 papers published in refereed professional journals since the beginning of 1991, plus many other non-refereed publications, and contributed and invited papers at professional meetings and IAU telegrams. On seven of these papers he was the lead author. The EGRET team continues to submit IAU Astronomical telegrams and present many papers at scientific meetings. The effort by the PI has involved working remotely by internet connection on the Goddard Space Flight Center Computers where the EGRET data are archived. Students have monitored instrument performance, performed Viewing Period Analyses and analyzed data remotely. The PI has completed the detailed analysis of over 20 viewing periods to search for point sources and this work has been used in developing the first and second EGRET catalog of sources, published in Supplements to the Astrophysical Journal.

  4. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Connaughton, V.; Briggs, M. S.; Burgess, J. M.; Goldstein, A.; Wilson-Hodge, C. A.; Paciesas, W. S.; Preece, R. D.; Gibby, M. H.; Greiner, J.; Yu, H.-F.; Gruber, D.; Kippen, R. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  5. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    SciTech Connect

    Singal, J.; Ko, A.; Petrosian, V.

    2014-05-10

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7? detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accounted for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.

  6. Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor

    E-print Network

    Fitzpatrick, Gerard; McBreen, Sheila; Briggs, Michael S; Foley, Suzanne; Tierney, David; Chaplin, Vandiver L; Connaughton, Valerie; Stanbro, Matthew; Xiong, Shaolin; Dwyer, Joseph; Fishman, Gerald J; Roberts, Oliver J; von Kienlin, Andreas

    2015-01-01

    Terrestrial gamma-ray flashes (TGFs) are short intense flashes of gamma rays associated with lightning activity in thunderstorms. Using Monte Carlo simulations of the relativistic runaway electron avalanche (RREA) process, theoretical predictions for the temporal and spectral evolution of TGFs are compared to observations made with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Assuming a single source altitude of 15 km, a comparison of simulations to data is performed for a range of empirically chosen source electron variation time scales. The data exhibit a clear softening with increased source distance, in qualitative agreement with theoretical predictions. The simulated spectra follow this trend in the data, but tend to underestimate the observed hardness. Such a discrepancy may imply that the basic RREA model is not sufficient. Alternatively, a TGF beam that is tilted with respect to the zenith could produce an evolution with source distance that is compatible with the da...

  7. GAMMA-RAY LUMINOSITY AND PHOTON INDEX EVOLUTION OF FSRQ BLAZARS AND CONTRIBUTION TO THE GAMMA-RAY BACKGROUND

    E-print Network

    Singal, J.

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and ...

  8. A New View of the High Energy Gamma-ray Sky with the Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2010-01-01

    This slide presentation reviews some of the findings that have been made possible by the use of the Fermi Gamma-ray Space Telescope. It describes the current status of the Fermi Telescope and reviews some of the science highlights.

  9. Thermonuclear model for. gamma. -ray bursts

    SciTech Connect

    Woosley, S.E.

    1981-08-26

    The evolution of magnetized neutron stars with field strengths of approx. 10/sup 12/ gauss that are accreting mass onto kilometer-sized polar regions at a rate of approx. /sup 13/ M/sub 0/yr/sup -1/ is examined. Based on the results of one-dimensional calculations, one finds that stable hydrogen burning, mediated by the hot CNO-cycle, will lead to a critical helium mass in the range 10/sup 20/ to 10/sup 22/ g km/sup -2/. Owing to the extreme degeneracy of the electron gas providing pressure support, helium burning occurs as a violent thermonuclear runaway which may propagate either as a convective deflagration (Type I burst) or as a detonation wave (Type II burst). Complete combustion of helium into /sup 56/Ni releases from 10/sup 38/ to 10/sup 40/ erg km/sup -2/ and pushes hot plasma with ..beta.. > 1 above the surface of the neutron star. Rapid expansion of the plasma channels a substantial fraction of the explosion energy into magnetic field stress. Spectral properties are expected to be complex with emission from both thermal and non-thermal processes. The hard ..gamma..-outburst of several seconds softens as the event proceeds and is followed by a period, typically of several minutes duration, of softer x-ray emission as the subsurface ashes of the thermonuclear explosion cool. In this model, most ..gamma..-ray bursts currently being observed are located at a distance of several hundred parsecs and should recur on a timescale of months to centuries with convective deflagrations (Type I bursts) being the more common variety. An explanation for Jacobson-like transients is also offered.

  10. Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXK alpha spectral region.

    PubMed

    Yücel, H; Dikmen, H

    2009-04-30

    In this paper, the known multigroup gamma-ray analysis method for uranium (MGAU) as one of the non-destructive gamma-ray spectrometry methods has been applied to certified reference nuclear materials (depleted, natural and enriched uranium) containing (235)U isotope in the range of 0.32-4.51% atom (235)U. Its analysis gives incorrect results for the low component (235)U in depleted and natural uranium samples where the build-up of the decay products begins to interfere with the analysis. The results reveal that the build-up of decay products seems to be significant and thus the algorithms for the presence of decay products should be improved to resulting in the correct enrichment value. For instance, for the case of (235)U analysis in depleted uranium or natural ore samples, self-induced X-rays such as 94.6 keV and 98.4 keV lying in UXK(alpha) spectral region used by MGAU can be excluded from the calculation. Because the significant increases have been observed in the intensities of uranium self-induced X-rays due to gamma-ray emissions with above 100 keV energy arising from decay products of (238)U and (235)U and these parents. Instead, the use of calibration curve to be made between the intensity ratios of self-fluorescence X-rays to 92(*)keV gamma-ray and the certified (235)U abundances is suggested for the determination of (235)U when higher amounts of decay products are detected in the gamma-ray spectrum acquired for the MGAU analysis. PMID:19203602

  11. GeV and higher energy photon interactions in gamma-ray burst fireballs and surroundings

    E-print Network

    Soebur Razzaque; Peter Meszaros; Bing Zhang

    2004-06-09

    We have calculated the opacities and secondary production mechanisms of high energy photons arising in gamma-ray burst internal shocks, using exact cross-sections for the relevant processes. We find that for reasonable choices of parameters, photons in the range of 10's to 100's of GeV may be emitted in the prompt phase. Photons above this range are subject to electron-positron pair production with fireball photons and would be absent from the spectrum escaping the gamma-ray burst. We find that, in such cases, the fireball becomes optically thin again at ultra-high energies ($\\gtrsim$ PeV). On the other hand, for sufficiently large fireball bulk Lorentz factors, the fireball is optically thin at all energies. Both for $\\gamma\\gamma$ self-absorbed and optically thin cases, the escaping high energy photons can interact with infra-red and microwave background photons to produce delayed secondary photons in the GeV-TeV range. These may be observable with GLAST, or at low redshifts with ground-based air Cherenkov telescopes. Detection of the primary prompt spectrum constrains the bulk Lorentz factor, while detection of delayed secondary gamma-rays would provide a consistency check for the primary spectrum and the bulk Lorentz factor as well as constraints on the intergalactic magnetic field strength.

  12. Prompt Emission of High Energy Photons from Gamma Ray Bursts

    E-print Network

    Nayantara Gupta; Bing Zhang

    2007-05-31

    Within the internal shock scenario we consider different mechanisms of high energy ($>1$ MeV) photon production inside a Gamma Ray Burst (GRB) fireball and derive the expected high energy photon spectra from individual GRBs during the prompt phase. The photon spectra of leptonic and hadronic origins are compared within different sets of parameter regimes. Our results suggest that the high energy emission is dominated by the leptonic component if fraction of shock energy carried by electrons is not very small (e.g. $\\epsilon_e > 10^{-3}$). For very small values of $\\epsilon_e$ the hadronic emission component could be comparable to or even exceed the leptonic component in the GeV-TeV regime. However, in this case a much larger energy budget of the fireball is required to account for the same level of the observed sub-MeV spectrum. The fireballs are therefore extremely inefficient in radiation. For a canonical fireball bulk Lorentz factor (e.g. $\\Gamma=400$), emissions above $\\sim 10$ GeV are attenuated by two-photon pair production processes. For a fireball with an even higher Lorentz factor, the cutoff energy is higher, and emissions of 10 TeV - PeV due to $\\pi^0$-decay can also escape from the internal shocks. The flux level is however too low to be detected by current TeV detectors, and these photons also suffer attenuation by external soft photons.

  13. ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Sagi, Eran; Nakar, Ehud

    2012-04-10

    It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

  14. Short versus long gamma-ray bursts: a comprehensive study of energetics and prompt gamma-ray correlations

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Nemiroff, Robert J.

    2015-07-01

    We present the results of a comprehensive study of the luminosity function, energetics, prompt gamma-ray correlations, and classification methodology of short-hard and long-soft gamma-ray bursts (GRBs), based on observational data in the largest catalogue of GRBs available to this date: BATSE catalogue of 2702 GRBs. We find that (1) the least-biased classification method of GRBs into short and long, solely based on prompt-emission properties, appears to be the ratio of the observed spectral peak energy to the observed duration (R = Ep/T90) with the dividing line at R ? 50[keV s-1]; (2) once data is carefully corrected for the effects of the detection threshold of gamma-ray instruments, the population distribution of short gamma-ray bursts (SGRBs) and long gamma-ray bursts (LGRBs) can be individually well described as multivariate lognormal distribution in the four-dimensional space of the isotropic peak gamma-ray luminosity, total isotropic gamma-ray emission, the intrinsic spectral peak energy, and the intrinsic duration; (3) relatively large fractions of SGRBs and LGRBs with moderate-to-low spectral peak energies have been missed by BATSE detectors; (4) relatively strong and highly significant intrinsic hardness-brightness and duration-brightness correlations likely exist in both populations of SGRBs and LGRBs, once data is corrected for selection effects. The strengths of these correlations are very similar in both populations, implying similar mechanisms at work in both GRB classes, leading to the emergence of these prompt gamma-ray correlations.

  15. Testing the millisecond pulsar scenario of the Galactic center gamma-ray excess with very high energy gamma-rays

    E-print Network

    Qiang Yuan; Kunihito Ioka

    2015-02-09

    The recent analyses of the Fermi Large Area Telescope data show an extended GeV $\\gamma$-ray excess on top of the expected diffuse background in the Galactic center region, which can be explained with annihilating dark matter or a population of millisecond pulsars (MSPs). We propose to observe the very high energy $\\gamma$-rays for distinguishing the MSP scenario from the dark matter scenario. The GeV $\\gamma$-ray MSPs should release most energy to the relativistic $e^{\\pm}$ wind, which will diffuse in the Galaxy and radiate TeV $\\gamma$-rays through inverse Compton scattering and bremsstrahlung processes. By calculating the spectrum and spatial distribution, we show that such emission is detectable with the next generation very high energy $\\gamma$-ray observatory, the Cherenkov Telescope Array (CTA), under reasonable model parameters. It is essential to search for the multi-wavelength counterparts to the GeV $\\gamma$-ray excess for solving this mystery in the high energy universe.

  16. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  17. Next Generation Laser-Compton Gamma-ray Beam Facilities

    NASA Astrophysics Data System (ADS)

    Wu, Ying

    2014-09-01

    Since late 1970s, laser driven Compton gamma-ray beam facilities have been developed, contradicted and operated around the world for basic science research in nuclear physics and astrophysics, and for applied research in the areas of national security and industrial applications. Currently, TUNL's High Intensity Gamma-ray Source (HIGS) located at Duke University campus is the most intense Compton gamma-ray beam facility dedicated for scientific research. Driven by a high power storage ring Free-Electron Laser (FEL), HIGS produces nearly monochromatic, highly polarized gamma-ray beams from 1 to 100 MeV, with its peak performance of total flux up to few 1E10 g/s and a spectral flux of more than 1E3 g/s/eV in the few MeV to 10 MeV region. The next generation Compton gamma-ray sources will be developed using advanced laser technologies. This talk will provide an overview of new Compton gamma-beam projects, including the ELI-NP (Extreme Light Infrastructure - Nuclear Physics) project in Romania and the HIGS upgrade project - HIGS2. Since late 1970s, laser driven Compton gamma-ray beam facilities have been developed, contradicted and operated around the world for basic science research in nuclear physics and astrophysics, and for applied research in the areas of national security and industrial applications. Currently, TUNL's High Intensity Gamma-ray Source (HIGS) located at Duke University campus is the most intense Compton gamma-ray beam facility dedicated for scientific research. Driven by a high power storage ring Free-Electron Laser (FEL), HIGS produces nearly monochromatic, highly polarized gamma-ray beams from 1 to 100 MeV, with its peak performance of total flux up to few 1E10 g/s and a spectral flux of more than 1E3 g/s/eV in the few MeV to 10 MeV region. The next generation Compton gamma-ray sources will be developed using advanced laser technologies. This talk will provide an overview of new Compton gamma-beam projects, including the ELI-NP (Extreme Light Infrastructure - Nuclear Physics) project in Romania and the HIGS upgrade project - HIGS2. Work supported by U.S. Grant: DE-FG02-97ER41033.

  18. The Milky Way in Very High Energy Gamma-Ray Light

    E-print Network

    Adelaide, University of

    The Milky Way in Very High Energy Gamma-Ray Light 2511 Gamma-Ray Light: What is it? Detecting Very High Energy Gamma-Rays with the H.E.S.S. Gamma-Ray Telescopes The Milky Way in Very High Energy Gamma://home.arcor-online.de/axel.mellinger/ The H.E.S.S. Telescopes have imaged parts of the Milky Way in very high energy gamma-ray light

  19. Investigation of the soil-plant transfer of primordial radionuclides in tomatoes by low-level gamma-ray spectrometry.

    PubMed

    Köhler, M; Gleisberg, B; Niese, S

    2000-01-01

    The paper presents actual data from investigations of the soil-plant transfer of the primordial radionuclides 40K, 238U, 226Ra, 210Pb and 227Ac for tomatoes growing at soils from former uranium mining areas. The analysis were carried out using low-level gamma-ray spectrometry in a 47 m deep underground laboratory. For tomato fruits transfer factors of (0.0007 +/- 0.0006) for 235U, (0.0021 +/- 0.0017) for 226Ra, (0.0015 +/- 0.0009) for 210Pb and (0.0018 +/- 0.0012) for 227Ac were obtained. The investigation of the soil-plant transfer by low-level gamma-ray spectrometry is often limited by the Compton-continuum from the always present high-energy gamma-ray emitter 40K. PMID:10879862

  20. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    PubMed

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory. PMID:25165903

  1. Space detectors for gamma rays (100 MeV-100 GeV): From EGRET to Fermi LAT

    NASA Astrophysics Data System (ADS)

    Thompson, David J.

    2015-08-01

    The design of spaceborne high-energy (E > 100MeV) ?-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the ? rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope. xml:lang="fr"

  2. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  3. The Ulysses Supplement to the BATSE 4Br Catalog of Cosmic Gamma-Ray Bursts

    E-print Network

    K. Hurley; M. S. Briggs; R. M. Kippen; C. Kouveliotou; C. Meegan; G. Fishman; T. Cline; M. Boer

    1998-12-01

    We present Interplanetary Network localization information for 147 gamma-ray bursts observed by the Burst and Transient Source Experiment between the end of the 3rd BATSE catalog and the end of the 4th BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma-Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 7 arcseconds and 2.3 degrees, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area of a factor of 25.

  4. The Ulysses Supplement to the BATSE 4B Catalog of Cosmic Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Briggs, Michael S.; Kippen, Richard M.; Kouveliotou, Chryssa; Meegan, Charles A.; Fishman, Gerald J.; Cline, T. L.; Boer, M.

    1998-01-01

    We present Interplanetary Network Localization information for 150 gamma-ray bursts observed by the Burst and Transient Source Experiment(BATSE) between the end of the 3rd BATSE catalog and the end of the 4th BATSE catalog obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (triangulation) results in an annulus of possible arrival directions whose width varies between 7 arcseconds and 2.3 degrees, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area by a factor of 25.

  5. Some Theoretical Implications of Short-Hard Gamma-Ray Burst observations

    E-print Network

    Nakar, E

    2007-01-01

    Short-hard and long-soft gamma-ray bursts (GRBs) are two distinct phenomena, but their prompt and afterglow emission show many similarities. This suggests that two different progenitor systems lead to similar physical processes and that the prompt and afterglow observations of short-hard GRBs (SHBs) can be examined using models of long GRBs. Here, I discuss three conclusions that can be drawn from SHB observations. I show that the lower limit on the Lorentz factor of SHBs is typically ``only'' 10-50, significantly lower than that of long GRBs. SHBs with observed X-ray afterglow after 1 day are found to be roughly as efficient as long GRBs in converting the outflow energy into prompt gamma-rays. Finally, I examine the origin of SHBs with X-ray dark afterglows and find that the most plausible explanation is that these SHBs exploded in extremely low density environment ($n \\lesssim 10^{-5} cm^{-3}$)

  6. An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

    NASA Astrophysics Data System (ADS)

    Polee, C.; Chankow, N.; Srisatit, S.; Thong-Aram, D.

    2015-05-01

    In film radiography, underexposure and overexposure may happen particularly when lacking information of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a small detector. Application software was developed for Android mobile phone to remotely control the device and to display counting data via Bluetooth communication. Prior to film exposure, the device is placed behind a specimen to measure transmitted intensity which is inversely proportional to the exposure. Unlike in using the conventional exposure curve, correction factors for source decay, source-to- film distance, specimen thickness and kind of material are not needed. The developed technique and device make radiographic process economic, convenient and more reliable.

  7. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir

    E-print Network

    D. A. Frail; S. R. Kulkarni; R. Sari; S. G. Djorgovski; J. S. Bloom; T. J. Galama; D. E. Reichart; E. Berger; F. A. Harrison; P. A. Price; S. A. Yost; A. Diercks; R. W. Goodrich; F. Chaffee

    2001-02-15

    Gamma-ray bursts (GRBs) are the most brilliant objects in the Universe but efforts to estimate the total energy released in the explosion -- a crucial physical quantity -- have been stymied by their unknown geometry: spheres or cones. We report on a comprehensive analysis of GRB afterglows and derive their conical opening angles. We find that the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5x10**50 erg. We draw three conclusions. First, the central engines of GRBs release energies that are comparable to ordinary supernovae, suggesting a connection. Second, the wide variation in fluence and luminosity of GRBs is due entirely to a distribution of opening angles. Third, only a small fraction of GRBs are visible to a given observer and the true GRB rate is at least a factor of 500 times larger than the observed rate.

  8. Cherenkov Telescope Array: Unveiling the Gamma Ray Universe and its Cosmic Particle Accelerators

    NASA Astrophysics Data System (ADS)

    de Gouveia Dal Pino, Elisabete

    2015-08-01

    Gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. Cherenkov Telescope Array (CTA) is an international initiative to build the next-generation ground-based gamma-ray observatory which will have a factor of 5-10 improvement in sensitivity in the 100-GeV-10-TeV range and an extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the North and another in the South Hemisphere) and will provide a deep insight into the non-thermal high-energy Universe and its particle accelerators. In this talk, I will briefly present the major design concept of CTA as well as its vast science case (on behalf of the CTA Consortium).

  9. Classification of lunar terranes using neutron and thorium gamma-ray data

    SciTech Connect

    Feldman, W.C.; Lawrence, D.J.; Elphic, R.C.; Barraclough, B.L.; Maurice, S.; Binder, A.B.; Lucey, P.G.

    1999-04-01

    A major scientific goal of the Lunar Prospector (LP) gamma-ray and neutron spectrometers is to classify all lunar terranes according to composition. A preliminary analysis of early data indicates this goal will be met for the major rock-forming elements on a spatial scale of about 200 km. The low-altitude phase of LP now in progress should allow reduction of this scale by about a factor of 10 for those elements that have sufficiently high measurable fluxes relative to their backgrounds. Most promising are the flux intensities of thermal, epithermal, and fast neutrons (which each average about 300 counts per 50 km of ground track) and 2.6 MeV gamma rays from thorium (which averages about 50 counts per 50 km of ground track). The authors therefore explore the information content of these measurables to classify the various lunar terrane types.

  10. Baseline drift effect on the performance of neutron and gamma ray discrimination using frequency gradient analysis

    E-print Network

    Liu, Guofu; Yang, Jun; Lin, Cunbao; Hu, Qingqing; Peng, Jinxian

    2013-01-01

    Frequency gradient analysis (FGA) effectively discriminates neutrons and gamma rays by examining the frequency-domain features of the photomultiplier tube anode signal. This approach is insensitive to noise but is inevitably affected by the baseline drift, similar to other pulse shape discrimination methods. The baseline drift effect is attributed to the factors such as power line fluctuation, dark current, noise disturbances, hum, and pulse tail in front-end electronics. This effect needs to be elucidated and quantified before the baseline shift can be estimated and removed from the captured signal. Therefore, the effect of baseline shift on the discrimination performance of neutrons and gamma rays with organic scintillation detectors using FGA is investigated in this paper. The relationship between the baseline shift and discrimination parameters of FGA is derived and verified by an experimental system consisting of an americium-beryllium source, a BC501A liquid scintillator detector, and a 5 GSPS 8-bit osc...

  11. A Search for Correlations between Gamma-Ray Burst Variability and Afterglow Onset

    E-print Network

    Yost, S A

    2015-01-01

    We compared the time (or time limit) of onset for optical afterglow emission to the gamma-ray variability V in 76 GRBs with redshifts. In the subset (25 cases) with the rise evident in the data, we fit the shape of the onset peak as well and compared the rising and decaying indices to V. We did not find any evidence for any patterns between these properties and there is no statistical support for any correlations. This indicates a lack of connection between irregularities of the prompt gamma-ray emission and the establishment of the afterglow phase. In the ordinary prompt internal shocks interpretation, this would indicate a lack of relationship between V and the bulk Lorentz factor of the event.

  12. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  13. Development of a Transition Edge Sensor Gamma Ray Microcalorimeter with an Epoxy Coupled Bulk Lead Absorber

    SciTech Connect

    Damayanthi, R. M. T.; Iyomoto, N.; Takahashi, H.; Minamigawa, Y.; Nishimura, K.; Ohno, M.

    2009-12-16

    Transition edge sensor (TES)-based gamma ray detectors have been developed primarily for use up to energies of {approx}100 keV. However, there are many interesting applications at higher energies. We have started to develop a TES gamma-ray detector to apply to Positron Annihilation Spectroscopy analysis at 511 keV. Our detector is composed of a bulk lead absorber, which is coupled to a thin-film TES using a small amount of epoxy. The response of our first detector showed a very long decay tail of {approx}135 ms. To improve the device response time we have designed a new detector in which the response time is improved by a factor of five.

  14. Gamma-Ray Astrophysics: New Insight Into the Universe

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Trombka, Jacob I.

    1997-01-01

    During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble in one place a treatment of gamma rays emitted from bodies in the solar i system, from objects in our galaxy, as well as from interactions between cosmic rays and the interstellar medium, and from beyond our galaxy. Thus, this book is intended for those in astrophysics who wish to have the opportunity to learn more about the evolving field of gamma-ray astronomy and its relationship to the high-energy, evolutionary processes occurring in the universe. The last three chapters of the book provide a general discussion of the experimental aspects of the field that seemed best treated together, separately from the astrophysical aspects of gamma-ray astronomy that are discussed in the first ten chapters.

  15. MODELING THE NON-RECYCLED FERMI GAMMA-RAY PULSAR POPULATION

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.; Kerr, M.; Burnett, T. H.; Harding, A. K.

    2013-10-10

    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L{sub ?} depends on the period P and the period derivative P-dot . We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L{sub ?} on P and P-dot , including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L{sub ?}?P{sup -a} P-dot {sup b} where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar to but not identical to the commonly assumed L{sub ?}??( E-dot )?P{sup -1.5} P-dot {sup 0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7? for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2? upper limit on the average braking index and a 2? lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 10{sup 10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.

  16. Analysis of noise power spectrum of gamma rays camera

    NASA Astrophysics Data System (ADS)

    Xie, Hongwei; Zhang, Faqiang; Zhang, Jianhua; Chen, Jinchuan; Chen, Dingyang; Li, Linbo

    2014-01-01

    Gamma rays camera is widely used in many studies, including the image diagnostics of the radiation sources, flash photography, and nondestructive assessment (NDA), etc. As a major component of the high sensitivity gamma rays camera, the MCP image intensifier is characterized in the intensified image, tunable shutter time and gain. The gamma rays camera is consisting with rays-fluorescence convertor, the optical imaging system, the MCP image intensifier, CCD and other devices. The performance of the gamma rays camera is mainly dependent on such parameters as the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE), etc. All of the parameters are somewhat limited by the noise characteristics of the system. Compared with the standard derivative noise distribution, the NPS, which can reflect the evolution characteristics of the noise of the imaging system with the change of the spatial frequency, could convey more information on the noise distribution in the system. In this paper, theoretical analysis is presented on the major sources of the noise in the gamma rays camera. Based on the analysis, the noise power spectra of the gamma rays camera were calibrated under various radiation dosages respectively with the visible light and gamma rays radiation sources (0.2MeV and 1.25MeV in energy, respectively). As indicated by the experimental results, the noise is majorly induced by the fluctuations of the gain of the MCP image intensifier. And the remarkable noise peak occurs nearby the spatial frequency of about 0.633 Hz/mm. And almost the same phenomena were found with both the 0.2MeV and 1.25MeV radiation energy. Besides, the noise power spectra are in circular symmetrical distribution, whose intensities are rapidly decreased with the increasing spatial frequencies.

  17. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    SciTech Connect

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  18. Theoretical studies of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba

    1999-12-01

    Gamma-Ray Bursts (GRBs) have challenged astrophysicists ever since their discovery almost thirty years ago. With an energy release of 1051-53 ergs, GRBs are the most electromagnetically luminous objects in the universe. One of the many unanswered questions about GRBs is the nature of the source that powers them. This thesis studies the interactions of GRBs and their afterglows with their surrounding environment, and shows how the signatures left by this interaction can yield valuable information on the properties of the GRB sources. We show that the passage of the afterglow through its surrounding medium produces time-dependent lines in its absorption spectrum, whose identification could serve to precisely determine the GRB redshift and tightly constrain the density of the GRB environment. The ionized medium eventually cools and recombines. We study the spectral features expected from a cooling GRB remnant and identify signatures in the line diagnostics which are peculiar to GRB remnants. Identification of such remnants in nearby galaxies will allow direct observations of GRB sites and degree of beaming. Besides photoionizing the medium, GRB explosions also have dynamical effects: they result in expanding blast waves, some of which should still be visible in our galaxy and nearby ones. We suggest that they might have already been observed under the form of expanding HI supershells. GRB energetics and rates are crucially dependent on the beaming fraction. We use the data from radio surveys to place the constraint q>~6 ° on the beaming angle. Since GRBs are cosmological sources at high redshift, they can be used as tools to explore the universe. We study the observable signatures that result when a GRB afterglow is microlensed by an intervening star. We show how a microlensing event could be used to study size and superluminal expansion rate of the source, and the structure of the magnetic field on the afterglow photosphere. At the same time, the fraction of microlensed afterglows can be used to calibrate the density parameter of compact objects in the universe.

  19. Gamma-ray line emission from SS433

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.; Ling, J. C.; Mahoney, W. A.; Riegler, G. R.; Wheaton, W. A.; Jacobson, A. S.

    1983-01-01

    Preliminary evidence for gamma ray line emission from the region of SS433 using the spectrometer aboard the HEAO 3 satellite is reported. One of the line features, located at an energy of 1.5 MeV, has a statistical significance of about six sigmas during a particular 18-day interval. Another feature appears near 1.2 MeV. Both features exhibit fractional linewidths of about one percent. The intensity of the 1.5 MeV feature is variable by a factor of about three on a time scale of days, and the 1.2 MeV feature is similarly variable. The combined power of the lines is about 2 x 10 to the 27th ergs/s, assuming isotropic emission. The observed energies can be interpreted in terms of a kinematic model published elsewhere as blue and red-shifted components of the 1.369 MeV line from a nuclear transition of Mg-24 from its first excited state to its ground state.

  20. Probing Long Gamma Ray Bursts progenitor mass by Gravitational Waves

    E-print Network

    Mariafelicia De Laurentis; Fabio Garufi; Maria Giovanna Dainotti; Leopoldo Milano

    2015-05-30

    In this work we present a procedure to infer the mass of progenitors and remnants of Gamma Ray Bursts (GRB), starting from the observed energy $E_{iso}^{GRB}$ emitted isotropically and considering the associated emission of Gravitational Waves (GW) $ E_{iso}^{GW}$ in the different phases. We assume that the GW energy of the progenitor $E_{PROG}^{GW}$ is emitted partially during a star collapse, and the residual energy is related to the GW energy emitted by the remnant. We take a sample of $237$ Long GRB, and use an hybrid Montecarlo procedure to explore, for each of them, a region of possible solutions of $ E_{iso}^{GW}$ as a function of the masses, radii, oblateness, rotation frequencies of progenitor and remnant and the fraction of energy $k$ emitted as GW by the GRB. We discriminate between a Neutron Star (NS) or Black Hole (BH) for the remnant and obtain interesting values for the GW emitted by the remnant NS or BH, for the conversion factor $k$ of and for the masses and radii of GRB progenitor stars. We also obtain remnant populations with mean masses, mean GW frequencies and GRB frequency of GW emission in agreement with the most accepted models.

  1. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect

    Geng, J. J.; Huang, Y. F.; Yu, Y. B.; Wu, X. F. E-mail: xfwu@pmo.ac.cn

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  2. Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; Greiner, Jochen; van Eerten, Hendrik; Burgess, J. Michael; Narayana Bhat, P.; Briggs, Michael S.; Connaughton, Valerie; Diehl, Roland; Goldstein, Adam; Gruber, David; Jenke, Peter A.; von Kienlin, Andreas; Kouveliotou, Chryssa; Paciesas, William S.; Pelassa, Véronique; Preece, Robert D.; Roberts, Oliver J.; Zhang, Bin-Bin

    2015-01-01

    Context. We study the time-resolved spectral properties of energetic gamma-ray bursts (GRBs) with good high-energy photon statistics observed by the Gamma-Ray Burst Monitor (GBM) onboard the Fermi Gamma-Ray Space Telescope. Aims: We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. Methods: Our sample comprises eight GRBs observed by the Fermi GBM in its first five years of mission, with 1 keV-1 MeV fluence f> 1.0 × 10-4 erg cm-2 and a signal-to-noise ratio level of S/N ? 10.0 above 900 keV. We performed a time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We performed Band function fits to all spectra and obtained the distributions for the low-energy power-law index ?, the high-energy power-law index ?, the peak energy in the observed ?F? spectrum Ep, and the difference between the low- and high-energy power-law indices ?s = ? - ?. We also applied a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test the prompt emission for consistency with a synchrotron origin and obtain the distributions for the two break energies Eb,1 and Eb,2, the middle segment power-law index ?, and the Planck function temperature kT. Results: The Band function parameter distributions are ? = -0.73+0.16-0.21, ? =?-2.13+0.28-0.56, Ep = 374.4+307.3-187.7 , , keV (log10Ep = 2.57+0.26-0.30), and ?s = 1.38+0.54-0.31 , with average errors ?? ~ 0.1, ?? ~ 0.2, and ?Ep ~ 0.1Ep. Using the distributions of ?s and ?, the electron population index p is found to be consistent with the "moderately fast" scenario, in which fast- and slow-cooling scenarios cannot be distinguished. The physically motivated synchrotron-fitting function parameter distributions are Eb,1 = 129.6+132.2-32.4 keV, Eb,2 = 631.4+582.6-309.6 keV, ? = -1.72+0.48-0.25 , and kT = 10.4+4.9-3.7 keV, with average errors ?? ~ 0.2, ?Eb,1 ~ 0.1Eb,1, ?Eb,2 ~ 0.4Eb,2, and ?kT ~ 0.1kT. This synchrotron function requires the synchrotron injection and cooling break (i.e., Emin and Ecool) to be close to each other within a factor of ten, often in addition to a Planck function. Conclusions: A synchrotron model is found that is consistent with most of the time-resolved spectra for eight energetic Fermi GBM bursts with good high-energy photon statistics as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by including a thermal component or when an evolving magnetic field is accounted for. Appendix A is available in electronic form at http://www.aanda.org

  3. X, Gamma-Rays, and Gravitational Waves Emission in a Short Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R.

    The recent progress in the understanding the physical nature of neutron stars (NSs) and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allow to give an estimate of the gravitational waves versus the X and gamma-rays emission in a short GRB. NS binaries represent good candidates for the detection of gravitational waves emitted during the spiraling-in and final merging phase of the system that leads to the short GRB emission. The data analysis of the GRB 090227B by Muccino et al. (2013) have been shown to be consistent with a NS binary progenitor with masses M1 = M2 = 1.34 M_{?}, radii R1 = R2 = 12.2 km, and a crust thickness ? r ? 0. 47 km, obtained from the new mass-radius relation by Belvedere et al. (2012) of NSs fulfilling global charge neutrality. Muccino et al. (2013) estimated that GRB 090227B is located at redshift z ? 1. 6, corresponding to a luminosity distance d L ? 12. 2 Gpc. We assess the detectability of this source by the Advanced LIGO interferometer computing the signal-to-noise ratio (SNR) averaged over all polarizations and possible positions of the source with respect to the interferometer. We simulate the dynamics of the binary up to the contact point using the effective one-body formalism (EOB) in the fourth post-Newtonian approximation. We find that the gravitational waves signal would have been produced an SNR = 0.32 for a redshift z = 1. 61. We find that, instead, this GRB would have been detected with an SNR = 8 if it would have been located at a redshift z ? 0. 05, or d L ? 200 Mpc.

  4. Outburst in the Gamma-ray Bright Quasar CTA26

    NASA Astrophysics Data System (ADS)

    Foord, Adi; Jorstad, S. G.; Marscher, A. P.

    2014-01-01

    We analyze multi-waveband space- and ground-based observations of the z=0.852 quasar CTA26 (PKS 0336-019) over a 6-year time span that includes two gamma-ray outbursts. The instruments used include the Fermi Gamma-ray Space Telescope, the Very Long Baseline Array (VLBA), the Perkins Telescope at Lowell Observatory, and a number of other optical telescopes. We cross-correlate the time variations from the different wavebands and compare the timing of the gamma-ray events with changes in the jet seen in VLBA images at 43 GHz, with a resolution of 100 micro-arcseconds, to determine the relationship between the conditions in the jet and the high-energy outbursts. A total of 39 VLBA images were collected from June 2007 to February 2013 at near bimonthly intervals. We analyze the multi-frequency behavior of the quasar during two prominent gamma-ray outbursts, in late 2010 and late 2011. An increase in the flux in the VLBA images during mid to late 2010 marked the appearance of a new superluminal knot that proceeded to emerge from the mm-wave core as a gamma-ray flare erupted. A similar sequence of events occurred almost a year before the outburst in late 2011, although the associated superluminal knot was not as fast. Our analysis shows radio, optical, and gamma-ray fluxes peaking contemporaneously during these two events, with the maximum of the optical/gamma-ray correlation agreeing within a few days, and with the radio peak occurring about 1 month earlier. Each outburst ended after 3 months at gamma-ray energies, while the radio emission decayed more slowly, with a plateau between the two outbursts. We infer the degree of order and geometry of the magnetic field during the outbursts by studying the linear polarization at both radio (in the images) and optical wavelengths. We use the changing positions of the superluminal knots to locate the gamma-ray flares in the parsec-scale jet. Armed with this information, we compare the evolution of the jet of CTA26 with the expectations of current models, such as those that include moving and/or standing shocks in the parsec-scale jet. This research was supported in part by NASA through Fermi Guest Investigator grant NNX11AQ03G.

  5. The WISE Gamma-Ray Strip Parametrization: The Nature of the Gamma-Ray Active Galactic Nuclei of Uncertain Type

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, D.; Grindlay, J.E.; Smith, Howard A.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-02

    Despite the large number of discoveries made recently by Fermi, the origins of the so called unidentified {gamma}-ray sources remain unknown. The large number of these sources suggests that among them there could be a population that significantly contributes to the isotropic gamma-ray background and is therefore crucial to understand their nature. The first step toward a complete comprehension of the unidentified {gamma}-ray source population is to identify those that can be associated with blazars, the most numerous class of extragalactic sources in the {gamma}-ray sky. Recently, we discovered that blazars can be recognized and separated from other extragalactic sources using the infrared (IR) WISE satellite colors. The blazar population delineates a remarkable and distinctive region of the IR color-color space, the WISE blazar strip. In particular, the subregion delineated by the {gamma}-ray emitting blazars is even narrower and we named it as the WISE Gamma-ray Strip (WGS). In this paper we parametrize the WGS on the basis of a single parameter s that we then use to determine if {gamma}-ray Active Galactic Nuclei of the uncertain type (AGUs) detected by Fermi are consistent with the WGS and so can be considered blazar candidates. We find that 54 AGUs out of a set 60 analyzed have IR colors consistent with the WGS; only 6 AGUs are outliers. This result implies that a very high percentage (i.e., in this sample about 90%) of the AGUs detected by Fermi are indeed blazar candidates.

  6. Gamma rays from top-mediated dark matter annihilations

    SciTech Connect

    Jackson, C.B.; Servant, Géraldine; Shaughnessy, Gabe; Tait, Tim M.P.; Taoso, Marco E-mail: chris@uta.edu E-mail: ttait@uci.edu

    2013-07-01

    Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered ''smoking gun'' evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter space of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matter's primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a thermal relic through the forbidden channel mechanism proposed in the Higgs in Space Model. We consider realistic UV-completions of the Higgs in Space and related theories, and show that a rich structure of observable gamma ray lines is consistent with a thermal relic as well as constraints from dark matter searches and the LHC. Particular attention is paid to the one loop contributions to the continuum gamma rays, which can easily swamp the line signals in some cases, and have been largely overlooked in previous literature.

  7. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  8. Gammapy - A Python package for {\\gamma}-ray astronomy

    E-print Network

    Donath, Axel; Arribas, Manuel P; King, Johannes; Owen, Ellis; Terrier, Régis; Reichardt, Ignasi; Harris, Jon; Bühler, Rolf; Klepser, Stefan

    2015-01-01

    In the past decade imaging atmospheric Cherenkov telescope arrays such as H.E.S.S., MAGIC, VERITAS, as well as the Fermi-LAT space telescope have provided us with detailed images and spectra of the {\\gamma}-ray universe for the first time. Currently the {\\gamma}-ray community is preparing to build the next-generation Cherenkov Telecope Array (CTA), which will be operated as an open observatory. Gammapy (available at https://github.com/gammapy/gammapy under the open-source BSD li- cense) is a new in-development Astropy affiliated package for high-level analysis and simulation of astronomical {\\gamma}-ray data. It is built on the scientific Python stack (Numpy, Scipy, matplotlib and scikit-image) and makes use of other open-source astronomy packages such as Astropy, Sherpa and Naima to provide a flexible set of tools for {\\gamma}-ray astronomers. We present an overview of the current Gammapy features and example analyses on real as well as simulated {\\gamma}-ray datasets. We would like Gammapy to become a commu...

  9. Air shower detectors in gamma-ray astronomy

    SciTech Connect

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.

  10. Na-22 decay gamma rays from classical novae

    NASA Technical Reports Server (NTRS)

    Truran, James W.

    1993-01-01

    NASA Grant NAG 5-1565 has provided support for a program of theoretical research in nuclear astrophysics and related areas, focusing upon the possibility of detecting gamma rays from nearby novae. Particular attention has been given to the evaluation of the theoretical expectations for gamma ray emission from four possible sources: (1) the positron decays of the unstable CNO and fluorine isotopes that are transported to the surface regions of the envelope in the earliest stages of the outbursts; (2) Be-7 decay gamma rays, (3) Na-22 decay gamma rays released in the later stages of the outbursts; and (4) Al-26 decay gamma rays from novae and their possible contribution to Galactic emission. The critical questions of (1) the frequency of occurrence of ONeMg-enriched novae; (2) the expected Galactic distribution of the novae that produce 26Al; and (3) the nature of the observed soft X-ray emission from classical novae, have also been addressed. Considerable progress in research has been achieved on many of these fronts. Brief summaries of the results of several research projects are presented.

  11. $\\gamma$-ray observations of extraterrestrial neutrino track event positions

    E-print Network

    Brown, Anthony M; Chadwick, Paula M

    2015-01-01

    In this paper we report the results of a $\\gamma$-ray study of IceCube's extraterrestrial neutrino candidates detected as track-like events. Using 70 months of Fermi-LAT observations, a likelihood analysis of all $1-300$ GeV photons within 5 degrees of the track-like neutrino candidates' origin was undertaken, to search for spatially coincident $\\gamma$-ray emission. One of IceCube's HESE track events was found to be spatially coincident with a $\\gamma$-ray bright active galactic nucleus (AGN), PKS 0723-008. We find however, that the chance probability for Fermi-LAT detected AGN to be spatially coincident with a single HESE track-like event is high ($\\sim37$\\%). We therefore find no evidence of $\\gamma$-ray emission associated with the detection of IceCube's HESE track-like neutrino candidates. Upper limits were calculated in the energy range of $1-300$ GeV, assuming a point source origin for the neutrino events considered. The implications for the non-detection of $\\gamma$-ray emission from the source of the...

  12. Physics and astrophysics with gamma-ray telescopes

    E-print Network

    Vandenbroucke, J

    2010-01-01

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At $\\sim$TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At $\\sim$GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possi...

  13. On the nature of gamma-ray burst time dilations

    NASA Technical Reports Server (NTRS)

    Wijers, Ralph A. M. J.; Paczynski, Bohdan

    1994-01-01

    The recent discovery that faint gamma-ray bursts are stretched in time relative to bright ones has been interpreted as support for cosmological distances: faint bursts have their durations redshifted relative to bright ones. It was pointed out, however, that the relative time stretching can also be produced by an intrinsic correlation bewteen duration and luminosity of gamma-ray bursts in a nearby, bounded distribution. While both models can explain the average amount of time stretching, we find a difference between them in the way the duration distribution of faint bursts deviates from that of bright ones, assuming the luminosity function of gamma-ray bursts is independent of distance. This allows us to distinguish between these two broad classes of model on the basis of the duration distributions of gamma-ray bursts, leading perhaps to an unambiguous determination of the distance scale of gamma-ray bursts. We apply our proposed test to the second Burst and Transient Source Experiment (BATSE) catalog and conclude, with some caution, that the data favor a cosmological interpretation of the time dilation.

  14. On the nature of gamma-ray burst time dilations

    E-print Network

    Ralph A. M. J. Wijers; Bohdan Paczy?ski

    1994-08-02

    The recent discovery that faint gamma-ray bursts are stretched in time relative to bright ones has been interpreted as support for cosmological distances: faint bursts have their durations redshifted relative to bright ones. It was pointed out, however, that the relative time stretching can also be produced by an intrinsic correlation between duration and luminosity of gamma-ray bursts in a nearby, bounded distribution. While both models can explain the average amount of time stretching, we find a difference between them in the way the duration distribution of faint bursts deviates from that of bright ones, assuming the luminosity function of gamma-ray bursts is independent of distance. This allows us to distinguish between these two broad classes of model on the basis of the duration distributions of gamma-ray bursts, leading perhaps to an unambiguous determination of the distance scale of gamma-ray bursts. We apply our proposed test to the second BATSE catalog and conclude, with some caution, that the data favor a cosmological interpretation of the time dilation.

  15. Science applications of the Mars Observer gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Trombka, J. I.; Feldman, W. C.; Arnold, J. R.; Englert, P. A. J.; Metzger, A. E.; Reedy, R. C.; Squyres, S. W.; Waenke, H.; Bailey, S. H.

    1992-01-01

    The Mars Observer gamma ray spectrometer will return data related to the elemental composition of Mars. The instrument has both a gamma ray spectrometer and several neutron detectors. The gamma ray spectrometer will return a spectrum nominally every 20 s from Mars permitting a map of the elemental abundances to be made. The gamma rays are emitted from nuclei involved in radioactive decay, from nuclei formed by capture of a thermal neutron, and from nuclei put in an excited state by a fast-neutron interaction. The gamma rays come from an average depth of the order of a few tens of centimeters. The spectrum will show sharp emission lines whose intensity determines the concentration of the element and whose energy identifies the element. The neutron detectors, using the fact that the orbital velocity of the Mars Observer spacecraft is similar to the velocity of thermal neutrons, determine both the thermal and epithermal neutron flux. By combining the results from both techniques it is possible to map the depth dependence of hydrogen in the upper meter as well. These data permit a variety of Martian geoscience problems to be addressed including the crust and mantle composition, weathering processes, volcanism, and the volatile reservoirs and processes.

  16. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  17. Gamma Ray Astronomy and the Origin of Galactic Cosmic Rays

    E-print Network

    Stefano Gabici

    2008-11-05

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by this model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. In this paper, the most relevant cosmic-ray-related results of gamma ray astronomy are briefly summarized, and the foreseeable contribution of future gamma ray observations to the final solution of the problem of cosmic ray origin is discussed.

  18. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Enoto, T.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hayashi, K.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S.-H.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makishima, K.; Mazziotta, M. N.; Mehault, J.; Mitthumsiri, W.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Roth, M.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.

    2012-09-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between ~100 MeV and ~100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to ~10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W CO) at a 1° × 1° pixel level. The correlation is found to be linear over a W CO range of ~10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W CO-to-mass conversion factor, X CO, is found to be ~2.3 × 1020 cm-2(K km s-1)-1 for the high-longitude part of Orion A (l > 212°), ~1.7 times higher than ~1.3 × 1020 found for the rest of Orion A and B. We interpret the apparent high X CO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas. W CO decreases faster than the H2 column density in the region making the gas "darker" to W CO.

  19. What did we learn from gamma-ray burst 080319B?

    SciTech Connect

    Panaitescu, Alin; Kumar, Pawan

    2008-01-01

    The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 10{sup 16.3} cm by an ultrarelativistic source moving at Lorentz factor of -500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 10{sup 52.3} erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model.

  20. Star-Jet Interactions and Gamma-Ray Outbursts from 3C454.3

    NASA Astrophysics Data System (ADS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Ramon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-09-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M BH ~= 109 M ?, the total jet power: L j ~= 1048 erg s-1, and the Doppler factor of the gamma-ray emitting clouds: ? ~= 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution vpropE -1 or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  1. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Ferrara, E. C.; Harding, A. K.; Troja, E.

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between approx 100 MeV and approx 100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to approx 10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W(sub CO)) at a 1 deg 1 deg pixel level. The correlation is found to be linear over a W(sub CO) range of approx 10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W(sub CO)-to-mass conversion factor, X(sub CO), is found to be approx 2.3 10(exp 20) / sq cm (K km/s)(exp -1) for the high-longitude part of Orion A (l > 212 deg), approx 1.7 times higher than approx 1.3 10(exp 20) found for the rest of Orion A and B. We interpret the apparent high X(sub CO) in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas.W(sub CO) decreases faster than the H2 column density in the region making the gas "darker" to W(sub CO).

  2. Gamma-ray constraints on maximum cosmogenic neutrino fluxes and UHECR source evolution models

    SciTech Connect

    Gelmini, Graciela B.; Kalashev, Oleg; Semikoz, Dmitri V. E-mail: kalashev@ms2.inr.ac.ru

    2012-01-01

    The dip model assumes that the ultra-high energy cosmic rays (UHECRs) above 10{sup 18} eV consist exclusively of protons and is consistent with the spectrum and composition measure by HiRes. Here we present the range of cosmogenic neutrino fluxes in the dip-model which are compatible with a recent determination of the extragalactic very high energy (VHE) gamma-ray diffuse background derived from 2.5 years of Fermi/LAT data. We show that the largest fluxes predicted in the dip model would be detectable by IceCube in about 10 years of observation and are within the reach of a few years of observation with the ARA project. In the incomplete UHECR model in which protons are assumed to dominate only above 10{sup 19} eV, the cosmogenic neutrino fluxes could be a factor of 2 or 3 larger. Any fraction of heavier nuclei in the UHECR at these energies would reduce the maximum cosmogenic neutrino fluxes. We also consider here special evolution models in which the UHECR sources are assumed to have the same evolution of either the star formation rate (SFR), or the gamma-ray burst (GRB) rate, or the active galactic nuclei (AGN) rate in the Universe and found that the last two are disfavored (and in the dip model rejected) by the new VHE gamma-ray background.

  3. Study of high-energy particle acceleration in Tycho with gamma-ray observations

    E-print Network

    Park, Nahee

    2015-01-01

    Gamma-ray emission from supernova remnants (SNRs) can provide a unique window to observe the cosmic-ray acceleration believed to take place in these objects. Tycho is an especially good target for investigating hadronic cosmic-ray acceleration and interactions because it is a young type Ia SNR that is well studied in other wavelengths, and it is located in a relatively clean environment. Several different theoretical models have been advanced to explain the broadband spectral energy emission of Tycho from radio to the gamma-ray emission detected by the Fermi-LAT in the GeV and by VERITAS in the TeV. We will present an update on the high-energy gamma-ray studies of Tycho with $\\sim150$ hours of VERITAS and $\\sim77$ months of the Fermi-LAT observations, which represents about a factor of two increase in exposure over previously published data. VERITAS data also include exposure with an upgraded camera, which made it possible to extend the TeV measurements toward lower energy, thanks to its improved low energy s...

  4. The Decay of Optical Emission from the gamma-Ray Burst GRB970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouveliotou, C.; Robinson, C. R.; Fishman, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.; Macchetto, F. D.; Heise, J.; Int Zand, J.; Strom, R. G.; Telting, J.; Rutten, R. G. M.; Pettini, M.; Tanvir, N.; Bloom, J.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wavelengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approximately 40, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, but the subsequent decrease in the rate of fading may prove harder to explain.

  5. Solar flare nuclear gamma rays and interplanetary proton events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Forrest, D. J.; Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.; Cane, H. V.; Kane, S. R.

    1987-01-01

    We compared flare gamma ray line (GRL) events and solar energetic proton (SEP) events for the period from Feb. 1980 - Jan. 1985 and substantiated earlier results showing a lack of correlation between gamma-ray-producing ions and interplanetary protons. This poor correlation results primarily from several large SEP events that originated in flares without detectable gamma ray emission. The converse case of GRL events unassociated with SEP events is rare. We present evidence which suggests that the ratio of trapped to escaping protons in GRL/SEP flares depends on the spatial scale size of the flare. We affirm the result of Bai and Dennis (1985) that GRL flares are generally accompanied (75 percent) by metric Type 2 bursts.

  6. COMPACT, TUNABLE COMPTON SCATTERING GAMMA-RAY SOURCES

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O'Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2009-08-20

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

  7. Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon

    E-print Network

    K. Ni; E. Aprile; K. L. Giboni; P. Majewski; M. Yamashita

    2006-08-04

    Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detector gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV.

  8. Monte Carlo simulations of plutonium gamma-ray spectra

    SciTech Connect

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-07-16

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum.

  9. The autocorrelation of gamma-ray burst time profiles

    SciTech Connect

    Zand, J.J.; Fenimore, E.E.

    1996-06-01

    The autocorrelation of time profiles of emission from gamma-ray bursts has previously been proved to be a valuable diagnostic for the study of the timing behavior of these bursts. In particular, comparative studies benefited from this diagnostic. However, in these previous studies, the particular shape of the autocorrelation function has not been addressed in great detail. In the present paper we try to explain the autocorrelation shape and behavior. We propose an empirical model that aids in the evaluation of uncertainties in autocorrelation analyses of gamma-ray burst time profiles. Our most important conclusions are that analyses based on the autocorrelation function are not dominated by mathematical properties not connected with the gamma-ray burst phenomenon, and that the uncertainty in the relative time stretching between different photon energy ranges found through such an analysis previously from {ital CGRO} BATSE data is less than or equal to 10{percent}. {copyright} {ital 1996 The American Astronomical Society.}

  10. Diffuse {gamma}-ray emission: lessons and perspectives

    SciTech Connect

    Moskalenko, Igor V.; Strong, Andrew W.

    2005-11-22

    The Galactic diffuse emission is potentially able to reveal much about the sources and propagation of cosmic rays (CR), their spectra and intensities in distant locations. It can possibly unveil WIMP dark matter (DM) through its annihilation signatures. The extragalactic background may provide vital information about the early stages of the universe, neutralino annihilation, and unresolved sources (blazars?) and their cosmological evolution. The {gamma}-ray instrument EGRET on the CGRO contributed much to the exploration of the Galactic diffuse emission. The new NASA Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in 2007; study of the diffuse {gamma}-ray emission is one of the priority goals. We describe current understanding of the diffuse emission and its potential for future discoveries.

  11. SLAC All Access: Fermi Gamma-ray Space Telescope

    ScienceCinema

    Romani, Roger

    2014-06-24

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  12. SLAC All Access: Fermi Gamma-ray Space Telescope

    SciTech Connect

    Romani, Roger

    2013-05-31

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  13. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  14. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  15. A grey {gamma}-ray transfer procedure for supernovae

    SciTech Connect

    Jeffery, D.J.

    1997-12-01

    The {gamma}-ray transfer in supernovae for the purposes of energy deposition in the ejecta can be approximated as grey radiative transfer using mean opacities. In past work there is a single pure absorption mean opacity which is a free parameter. Accurate results can be obtained by varying this mean opacity to fit the results of more accurate procedures. In this paper, the authors present a grey {gamma}-ray transfer procedure for energy deposition in which there are multiple mean opacities that are not free parameters and that have both absorption and scattering components. This procedure is based on a local-state (LS) approximation, and so they call it the LS grey {gamma}-ray transfer procedure or LS procedure for short.

  16. High Energy Gamma Ray Lines from Solar Flares

    NASA Technical Reports Server (NTRS)

    Crannell, Carol Jo

    2000-01-01

    A number of nuclear states have been identified as possible candidates for producing high-energy gamma-ray line emission in solar flares. For one high-energy line, resulting from the decay of C-12 (15.11 MeV), the excitation cross sections and branching radios have been studied extensively. In a solar flare, the ratio of the flux of 15. 11 -MeV gamma rays to the flux of 4.44-MeV gamma rays depends critically on the spectral index of the flare-accelerated protons. Prospects for being able to determine that spectral index using results from HESSI observations together with the analytic results of Crannell, Crannell, and Ramaty (1979) will be presented.

  17. MAGIC Telescope Observations of Gamma-Ray Bursts

    SciTech Connect

    Garczarczyk, M.; Becerra-Gonzalez, J.; Gaug, M.; Antonelli, A.; Carosi, A.; La Barbera, A.; Spiro, S.; Bastieri, D.; Covino, S.; Dominguez, A.; Longo, F.; Scapin, V.

    2010-10-15

    MAGIC is built to perform observations of prompt and early afterglow emission from Gamma-Ray Bursts (GRBs) above 25 GeV. The instrument is designed to have the lowest possible energy threshold among the ground based {gamma}-ray detectors and the fastest reaction time to alerts distributed over the GRB Coordinates Network (GCN). The MAGIC-I telescope observed 57 GRBs during the first six years. In no cases Very High Energy (VHE){gamma}-ray emission above the threshold energy could be detected. The telescope has undergone several major improvements in sensitivity and repositioning performance. The biggest improvement in sensitivity was achieved with the installation of the second MAGIC-II telescope. Since more than one year both telescopes are observing in stereo mode. MAGIC are the only telescopes fast and sensitive enough to extend the observational energy range of satellite detectors, while GRB prompt and early afterglow emission is still ongoing.

  18. Gamma-ray imaging with coaxial HPGe detector

    SciTech Connect

    Niedermayr, T; Vetter, K; Mihailescu, L; Schmid, G J; Beckedahl, D; Kammeraad, J; Blair, J

    2005-04-12

    We report on the first experimental demonstration of Compton imaging of gamma rays with a single coaxial high-purity germanium (HPGe) detector. This imaging capability is realized by two-dimensional segmentation of the outside contact in combination with digital pulse-shape analysis, which enables to image gamma rays in 4{pi} without employing a collimator. We are able to demonstrate the ability to image the 662keV gamma ray from a {sup 137}Cs source with preliminary event selection with an angular accuracy of 5 degree with an relative efficiency of 0.2%. In addition to the 4{pi} imaging capability, such a system is characterized by its excellent energy resolution and can be implemented in any size possible for Ge detectors to achieve high efficiency.

  19. High resolution gamma-ray spectroscopy at GANIL

    SciTech Connect

    France, G. de

    2014-11-11

    Gamma-ray spectroscopy is intensively used at GANIL to measure low lying states in exotic nuclei on the neutron-rich as well as on the neutron-deficient side of the nuclear chart. On the neutron deficient border, gamma-rays have been observed for the first time in {sup 92}Pd. The level scheme which could be established points to the role of isoscalar pairing. On the neutron rich side, the lifetime of excited states in nuclei around {sup 68}Ni have been been measured using the plunger technique. This allows us to study the evolution of collectivity in a broad range of nuclei. In 2014 GANIL will host the AGATA array for a campaign of at least 2 years. This array is based on the gamma-ray tracking technique, which allows an impressive gain in resolving power.

  20. The Fermi Gamma-ray Burst Monitor Instrument

    SciTech Connect

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-05-25

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view ({>=}8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.