Science.gov

Sample records for gamma-ray emission probabilities

  1. Standardisation of 169Yb and precise measurement of gamma-ray emission probabilities

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroshi; Nagata, Hideaki; Furusawa, Takayoshi; Murakami, Naotaka; Mori, Chizuo; Takeuchi, Norio; Genka, Tsuguo

    1999-01-01

    The gamma-ray emission probabilities of 169Yb were determined directly from the disintegration rate and the gamma-ray intensities. The disintegration rates of 169Yb sources were measured by using a 4πβ(ppc)-γ(HPGe) coincidence system with resolving times of both 2.06 and 5.66 μs and the γ-ray intensities were measured with HPGe detectors. The measured γ-ray emission probabilities agreed relatively well with those reported by Funck et al. (Int. J. Appl. Radiat. Isotopes 34 (1983) 1215) but their results were slightly larger. The uncertainties were improved.

  2. Revisiting the {sup 238}U Thermal Capture Cross Section and Gamma-Ray Emission Probabilities from {sup 239}Np Decay

    SciTech Connect

    Trkov, A.; Molnar, G.L.; Revay, Zs.; Mughabghab, S.F.; Firestone, R.B.; Pronyaev, V.G.; Nichols, A.L.; Moxon, M.C

    2005-07-15

    The precise value of the thermal capture cross section of {sup 238}U is uncertain, and evaluated cross sections from various sources differ by more than their assigned uncertainties. A number of the original publications have been reviewed to assess the discrepant data, corrections were made for more recent standard cross sections and other constants, and one new measurement was analyzed. Because of the strong correlations in activation measurements, the gamma-ray emission probabilities from the {beta}{sup -} decay of {sup 239}Np were also analyzed. As a result of the analysis, a value of 2.683 {+-} 0.012 b was derived for the thermal capture cross section of {sup 238}U. A new evaluation of the gamma-ray emission probabilities from {sup 239}Np decay was also undertaken.

  3. Measurements of x-and {gamma}-ray emission probabilities in the {Beta}{sup -} decay of {sup 233} Pa.

    SciTech Connect

    Kondev, F. G.; Ahmad, I.; Greene, J. P.; Kellett, M. A.; Nichols, A. L.

    2010-12-01

    X- and {gamma}-ray emission probabilities from the {beta}{sup -} decay of {sup 233}Pa were measured with planar (LEPS) and coaxial Ge detectors. A {sup 233}Pa source was produced after radiochemical separation from a {sup 237}Np sample in which the parent ({sup 237}Np) and daughter ({sup 233}Pa) nuclides were in secular equilibrium. The results are compared with previous measurements and data evaluations.

  4. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  5. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  6. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  7. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  8. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  9. Emission model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1983-01-01

    The emission mechanisms of cosmic gamma-ray bursts are reviewed. In particular, the thermal synchrotron model is discussed as the most viable mechanism for the majority of the continuum emission. Within this framework various information about the source region can be extracted. The picture that emerges is that of a hot (kT = .2 - 1.0 sq mc), thin sheet of dense pair-dominated plasma emitting via cyclo-synchrotron radiation in a strong magnetic field (B approximately one-hundred billion to one trillion gauss). Speculations on the origin and structure of this sheet are attempted. The problem of high-energy photons above pair production threshold escaping from the source is also considered.

  10. A model of the diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Sreekumar, Parameswaran

    1990-01-01

    The galaxy was observed to be a source of high energy gamma rays as shown by the two successful satellite experiments, SAS-2 and COS-B. It is generally understood that these diffuse gamma rays result from interactions between energetic cosmic rays and interstellar gas. This work makes use of the most recent data on the distribution of atomic and molecular hydrogen in the galaxy along with new estimates of gamma ray production functions to model the diffuse galactic gamma ray emission. The model allows various spatial distributions for cosmic rays in the Galaxy including non-axisymmetric ones. In the light of the expected data from EGRET (Energetic Gamma-Ray Experiment Telescope), an improved model of cosmic ray-matter-gamma ray interaction will provide new insights into the distribution of cosmic rays and the strength of its coupling to matter.

  11. Gamma-Ray Burst Prompt Emission

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2015-01-01

    The origin of gamma-ray burst (GRB) prompt emission, bursts of γ-rays lasting from shorter than one second to thousands of seconds, remains not fully understood after more than 40 years of observations. The uncertainties lie in several open questions in the GRB physics, including jet composition, energy dissipation mechanism, particle acceleration mechanism, and radiation mechanism. Recent broad-band observations of prompt emission with Fermi sharpen the debates in these areas, which stimulated intense theoretical investigations invoking very different ideas. I will review these debates, and argue that the current data suggest the following picture: A quasi-thermal spectral component originating from the photosphere of the relativistic ejecta has been detected in some GRBs. Even though in some cases (e.g. GRB 090902B) this component dominates the spectrum, in most GRBs, this component either forms a sub-dominant "shoulder" spectral component in the low energy spectral regime of the more dominant "Band" component, or is not detectable at all. The main "Band" spectral component likely originates from the optically thin region due to synchrotron radiation. The diverse magnetization in the GRB central engine is likely the origin of the observed diverse prompt emission properties among bursts.

  12. Gamma-Ray Burst Prompt Emission

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2014-12-01

    The origin of gamma-ray burst (GRB) prompt emission, bursts of γ-rays lasting from shorter than one second to thousands of seconds, remains not fully understood after more than 40 years of observations. The uncertainties lie in several open questions in the GRB physics, including jet composition, energy dissipation mechanism, particle acceleration mechanism and radiation mechanism. Recent broad-band observations of prompt emission with Fermi sharpen the debates in these areas, which stimulated intense theoretical investigations invoking very different ideas. I will review these debates, and argue that the current data suggest the following picture: A quasi-thermal spectral component originating from the photosphere of the relativistic ejecta has been detected in some GRBs. Even though in some cases (e.g. GRB 090902B) this component dominates the spectrum, in most GRBs, this component either forms a sub-dominant "shoulder" spectral component in the low energy spectral regime of the more dominant "Band" component, or is not detectable at all. The main "Band" spectral component likely originates from the optically thin region due to synchrotron radiation. The diverse magnetization in the GRB central engine is likely the origin of the observed diverse prompt emission properties among bursts.

  13. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  14. Two probable optical flashes from gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Bradt, H. V.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Cline, T. L.; Desai, U.; Teegarden, B. J.; Evans, W. D.

    1984-01-01

    Two images on archival photographic plates which are most likely records of optical flashes from gamma-ray bursters (GRBs) were examined. One of these images appears on a 1901 plate in the field of the Nov. 5, 1979 GRB, while the other is in the field of the Jan. 13, 1979 GRB on a plate exposed in 1944. The 1901 optical transient image is circular in shape, while all normal star images are trailed by 8 in. No optical transients are found in a control region which is 34.3 times larger than the GRB error regions examined. Independent limits on the optical flash rate from the sky yield a probability of less than 0.0001 that any one of the optical transients is due to a background flash. A total exposure of 2.7 years was examined for GRB flashes at known GRB locations on the Harvard plates and a total of three GRB flashes were seen, that the average recurrence time scale for optical flashes is roughly one year. The optical fluence of these optical flashes was measured. For the three currently known GRB optical flashes, the ratio of gamma-ray fluence (from a modern burst) to the optical fluence (from a archival burst) were measured to be 800, 900, and 900.

  15. Two probable optical flashes from gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Bradt, H. V.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Evans, W. D.

    1984-01-01

    Two images on archival photographic plates which are most likely records of optical flashes from gamma-ray bursters (GRBs) were examined. One of these images appears on a 1901 plate in the field of the 5 Nov. 1979 GRB, while the other is in the field of the 13 Jan. 1979 GRB on a plate exposed in 1944. The 1901 optical transient image is circular in shape, while all normal star images are trailed by 8 in. No optical transients are found in a control region which is 34.3 times larger than the GRB error regions examined. Independent limits on the optical flash rate from the sky yield a probability of less than 0.0001 that any one of the optical transients is due to a background flash. A total exposure of 2.7 years was examined for GRB flashes at known GRB locations on the Harvard plates and a total of three GRB flashes were seen, that the average recurrence time scale for optical flashes is roughly one year. The optical fluence of these optical flashes was measured. For the three currently known GRB optical flashes, the ratio of gamma-ray fluence (from a modern burst) to the optical fluence (from a archival burst) were measured to be 800, 900, and 900.

  16. Gamma-Ray Emission from X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.

    2007-01-01

    We summarize the current observational picture regarding high-energy emission from Galactic X-ray binaries, reviewing the results of the Compton Gamma Ray Observatory mission. We speculate on the prospects for the GLAST era.

  17. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  18. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  19. Investigating Galaxy Clusters through Gamma-ray Emission

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    We address the role of gamma-ray astronomy in the investigation of nonthermal processes in the large scale structure of the universe. Based on EGRET upper limits on nearby galaxy clusters (GCs) we constrain the acceleration efficiency of CR electrons at intergalactic shocks to <=1 % than the shock ram pressure. That implies a contribution to the cosmic gamma-ray background from intergalactic shocks of order 25 % of the measured level. We model spatial and spectral properties of nonthermal gamma-ray emission due to shock accelerated cosmic-rays (CRs) in GCs and emphasize the importance of imaging capability of upcoming gamma-ray facilities for a correct interpretation of the observational results. GC observations at this photon energy will help us understand the origin of the radio emitting particles, the possible level of CR pressure and the strength of magnetic fields in intracluster environment and possibly will allow us detect the accretion shocks.

  20. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-02-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  1. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  2. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  3. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  4. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  5. Short Gamma-Ray Bursts with Extended Emission

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  6. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. PMID:19965378

  7. Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaty, S.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbel, S.; Corbet, R.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dubus, G.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Hjalmarsdotter, L.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Koerding, E.; Kuss, M.; Lande, J.; Latronico, J.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marchand, L.; Marelli, M.; Max-Moerbeck, W.; Mazziotta, M. N.; McColl, N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Migliari, S.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Ong, R. A.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Pooley, G.; Porter, T. A.; Pottschmidt, K.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Rea, N.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Rochester, L. S.; Rodriguez, J.; Rodriguez, A. Y.; Romani, R. W.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spinelli, P.; Starck, J.-L.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tomsick, J. A.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wilms, J.; Winer, B. L.; Wood, K. W.; Ylinen, T.; Ziegler, M.

    2009-12-01

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  8. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  9. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  10. Flare gamma ray continuum emission from neutral pion decay

    NASA Technical Reports Server (NTRS)

    Alexander, David; Mackinnon, Alec L.

    1992-01-01

    We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models.

  11. Long duration gamma-ray emission from thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.

    Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is

  12. Pulsed Gamma-Ray Emission From Short-Period Pulsars: Predicted Gamma-Ray Pulsar PSR1951+32

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Ding, K. Y. Winnis

    1995-03-01

    We studied the gamma-ray emission mechanisms from pulsars with period, P, between 4.6 times 10(-2) B12(2/5) s and 0.17 B12(5/12) sin (1/6) theta alpha (-5/4) s in terms of outermagnetospheric gap model. We found that the spectra of all known gamma -ray pulsars can be fitted by two free parameters, namely, alpha r_L, the mean distance to the outergap, and sin theta , the mean pitch angle of the secondary e(+/-) pairs. Gamma-rays from those pulsars with P < 0.17 B12(5/12) sin (1/6) alpha (-5/4) s are mainly emitted by secondary e(+/-) pairs, which are created beyond the outergap, via synchrotron radiation and the gamma-ray emission efficiency is ~ 10(-2) . For pulsars with period approaching ~ 0.17 B12(5/12) sin (1/6) alpha (-5/4) s, their gamma-ray emission efficiency is approaching unity. We used our model to fit the observed spectra of gamma -ray pulsars (Vela, PSR1706-44, PSR1055-52, PSR1509-58, Geminga). All the best fit curves satisfy the constraints of alpha and sin theta . The pulse separation and relative intensity of pulses are function of alpha . In our model, the first three strongest theoretical gamma -ray sources have been detected. PSR1951+32 is predicted to be the fourth strongest gamma -ray pulsar (Cheng and Ding, 1994, ApJ, 432, 724) which is confirmed by the recent GRO result.

  13. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki; /KIPAC, Menlo Park

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  14. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    SciTech Connect

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Hui, C. Y.; Wu, E. M. H.; Takata, J.; Cheng, K. S. E-mail: cyhui@cnu.ac.kr

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  15. Investigation of Nuclear Gamma Ray Line Emission Associated with Lightning

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Millan, R. M.; Eack, K.; Aulich, G. D.

    2005-12-01

    The first conclusive observations of X-rays associated with thunderstorm activity were made in the 1980's and the prompt emission has been interpreted as bremsstrahlung produced by lightning-accelerated electrons. In 2004, Greenfield et al. reported the first detection of delayed gamma ray emission, with flux peaking 70 minutes after a lightning stroke and decaying exponentially over 50 minutes. They suggested the delayed gamma rays are a result of nuclear reactions in the atmosphere, creating excited Chlorine-39 and decaying with a 56-minute half-life. These results are compelling, but inconclusive; instrumentation capable of measuring the energy spectrum with high precision is necessary to confirm the existence of nuclear line emission associated with lightning. During June-September 2005, we used a spare RHESSI 7 cm-diameter segmented coaxial germanium spectrometer to continuously monitor gamma radiation on South Baldy Peak (10,800 ft) in New Mexico. The detector monitors gamma rays between ~18 keV-10 MeV with an energy resolution of ~2 keV@835 keV. South Baldy is the site of Langmuir Lab and was chosen to take advantage of other lightning research instrumentation located there, including New Mexico Tech's 3D Lightning Mapping Array (LMA) which can determine the location of a lightning stroke to within about 50m. We describe the experiment and present the initial results.

  16. AGILE DETECTION OF DELAYED GAMMA-RAY EMISSION FROM THE SHORT GAMMA-RAY BURST GRB 090510

    SciTech Connect

    Giuliani, A.; Vianello, G.; Mereghetti, S.; Caraveo, P.; Chen, A. W.; Contessi, T.; Barbiellini, G.; Longo, F.; Moretti, E.; Cattaneo, P. W.

    2010-01-10

    Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting {approx}200 ms and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV; in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t {sup -1.3} and a broadband spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index {alpha} {approx_equal} 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.

  17. FERMI Observations of Gamma -Ray Emission From the Moon

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  18. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  19. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  20. Polarized gamma-ray emission from the galactic black hole Cygnus X-1.

    PubMed

    Laurent, P; Rodriguez, J; Wilms, J; Cadolle Bel, M; Pottschmidt, K; Grinberg, V

    2011-04-22

    Because of their inherently high flux allowing the detection of clear signals, black hole x-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the International Gamma-Ray Astrophysics Laboratory Imager on Board the Integral Satellite (INTEGRAL/IBIS) telescope. Spectral modeling of the data reveals two emission mechanisms: The 250- to 400-keV (kilo-electron volt) data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400-keV to 2-MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band. PMID:21436402

  1. Gamma-Ray Bursts: Afterglow and Prompt Emission Models

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2008-10-01

    Swift observations have revealed interesting but puzzling data that demand a rethink of the origins of gamma-ray bursts (GRBs) and their afterglows. The chromatic breaks in X-ray/optical afterglow lightcurves stimulated several innovative suggestions, most invoking a non-forward-shock origin of the X-ray afterglows. The status of both the observational facts and the theoretical models is critically reviewed. Besides the late ``internal'' emission from a long-live central engine, most observed X-ray afterglows likely still include the contribution of the traditional forward shock component. The physical nature (e.g. energy dissipation mechanism, emission site, and radiation mechanism) of the GRB prompt emission is currently not identified. The motivations and issues of three proposed prompt emission sites are reviewed. Several independent methods, invoking prompt gamma-ray, X-ray, optical and GeV emission information, respectively, have been applied to constrain the unknown emission site. Tentative evidence suggests a large prompt emission radius. Finally, the implications of the broad band high quality data of the ``naked eye'' GRB 080319B for our understanding of the afterglow and prompt emission mechanisms are discussed.

  2. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.; Natalucci, L.; Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J.-L.; Diehl, R.; Hanlon, L.; von Kienlin, A.; Kuulkers, E.; Laurent, P.; Lebrun, F.; Roques, J. P.; Ubertini, P.; Weidenspointner, G.

    2016-04-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, which was discovered by the LIGO/Virgo Collaboration. The omnidirectional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO triggers. Our upper limits on the hard X-ray fluence at the time of the event range from {F}γ =2× {10}-8 erg cm-2 to {F}γ ={10}-6 erg cm-2 in the 75 keV-2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E{}γ /E{}{GW}\\lt {10}-6. We discuss the implication of gamma-ray limits for the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission.

  3. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    NASA Astrophysics Data System (ADS)

    Savchenko, Volodymyr; Ferrigno, Carlo; Mereghetti, Sandro; Natalucci, Lorenzo; Bazzano, Angela; Bozzo, Enrico; Courvoisier, Thierry J.-L.; Brandt, Soren; Hanlon, Lorraine; Kuulkers, Erik; Laurent, Philippe; Lebrun, François; Roques, Jean-Pierre; Ubertini, Pietro; Weidenspointner, Georg

    2016-04-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from Fγ=2x10-8 erg cm-2 to Fγ=10-6 erg cm-2 in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW<10-6. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission.

  4. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.; Natalucci, L.; Kuulkers, E.

    2016-06-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from F_{γ}=2 × 10^{-8} erg cm^{-2} to F_{γ}=10^{-6} erg cm^{-2} in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E_γ/E_{GW}<10^{-6}. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission. This work has been possible thanks to a Memorandum of Understanding with the LIGO-Virgo scientific collaboration and is presented on behalf of a larger collaboration.

  5. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  6. The sharpness of gamma-ray burst prompt emission spectra

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin

  7. Simulation of prompt gamma-ray emission during proton radiotherapy.

    PubMed

    Verburg, Joost M; Shih, Helen A; Seco, Joao

    2012-09-01

    The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue. PMID:22864267

  8. The Prompt and High Energy Emission of Gamma Ray Bursts

    SciTech Connect

    Meszaros, P.

    2009-05-25

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  9. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  10. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes, and Dwyer et al. [GRL, 40, 4067, 2013] recently quantified optical emissions associated with TGFs based on assumption that these emissions are similar to those produced by extensive air showers. In the present study, we quantify optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and acceleration of thermal runaway electrons produced by high-potential intra-cloud lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. Using Monte Carlo simulations, we show that electron energy distributions established from these two production mechanisms are inherently different over the full energy range, and also substantially different from those produced in extensive air showers. Moreover, we show that TGFs are

  11. Neutrino emission from gamma-ray burst fireballs, revised.

    PubMed

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-01

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years. PMID:23003939

  12. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  13. The progenitors of extended emission gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gompertz, B. P.

    2015-06-01

    Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe, and as such are associated with some of the most extreme processes in nature. They come in two types: long and short, nominally separated either side of a two second divide in gamma-ray emission duration. The short class (those with durations of less than two seconds) are believed to be due to the merger of two compact objects, most likely neutron stars. Within this population, a small subsection exhibit an apparent extra high-energy emission feature, which rises to prominence several seconds after the initial emission event. These are the extended emission (EE) bursts. This thesis investigates the progenitors of the EE sample, including what drives them, and where they fit in the broader context of short GRBs. The science chapters outline a rigorous test of the magnetar model, in which the compact object merger results in a massive, rapidly-rotating neutron star with an extremely strong magnetic field. The motivation for this central engine is the late-time plateaux seen in some short and EE GRBs, which can be interpreted as energy injection from a long-lived central engine, in this case from the magnetar as it loses angular momentum along open field lines. Chapter 2 addresses the energy budget of such a system, including whether the EE component is consistent with the rotational energy reservoir of a millisecond neutron star, and the implications the model has for the physical properties of the underlying magnetar. Chapter 3 proposes a potential mechanism by which EE may arise, and how both classes may be born within the framework of a single central engine. Chapter 4 addresses the broadband signature of both short and EE GRBs, and provides some observational tests that can be used to either support or contradict the model.

  14. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  15. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    SciTech Connect

    Perley, D. A.; Metzger, B. D.; Butler, N. R.; Bloom, J. S.; Miller, A. A.; Filippenko, A. V.; Li, W.; Granot, J.; Sakamoto, T.; Gehrels, N.; Ramirez-Ruiz, E.; Bunker, A.; Chen, H.-W.; Glazebrook, K.; Hall, P. B.; Hurley, K. C.; Kocevski, D.; Norris, J.

    2009-05-10

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.

  16. X ray and gamma ray emission from classical nova outbursts

    NASA Technical Reports Server (NTRS)

    Truran, James W.; Starrfield, Sumner; Sparks, Warren M.

    1992-01-01

    The outbursts of classical novae are now recognized to be consequences of thermonuclear runaways proceeding in accreted hydrogen-rich shells on white dwarfs in close binary systems. For the conditions that are known to exist in these environments, it is expected that soft x-rays can be emitted, and indeed x-rays were detected from a number of novae. The circumstances for which we expect novae to produce significant x-ray fluxes and provide estimates of the luminosities and effective temperatures are described. It is also known that at the high temperatures that are known to be achieved in this explosive hydrogen-burning environment, significant production of both Na-22 and Al-26 will occur. In this context, we identify the conditions for which gamma-ray emission may be expected to result from nova outbursts.

  17. Gamma ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1984-01-01

    The interpretations and implications of the astrophysical observations of gamma-ray lines are reviewed. At the Galactic Center e(+)-e(-) pairs from a compact object produce an annihilation line that shows no redshift, indicating an annihilation site far removed from this object. In the jets of SS433, gamma-ray lines are produced by inelastic excitations, probably in dust grains, although line emission from fusion reactions has also been considered. Observations of diffuse galactic line emission reveal recently synthesized radioactive aluminum in the interstellar medium. In gamma-ray bursts, redshifted pair annihilation lines are consistent with a neutron star origin for the bursts. In solar flares, gamma-ray line emission reveals the prompt acceleration of protons and nuclei, in close association with the flare energy release mechanism.

  18. Optical emissions associated with terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor P.

    2015-02-01

    Terrestrial gamma ray flashes (TGFs) are high-energy photon bursts produced by high-energy electrons originating in the Earth's atmosphere through bremsstrahlung processes. In this paper, we present modeling studies on optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) and acceleration of thermal runaway electrons produced by high-potential intracloud lightning leaders. Numerical models developed in this study are first validated through the calculation of fluorescence emissions from air excited by energetic electrons and comparison with available laboratory observations. Detailed discussion of the role of excitation and ionization collisions on the formation of the electron energy distribution is presented. Moreover, using Monte Carlo simulations, we show that electron energy distributions established from the two TGF production mechanisms considered here are inherently different over the full energy range. The strong energy dependence of the capability of electrons to generate excited states responsible for optical emissions from neutral and ionized nitrogen molecules leads to intrinsic differences in optical emissions produced by different mechanisms of TGF production. We also show that TGFs are most likely accompanied by detectable levels of optical emissions and that the distinct optical features are of significant interest for constraining and validating current TGF production models.

  19. Understanding Limitations in the Determination of the Diffuse Galactic Gamma-ray Emission

    SciTech Connect

    Moskalenko, Igor V.; Digel, S.W.; Porter, T.A.; Reimer, O.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2006-10-03

    We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic {gamma}-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse {gamma}-ray emission of the Milky Way.

  20. Constraining extended gamma-ray emission from galaxy clusters

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Frenk, Carlos S.; Eke, Vincent R.; Gao, Liang; White, Simon D. M.; Boyarsky, Alexey; Malyshev, Denys; Ruchayskiy, Oleg

    2012-12-01

    Cold dark matter models predict the existence of a large number of substructures within dark matter haloes. If the cold dark matter consists of weakly interacting massive particles, their annihilation within these substructures could lead to diffuse GeV emission that would dominate the annihilation signal of the host halo. In this work we search for GeV emission from three nearby galaxy clusters: Coma, Virgo and Fornax. We first remove known extragalactic and galactic diffuse gamma-ray backgrounds and point sources from the Fermi 2-yr catalogue and find a significant residual diffuse emission in all three clusters. We then investigate whether this emission is due to (i) unresolved point sources, (ii) dark matter annihilation or (iii) cosmic rays (CR). Using 45 months of Fermi-Large Area Telescope (Fermi-LAT) data we detect several new point sources (not present in the Fermi 2-yr point source catalogue) which contaminate the signal previously analysed by Han et al. Including these and accounting for the effects of undetected point sources, we find no significant detection of extended emission from the three clusters studied. Instead, we determine upper limits on emission due to dark matter annihilation and CR. For Fornax and Virgo, the limits on CR emission are consistent with theoretical models, but for Coma the upper limit is a factor of 2 below the theoretical expectation. Allowing for systematic uncertainties associated with the treatment of CR, the upper limits on the cross-section for dark matter annihilation from our clusters are more stringent than those from analyses of dwarf galaxies in the Milky Way. Adopting a boost factor of ˜103 from subhaloes on cluster luminosity as suggested by recent theoretical models, we rule out the thermal cross-section for supersymmetric dark matter particles for masses as large as 100 GeV (depending on the annihilation channel).

  1. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess. PMID:20366246

  2. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  3. Gamma-ray burst high energy emission from internal shocks

    NASA Astrophysics Data System (ADS)

    Galli, A.; Guetta, D.

    2008-03-01

    Aims:In this paper we study synchrotron and synchrotron self Compton (SSC) emission from internal shocks (IS) during the prompt and X-ray flare phases of gamma-ray bursts (GRBs). The aim is to test the IS model for the flare emission and for whether GRBs can be GeV sources. Methods: We determine the parameters for which the IS model can account for the observed prompt and X-ray flares emission, and study the detectability of the high energy SSC emission by the AGILE and GLAST satellites. Results: We find that the detectability of the SSC emission during the prompt phase of GRBs improves for higher values of the fireball Lorentz factor Γ and of the temporal variability t_v. If IS is the mechanism responsible for the flare emission, and the Lorentz factor of the shells producing the flare is Γ 100, the flare light curves are expected to present some substructures with temporal variability tv = 10-100 ms which are much smaller than the average duration of flares, and similar to those observed during the prompt phase of GRBs. If one assumes lower Lorentz factors, such as Γ 10 div 25, then a larger temporal variability tv 40 s can also account for the observed flare properties. However in this case we predict that X-ray flares do not have a counterpart at very high energies (MeV-GeV). Conclusions: An investigation on the substructures of the X-ray flare light curves, and simultaneous X-ray and high energy observations, will allow us to corroborate the hypothesis that late IS are responsible for the X-ray flares.

  4. The Use of the BAT Instrument on SWIFT for the Detection of Prompt Gamma-Ray Emission from Novae

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Senziani, Fabio; Jean, Pierre; Hernanz, Margarita

    2007-01-01

    Gamma-rays are expected to be emitted during and immediately following a nova explosion due to the annihilation of positrons emitted by freshly produced short-lived radioactive isotopes. The expected gammaray emission is relatively short-lived and as nova explosions are unpredictable, the best chance of detecting the gamma-rays is with n wide field instrument. At the time when the flux is expected to rcach its peak, most of the gamma-ray production is at depths such that the photons suffer several Compton scatterings before escaping, degrading their energy down to the hard X-ray band (10s of keV). SWIFT/BAT is a very wide field coded mask instrument working in the energy band 14-190 keV and so is very well suited to the search for such gamma-rays. A retrospective search is being made in the BAT data for evidence for gamma-ray emission from the direction of novae at around the time of their explosion. So far the only positive detection is of RS Ophiuchi and in this case the emission is probably due to shock heating.

  5. Al-26: A galactic source of gamma ray line emission

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1976-01-01

    It is shown that Al26 is a very good candidate for producing a detectable gamma-ray line, and that this line is not only intense but also very narrow. By examining the chart of nuclides for other radioactive isotopes which could produce hiterto unnoticed gamma-ray lines following nucleosynthesis, it is found that for mass numbers less than 60, the isotopes Na22, Al26, K40, Ar42, Ti44, Sc46, Mn54, Co56, Co57, Co58, Co60 and Fe60 are the only ones with sufficiently long half lives (70) days to produce gamma rays in optically thin regions.

  6. Periodic gamma-ray emissions from Geminga at or = 10(12) eV

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Rawat, H. S.; Sanecha, V. K.; Rannot, R. C.; Sapru, M.; Tickoo, A. K.; Qazi, R. A.; Bhat, C. L.; Razdan, H.; Tonwar, S. C.

    1985-01-01

    Analysis of data from an atmospheric Cerenkov telescope indicated the periodic emission of gamma rays of energy 10 to the 12th power eV, at 60.25 second period, from 2CG 195+4. The gamma ray flux at 99% confidence level is estimated to be 9.5 x 10 to 12 photons/sq cm/s.

  7. Evidence for Temporally-Extended, High-Energy Emission from Gamma Ray Burst 990104

    NASA Technical Reports Server (NTRS)

    Wren, D. N.; Bertsch, D. L.; Ritz, S.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is well known that high-energy emission (MeV - GeV) has been observed in several gamma ray bursts and temporally-extended emission from lower-energy gamma rays through radio wavelengths is well established. Observations of extended, high-energy emission are, however, scarce. Here we present evidence for a gamma ray burst emission that is both high-energy and extended, coincident with lower energy emissions. For the very bright and long burst, GRB 990104, we show light curves and spectra that confirm emission above 50 MeV, approximately 152 seconds after the BATSE (Burst and Transient Source Experiment) trigger and initial burst emission. Between the initial output and the main peak, seen at both low and high energy, there was a period of approx. 100 s during which the burst was relatively quiet. This burst was found as part of an ongoing search for high-energy emission in gamma ray bursts.

  8. ``Late Prompt'' Emission in Gamma-Ray Bursts?

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Nava, L.; Firmani, C.

    2007-04-01

    The flat decay phase in the first 102-104 s of the X-ray light curve of gamma-ray bursts (GRBs) has not yet been convincingly explained. The fact that the optical and X-ray light curves are often different, with breaks at different times, makes problematic any explanation based on the same origin for both the X-ray and optical fluxes. We here assume that the central engine can be active for a long time, producing shells of decreasing bulk Lorentz factors Γ. We also assume that the internal dissipation of these late shells produces a continuous and smooth emission (power law in time), usually dominant in X-rays and sometimes in the optical. When Γ of the late shells is larger than 1/θj, where θj is the jet opening angle, we see only a portion of the emitting surface. Eventually, Γ becomes smaller than 1/θj, and the entire emitting surface is visible. Thus, there is a break in the light curve when Γ=1/θj, which we associate with the time at which the plateau ends. After the steeply decaying phase that follows the early prompt, we see the sum of two emission components: the ``late-prompt'' emission (due to late internal dissipation), and the ``real afterglow'' emission (due to external shocks). A variety of different optical and X-ray light curves are then possible, explaining why the X-ray and the optical light curves often do not track each other (but sometimes do), and often they do not have simultaneous breaks.

  9. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  10. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy. PMID:22246769

  11. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  12. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  13. Gamma-Ray Emission from the Broad-Line Radio Galaxy 3C 111

    NASA Technical Reports Server (NTRS)

    Hartman, Robert C.; Kadler, M.; Tueller, Jack

    2008-01-01

    The broad-line radio galaxy 3C 111 has been suggested as the counterpart of the y-ray source 3EG J0416+3650. While 3C 111 meets most of the criteria for a high-probability identification, like a bright flat-spectrum radio core and a blazar-like broadband SED, in the Third EGRET Catalog, the large positional offset of about 1.5' put 3C 111 outside the 99% probability region for 3EG J0416+3650, making this association questionable. We present a re-analysis of all available archival data for 3C 111 from the EGRET archives, resulting in detection of variable hard-spectrum high-energy gamma-ray emission above 1000 MeV from a position close to the nominal position of 3C 111, in three separate viewing periods (VPs), at a 3sigma level in each. A second variable hard-spectrum source is present nearby. At >100 MeV, one variable soft-spectrum source seems to account for most of the EGRET-detected emission of 3EG J0416+3650. A follow-up Swift UVOT/XRT observation reveals one moderately bright X-ray source in the error box of 3EG J0416+3650, but because of the large EGRET position uncertainty, it is not certain that the X-ray and gamma-ray sources are associated. Another Swift observation near the second (unidentified) hard gamma-ray source detected no X-ray source nearby.

  14. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  15. Low energy gamma ray emission from the Cygnus OB2 association

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.

  16. Using gamma-ray emission to measure areal density of ICF capsules

    SciTech Connect

    Hoffman, Nelson M; Wilson, Douglas C; Hermann, Hans W; Young, Carlton S

    2010-01-01

    Fusion neutrons streaming from a burning ICF capsule generate gamma rays via nuclear inelastic scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density ('{rho}R') and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, {sup 12}C nuclei emit gamma rays at 4.44 MeV after excitation by 14.1-MeV neutrons from D+T fusion. These gamma rays can be measured by the Gamma Reaction History (GRH) experiment being built at the National Ignition Facility (NIF). A linear error analysis indicates the chief sources of uncertainty in inferred areal density.

  17. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  18. A Search for Ultra--High-Energy Gamma-Ray Emission from Five Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Allen, G. E.; Berley, D.; Biller, S.; Burman, R. L.; Cavalli-Sforza, M.; Chang, C. Y.; Chen, M. L.; Chumney, P.; Coyne, D.; Dion, C. L.; Dorfan, D.; Ellsworth, R. W.; Goodman, J. A.; Haines, T. J.; Hoffman, C. M.; Kelley, L.; Klein, S.; Schmidt, D. M.; Schnee, R.; Shoup, A.; Sinnis, C.; Stark, M. J.; Williams, D. A.; Wu, J.-P.; Yang, T.; Yodh, G. B.

    1995-07-01

    The majority of the cosmic rays in our Galaxy with energies in the range of ~1010--1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volk's recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNR's shock but are produced at some other site (such as a pulsar).

  19. Polarized gamma-ray emission from the crab.

    PubMed

    Dean, A J; Clark, D J; Stephen, J B; McBride, V A; Bassani, L; Bazzano, A; Bird, A J; Hill, A B; Shaw, S E; Ubertini, P

    2008-08-29

    Pulsar systems accelerate particles to immense energies. The detailed functioning of these engines is still poorly understood, but polarization measurements of high-energy radiation may allow us to locate where the particles are accelerated. We have detected polarized gamma rays from the vicinity of the Crab pulsar using data from the spectrometer on the International Gamma-Ray Astrophysics Laboratory satellite. Our results show polarization with an electric vector aligned with the spin axis of the neutron star, demonstrating that a substantial fraction of the high-energy electrons responsible for the polarized photons are produced in a highly ordered structure close to the pulsar. PMID:18755970

  20. Renewed Gamma-Ray Emission from the blazar PKS 1510-089 Detected by AGILE

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Pittori, C.; Bulgarelli, A.; Lucarelli, F.; Verrecchia, F.; Piano, G.; Fioretti, V.; Zoli, A.; Tavani, M.; Vercellone, S.; Minervini, G.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-09-01

    AGILE is currently detecting enhanced gamma-ray emission above 100 MeV from a source which position is consistent with the blazar PKS 1510-089. (the last activity of this source was reported in ATel #9350).

  1. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  2. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  3. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    SciTech Connect

    Kopac, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-07-20

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks ({Delta}t/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  4. GRB 090727 and Gamma-Ray Bursts with Early-time Optical Emission

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Kobayashi, S.; Gomboc, A.; Japelj, J.; Mundell, C. G.; Guidorzi, C.; Melandri, A.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.

    2013-07-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  5. Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Milne, P. A.; Hungerford, A. L.; Fryer, C. L.; Evans, T. M.; Urbatsch, T. J.; Boggs, S. E.; Isern, J.; Bravo, E.; Hirschmann, A.; Kumagai, S.; Pinto, P. A.; The, L.-S.

    2004-10-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by gamma rays emitted by the decay of radioactive elements such as 56Ni and its decay products. These gamma rays are downscattered, absorbed, and eventually reprocessed into the optical emission that makes up the bulk of all SN observations. Detection of the gamma rays that escape the expanding star provide the only direct means to study this power source for SN Ia light curves. Unfortunately, disagreements between calculations for the gamma-ray lines have made it difficult to interpret any gamma-ray observations. Here we present a detailed comparison of the major gamma-ray line transport codes for a series of one-dimensional SN Ia models. Discrepancies in past results were due to errors in the codes, and the corrected versions of the seven different codes yield very similar results. This convergence of the simulation results allows us to infer more reliable information from the current set of gamma-ray observations of SNe Ia. The observations of SN 1986G, SN 1991T, and SN 1998bu are consistent with explosion models based on their classification: subluminous, superluminous, and normally luminous, respectively.

  6. Internal energy dissipation of gamma-ray bursts observed with Swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares

    SciTech Connect

    Hu, You-Dong; Liang, En-Wei; Xi, Shao-Qiang; Peng, Fang-Kun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing E-mail: Zhang@physics.unlv.edu

    2014-07-10

    We jointly analyze the gamma-ray burst (GRB) data observed with Burst Alert Telescope (BAT) and X-ray Telescope on board the Swift mission to present a global view on the internal energy dissipation processes in GRBs, including precursors, prompt gamma-ray emission, extended soft gamma-ray emission, and late X-ray flares. The Bayesian block method is utilized to analyze the BAT light curves to identify various emission episodes. Our results suggest that these emission components likely share the same physical origin, which is the repeated activation of the GRB central engine. What we observe in the gamma-ray band may be a small part of more extended underlying activities. The precursor emission, which is detected in about 10% of Swift GRBs, is preferably detected in those GRBs that have a massive star core-collapse origin. The soft extended emission tail, on the other hand, is preferably detected in those GRBs that have a compact star merger origin. Bright X-ray emission is detected during the BAT quiescent phases prior to subsequent gamma-ray peaks, implying that X-ray emission may be detectable prior the BAT trigger time. Future GRB alert instruments with soft X-ray capability are essential for revealing the early stages of GRB central engine activities, and shedding light on jet composition and the jet launching mechanism in GRBs.

  7. Searches for gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.

    1983-01-01

    Searches were made for pulsed high energy (E 35 MeV) gamma radiation from 43 pulsars using the SAS-2 data base and radio parameters. No positive results were found, and the upper limits are consistent with the concept that gamma ray production efficiency increases with increasing apparent age. Two limits suggest that efficiency cannot be a simple function of apparent age beyond 10,000,000 years.

  8. Search for gamma-ray emissions from AE Aquarii with Fermi LAT

    NASA Astrophysics Data System (ADS)

    Li, Jian; Rea, Nanda; De Ona Wilhelmi, Emma; Torres, Diego F.; Hou, Xian

    2016-07-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P_{spin} = 33.08 s). We report on deep searches for gamma-ray emission and pulsations from AE Aquarii in seven years of Fermi-LAT Pass 8 data. Using different X-ray observations spanning 20 years, we substantially extended the timing ephemeris of AE Aquarii. A spin phase jump was discovered between MJD 55122.5 - 56078.64 by X-ray timing analysis. Using the extended timing ephemeris, we searched for gamma-ray pulsations at the spin period and its first harmonic. No gamma-ray pulsation were detected above 3 sigma significance. Neither steady gamma-ray emission nor gamma-ray variability of AE Aquarii were detected by Fermi-LAT. We impose the most restrictive upper limit on the gamma-ray emission from AE Aquarii to date, as 1.23×10^{-12} erg cm^{-2} s^{-1} in 0.1-300 GeV range providing constrains on models.

  9. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  10. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes. PMID:16709745

  11. THE MORPHOLOGY OF HADRONIC EMISSION MODELS FOR THE GAMMA-RAY SOURCE AT THE GALACTIC CENTER

    SciTech Connect

    Linden, Tim; Profumo, Stefano; Lovegrove, Elizabeth

    2012-07-01

    Recently, detections of a high-energy {gamma}-ray source at the position of the Galactic center have been reported by multiple {gamma}-ray telescopes, spanning the energy range between 100 MeV and 100 TeV. Analysis of these signals strongly suggests the TeV emission to have a morphology consistent with a point source up to the angular resolution of the HESS telescope (approximately 3 pc), while the point-source nature of the GeV emission is currently unsettled, with indications that it may be spatially extended. In the case that the emission is hadronic and in a steady state, we show that the expected {gamma}-ray morphology is dominated by the distribution of target gas, rather than by details of cosmic-ray injection and propagation. Specifically, we expect a significant portion of hadronic emission to coincide with the position of the circumnuclear ring, which resides between 1 and 3 pc from the Galactic center. We note that the upcoming Cherenkov Telescope Array (CTA) will be able to observe conclusive correlations between the morphology of the TeV {gamma}-ray source and the observed gas density, convincingly confirming or ruling out a hadronic origin for the {gamma}-ray emission.

  12. The connection between the 15 GHz radio and gamma-ray emission in blazars

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.; King, O. G.; Reeves, R.

    2015-03-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope (OVRO 40m). One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.

  13. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.

  14. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  15. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  16. COS-B observations of gamma-ray emission from local galactic features

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  17. Search for gamma-ray emission from star-forming galaxies with Fermi LAT

    NASA Astrophysics Data System (ADS)

    Rojas-Bravo, César; Araya, Miguel

    2016-08-01

    Recent studies have found a positive correlation between the star-formation rate of galaxies and their gamma-ray luminosity. Galaxies with a high star-formation rate are expected to produce a large amount of high-energy cosmic rays, which emit gamma-rays when interacting with the interstellar medium and radiation fields. We search for gamma-ray emission from a sample of galaxies within and beyond the Local Group with data from the LAT instrument onboard the Fermi satellite. We exclude recently detected galaxies (NGC 253, M82, NGC 4945, NGC 1068, NGC 2146, Arp 220) and use seven years of cumulative "Pass 8" data from the LAT in the 100 MeV to 100 GeV range. No new detections are seen in the data and upper limits for the gamma-ray fluxes are calculated. The correlation between gamma-ray luminosity and infrared luminosity for galaxies obtained using our new upper limits is in agreement with a previously published correlation, but the new upper limits imply that some galaxies are not as efficient gamma-ray emitters as previously thought.

  18. Diffuse Gamma-Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Paglione, Timothy A. D.; Marscher, Alan P.; Jackson, James M.

    1995-01-01

    The starburst galaxy NGC 253 was observed with the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory (CGRO) satellite. We obtain a 2 sigma upper limit to the gamma-ray emission above 100 MeV of 8 x 10(exp -8) photons/sq cm/s. Because of their large gas column densities and supernova rates, nearby starburst galaxies were predicted to have gamma-ray fluxes detectable by EGRET. Our nondetection of gamma-rays from NGC 253 motivates us to reexamine in detail the premise of supernova acceleration of cosmic rays and the effect of enhanced cloud densities, photon densities, and magnetic fields on the high-energy spectra of galaxies. By modeling the expected gamma-ray and synchrotron spectra from NGC 253, we find that up to 20% of the energy from supernovae is transferred to cosmic rays in the starburst, which is consistent with supernova acceleration models. Our calculations match the EGRET and radio data well with a supernova rate of 0.08/yr, a magnetic field B greater than or approximately equal to 5 x 10(exp -5) G, a density n approximately 300/cu cm, a photon density U(sub ph) approximately 200 eV/cu cm, and an escape timescale tau(sub o) less than or approximately equal to 10 Myr.

  19. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Yuan Qiang; Bi Xiaojun; Liu Siming

    2012-12-20

    Shocks of supernova remnants (SNRs) are important (and perhaps the dominant) agents for the production of the Galactic cosmic rays. Recent {gamma}-ray observations of several SNRs have made this case more compelling. However, these broadband high-energy measurements also reveal a variety of spectral shapes demanding more comprehensive modeling of emissions from SNRs. According to the locally observed fluxes of cosmic-ray protons and electrons, the electron-to-proton number ratio is known to be about 1%. Assuming such a ratio is universal for all SNRs and identical spectral shape for all kinds of accelerated particles, we propose a unified model that ascribes the distinct {gamma}-ray spectra of different SNRs to variations of the medium density and the spectral difference between cosmic-ray electrons and protons observed from Earth to transport effects. For low-density environments, the {gamma}-ray emission is inverse-Compton dominated. For high-density environments like systems of high-energy particles interacting with molecular clouds, the {gamma}-ray emission is {pi}{sup 0}-decay dominated. The model predicts a hadronic origin of {gamma}-ray emission from very old remnants interacting mostly with molecular clouds and a leptonic origin for intermediate-age remnants whose shocks propagate in a low-density environment created by their progenitors via, e.g., strong stellar winds. These results can be regarded as evidence in support of the SNR origin of Galactic cosmic rays.

  20. Search for Hard X-Ray Emission from Aquila X-1: High Energy Emission from Gamma-ray Radio Star 2CG 135+1/LSI 61 305

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Several investigations supported by these CCRO grant were completed or are close to completion. The study of EGRET data for the unidentified source 2CG 135+01 was very fruitful. We discovered transient gamma-ray emission by combining several data obtained since 1994 through 1997. It is the first time that time variable emission is established for this enigmatic source, and clearly an interpretation in terms of an isolated radio pulsar (Geminga-like) is disfavored now. Our preferred model is a Galactic source, probably an energetic pulsar (such as PSR129-63) in a binary system producing gamma-rays because of pulsar wind/mass outflow interaction. We also accumulated may data concerning the radio source LSI 61 303, the possible counterpart of 2CG 135+01. We show that a possible anti-correlation between radio and gamma-ray emission exists. This anticorrelation is evident only in the energy range above 100 MeV, as demonstrated by the lack of it obtained from OSSE data. If confirmed, this anti-correlation would prove to be very important for the interpretation of the hundreds of unidentified gamma-ray sources currently discovered by EGRET near the Galactic plane, and would point to a new class of sources in addition to AGNs and isolated pulsars. We also completed the analysis of several time variable gamma-ray sources near the Galactic plane, with the discussion of evidence for transient emission from 2EG J1813-12 and 2EG J1828+01. We completed several investigations regarding gamma-ray bursts (GRBs), including the study of the brightness distribution for different spectral/duration GRB sub-classes, an investigation of acceleration processes and their consequences for GRB afterglow emission [61, the application of the synchrotron shock model of GRBs to X-ray energies.

  1. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  2. Soft gamma-ray galactic ridge emission as unveiled by SPI aboard INTEGRAL

    SciTech Connect

    Knoedlseder, J.; Weidenspointner, G.; Jean, P.; Strong, A.; Diehl, R.; Cordier, B.; Schanne, S.

    2007-07-12

    The origin of the soft gamma-ray (200 keV - 1 MeV) galactic ridge emission is one of the long-standing mysteries in the field of high-energy astrophysics. Population studies at lower energies have shown that emission from accreting compact objects gradually recedes in this domain, leaving place to another source of gamma-ray emission that is characterised by a hard power-law spectrum extending from 100 keV up to 100 MeV The nature of this hard component has remained so far elusive, partly due to the lack of sufficiently sensitive imaging telescopes that would be able to unveil the spatial distribution of the emission. The SPI telescope aboard INTEGRAL allows now for the first time the simultaneous imaging of diffuse and point-like emission in the soft gamma-ray regime. We present here all-sky images of the soft gamma-ray continuum emission that clearly reveal the morphology of the different emission components. We discuss the implications of our results on the nature of underlying emission processes and we put our results in perspective of GLAST studies of diffuse galactic continuum emission.

  3. Search for TeV gamma-ray emission from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Reynolds, P. T.; Cawley, M. F.; Fegan, D. J.; Lang, M. J.; O'Flaherty, K. S.; Hillas, A. M.; Kwok, P. W.; Lamb, R. C.; Lewis, D. A.; Macomb, D. J.

    1991-01-01

    Six years of observations of Hercules X-1 with the Whipple Observatory gamma-ray telescope have been subjected to a Fourier analysis to search for emission at the 0.8079 Hz neutron star frequency. Evidence for a signal is found at the 99.5 percent confidence level for data taken with the medium-resolution imaging camera with some indications of emission at frequencies blueshifted from the fundamental frequency. However, analysis of the high-resolution camera data base have failed to substantiate this effect. Selection of events on the basis of gamma-ray-like image parameters did not enhance the signal from the medium-resolution data nor produce any indication of a signal from the high-resolution data. The overall conclusion is that no statistically significant evidence for TeV gamma-ray emission was found in the Whipple Observatory data base when the 6 years of data are taken as a whole.

  4. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-01

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources. PMID:20044540

  5. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  6. Variable VHE gamma-ray emission from Markarian 501

    SciTech Connect

    Albert, Jordi

    2007-02-06

    The blazar Markarian 501 (Mrk 501) was observed at energies above 100 GeV with the MAGIC telescope from May through July 2005. The high sensitivity of the instrument enabled the determination of the flux and spectrum of the source on a night-by-night basis. Throughout our observational campaign, the flux from Mrk 501 was found to vary by an order of magnitude, and to be correlated with spectral changes. Intra-night flux variability with flux-doubling times down to 2 minutes was also observed. The strength of variability increased with the energy of the {gamma}-ray photons. The energy spectra were found to harden significantly with increasing flux, and a spectral peak clearly showed up during very active states. The position of the spectral peak seems to be correlated with the source luminosity.

  7. On the gamma-ray emission from Markarian 421

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Ding, W. K. Y.

    1994-08-01

    Gamma radiation in various energy ranges from 50 MeV to 10 GeV and even up to TeV has been detected from Markarian 421. We suggest that relativistic neutrons with energy approximately 1017 eV are expected to be produced in the acceleration region via the process of photopion production. We predict that ultra-high energy (approximately PeV) gamma rays will be emitted from Mkn 421 resulting from the decay of neutral pions which are produced by collisions between the ultra-high energy neutrons and blobs of material ejected from the accretion disk of the supermassive blackhole. At the same time, the decay of charged pions can eventually decay to produce electrons and positrons, which radiate synchrotron radiation in various energy ranges from TeV to 50 MeV. Comparison with the observed data and model results and the implications to other active galactic nuclei (AGNs) are discussed in the text.

  8. Gamma-ray emission from young supernova remnants: Hadronic or leptonic?

    NASA Astrophysics Data System (ADS)

    Gabici, Stefano; Aharonian, Felix

    2016-07-01

    The debate on the nature of the gamma-ray emission from young supernova remnants is still open. Ascribing such emission to hadronic rather than leptonic processes would provide an evidence for the acceleration of protons and nuclei, and this fact would fit with the very popular (but not proven) paradigm that supernova remnants are the sources of Galactic cosmic rays. Here, we discuss this issue with a particular focus on the best studied gamma-ray-bright supernova remnant: RX J1713.7-3946.

  9. Search for Gamma Ray Line Emission from SS433 in the SMM GRS Data Base

    NASA Astrophysics Data System (ADS)

    Geller, H. A.; Geldzahler, B. J.

    1992-05-01

    Gamma ray spectra of SS433 obtained by the Gamma Ray Spectrometer aboard the Solar Maximum Mission satellite during 1980-1989 were examined for evidence of Doppler shifted line emission. The main emphasis, using both 3-day and 9-day integrations, was on the 1.368 MeV magnesium-24 line suggested by Lamb et al. (1983, Nature, 305,37). This work completes the examination of the SMM data base on SS433, augmenting and extending the study of Geldzahler et al. (1989, Ap.J., 342, 1123). The results are examined in the context of the models of gamma ray emission from SS433 published by Ramaty et al. (1984, Ap.J., 283, L13) and Boyd et al. (1984, Ap.J.,276, L9). This work was supported by NASA grant NAS 5-26954 at the Institute for Computational Sciences and Informatics, George Mason University.

  10. Neutrino Constraints to the Diffuse Gamma-Ray Emission from Accretion Shocks

    NASA Astrophysics Data System (ADS)

    Dobardžić, A.; Prodanović, T.

    2015-06-01

    Accretion of gas during the large-scale structure formation has been thought to give rise to shocks that can accelerate cosmic rays. This process then results in an isotropic extragalactic gamma-ray emission contributing to the extragalactic gamma-ray background (EGRB) observed by Fermi-LAT. Unfortunately, this emission has been difficult to constrain and thus presents an uncertain foreground to any attempts to extract a potential dark matter signal. Recently, IceCube has detected high-energy isotropic neutrino flux that could be of an extragalactic origin. In general, neutrinos can be linked to gamma rays since cosmic-ray interactions produce neutral and charged pions where neutral pions decay into gamma rays, while charged pions decay to give neutrinos. By assuming that isotropic high-energy IceCube neutrinos are entirely produced by cosmic rays accelerated in accretion shocks during the process of structure formation, we obtain the strongest constraint to the gamma-ray emission from large-scale structure formation (strong) shocks and find that they can make at best ∼20% of the EGRB, corresponding to neutrino flux with spectral index αν = 2, or ∼10% for spectral index αν = 2.46. Since typical objects where cosmic rays are accelerated in accretion shocks are galaxy clusters, observed high-energy neutrino fluxes can then be used to determine the gamma-ray emission of a dominant cluster type and constrain acceleration efficiency, and thus probe the process of large-scale structure formation.

  11. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  12. Very high energy gamma-ray emission from Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Saxon, Dana Boltuch

    Supernova remnant (SNR) G120.1+1.4 (also known as Tycho's SNR) is the remnant of one of only five confirmed historical supernovae. As such, it has been well studied across the electromagnetic spectrum. This thesis describes the first statistically significant detection of very high energy (VHE) (˜ 100 GeV to 100 TeV) gamma rays from Tycho's SNR, reported in 2011 by the VERITAS collaboration. The analysis that led to that detection was performed by this author, and this dissertation will discuss the process in detail. Subsequently, a statistically significant detection in high energy (HE) (˜ 30 MeV to 100 GeV) gamma rays was reported by other authors using data from the Fermi Gamma-Ray Space Telescope. Comparison of models to the spectral energy distribution of the photon flux from this remnant in HE and VHE gamma rays favors a hadronic origin for the emission, particularly when combined with current X-ray data, although a leptonic origin cannot be ruled out at this time. This is significant because a confirmed hadronic origin for the gamma-ray emission would identify this SNR as a site of cosmic ray acceleration, providing observational evidence for the idea that SNRs are the source of the Galactic cosmic ray population. Chapter 1 of this dissertation will provide historical background on Tycho's SNR, along with a summary of modern observations of the remnant across the electromagnetic spectrum. Chapter 2 is a discussion of the role played by SNRs in the process of cosmic ray acceleration, including both theoretical underpinnings and observational evidence. Chapter 3 provides an overview of the field of VHE gamma-ray astronomy, with discussions of gamma-ray production mechanisms and gamma-ray source classes. Chapter 4 describes the instruments used to observe HE and VHE gamma rays. Chapter 5 is a discussion of general analysis methods and techniques for data from Imaging Atmospheric Cherenkov Telescopes (IACTs). Chapter 6 provides details about the specific

  13. How precisely can neutrino emission from supernova remnants be constrained by gamma ray observations?

    SciTech Connect

    Villante, F. L.; Vissani, F.

    2008-11-15

    We propose a conceptually and computationally simple method to evaluate the neutrinos emitted by supernova remnants using the observed {gamma} ray spectrum. The proposed method does not require any preliminary parametrization of the gamma ray flux; the gamma ray data can be used as an input. In this way, we are able to propagate easily the observational errors and to understand how well the neutrino flux and the signal in neutrino telescopes can be constrained by {gamma} ray data. We discuss the various possible sources of theoretical and systematical uncertainties (e.g., hadronic modeling, neutrino oscillation parameters, etc.), obtaining an estimate of the accuracy of our calculation. Furthermore, we apply our approach to the supernova remnant RX J1713.7-3946, showing that neutrino emission is very well constrained by the H.E.S.S. {gamma} ray data: indeed, the accuracy of our prediction is limited by theoretical uncertainties. The observation of neutrinos from RX J1713.7-3946 seems possible with an exposure of the order of few km{sup 2}xyear, provided that the detection threshold in future neutrino telescopes will be not higher than about 1 TeV.

  14. COS-B gamma ray sources beyond the predicted diffuse emission

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Simpson, G.

    1990-01-01

    COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.

  15. High energy (gamma)-ray emission from the starburst nucleus of NGC 253

    SciTech Connect

    Domingo-Santamaria, E; Torres, D F

    2005-06-15

    The high density medium that characterizes the central regions of starburst galaxies and its power to accelerate particles up to relativistic energies make these objects good candidates as {gamma}-rays sources. In this paper, a self-consistent model of the multifrequency emission of the starburst galaxy NGC 253, from radio to gamma-rays, is presented. The model is in agreement with all current measurements and provides predictions for the high energy behavior of the NGC 253 central region. Prospects for observations with the HESS array and GLAST satellite are especially discussed.

  16. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    PubMed

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass. PMID:19228997

  17. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  18. Rapid increase in prescission GDR {gamma}-ray emission with energy

    SciTech Connect

    Hofman, D.J.; Back, B.B.; Paul, P.

    1995-12-31

    A rapid increase in the emission of prescission giant dipole resonance (GDR) {gamma}-rays with bombarding energy is observed in excited Th and Cf nuclei formed in the reactions {sup 16}O+{sup 20B}Pb and {sup 32}S+{sup nat}W,{sup 208}Pb. This increase begins around E{sub exc} = 40 MeV for the {sup 16}O+{sup 208}Pb reaction and E{sub exc} = 70 MeV for the {sup 32}S-induced reactions. The excess {gamma}-ray yield above these thresholds cannot be described within the standard statistical model. Statistical model calculations which include a temperature dependent nuclear dissipation are able to reproduce simultaneously the observed GDR {gamma}-ray spectra and recently measured evaporation residue across sections.

  19. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  20. Fermi LAT Discovery of Extended Gamma-Ray Emissions in the Vicinity of the HB 3 Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Katagiri, H.; Yoshida, K.; Ballet, J.; Grondin, M.-H.; Hanabata, Y.; Hewitt, J. W.; Kubo, H.; Lemoine-Goumard, M.

    2016-02-01

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J = 1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.

  1. A LEPTONIC MODEL OF STEADY HIGH-ENERGY GAMMA-RAY EMISSION FROM Sgr A*

    SciTech Connect

    Kusunose, Masaaki; Takahara, Fumio E-mail: takahara@vega.ess.sci.osaka-u.ac.jp

    2012-03-20

    Recent observations of Sgr A* by Fermi and HESS have detected steady {gamma}-ray emission in the GeV and TeV bands. We present a new model to explain the GeV {gamma}-ray emission by inverse Compton scattering by nonthermal electrons supplied by the NIR/X-ray flares of Sgr A*. The escaping electrons from the flare regions accumulate in a region with a size of {approx}10{sup 18} cm and magnetic fields of {approx}< 10{sup -4} G. Those electrons produce {gamma}-rays by inverse Compton scattering off soft photons emitted by stars and dust around the central black hole. By fitting the GeV spectrum, we find constraints on the magnetic field and the energy density of optical-UV radiation in the central 1 pc region around the supermassive black hole. While the GeV spectrum is well fitted by our model, the TeV {gamma}-rays, whose spectral index is different from that of the GeV emission, may be from different sources such as pulsar wind nebulae.

  2. Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E

    2006-07-13

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars. PMID:16838015

  3. The High-energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.; VonMintigny, C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approx. = 1.7-1.8 and column density N(sub H) approx. = 5 x 10(exp 21)/ sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approx. 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with Energetic Gamma Ray Experiment Telescope (EGRET). The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approx. = 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approx. 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  4. The Emission Time of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Anfimov, Dmitrij S.; Litvak, Maxim L.; Sanin, Anton B.; Saevich, Yurj Yu.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Koshut, Thomas M.

    1999-01-01

    The concept of emission time tau N is suggested as a temporal parameter which is complementary to the classical parameters of duration times T 50 and T 90. The emission time is defined as the time of emission of N% of the total fluence. The definition adds the time bins of high fluence in decreasing fluence rank until N% of the fluence has been reached. The emission time interval excludes low-emission intervals of bursts and so the emission time characterizes the state of high power emission. The distribution of this new parameter is found to be bimodal for bright bursts. The distributions of emission time tau-30 and tau-50, for groups based on burst intensity, are also compared.

  5. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    2011-08-01

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe, through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.

  6. CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP

    SciTech Connect

    Cucchiara, A.; Cenko, S. B.; Bloom, J. S.; Morgan, A.; Perley, D. A.; Li, W.; Butler, N. R.; Filippenko, A. V.; Melandri, A.; Kobayashi, S.; Smith, R. J.; Mundell, C. G.; Steele, I. A.; Hora, J. L.; Da Silva, R. L.; Prochaska, J. X.; Worseck, G.; Fumagalli, M.; Cobb, B.; and others

    2011-12-20

    Understanding the origin and diversity of emission processes responsible for gamma-ray bursts (GRBs) remains a pressing challenge. While prompt and contemporaneous panchromatic observations have the potential to test predictions of the internal-external shock model, extensive multiband imaging has been conducted for only a few GRBs. We present rich, early-time, multiband data sets for two Swift events, GRB 110205A and GRB 110213A. The former shows optical emission since the early stages of the prompt phase, followed by the steep rising in flux up to {approx}1000 s after the burst (t{sup -{alpha}} with {alpha} = -6.13 {+-} 0.75). We discuss this feature in the context of the reverse-shock scenario and interpret the following single power-law decay as being forward-shock dominated. Polarization measurements, obtained with the RINGO2 instrument mounted on the Liverpool Telescope, also provide hints on the nature of the emitting ejecta. The latter event, instead, displays a very peculiar optical to near-infrared light curve, with two achromatic peaks. In this case, while the first peak is probably due to the onset of the afterglow, we interpret the second peak to be produced by newly injected material, signifying a late-time activity of the central engine.

  7. Very-high-energy gamma-ray emission from the direction of the Galactic globular cluster Terzan 5

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubois, F.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Häffner, S.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, D.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sikora, M.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2011-07-01

    The HESS very-high-energy (VHE, E > 0.1 TeV) gamma-ray telescope system has discovered a new source, HESS J1747-248. The measured integral flux is (1.2 ± 0.3) × 10-12 cm-2 s-1 above 440 GeV for a power-law photon spectral index of 2.5 ± 0.3stat ± 0.2sys. The VHE gamma-ray source is located in the close vicinity of the Galactic globular cluster Terzan 5 and extends beyond the HESS point spread function (0.07°). The probability of a chance coincidence with Terzan 5 and an unrelated VHE source is quite low (~10-4). With the largest population of identified millisecond pulsars (msPSRs), a very high core stellar density and the brightest GeV range flux as measured by Fermi-LAT, Terzan 5 stands out among Galactic globular clusters. The properties of the VHE source are briefly discussed in the context of potential emission mechanisms, notably in relation to msPSRs. Interpretation of the available data accommodates several possible origins for this VHE gamma-ray source, although none of them offers a satisfying explanation of its peculiar morphology.

  8. Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbel, S; Corbet, R; DeCesar, M E; den Hartog, P R; Dermer, C D; de Palma, F; Digel, S W; Donato, D; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Hill, A B; Horan, D; Hughes, R E; Itoh, R; Jean, P; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nestoras, I; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schinzel, F K; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Sokolovsky, K V; Spandre, G; Spinelli, P; Stawarz, Ł; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Tanaka, Y; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wolff, M T; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M; Maehara, H; Nishiyama, K; Kabashima, F; Bach, U; Bower, G C; Falcone, A; Forster, J R; Henden, A; Kawabata, K S; Koubsky, P; Mukai, K; Nelson, T; Oates, S R; Sakimoto, K; Sasada, M; Shenavrin, V I; Shore, S N; Skinner, G K; Sokoloski, J; Stroh, M; Tatarnikov, A M; Uemura, M; Wahlgren, G M; Yamanaka, M

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out. PMID:20705855

  9. Gamma-ray Emission from the Sun: A Study with EGRET Data and Perspectives for GLAST

    NASA Astrophysics Data System (ADS)

    Orlando, Elena; Strong, A. W.

    2008-03-01

    The Sun has recently been predicted to be an extended source of gamma-ray emission, produced by inverse-Compton (IC) scattering of cosmic-ray electrons on the solar radiation field. The emission was predicted to be extended and a confusing foreground for the diffuse extragalactic background even at large angular distances from the Sun. The solar disk is also expected to be a steady gamma-ray source. Analyzing the EGRET database, we find evidence of emission from the solar disk and its halo (Orlando and Strong 2008,arXiv:0801.2178). The observations are compared with our model for the extended emission. The spectrum of the solar disk emission and the spectrum of the extended emission have been obtained. The spectrum of the moon is also given. The observed intensity distribution and the flux are consistent with the predicted model of IC gamma-rays from the halo around the Sun. This emission is expected to be readily detectable in the future by GLAST, and we describe the perspectives for what can be learned from this upcoming mission.

  10. PHASE-AVERAGED SPECTRA AND LUMINOSITIES OF GAMMA-RAY EMISSIONS FROM YOUNG ISOLATED PULSARS

    SciTech Connect

    Li, X.; Jiang, Z. J.; Zhang, L.

    2013-03-10

    We study the phase-averaged spectra and luminosities of {gamma}-ray emissions from young, isolated pulsars within a revised outer gap model. In the revised version of the outer gap, there are two possible cases for the outer gaps: the fractional size of the outer gap is estimated through the photon-photon pair process in the first case (Case I), and is limited by the critical field lines in the second case (Case II). The fractional size is described by Case I if the fractional size at the null charge surface in Case I is smaller than that in Case II, and vice versa. Such an outer gap can extend from the inner boundary, whose radial distance to the neutron star is less than that of the null charge surface to the light cylinder for a {gamma}-ray pulsar with a given magnetic inclination. When the shape of the outer gap is determined, assuming that high-energy emission at an averaged radius of the field line in the center of the outer gap, with a Gaussian distribution of the parallel electric field along the gap height, represents typical emission, the phase-averaged {gamma}-ray spectrum for a given pulsar can be estimated in the revised model with three model parameters. We apply the model to explain the phase-averaged spectra of the Vela (Case I) and Geminga (Case II) pulsars. We also use the model to fit the phase-averaged spectra of 54 young, isolated {gamma}-ray pulsars, and then calculate the {gamma}-ray luminosities and compare them with the observed data from Fermi-LAT.

  11. Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

    SciTech Connect

    Saz Parkinson, P. M.

    2007-07-12

    Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict emission at > 100 GeV. Milagro is a wide field (2 sr) high duty cycle (> 90%) ground based water Cherenkov detector that records extensive air showers in the energy range 100 GeV to 100 TeV. We have searched for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning of 2000 by BATSE, BeppoSax, HETE-2, INTEGRAL, Swift or the IPN. No evidence for emission from any of the bursts has been found and we present upper limits from these bursts.

  12. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  13. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    SciTech Connect

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  14. VERY HIGH ENERGY {gamma}-RAY EMISSION FROM PASSIVE SUPERMASSIVE BLACK HOLES: CONSTRAINTS FOR NGC 1399

    SciTech Connect

    Pedaletti, G.; Wagner, S. J.; Rieger, F. M.

    2011-09-10

    Very high energy (VHE, >100 GeV) {gamma}-rays are expected to be emitted from the vicinity of supermassive black holes (SMBHs), irrespective of their activity state. In the magnetosphere of rotating SMBH, efficient acceleration of charged particles can take place through various processes. These particles could reach energies up to E {approx} 10{sup 19} eV. VHE {gamma}-ray emission from these particles is then feasible via leptonic or hadronic processes. Therefore, passive systems, where the lack of a strong photon field allows the VHE {gamma}-rays to escape, are expected to be detected by Cherenkov telescopes. We present results from recent VHE experiments on the passive SMBH in the nearby elliptical galaxy NGC 1399. No {gamma}-ray signal has been found, neither by the H.E.S.S. experiment nor in the Fermi data analyzed here. We discuss possible implications for the physical characteristics of the system. We conclude that in a scenario where particles are accelerated in vacuum gaps in the magnetosphere, only a fraction {approx}0.3 of the gap is available for particle acceleration, indicating that the system is unlikely to be able to accelerate protons up to E {approx} 10{sup 19} eV.

  15. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  16. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dereli, H.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; di Bernardo, G.; Dormody, M.; Do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sellerholm, A.; Sgrò, C.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stecker, F. W.; Striani, E.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    The diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10°≤|b|≤20°. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  17. Unraveling the high-energy emission components of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Zabalza, V.; Bosch-Ramon, V.; Aharonian, F.; Khangulyan, D.

    2013-03-01

    Context. The high and very high energy spectrum of gamma-ray binaries has become a challenge for all theoretical explanations since the detection of powerful, persistent GeV emission from LS 5039 and LS I +61 303 by Fermi/LAT. The spectral cutoff at a few GeV indicates that the GeV component and the fainter, hard TeV emission above 100 GeV are not directly related. Aims: We explore the possible origins of these two emission components in the framework of a young, non-accreting pulsar orbiting the massive star, and initiating the non-thermal emission through the interaction of the stellar and pulsar winds. Methods: The pulsar/stellar wind interaction in a compact-orbit binary gives rise to two potential locations for particle acceleration: the shocks at the head-on collision of the winds and the termination shock caused by Coriolis forces on scales larger than the binary separation. We explore the suitability of these two locations to host the GeV and TeV emitters, respectively, through the study of their non-thermal emission along the orbit. We focus on the application of this model to LS 5039 given its well-determined stellar wind with respect to other gamma-ray binaries. Results: The application of the proposed model to LS 5039 indicates that these two potential emitter locations provide the necessary conditions for reproduction of the two-component high-energy gamma-ray spectrum of LS 5039. In addition, the ambient postshock conditions required at each of the locations are consistent with recent hydrodynamical simulations. Conclusions: The scenario based on the interaction of the stellar and pulsar winds is compatible with the GeV and TeV emission observed from gamma-ray binaries with unknown compact objects, such as LS 5039 and LS I +61 303.

  18. Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources

    NASA Technical Reports Server (NTRS)

    Hunter, S. D.; Digel, S. W.; De Geus, E. J.; Kanbach, G.

    1994-01-01

    Observations of the Ophiuchus region made with the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during the first 2 1/2 years of operation show the diffuse emission from the interstellar gas in Ophiuchus as well as variable emission from two point sources. The gamma-ray emission is modeled in terms of cosmic-ray interactions with atomic and molecular hydrogen in Ophiuchus and with low-energy photons along the line of sight. The model also includes the flux from the two point sources and an isotropic diffuse contribution. The cosmic-ray density is assumed to be uniform. The derived ratio of molecular hydrogen column density to integrated CO intensity is (1.1 +/- 0.2) x 10(exp 20) H-mols/sq cm (K km/s)(exp -1). At the sensitivity and resolution of the gamma-ray data, no variation of this ratio over the modeled region is discernible, nor are any regions of enhanced cosmic-ray density apparent. The model was fitted to seven narrow energy bands to obtain the energy depedence of the gamma-ray production function and the spectra of the point sources. The derived production function is in good agreement with theoretical calculations and the local cosmic-ray electron and proton spectra. The positions of the point sources were determined from maximum likelihood analysis of the gamma-ray emission observed in excess of the diffuse model. We identify one point source with the quasar PKS 1622-253, which has an average flux, E greater than 100 MeV, of (2.5 +/- 0.5) x 10(exp -7) photons/sq cm/s and photon spectral index -1.9 +/- 0.3. The other source, denoted GRO J1631-27, has not yet been identified at other wavelengths. Its average flux, E greater than 100 MeV, is (1.1 +/- 0.4) x 10(exp -7) photons/sq cm/s; however, its spectral index is poorly determined. The spectral index and intensity of the isotropic contribution to the model agree well with the extragalactic diffuse emission derived from the SAS 2 data.

  19. EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.

    1999-01-01

    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).

  20. New Limits on Gamma-Ray Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.

    2014-11-01

    Galaxy clusters are predicted to produce γ-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 × 10-11 photons cm-2 s-1 (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 × 1044 photons s-1. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and γ-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  1. Gamma-Ray Spectral Characteristics of Thermal and Non-Thermal Emission from Three Black Holes

    NASA Astrophysics Data System (ADS)

    Ling, James C.; Wheaton, William A.

    2005-06-01

    Cygnus X-1 and the gamma-ray transients GRO J0422+32 and GRO J1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high γ-ray intensity state (γ2(, for Cygnus X-1), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >3) that extended to ˜1 MeV or beyond. When the sources were in the low-intensity state (γ0, for Cygnus X-1), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to ˜1 MeV can be characterized by a single power law with a relatively harder photon index ˜2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the ˜400 keV - ˜1 MeV range, in contrast to the spectral pivoting seen previously at lower (˜10 keV) energies. The presence of the power-law component in both the high- and low-intensity gamma-ray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.

  2. The High-Energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approximate 1.7-1.8 and column density N(sub H) approximately 5 x 10(exp 21) /sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approximately 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with EGRET. The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approximately 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approximately 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  3. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  4. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  5. Further increase of gamma-ray emission from the HBL 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Biland, A.; Dorner, D.; Mirzoyan, R.; Mukherjee, R.; Buson, S.; Kapanazde, B.

    2016-06-01

    FACT, MAGIC, VERITAS and Fermi-LAT collaborations report the measurement of a further increase of the gamma-ray flux together with bright X-ray emission seen by Swift-XRT from a position consistent with the high-energy peaked BL Lac type object 1ES 1959+650 (z=0.047, Schachter et al. 1993, ApJ, 412, 541).

  6. AGILE detection of enhanced gamma-ray emission from the FSRQ 4C +01.02

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Lucarelli, F.; Pittori, C.; Bulgarelli, A.; Tavani, M.; Fioretti, V.; Zoli, A.; Piano, G.; Striani, E.; Vercellone, S.; Donnarumma, I.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-07-01

    AGILE is detecting increased gamma-ray emission above 100 MeV from a position consistent with the flat spectrum radio quasar 4C +01.02 (also known as 5BZQ J0108+0135, PKS 0106+01 and 3FGL J0108.7+0134), recently reported in flaring activity also by Fermi/LAT during the week Jun 6-12 (http://fermisky.blogspot.it).

  7. Diffuse pionic gamma-ray emission from large-scale structures in the Fermi era

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2014-02-20

    For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  8. X-RAY AND GAMMA-RAY EMISSIONS FROM ROTATION POWERED MILLISECOND PULSARS

    SciTech Connect

    Takata, J.; Cheng, K. S.; Taam, Ronald E. E-mail: hrspksc@hkucc.hku.hk

    2012-01-20

    The Fermi Large Area Telescope has revealed that rotation powered millisecond pulsars (MSPs) are a major contributor to the Galactic {gamma}-ray source population. Such pulsars may also be important in modeling the quiescent state of several low-mass X-ray binaries (LMXBs), where optical observations of the companion star suggest the possible existence of rotation powered MSPs. To understand the observational properties of the different evolutionary stages of MSPs, the X-ray and {gamma}-ray emissions associated with the outer gap model are investigated. For rotation powered MSPs, the size of the outer gap and the properties of the high-energy emission are controlled by either the photon-photon pair-creation process or magnetic pair-creation process near the surface. For these pulsars, we find that the outer gap model controlled by the magnetic pair-creation process is preferable in explaining the possible correlations between the {gamma}-ray luminosity or non-thermal X-ray luminosity versus the spin-down power. For the accreting MSPs in quiescent LMXBs, the thermal X-ray emission at the neutron star (NS) surface resulting from deep crustal heating can control the conditions in the outer gap. We argue that the optical modulation observed in the quiescent state of several LMXBs originates from the irradiation of the donor star by {gamma}-rays from the outer gap. In these systems, the irradiation luminosity required for the optical modulation of the source such as SAX J1808.4-3658 can be achieved for a NS of high mass. Finally, we discuss the high-energy emission associated with an intra-binary shock in black widow systems, e.g., PSR B1957+20.

  9. NEW LIMITS ON GAMMA-RAY EMISSION FROM GALAXY CLUSTERS

    SciTech Connect

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S. E-mail: xdai@ou.edu

    2014-11-01

    Galaxy clusters are predicted to produce γ-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 × 10{sup –11} photons cm{sup –2} s{sup –1} (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 × 10{sup 44} photons s{sup –1}. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and γ-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  10. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-06-01

    The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula has been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 h of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10-13 TeV cm-2 s-1 for the Geminga pulsar and 3.5 × 10-12 TeV cm-2 s-1 for the surrounding nebula at 50 GeV are the mostconstraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 yr of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

  11. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chaves, R. C. G.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  12. Persistent X-ray emission from a gamma-ray burst source

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Cline, T.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Laros, J. G.; Hurley, K. C.; Niel, M.; Klebesadel, R. W.

    1982-01-01

    A quiescent X-ray source detected with the Einstein X-ray Observatory in a location consistent with that of an intense gamma ray burst is shown to be also consistent with the location of the 1928 optical transient, the likely optical counterpart of the gamma ray burst source GBS0117-29. The system appears to be underluminous in X-rays by a factor of 10; possible reasons for this are discussed. The observed X-ray flux would require an accretion rate of about 10 to the -14th (d/1 kpc/)-squared solar masses per year, which is probably too low to be consistent with published nuclear flash models for gamma bursts, unless the distance is substantially greater than about 1 kpc or the burst recurrence time is greater than about 50 yrs, or the accretion rate is highly variable. Such a long recurrence time appears to be inconsistent with the detection of the optical burst.

  13. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  14. Upper limits to pulsed gamma ray emission from PSR 0833-45, 1747-46, and 1818-04

    NASA Astrophysics Data System (ADS)

    Cherry, M. L.; Dunphy, P. P.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.

    Pulsed gamma ray emission from three pulsars (PSR 0833-45, 1747-46, and 1818-04) have been sought on a balloon flight of the University of New Hampshire Large Gamma Ray Telescope, which incorporates a shielded sodium iodide scintillator array, and was launched from Alice Springs, Australia. Over the energy range 0.1 - 10 MeV, no evidence is found for pulsed gamma rays, and upper limits are set for Vela which are comparable to, or below, the extrapolation to lower energies of the pulsed emission reported by SAS-2 and COS-B.

  15. Upper limits to pulsed gamma ray emission from PSR 0833-45, 1747-46, and 1818-04

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Dunphy, P. P.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.

    1982-01-01

    Pulsed gamma ray emission from three pulsars (PSR 0833-45, 1747-46, and 1818-04) have been sought on a balloon flight of the University of New Hampshire Large Gamma Ray Telescope, which incorporates a shielded sodium iodide scintillator array, and was launched from Alice Springs, Australia. Over the energy range 0.1 - 10 MeV, no evidence is found for pulsed gamma rays, and upper limits are set for Vela which are comparable to, or below, the extrapolation to lower energies of the pulsed emission reported by SAS-2 and COS-B.

  16. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    SciTech Connect

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  17. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-12

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data. PMID:20366411

  18. High-energy emissions from the gamma-ray binary LS 5039

    SciTech Connect

    Takata, J.; Leung, Gene C. K.; Cheng, K. S.; Tam, P. H. T.; Kong, A. K. H.; Hui, C. Y. E-mail: gene930@connect.hku.hk

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  19. AGILE detection of enhanced gamma-ray emission from the Crab Nebula region

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Striani, E.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Pittori, C.; Verrecchia, F.; Argan, A.; Trois, A.; de Paris, G.; Vittorini, V.; D'Ammando, F.; Sabatini, S.; Piano, G.; Costa, E.; Donnarumma, I.; Feroci, M.; Pacciani, L.; Del Monte, E.; Lazzarotto, F.; Soffitta, P.; Evangelista, Y.; Lapshov, I.; Chen, A.; Giuliani, A.; Marisaldi, M.; Di Cocco, G.; Labanti, C.; Fuschino, F.; Galli, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Pucella, G.; Rapisarda, M.; Vercellone, S.; Pellizzoni, A.; Pilia, M.; Barbiellini, G.; Longo, F.; Picozza, P.; Morselli, A.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Giommi, P.; Santolamazza, P.; Lucarelli, F.; Colafrancesco, S.; Salotti, L.

    2010-09-01

    AGILE is detecting an increased gamma-ray flux from a source positionally consistent with the Crab Nebula. Integrating during the period 2010-09-19 00:10 UT to 2010-09-21 00:10 UT the AGILE-GRID detected enhanced gamma-ray emission above 100 MeV from a source at Galactic coordinates (l,b) = (184.6, -6.0) +/- 0.4 (stat.) +/- 0.1 (syst.) deg, and flux F > 500 e-8 ph/cm2/sec above 100 MeV, corresponding to an excess with significance above 4.4 sigma with respect to the average flux from the Crab nebula (F = (220 +/- 15)e-8 ph/cm^2/sec, Pittori et al., 2009, A&A, 506, 1563).

  20. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  1. Expected gamma ray emission spectra from the lunar surface as a function of chemical composition.

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th, and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines are calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions are those of Reedy and Arnold (1972) and Lingenfelter et al. (1972). The areal resolution of the experiment is calculated to be around 70-140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method is described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  2. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  3. AGILE detection of intense gamma-ray emission from the blazar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    Pucella, G.; Vittorini, V.; D'Ammando, F.; Tavani, M.; Raiteri, C. M.; Villata, M.; Argan, A.; Barbiellini, G.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P. W.; Chen, A. W.; Cocco, V.; Costa, E.; Del Monte, E.; de Paris, G.; Di Cocco, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Fiorini, M.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Longo, F.; Marisaldi, M.; Mereghetti, S.; Morselli, A.; Pacciani, L.; Pellizzoni, A.; Perotti, F.; Picozza, P.; Prest, M.; Rapisarda, M.; Rappoldi, A.; Soffitta, P.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Zambra, A.; Zanello, D.; Antonelli, L. A.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.; Pittori, C.; Verrecchia, F.; Salotti, L.; Aller, M. F.; Aller, H. D.; Carosati, D.; Larionov, V. M.; Ligustri, R.

    2008-11-01

    Context: We report the detection by the AGILE (Astro-rivelatore Gamma a Immagini LEggero) satellite of an intense gamma-ray flare from the source AGL J1511-0909, associated with the powerful quasar PKS 1510-089, during ten days of observations from 23 August to 1 September 2007. Aims: During the observation period, the source was in optical decrease following a flaring event monitored by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). The simultaneous gamma-ray, optical, and radio coverage allows us to study the spectral energy distribution and the theoretical models based on the synchrotron and inverse Compton (IC) emission mechanisms. Methods: AGILE observed the source with its two co-aligned imagers, the Gamma-Ray Imaging Detector and the hard X-ray imager Super-AGILE sensitive in the 30 MeV div 50 GeV and 18 div 60 keV bands, respectively. Results: Between 23 and 27 August 2007, AGILE detected gamma-ray emission from PKS 1510-089 when this source was located 50° off-axis, with an average flux of (270 ± 65) × 10-8 photons cm-2 s-1 for photon energy above 100 MeV. In the following period, 28 August-1 September, after a satellite re-pointing, AGILE detected the source at 35° off-axis, with an average flux (E > 100 MeV) of (195 ± 30) × 10-8 photons cm-2 s-1. No emission was detected by Super-AGILE, with a 3-σ upper limit of 45 mCrab in 200 ks. Conclusions: The spectral energy distribution is modelled with a homogeneous one-zone synchrotron self Compton (SSC) emission plus contributions by external photons: the SSC emission contributes primarily to the X-ray band, whereas the contribution of the IC from the external disc and the broad line region match the hard gamma-ray spectrum observed.

  4. Catalogue of isolated emission episodes in gamma-ray bursts from Fermi, Swift and BATSE

    NASA Astrophysics Data System (ADS)

    Charisi, M.; Márka, S.; Bartos, I.

    2015-04-01

    We report a comprehensive catalogue of emission episodes within long gamma-ray bursts (GRBs) that are separated by a quiescent period during which gamma-ray emission falls below the background level. We use a fully automated identification method for an unbiased, large-scale and expandable search. We examine a comprehensive sample of long GRBs from the BATSE (Burst and Transient Source Experiment), Swift and Fermi missions, assembling a total searched set of 2710 GRBs, the largest catalogue of isolated emission episodes so far. Our search extends out to [-1000 s, 750 s] around the burst trigger, expanding the covered time interval beyond previous studies and far beyond the nominal durations (T90) of most bursts. We compare our results to previous works by identifying pre-peak emission (or precursors), defined as isolated emission periods prior to the episode with the highest peak luminosity of the burst. We also systematically search for similarly defined periods after the burst's peak emission. We find that the pre-peak and post-peak emission periods are statistically similar, possibly indicating a common origin. For the analysed GRBs, we identify 24 per cent to have more than one isolated emission episode, with 11 per cent having at least one pre-peak event and 15 per cent having at least one post-peak event. We identify GRB activity significantly beyond their T90, which can be important for understanding the central engine activity as well as, e.g. gravitational-wave searches.

  5. EXPLORING THE RELATION BETWEEN (SUB-)MILLIMETER RADIATION AND {gamma}-RAY EMISSION IN BLAZARS WITH PLANCK AND FERMI

    SciTech Connect

    Leon-Tavares, J.; Tornikoski, M.; Laehteenmaeki, A.; Valtaoja, E.; Giommi, P.; Polenta, G.; Gasparrini, D.; Cutini, S.

    2012-07-20

    The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and {gamma}-ray emission in a large sample of blazars. We find that the {gamma}-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude, L{sub {gamma}}{proportional_to}L{sub (sub-)mm}. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within two months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong {gamma}-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of {gamma}-ray emission.

  6. ON THE EXTERNAL SHOCK SYNCHROTRON MODEL FOR GAMMA-RAY BURSTS' GeV EMISSION

    SciTech Connect

    Piran, Tsvi; Nakar, Ehud E-mail: udini@wise.tau.ac.i

    2010-08-01

    The dominant component of the GeV gamma-ray burst emission detected by the Large Area Telescope begins after the prompt soft (sub-MeV) gamma rays and lasts longer. This has led to the intriguing suggestion that the GeV emission is generated via synchrotron emission of the external shock. Moreover, the limits on the MeV afterglow emission lead to the suggestion that at least in bright GeV bursts the field is not amplified beyond compression in the shock. We show here that considerations of confinement (within the decelerating shock), efficiency, and cooling of the emitting electrons constrain, within this model, the magnetic fields that arise in both the upstream (unshocked circumburst) and downstream (shocked circumburst) regions, allowing us to put direct limits on their values. The well-known limit on the maximal synchrotron emission, when combined with the blast wave evolution, implies that late photons (arriving more than {approx}100 s after the burst) with energies higher than {approx}10 GeV do not arise naturally from an external shock synchrotron and almost certainly have a different origin. Finally, even a modest seed flux (a few mJy) in IR-optical would quench, via Inverse Compton cooling, the GeV emission unless the magnetic field is significantly amplified behind the shock. An observation of a burst with simultaneous IR-optical and GeV emission will rule out this model.

  7. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  8. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  9. COMPTEL observations of Ti-44 gamma-ray line emission from Cas A

    NASA Technical Reports Server (NTRS)

    Iyudin, A. F.; Diehl, R.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Varendorff, M.

    1994-01-01

    The Compton Telescope (COMPTEL) telescope aboard the Compton Gamma-Ray Observatory (CGRO) is capable of imaging gamma-ray line sources in the MeV region with a sensitivity of the order 10(exp -5) photons/(sq cm s). During two observations periods in July 1992 and February 1993 the Galactic plane in the region of the young supernova remnant Cas A was observed, showing evidence for line emission at 1.16 MeV from the decay of Ti-44 at a significance level of approximately 4 sigma. This is the first time a supernova remnant has been detected in the gamma-ray line from Ti-44 decay. Adopting a distance of 2.8 kpc to the Cas A remnant, the measured line flux (7.0 +/- 1.7) x 10(exp -5) photons/(sq cm s), can be translated into a Ti-44 mass ejected during the Cas A supernova explosion, between (1.4 +/- 0.4) x 10(exp -4) solar mass and (3.2 +/- 0.8) x 10(exp -4) solar mass, depending on the precise value of the Ti-44 mean life time and on the precise date of the event. Implications of this result for supernova nucleosynthesis models are discussed.

  10. Determination of X- and gamma-ray emission intensities in the decay of (131)I.

    PubMed

    Lépy, Marie-Christine; Brondeau, Laurine; Bobin, Christophe; Lourenço, Valérie; Thiam, Cheick; Bé, Marie-Martine

    2016-03-01

    The activity per unit mass of an iodine-131 solution was absolutely standardized by both the 4πβ-γ coincidence method and the 4πγ counting technique. The calibrated solution was used to prepare point sources after a preliminary deposit of AgNO3 to prevent the loss of volatile iodine. Relative and absolute photon emission intensities of 15 sgamma-rays and those of the two K X-rays of xenon were determined by gamma-ray spectrometry, with relative uncertainties of 0.8% for the three main emissions. PMID:26651173

  11. Observationally constraining gravitational wave emission from short gamma-ray burst remnants

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.; Glampedakis, Kostas

    2016-05-01

    Observations of short gamma-ray bursts indicate ongoing energy injection following the prompt emission, with the most likely candidate being the birth of a rapidly rotating, highly magnetized neutron star. We utilize X-ray observations of the burst remnant to constrain properties of the nascent neutron star, including its magnetic field-induced ellipticity and the saturation amplitude of various oscillation modes. Moreover, we derive strict upper limits on the gravitational wave emission from these objects by looking only at the X-ray light curve, showing the burst remnants are unlikely to be detected in the near future using ground-based gravitational wave interferometers, such as Advanced LIGO.

  12. X-ray emission mechanism for the gamma-ray binary LS 5039

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    2012-07-01

    We address an unsolved issue in the model of the gamma-ray binary LS 5039, which consists of an O star and a compact object not yet identified. In previous studies, the X-ray emission observed with Suzaku has been assumed to be due to the synchrotron emission from high energy electrons, and the inverse Compton (IC) emission from low energy electrons has been neglected. However, this IC emission can affect the X-ray emission. In this study, we calculate the IC emission from low energy electrons (γ < 10^4) accelerated near the compact object, including those created by the radiative cooling. We find that the IC emission of the low energy electrons can be responsible for the Suzaku band if the minimum Lorentz factor of injected electrons γ_{min} is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if γ_{min} varies in proportion to the Fermi flux.

  13. EPISODIC TRANSIENT GAMMA-RAY EMISSION FROM THE MICROQUASAR CYGNUS X-1

    SciTech Connect

    Sabatini, S.; Tavani, M.; Vittorini, V.; Piano, G.; Del Monte, E.; Feroci, M.; Argan, A.; D'Ammando, F.; Costa, E.; De Paris, G.; Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Di Cocco, G.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2010-03-20

    Cygnus X-1 (Cyg X-1) is the archetypal black hole binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV-3 GeV by the AGILE satellite, during the period 2007 July-2009 October. The total exposure time is about 300 days, during which the source was in the 'hard' X-ray spectral state. We divided the observing intervals in 2-4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009 October 16 in a position compatible with Cyg X-1 optical position. This episode, which occurred during a hard spectral state of Cyg X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cyg X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data, we obtain a 2{sigma} upper limit for the total integrated flux of F {sub {gamma}}{sub ,U.L.} = 3 x 10{sup -8} ph cm{sup -2} s{sup -1} in the energy range 100 MeV-3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.

  14. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  15. DE-EXCITATION NUCLEAR GAMMA-RAY LINE EMISSION FROM LOW-ENERGY COSMIC RAYS IN THE INNER GALAXY

    SciTech Connect

    Benhabiles-Mezhoud, H.; Kiener, J.; Tatischeff, V.; Strong, A. W.

    2013-02-15

    Recent observations of high ionization rates of molecular hydrogen in diffuse interstellar clouds point to a distinct low-energy cosmic-ray component. Supposing that this component is made of nuclei, two models for the origin of such particles are explored and low-energy cosmic-ray spectra are calculated, which, added to the standard cosmic-ray spectra, produce the observed ionization rates. The clearest evidence of the presence of such low-energy nuclei between a few MeV nucleon{sup -1} and several hundred MeV nucleon{sup -1} in the interstellar medium would be a detection of nuclear {gamma}-ray line emission in the range E {sub {gamma}} {approx} 0.1-10 MeV, which is strongly produced in their collisions with the interstellar gas and dust. Using a recent {gamma}-ray cross section compilation for nuclear collisions, {gamma}-ray line emission spectra are calculated alongside the high-energy {gamma}-ray emission due to {pi}{sup 0} decay, the latter providing normalization of the absolute fluxes by comparison with Fermi-LAT observations of the diffuse emission above E {sub {gamma}} = 0.1 GeV. Our predicted fluxes of strong nuclear {gamma}-ray lines from the inner Galaxy are well below the detection sensitivities of the International Gamma-Ray Astrophysics Laboratory, but a detection, especially of the 4.4 MeV line, seems possible with new-generation {gamma}-ray telescopes based on available technology. We also predict strong {gamma}-ray continuum emission in the 1-8 MeV range, which, in a large part of our model space for low-energy cosmic rays, considerably exceeds the estimated instrument sensitivities of future telescopes.

  16. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; Esnouf, S.

    2016-01-01

    This work reports the effect of very high doses, up to 10 MGy, on the H2 emission from high density polyethylene (HDPE) irradiated with gamma rays and ion beams, in the presence of oxygen. This was obtained through a two-step procedure. First, HDPE films were pre-aged, at different doses, using either gamma rays or ion beams. In the second step, the pre-aged samples were irradiated in closed glass ampoules for gas quantification, using the same beam type as for pre-ageing. The hydrogen emission rate decreases when dose increases for both gamma rays and ion beams. However, the decreasing rate appears higher under gamma rays than under ion beam irradiations and this is assigned to a lesser oxidation level under the latter. Herein, we show the effectiveness of the radiation-induced defects scavenging effect under oxidative atmosphere, under low and high excitation densities.

  17. The average GeV-band emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lange, J.; Pohl, M.

    2013-03-01

    Aims: We analyze the emission in the 0.3-30 GeV energy range of gamma-ray bursts detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts that were previously only detected with the Gamma-Ray Burst Monitor in the keV energy range. These bursts will then be compared to the bursts that were individually detected with the Large Area Telescope at higher energies. Methods: To estimate the emission of faint GRBs we used nonstandard analysis methods and sum over many GRBs to find an average signal that is significantly above background level. We used a subsample of 99 GRBs listed in the Burst Catalog from the first two years of observation. Results: Although most are not individually detectable, the bursts not detected by the Large Area Telescope on average emit a significant flux in the energy range from 0.3 GeV to 30 GeV, but their cumulative energy fluence is only 8% of that of all GRBs. Likewise, the GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm that the GeV-band emission lasts much longer than the emission found in the keV energy range. The average allsky energy flux from GRBs in the GeV band is 6.4 × 10-4 erg cm-2 yr-1 or only ~4% of the energy flux of cosmic rays above the ankle at 1018.6 eV.

  18. MAGIC CONSTRAINTS ON {gamma}-RAY EMISSION FROM CYGNUS X-3

    SciTech Connect

    Aleksic, J.; Blanch, O.; Antonelli, L. A.; Bonnoli, G.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bastieri, D.; Gonzalez, J. Becerra; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Boller, A.; Bock, R. K.; Tridon, D. Borla; Bordas, P.; Bosch-Ramon, V. E-mail: tysaito@mpp.mpg.d

    2010-09-20

    Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy {gamma} rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hr between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced {gamma}-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10{sup -12} photons cm{sup -2} s{sup -1} (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.

  19. Spectacular variability of gamma-ray emission in blazar 3C279 during the large outburst in June 2015

    NASA Astrophysics Data System (ADS)

    Madejski, Grzegorz; Hayashida, Masaaki; Asano, Katsuaki; Thompson, David; Nalewajko, Krzysztof; Sikora, Marek; Fermi-LAT Collaboration

    2016-03-01

    The most luminous celestial extragalactic sources of persistent gamma-ray emission are active galaxies with relativistic jets pointing towards the observer. Those are commonly called blazars, and Flat Spectrum Radio Quasar 3C 279 has been one of the brightest gamma-ray blazars in the sky. In Dec. 2013, April 2014, and June 2015 it showed powerful outbursts with the gamma-ray flux at E > 100 MeV higher than 1e-5 ph/cm2/s, measured by the Fermi-LAT gamma-ray detector. The Dec. 2013 outburst showed an unusually hard power-law gamma-ray spectrum (photon index ~1.7), and an asymmetric light curve profile with a few-hour time scale variability. The June 2015 outburst was extreme, with a record-breaking E > 100 MeV flux of 4e-5 ph/cm2/s, more than 10 × higher than the average gamma-ray flux of the Crab Nebula. The high flux prompted a Fermi-LAT Target of Opportunity pointing observation. The increase of exposure and the very high flux state of the source allowed us to resolve the gamma-ray flux on a sub-orbital time scales, revealing variability on time scales of tens of minutes. Here, we present the observational results of those outbursts from 3C279 with a focus on detailed analysis of the 2015 June outburst.

  20. Detection of gamma-ray emission from globular clusters M15, NGC 6397, 5904, 6218 and 6139 with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Zhang, P. F.; Xin, Y. L.; Fu, L.; Zhou, J. N.; Yan, J. Z.; Liu, Q. Z.; Zhang, L.

    2016-06-01

    In the third Fermi catalogue (3FGL) there are 16 gamma-ray globular clusters. Following an analysis of the recently released Pass 8 data from the Fermi Large Area Telescope (LAT), we report the discovery of significant gamma-ray emission from M15 and NGC 6397, confirm that NGC 5904 is a gamma-ray-emitter and provide evidence of gamma-ray emission from NGC 6218 and 6139. Interestingly, in the globular clusters M15, NGC 6397 and 5904, millisecond pulsars (MSPs) have been found in the radio or X-ray, which strongly support the MSP origin of the gamma-ray emission. Owing to the relatively low luminosity of the gamma-ray emission, however, we do not find any evidence for gamma-ray pulsation or flux variability in these sources.

  1. THE ORBIT AND COMPANION OF PROBABLE {gamma}-RAY PULSAR J2339-0533

    SciTech Connect

    Romani, Roger W.; Shaw, Michael S.

    2011-12-20

    We have measured dramatic flux and spectral variations through the 0.193 day orbit of the optical counterpart of the unidentified {gamma}-ray source 0FGL J2339.8-0530. This compact object companion is strongly heated, with T{sub eff} varying from {approx}6900 K (superior conjunction) to <3000 K at minimum. A combined fit to the light curve and radial velocity amplitudes imply M{sub 1} Almost-Equal-To 0.075 M{sub Sun }, M{sub 2} Almost-Equal-To 1.4M{sub Sun }, and inclination i Almost-Equal-To 57 Degree-Sign . Thus, this is a likely 'black widow' system with a E-dot {approx}10{sup 34-34.5} erg s{sup -1} pulsar driving companion mass loss. This wind, also suggested by the X-ray light curve, may prevent radio pulse detection. Our measurements constrain the pulsar's reflex motion, increasing the possibility of a pulse detection in the {gamma}-ray signal.

  2. Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi

    NASA Astrophysics Data System (ADS)

    Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brigida, M.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Granot, J.; Grenier, I. A.; Grove, J. E.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kataoka, J.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Ryde, F.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stawarz, Łukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Uehara, T.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Fermi Gamma-ray Burst Monitor Team; Connaughton, V.; Briggs, M. S.; Guirec, S.; Goldstein, A.; Burgess, J. M.; Bhat, P. N.; Bissaldi, E.; Camero-Arranz, A.; Fishman, J.; Fitzpatrick, G.; Foley, S.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.

    2012-08-01

    We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  3. CONSTRAINING THE HIGH-ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH FERMI

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Baring, M. G.; Bonamente, E.; Cecchi, C.; Bouvier, A.; Brigida, M.; Buson, S.; Caliandro, G. A. E-mail: kocevski@slac.stanford.edu E-mail: connauv@uah.edu E-mail: michael.briggs@nasa.gov; Collaboration: Fermi Large Area Telescope Team; Fermi Gamma-ray Burst Monitor Team; and others

    2012-08-01

    We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the {nu}F{sub {nu}} spectra (E{sub pk}). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E{sub pk} than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to {gamma}{gamma} attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  4. ORBITAL-PHASE-DEPENDENT {gamma}-RAY EMISSIONS FROM THE BLACK WIDOW PULSAR

    SciTech Connect

    Wu, E. M. H.; Takata, J.; Cheng, K. S.; Huang, R. H. H.; Kong, A. K. H.; Tam, P. H. T.; Wu, J. H. K.; Hui, C. Y. E-mail: takata@hku.hk

    2012-12-20

    We report on evidence for orbital phase dependence of the {gamma}-ray emission from the PSR B1957+20 black widow system using data from the Fermi Large Area Telescope. We divide an orbital cycle into two regions: one containing the inferior conjunction and the other containing the rest of the orbital cycle. We show that the observed spectra for the different orbital regions are fitted by different functional forms. The spectrum of the orbital region containing the inferior conjunction can be described by a power law with an exponential cutoff (PLE) model, which also gives the best-fit model for the orbital phase without the inferior conjunction, plus an extra component above {approx}2.7 GeV. The emission above 3 GeV in this region is detected with a {approx}7{sigma} confidence level. The {gamma}-ray data above {approx}2.7 GeV are observed to be modulated at the orbital period at the {approx}2.3{sigma} level. We anticipate that the PLE component dominant below {approx}2.7 GeV originates from the pulsar magnetosphere. We also show that inverse Compton scattering of the thermal radiation of the companion star off a ''cold'' ultrarelativistic pulsar wind can explain the extra component above {approx}2.7 GeV. The black widow pulsar PSR B1957+20 may be a member of a new class of object, in the sense that the system is showing {gamma}-ray emission with both magnetospheric and pulsar wind origins.

  5. Spatial morphology of the secondary emission in the Galactic Center gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Lacroix, Thomas; Macias, Oscar; Gordon, Chris; Panci, Paolo; BÅ`hm, Céline; Silk, Joseph

    2016-05-01

    Excess GeV gamma rays from the Galactic Center (GC) have been measured with the Fermi Large Area Telescope (LAT). The presence of the GC excess (GCE) appears to be robust with respect to changes in the diffuse galactic background modeling. The three main proposals for the GCE are an unresolved population of millisecond pulsars (MSPs), outbursts of cosmic rays from the GC region, and self-annihilating dark matter (DM). The injection of secondary electrons and positrons into the interstellar medium (ISM) by an unresolved population of MSPs or DM annihilations can lead to observable gamma-ray emission via inverse Compton scattering or bremsstrahlung. Here, we investigate how to determine whether secondaries are important in a model for the GCE. We develop a method of testing model fit which accounts for the different spatial morphologies of the secondary emission. We examine several models which give secondary emission and illustrate a case where a broadband analysis is not sufficient to determine the need for secondary emission.

  6. Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penke, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.

    2015-05-01

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ˜1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  7. Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    NASA Technical Reports Server (NTRS)

    Venter, C.; de Jaker, O.C.; Clapson, A.C.

    2009-01-01

    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.

  8. Direct And Reprocessed Gamma-Ray Emission of Kpc-Scale Jets in FR I Radio Galaxies

    SciTech Connect

    Stawarz, L.; Kneiske, T.M.; Kataoka, J.; /Tokyo Inst. Tech. /KIPAC, Menlo Park

    2007-10-09

    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse {gamma}-ray background radiation. The analyzed {gamma}-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 {micro}G in the brightest knots of these jets), can contribute about one percent to the extragalactic {gamma}-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 {micro}G on average, as otherwise the extragalactic {gamma}-ray background would be overproduced.

  9. Comptonization signatures in the prompt emission of gamma-ray bursts

    SciTech Connect

    Frontera, F.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Titarchuk, L.; Amati, L.; Landi, R.

    2013-12-20

    We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.

  10. Pulsed emission of TeV gamma rays from Vela pulsar

    NASA Technical Reports Server (NTRS)

    Bhat, P. N.; Gupta, S. K.; Ramanamurthy, P. V.; Vishwanath, P. R.; Sreekantan, B. V.

    1985-01-01

    The Ooty atmospheric Cerenkov array, consisting of 10 parabolic mirrors of 0.9 m diameter and 8 of 1.5 m diameter, was used for observations on the Vela pulsar to see if it emits gamma rays in the TeV energy range. During the winter of 1984-85, the array was split into two parts: (1) consisting wholly of the smaller mirrors, and (2) wholly of the bigger mirrors. The two arrays were operated at two different sites to distinguish a marginally significant genuine pulsar signal from spurious signals produced trivially by chance fluctuations in the background rates. All the mirrors were pointed at the celestial object to track it for durations of the order of 1 to 6 hours during clear moonless nights. The event time data is analyzed to detect a possible pulsed emission of TeV gamma rays using the contemporaneous pulsar elements on the basis of their radio observations on the Vela pulsar. Results from the analyses of observations made during the winters of 1982-83 and 1984-85 on steady pulsed emission and on possible transient emission is presented.

  11. VARIABLE GAMMA-RAY EMISSION FROM THE CRAB NEBULA: SHORT FLARES AND LONG 'WAVES'

    SciTech Connect

    Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Argan, A.; Cardillo, M.; Costa, E.; Del Monte, E.; Pacciani, L.; Piano, G.; Sabatini, S.; Bulgarelli, A.; Ferrari, A.; Pellizzoni, A.; Pittori, C.; and others

    2013-03-01

    Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between 2007 September and 2012 September, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call 'waves'. Statistically significant 'waves' show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the 2007 September-October gamma-ray enhancement episode detected by AGILE that shows both 'wave' and flaring behavior. We extend our analysis to the publicly available Fermi-LAT data set and show that several additional 'wave' episodes can be identified. We discuss the spectral properties of the 2007 September 'wave'/flare event and show that the physical properties of the 'waves' are intermediate between steady and flaring states. Plasma instabilities inducing 'waves' appear to involve spatial distances l {approx} 10{sup 16} cm and enhanced magnetic fields B {approx} (0.5-1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the 'wave' phenomenon (E{sub w} {approx} 10{sup 42} erg, where E{sub w} is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spin-down energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.

  12. Variable Gamma-Ray Emission from the Crab Nebula: Short Flares and Long "Waves"

    NASA Astrophysics Data System (ADS)

    Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Giuliani, A.; Pucella, G.; Argan, A.; Bulgarelli, A.; Colafrancesco, S.; Cardillo, M.; Costa, E.; Del Monte, E.; Ferrari, A.; Mereghetti, S.; Pacciani, L.; Pellizzoni, A.; Piano, G.; Pittori, C.; Rapisarda, M.; Sabatini, S.; Soffitta, P.; Trifoglio, M.; Trois, A.; Vercellone, S.; Verrecchia, F.

    2013-03-01

    Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between 2007 September and 2012 September, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call "waves." Statistically significant "waves" show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the 2007 September-October gamma-ray enhancement episode detected by AGILE that shows both "wave" and flaring behavior. We extend our analysis to the publicly available Fermi-LAT data set and show that several additional "wave" episodes can be identified. We discuss the spectral properties of the 2007 September "wave"/flare event and show that the physical properties of the "waves" are intermediate between steady and flaring states. Plasma instabilities inducing "waves" appear to involve spatial distances l ~ 1016 cm and enhanced magnetic fields B ~ (0.5-1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the "wave" phenomenon (Ew ~ 1042 erg, where Ew is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spin-down energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.

  13. Fermi Detection of Delayed GeV Emission from the Short Gamma-Ray Burst 081024B

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burgess, J. M.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaplin, V.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Fishman, G.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Haynes, R. H.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kocian, M. L.; Komin, N.; Kouveliotou, C.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Ylinen, T.; Ziegler, M.

    2010-03-01

    We report on the detailed analysis of the high-energy extended emission from the short gamma-ray burst (GRB) 081024B detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 s whereas the emission in the Fermi Large Area Telescope lasts for about 3 s. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.

  14. Inverse Compton Origin of the Hard X-ray and Soft gamma-ray Emission from the Galactic Ridge

    SciTech Connect

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; Orlando, Elena; Bouchet, Laurent

    2008-09-30

    A recent re-determination of the non-thermal component of the hard X-ray to soft {gamma}-ray emission from the Galactic ridge, using the SPI instrument on the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) Observatory, is shown to be well reproduced as inverse-Compton emission from the interstellar medium. Both cosmic-ray primary electrons and secondary electrons and positrons contribute to the emission. The prediction uses the GALPROP model and includes a new calculation of the interstellar radiation field. This may solve a long-standing mystery of the origin of this emission, and potentially opens a new window on Galactic cosmic rays.

  15. Fermi Observations of High-energy Gamma-ray Emission from GRB 090217A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ripken, J.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.; Fermi LAT Collaboration; Fermi GBM Collaboration

    2010-07-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ~1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  16. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Briggs, M. S.; Bissaldi, E.; Bonamente, E.; Brigida, M. E-mail: piron@lpta.in2p3.f

    2010-07-10

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9{sigma}. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to {approx}1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  17. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  18. Milagro Search for Very High Energy Emission from Gamma-Ray Bursts in the Swift Era

    SciTech Connect

    Saz Parkinson, P. M.

    2006-05-19

    The recently launched Swift satellite is providing an unprecedented number of rapid and accurate Gamma-Ray Burst (GRB) localizations, facilitating a flurry of follow-up observations by a large number of telescopes at many different wavelengths. The Very High Energy (VHE, >100 GeV) regime has so far been relatively unexplored. Milagro is a wide field of view (2 sr) and high duty cycle (> 90%) ground-based gamma-ray telescope which employs a water Cherenkov detector to monitor the northern sky almost continuously in the 100 GeV to 100 TeV energy range. We have searched the Milagro data for emission from the most recent GRBs identified within our field of view. These include three Swift bursts which also display late-time X-ray flares. We have searched for emission coincident with these flares. No significant detection was made. A 99% confidence upper limit is provided for each of the GRBs, as well as the flares.

  19. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model

    NASA Astrophysics Data System (ADS)

    Takata, J.; Ng, C. W.; Cheng, K. S.

    2016-02-01

    We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation cascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin-down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observed >10 GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin-down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.

  20. Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts.

    PubMed

    Bustamante, Mauricio; Baerwald, Philipp; Murase, Kohta; Winter, Walter

    2015-01-01

    Gamma-ray bursts (GRBs) are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highest energies. Recent neutrino data have, however, started to constrain this possibility in the simplest models with only one emission zone. In the classical theory of GRBs, it is expected that particles are accelerated at mildly relativistic shocks generated by the collisions of material ejected from a central engine. Here we consider neutrino and cosmic-ray emission from multiple emission regions since these internal collisions must occur at very different radii, from below the photosphere all the way out to the circumburst medium, as a consequence of the efficient dissipation of kinetic energy. We demonstrate that the different messengers originate from different collision radii, which means that multi-messenger observations open windows for revealing the evolving GRB outflows. PMID:25858274

  1. Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Baerwald, Philipp; Murase, Kohta; Winter, Walter

    2015-04-01

    Gamma-ray bursts (GRBs) are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highest energies. Recent neutrino data have, however, started to constrain this possibility in the simplest models with only one emission zone. In the classical theory of GRBs, it is expected that particles are accelerated at mildly relativistic shocks generated by the collisions of material ejected from a central engine. Here we consider neutrino and cosmic-ray emission from multiple emission regions since these internal collisions must occur at very different radii, from below the photosphere all the way out to the circumburst medium, as a consequence of the efficient dissipation of kinetic energy. We demonstrate that the different messengers originate from different collision radii, which means that multi-messenger observations open windows for revealing the evolving GRB outflows.

  2. GAMMA-RAY BURST PROMPT EMISSION: JITTER RADIATION IN STOCHASTIC MAGNETIC FIELD REVISITED

    SciTech Connect

    Mao, Jirong; Wang Jiancheng

    2011-04-10

    We revisit the radiation mechanism of relativistic electrons in the stochastic magnetic field and apply it to the high-energy emissions of gamma-ray bursts (GRBs). We confirm that jitter radiation is a possible explanation for GRB prompt emission in the condition of a large electron deflection angle. In the turbulent scenario, the radiative spectral property of GRB prompt emission is decided by the kinetic energy spectrum of turbulence. The intensity of the random and small-scale magnetic field is determined by the viscous scale of the turbulent eddy. The microphysical parameters {epsilon}{sub e} and {epsilon}{sub B} can be obtained. The acceleration and cooling timescales are estimated as well. Due to particle acceleration in magnetized filamentary turbulence, the maximum energy released from the relativistic electrons can reach a value of about 10{sup 14} eV. The GeV GRBs are possible sources of high-energy cosmic-ray.

  3. Strong constraints on gamma-ray burst emission in TeV using recent results from VERITAS

    NASA Astrophysics Data System (ADS)

    Weiner, Ori

    2016-04-01

    Recent VERITAS gamma-ray upper limits in the energy range 100 GeV to 30 TeV suggest that gamma-ray burst (GRB) emission in TeV is substantially suppressed compared to X-ray emission, and even compared to typically-observed Fermi-LAT emission in GeV. These results impact on our understanding of the GRB environment. We will present VERITAS results on GRB150323A and put them in context of what has been seen at lower energies by Swift and Fermi, both for this particular burst and for others.

  4. Electromagnetic afterglows associated with gamma-ray emission coincident with binary black hole merger event GW150914

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Asano, Katsuaki; Ohira, Yutaka

    2016-05-01

    The Fermi Gamma-ray Burst Monitor reported the possible detection of the gamma-ray counterpart of a binary black hole merger event, GW150914. We show that the gamma-ray emission is caused by a relativistic outflow with Lorentz factor larger than 10. Subsequently, debris outflow pushes the ambient gas to form a shock, which is responsible for the afterglow synchrotron emission. We find that the 1.4 GHz radio flux peaks at {˜ }10^5 s after the burst trigger. If the ambient matter is dense enough, with density larger than {˜ }10^{-2} cm^{-3}, then the peak radio flux is {˜ }0.1 mJy, which is detectable with radio telescopes such as the Very Large Array. The optical afterglow peaks earlier than the radio, and if the ambient matter density is larger than {˜ }0.1 cm^{-3}, the optical flux is detectable with large telescopes such as the Subaru Hyper Suprime-Cam. To reveal the currently unknown mechanisms of the outflow and its gamma-ray emission associated with the binary black hole merger event, follow-up electromagnetic observations of afterglows are important. Detection of the afterglow will localize the sky position of the gravitational wave and gamma-ray emissions, and it will support the physical association between them.

  5. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dubus, G.; Lamberts, A.; Fromang, S.

    2015-09-01

    Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org

  6. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.

    PubMed

    Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-04-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence. PMID:21561178

  7. Search for VHE {gamma}-ray emission in the vicinity of selected pulsars of the Northern Sky with VERITAS

    SciTech Connect

    Aliu, Ester

    2008-12-24

    It is generally believed that pulsars dissipate their rotational energy through powerful winds of relativistic particles. Confinement of these winds leads to the formation of luminous pulsar wind nebulae (PWNe) seen across the electromagnetic spectrum in synchrotron and inverse Compton emission. Recently, many new detections have been produced at the highest energies by Very High Energy (VHE){gamma}-ray observations, identifying PWNe as among the most common sources of galactic VHE {gamma}-ray emission. We report here on the preliminary results of a search for VHE {gamma}-ray emission towards a selection of energetic and/or close pulsars in the Northern hemisphere in the first year of operations of the full VERITAS array.

  8. A Search for High-Energy Neutrino Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Whitehorn, Nathan

    2012-05-01

    A century after their discovery, the origin of cosmic rays remains one of the most enduring mysteries in physics. They can have energies that exceed 1020 eV, a hundred million times as energetic as the most powerful Earth-bound particle accelerators and must therefore be produced in the universe's most violent environments. Direct observation of their origins, however, has proven difficult due to deflection of charged cosmic ray particles in galactic and intergalactic magnetic fields, obscuring their true origins. Astronomy using electrically neutral particles, such as photons and neutrinos, does not, however, share this difficulty. This work presents a search for neutrino emission from one of the primary candidates for the sources of the highest-energy cosmic rays, Gamma-Ray Bursts, using the recently-completed IceCube neutrino telescope located at the South Pole. The null result obtained from this search contradicts well-established predictions for the neutrino flux from Gamma-Ray Bursts if they are the cosmic ray sources, forcing a reevaluation of these theoretical models.

  9. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Källne, J.; Salewski, M.; Tardocchi, M.; Gorini, G.

    2015-11-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the \\text{d}{{≤ft(\\text{p},γ \\right)}3}\\text{He} reaction and the temperature of protons accelerated by radio-frequency heating. The results presented in this paper significantly improve the accuracy of diagnostic information that can be extracted from the gamma-ray emission spectrum of fusion reactions without intrinsic broadening and are of relevance for applications to high performance plasmas of present and next generation devices.

  10. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS

    SciTech Connect

    Michael Burgess, J.; Preece, Robert D.; Ryde, Felix; Axelsson, Magnus; Veres, Peter; Mészáros, Peter; Connaughton, Valerie; Briggs, Michael; Bhat, P. N.; Pelassa, Veronique; Pe'er, Asaf; Iyyani, Shabnam; Goldstein, Adam; Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne; Kocevski, Daniel; Omodei, Nicola; Paciesas, William S. E-mail: rob.preece@nasa.gov E-mail: veres@gwu.edu; and others

    2014-04-01

    Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E {sub p} and kT, of these two components are correlated via the relation E {sub p}∝T {sup α} which varies from GRB to GRB. We present an interpretation in which the value of the index α indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  11. Evidence for TeV Gamma-Ray Emission from a Region of the Galactic Plane

    SciTech Connect

    Atkins, R.; Gonzalez, M.M.; McEnery, J.E.; Wilson, M.E.; Benbow, W.; Coyne, D.G.; Dorfan, D.E.; Kelley, L.A.; Morales, M.F.; Parkinson, P.M. Saz; Williams, D.A.; Berley, D.; Blaufuss, E.; DeYoung, T.; Goodman, J.A.; Hays, E.; Lansdell, C.P.; Noyes, D.; Smith, A.J.; Sullivan, G.W.

    2005-12-16

    Gamma-ray emission from a narrow band at the galactic equator has previously been detected up to 30 GeV. We report evidence for a TeV gamma-ray signal from a region of the galactic plane by Milagro, a large-field-of-view water Cherenkov detector for extensive air showers. An excess with a significance of 4.5 standard deviations has been observed from the region of galactic longitude l (set-membership sign) (40 deg.,100 deg.) and latitude vertical bar b vertical bar <5 deg. Under the assumption of a simple power law spectrum, with no cutoff in the EGRET-Milagro energy range, the measured integral flux is {phi}{sub {gamma}}(>3.5 TeV)=(6.4{+-}1.4{+-}2.1)x10{sup -11} cm{sup -2} s{sup -1} sr{sup -1}. This flux is consistent with an extrapolation of the EGRET spectrum between 1 and 30 GeV in this galactic region.

  12. THE {gamma}-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    SciTech Connect

    Lyutikov, Maxim

    2012-09-20

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband {gamma}-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright {gamma}-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of {gamma}-ray pulsars-i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and {gamma}-ray regions, presence of profile peaks at lower energies aligned with {gamma}-ray peaks-all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  13. A Measurement of the Spatial Distribution of Diffuse TeV Gamma Ray Emission from the Galactic Plane with Milagro

    SciTech Connect

    Abdo, A.A.; Allen, B.; Aune, T.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hoffman, C.M.; H'untemeyer, P.H.; Kolterman, B.E.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.; Mincer, A.I.; Nemethy, I.V.Moskalenko P.

    2008-05-14

    Diffuse {gamma}-ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the Northern Hemisphere sky and for detecting diffuse {gamma}-ray emission at very high energies. Here, the spatial distribution and the flux of the diffuse {gamma}-ray emission in the TeV energy range with a median energy of 15 TeV for Galactic longitudes between 30{sup o} and 110{sup o} and between 136{sup o} and 216{sup o} and for Galactic latitudes between -10{sup o} and 10{sup o} are determined. The measured fluxes are consistent with predictions of the GALPROP model everywhere except for the Cygnus region (l {element_of} [65{sup o}, 85{sup o}]). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the presence of active cosmic ray sources accelerating hadrons which interact with the local dense interstellar medium and produce gamma rays through pion decay.

  14. Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions

    SciTech Connect

    Kirby, J.; Lindquist, R.P.

    1994-06-01

    Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  15. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  16. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  17. Predictions on Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor

    2014-05-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Recently, Østgaard et al. [GRL, 40, 2423, 2013] have reported for the first time space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to predict the intensities of optical emissions resulting from the excitation of air molecules by the large amount of low- and high-energy electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We use a Monte Carlo model to simulate the propagation of electrons in either large-scale homogeneous electric fields sustaining RREAs or highly inhomogeneous electric fields produced around the lightning leaders tips region. A model similar to that described in [Liu and Pasko, JGR, 109, A04301, 2004] is used to estimate intensities from the first and second positive band systems of N2 and the first negative band system of N2+. The optical emissions produced by RREAs are compared to

  18. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  19. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    NASA Technical Reports Server (NTRS)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; Gehrels, N.

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R < 1018 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with beta1 = -0.3 +/- 0.1 and beta2 = 0.6 +/- 0.1 that has a break at E = 6.6 +/- 0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of Ea < 6 keV suggest a magnetic field strength of B approx. 10(exp 5) G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of approx. 2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can

  20. Evidence of pre-equilibrium {gamma}-ray emission in heavy ion collisions at intermediate incident energies

    SciTech Connect

    Tudisco, S.; Di Pietro, A.; Pappalardo, G.; Rizzo, F.; Amorini, F.; Cardella, G.; Papa, M.; Figuera, P.; Musumarra, A.; Lanzalone, G.; Pirrone, S.

    1999-11-16

    The experimental results of {sup 40}Ca+{sup 48}Ca,{sup 40}Ca,{sup 46}Ti reactions are reported. The comparison between {gamma}-ray spectra measured in coincidence with fusion evaporation residues for the three colliding systems shows a clear evidence of pre-equilibrium {gamma}-rays emission in the region around 10 MeV. BNV simulations also predict this emission. The saturation of GDR strength with temperature has been found with some dependence on the colliding system.

  1. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  2. Search for VHE gamma-ray emission from the globular cluster M13 with VERITAS

    NASA Astrophysics Data System (ADS)

    McCutcheon, Michael Warren

    2012-06-01

    Globular clusters, such as M13, are very dense star clusters and are known to contain many more millisecond pulsars per unit mass than the galaxy as a whole. These pulsars are concentrated in the core regions of globulars and are expected to generate relativistic winds of electrons. Such energetic electrons may then interact with the intense field of optical photons, which is supported by the numerous normal stars of the cluster, to generate Very High-Energy (VHE) gamma rays. Herein, this emission model, as implemented by Bednarek & Sitarek (2007), is described and justified in more detail and data from observations of M13, undertaken to confront this model, are analysed. No evidence for VHE gamma-ray emission from M13 is found. A decorrelated, integral upper limit of 0.306 × 10-12 cm -2 s-1 above 0.8 TeV, at a confidence level of 95%, is determined. Spectral upper limits are also determined and compared to emission curves presented in Bednarek & Sitarek (2007). A detailed examination of the parameters of the model is performed and it is found that the predicted curves were based upon over-optimistic estimations of several of these. Nonetheless, the model can be related to existing theories of pulsar winds and, thereby, it is found that the acceleration of electrons in millisecond pulsar winds (outside pulsar light-cylinders) to TeV energies is excluded by these observations, under self-consistent assumptions of the properties of this population of millisecond pulsars.

  3. FERMI-LAT DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE YOUNG SUPERNOVA REMNANT CASSIOPEIA A

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Baring, M. G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M. E-mail: uchiyama@slac.stanford.edu

    2010-02-10

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant (SNR) with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation-Cassiopeia A (Cas A). The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W {sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {>=} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.0.

  4. Fermi-LAT Discovery of GeV Gamma-ray Emission from the Young Supernova Remnant Cassiopeia A

    SciTech Connect

    Abdo, A.A.

    2011-08-19

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W{sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {ge} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.

  5. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  6. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-30

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.

  7. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    SciTech Connect

    Kataoka, J.; Stawarz, L.; Takahashi, Y.; Cheung, C.C.; Hayashida, M.; Grandi, P.; Burnett, T.H.; Celotti, A.; Fegan, S.J.; Fortin, P.; Maeda, K.; Nakamori, T.; Taylor, G.B.; Tosti, G.; Digel, S.W.; McConville, W.; Finke, J.; D'Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  8. Gamma-ray emission from SN2014J near maximum optical light

    NASA Astrophysics Data System (ADS)

    Isern, J.; Jean, P.; Bravo, E.; Knödlseder, J.; Lebrun, F.; Churazov, E.; Sunyaev, R.; Domingo, A.; Badenes, C.; Hartmann, D. H.; Hoeflich, P.; Renaud, M.; Soldi, S.; Elias-Rosa, N.; Hernanz, M.; Domínguez, I.; García-Senz, D.; Lichti, G. G.; Vedrenne, G.; Von Ballmoos, P.

    2016-04-01

    Context. The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Aims: Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. Methods: The gamma data obtained from SN2014J in M 82 by the instruments on board INTEGRAL were analysed paying special attention to the effect that the detailed spectral response has on the measurements of the intensity of the lines. Results: The 158 keV emission of 56Ni has been detected in SN2014J at ~5σ at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the lines suggest that, in addition to the bulk of radioactive elements buried in the central layers of the debris, there is a plume of 56Ni, with a significance of ~3σ, moving at high velocity and receding from the observer. The mass of the plume is in the range of ~0.03-0.08 M⊙. Conclusions: No SNIa explosion model has ever predicted the mass and geometrical distribution of 56Ni suggested here. According to its optical properties, SN2014J looks like a normal SNIa, so it is extremely important to discern whether it is also representative in the gamma-ray band. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, and Spain), the Czech Republic, and Poland and with the participation of Russia and USA.

  9. Equipartition Gamma-Ray Blazars and the Location of the Gamma-Ray Emission Site in 3C 279

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.; Cerruti, Matteo; Lott, Benoit; Boisson, Catherine; Zech, Andreas

    2014-02-01

    Blazar spectral models generally have numerous unconstrained parameters, leading to ambiguous values for physical properties like Doppler factor δD or fluid magnetic field B'. To help remedy this problem, a few modifications of the standard leptonic blazar jet scenario are considered. First, a log-parabola function for the electron distribution is used. Second, analytic expressions relating energy loss and kinematics to blazar luminosity and variability, written in terms of equipartition parameters, imply δD, B', and the peak electron Lorentz factor \\gamma _{pk}^\\prime. The external radiation field in a blazar is approximated by Lyα radiation from the broad-line region (BLR) and ≈0.1 eV infrared radiation from a dusty torus. When used to model 3C 279 spectral energy distributions from 2008 and 2009 reported by Hayashida et al., we derive δD ~ 20-30, B' ~ few G, and total (IR + BLR) external radiation field energy densities u ~ 10-2-10-3 erg cm-3, implying an origin of the γ-ray emission site in 3C 279 at the outer edges of the BLR. This is consistent with the γ-ray emission site being located at a distance R <~ Γ2 ct var ~ 0.1(Γ/30)2(t var/104 s) pc from the black hole powering 3C 279's jets, where t var is the variability timescale of the radiation in the source frame, and at farther distances for narrow-jet and magnetic-reconnection models. Excess >~ 5 GeV γ-ray emission observed with Fermi LAT from 3C 279 challenges the model, opening the possibility of a second leptonic component or a hadronic origin of the emission. For low hadronic content, absolute jet powers of ≈10% of the Eddington luminosity are calculated.

  10. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. PMID:26242558

  11. Average Emissivity Curve of BATSE Gamma-Ray Bursts with Different Intensities

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Anfimov, Dimitrij S.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, W. S.; Pendleton, Geoffrey N.; Preece, Robert D.

    1998-01-01

    Six intensity groups with $/sim 150$ BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group. Which serves as the reference taking into account the systematics of counts-produced noise effects and choice statistics. The effect of stretching/intensity anti-correlation is found at the average back slopes of bursts with good statistical significance. A stretch factor $/sim 2$ is found between the 150 dimmest bursts with peak flux $less than 0.45$ ph cm$(exp -2)$ s$(exp -1)$, and the 147 brightest bursts with peak flux $greater than 4.1$ ph cm$(exp -2}$ s$(exp -1)$. On the other hand, only a marginally significant stretching effect $V(sub ec) 1.4$ is seen at the average rise fronts.

  12. GAMMA-RAY BURSTS IN THE FERMI ERA: THE SPECTRAL ENERGY DISTRIBUTION OF THE PROMPT EMISSION

    SciTech Connect

    Massaro, F.; Grindlay, J. E.; Paggi, A.

    2010-05-10

    Gamma-ray bursts (GRBs) show evidence of different light curves, duration, afterglows, and host galaxies and explode within a wide redshift range. However, their spectral energy distributions (SEDs) appear to be very similar, showing a curved shape. Band et al. proposed a phenomenological description of the integrated spectral shape for the GRB prompt emission, the so-called Band function. In this Letter, we suggest an alternative scenario to explain the curved shape of GRB SEDs: the log-parabolic model. In comparison with the Band spectral shape our model is statistically favored because it fits the GRB spectra with one parameter less than the Band function and is motivated by a theoretical acceleration scenario. The new Fermi observations of GRBs will be crucial for disentangling these two models.

  13. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dimitriou, P.; Becker, H.-W.; Bogdanović-Radović, I.; Chiari, M.; Goncharov, A.; Jesus, A. P.; Kakuee, O.; Kiss, A. Z.; Lagoyannis, A.; Räisänen, J.; Strivay, D.; Zucchiatti, A.

    2016-03-01

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL)

  14. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  15. Equipartition gamma-ray blazars and the location of the gamma-ray emission site in 3C 279

    SciTech Connect

    Dermer, Charles D.; Cerruti, Matteo; Lott, Benoit

    2014-02-20

    Blazar spectral models generally have numerous unconstrained parameters, leading to ambiguous values for physical properties like Doppler factor δ{sub D} or fluid magnetic field B'. To help remedy this problem, a few modifications of the standard leptonic blazar jet scenario are considered. First, a log-parabola function for the electron distribution is used. Second, analytic expressions relating energy loss and kinematics to blazar luminosity and variability, written in terms of equipartition parameters, imply δ{sub D}, B', and the peak electron Lorentz factor γ{sub pk}{sup ′}. The external radiation field in a blazar is approximated by Lyα radiation from the broad-line region (BLR) and ≈0.1 eV infrared radiation from a dusty torus. When used to model 3C 279 spectral energy distributions from 2008 and 2009 reported by Hayashida et al., we derive δ{sub D} ∼ 20-30, B' ∼ few G, and total (IR + BLR) external radiation field energy densities u ∼ 10{sup –2}-10{sup –3} erg cm{sup –3}, implying an origin of the γ-ray emission site in 3C 279 at the outer edges of the BLR. This is consistent with the γ-ray emission site being located at a distance R ≲ Γ{sup 2} ct {sub var} ∼ 0.1(Γ/30){sup 2}(t {sub var}/10{sup 4} s) pc from the black hole powering 3C 279's jets, where t {sub var} is the variability timescale of the radiation in the source frame, and at farther distances for narrow-jet and magnetic-reconnection models. Excess ≳ 5 GeV γ-ray emission observed with Fermi LAT from 3C 279 challenges the model, opening the possibility of a second leptonic component or a hadronic origin of the emission. For low hadronic content, absolute jet powers of ≈10% of the Eddington luminosity are calculated.

  16. FERMI LARGE AREA TELESCOPE DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE VICINITY OF SNR W44

    SciTech Connect

    Uchiyama, Yasunobu; Funk, Stefan; Katsuta, Junichiro; Lemoine-Goumard, Marianne; Torres, Diego F.

    2012-04-20

    We report the detection of GeV {gamma}-ray emission from the molecular cloud complex that surrounds the supernova remnant (SNR) W44 using the Large Area Telescope on board Fermi. While the previously reported {gamma}-ray emission from SNR W44 is likely to arise from the dense radio-emitting filaments within the remnant, the {gamma}-ray emission that appears to come from the surrounding molecular cloud complex can be ascribed to the cosmic rays (CRs) that have escaped from W44. The non-detection of synchrotron radio emission associated with the molecular cloud complex suggests the decay of {pi}{sup 0} mesons produced in hadronic collisions as the {gamma}-ray emission mechanism. The total kinetic energy channeled into the escaping CRs is estimated to be W{sub esc} {approx} (0.3-3) Multiplication-Sign 10{sup 50} erg, in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs.

  17. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    SciTech Connect

    Ellison, Donald C.; Bykov, Andrei M. E-mail: byk@astro.ioffe.ru

    2011-04-20

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  18. LYNX: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials

    SciTech Connect

    Runkle, Robert C.; Myjak, Mitchell J.; Kiff, Scott D.; Sidor, Daniel E.; Morris, Scott J.; Rohrer, John S.; Jarman, Kenneth D.; Pfund, David M.; Todd, Lindsay C.; Bowler, Ryan S.; Mullen, Crystal A.

    2009-01-21

    This manuscript profiles an unattended and fully autonomous detection system sensitive to gamma-ray and neutron emissions from special nuclear material. The LYNX design specifically targets applications that require radiation detection capabilities but possess little or no infrastructure. In these settings, users need the capability to deploy sensors for extended periods of time that analyze whatever signal-starved data can be captured, since little or no control may be exerted over measurement conditions. The fundamental sensing elements of the LYNX system are traditional NaI(Tl) and 3He detectors. The new developments reported here center on two themes: low-power electronics and computationally simple analysis algorithms capable of discriminating gamma-ray signatures indicative of special nuclear materials from those of naturally occurring radioactive material. Incorporating tripwire-detection algorithms based on gamma-ray spectral signatures into a low-power electronics package significantly improves performance in environments where sensors encounter nuisance sources.

  19. INTEGRAL Observations of the Galactic 511 keV Emission and MeV Gamma-ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Watanabe, Ken

    2005-01-01

    Although there are a number of interesting phenomena, such as Nucleosynthesis in stars, in the MeV energy region, the observations have been difficult due to a small signal to noise (background) ratio (less than 1%). While NASA's Compton Gamma-ray Observatory (CGRO) enabled us to explore the Gamma-ray universe, ESA's INTEGRAL mission, launched in 2002, is providing us more detailed information with its superior energy and angular resolution. We will briefly discuss some of the current issues in MeV Gamma-ray Astrophysics. Then, we will focus on the Galactic 511 keV emission with the latest INTEGRAL observations, and talk about challenges we currently have.

  20. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P. R.; Fermi LAT Collaboration

    2016-04-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  1. Modeling the Delayed Emission in the 2005 Mkn 501 Very-High-Energy Gamma-Ray Flare

    SciTech Connect

    Bednarek, Wlodek; Wagner, Robert

    2008-12-24

    Recently, the MAGIC collaboration reported evidence for a delay in the arrival times of photons of different energies during a {gamma}-ray flare from the blazar Markarian 501 on 2005 July 9. We describe the observed delayed high-energy emission by applying a homogeneous synchrotron self-Compton (SSC) model under the assumption that the blob, containing relativistic electrons, was observed in its acceleration phase. This modified SSC model predicts the appearance of a {gamma}-ray flare first at lower energies and subsequently at higher energies. Based on the reported time delay, we predict a delay on the order of 1 h if observed between 10 GeV and 100 GeV, which can be tested in the future by simultaneous flare observations using, e.g., the Fermi Gamma-Ray Telescope and Cerenkov telescopes.

  2. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  3. Search for gamma-ray emission lines from SS 433: 2: 1980-1989

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Geller, H. A.

    1994-01-01

    We have searched through the Solar Maximum Mission satellite gamma-ray spectrometer database for evidence of red and blue Doppler-shifted 1.37 MeV (24)Mg* nuclear lines. The data were obtained between 1980 and 1989 and span a total of 720 days when SS 433 was in the field of view. No evidence of Doppler-shifted line emission was found in any of our spectra. The range of 3 sigma upper limits for individual 9 day integration periods was (0.8-2.4) x 10(exp -3) photons/sq cm/s for the blue beam, encompassing the approximately 1.5 MeV feature reported by Lamb et al., and (0.2-2.1) x 10(exp -3) photons/sq cm/s for the red beam, encompassing the reported approximately 1.2 MeV feature. The average 3 sigma upper limit in each beam for shifted 1.37 MeV was 1.5 x 10(exp -3) photons/sq cm/s for single 9 day integration. The 3 sigma upper limits over 56 9 day integration intervals (504 days) for the red beam and 69 intervals (621 days) for the blue beam are 1.2 x 10(exp -4) photons/sq cm/s. The new limits can be reconciled with the HEAO 3 results only if SS 433 emits gamma rays at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  4. Observation and Simulation of the Variable Gamma-ray Emission from PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Ng, C. W.; Takata, J.; Cheng, K. S.

    2016-07-01

    Pulsars are rapidly spinning and highly magnetized neutron stars, with highly stable rotational periods and a gradual spin-down over a long timescale due to the loss of radiation. Glitches refer to events that suddenly increase the rotational speed of a pulsar. The exact causes of glitches and the resulting processes are not fully understood. It is generally believed that couplings between the normal matter and superfluid components, and starquakes, are the common causes of glitches. In this study, one famous glitching pulsar, PSR J2021+4026, is investigated. PSR J2021+4026 is the first variable gamma-ray pulsar observed by Fermi. From gamma-ray observations, it is found that the pulsar experienced a significant flux drop, an increase in the spin-down rate, a change in the pulse profile and a shift in the spectral cut-off to a lower energy, simultaneously around 2011 October 16. To explain these effects on high-energy emissions by the glitch of PSR J2021+4026, we hypothesized the glitch to be caused by the rearrangement of the surface magnetic field due to crustal plate tectonic activities on the pulsar, which was triggered by a starquake. In this glitch event, the inclination angle of the magnetic dipole axis was slightly shifted. This proposition is then tested by numerical modeling using a three-dimensional two-layer outer gap model. The simulation results indicate that a modification of the inclination angle can affect the pulse profile and the spectral properties, which can explain the observation changes after the glitch.

  5. Scattered emission from a relativistic outflow and its application to gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Shen, R.-F.; Barniol Duran, R.; Kumar, P.

    2008-03-01

    We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ~1052-1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.

  6. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10‑3 cm‑3 for the interstellar medium and A * < 5 × 10‑4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  7. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    NASA Technical Reports Server (NTRS)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  8. Gamma Ray Pulsars: Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

  9. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  10. Fermi Detection of Gamma-Ray Emission from the M2 Soft X-Ray Flare on 2010 June 12

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Burgess, J. M.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Gruber, D.; Troja, E.; Casandjian, J. M.

    2012-01-01

    The GOES M2-class solar flare, SOL2010-06-12T00:57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an approximately 50 s impulsive burst of hard X- and gamma-ray emission up to at least 400 MeV observed by the Fermi GBM and LAT experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or equal to 300 MeV with a delay of approximately 10 s from mildly relativistic electrons, but some reached these energies in as little as approximately 3 s. The gamma-ray line fluence from this flare was about ten times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended greater than 100 MeV emission as has been found for other flares with high-energy gamma rays.