Science.gov

Sample records for gamma-ray millisecond pulsar

  1. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  2. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-01

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found. PMID:23112297

  3. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  4. Search for Gamma-Ray Millisecond Pulsars with the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2009-01-01

    Prior to the launch of Fermi, only weak gamma-ray pulsations from a single millisecond pulsar, PSR J0218+4232, had been reported. A firm detection of gamma rays from a member of this class of pulsar having periods near neutron star break-up and magnetic dipole moments well below those of normal pulsars would provide new insights into pulsar acceleration and emission. Using accurate ephemerides obtained from several radio telescopes as well as the unprecedented accuracy of the GPS-derived clocks used by Fermi and the LAT, we have searched for gamma-ray pulsations from known pulsars over a broad range of timing parameters. We will present some results from our search for pulsed gamma rays from millisecond pulsars.

  5. Observations and Modeling of Gamma-ray Millisecond Pulsars seen with the Fermi LAT

    NASA Astrophysics Data System (ADS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.

    2011-08-01

    We present a summary of gamma-ray millisecond pulsar (MSP) observations with the Fermi Large Area Telescope. The radio and gamma-ray light curves of these MSPs have been modeled in the framework of the retarded vacuum dipole magnetic field. Likelihood fitting of the radio and gamma-ray light curves with geometric emission models allows us to give model-dependent confidence contours for the viewing geometry in these systems which are complementary to those from polarization measurements.

  6. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. PMID:19574349

  7. Challenges in explaining the Galactic Center gamma-ray excess with millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2015-06-01

    Millisecond pulsars have been discussed as a possible source of the gamma-ray excess observed from the region surrounding the Galactic Center. With this in mind, we use the observed population of bright low-mass X-ray binaries to estimate the number of millisecond pulsars in the Inner Galaxy. This calculation suggests that only ~ 1-5% of the excess is produced by millisecond pulsars. We also use the luminosity function derived from local measurements of millisecond pulsars, along with the number of point sources resolved by Fermi, to calculate an upper limit for the diffuse emission from such a population. While this limit is compatible with the millisecond pulsar population implied by the number of low-mass X-ray binaries, it strongly excludes the possibility that most of the excess originates from such objects.

  8. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  9. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  10. Six millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection of millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Espinoza, C. M.; Guillemot, L.; Çelik, Ö.; Weltevrede, P.; Stappers, B. W.; Smith, D. A.; Kerr, M.; Zavlin, V. E.; Cognard, I.; Eatough, R. P.; Freire, P. C. C.; Janssen, G. H.; Camilo, F.; Desvignes, G.; Hewitt, J. W.; Hou, X.; Johnston, S.; Keith, M.; Kramer, M.; Lyne, A.; Manchester, R. N.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Theureau, G.; Webb, N.

    2013-03-01

    We report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and J2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While PSR J2051-0827 is firmly detected, we can only give upper limits for the X-ray flux of PSR J1600-3053. There are no dedicated X-ray observations available for the other three objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs. This sample is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We show that MSPs with pulsed gamma-ray emission which is phase-aligned with the radio emission present the steepest radio spectra and the largest magnetic fields at the light cylinder among all MSPs. Also, we observe a trend towards very low, or undetectable, radio linear polarization levels. These properties could be attributed to caustic radio emission produced at a range of different altitudes in the magnetosphere. We note that most of these characteristics are also observed in the Crab pulsar, the only other radio pulsar known to exhibit phase-aligned radio and gamma-ray emission.

  11. New Neighbours: Modelling the Growing Population of gamma-ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.; Johnson, T. J.

    2010-01-01

    The Fermi Large Area Telescope, in collaboration with several groups from the radio community. have had marvelous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of known gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs' short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.

  12. SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

    NASA Astrophysics Data System (ADS)

    de Oña Wilhelmi, E.; Papitto, A.; Li, J.; Rea, N.; Torres, D. F.; Burderi, L.; Di Salvo, T.; Iaria, R.; Riggio, A.; Sanna, A.

    2016-03-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ˜6 yr of data from the Large Area Telescope on board the Fermi gamma-ray Space Telescope (Fermi-LAT) within a region of 15° radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ˜6σ (test statistic TS = 32), with a position compatible with that of SAX J1808.4-3658 within the 95 per cent confidence level. The energy flux in the energy range between 0.6 and 10 GeV amounts to (2.1 ± 0.5) × 10-12 erg cm-2 s-1 and the spectrum is represented well by a power-law function with photon index 2.1 ± 0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertainties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time-scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAX J1808.4-3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.

  13. Parkes Radio Searches of Fermi Gamma-Ray Sources and Millisecond Pulsar Discoveries

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Sarkissian, J.; Cromartie, H. T.; Johnston, S.; Reynolds, J. E.; Wolff, M. T.; Freire, P. C. C.; Bhattacharyya, B.; Ferrara, E. C.; Keith, M.; Michelson, P. F.; Saz Parkinson, P. M.; Wood, K. S.

    2015-09-01

    In a search with the Parkes radio telescope of 56 unidentified Fermi-Large Area Telescope (LAT) gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported by Kerr et al. We did not detect radio pulsations from six other pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets conducted to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in \\gt 1 day circular orbits with 0.2-0.3 {M}⊙ presumed white dwarf companions. PSR J0955-6150, in a 24 day orbit with a ≈ 0.25 {M}⊙ companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036-8317 is in an 8 hr binary with a \\gt 0.14 {M}⊙ companion that is probably a white dwarf. PSR J1946-5403 is in a 3 hr orbit with a \\gt 0.02 {M}⊙ companion with no evidence of radio eclipses.

  14. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  15. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  16. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  17. Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    NASA Technical Reports Server (NTRS)

    Venter, C.; de Jaker, O.C.; Clapson, A.C.

    2009-01-01

    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.

  18. Discovery of a Highly Eccentric Binary Millisecond Pulsar in a Gamma-Ray-Detected Globular Cluster

    NASA Astrophysics Data System (ADS)

    DeCesar, Megan E.; Ransom, S. M.; Ray, P. S.; Kaplan, D. L.; Fermi Large Area Telescope Collaboration

    2014-01-01

    We report on the Green Bank Telescope discovery of a highly eccentric binary millisecond pulsar (MSP) in NGC 6652, the first MSP to be detected in this globular cluster. The pulsar search was guided by the Fermi Large Area Telescope, which detected NGC 6652 at GeV energies, identifying the cluster as a likely host of a population of gamma-ray-emitting MSPs. Initial timing of the MSP yielded an eccentricity of ~0.95 and a minimum companion mass of 0.73 solar masses, assuming a neutron star mass of 1.4 solar masses. These results strongly indicate that the pulsar has undergone one or more companion exchanges in the dense stellar environment of the cluster, and that the current companion is a compact object, likely a massive white dwarf or a neutron star. Further timing of this system will result in a measurement of the post-Keplerian rate of periastron advance and therefore a direct measurement of the total system mass, allowing additional constraints to be placed on both the pulsar and companion masses. The timing solution will also be used to search for gamma-ray pulsations from the MSP.

  19. X-RAY AND GAMMA-RAY EMISSIONS FROM ROTATION POWERED MILLISECOND PULSARS

    SciTech Connect

    Takata, J.; Cheng, K. S.; Taam, Ronald E. E-mail: hrspksc@hkucc.hku.hk

    2012-01-20

    The Fermi Large Area Telescope has revealed that rotation powered millisecond pulsars (MSPs) are a major contributor to the Galactic {gamma}-ray source population. Such pulsars may also be important in modeling the quiescent state of several low-mass X-ray binaries (LMXBs), where optical observations of the companion star suggest the possible existence of rotation powered MSPs. To understand the observational properties of the different evolutionary stages of MSPs, the X-ray and {gamma}-ray emissions associated with the outer gap model are investigated. For rotation powered MSPs, the size of the outer gap and the properties of the high-energy emission are controlled by either the photon-photon pair-creation process or magnetic pair-creation process near the surface. For these pulsars, we find that the outer gap model controlled by the magnetic pair-creation process is preferable in explaining the possible correlations between the {gamma}-ray luminosity or non-thermal X-ray luminosity versus the spin-down power. For the accreting MSPs in quiescent LMXBs, the thermal X-ray emission at the neutron star (NS) surface resulting from deep crustal heating can control the conditions in the outer gap. We argue that the optical modulation observed in the quiescent state of several LMXBs originates from the irradiation of the donor star by {gamma}-rays from the outer gap. In these systems, the irradiation luminosity required for the optical modulation of the source such as SAX J1808.4-3658 can be achieved for a NS of high mass. Finally, we discuss the high-energy emission associated with an intra-binary shock in black widow systems, e.g., PSR B1957+20.

  20. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Axelsson, M. Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, M.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  1. Modeling and Maximum Likelihood Fitting of Gamma-Ray and Radio Light Curves of Millisecond Pulsars Detected with Fermi

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Harding, A. K.; Venter, C.

    2012-01-01

    Pulsed gamma rays have been detected with the Fermi Large Area Telescope (LAT) from more than 20 millisecond pulsars (MSPs), some of which were discovered in radio observations of bright, unassociated LAT sources. We have fit the radio and gamma-ray light curves of 19 LAT-detected MSPs in the context of geometric, outermagnetospheric emission models assuming the retarded vacuum dipole magnetic field using a Markov chain Monte Carlo maximum likelihood technique. We find that, in many cases, the models are able to reproduce the observed light curves well and provide constraints on the viewing geometries that are in agreement with those from radio polarization measurements. Additionally, for some MSPs we constrain the altitudes of both the gamma-ray and radio emission regions. The best-fit magnetic inclination angles are found to cover a broader range than those of non-recycled gamma-ray pulsars.

  2. DISCOVERY OF AN ULTRACOMPACT GAMMA-RAY MILLISECOND PULSAR BINARY CANDIDATE

    SciTech Connect

    Kong, Albert K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Lin, L. C. C.; Hu, C.-P.; Hui, C. Y.; Park, S. M.; Takata, J.; Cheng, K. S.; Kim, C. L.

    2014-10-20

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observations, we have identified an X-ray and optical counterpart to 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 minutes in the optical and possibly also in the X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 minutes. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black-widow-/redback-type gamma-ray millisecond pulsar (MSP). The optical and X-ray light curve profiles show that the companion is mildly heated by the high-energy emission and that the X-rays are from intrabinary shock. Although no radio pulsation has yet been detected, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  3. MODELING PHASE-ALIGNED GAMMA-RAY AND RADIO MILLISECOND PULSAR LIGHT CURVES

    SciTech Connect

    Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J0034-0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of 'altitude-limited' outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario ('low-altitude slot gap' (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere

  4. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    NASA Technical Reports Server (NTRS)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  5. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    NASA Technical Reports Server (NTRS)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  6. DISCOVERY OF THE OPTICAL/ULTRAVIOLET/GAMMA-RAY COUNTERPART TO THE ECLIPSING MILLISECOND PULSAR J1816+4510

    SciTech Connect

    Kaplan, D. L.; Kotulla, R.; Biwer, C. M.; Day, D. F.; Stovall, K.; Dartez, L.; Ford, A. J.; Garcia, A.; Jenet, F. A.; Ransom, S. M.; Roberts, M. S. E.; Archibald, A. M.; Karako, C.; Kaspi, V. M.; Lynch, R. S.; Boyles, J.; Lorimer, D. R.; McLaughlin, M. A.; Hessels, J. W. T.; Kondratiev, V. I.; and others

    2012-07-10

    The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and a minimum companion mass of 0.16 M{sub Sun }, it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the {gamma}-ray counterpart to this pulsar and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris, we detect pulsations in the unclassified {gamma}-ray source 2FGL J1816.5+4511, implying an efficiency of {approx}25% in converting the pulsar's spin-down luminosity into {gamma}-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (<0.''1) and unusual colors. Assuming that it is the companion, with R = 18.27 {+-} 0.03 mag and effective temperature {approx}> 15,000 K, it would be among the brightest and hottest of low-mass pulsar companions and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it is a factor of two larger than most white dwarfs of its mass but a factor of four smaller than its Roche lobe. We discuss possible reasons for its high temperature and odd size, and suggest that it recently underwent a violent episode of mass loss. Regardless of origin, its brightness and the relative unimportance of irradiation make it an ideal target for a mass, and hence a neutron star mass, determination.

  7. Timing and Fermi LAT Analysis of Four Millisecond Pulsars Discovered in Parkes Radio Searches of Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Ransom, Scott M.; Camilo, Fernando M.; Kerr, Matthew; Reynolds, John; Sarkissian, John; Freire, Paulo; Thankful Cromartie, H.; Barr, Ewan D.

    2016-01-01

    We present phase-connected timing solutions for four binary millisecond pulsars discovered in searches of Fermi LAT gamma-ray sources using the Parkes radio telescope. Follow-up timing observations of PSRs J0955-6150, J1012-4235, J1036-8317, and J1946-5403 have yielded timing models with precise orbital and astrometric parameters. For each pulsar, we also did a gamma-ray spectral analysis using LAT Pass 8 data and generated photon probabilities for use in a weighted H-test pulsation test. In all 4 cases, we detect significant gamma-ray pulsations, confirming the identification with the gamma-ray source originally targeted in the discovery observations. We describe the results of the pulse timing and gamma-ray spectral and timing analysis and the characteristics of each of the systems. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. NRL participation was funded by NASA.

  8. The gamma-ray luminosity function of millisecond pulsars and implications for the GeV excess

    DOE PAGESBeta

    Hooper, Dan; Mohlabeng, Gopolang

    2016-03-29

    It has been proposed that a large population of unresolved millisecond pulsars (MSPs) could potentially account for the excess of GeV-scale gamma-rays observed from the region surrounding the Galactic Center. The viability of this scenario depends critically on the gamma-ray luminosity function of this source population, which determines how many MSPs Fermi should have already detected as resolved point sources. In this paper, we revisit the gamma-ray luminosity function of MSPs, without relying on uncertain distance measurements. Our determination, based on a comparison of models with the observed characteristics of the MSP population, suggests that Fermi should have already detectedmore » a significant number of sources associated with such a hypothesized Inner Galaxy population. As a result, we cannot rule out a scenario in which the MSPs residing near the Galactic Center are systematically less luminous than those present in the Galactic Plane or within globular clusters.« less

  9. The gamma-ray luminosity function of millisecond pulsars and implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Mohlabeng, Gopolang

    2016-03-01

    It has been proposed that a large population of unresolved millisecond pulsars (MSPs) could potentially account for the excess of GeV-scale gamma-rays observed from the region surrounding the Galactic Center. The viability of this scenario depends critically on the gamma-ray luminosity function of this source population, which determines how many MSPs Fermi should have already detected as resolved point sources. In this paper, we revisit the gamma-ray luminosity function of MSPs, without relying on uncertain distance measurements. Our determination, based on a comparison of models with the observed characteristics of the MSP population, suggests that Fermi should have already detected a significant number of sources associated with such a hypothesized Inner Galaxy population. We cannot rule out a scenario in which the MSPs residing near the Galactic Center are systematically less luminous than those present in the Galactic Plane or within globular clusters.

  10. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  11. FIVE NEW MILLISECOND PULSARS FROM A RADIO SURVEY OF 14 UNIDENTIFIED FERMI-LAT GAMMA-RAY SOURCES

    SciTech Connect

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Harding, A. K.; Guillemot, L.; Kramer, M.; Hessels, J.; Johnston, S.; Keith, M.; Reynolds, J. E.; Ransom, S. M.; Ray, P. S.; Wood, K. S.; Sarkissian, J. E-mail: fernando@astro.columbia.edu

    2012-03-20

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi Large Area Telescope sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR J0101-6422 (P = 2.57 ms, DM = 12 pc cm{sup -3}), we have detected {gamma}-ray pulsations and measured its proper motion. Its {gamma}-ray spectrum (a power law of {Gamma} = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and {gamma}-ray light curves challenge simple geometric models of emission. The high success rate of this survey-enabled by selecting {gamma}-ray sources based on their detailed spectral characteristics-and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  12. Five New Millisecond Pulsars from a Radio Survey of 14 Unidentified Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Guillemot, L.; Harding, A. K.; Hessels, J.; Johnson, S.; Keith, M.; Kramer, M.; Ransom, S. M.; Ray, P. S.; Reynolds, J. E.; Sarkissian, J.; Wood, K. S.

    2012-01-01

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Ferm;'LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR JOl01-6422 (P=2.57ms, DH=12pc/cubic cm ), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey -- enabled by selecting gamma-ray sources based on their detailed spectral characteristics -- and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  13. Gamma Ray Pulsars: Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

  14. The gamma-ray millisecond pulsar deathline, revisited. New velocity and distance measurements

    NASA Astrophysics Data System (ADS)

    Guillemot, L.; Smith, D. A.; Laffon, H.; Janssen, G. H.; Cognard, I.; Theureau, G.; Desvignes, G.; Ferrara, E. C.; Ray, P. S.

    2016-03-01

    Context. Millisecond pulsars (MSPs) represent nearly half of the more than 160 currently known γ-ray pulsars detected by the Large Area Telescope on the Fermi satellite, and a third of all known MSPs are seen in γ rays. The least energetic γ-ray MSPs enable us to probe the so-called deathline for high-energy emission, i.e., the spin-down luminosity limit under which pulsars (PSRs) cease to produce detectable high-energy radiation. Characterizing the MSP luminosity distribution helps to determine their contribution to the Galactic diffuse γ-ray emission. Aims: Because of the Shklovskii effect, precise proper motion and distance measurements are key ingredients for determining the spin-down luminosities of MSPs accurately. Our aim is to obtain new measurements of these parameters for γ-ray MSPs when possible, and clarify the relationship between the γ-ray luminosity of pulsars and their spin-down luminosity. Detecting low spin-down luminosity pulsars in γ rays and characterizing their spin properties is also particularly interesting for constraining the deathline for high-energy emission. Methods: We made use of the high-quality pulsar timing data recorded at the Nançay Radio Telescope over several years to characterize the properties of a selection of MSPs. For one of the pulsars, the dataset was complemented with Westerbork Synthesis Radio Telescope observations. The rotation ephemerides derived from this analysis were also used to search the LAT data for new γ-ray MSPs. Results: For the MSPs considered in this study, we obtained new transverse proper motion measurements or updated the existing ones, and placed new distance constraints for some of them, with four new timing parallax measurements. We discovered significant GeV γ-ray signals from four MSPs, i.e., PSRs J0740+6620, J0931-1902, J1455-3330, and J1730-2304. The latter is now the least energetic γ-ray pulsar found to date. Despite the improved Ė and Lγ estimates, the relationship between these

  15. Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Serpico, Pasquale D.; Zaharijas, Gabrijela

    2015-02-01

    Several groups of authors have analyzed Fermi LAT data in a region around the Galactic Center finding an unaccounted gamma-ray excess over diffuse backgrounds in the GeV energy range. It has been argued that it is difficult or even impossible to explain this diffuse emission by the leading astrophysical candidates—millisecond pulsars (MSPs). Here we provide a new estimate of the contribution to the excess by a population of yet unresolved MSP located in the bulge of the Milky Way. We simulate this population with the GALPLOT package by adopting a parametric approach, with the range of free parameters gauged on the MSP characteristics reported by the second pulsar catalogue (2PC). We find that the conclusions strongly depend on the details of the MSP luminosity function (in particular, its high luminosity end) and other explicit or tacit assumptions on the MSP statistical properties, which we discuss. Notably, for the first time we study the importance of the possible secondary emission of the MSPs in the Galactic Center, i.e. the emission via inverse Compton losses of electrons injected in the interstellar medium. Differently from a majority of other authors, we find that within current uncertainties a large if not dominant contribution of MSPs to the excess cannot be excluded. We also show that the sensitivities of future instruments or possibly already of the latest LAT data analysis (Pass 8) provide good perspectives to test this scenario by resolving a significant number of MSPs.

  16. TeV gamma-ray emission initiated by the population or individual millisecond pulsars within globular clusters

    NASA Astrophysics Data System (ADS)

    Bednarek, W.; Sitarek, J.; Sobczak, T.

    2016-05-01

    Two energetic millisecond pulsars (MSPs) within globular clusters (GCs), J1823-3021A in NGC 6624 and PSR B1821-24 in M28, have been recently discovered to emit pulsed GeV γ-rays. These MSPs are expected to eject energetic leptons. Therefore, GCs have been proposed to produce GeV-TeV γ-rays as a result of the Comptonization process of the background radiation within a GC. We develop this general scenario by taking into account not only the diffusion process of leptons within a GC but also their advection with the wind from the GC. Moreover, we consider distribution of MSP within a GC and the effects related to the non-central location of the dominating, energetic MSP. Such more complete scenario is considered for the modelling of the GeV-TeV γ-ray emission from the core-collapsed GC M15 and also for GCs which contain recently discovered energetic MSPs within NGC 6624 and M28. The confrontation of the modelling of the γ-ray emission with the observations with the present Cherenkov telescopes and the future Cherenkov Telescope Array (CTA) allows us to constrain more reliably the efficiency of lepton production within the inner magnetosphere of the MSPs and re-accelerated in their vicinity. We discuss the expected limits on this parameter in the context of expectations from the pulsar models. We conclude that deep observations of GCs, even with the present sensitivity of Cherenkov telescopes (the High Energy Stereoscopic System, the Major Atmospheric Gamma-Ray Imaging Cherenkov, the Very Energetic Radiation Imaging Telescope Array System), should start to constrain the models for the acceleration and radiation processes of leptons within the inner pulsar magnetosphere and its surrounding.

  17. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  18. Pulsar gamma rays from polar cap regions

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    The production is studied of pulsar gamma rays by energetic electrons flowing in the open field region above pulsar polar caps. The propagation was followed of curvature radiation from primary electrons, as well as hard synchrotron radiation generated by secondary pairs, through the pulsar magnetosphere for vacuum dipole open field geometries. Using data from radio and optical observations, models were constructed for the specific geometries and viewing angles appropriate to particular pulsars. These detailed models produce normalized spectra above 10 MeV, pulse profiles, beaming fractions and phase resolved spectra appropriate for direct comparison with COS-B and GRO data. Models are given for the Crab, Vela, and other potentially detectable pulsars; general agreement with existing data is good, although perturbations to the simplified models are needed for close matches. The calculations were extended to the millisecond pulsar range, which allows the production of predictions for the flux and spectra of populations of recycled pulsars and search strategies are pointed out.

  19. Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

    NASA Astrophysics Data System (ADS)

    Yen, Tzu-Ching; Kong, Albert Kwok-Hing; Yatsu, Yoichi; Hanayama, Hidekazu; Nagayama, Takahiro; Oister

    2013-09-01

    We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a γ-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the "black widows"- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

  20. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-02-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  1. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  2. Distance Indicators of Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-01-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars including 24 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η = Lγ/Ė) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find the strong correlation of η - ζ3 a generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation of η - BLC the magnetic field at the light cylinder radius is also found. These correlations would be the distance indicators in gamma-ray pulsars to evaluate distances for gamma-selected pulsars. Distances of 25 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. Physical origin of the correlations may be also interesting for pulsar studies.

  3. WIDE RADIO BEAMS FROM {gamma}-RAY PULSARS

    SciTech Connect

    Ravi, V.; Manchester, R. N.; Hobbs, G.

    2010-06-10

    We investigate the radio and {gamma}-ray beaming properties of normal and millisecond pulsars (MSPs) by selecting two samples from the known populations. The first, Sample G, contains pulsars which are detectable in blind searches of {gamma}-ray data from the Fermi Large Area Telescope. The second, Sample R, contains pulsars detectable in blind radio searches which have spin-down luminosities E>10{sup 34} erg s{sup -1}. We analyze the fraction of the {gamma}-ray-selected Sample G which have detectable radio pulses and the fraction of the radio-selected Sample R which have detectable {gamma}-ray pulses. Twenty of our 35 Sample G pulsars have already observed radio pulses. This rules out low-altitude polar-cap beaming models if, as is currently believed, {gamma}-ray beams are generated in the outer magnetosphere and are very wide. We further find that, for the highest-E pulsars, the radio and {gamma}-ray beams have comparable beaming factors, i.e., the beams cover similar regions of the sky as the star rotates. For lower-E {gamma}-ray emitting pulsars, the radio beams have about half of the {gamma}-ray sky coverage. These results suggest that, for high-E young and MSPs, the radio emission originates in wide beams from regions high in the pulsar magnetosphere, probably close to the null-charge surface and to the {gamma}-ray emitting regions. Furthermore, it suggests that for these high-E pulsars, as in the {gamma}-ray case, features in the radio profile represent caustics in the emission beam pattern.

  4. Pulsar searches: From radio to gamma-rays

    NASA Astrophysics Data System (ADS)

    Chandler, Adam M.

    2003-08-01

    We report the results of four different pulsar searches, covering radio, X-ray, and gamma-ray wavelengths. These searches targeted pulsars in virtually all of their guises: young and old, long-period and short-period, accretion-powered and rotation-powered. Ten new pulsars were discovered. There are very few known gamma-ray pulsars, all of which were found by folding gamma-ray data with a pulse period known from other wavelengths. Some emission models indicate that there may be a large number of gamma-ray pulsars that are undetectable at lower energies. We searched several of the brightest unidentified gamma-ray sources for pulsations. This was the first attempt to identify gamma-ray pulsars by directly searching gamma- ray data. No new identifications resulted; we report upper limits. Even more rare than gamma-ray pulsars are accreting millisecond pulsars. We searched for coherent pulsations from Aql X-1, a low-mass X-ray binary suspected of harboring such an object. No pulsations were detected, and we argue that the quiescent emission of this system has a thermal origin. The two radio searches included here were both designed to detect millisecond pulsars. First, we report the results of a large area survey from Arecibo. Five new slow pulsars were discovered, including an apparent orthogonal rotator and an extremely unusual bursting radio pulsar. No short-period pulsars were discovered and we place some of the first useful observational constraints on the limiting spin period of a neutron star. We also performed pointed searches of several globular clusters using the new Green Bank Telescope. Three new binary millisecond pulsars were found in M62. These were the first new objects found with the GBT, and they bring the total pulsar population in M62 to six. We also discovered two isolated pulsars, one each in NGC 6544 and NGC 6624. Many of the methods we developed will be relevant to future searches. Perhaps the most significant contribution is a dynamic power

  5. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  6. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  7. Gamma-Ray Pulsar Studies with GLAST

    NASA Astrophysics Data System (ADS)

    Thompson, D. J.

    2008-02-01

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  8. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  9. Gamma-Ray Pulsar Studies with GLAST

    SciTech Connect

    Thompson, D. J.

    2008-02-27

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  10. Gamma-Ray Pulsar Studies with GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2007-01-01

    This viewgraph presentation reviews the prospects of extending the understanding of gamma ray pulsars, and answering the open questions left from the limited observations that are available from current observatories. There are 2 new gamma ray observatories that are either on orbit or will be shortly launched: (1) Astro-rivelatore Gamma a Immagini LEggero (AGILE), and Gamma-ray Large Area Space Telescope (GLAST). On board GLAST there will be two instruments Large Area Telescope (LAT), and GLAST Burst Monitor (GBM).

  11. Gamma-ray pulsar studies with COMPTEL

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Diehl, R.; Lichti, G.; Schoenfelder, V.; Strong, A. W.; Connors, A.; Ryan, J.; Bennett, K.; Busetta, M.; Carraminana, A.; Buccheri, R.; Grenier, I. A.

    1994-06-01

    Since the launch of the Compton Gamma-Ray Observatory (CGRO) the number of detected gamma-ray pulsars increased from two to six. COMPTEL, on-board CGRO and sensitive to gamma-rays with energies between approximately 0.7 and 30 MeV, detected three of these unambiguously. The classical Crab and Vela pulsars have been observed on several occasions and detailed pulse patterns and spectral parameters have been derived. The new CGRO gamma-ray pulsar PSR B1509-58 has been detected by COMPTEL at a significance level above 4 sigma, consistently in a timing and spatial analysis. A likely detection of Geminga has been obtained at an approximately 3 sigma level. This indication is found in a phase interval in which COS B data showed the presence of a new variable component, Interpeak 2, exhibiting a very soft spectrum above 50 MeV. The diversities in light-curve sphapes and spectral distributions, the apparent time variabilities, and the significant differences in the fractions of the spin-down power radiated at gamma-ray energies in this small sample of gamma-ray pulsars pose important constraints to pulsar modeling.

  12. Gamma ray pulsars: Models and observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    1990-01-01

    The two known gamma ray pulsars, the Crab and Vela, were used as guides for the development of models of high-energy radiation from spinning neutron stars. Two general classes of models were developed: those with the gamma radiation originating in the pulsar magnetosphere far from the neutron star surface (outer gap models) and those with the gamma radiation coming from above the polar cap (polar cap models). The goal is to indicate how EGRET can contribute to understanding gamma-ray pulsars, and especially how it can help distinguish between models for emission.

  13. Gamma rays from pulsar wind shock acceleration

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

  14. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  15. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  16. THE GALACTIC POPULATION OF YOUNG {gamma}-RAY PULSARS

    SciTech Connect

    Watters, Kyle P.; Romani, Roger W. E-mail: rwr@astro.stanford.edu

    2011-02-01

    We have simulated a Galactic population of young pulsars and compared with the Fermi LAT sample, constraining the birth properties, beaming and evolution of these spin-powered objects. Using quantitative tests of agreement with the distributions of observed spin and pulse properties, we find that short birth periods P{sub 0} {approx} 50 ms and {gamma}-ray beams arising in the outer magnetosphere, dominated by a single pole, are strongly preferred. The modeled relative numbers of radio-detected and radio-quiet objects agrees well with the data. Although the sample is local, extrapolation to the full Galaxy implies a {gamma}-ray pulsar birthrate 1/(59 yr). This is shown to be in good agreement with the estimated Galactic core collapse rate and with the local density of OB star progenitors. We give predictions for the numbers of expected young pulsar detections if Fermi LAT observations continue 10 years. In contrast to the potentially significant contribution of unresolved millisecond pulsars, we find that young pulsars should contribute little to the Galactic {gamma}-ray background.

  17. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    SciTech Connect

    Wang, Ren-Bo; Hirotani, Kouichi E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.

  18. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4–112820

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4‑112820, which is associated with the high-energy γ-ray source 3FGL J1544.6‑1125. The system is detected up to ˜30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4‑112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270‑4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4‑112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  19. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4–112820

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4‑112820, which is associated with the high-energy γ-ray source 3FGL J1544.6‑1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4‑112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270‑4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4‑112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  20. The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-10-01

    This catalog summarizes 117 high-confidence >=0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  1. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    SciTech Connect

    Abdo, A. A.; Ajello, M.; Allafort, A.; Bloom, E. D.; Bottacini, E.; Baldini, L.; Ballet, J.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bregeon, J.; Bhattacharyya, B.; Bissaldi, E.; Bonamente, E.; Brandt, T. J.; Brigida, M.; and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  2. Theoretical Study of Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Song, Yuzhe; Cheng, Kwong Sang; Takata, Jumpei

    2016-06-01

    We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  3. Discovery of New Gamma-Ray Pulsars with AGILE

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.; Pilia, M.; Possenti, A.; Chen, A.; Giuliani, A.; Trois, A.; Caraveo, P.; Del Monte, E.; Fornari, F.; Fuschino, F.; Mereghetti, S.; Tavani, M.; Argan, A.; Burgay, M.; Cognard, I.; Corongiu, A.; Costa, E.; D'Amico, N.; De Luca, A.; Esposito, P.; Evangelista, Y.; Feroci, M.; Johnston, S.; Kramer, M.; Longo, F.; Marisaldi, M.; Theureau, G.; Weltevrede, P.; Barbiellini, G.; Boffelli, F.; Bulgarelli, A.; Cattaneo, P. W.; Cocco, V.; D'Ammando, F.; DeParis, G.; Di Cocco, G.; Donnarumma, I.; Fiorini, M.; Froysland, T.; Galli, M.; Gianotti, F.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Mineo, T.; Morselli, A.; Pacciani, L.; Perotti, F.; Piano, G.; Picozza, P.; Prest, M.; Pucella, G.; Rapisarda, M.; Rappoldi, A.; Sabatini, S.; Soffitta, P.; Trifoglio, M.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zambra, A.; Zanello, D.; Pittori, C.; Verrecchia, F.; Preger, B.; Santolamazza, P.; Giommi, P.; Salotti, L.; Bignami, G. F.

    2009-04-01

    Using gamma-ray data collected by the Astro-rivelatore Gamma ad Immagini LEggero (AGILE) satellite over a period of almost one year (from 2007 July to 2008 June), we searched for pulsed signals from 35 potentially interesting radio pulsars, ordered according to F_{γ}∝ √{\\dot{E}} d^{-2} and for which contemporary or recent radio data were available. AGILE detected three new top-ranking nearby and Vela-like pulsars with good confidence both through timing and spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509 - 58 with a magnetic field in excess of 1013 Gauss, and PSR J2229 + 6114 providing a reliable identification for the previously unidentified EGRET source 3EG 2227 + 6122. Moreover, the powerful millisecond pulsar B1821 - 24, in the globular cluster M28, is detected during a fraction of the observations. Four other promising gamma-ray pulsar candidates, among which is the notable J2043 + 2740 with an age in excess of 1 million years, show a possible detection in the timing analysis only and deserve confirmation.

  4. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  5. Correlation between the Gamma-Ray Luminosity and the Light Cylinder Magnetic Field Strength of Fermi-LAT Pulsars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Yi, Shuxu; Hou, Xian; Li, Jian

    2015-08-01

    We analyze statistically the differences between gamma-ray loud and quiet samples of the radio pulsars that have been searched with the Fermi satellite. Among many pulsar parameters considered in this paper, our Kolmogorov-Smirnov test shows that the distributions of magnetic field strength at the light cylinder of the two samples are the most inconsistent, but that of radio spectral index are the least discrepant. Significant correlations are found between the gamma-ray luminosity and magnetic field strength at the light cylinder of Fermi-LAT pulsars in the Second Fermi Large Area Telescope Catalog of Gamma-ray pulsars, for normal pulsars and millisecond pulsars respectively. Using the above correlations, we give a list of gamma-ray pulsar candidates with their predicted gamma-ray energy flux.

  6. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  7. Gamma-ray pulsars: A gold mine

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Harding, Alice K.

    2015-08-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to γ rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of γ-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic γ rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing γ-ray observations and magnetospheric models in more detail. xml:lang="fr"

  8. A Search for Radio Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Sayer, Ronald Winston

    1996-01-01

    We have built a data acquisition backend for radio pulsar search observations carried out at the NRAO 140 -foot telescope in Green Bank, West Virginia. Our system sampled 512 spectral channels over 40 MHz every 256 mus, reduced samples to one-bit precision, and wrote the resulting data stream onto magnetic tape for later, off-line processing. We have completed three surveys with this backend. In the first survey, we searched most of the Northern Hemisphere for millisecond radio pulsars. Previous surveys directed towards most of the region covered had not been as sensitive to pulsars with millisecond periods. We obtained high quality data for 15,876 deg^2 of sky. Eight new pulsars were discovered and 76 previously known pulsars were detected. Two of the eight new pulsars (PSR J1022+1001 and PSR J1518+4904) are millisecond pulsars in binary systems. PSR J1518+4904 is a 41 ms radio pulsar in an eccentric (e = 0.25) 8.6 day orbit with another stellar object, probably another neutron star. It is only the fifth double neutron star system known. The system's relativistic advance of periastron has been measured to be ˙omega = 0.0112 +/- 0.0002 ^circ yr^{-1}, implying that the total mass of the pair of stars is 2.65 +/-0.07Modot. We have searched for radio pulsar companions to 40 nearby OB runaway stars. No pulsar companions to OB runaways were discovered. One previously unknown pulsar, PSR J2044+4614, was discovered while observing towards target O star BD+45,3260. However, follow-up timing observations reveal that the pulsar is not associated with the target O star. Assuming standard models for the pulsar beaming fraction and luminosity function, we conclude that most OB runaways do not have pulsar companions. We have completed a survey for pulsed radio signals towards 27 gamma-ray sources detected by the EGRET instrument of the Compton Gamma Ray Observatory. No new pulsars were discovered.

  9. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  10. The distance indicators in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars, including 34 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η=L γ/Ė) and pulsar parameters, for young radio-selected gamma-ray pulsars with known distance information. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find a strong correlation between η and ζ3, the generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation between η and B LC, the magnetic field at the light cylinder radius, is also found. These correlations can serve as distance indicators in gamma-ray pulsars, to evaluate distances for gamma-selected pulsars. Distances of 35 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. The physical origin of the correlations may be also interesting for pulsar studies.

  11. Magnetic pair creation transparency in gamma-ray pulsars

    SciTech Connect

    Story, Sarah A.; Baring, Matthew G. E-mail: baring@rice.edu

    2014-07-20

    Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the

  12. Magnetic Pair Creation Transparency in Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.; Baring, Matthew G.

    2014-07-01

    Magnetic pair creation, γ → e + e -, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the putative detection

  13. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE PAGESBeta

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  14. High-Energy Emission From Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.

    2004-01-01

    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general

  15. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  16. Developing gamma-ray pulsar simulation tools for GLAST

    SciTech Connect

    Razzano, Massimiliano

    2007-07-12

    Pulsars are among the most intriguing sources in the gamma-ray Universe and their high-energy emission remains today quite mysterious. The Gamma-ray Large Area Space Telescope (GLAST) will study the pulsar gamma-ray emission in great detail and will discover a great number of new gamma-ray pulsars. Here are presented the latest developments of the tools that have been created for producing accurate simulations of gamma-ray pulsars emission. The main simulator is called PulsarSpectrum and can reproduce gamma-ray emission with great detail, taking also into account advanced timing effects, e.g. period increase with time, barycentric corrections and higher-order timing noise currently under development. Detailed spectral features can also be simulated with PulsarSpectrum, such as phase-dependent spectra. A suite of ancillary tools have also been built to provide a realistic pulsar population with related timing solutions. Anyway PulsarSpectrum can also simulate pulsar populations coming from external synthesis codes. All these tools are presently used within the GLAST collaboration for testing the LAT Science Analysis Environment tools and for better study of LAT capabilities for pulsar science.

  17. Observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope

    SciTech Connect

    Pellizzoni, A.; Pilia, M.; Possenti, M.; Fornari, F.; Caraveo, P.; Mereghetti, S.

    2008-12-24

    AGILE is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. It provides large sky exposure levels (> or approx. 10{sup 9} cm{sup 2} s per year on the Galactic Plane) with sensitivity peaking at E{approx}400 MeV(and simultaneous X-ray monitoring in the 18-60 keV band) where the bulk of pulsar energy output is typically released. Its {approx}1 {mu}s is absolute time tagging capability makes it perfectly suited for the study of gamma-ray pulsars following up on the CGRO/EGRET heritage. In this paper we summarize the timing results obtained during the first year of AGILE observations of the known gamma-ray pulsars Vela, Crab, Geminga and B 1706-4. AGILE collected a large number of gamma-ray photons from EGRET pulsars ({approx}10,000 pulsed counts for Vela) in only few months of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves and paving the way to the discovery of new gamma-ray pulsars.

  18. Millisecond pulsars: Timekeepers of the cosmos

    NASA Technical Reports Server (NTRS)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  19. NANOGrav Millisecond Pulsar Observing Program

    NASA Astrophysics Data System (ADS)

    Nice, David J.; Nanograv

    2015-01-01

    Gravitational waves from sources such as supermassive black hole binary systems are expected to perturb times-of-flight of signals traveling from pulsars to the Earth. The NANOGrav consortium aims to measure these perturbations in high precision millisecond pulsar timing measurements and thus to directly detect gravitational waves and characterize gravitational wave sources. By observing pulsars over time spans of many years, we are most sensitive to gravitational waves at nanohertz frequencies.In this presentation we describe the NANOGrav observing program. We presently observe an array of 45 millisecond pulsars, evenly divided between the Arecibo Observatory (for pulsars with declinations between -1 and 39 degrees) and the Green Bank Telescope (for other pulsars, with two pulsars overlapping with Arecibo). Observation of a large number of pulsars allows for searches of correlated perturbations between multiple pulsar signals, which will be crucial for achieving high-significance detection of gravitational waves in the face of uncorrelated noise (from gravitational waves and rotation noise) in the individual pulsars. As new high-quality pulsars are discovered, they are added to the program.Observations of each pulsar are made with cadence of 20 to 30 days, with observations of each pulsar in two separate radio bands. Arrival times for nearly all pulsars are measured with precision better than 1 microsecond (averaged over a typical observation of 20 minutes), and in the best cases the precision is better than 100 nanoseconds.We describe the NANOGrav nine-year data release, which contains time-of-arrival measurements and high quality timing solutions from 37 pulsars observed over spans ranging between 0.7 to 9.3 years.

  20. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    NASA Technical Reports Server (NTRS)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; Maeda, K.; Hui, C. Y.; Tam, P. H. T.

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  1. String theories and millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Signore, M.

    1988-11-01

    We discuss the two ways of connecting string theories (cosmic, fundamental and the connection between them) to the observational reality: (i) radioastronomy observations (millisecond pulsar timing), and (ii) elementary particle phenomenology (compactification schemes). We study the limits imposed on the string parameter Gμ by recent millisecond pulsar timings. Cosmic strings derived from GUTs agree with (i). For cosmic strings derived from fundamental strings themselves there is contradiction between (i) and (ii). One of these scenarios connecting string theory to reality must be revised (or the transition from fundamental into cosmic strings rejected). Meanwhile, millisecond pulsar can select one scenario, or reject both of them. UA 336 Laboratoire Associé au CNRS, Observatoire de Meudon et Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France.

  2. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    NASA Technical Reports Server (NTRS)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; Cognard, I.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Grove, J. E.; Abdo, A. A.; Desvignes, G.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Guillemot, L.; Gwon, C.; Johnston, S.; Harding, A. K.; Thompson, D. J.

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  3. Gravitational waves from gamma-ray pulsar glitches

    SciTech Connect

    Stopnitzky, Elan; Profumo, Stefano

    2014-06-01

    We use data from pulsar gamma-ray glitches recorded by the Fermi Large Area Telescope as input to theoretical models of gravitational wave signals the glitches might generate. We find that the typical peak amplitude of the gravity wave signal from gamma-ray pulsar glitches lies between 10{sup –23} and 10{sup –35} in dimensionless units, with peak frequencies in the range of 1 to 1000 Hz, depending on the model. We estimate the signal-to-noise ratio (S/N) for all gamma-ray glitches, and discuss detectability with current gravity wave detectors. Our results indicate that the strongest predicted signals are potentially within reach of current detectors, and that pulsar gamma-ray glitches are promising targets for gravity wave searches by current and next-generation detectors.

  4. Gamma-rays from pulsar wind nebulae in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  5. Future Gamma-Ray Observations of Pulsars and their Environments

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2006-01-01

    Pulsars and pulsar wind nebulae seen at gamma-ray energies offer insight into particle acceleration to very high energies under extreme conditions. Pulsed emission provides information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars, while the pulsar wind nebulae yield information about high-energy particles interacting with their surroundings. During the next decade, a number of new and expanded gamma-ray facilities will become available for pulsar studies, including Astro-rivelatore Gamma a Immagini LEggero (AGILE) and Gamma-ray Large Area Space Telescope (GLAST) in space and a number of higher-energy ground-based systems. This review describes the capabilities of such observatories to answer some of the open questions about the highest-energy processes involving neutron stars.

  6. Pulsed Gamma-Ray Emission From Short-Period Pulsars: Predicted Gamma-Ray Pulsar PSR1951+32

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Ding, K. Y. Winnis

    1995-03-01

    We studied the gamma-ray emission mechanisms from pulsars with period, P, between 4.6 times 10(-2) B12(2/5) s and 0.17 B12(5/12) sin (1/6) theta alpha (-5/4) s in terms of outermagnetospheric gap model. We found that the spectra of all known gamma -ray pulsars can be fitted by two free parameters, namely, alpha r_L, the mean distance to the outergap, and sin theta , the mean pitch angle of the secondary e(+/-) pairs. Gamma-rays from those pulsars with P < 0.17 B12(5/12) sin (1/6) alpha (-5/4) s are mainly emitted by secondary e(+/-) pairs, which are created beyond the outergap, via synchrotron radiation and the gamma-ray emission efficiency is ~ 10(-2) . For pulsars with period approaching ~ 0.17 B12(5/12) sin (1/6) alpha (-5/4) s, their gamma-ray emission efficiency is approaching unity. We used our model to fit the observed spectra of gamma -ray pulsars (Vela, PSR1706-44, PSR1055-52, PSR1509-58, Geminga). All the best fit curves satisfy the constraints of alpha and sin theta . The pulse separation and relative intensity of pulses are function of alpha . In our model, the first three strongest theoretical gamma -ray sources have been detected. PSR1951+32 is predicted to be the fourth strongest gamma -ray pulsar (Cheng and Ding, 1994, ApJ, 432, 724) which is confirmed by the recent GRO result.

  7. An ultraluminous nascent millisecond pulsar

    NASA Astrophysics Data System (ADS)

    Kluźniak, Włodek; Lasota, Jean-Pierre

    2015-03-01

    If the ultraluminous source (ULX) M82 X-2 sustains its measured spin-up value of dot{ν }= 10^{-10} s^{-2}, it will become a millisecond pulsar in less than 105 yr. The observed (isotropic) luminosity of 1040 erg s-1 also supports the notion that the neutron star will spin up to a millisecond period upon accreting about 0.1 M⊙ - the reported hard X-ray luminosity of this ULX, together with the spin-up value, implies torques consistent with the accretion disc extending down to the vicinity of the stellar surface, as expected for low values of the stellar dipole magnetic field (B ≲ 109 G). This suggests a new channel of millisecond pulsar formation - in high-mass X-ray binaries - and may have implications for studies of gravitational waves, and possibly for the formation of low-mass black holes through accretion-induced collapse.

  8. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  9. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    SciTech Connect

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla E-mail: miguel@gae.ucm.e

    2010-02-10

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  10. Gamma ray observations of the Crab pulsar - Past, present, future

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1992-01-01

    The paper describes some of the high-energy observations of the Crab-Nebula pulsar, PSR0531+22. The pulse profiles of the Crab pulsar obtained in balloon-borne observations in 1967 and 1980 are presented. At present, gamma-ray scintillation detectors aboard the Gamma Ray Observatory (GRO) form the basis of the Burst and Transient Source Experiment (BATSE). The pulsar, which is observed daily by the BATSE, is used by all four GRO/BATSE detectors as a calibration source since it emits a steady, strong, well-known spectrum of gamma rays over the entire energy range to which detectors are sensitive. The paper presents an example of a pulse profile obtained with the BATSE.

  11. Microburst of TeV gamma rays from the Crab pulsar

    NASA Technical Reports Server (NTRS)

    Vishwanath, P. R.; Bhat, P. N.; Sreekantan, B. V.; Gupta, S. K.; Ramanamurthy, P. V.

    1985-01-01

    Data on Crab pulsar from atmospheric Cerenkov array at Ooty have shown emission of TeV gamma rays in the form of microbursts. These are a series of events which are unusually closely spaced in time with time separations of less than 1.5 milliseconds. The phasogram of events in the bursts when analyzed with the Crab pulsar period shows significant peaks. Data further show that the signal is at the same absolute phase as the radio peak. Monte Carlo calculations show that the probability of peaks being due to chance is very small.

  12. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model

    NASA Astrophysics Data System (ADS)

    Takata, J.; Ng, C. W.; Cheng, K. S.

    2016-02-01

    We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation cascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin-down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observed >10 GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin-down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.

  13. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars. PMID:18927355

  14. Production of Gamma-Rays in the Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bednarek, W.; Bartosik, M.

    2004-10-01

    We construct the time dependent hadronic-leptonic radiation model for the high energy processes inside the pulsar wind nebulae (PWNe). This model is based on the hypothesis that heavy nuclei are effi- ciently accelerated in the vicinity of young pulsars. Different energy loss processes of nuclei and accel- erated by them leptons are considered in order to obtain the equilibrium spectra of these particles in- side the nebula at an arbitrary time after the pulsar formation. We calculate the multiwavelength spec- tra from specific PWNe expected from different lep- tonic and hadronic processes. From normalization of the calculated synchrotron spectrum to the observed spectrum at low energies, the expected TeV gamma- ray fluxes from a few PWNe are predicted and its possible detectability by the future TeV telescopes is discussed. Key words: Pulsars: nebulae - radiation mecha- nisms: gamma-rays.

  15. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  16. CONSTRAINING PULSAR MAGNETOSPHERE GEOMETRY WITH {gamma}-RAY LIGHT CURVES

    SciTech Connect

    Romani, Roger W.; Watters, Kyle P. E-mail: kwatters@stanford.ed

    2010-05-01

    We demonstrate a method for quantitatively comparing {gamma}-ray pulsar light curves with magnetosphere beaming models. With the Fermi LAT providing many pulsar discoveries and high-quality pulsar light curves for the brighter objects, such a comparison allows greatly improved constraints on the emission zone geometry and the magnetospheric physics. Here we apply the method to Fermi LAT light curves of a set of bright pulsars known since EGRET or before. We test three approximate models for the magnetosphere structure and two popular schemes for the location of the emission zone, the two pole caustic model and the outer gap (OG) model. We find that OG models and relatively physical B fields approximating force-free dipole magnetospheres are preferred at high statistical significance. An application to the full LAT pulsar sample will allow us to follow the emission zone's evolution with pulsar spindown.

  17. X-ray flares from postmerger millisecond pulsars.

    PubMed

    Dai, Z G; Wang, X Y; Wu, X F; Zhang, B

    2006-02-24

    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst. PMID:16497927

  18. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    NASA Technical Reports Server (NTRS)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Celik, O.; Ferrara, E. C.; Gehrels, N.; Harding, A.; Johnson, T. J.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  19. Gamma-ray pulsars: Radiation processes in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1996-01-01

    We describe an emission model for gamma ray pulsars based on curvature radiation-reaction limited charges in the outer magnetosphere. We show how pair production on thermal surface flux can limit the acceleration zones. Estimates for the efficiency of GeV photon production eta gamma and the gamma-ray beaming fraction are derived, including their dependence on pulsar parameters. In general eta gamma increases with pulsar age, but is decreased for low magnetic fields and for small magnetic inclinations. We argue that this produces GeV pulse profiles, curvature spectra and detection statistics consistent with the observations. We also describe the optical through X-ray pulsar synchrotron spectrum and the spectral variations with pulsar phase. A test computation for Vela-like parameters reproduces phase-resolved GeV spectra consistent with those observed by EGRET. Finally we comment on very high energy pulsed emission and particle production and note extensions needed to allow a more complete pulsar model.

  20. X-ray observations of Fermi LAT gamma-ray pulsars and pulsar candidates

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P.; Belfiore, A.; Caraveo, P.; De Luca, A.; Marelli, M.

    2014-07-01

    Since the launch of Fermi, in 2008, the population of known gamma-ray pulsars has exploded from just a handful, to over 150. X-ray observations have been crucial in both the discovery and the understanding of this new pulsar population. I will discuss our ongoing program of XMM, Chandra, and Swift observations of Fermi-LAT pulsars and pulsar candidates and present some of the latest results we have obtained.

  1. Wideband Timing of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy; Demorest, Paul; Ransom, Scott M.; North American Nanohertz ObservatoryGravitational Waves (Nanograv)

    2015-01-01

    The use of backend instrumentation capable of real-time coherent dedispersion of relatively large fractional bandwidths has become commonplace in pulsar astronomy. However, along with the desired increase in sensitivity to pulsars' broadband signals, a larger instantaneous bandwidth brings a number of potentially aggravating effects that can lead to degraded timing precision. In the case of high-precision timing experiments, such as the one being carried out by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), subtle effects such as unmodeled intrinsic profile evolution with frequency, interstellar scattering, and dispersion measure variation are potentially capable of reducing the experiment's sensitivity to a gravitational wave signal. In order to account for some of these complications associated with wideband observations, we augmented the traditional algorithm by which the fundamental timing quantities are measured. Our new measurement algorithm accommodates an arbitrary two-dimensional model ``portrait'' of a pulsar's total intensity as a function of observing frequency and rotational phase, and simultaneously determines the time-of-arrival (TOA), the dispersion measure (DM), and per-frequency-channel amplitudes that account for interstellar scintillation. Our publicly available python code incorporates a Gaussian-component modeling routine that allows for independent component evolution with frequency, a ``fiducial component'', and the inclusion of scattering. Here, we will present results from the application of our wideband measurement scheme to the suite of NANOGrav millisecond pulsars, which aimed to determine the level at which the experiment is being harmed by unmodeled profile evolution. We have found thus far, and expect to continue to find, that our new measurements are at least as good as those from traditional techniques. At a minimum, by largely reducing the volume of TOAs we will decrease the computational demand

  2. The Disturbance of a Millisecond Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Bailes, M.; Bhat, N. D. R.; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.-B.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643‑1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  3. Searches for gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.

    1983-01-01

    Searches were made for pulsed high energy (E 35 MeV) gamma radiation from 43 pulsars using the SAS-2 data base and radio parameters. No positive results were found, and the upper limits are consistent with the concept that gamma ray production efficiency increases with increasing apparent age. Two limits suggest that efficiency cannot be a simple function of apparent age beyond 10,000,000 years.

  4. Finding (Or Not) New Gamma-Ray Pulsars with GLAST

    SciTech Connect

    Ransom, Scott M.; /NRAO, Charlottesville

    2011-11-29

    Young energetic pulsars will likely be the largest class of Galactic sources observed by GLAST, with many hundreds detected. Many will be unknown as radio pulsars, making pulsation detection dependent on radio and/or x-ray observations or on blind periodicity searches of the gamma-rays. Estimates for the number of pulsars GLAST will detect in blind searches have ranged from tens to many hundreds. I argue that the number will be near the low end of this range, partly due to observations being made in a scanning as opposed to a pointing mode. This paper briefly reviews how blind pulsar searches will be conducted using GLAST, what limits these searches, and how the computations and statistics scale with various parameters.

  5. Finding (or not) New Gamma-ray Pulsars with GLAST

    SciTech Connect

    Ransom, Scott M.

    2007-07-12

    Young energetic pulsars will likely be the largest class of Galactic sources observed by GLAST, with many hundreds detected. Many will be unknown as radio pulsars, making pulsation detection dependent on radio and/or x-ray observations or on blind periodicity searches of the gamma-rays. Estimates for the number of pulsars GLAST will detect in blind searches have ranged from tens to many hundreds. I argue that the number will be near the low end of this range, partly due to observations being made in a scanning as opposed to a pointing mode. This paper briefly reviews how blind pulsar searches will be conducted using GLAST, what limits these searches, and how the computations and statistics scale with various parameters.

  6. Millisecond pulsars - Nature's most stable clocks

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph H., Jr.

    1991-07-01

    The author describes the role pulsars might play in time and frequency technology. Millisecond pulsars are rapidly rotating neutron stars: spherical flywheels some 20 km in diameter, 1.4 times as massive as the Sun, and spinning as fast as several thousand radians per second. Radio noise generated in a pulsar's magnetosphere by a highly beamed process is detectable over interstellar distances, as a periodic sequence of pulses similar to the ticks of an excellent clock. High-precision comparisons between pulsar time and terrestrial atomic time show that over intervals of several years, some millisecond pulsars have fractional stabilities comparable to those of the best atomic clocks. The author briefly reviews the physics of pulsars, discusses the techniques of pulsar timing measurements, and summarizes the results of careful studies of pulsar stabilities.

  7. High-energy emission of the first millisecond pulsar

    SciTech Connect

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S.; Philippopoulos, P.

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  8. High-energy Emission of the First Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S.; Philippopoulos, P.

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  9. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  10. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  11. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. PMID:19574346

  12. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  13. A model of unpulsed very high energy gamma rays from the Crab Nebula and pulsar

    NASA Technical Reports Server (NTRS)

    Kwok, P. W.; Cheng, K. S.; Lau, M. M.

    1991-01-01

    The angular resolution of gamma-ray detectors does not allow one to separate the nebula from the pulsar in the Crab. It is generally assumed that the steady emission of gamma rays comes from the nebula. Using the 'outer magnetospheric gap' model, an alternative mechanism in which the steady emission of gamma rays could come from a compact region, a couple of light cylinder radii beyond the pulsar.

  14. Superfluidity in Millisecond Pulsars (Review)

    NASA Astrophysics Data System (ADS)

    Pines, D.; Alpar, A.

    The authors review the evidence for superfluidity in the Vela pulsar, the Crab pulsar and PSR 0525+21, and examine the prospects for observing similar consequences of superfluidity in the already-discovered millisec pulsars. They consider, inter alia, the likelihood of observing glitches, the expected post-glitch behavior, and pulsar heating by energy dissipation due to the creep of neutron vortex lines in pinned superfluid regions of the crust.

  15. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. PMID:26564852

  16. Prospects of High Energy Studies of Pulsars with the AGILE Gamma-ray Telescope

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.; Mereghetti, S.; Tavani, M.; Chen, A.; Giuliani, A.; Vercellone, S.

    AGILE is a small gamma-ray astronomy mission of the Italian Space Agency, with good spatial resolution, excellent timing capability and an unprecedently large field of view (~1/4 of the sky). It will be the only mission dedicated to high energy astrophysics in the range 30 MeV-50 GeV during the period 2003-2006, before the launch of GLAST. Besides studying the small sample of known gamma-ray pulsars, AGILE will offer the first possibility to detect several young and energetic radio pulsars that have been discovered after the end of the CGRO mission. AGILE will contribute to the study of gamma-ray pulsars in several ways: (1) improving photon statistics for gamma-ray pulsations searches; (2) detecting possible secular variations of the gamma-ray emission from neutron star magnetospheres; (3) studying unpulsed gamma-ray emission from plerions in supernova remnants and searching for time variability of pulsar wind/nebula interactions; (4) helping to understand the population of unidentified EGRET sources that might consist in part of radio-quiet pulsars. We will describe the AGILE satellite and provide an estimate of the expected number of the detectable gamma-ray pulsars. The AGILE capabilities for the detection of gamma-ray pulsars with small counting statistics will be presented based on the analysis of data from simulations and from the EGRET archive.

  17. The origin of planets orbiting millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1992-01-01

    A model for the formation of planets around millisecond pulsar which no longer have stellar companions is suggested. Detailed hydrodynamical models are presented which suggest that planet formation can occur either in a low-mass X-ray binary progenitor to a progenitor of a star-vaporizing millisecond pulsar when the neutron star is accreting material driven off its companion by X-ray irradiation or after a pulsar has formed and is vaporizing its companion. In both cases a circumbinary disk is created in which planets can form on a timescale of 10 exp 5 to 10 exp 6 yrs and the planets can survive a second phase in which the companion star moves toward the pulsar and is completely vaporized.

  18. The search for MeV gamma-ray pulsars with COMPTEL

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Buccheri, R.; Busetta, M.; Carraminana, A.; Connors, A.; Diehl, R.; Hermsen, W.; Kuiper, L.; Lichti, G. G.; Much, R.

    1995-01-01

    The Compton Gamma Ray Observatory (CGRO) completed a full sky survey in November 1993 during which the number of known gamma-ray pulsars more than doubled. During this survey the Compton Telescope (COMPTEL) observed the classical isolated pulsars Crab and Vela and detected PSR 1509-58. Attempts to detect the newly discovered pulsars, Geminga, PSR 1706-44 and PSR 1055-52, in the COMPTEL energy range provide only upper limits. The results of these analyses are presented together with the outcome of a search for further candidate radio pulsars whose ephemerides are given in the Princeton Pulsar Catalogue.

  19. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Barbieri, C.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; Desiante, F. de Palma R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hagiwara, K.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Johnson, T. J.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Marshall, F.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naletto, G.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Parkinson, P. M. Saz; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Uchiyama, Y.; Vianello, G.; Wood, K. S.; Wood, M.; Zampieri, L.

    2015-11-01

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar’s by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  20. Discovery of millisecond pulsars in radio searches of southern Fermi Large Area Telescope sources

    NASA Astrophysics Data System (ADS)

    Keith, M. J.; Johnston, S.; Ray, P. S.; Ferrara, E. C.; Saz Parkinson, P. M.; Çelik, Ö.; Belfiore, A.; Donato, D.; Cheung, C. C.; Abdo, A. A.; Camilo, F.; Freire, P. C. C.; Guillemot, L.; Harding, A. K.; Kramer, M.; Michelson, P. F.; Ransom, S. M.; Romani, R. W.; Smith, D. A.; Thompson, D. J.; Weltevrede, P.; Wood, K. S.

    2011-06-01

    Using the Parkes Radio Telescope, we have carried out deep observations of 11 unassociated gamma-ray sources. Periodicity searches of these data have discovered two millisecond pulsars, PSR J1103-5403 (1FGL J1103.9-5355) and PSR J2241-5236 (1FGL J2241.9-5236), and a long-period pulsar, PSR J1604-44 (1FGL J1604.7-4443). In addition, we searched for but did not detect any radio pulsations from six gamma-ray pulsars discovered by the Fermi satellite to a level of ˜0.04 mJy (for pulsars with a 10 per cent duty cycle). The timing of the millisecond pulsar PSR J1103-5403 has shown that its position is 9 arcmin from the centroid of the gamma-ray source. Since these observations were carried out, independent evidence has shown that 1FGL J1103.9-5355 is associated with the flat spectrum radio source PKS 1101-536. It appears certain that the pulsar is not associated with the gamma-ray source, despite the seemingly low probability of a chance detection of a radio millisecond pulsar. We consider that PSR J1604-44 is a chance discovery of a weak, long-period pulsar and is unlikely to be associated with 1FGL J1604.7-4443. PSR J2241-5236 has a spin period of 2.2 ms and orbits a very low mass companion with a 3.5-h orbital period. The relatively high flux density and low dispersion measure of PSR J2241-5236 make it an excellent candidate for high precision timing experiments. The gamma rays of 1FGL J2241.9-5236 have a spectrum that is well modelled by a power law with an exponential cut-off, and phase binning with the radio ephemeris results in a multipeaked gamma-ray pulse profile. Observations with Chandra have identified a coincident X-ray source within 0.1 arcsec of the position of the pulsar obtained by radio timing.

  1. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2011-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  2. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; Coles, William; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Khoo, Jonathan; Shannon, Ryan; Wang, Jingbo; Levin, Yuri

    2013-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  3. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2012-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  4. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2011-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  5. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; Coles, William; van Straten, Willem; Ravi, Vikram; Oslowski, Stefan; Khoo, Jonathan; Shannon, Ryan; Wang, Jingbo; Levin, Yuri

    2013-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  6. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2012-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CASPSR; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  7. Spin Evolution of Millisecond Magnetars with Hyperaccreting Fallback Disks: Implications for Early Afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Dai, Z. G.; Liu, Ruo-Yu

    2012-11-01

    The shallow decay phase or plateau phase of early afterglows of gamma-ray bursts (GRBs), discovered by Swift, is currently understood as being due to energy injection to a relativistic blast wave. One natural scenario for energy injection invokes a millisecond magnetar as the central engine of GRBs because the conventional model of a pulsar predicts a nearly constant magnetic-dipole-radiation luminosity within the spin-down timescale. However, we note that significant brightening occurs in some early afterglows, which apparently conflicts with the above scenario. Here we propose a new model to explain this significant brightening phenomena by considering a hyperaccreting fallback disk around a newborn millisecond magnetar. We show that for typical values of the model parameters, sufficient angular momentum of the accreted matter is transferred to the magnetar and spins it up. It is this spin-up that leads to a dramatic increase of the magnetic-dipole-radiation luminosity with time and thus significant brightening of an early afterglow. Based on this model, we carry out numerical calculations and fit well early afterglows of 12 GRBs assuming sufficiently strong fallback accretion. If the accretion is very weak, our model turns out to be the conventional energy-injection scenario of a pulsar. Therefore, our model can provide a unified explanation for the shallow decay phase, plateaus, and significant brightening of early afterglows.

  8. SPIN EVOLUTION OF MILLISECOND MAGNETARS WITH HYPERACCRETING FALLBACK DISKS: IMPLICATIONS FOR EARLY AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Dai, Z. G.; Liu Ruoyu E-mail: ryliu@nju.edu.cn

    2012-11-01

    The shallow decay phase or plateau phase of early afterglows of gamma-ray bursts (GRBs), discovered by Swift, is currently understood as being due to energy injection to a relativistic blast wave. One natural scenario for energy injection invokes a millisecond magnetar as the central engine of GRBs because the conventional model of a pulsar predicts a nearly constant magnetic-dipole-radiation luminosity within the spin-down timescale. However, we note that significant brightening occurs in some early afterglows, which apparently conflicts with the above scenario. Here we propose a new model to explain this significant brightening phenomena by considering a hyperaccreting fallback disk around a newborn millisecond magnetar. We show that for typical values of the model parameters, sufficient angular momentum of the accreted matter is transferred to the magnetar and spins it up. It is this spin-up that leads to a dramatic increase of the magnetic-dipole-radiation luminosity with time and thus significant brightening of an early afterglow. Based on this model, we carry out numerical calculations and fit well early afterglows of 12 GRBs assuming sufficiently strong fallback accretion. If the accretion is very weak, our model turns out to be the conventional energy-injection scenario of a pulsar. Therefore, our model can provide a unified explanation for the shallow decay phase, plateaus, and significant brightening of early afterglows.

  9. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6397 at 10cm, for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system.

  10. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  11. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  12. Is the sub-millisecond pulsar strange?

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Olinto, Angela V.

    1989-01-01

    The possibility that the submillisecond pulsar from supernova 1987A is composed of strange matter is theoretically discussed. It is shown that for a range of hadron parameters, the maximum rotation rate of secularly stable strange stars may exceed that of the half-millisecond pulsar and the nonrotating maximum mass is greater than 1.52 solar mass. The low-mass companion(s) to SN1987A, inferred from the periodic modulations of the optical signal, can be accounted for by stable strange-matter lump(s) ejected from the young strange star.

  13. DISCOVERY OF {gamma}-RAY PULSATION AND X-RAY EMISSION FROM THE BLACK WIDOW PULSAR PSR J2051-0827

    SciTech Connect

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Takata, J.; Wu, E. M. H.; Cheng, K. S. E-mail: akong@phys.nthu.edu.tw

    2012-04-01

    We report the discovery of pulsed {gamma}-ray emission and X-ray emission from the black widow millisecond pulsar PSR J2051-0827 by using the data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope and the Advanced CCD Imaging Spectrometer array on the Chandra X-Ray Observatory. Using three years of LAT data, PSR J2051-0827 is clearly detected in {gamma}-rays with a significance of {approx}8{sigma} in the 0.2-20 GeV band. The 200 MeV-20 GeV {gamma}-ray spectrum of PSR J2051-0827 can be modeled by a simple power law with a photon index of 2.46 {+-} 0.15. Significant ({approx}5{sigma}) {gamma}-ray pulsations at the radio period were detected. PSR J2051-0827 was also detected in soft (0.3-7 keV) X-ray with Chandra. By comparing the observed {gamma}-rays and X-rays with theoretical models, we suggest that the {gamma}-ray emission is from the outer gap while the X-rays can be from intra-binary shock and pulsar magnetospheric synchrotron emissions.

  14. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  15. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  16. Keck Spectroscopy of Millisecond Pulsar J2215+5135: A Moderate-MNS, High-inclination Binary

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; Kerr, Matthew

    2015-08-01

    We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) mass {M}{NS}=1.6 {M}⊙ , much less than previously estimated. The pulsar heats the companion face to {T}D≈ 9000 K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88.°8, the pulsar should be eclipsed. We find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.

  17. Blind searches for radio-quiet gamma-ray pulsars with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Dormody, Michael Harry

    Blind searches for radio-quiet pulsars have been extremely fruitful, with over two dozen detected in searches of LAT point sources. While there is a general idea that the blind search sensitivity to radio-quiet gamma-ray pulsars is worse compared with the sensitivity to radio-loud pulsars, it has not been well established quantitatively. To achieve this, we simulate pulsars across a wide variety of rotational and spectral parameters, and search for pulsations in their corresponding LAT optimized positions. Using these results, we can estimate the detection threshold given a location on the sky and a spectral model. We also explore the benefit of using counterpart source locations from multiwavelength observations (e.g. X-rays). The sensitivity to blind searches can be used to estimate the gamma-ray pulsar birth distribution, an open question in pulsar astronomy. We use a model for galactic gamma-ray pulsars and evolve them to the present-day via the gravitational potential of the Galaxy. By comparing the resulting distribution with the known pulsar distribution, we can effectively rule out certain birth models at high confidence and place an estimate on the number of galactic gamma-ray pulsars.

  18. SAS-2 high-energy gamma-ray observations of the Vela pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.

    1975-01-01

    The Second Small Astronomy Satellite (SAS-2) high-energy (in excess of 35 MeV) gamma-ray telescope has detected pulsed gamma-ray emission at the radio period from PSR 0833-45, the Vela pulsar, as well as an unpulsed flux from the Vela region. The pulsed emission consists of two peaks following the single radio peak by about 13 ms and 48 ms. The luminosity of the pulsed emission above 100 MeV from Vela is about 0.1 that of the pulsar NP 0532 in the Crab nebula, whereas the pulsed emission from Vela at optical wavelengths is less than 0.0002 that from the Crab. The relatively high intensity of the pulsed gamma-ray emission, and the double peak structure, compared with the single pulse in the radio emission, suggest that the high-energy gamma-ray pulsar emission may be produced under different conditions from those at lower energies.

  19. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  20. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  1. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  2. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution).

  3. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  4. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  5. First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Razzano, M.

    2009-04-08

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.

  6. Einstein@Home Discovery of Four Young Gamma-Ray Pulsars in Fermi LAT Data

    NASA Astrophysics Data System (ADS)

    Pletsch, H. J.; Guillemot, L.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Champion, D. J.; Eggenstein, H. B.; Fehrmann, H.; Hammer, D.; Karuppusamy, R.; Keith, M.; Kramer, M.; Machenschalk, B.; Ng, C.; Papa, M. A.; Ray, P. S.; Siemens, X.

    2013-12-01

    We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422-6138, J1522-5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 1034—1036 erg s-1. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.

  7. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  8. EINSTEIN@HOME DISCOVERY OF FOUR YOUNG GAMMA-RAY PULSARS IN FERMI LAT DATA

    SciTech Connect

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Papa, M. A.; Guillemot, L.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Ng, C.; Anderson, D.; Hammer, D.; Siemens, X.; Keith, M.; Ray, P. S. E-mail: lucas.guillemot@cnrs-orleans.fr

    2013-12-10

    We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422–6138, J1522–5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 10{sup 34}—10{sup 36} erg s{sup –1}. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.

  9. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  10. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    SciTech Connect

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the {gamma}-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and {gamma}-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient {gamma}-ray emitters. We divided the X-ray sample in a young ({tau}{sub c} < 1.7 x 10{sup 4} yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and {gamma}-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L{sub X}{proportional_to} P-dot{sup 3}/P{sup 6}. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency {eta}{identical_to}L{sub X}/ E-dot{sub rot}{approx}8x10{sup -5}. For the {gamma}-ray luminosity we confirm that L{sub {gamma}} {proportional_to} {radical}E-dot{sub rot}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  11. Phase Coherent Observations and Millisecond Pulsar Searches

    NASA Astrophysics Data System (ADS)

    Shrauner, Jay Arthur

    1997-07-01

    new pulsars and detected 14 that were previously known. One of these new pulsars, PSR J0621+1002, is a millisecond pulsar with a relatively large mass companion. This system is of special interest because the relativistic advance of periastron should be measurable within a few years.

  12. Very high energy gamma rays from the Crab nebula and pulsar

    SciTech Connect

    Kwok, P.W.

    1989-01-01

    This project is to search for very high energy (VHE) (10(exp 11) to 10(exp 14)eV) gamma rays from the Crab nebula and pulsar using the atmospheric Cherenkov imaging technique. The technique uses an array of 37 photomultiplier tubes to record the images of the Cherenkov light pulses generated by energetic particles in the air showers initiated by VHE gamma rays or charged cosmic rays. Gamma ray like events are selected from numerous cosmic ray events based on the predicted properties of the image, such as the size, shape, and orientation with respect to the axis of the detector. A steady weak flux of VHE gamma rays from the Crab is detected at high statistical significance (9 sigma), which is not usually achieved in VHE gamma ray astronomy. No strong evidence of pulsed emission is found when the same data is folded at the Crab pulsar's radio ephemeris. The angular resolution of the technique cannot separate the emission coming from the nebula from that from the pulsar. Although it is generally believed that the unpulsed emission is coming from the nebula, there may be an unpulsed component coming at only a couple of light cylinder radii away from the pulsar too. Using the outer gap model of pulsar, the spectrum is derived and is found to be compatible with the observations.

  13. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  14. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Breton, R. P.; van Kerkwijk, M. H.; Roberts, M. S. E.; Hessels, J. W. T.; Camilo, F.; McLaughlin, M. A.; Ransom, S. M.; Ray, P. S.; Stairs, I. H.

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  15. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    SciTech Connect

    Breton, R. P.; Van Kerkwijk, M. H.; Roberts, M. S. E.; Hessels, J. W. T.; Camilo, F.; McLaughlin, M. A.; Ransom, S. M.; Ray, P. S.; Stairs, I. H.

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  16. Observations of the Eclipsing Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.

  17. FERMI-LAT SEARCH FOR PULSAR WIND NEBULAE AROUND GAMMA-RAY PULSARS

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.

    2011-01-01

    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates ( E-dot ) from {approx}3 x 10{sup 33} erg s{sup -1} to 5 x 10{sup 38} erg s{sup -1} and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the {gamma}-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.

  18. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-01

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources. PMID:20044540

  19. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    SciTech Connect

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  20. Deep searches for decametre-wavelength pulsed emission from radio-quiet gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Maan, Yogesh; Aswathappa, H. A.

    2014-12-01

    We report the results of extensive follow-up observations of the gamma-ray pulsar J1732-3131, which has recently been detected at decametre wavelengths, and the results of deep searches for the counterparts of nine other radio-quiet gamma-ray pulsars at 34 MHz, using the Gauribidanur radio telescope. No periodic signal from J1732-3131 could be detected above a detection threshold of 8σ, even with an effective integration time of more than 40 h. However, the average profile obtained by combining data from several epochs, at a dispersion measure of 15.44 pc cm-3, is found to be consistent with that from the earlier detection of this pulsar at a confidence level of 99.2 per cent. We present this consistency between the two profiles as evidence that J1732-3131 is a faint radio pulsar with an average flux density of 200-400 mJy at 34 MHz. Despite the extremely bright sky background at such low frequencies, the detection sensitivity of our deep searches is generally comparable to that of higher frequency searches for these pulsars, when scaled using reasonable assumptions about the underlying pulsar spectrum. We provide details of our deep searches, and put stringent upper limits on the decametre-wavelength flux densities of several radio-quiet gamma-ray pulsars.

  1. Genesis stories for the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Ruderman, M. A.; Shaham, J.

    1983-01-01

    Theoretical models proposed to explain the origin of the millisecond pulsar (MP) PSR 1937+214 are reviewed, examining their ability to explain its low surface dipole magnetic field (B), its low birth temperature (less than 10 to the 8th K), the absence of a companion or remnant, and its low velocity perpendicular to the Galactic plane. The models discussed are a single isolated explosion forming a rapidly spinning neutron star, spin-up of a dead pulsar by accretion from a companion, collapse of an accreting spinning white dwarf, and fusion of a tight binary composed of two old neutron stars. Although all of the models have difficulties in explaining one or more of the MP characteristics, the second model is found to be most probable in the light of present knowledge. The lack of a companion is explained by its tidal disruption after it had fed the accreting pre-pulsar for 1 Gyr or more and its mass had decreased to about 0.01 solar mass. Neutron stars accreting in this way have been observed in Galactic-bulge X-ray sources.

  2. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    SciTech Connect

    Khangulyan, Dmitry; Bogovalov, Sergey V.; Ribo, Marc E-mail: felix.aharonian@dias.ie E-mail: mribo@am.ub.es

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  3. Magnetospheric Interactions of Binary Pulsars as a Model for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Vietri, Mario

    1996-11-01

    I consider a model of gamma -ray bursts in which they arise right before the merging of binary pulsars. A binary pulsar moving through its companion's magnetic field experiences a large, motional electric field E = v X B/c, which leads to the release in the pulsar's magnetosphere of a pair cascade and the acceleration of a wind of pure pairs. The energy and energy deposition rate of the wind are those of gamma -ray bursts, provided the pulsars have a field of ~1015 G. Baryon contamination is small and dominated by tidal heating, leading to Mbaryon ~ 10-6 Msolar, as required by the dirty-fireball model of Meszaros, Laguna, & Rees.

  4. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    SciTech Connect

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-12-10

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7{sigma} single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  5. MODELING THE NON-RECYCLED FERMI GAMMA-RAY PULSAR POPULATION

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.; Kerr, M.; Burnett, T. H.; Harding, A. K.

    2013-10-10

    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L{sub γ} depends on the period P and the period derivative P-dot . We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L{sub γ} on P and P-dot , including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L{sub γ}∝P{sup -a} P-dot {sup b} where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar to but not identical to the commonly assumed L{sub γ}∝√( E-dot )∝P{sup -1.5} P-dot {sup 0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 10{sup 10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.

  6. Gamma-ray emission and nucleosynthesis of lithium by young pulsars

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Dwek, E.

    1976-01-01

    It is proposed that Li-7 is produced in the Galaxy primarily by alpha-alpha collisions surrounding newly born pulsars. About 10 percent of the pulsar energy losses are converted to medium-energy alpha-particles which collide in a dominantly He nebula. The problem of the origin of lithium would be solved by the scenario, and clear-cut tests by nuclear gamma-ray astronomy are described.

  7. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  8. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  9. EIGHT {gamma}-RAY PULSARS DISCOVERED IN BLIND FREQUENCY SEARCHES OF FERMI LAT DATA

    SciTech Connect

    Saz Parkinson, P. M.; Dormody, M.; Ziegler, M.; Belfiore, A.; Johnson, R. P.; Ray, P. S.; Abdo, A. A.; Grove, J. E.; Gwon, C.; Ballet, J.; Burnett, T. H.; Caliandro, G. A.; Camilo, F.; Caraveo, P. A.; De Luca, A.; Ferrara, E. C.; Harding, A. K.; Johnson, T. J.; Freire, P. C. C. E-mail: mdormody@ucsc.ed E-mail: Paul.Ray@nrl.navy.mi

    2010-12-10

    We report the discovery of eight {gamma}-ray pulsars in blind frequency searches of {approx}650 source positions using the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. PSRs J1023-5746, J1044-5737, J1413-5205, J1429-5911, and J1954+2836 are young ({tau}{sub c} < 100 kyr), energetic (E-dot {approx}>10{sup 36} erg s{sup -1}), and located within the Galactic plane (|b| < 3{sup 0}). The remaining three pulsars, PSRs J1846+0919, J1957+5033, and J2055+25, are less energetic, and located off the plane. Five pulsars are associated with sources included in the Fermi-LAT bright {gamma}-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age ({tau}{sub c} = 4.6 kyr) and is the most energetic (E-dot = 1.1x10{sup 37} erg s{sup -1}) of all {gamma}-ray pulsars discovered so far in blind searches. By analyzing >100 ks of publicly available archival Chandra X-ray data, we have identified the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant {gamma}-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3{sigma} excess reported by Milagro at a median energy of 35 TeV. PSRs J1957+5033 and J2055+25 have the largest characteristic ages ({tau}{sub c} {approx} 1 Myr) and are the least energetic (E-dot {approx}5x10{sup 33} erg s{sup -1}) of the newly discovered pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known

  10. SAS-2 high-energy gamma-ray observations of the Vela pulsar. II

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.

    1977-01-01

    Analysis of additional data from SAS-2 experiment and improvements in the orbit-attitude data and analysis procedures have produced revised values for the flux from the Vela gamma-ray source. The pulsar phase plot shows two peaks, neither of which is in phase with the single radio pulse.

  11. Accreting Millisecond Pulsars and Fundamental Physics

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2005-01-01

    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  12. The 3D Space and Spin Velocities of a Gamma-ray Pulsar

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2016-04-01

    PSR J2030+4415 is a LAT-discovered 0.5My-old gamma-ray pulsar with an X-ray synchrotron trail and a rare Halpha bowshock. We have obtained GMOS IFU spectroscopic imaging of this shell, and show a sweep through the remarkable Halpha structure, comparing with the high energy emission. These data provide a unique 3D map of the momentum distribution of the relativistic pulsar wind. This shows that the pulsar is moving nearly in the plane of the sky and that the pulsar wind has a polar component misaligned with the space velocity. The spin axis is shown to be inclined some 95degrees to the Earth line of sight, explaining why this is a radio-quiet, gamma-only pulsar. Intriguingly, the shell also shows multiple bubbles that suggest that the pulsar wind power has varied substantially over the past 500 years.

  13. PHASE-AVERAGED SPECTRA AND LUMINOSITIES OF GAMMA-RAY EMISSIONS FROM YOUNG ISOLATED PULSARS

    SciTech Connect

    Li, X.; Jiang, Z. J.; Zhang, L.

    2013-03-10

    We study the phase-averaged spectra and luminosities of {gamma}-ray emissions from young, isolated pulsars within a revised outer gap model. In the revised version of the outer gap, there are two possible cases for the outer gaps: the fractional size of the outer gap is estimated through the photon-photon pair process in the first case (Case I), and is limited by the critical field lines in the second case (Case II). The fractional size is described by Case I if the fractional size at the null charge surface in Case I is smaller than that in Case II, and vice versa. Such an outer gap can extend from the inner boundary, whose radial distance to the neutron star is less than that of the null charge surface to the light cylinder for a {gamma}-ray pulsar with a given magnetic inclination. When the shape of the outer gap is determined, assuming that high-energy emission at an averaged radius of the field line in the center of the outer gap, with a Gaussian distribution of the parallel electric field along the gap height, represents typical emission, the phase-averaged {gamma}-ray spectrum for a given pulsar can be estimated in the revised model with three model parameters. We apply the model to explain the phase-averaged spectra of the Vela (Case I) and Geminga (Case II) pulsars. We also use the model to fit the phase-averaged spectra of 54 young, isolated {gamma}-ray pulsars, and then calculate the {gamma}-ray luminosities and compare them with the observed data from Fermi-LAT.

  14. High-energy emission from the eclipsing millisecond pulsar PSR 1957+20

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1993-01-01

    The properties of the high-energy emission expected from the eclipsing millisecond pulsar system PSR 1957+20 are investigated. Emission is considered by both the relativistic shock produced by the pulsar wind in the nebula surrounding the binary and by the shock constraining the mass outflow from the companion star of PSR 1957+20. On the basis of the results of microscopic plasma physical models of relativistic shocks it is suggested that the high-energy radiation is produced in the range from X-rays to MeV gamma rays in the binary and in the range from 0.01 eV to about 40 keV in the nebula. Doppler boost of the emission in the radiating wind suggests the flux should vary on the orbital time scale, with the largest flux observed roughly coincident with the pulsar's radio eclipse.

  15. Cosmic-ray Positrons from Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Venter, C.; Kopp, A.; Harding, A. K.; Gonthier, P. L.; Büsching, I.

    2015-07-01

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  16. Observations of gamma-ray pulsars at the highest energies with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, Pablo

    2016-07-01

    One of the most exciting developments in pulsar astrophysics in recent years has been the detection, with ground-based instruments (VERITAS, MAGIC), of pulsed gamma-ray emission from the Crab at very high energies (VHE, E>100 GeV). The Large Area Telescope (LAT) on board the Fermi satellite has detected over 160 pulsars above 100 MeV. Twenty-eight of these have been shown to emit pulsations above 10 GeV and approximately a dozen show emission above 25 GeV. While most gamma-ray pulsars are well-fitted in the GeV range by a power law with an exponential cut-off at around a few GeV, some emission models predict emission at energies above 100 GeV, either through a power-law extrapolation of the low-energy spectrum, or via a new (e.g. Inverse Compton) component. We will present results of our search for high-energy emission from LAT-detected gamma-ray pulsars using the latest Pass 8 data and discuss the prospects of finding the next VHE pulsar, providing a good target (or targets) for follow-up observations with current and future ground-based observatories, like CTA.

  17. The Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Gonthier, Peter L.; VanGuilder, Robert; Harding, Alice K.

    2004-01-01

    We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multi-beam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and gamma-ray beams are included in our Monte Carlo computer code that simulates the characteristics of the Galactic population of radio and gamma-ray pulsars. We adopted with some modifications the radio beam geometry of Arzoumanian, Chernoff & Cordes (2002). For the gamma-ray beam, we have assumed the slot gap geometry described in the work of Muslimov & Harding (2003). To account for the shape of the distribution of radio pulsars in the P(dot) - P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen 7 radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud gamma-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud gamma-ray pulsars, while GLAST, with greater sensitivity is expected to detect 276 radio-quiet and 344 radio-loud gamma-ray pulsars. When the Parkes multi-beam pulsar survey is excluded, the ratio of radio-loud to radio-quiet gamma-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud gamma-ray pulsars. In the radio geometry adopted, short period pulsars are core dominated. Unlike the EGRET gamma-ray pulsars, our model predicts that when two gamma-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the gamma-ray peaks. Our findings suggest that further improvements are required in describing both the radio and gamma-ray geometries.

  18. PSR J1906+0722: An Elusive Gamma-Ray Pulsar

    NASA Astrophysics Data System (ADS)

    Clark, C. J.; Pletsch, H. J.; Wu, J.; Guillemot, L.; Ackermann, M.; Allen, B.; de Angelis, A.; Aulbert, C.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bock, O.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Champion, D. J.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cuéllar, A.; Cutini, S.; D'Ammando, F.; Desiante, R.; Drell, P. S.; Eggenstein, H. B.; Favuzzi, C.; Fehrmann, H.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Hou, X.; Jogler, T.; Johnson, A. S.; Jóhannesson, G.; Kramer, M.; Krauss, F.; Kuss, M.; Laffon, H.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Machenschalk, B.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; de Palma, F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Saz Parkinson, P. M.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torne, P.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Yassine, M.

    2015-08-01

    We report the discovery of PSR J1906+0722, a gamma-ray pulsar detected as part of a blind survey of unidentified Fermi Large Area Telescope (LAT) sources being carried out on the volunteer distributed computing system, Einstein@Home. This newly discovered pulsar previously appeared as the most significant remaining unidentified gamma-ray source without a known association in the second Fermi-LAT source catalog (2FGL) and was among the top 10 most significant unassociated sources in the recent third catalog (3FGL). PSR J1906+0722 is a young, energetic, isolated pulsar, with a spin frequency of 8.9 Hz, a characteristic age of 49 kyr, and spin-down power 1.0× {10}36 erg s-1. In 2009 August it suffered one of the largest glitches detected from a gamma-ray pulsar ({{Δ }}f/f≈ 4.5× {10}-6). Remaining undetected in dedicated radio follow-up observations, the pulsar is likely radio-quiet. An off-pulse analysis of the gamma-ray flux from the location of PSR J1906+0722 revealed the presence of an additional nearby source, which may be emission from the interaction between a neighboring supernova remnant and a molecular cloud. We discuss possible effects which may have hindered the detection of PSR J1906+0722 in previous searches and describe the methods by which these effects were mitigated in this survey. We also demonstrate the use of advanced timing methods for estimating the positional, spin and glitch parameters of difficult-to-time pulsars such as this.

  19. PSR J1838-0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR

    SciTech Connect

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Guillemot, L.; Kramer, M.; Baring, M. G.; Camilo, F.; Caraveo, P. A.; Marelli, M.; Grove, J. E.; Ray, P. S.; Kerr, M.; Ransom, S. M.; Saz Parkinson, P. M. E-mail: guillemo@mpifr-bonn.mpg.de

    2012-08-10

    We report the discovery of PSR J1838-0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of -2.2 Multiplication-Sign 10{sup -11} Hz s{sup -1}, implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 Multiplication-Sign 10{sup 36} erg s{sup -1}. Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838-0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relative increase in spin frequency of about 5.5 Multiplication-Sign 10{sup -6}. After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. The pulsar's sky position is coincident with the spatially extended TeV source HESS J1841-055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841-055 contains a pulsar wind nebula powered by the pulsar.

  20. SAS-2 High energy gamma-ray observations of the Vela pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Oegelman, H. B.

    1975-01-01

    The second Small Astronomy Satellite high-energy (35 MeV) gamma-ray telescope detected pulsed gamma-ray emission at the radio period from PSR 0833-45, the Vela pulsar, as well as an unpulsed flux from the Vela region. The pulsed emission consists of two peaks, one following the radio peak by about 13 msec, and the other 0.4 period after the first. The luminosity of the pulsed emission above 100 MeV from Vela is about 0.1 that of the pulsar NP0532 in the Crab nebula, whereas the pulsed emission from Vela at optical wavelengths is less than 0.0004 that from the Crab. The relatively high intensity of the pulsed gamma-ray emission and the double peak structure, compared to the single pulse in the radio emission, suggests that the high energy gamma-ray pulsar emission may be produced under different conditions from those found at lower energies.

  1. Search for Millisecond Pulsars for the Pulsar Timing Array project

    NASA Astrophysics Data System (ADS)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  2. Gamma-ray pulsar light curves as probes of magnetospheric structure

    NASA Astrophysics Data System (ADS)

    Harding, A. K.

    2016-06-01

    > The large number of -ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the -ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modelling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  3. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  4. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-06-01

    The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula has been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 h of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10-13 TeV cm-2 s-1 for the Geminga pulsar and 3.5 × 10-12 TeV cm-2 s-1 for the surrounding nebula at 50 GeV are the mostconstraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 yr of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

  5. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  6. Secondary periodicities of microbursts of TeV gamma rays from the Crab pulsar

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Ramanamurthy, P. V.; Vishwanath, P. R.; Bhat, P. N.

    1985-01-01

    Observations were made during the past several years on the Crab pulsar using the Ooty atmospheric Cerenkov array with the aim of detecting possible emission of ultra high energy gamma rays by the pulsar. During the course of these observations, it was found that the Crab pulsar emits TeV gamma rays in bursts of short duration. The microbursts of TeV gamma rays from the Crab pulsar, which were seen in the data of at least three years, also reveal interesting secondary periodicities. It was noticed at first that some bursts could be connected with the others that occurred during the same night or during the next two nights with integral number of cycles of periods 43 + or - 1 minute. Ten possible periods in the vicinity of 43 minutes were determined for all the combinations of bursts for each year. The best values of periods thus obtained were different from year to year. But when, instead of the real time, the number of Crab cycles elapsed between the bursts was used as the unit of time, two values of burst periods - 77460 and 77770 Crab cycles - were found to be significant in the data of at least two years. A Monte Carlo simulation using 1500 trial periods chosen randomly within + or - 5 minutes of the original burst period did not reveal any value of the period as significant.

  7. A glitch in the millisecond pulsar J0613-0200

    NASA Astrophysics Data System (ADS)

    McKee, J. W.; Janssen, G. H.; Stappers, B. W.; Lyne, A. G.; Caballero, R. N.; Lentati, L.; Desvignes, G.; Jessner, A.; Jordan, C. A.; Karuppusamy, R.; Kramer, M.; Cognard, I.; Champion, D. J.; Graikou, E.; Lazarus, P.; Osłowski, S.; Perrodin, D.; Shaifullah, G.; Tiburzi, C.; Verbiest, J. P. W.

    2016-09-01

    We present evidence for a small glitch in the spin evolution of the millisecond pulsar J0613-0200, using the EPTA Data Release 1.0, combined with Jodrell Bank analogue filterbank times of arrival (TOAs) recorded with the Lovell telescope and Effelsberg Pulsar Observing System TOAs. A spin frequency step of 0.82(3) nHz and frequency derivative step of -1.6(39) × 10-19 Hz s-1 are measured at the epoch of MJD 50888(30). After PSR B1821-24A, this is only the second glitch ever observed in a millisecond pulsar, with a fractional size in frequency of Δν/ν = 2.5(1) × 10-12, which is several times smaller than the previous smallest glitch. PSR J0613-0200 is used in gravitational wave searches with pulsar timing arrays, and is to date only the second such pulsar to have experienced a glitch in a combined 886 pulsar-years of observations. We find that accurately modelling the glitch does not impact the timing precision for pulsar timing array applications. We estimate that for the current set of millisecond pulsars included in the International Pulsar Timing Array, there is a probability of ˜50 per cent that another glitch will be observed in a timing array pulsar within 10 years.

  8. The contribution of Fermi gamma-ray pulsars to the local flux of cosmic-ray electrons and positrons

    SciTech Connect

    Gendelev, Leo; Profumo, Stefano; Dormody, Michael E-mail: profumo@scipp.ucsc.edu

    2010-02-01

    We analyze the contribution of gamma-ray pulsars from the first Fermi-Large Area Telescope (LAT) catalogue to the local flux of cosmic-ray electrons and positrons (e{sup +}e{sup −}). We present new distance estimates for all Fermi gamma-ray pulsars, based on the measured gamma-ray flux and pulse shape. We then estimate the contribution of gamma-ray pulsars to the local e{sup +}e{sup −} flux, in the context of a simple model for the pulsar e{sup +}e{sup −} emission. We find that 10 of the Fermi pulsars potentially contribute significantly to the measured e{sup +}e{sup −} flux in the energy range between 100 GeV and 1 TeV. Of the 10 pulsars, 2 are old EGRET gamma-ray pulsars, 2 pulsars were discovered with radio ephemerides, and 6 were discovered with the Fermi pulsar blind-search campaign. We argue that known radio pulsars fall in regions of parameter space where the e{sup +}e{sup −} contribution is predicted to be typically much smaller than from those regions where Fermi-LAT pulsars exist. However, comparing the Fermi gamma-ray flux sensitivity to the regions of pulsar parameter space where a significant e{sup +}e{sup −} contribution is predicted, we find that a few known radio pulsars that have not yet been detected by Fermi can also significantly contribute to the local e{sup +}e{sup −} flux if a) they are closer than 2 kpc, and if b) they have a characteristic age on the order of one mega-year.

  9. Gamma-Ray Pulsar Light Curves in Vacuum and Force-Free Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan E.; Miller, M. Coleman; Kalapotharakos, Constantinos; Contopoulos, Ioannis

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profiles. We find that, compared to the profiles derived from symmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines, increases significantly relative to the off-peak emission, formed along leading field lines. The enhanced contrast produces improved slot gap model fits to Fermi pulsar light curves like Vela, with vacuum dipole fits being more favorable.

  10. Gamma-Ray Pulsar Light Curves in Offset Polar Cap Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan; Miller, M. Coleman

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres, used to model high-energy light curves have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profile. We find that. corn pared to the profile:-; derived from :-;ymmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines. increases significantly relative to the off-peak emission. formed along leading field lines. The enhanced contrast produces greatly improved slot gap model fits to Fermi pulsar light curves like Vela, which show very little off-peak emIssIon.

  11. Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    SciTech Connect

    Takata, J.; Leung, Gene C. K.; Wu, E. M. H.; Cheng, K. S.; Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Hui, C. Y.; Xing, Yi; Wang, Zhongxiang; Cao, Yi; Tang, Sumin E-mail: akong@phys.nthu.edu.tw

    2014-04-20

    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that (1) its gamma-rays suddenly brightened within a few days in 2013 June/July and has remained at a high gamma-ray state for several months; (2) both UV and X-ray fluxes have increased by roughly an order of magnitude; and (3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 s and 50-100 s, respectively. Our model suggests that a newly formed accretion disk, due to the sudden increase of the stellar wind, could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk, and the pulsar is still powered by rotation.

  12. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; Janssen, G. H.; Keith, M.; Kerr, M.; Kramer, M.; Parent, D.; Ransom, S. M.; Ray, P. S.; Saz Parkinson, P. M.; Smith, D. A.; Stappers, W.; Theureau, G.

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  13. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-01

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions. PMID:22301314

  14. X-ray emission from two nearby millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.

    1994-01-01

    This grant, titled 'X-Ray Emission from Two Nearby Millisecond Pulsars,' included ROSAT observations of the nearby pulsars PSR J2322+20 and PSR J2019+24. Neither was detected, although the observations were among the most sensitive ever made towards millisecond pulsars, reaching 1.5 x 10(exp 29) and 2.7 x 10(exp 29) erg s(exp -1) (0.1-2.4 keV), respectively. This is about, or slightly below, the predicted level of emission from the Seward and Wang empirical prediction, based on an extrapolation from slower pulsars. To understand the significance of this result, we have compared these limits with observations of four other millisecond pulsars, taken from the ROSAT archives. Except for the case of PSR B1821-21, where we identified a possible x-ray counterpart, only upper limits on x-ray flux were obtained. From these results, we conclude that x-ray emission beaming does not follow the same dependence on pulsar period as that of radio emission: while millisecond pulsars have beaming fractions near unity in the radio, x-ray emission is observed only for favorable viewing geometries.

  15. Gamma-ray connection of Pulsars-Pulsar Wind Nebulae: From GeV to TeV energies

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén; de Ona Wilhelmi, Emma

    2015-08-01

    Pulsars are the remnants of massive star explosions and Pulsar Wind Nebulae (PWNe) are the bubbles of relativistic particles and magnetic field surrounding pulsars. The acceleration in PWNe is produced when the pulsar's relativistic wind interacts with its surrounding medium and particles are accelerated at the shock region. The non-thermal photon emission ranges from the radio to the very-high-energy (VHE) range and it is believed to be originated in synchrotron, curvature and inverse Compton processes.So far, pulsars and PWNe represent the largest population of identified GeV and TeV sources. In this contribution, we will describe the recent measurements on young PWNe such as the Crab whose inverse Compton peak was recently accurately determined. We will also discuss the origin of the GeV gamma-ray flares and their non-detection at any other wavelength, together with the recent reports of pulsed emission up to TeV energies. This result evidences the extreme acceleration of electrons in the surrounding of the Crab pulsar, up to Lorenz factors of 5 × 106. We will also put in context the recent discovery of VHE pulsed emission from the Vela pulsar. We will discuss the case of the inefficient pulsar at the center of 3C 58, a PWN discovered by Fermi at GeV energies and by MAGIC at TeV. In addition, we will also present population studies comparing several properties of the central engine such as age or spin-down power with the gamma-ray luminosity of their surrounding PWNe. We will finally show the measurement prospects for this kind of sources with the future Cherenkov Telescope Array.

  16. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  17. Simulated Gamma-Ray Pulse Profile of the Crab pulsar with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Burtovoi, A.; Zampieri, L.

    2016-04-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the MAGIC telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 hours). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes (LSTs). CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  18. Pulsed emission of TeV gamma rays from Vela pulsar

    NASA Technical Reports Server (NTRS)

    Bhat, P. N.; Gupta, S. K.; Ramanamurthy, P. V.; Vishwanath, P. R.; Sreekantan, B. V.

    1985-01-01

    The Ooty atmospheric Cerenkov array, consisting of 10 parabolic mirrors of 0.9 m diameter and 8 of 1.5 m diameter, was used for observations on the Vela pulsar to see if it emits gamma rays in the TeV energy range. During the winter of 1984-85, the array was split into two parts: (1) consisting wholly of the smaller mirrors, and (2) wholly of the bigger mirrors. The two arrays were operated at two different sites to distinguish a marginally significant genuine pulsar signal from spurious signals produced trivially by chance fluctuations in the background rates. All the mirrors were pointed at the celestial object to track it for durations of the order of 1 to 6 hours during clear moonless nights. The event time data is analyzed to detect a possible pulsed emission of TeV gamma rays using the contemporaneous pulsar elements on the basis of their radio observations on the Vela pulsar. Results from the analyses of observations made during the winters of 1982-83 and 1984-85 on steady pulsed emission and on possible transient emission is presented.

  19. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    NASA Technical Reports Server (NTRS)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  20. ORBITAL-PHASE-DEPENDENT {gamma}-RAY EMISSIONS FROM THE BLACK WIDOW PULSAR

    SciTech Connect

    Wu, E. M. H.; Takata, J.; Cheng, K. S.; Huang, R. H. H.; Kong, A. K. H.; Tam, P. H. T.; Wu, J. H. K.; Hui, C. Y. E-mail: takata@hku.hk

    2012-12-20

    We report on evidence for orbital phase dependence of the {gamma}-ray emission from the PSR B1957+20 black widow system using data from the Fermi Large Area Telescope. We divide an orbital cycle into two regions: one containing the inferior conjunction and the other containing the rest of the orbital cycle. We show that the observed spectra for the different orbital regions are fitted by different functional forms. The spectrum of the orbital region containing the inferior conjunction can be described by a power law with an exponential cutoff (PLE) model, which also gives the best-fit model for the orbital phase without the inferior conjunction, plus an extra component above {approx}2.7 GeV. The emission above 3 GeV in this region is detected with a {approx}7{sigma} confidence level. The {gamma}-ray data above {approx}2.7 GeV are observed to be modulated at the orbital period at the {approx}2.3{sigma} level. We anticipate that the PLE component dominant below {approx}2.7 GeV originates from the pulsar magnetosphere. We also show that inverse Compton scattering of the thermal radiation of the companion star off a ''cold'' ultrarelativistic pulsar wind can explain the extra component above {approx}2.7 GeV. The black widow pulsar PSR B1957+20 may be a member of a new class of object, in the sense that the system is showing {gamma}-ray emission with both magnetospheric and pulsar wind origins.

  1. Timing and searching millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew

    2009-10-01

    Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing pilot observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.

  2. Timing and searching millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-04-01

    Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.

  3. An eccentric binary millisecond pulsar in the galactic plane.

    PubMed

    Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter

    2008-06-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value. PMID:18483399

  4. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  5. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-05-15

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  6. A PARALLAX DISTANCE AND MASS ESTIMATE FOR THE TRANSITIONAL MILLISECOND PULSAR SYSTEM J1023+0038

    SciTech Connect

    Deller, A. T.; Archibald, A. M.; Kaspi, V. M.; Brisken, W. F.; Chatterjee, S.; Janssen, G. H.; Lyne, A. G.; Stappers, B.; Lorimer, D.; McLaughlin, M. A.; Ransom, S.; Stairs, I. H.

    2012-09-10

    The recently discovered transitional millisecond pulsar system J1023+0038 exposes a crucial evolutionary phase of recycled neutron stars for multiwavelength study. The system, comprising the neutron star itself, its stellar companion, and the surrounding medium, is visible across the electromagnetic spectrum from the radio to X-ray/gamma-ray regimes and offers insight into the recycling phase of millisecond pulsar evolution. Here, we report on multiple-epoch astrometric observations with the Very Long Baseline Array (VLBA) which give a system parallax of 0.731 {+-} 0.022 milliarcseconds (mas) and a proper motion of 17.98 {+-} 0.05 mas yr{sup -1}. By combining our results with previous optical observations, we are able to use the parallax distance of 1368{sup +42}{sub -{sub 39}} pc to estimate the mass of the pulsar to be 1.71 {+-} 0.16 M{sub Sun }, and we are also able to measure the three-dimensional space velocity of the system to be 126 {+-} 5 km s{sup -1}. Despite the precise nature of the VLBA measurements, the remaining {approx}3% distance uncertainty dominates the 0.16 M{sub Sun} error on our mass estimate.

  7. X-Ray States of Redback Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Linares, M.

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks," constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L X), between (6-9) × 1032 erg s-1 (disk-passive state) and (3-5) × 1033 erg s-1 (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L X in the pulsar state (>1032 erg s-1).

  8. The gamma-ray pulsar PSR1706-44 and its associated SNR

    NASA Astrophysics Data System (ADS)

    McAdam, Bruce

    1994-04-01

    The Molonglo Observatory Synthesis Telescope discovered a faint supernova remnant associated with PSR 1706-44, one of only four gamma-ray pulsars. (Vela, the Crab and PSR 1509-58 also have an associated SNR.) The gamma-ray source was first discovered as 2CG342-02, the tenth strongest of 25 COS-B gamma-ray sources cataloged (Swanenburg et al., 1981, Astrophys. J. Lett. 243, L69). Low-resolution surveys show an extended (approximately 40 min x 25 min) source in the region with flux of approximately 25 Jy, suggesting a plerionic SNR (e.g. Jonas, de Jager and Baart, 1985, Astron. Astrophys. Suppl., 62, 105). A search for the gamma-ray source at 843 MHz with a resolution of 44 arcsec revealed a shell-type SNR--a half-ellipse with axes approximately 44 min x 32 min and low brightness of approximately 9 mJy per beam, giving Sigma843 = 3 x 10-21W m-2 Hz/sr (McAdam, Osborne and Parkinson, 1993, Nature, 361, 516). The Sigma-D relation suggests a diameter D approximately 34 pc at a distance of approximately 3 kpc in the Norma spiral arm of the Galaxy. It has a young (Sedov expansion) age of approximately 6000 years. The key linking the SNR and the gamma-ray source came (Kniffen et al., 1992, IAU Circ. 5485) when the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory satellite detected pulsed gamma-radiation (Thompson et al., 1992, Nature, 359, 615) from the newly-discovered PSR 1706-44 (Johnston et al., 1992, Mon. Not. R. Astron. Soc. 255, 401). The pulsar position (epoch 1950) at RA = 17 hour 06 min 05.1 sec, delta = -44 deg 25 min 15.0 sec coincides in the MOST image with a 21 mJy source on the SE and of the SNR shell. The pulsar has a period of 102 ms and slows with characteristic age 17300 years. For it to move 18 min from centre to rim of the SNR shell in this time implies a proper motion of 0.06 sec/yr which is sufficiently large to check with VLBI astrometry. At the pusar dispersion distance (1.8 kpc), or the SNR distance of 3 kpc

  9. THE {gamma}-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    SciTech Connect

    Lyutikov, Maxim

    2012-09-20

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband {gamma}-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright {gamma}-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of {gamma}-ray pulsars-i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and {gamma}-ray regions, presence of profile peaks at lower energies aligned with {gamma}-ray peaks-all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  10. Modeling of Gamma-ray Pulsar Light Curves Using the Force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Spitkovsky, Anatoly

    2010-06-01

    Gamma-ray emission from pulsars has long been modeled using a vacuum dipole field. This approximation ignores changes in the field structure caused by the magnetospheric plasma and strong plasma currents. We present the first results of gamma-ray pulsar light-curve modeling using the more realistic field taken from three-dimensional force-free (FF) magnetospheric simulations. Having the geometry of the field, we apply several prescriptions for the location of the emission zone, comparing the light curves to observations. We find that when the emission region is chosen according to the conventional slot-gap (or two-pole caustic) prescription, the model fails to produce double-peak pulse profiles, mainly because the size of the polar cap in the FF magnetosphere is larger than the vacuum field polar cap. This suppresses caustic formation in the inner magnetosphere. The conventional outer-gap model is capable of producing only one peak under general conditions because a large fraction of open field lines does not cross the null charge surface. We propose a novel "separatrix layer" model, where the high-energy emission originates from a thin layer on the open field lines just inside of the separatrix that bounds the open flux tube. The emission from this layer generates two strong caustics on the sky map due to the effect we term "Sky Map Stagnation" (SMS). It is related to the fact that the FF field asymptotically approaches the field of a rotating split monopole, and the photons emitted on such field lines in the outer magnetosphere arrive to the observer in phase. The double-peak light curve is a natural consequence of SMS. We show that most features of the currently available gamma-ray pulsar light curves can be reasonably well reproduced and explained with the separatrix layer model using the FF field. Association of the emission region with the current sheet will guide more detailed future studies of the magnetospheric acceleration physics.

  11. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    NASA Technical Reports Server (NTRS)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Parkinson, P. M. Saz

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  12. RADIO DETECTION OF THE FERMI-LAT BLIND SEARCH MILLISECOND PULSAR J1311-3430

    SciTech Connect

    Ray, P. S.; Wood, K. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Kerr, M.; Ferrara, E. C.; Guillemot, L.; Kramer, M.; Johnston, S.; Keith, M.; Pletsch, H. J.; Saz Parkinson, P. M.

    2013-01-20

    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of {approx}4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm{sup -3} provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  13. The proper motion of the nearby radio-quiet gamma-ray pulsar PSR J0357+3205

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2011-09-01

    PSR J0357+32 is a radio-quiet gamma-ray pulsar detected by the Fermi-LAT. The relatively high gamma-ray flux with respect to the modest rotational energy loss rate suggests that PSR J0357+32 is relatively close-by, probably at ≈ 500 pc. An observation of PSR J0357+32 with Chandra in AO11 allowed us to detect the X-ray counterpart of the pulsar. Most interesting, Chandra data unveiled the existence of a huge (9 arcmin long) extended feature apparently protruding from the pulsar. The most natural interpretation of the feature - a bow-shock pulsar wind nebula - is challenged by its very unusual phenomenology and by energetic arguments.A measure of the pulsar proper motion with Chandra could easily clarify the nature of its puzzling X-ray tail.

  14. Search for VHE {gamma}-ray emission in the vicinity of selected pulsars of the Northern Sky with VERITAS

    SciTech Connect

    Aliu, Ester

    2008-12-24

    It is generally believed that pulsars dissipate their rotational energy through powerful winds of relativistic particles. Confinement of these winds leads to the formation of luminous pulsar wind nebulae (PWNe) seen across the electromagnetic spectrum in synchrotron and inverse Compton emission. Recently, many new detections have been produced at the highest energies by Very High Energy (VHE){gamma}-ray observations, identifying PWNe as among the most common sources of galactic VHE {gamma}-ray emission. We report here on the preliminary results of a search for VHE {gamma}-ray emission towards a selection of energetic and/or close pulsars in the Northern hemisphere in the first year of operations of the full VERITAS array.

  15. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Lemoine-Goumard, Marianne

    2015-08-01

    In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production. xml:lang="fr"

  16. Timing the Geminga Pulsar with High-Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1997-01-01

    This is a continuing program to extend and refine the ephemeris of the Geminga pulsar with annual observations for the remaining lifetime of EGRET. The data show that every revolution of Geminga is accounted for during the EGRET epoch, and that a coherent timing solution linking the phase between EGRET, COS-B, amd SAS-2, observations has now been achieved. The accuracy of the gamma-ray timing is such that the proper motion of the pulsar can now be detected, consistent with the optical determination. The measured braking index over the 24.2 yr baseline is 17 +/- 1. Further observation is required to ascertain whether this very large braking index truly represents the energy loss mechanism, perhaps related to the theory in which Geminga is near its gamma-ray death line, or whether it is a manifestation of timing noise. Statistically significant timing residuals are detected in the EGRET data; they depart from the cubic ephemeris at a level of 23 milliperiods. The residuals appear to have a sinusoidal modulation with a period of about 5.1 yr. This could simply be a manifestation of timing noise, or it could be consistent with a planet of mass 1.7/sin i solar mass orbiting Geminga at a radius of 3.3/sin i AU.

  17. Optimized blind gamma-ray pulsar searches at fixed computing budget

    SciTech Connect

    Pletsch, Holger J.; Clark, Colin J.

    2014-11-01

    The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this 'needle in a haystack' problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the entire parameter space using an efficient semicoherent method and promising candidates are then refined through a fully coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.

  18. THE ORBIT AND COMPANION OF PROBABLE {gamma}-RAY PULSAR J2339-0533

    SciTech Connect

    Romani, Roger W.; Shaw, Michael S.

    2011-12-20

    We have measured dramatic flux and spectral variations through the 0.193 day orbit of the optical counterpart of the unidentified {gamma}-ray source 0FGL J2339.8-0530. This compact object companion is strongly heated, with T{sub eff} varying from {approx}6900 K (superior conjunction) to <3000 K at minimum. A combined fit to the light curve and radial velocity amplitudes imply M{sub 1} Almost-Equal-To 0.075 M{sub Sun }, M{sub 2} Almost-Equal-To 1.4M{sub Sun }, and inclination i Almost-Equal-To 57 Degree-Sign . Thus, this is a likely 'black widow' system with a E-dot {approx}10{sup 34-34.5} erg s{sup -1} pulsar driving companion mass loss. This wind, also suggested by the X-ray light curve, may prevent radio pulse detection. Our measurements constrain the pulsar's reflex motion, increasing the possibility of a pulse detection in the {gamma}-ray signal.

  19. GAMMA-RAY LIGHT CURVES FROM PULSAR MAGNETOSPHERES WITH FINITE CONDUCTIVITY

    SciTech Connect

    Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2012-07-20

    We investigate the shapes of {gamma}-ray pulsar light curves using three-dimensional pulsar magnetosphere models of finite conductivity. These models, covering the entire spectrum of solutions between vacuum and force-free magnetospheres, for the first time afford mapping the GeV emission of more realistic, dissipative pulsar magnetospheres. To this end we generate model light curves following two different approaches: (1) We employ the emission patterns of the slot and outer gap models in the field geometries of magnetospheres with different conductivity {sigma}. (2) We define realistic trajectories of radiating particles in magnetospheres of different {sigma} and compute their Lorentz factor under the influence of magnetospheric electric fields and curvature radiation-reaction; with these at hand we then calculate the emitted radiation intensity. The light curves resulting from these prescriptions are quite sensitive to the value of {sigma}, especially in the second approach. While still not self-consistent, these results are a step forward in understanding the physics of pulsar {gamma}-radiation.

  20. Gamma-ray and Radio Properties of Six Pulsars Detected by the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Weltevrede, P.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; Dermer, C. D.; Desvignes, G.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; Dormody, M.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Freire, P. C. C.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hays, E.; Hobbs, G.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Keith, M.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kramer, M.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Makeev, A.; Manchester, R. N.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ransom, S. M.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Vasileiou, V.; Venter, C.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wang, N.; Watters, K.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2010-01-01

    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models.

  1. VHE gamma-ray Emitting Pulsar Wind Nebulae Discovered by H.E.S.S.

    SciTech Connect

    Gallant, Y.A.; Carrigan, S.; Djannati-Atai, A.; Funk, S.; Hinton, J.A.; Hoppe, S.; de Jager, O.C.; Khelifi, B.; Komin, Nu.; Kosack, K.; Lemiere, A. Masterson, C.; /Dublin Inst.

    2008-06-05

    Recent advances in very-high-energy (VHE) gamma-ray astronomy have opened a new observational window on the physics of pulsars. The high sensitivity of current imaging atmospheric Cherenkov telescopes, and in particular of the H.E.S.S. array, has already led to the discovery of about a dozen VHE-emitting pulsar wind nebulae (PWNe) and PWN candidates. These include the plerions in the composite supernova remnants MSH 15-52, G21.5-0.9, Kes 75, and Vela, two sources in the Kookaburra, and the nebula of PSR B1823-13. This VHE emission is generally interpreted as inverse Compton emission from the relativistic electrons and positrons accelerated by the pulsar and its wind; as such, it can yield a more direct spatial and spectral view of the accelerated particles than can be inferred from observations of their synchrotron emission. The VHE-emitting PWNe detected by the H.E.S.S. telescopes are reviewed and the implications for pulsar physics discussed.

  2. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  3. Radio-Loud and Radio-Quiet Gamma-Ray Pulsars from the Galactic Plane and the Gould Belt

    SciTech Connect

    Gonthier, P. L.

    2005-03-17

    We present recent results of a pulsar population synthesis study in the polar cap model that includes the Parkes Multibeam Pulsar Survey, realistic beam geometries for radio and {gamma}-ray emission from neutron stars born in the Galactic disc as well as the local Gould Belt. We include nine radio surveys to normalize the simulated results from the Galactic disc to the number of radio pulsars observed by the group of selected surveys. In normalizing the contribution of the Gould Belt, we use results from a recent study that indicates a supernova rate in the Gould Belt of 3 to 5 times that of the local region of the Galactic plane leading to {approx}100 neutron stars born in the Gould Belt during the last 5 Myr. Our simulations include the dynamical evolution of the Gould Belt where neutron stars are produced in the plane of the Gould Belt during the past 5 Myr. We discuss the simulated numbers of radio-quiet (those below flux threshold of radio surveys) and radio-loud, {gamma}-ray pulsars from the Galactic disc and the Gould belt observed by {gamma}-ray telescopes EGRET, AGILE and GLAST. They suggest that about 35 of the unidentified EGRET sources could be (mostly radio-loud) {gamma}-ray pulsars with 2/3 of them born in the Galactic disc and 1/3 in the Gould Belt.

  4. The Pulsing Gamma-ray Sky

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2014-01-01

    The Fermi Space Telescope, with its discovery of nearly 150 gamma-ray pulsars has solidified and extended the suspicions of the EGRET era: energetic spin-powered pulsars are fantastic particle accelerators, they emit most of their photon energy in the GeV range and they paint their gamma-ray beams over much of the sky. I summarize here the suite of gamma-ray discoveries and what it has taught us about pulsar populations. Young, classical radio-detectable pulsars, gamma-ray only `Gemingas' and energetic millisecond pulsars are equally represented in the Fermi sky. This sample certainly reveals much about magnetospheric physics. However, by chasing down the pulsars responsible for Fermi sources we continue to discover exotic systems whose study impacts a wide range of high energy astrophysics. Gamma-ray pulsars are revealing details of close binary evolution, testing the equation of state of ultra-dense matter, helping us understand the cosmic ray positrons, and aiding in the search for ultra-low frequency gravitational radiation. I summarize recent progress on these fronts and the prospects for more exciting discoveries to come.

  5. A millisecond pulsar in an extremely wide binary system

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Stappers, B. W.; Tauris, T. M.; Wevers, T.; Jonker, P. G.; Lentati, L.; Verbiest, J. P. W.; Desvignes, G.; Graikou, E.; Guillemot, L.; Freire, P. C. C.; Lazarus, P.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Osłowski, S.; Perrodin, D.; Sanidas, S.; Shaifullah, G.; Smits, R.; Theureau, G.; Tiburzi, C.; Zhu, W. W.

    2016-08-01

    We report on 22 yrs of radio timing observations of the millisecond pulsar J1024$-$0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869$-$0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, $\\mathrm{[M/H]}=-1.0$, $T_\\mathrm{eff}=4050\\pm50$ K) and that its position, proper motion and distance are consistent with those of PSR J1024$-$0719. We conclude that PSR J1024$-$0719 and 2MASS J10243869$-$0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide ($P_\\mathrm{b}>200$ yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of $384\\pm45$ km s$^{-1}$ with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024$-$0719 in light of its inclusion in pulsar timing arrays.

  6. A millisecond pulsar in an extremely wide binary system

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Stappers, B. W.; Tauris, T. M.; Wevers, T.; Jonker, P. G.; Lentati, L.; Verbiest, J. P. W.; Desvignes, G.; Graikou, E.; Guillemot, L.; Freire, P. C. C.; Lazarus, P.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Osłowski, S.; Perrodin, D.; Sanidas, S.; Shaifullah, G.; Smits, R.; Theureau, G.; Tiburzi, C.; Zhu, W. W.

    2016-08-01

    We report on 22 yr of radio timing observations of the millisecond pulsar J1024-0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869-0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = -1.0, Teff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024-0719. We conclude that PSR J1024-0719 and 2MASS J10243869-0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (Pb > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s-1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024-0719 in light of its inclusion in pulsar timing arrays.

  7. Properties and Evolution of the Redback Millisecond Pulsar Binary PSR J2129-0429

    NASA Astrophysics Data System (ADS)

    Bellm, Eric C.; Kaplan, David L.; Breton, Rene P.; Phinney, E. Sterl; Bhalerao, Varun B.; Camilo, Fernando; Dahal, Sumit; Djorgovski, S. G.; Drake, Andrew J.; Hessels, J. W. T.; Laher, Russ R.; Levitan, David B.; Lewis, Fraser; Mahabal, Ashish A.; Ofek, Eran O.; Prince, Thomas A.; Ransom, Scott M.; Roberts, Mallory S. E.; Russell, David M.; Sesar, Branimir; Surace, Jason A.; Tang, Sumin

    2016-01-01

    PSR J2129-0429 is a “redback” eclipsing millisecond pulsar binary with an unusually long 15.2 hr orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean mR = 16.6 mag), allowing us to construct the longest baseline photometric data set available for such a system. We present 10 years of archival and new photometry of the companion from the Lincoln Near-Earth Asteroid Research Survey, the Catalina Real-time Transient Survey, the Palomar Transient Factory, the Palomar 60 inch, and the Las Cumbres Observatory Global Telescope. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200 inch indicates that the pulsar is massive: 1.74 ± 0.18 {M}⊙ . The G-type pulsar companion has mass 0.44 ± 0.04 {M}⊙ , one of the heaviest known redback companions. It is currently 95 ± 1% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr-1 secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical light curve shape. This behavior may indicate that the companion is cooling. Binary evolution calculations indicate that PSR J2129-0429 has an orbital period almost exactly at the bifurcation period between systems that converge into tighter orbits as black widows and redbacks and those that diverge into wider pulsar-white dwarf binaries. Its eventual fate may depend on whether it undergoes future episodes of mass transfer and increased irradiation.

  8. Ten Years Timing of Millisecond Pulsars at Kalyazin

    NASA Astrophysics Data System (ADS)

    Ilyasov, Yu. P.; Oreshko, V. V.

    2006-08-01

    Precise timing of millisecond binary pulsars has been started at Kalyazin radio astronomical observatory since 1995. (Tver' region, Russia). Binary pulsars: J0613-02, J1020+10, J1640+22, J1643-12, J1713+07, J2145-07 and isolated millisecond pulsar B1937+21 have been included among the Kalayazin Pulsar Timing Array (KPTA). The Backer's pulsar B1937+21 is being monitored at Kalyazin observatory (0.6 GHz) and Kashima space research centre of the National Institute of Communication Technology (NICT, Japan) (2.2 GHz) simultaneously from 1996, as well. .At Kalyazin pulsars are observed at 0.6 GHz by a full steerable 64-m dish radio telescope RT-64 of the Special Research Bureau of the Moscow Power Engineering Institute. Filter-bank receiver of PRAO Lebedev Physical Institute is used for observations in two circular polarizations by 80 channels per each. Bandwidth per channel is 40 kHz, so total band is 3.2 MHz and time resolution is about 10 μs per channel. Now a perfect data base of pulses Time of Arrival (TOA) are collected with refer to the Solar system barycenter for about 10 years period. Main aim is: a) to study Pulsar Time and to establish a long-term standard of time based on pulsars ensemble as space long life clock alternative to atomic standards; b) to detect gravitational waves extremely low frequency belong to the Gravity Wave Background - GWB. After ten years monitoring of B1937+21 its timing noise is looking as "white phase noise" with RMS about 1.8 μs.( Fractional instability is about 6.10^-15). After these data and timing results of binary pulsar J1640+22 gravitational natural GWB upper limit should be reduced till to less than Ω[g]h^2 <10^-7-10^ -9 . Secular changes of DM toward millisecond pulsar B1937+21 was revealed after long time two frequency timing observations (Kalyazin -0,6 and Kashima -2.3).

  9. X-ray states of redback millisecond pulsars

    SciTech Connect

    Linares, M.

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  10. On Detecting Millisecond Pulsars at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Kanekar, Nissim

    2015-06-01

    The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈8 GHz (weak-scattering) and ≈25 GHz (strong-scattering), for pulsars with periods 1-20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10-30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.

  11. Known radio pulsars do not contribute to the Galactic Center gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    2016-03-01

    Observations using the Fermi Large Area Telescope (Fermi-LAT) have found a significant γ -ray excess surrounding the center of the Milky Way (GC). One possible interpretation of this excess invokes γ -ray emission from an undiscovered population of either young or recycled pulsars densely clustered throughout the inner kiloparsec of the Milky Way. While these systems, by construction, have individual fluxes that lie below the point-source sensitivity of the Fermi-LAT, they may already be observed in multiwavelength observations. Notably the Australia Telescope National Facility (ATNF) catalog of radio pulsars includes 270 sources observed in the inner 10° around the GC. We calculate the γ -ray emission observed from these 270 sources and obtain three key results: (1) point-source searches in the GC region produce a plethora of highly significant γ -ray "hot spots" compared to searches far from the Galactic Plane, (2) there is no statistical correlation between the positions of these γ -ray hot spots and the locations of ATNF pulsars, and (3) the spectrum of the most statistically significant γ -ray hot spots is substantially softer than the spectrum of the GC γ -ray excess. These results place strong constraints on models where young pulsars produce the majority of the γ -ray excess, and disfavor some models where millisecond pulsars produce the γ -ray excess.

  12. Discovery of Nine Gamma-Ray Pulsars in Fermi-Lat Data Using a New Blind Search Method

    NASA Technical Reports Server (NTRS)

    Celik-Tinmaz, Ozlem; Ferrara, E. C.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; Freire, P. C. C.; Reich, W.; Lyne, A. G.; Ray, P. S.

    2011-01-01

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs Jl803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 x 10(exp 35) ergs per second and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J010622+3749, Jl620-4927, Jl746-3239, J2028+3332,J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| greater than 10 degrees). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2x 10(exp 11)G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 x l0(exp 33) erg per second) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  13. DISCOVERY OF NINE GAMMA-RAY PULSARS IN FERMI LARGE AREA TELESCOPE DATA USING A NEW BLIND SEARCH METHOD

    SciTech Connect

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Guillemot, L.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; Freire, P. C. C.; Ray, P. S.; Belfiore, A.; Dormody, M.; Camilo, F.; Caraveo, P. A.; Celik, Oe.; Ferrara, E. C.; Hessels, J. W. T.; Keith, M.; Kerr, M. E-mail: guillemo@mpifr-bonn.mpg.de; and others

    2012-01-10

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative, and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs J1803-2149 and J2111+ 4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 Multiplication-Sign 10{sup 35} erg s{sup -1} and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J0622+3749, J1620-4927, J1746-3239, J2028+3332, J2030+4415, and J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| > 10 Degree-Sign ). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2 Multiplication-Sign 10{sup 11} G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 Multiplication-Sign 10{sup 33} erg s{sup -1}) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  14. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  15. VizieR Online Data Catalog: 2nd Fermi LAT cat. of gamma-ray pulsars (2PC) (Abdo+, 2013)

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Celik, O.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; Decesar, M. E.; de, Luca A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Johannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knodlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Raino, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgro, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-10-01

    Fermi was launched on 2008 June 11, carrying two gamma-ray instruments; among them the Large Area Telescope (LAT). The LAT is sensitive to gamma rays with energies from 20MeV to over 300GeV, with an on-axis effective area of ~8000 cm2 above 1 GeV. The data used here to search for gamma-ray pulsars span 2008 August 4 to 2011 August 4. Events were selected with reconstructed energies from 0.1 to 100GeV and directions within 2° of each pulsar position for pulsation searches (Section 3) and 15° for spectral analyses (Section 6). (8 data files).

  16. Discovery of Pulsed Gamma Rays and a New Spin-Down State of the LMC Pulsar B0540-69

    NASA Astrophysics Data System (ADS)

    Marshall, Francis E.; Guillemot, Lucas; Kust Harding, Alice; Martin, Pierrick; Smith, David A.

    2016-01-01

    The young pulsar B0540-69 in the nearby Large Magellanic Cloud has the third largest spin-down luminosity of the ~2500 known pulsars. Multi-year observations with Fermi/LAT using the ephemerides from RXTE reveal that B0540-69 is the most luminous gamma-ray pulsar ever detected. Its pulsed luminosity above 100 MeV is 5.7x1036 erg/s, about 20 times brighter than the Crab Pulsar, the next brightest. The pulse profile in gamma rays is similar to that seen in X-rays and optical light; the giant radio pulses align with the shoulders of the high-energy profiles. The detection of B0540-69 in gamma rays offers a new look at particle acceleration and emission in the magnetospheres of very young pulsars. Unpulsed gamma-ray emission has also been detected from PSR J0537-6910, another young pulsar in the LMC. The two pulsars contribute most of the gamma-ray emission from the 30 Doradus nebula, indicating that cosmic rays contribute only a small part. Recent monitoring of B0540-69 with the Swift/XRT shows a large, sudden, and persistent increase in the spin-down rate of B0540-69. The relative increase in the spin-down rate of 36% is unprecedented for B0540-69. No accompanying change in the spin rate was seen, and no change was seen in the pulsed X-ray emission from B0540-69 following the change in the spin-down rate. Such large relative changes in the spin-down rate are seen in the recently discovered class of ``intermittent pulsars'', and we compare the properties of B0540-69 to such pulsars. We consider possible changes in the magnetosphere of the pulsar that could cause such a large change in the spin-down rate. These changes are likely to result in a new braking index for the pulsar. We report on continued monitoring with Swift/XRT to determine the new braking index and to detect a new state change, should it occur.

  17. Muons emitted from showers produced by Geminga-pulsar gamma rays.

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D. P.

    1997-12-01

    The derivation of integral energy spectrum of muons produced by the interactions in gamma-ray showers induced by energetic photons from the Geminga pulsar has been made. The conventional analytical procedure of Drees et al. (1988) has been adopted for muon-number calculations from photoproduced air showers. The FNAL data on πp→π±X inclusive reactions, and the HERA ep collider results have been used for the evaluation of the hadronic energy moments and the photonuclear cross-sections, respectively. The integral number of muons was derived for Zππ = 0.499, σγN = 0.119 mb and σπA = 198 mb. It exhibits a drastic decrease with energy.

  18. The Contribution of Millisecond Pulsars to the Local Electron / Positron Spectrum

    NASA Astrophysics Data System (ADS)

    Venter, Christo; Buesching, Ingo; Harding, Alice; Kopp, Andreas; Gonthier, Peter

    The high energies of gamma-ray photons (as well as the presence of lower-energy photons) coupled with the intense magnetic fields characterizing younger pulsars enable formation of electron-positron pair cascades which fills the pulsar magnetosphere with plasma and also feeds an outflowing particle wind that may create a surrounding pulsar wind nebula (PWN). Although this scenario was originally thought to be unique to the younger pulsar population, Fermi LAT demonstrated that the light curves of millisecond pulsars (MSPs) are generally very similar to those of younger pulsars, requiring copious pair production even for this older class with much lower surface magnetic fields and spin-down power. These pair cascades may thus be a primary source of Galactic electrons and positrons, and may present an astrophysical explanation for the observed enhancement in positron flux in the high-energy band. We investigate Galactic MSPs contribution to the flux of local cosmic-ray electrons and positrons. We use a population synthesis code to predict the source properties (number, position, and power) of the present-day Galactic MSPs, taking into account the latest Fermi observations to calibrate the model output. Next, we simulate pair cascade spectra from these MSPs using a model that invokes an offset-dipole magnetic field, as this increases the pair production rate relative to a standard dipole field geometry. The model source pair spectra may extend to several TeV, depending on pulsar properties, neutron star equation of state, and magnetic polar cap offset. Since MSPs are not surrounded by PWNe or supernova shells, we can assume that the pairs escape from the pulsar environment without energy loss and undergo losses only in the intergalactic medium. We lastly compute the spectrum of the transported electrons and positrons at Earth, following their diffusion and energy loss through the Galaxy. We will compare our results with the observed local interstellar spectrum and

  19. PSR J2030+3641: RADIO DISCOVERY AND GAMMA-RAY STUDY OF A MIDDLE-AGED PULSAR IN THE NOW IDENTIFIED FERMI-LAT SOURCE 1FGL J2030.0+3641

    SciTech Connect

    Camilo, F.; Kerr, M.; Romani, R. W.; Ray, P. S.; Wood, K. S.; Ransom, S. M.; Johnston, S.; Keith, M.; Parent, D.; DeCesar, M. E.; Harding, A. K.; Ferrara, E. C.; Donato, D.; Saz Parkinson, P. M.; Freire, P. C. C.; Guillemot, L.; Kramer, M. E-mail: kerrm@stanford.edu

    2012-02-10

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi Large Area Telescope (LAT) sources, we have discovered the middle-aged pulsar J2030+3641 associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times which spans the entire Fermi mission. With a rotation period of 0.2 s, a spin-down luminosity of 3 Multiplication-Sign 10{sup 34} erg s{sup -1}, and a characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc cm{sup -3}. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive-PSR J2030+3641 would have been found blindly in gamma rays if only {approx}> 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  20. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; SazParkinson, P. M.; Ferrara, E. C.; Freire, P. C. C.; Guillemot, L; Keith, M.; Kramer, M.; Wood, K. S.

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  1. Observation of pulsed gamma-rays above 25 GeV from the Crab pulsar with MAGIC.

    PubMed

    Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Delgado Mendez, C; Dominguez, A; Dorner, D; Doro, M; Elsässer, D; Errando, M; Fagiolini, M; Ferenc, D; Fernandez, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; Garcia Lopez, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; Lopez, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martinez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J; de Jager, O C; de Ona Wilhelmi, E

    2008-11-21

    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 giga-electron volts. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 giga-electron volts, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario. PMID:18927358

  2. Probing the Birth of Post-merger Millisecond Magnetars with X-Ray and Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Dai, Zi-Gao; Liu, Liang-Duan; Wu, Xue-Feng

    2016-05-01

    There is growing evidence that a stable magnetar could be formed from the coalescence of double neutron stars. In previous papers, we investigated the signature of formation of stable millisecond magnetars in radio and optical/ultraviolet bands by assuming that the central rapidly rotating magnetar deposits its rotational energy in the form of a relativistic leptonized wind. We found that the optical transient PTF11agg could be the first evidence for the formation of post-merger millisecond magnetars. To enhance the probability of finding more evidence for the post-merger magnetar formation, it is better to extend the observational channel to other photon energy bands. In this paper, we propose to search the signature of post-merger magnetar formation in X-ray and especially gamma-ray bands. We calculate the synchrotron self-Compton (SSC) emission of the reverse shock powered by post-merger millisecond magnetars. We find that the SSC component peaks at 1 {GeV} in the spectral energy distribution and extends to ≳ 10 {TeV} for typical parameters. These energy bands are quite suitable for Fermi Large Area Telescope and Cherenkov Telescope Array (CTA), which, with their current observational sensitivities, can detect the SSC emission powered by post-merger magnetars up to 1 {Gpc}. NuSTAR, which is sensitive in X-ray bands, can detect the formation of post-merger millisecond magnetars at redshift z∼ 1. Future improvements in the sensitivity of CTA can also allow us to probe the birth of post-merger millisecond magnetars at redshift z∼ 1. However, because of the γ‑γ collisions, strong high-energy emission is clearly predicted only for ejecta masses lower than {10}-3 {M}ȯ .

  3. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  4. High-Precision Timing of Several Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Backer, D. C.; Ramachandran, R.; Demorest, P.; Nice, D. J.; Lyne, A. G.; Kramer, M.; Lorimer, D.; McLaughlin, M.; Manchester, D.; Camilo, F.; D'Amico, N.; Possenti, A.; Burgay, M.; Joshi, B. C.; Freire, P. C.

    2004-12-01

    The highest precision pulsar timing is achieved by reproducing as accurately as possible the pulse profile as emitted by the pulsar, in high signal-to-noise observations. The best profile reconstruction can be accomplished with several-bit voltage sampling and coherent removal of the dispersion suffered by pulsar signals as they traverse the interstellar medium. The Arecibo Signal Processor (ASP) and its counterpart the Green Bank Astronomical Signal Processor (GASP) are flexible, state-of-the-art wide-bandwidth observing systems, built primarily for high-precision long-term timing of millisecond and binary pulsars. ASP and GASP are in use at the 300-m Arecibo telescope in Puerto Rico and the 100-m Green Bank Telescope in Green Bank, West Virginia, respectively, taking advantage of the enormous sensitivities of these telescopes. These instruments result in high-precision science through 4 and 8-bit sampling and perform coherent dedispersion on the incoming data stream in real or near-real time. This is done using a network of personal computers, over an observing bandwidth of 64 to 128 MHz, in each of two polarizations. We present preliminary results of timing and polarimetric observations with ASP/GASP for several pulsars, including the recently-discovered relativistic double-pulsar binary J0737-3039. These data are compared to simultaneous observations with other pulsar instruments, such as the new "spigot card" spectrometer on the GBT and the Princeton Mark IV instrument at Arecibo, the precursor timing system to ASP. We also briefly discuss several upcoming observations with ASP/GASP.

  5. On neutron star structure and the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1983-01-01

    The recently discovered millisecond pulsar (PSR1937-214) is observed to be rotating close to the limit of dynamical instability for a neutron star. Despite its extremely rapid rotation, measurements of the period derivative put a stringent upper limit on the energy loss from gravitational radiation, thus requiring that the quadrupole moment be quite small. The pulsar must also be rotating below the critical frequency at which its equilibrium configuration would become non-axisymmetric, since the lifetime of this configuration against decay by gravitational radiation is very short. This critical frequency, given by the theory of rotating ellipsoids, imposes a restriction on the rotation rate more severe than the break-up frequency and may be used to set a lower limit, rho 2 x 10 to the 14th power g/cu cm, on the density of the star. If the mass is 0.5 - 1.5 solar mass, several of the stiffer neutron star equations of state may be ruled out, and the radius should be less than 16 km. The condition for axisymmetry also imposes an upper limit on the rotation rate to which neutron stars may be spun up by accretion disks in binary systems, a model recently proposed for the evolution of the millisecond pulsar.

  6. THE BALMER-DOMINATED BOW SHOCK AND WIND NEBULA STRUCTURE OF {gamma}-RAY PULSAR PSR J1741-2054

    SciTech Connect

    Romani, Roger W.; Shaw, Michael S.; Camilo, Fernando; Cotter, Garret; Sivakoff, Gregory R. E-mail: msshaw@stanford.ed

    2010-12-01

    We have detected an H{alpha} bow shock nebula around PSR J1741-2054, a pulsar discovered through its GeV {gamma}-ray pulsations. The pulsar is only {approx}1.''5 behind the leading edge of the shock. Optical spectroscopy shows that the nebula is non-radiative, dominated by Balmer emission. The H{alpha} images and spectra suggest that the pulsar wind momentum is equatorially concentrated and implies a pulsar space velocity {approx}150 km s{sup -1}, directed 15{sup 0} {+-} 10{sup 0} out of the plane of the sky. The complex H{alpha} profile indicates that different portions of the post-shock flow dominate line emission as gas moves along the nebula and provide an opportunity to study the structure of this unusual slow non-radiative shock under a variety of conditions. CXO ACIS observations reveal an X-ray pulsar wind nebula within this nebula, with a compact {approx}2.''5 equatorial structure and a trail extending several arcminutes behind. Together these data support a close ({<=}0.5 kpc) distance, a spin geometry viewed edge-on, and highly efficient {gamma}-ray production for this unusual, energetic pulsar.

  7. 1FGL J0523.5–2529: A NEW PROBABLE GAMMA-RAY PULSAR BINARY

    SciTech Connect

    Strader, Jay; Chomiuk, Laura; Sonbas, Eda; Sokolovsky, Kirill; Sand, David J.; Moskvitin, Alexander S.; Cheung, C. C.

    2014-06-20

    We report optical photometric and Southern Astrophysical Research spectroscopic observations of an X-ray source found within the localization error of the Fermi Large Area Telescope unidentified γ-ray source 1FGL J0523.5–2529. The optical data show periodic flux modulation and radial velocity variations indicative of a binary with a 16.5 hr period. The data suggest a massive non-degenerate secondary (≳ 0.8 M {sub ☉}), and we argue the source is likely a pulsar binary. The radial velocities have good phase coverage and show evidence for a measurable eccentricity (e = 0.04). There is no clear sign of irradiation of the secondary in either photometry or spectroscopy. The spatial location out of the Galactic plane and γ-ray luminosity of the source are more consistent with classification as a recycled millisecond pulsar than as a young pulsar. Future radio timing observations can confirm the identity of the primary and further characterize this interesting system.

  8. Gamma-rays of 3 to 25 MeV from the galactic anti-center and pulsar NP 0532

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Moon, S. H.; Ryan, J. M.; Zych, A. D.; White, R. S.; Dayton, B.

    1978-01-01

    Gamma-rays of 3 to 25 MeV are reported from the galactic anticenter region and the Crab Pulsar, NP 0532. The observations were carried out from Palestine, Texas, on May 13, 1975. Gamma-rays from the galactic anticenter were observed as the Crab Nebula passed overhead within 10 deg of the zenith. Pulsed gamma-rays from NP 0532 were observed at a 4.4-sigma significance level. The total flux from 3-25 MeV is 0.0049 + or - 0.002 photon/sq cm-sec. The pulsed flux from NP 0532 from 3 to 25 MeV is 0.00043 + or - 0.00026 photon/sq cm-sec. The ratio of the total to the pulsed flux from 3 to 25 MeV is 11 + or - 8.

  9. High-Energy Emission at Shocks in Millisecond Pulsar Binaries

    NASA Astrophysics Data System (ADS)

    Kust Harding, Alice; Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-04-01

    A large number of new Black Widow (BW) and Redback (RB) energetic millisecond pulsars have been discovered through radio searches of unidentified Fermi sources, increasing the known number of these systems from 4 to 28. We model the high-energy emission components from particles accelerated to several TeV in intrabinary shocks in BW and RB systems, and their predicted modulation at the binary orbital period. Synchrotron emission is expected at X-ray energies and such modulated emission has already been detected by Chandra and XMM. Inverse Compton emission from accelerated particles scattering the UV emission from the radiated companion star is expected in the Fermi and TeV bands. Detections or constraints on this emission will probe the unknown physics of pulsar winds.

  10. CVs and millisecond pulsar progenitors in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Cool, A. M.; Bailyn, C. D.

    1991-01-01

    The recent discovery of a large population of millisecond pulsars in globular clusters, together with earlier studies of both low luminosity X-ray sources and LMXBs in globulars, suggest there should be significant numbers of CVs in globulars. Although they have been searched for without success in selected cluster X-ray source fields, systematic surveys are lacking and would constrain binary production and both stellar and dynamical evolution in globular clusters. We describe the beginnings of such a search, using narrow band H-alpha imaging, and the sensitivities it might achieve.

  11. A millisecond pulsar in a stellar triple system.

    PubMed

    Ransom, S M; Stairs, I H; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K

    2014-01-23

    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity. PMID:24390352

  12. Observations of the Crab pulsar and nebula by the EGRET telescope on the Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Arzoumanian, Z.; Bertsch, D. L.; Chiang, J.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.

    1993-01-01

    The Crab pulsar and nebula were observed three times in 1991 April to June by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO): April 23 to May 7, May 16 to 30, and June 8 to 15. The results of analysis of the gamma-ray emission in the energy range from 50 MeV to more than 10 GeV are reported. The observed gamma-ray light curve exhibits two peaks separated in phase by 0.40 +/- 0.02, consistent with previous observations. The total pulsed emission from the Crab pulsar is found to be well represented by a power-law spectrum, softer than the spectrum measured by COS B (Clear et al., 1987). The interpulse emission has a harder spectrum than either of the pulses. The evidence for pulsed emission above 5 GeV in the EGRET data is not conclusive. Unpulsed emission in the energy range 50 MeV to 5 GeV was detected, with an indication of a hardening of the unpulsed spectrum above about 1 GeV. There was a significant change in the light curve over the 2 months of these observations, although the shape of the spectrum remained constant.

  13. Constraining Viewing Geometries of Pulsars with Single-Peaked Gamma-ray Profiles Using a Multiwavelength Approach

    NASA Technical Reports Server (NTRS)

    Seyffert, A. S.; Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the launch of the Large Area Telescope (LAT) on board the Fermi spacecraft in June 2008, the number of observed gamma-ray pulsars has increased dramatically. A large number of these are also observed at radio frequencies. Constraints on the viewing geometries of 5 of 6 gamma-ray pulsars exhibiting single-peaked gamma-ray profiles were derived using high-quality radio polarization data [1]. We obtain independent constraints on the viewing geometries of 6 by using a geometric emission code to model the Fermi LAT and radio light curves (LCs). We find fits for the magnetic inclination and observer angles by searching the solution space by eye. Our results are generally consistent with those previously obtained [1], although we do find small differences in some cases. We will indicate how the gamma-ray and radio pulse shapes as well as their relative phase lags lead to constraints in the solution space. Values for the flux correction factor (f(omega)) corresponding to the fits are also derived (with errors).

  14. Neutrinos of energy approximately 10(16) eV from gamma-ray bursts in pulsar wind bubbles.

    PubMed

    Guetta, Dafne; Granot, Jonathan

    2003-05-23

    The supranova model for gamma-ray bursts (GRBs) is becoming increasingly more popular. In this scenario the GRB occurs weeks to years after a supernova explosion, and is located inside a pulsar wind bubble (PWB). Protons accelerated in the internal shocks that emit the GRB may interact with the external PWB photons producing pions which decay into approximately 10(16) eV neutrinos. A km(2) neutrino detector would observe several events per year correlated with the GRBs. PMID:12785881

  15. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  16. Synchrotron emission model of gamma-ray pulsar PSR J2021+3651

    NASA Astrophysics Data System (ADS)

    Chkheidze, N.; Babyk, Iu.

    2015-02-01

    In the present paper a self-consistent theory, interpreting the high energy gamma-ray and X-ray observations of pulsar PSR J2021+3651 performed by Fermi-LAT, XMM-Newton and Chandra space telescopes are considered. It is shown that the photon spectrum between 0.1 keV and 25 GeV can be well described by a power-law function with the spectral index Γ≈1.4 and the exponential cutoff, with the cutoff energy ɛ0≈2 GeV. The source of the pulsed emission above 0.1 keV is assumed to be the synchrotron radiation, which is generated near the light cylinder during the quasi-linear stage of the cyclotron instability. The emitting particles are the primary beam electrons with the Lorentz factors γb∼10. The generation of the radio emission observed from this source is provided due to plasma collective processes that excite the low frequency cyclotron modes in the radio domain.

  17. Turn-over in pulsar spectra: From young pulsars to millisecond ones

    NASA Astrophysics Data System (ADS)

    Kijak, J.; Lewandowski, W.; Serylak, M.

    2008-02-01

    The evidence for turn-over in young pulsar radio spectra at high frequencies is presented. The frequency at which a spectrum shows the maximum flux density is called the peak frequency. This peak frequency appears to depend on pulsar age and dispersion measure. A possible relation with pulsar age is interesting. Millisecond pulsars, which are very old objects, may show no evidence for spectral turn-over down to 100 MHz. Some studied pulsars with turn-over at high frequencies have been shown to have very interesting interstellar environments. This could suggest that the turn-over phenomenon is associated with the enviromental conditions around the neutron stars, rahter than being related intrinsically with the radio emission mechanism. Although there are no earlier reports of such a connection, a more detailed study on larger sample of pulsars is needed to address this idea more quantitatively. In this context, future observations below 200 MHz using LOFAR will allow us to investigate turn-over in radio pulsar spectra.

  18. Cyclic spectroscopy of the millisecond pulsar, B1937+21

    SciTech Connect

    Walker, Mark A.; Van Straten, Willem E-mail: pdemores@nrao.edu

    2013-12-20

    Cyclic spectroscopy is a signal processing technique that was originally developed for engineering applications and has recently been introduced into the field of pulsar astronomy. It is a powerful technique with many attractive features, not least of which is the explicit rendering of information about the relative phases in any filtering imposed on the signal, thus making holography a more straightforward proposition. Here we present methods for determining optimum estimates of both the filter itself and the statistics of the unfiltered signal, starting from a measured cyclic spectrum. In the context of radio pulsars these quantities tell us the impulse response of the interstellar medium (ISM) and the intrinsic pulse profile. We demonstrate our techniques by application to 428 MHz Arecibo data on the millisecond pulsar B1937+21, obtaining the pulse profile free from the effects of interstellar scattering. As expected, the intrinsic profile exhibits main- and inter-pulse components that are narrower than they appear in the scattered profile; it also manifests some weak, but sharp, features that are revealed for the first time at low frequency. We determine the structure of the received electric field envelope as a function of delay and Doppler shift. Our delay Doppler image has a high dynamic range and displays some pronounced, low-level power concentrations at large delays. These concentrations imply strong clumpiness in the ionized ISM, on AU-size scales, which must adversely affect the timing of B1937+21.

  19. Timing of Five Millisecond Pulsars Discovered in the PALFA Survey

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Kaspi, V. M.; Lyne, A. G.; Stappers, B. W.; Bogdanov, S.; Cordes, J. M.; Crawford, F.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Lorimer, D. R.; Stairs, I. H.; Allen, B.; Brazier, A.; Camilo, F.; Cardoso, R. F.; Chatterjee, S.; Deneva, J. S.; Jenet, F. A.; Karako-Argaman, C.; Knispel, B.; Lazarus, P.; Lee, K. J.; van Leeuwen, J.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Ransom, S. M.; Siemens, X.; Spitler, L. G.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Zhu, W. W.

    2015-02-01

    We present the discovery of five millisecond pulsars (MSPs) from the PALFA Galactic plane survey using Arecibo. Four of these (PSRs J0557+1551, J1850+0244, J1902+0300, and J1943+2210) are binary pulsars whose companions are likely white dwarfs, and one (PSR J1905+0453) is isolated. Phase-coherent timing solutions, ranging from ~1 to ~3 yr in length, and based on observations from the Jodrell Bank and Arecibo telescopes, provide precise determinations of spin, orbital, and astrometric parameters. All five pulsars have large dispersion measures (>100 pc cm-3, within the top 20% of all known Galactic field MSPs) and are faint (1.4 GHz flux density lsim0.1 mJy, within the faintest 5% of all known Galactic field MSPs), illustrating PALFA's ability to find increasingly faint, distant MSPs in the Galactic plane. In particular, PSR J1850+0244 has a dispersion measure of 540 pc cm-3, the highest of all known MSPs. Such distant, faint MSPs are important input for accurately modeling the total Galactic MSP population.

  20. Cool white dwarf companions to four millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Antoniadis, J.; Camilo, F.; Cognard, I.; Koester, D.; Kramer, M.; Ransom, S. R.; Stappers, B. W.

    2016-02-01

    We report on photometric and spectroscopic observations of white dwarf companions to four binary radio millisecond pulsars, leading to the discovery of companions to PSRs J0614-3329, J1231-1411 and J2017+0603. We place limits on the brightness of the companion to PSR J0613-0200. Optical spectroscopy of the companion to PSR J0614-3329 identifies it as a DA-type white dwarf with a temperature of Teff = 6460 ± 80 K, a surface gravity log g = 7.0 ± 0.2 cgs and a mass of MWD = 0.24 ± 0.04 M⊙. We find that the distance to PSR J0614-3329 is smaller than previously estimated, removing the need for the pulsar to have an unrealistically high γ-ray efficiency. Comparing the photometry with predictions from white dwarf cooling models allows us to estimate temperatures and cooling ages of the companions to PSRs J0613-0200, J1231-1411 and J2017+0603. We find that the white dwarfs in these systems are cool Teff < 4000 K and old ≳ 5 Gyr. Thin hydrogen envelopes are required for these white dwarfs to cool to the observed temperatures, and we suggest that besides hydrogen shell flashes, irradiation driven mass loss by the pulsar may have been important.

  1. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    SciTech Connect

    Shannon, Ryan M.; Cordes, James M. E-mail: cordes@astro.cornell.ed

    2010-12-20

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  2. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    SciTech Connect

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Byrum, K.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S. E-mail: mccann@kicp.uchicago.edu; and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  3. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    NASA Technical Reports Server (NTRS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Perkins, J. S.

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  4. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Baring, Matthew G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  5. Optical Counterparts of Two Fermi Millisecond Pulsars: PSR J1301+0833 and PSR J1628-3205

    NASA Astrophysics Data System (ADS)

    Li, Miao; Halpern, Jules P.; Thorstensen, John R.

    2014-11-01

    Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628-3205 is a "redback," a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range 19.0 < R < 19.4 is dominated by strong ellipsoidal variations, indicating a large orbital inclination angle. PSR J1628-3205 also shows evidence for a long-term variation of about 0.2 mag, and an asymmetric temperature distribution possibly due to either off-center heating by the pulsar wind, or large starspots. Modeling of its light curve restricts the inclination angle to i > 55°, the mass of the companion to 0.16 < Mc < 0.30 M ⊙, and the effective temperature to 3560 < T eff < 4670 K. As is the case for several redbacks, the companion of PSR J1628-3205 is less dense and hotter than a main-sequence star of the same mass.

  6. Optical counterparts of two Fermi millisecond pulsars: PSR J1301+0833 and PSR J1628–3205

    SciTech Connect

    Li, Miao; Halpern, Jules P.; Thorstensen, John R.

    2014-11-10

    Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a 'redback', a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range 19.0 < R < 19.4 is dominated by strong ellipsoidal variations, indicating a large orbital inclination angle. PSR J1628–3205 also shows evidence for a long-term variation of about 0.2 mag, and an asymmetric temperature distribution possibly due to either off-center heating by the pulsar wind, or large starspots. Modeling of its light curve restricts the inclination angle to i > 55°, the mass of the companion to 0.16 < M{sub c} < 0.30 M {sub ☉}, and the effective temperature to 3560 < T {sub eff} < 4670 K. As is the case for several redbacks, the companion of PSR J1628–3205 is less dense and hotter than a main-sequence star of the same mass.

  7. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  8. High energy gamma-ray observations of the Crab Nebula and pulsar with the Solar Tower Atmospheric Cherenkov Effect Experiment

    NASA Astrophysics Data System (ADS)

    Oser, Scott Michael

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a new ground-based atmospheric Cherenkov telescope for gamma-ray astronomy. STACEE uses the large mirror area of a solar heliostat facility to achieve a low energy threshold. A prototype experiment which uses 32 heliostat mirrors with a total mirror area of ~1200 m2 has been constructed. This prototype, called STACEE-32, was used to search for high energy gamma-ray emission from the Crab Nebula and Pulsar. Observations taken between November 1998 and February 1999 yield a strong statistical excess of gamma- like events from the Crab, with a significance of +6.75σ in 43 hours of on-source observing time. No evidence for pulsed emission from the Crab Pulsar was found, and the upper limit on the pulsed fraction of the observed excess was < 5.5% at the 90% confidence level. A subset of the data was used to determine the integral flux of gamma rays from the Crab. We report an energy threshold of Eth = 190 +/- 60 GeV, and a measured integral flux of I(E > Eth) = (2.2 +/- 0.6 +/- 0.2) × 10-10 photons cm-2 s-1. The observed flux is in agreement with a continuation to lower energies of the power law spectrum seen at TeV energies.

  9. The orbital eccentricities of binary millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Heggie, Douglas C.

    1995-01-01

    Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.

  10. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star. PMID:26403155

  11. Millisecond newly born pulsars as efficient accelerators of electrons

    PubMed Central

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star. PMID:26403155

  12. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  13. Gamma rays of 1-30 MeV from the Vela Pulsar PSR 0833-45

    NASA Technical Reports Server (NTRS)

    Tumer, T.; Long, J.; Oneill, T.; Zych, A.; White, R. S.; Dayton, B.

    1983-01-01

    Results are reported for observations of gamma rays of 1-30 MeV from the Vela Pulsar PSR 0833 - 45 carried out with the UCR double scatter gamma ray telescope on a balloon launched from Alice Springs, Australia on November 10, 1981. An integrated flux of (5.3 + or - 1.3) x 10 to the -4th photons/sq cm/s is found for the Vela region above 2 MeV. This value, together with those for the energy intervals of 2-4, 4-7, and 7-15 MeV are in reasonable agreement with the power law found by COS-B at energies above 50 MeV. A sky contour map of the fluxes is shown.

  14. Radio Detection Prospects for a Bulge Population of Millisecond Pulsars as Suggested by Fermi-LAT Observations of the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Calore, F.; Di Mauro, M.; Donato, F.; Hessels, J. W. T.; Weniger, C.

    2016-08-01

    The dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis has found support in an analysis of gamma-rays detected using the Large Area Telescope onboard the Fermi satellite, which revealed an excess of diffuse GeV photons in the inner 15 deg about the Galactic center. The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution strongly peaked toward the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsations from individual bulge MSPs. Based on globular cluster observations and gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that upcoming large-area surveys of this region should lead to the detection of dozens of bulge MSPs. Additionally, we show that deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way, and strategy optimization for future deep radio pulsar surveys.

  15. What is causing the eclipse in the millisecond binary pulsar

    SciTech Connect

    Rasio, F.A.; Shapiro, S.L.; Teukolsky, S.A. )

    1989-07-01

    Possible physical mechanisms for explaining the radio eclipses in the millisecond binary pulsar PSR 1957 + 20 are discussed. If, as recent observations suggest, the duration of the eclipses depends on the observing frequency, a plausible mechanism is free-free absorption of the radio pulses by a low-density ionized wind surrounding the companion. Detailed numerical calculations are performed for this case, and it is found that all of the observations made at 430 MHz can be reliably reproduced, including the asymmetry in the excess time delay of the pulses. The model leads to definite predictions for the duration of the eclipse at other observing frequencies, as well as the radio intensity and excess time delay of the pulses as a function of orbital phase. If the duration of the eclipses were found to be independent of frequency, then the likely mechanism would be reflection of the radio signal at a contact discontinuity between a high-density wind and the pulsar radiation. In this case, however, it is difficult to explain the observed symmetry of the eclipse. 12 refs.

  16. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Reardon, D. J.; Hobbs, G.; Coles, W.; Levin, Y.; Keith, M. J.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Kerr, M.; Lasky, P. D.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Shannon, R. M.; van Straten, W.; Toomey, L.; Wang, J.; Wen, L.; You, X. P.; Zhu, X.-J.

    2016-01-01

    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with Mp = 1.44 ± 0.07 and 1.47 ± 0.03 M⊙, respectively. The improved orbital period-derivative measurement for PSR J0437-4715 results in a derived distance measurement at the 0.16 per cent level of precision, D = 156.79 ± 0.25 pc, one of the most fractionally precise distance measurements of any star to date.

  17. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    SciTech Connect

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R. E-mail: kondratiev@astron.nl E-mail: dan.stinebring@oberlin.edu

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  18. X-RAY INVESTIGATION OF THE DIFFUSE EMISSION AROUND PLAUSIBLE {gamma}-RAY EMITTING PULSAR WIND NEBULAE IN KOOKABURRA REGION

    SciTech Connect

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu

    2012-05-10

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV {gamma}-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of {sigma}{sub X} = 1.'66 and {sigma}{sub X} = 1.'49, respectively. The peaks of the diffuse X-ray emission are located within the {gamma}-ray excess maps obtained by H.E.S.S. and the offsets from the {gamma}-ray peaks are 2.'8 for PSR J1420-6048 and 4.'5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with {Gamma} = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 {mu}G and 2.5 {mu}G, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  19. A test of the millisecond magnetar central engine model of gamma-ray bursts with swift data

    SciTech Connect

    Lü, Hou-Jun; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-04-10

    A rapidly spinning, strongly magnetized neutron star (magnetar) has been proposed as one possible candidate of the central engine of gamma-ray bursts (GRBs). We systematically analyze the Swift/XRT light curves of long GRBs detected before 2013 August, and characterize them into four categories based on how likely they may harbor a magnetar central engine: Gold, Silver, Aluminum, and Non-magnetar. We also independently analyze the data of short GRBs with a putative magnetar central engine. We then perform a statistical study of various properties of the magnetar samples and the non-magnetar sample, and investigate whether the data are consistent with the hypothesis that there exist two types of central engines. By deriving the physical parameters of the putative magnetars, we find that the observations of the Gold and Silver samples are generally consistent with the predictions of the magnetar model. For a reasonable beaming factor for long GRBs, the derived magnetar surface magnetic field B{sub p} and initial spin period P {sub 0} fall into the reasonable range. Magnetar winds in short GRBs, on the other hand, are consistent with being isotropic. No GRB in the magnetar sample has a beam-corrected total energy exceeding the maximum energy budget defined by the initial spin energy of the magnetar, while some non-magnetar GRBs do violate such a limit. With beaming correction, on average the non-magnetar sample is more energetic and luminous than the magnetar samples. Our analysis hints that millisecond magnetars are likely operating in a good fraction, but probably not all, GRBs.

  20. Microarcsecond VLBI Pulsar Astrometry with PSRπ. I. Two Binary Millisecond Pulsars with White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Deller, A. T.; Vigeland, S. J.; Kaplan, D. L.; Goss, W. M.; Brisken, W. F.; Chatterjee, S.; Cordes, J. M.; Janssen, G. H.; Lazio, T. J. W.; Petrov, L.; Stappers, B. W.; Lyne, A.

    2016-09-01

    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars and multiwavelength observations of their companion stars. Astrometry using very long baseline interferometry (VLBI) can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary MSPs, PSR J1022+1001 and J2145–0750, over a two-year period and measured their distances to be {700}-10+14 pc and {613}-14+16 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M∼ 0.85 {M}ȯ ) white dwarf companions. Finally, we show that several measurements of the parallax and proper motion of PSR J1022+1001 and PSR J2145–0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5σ. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the errors in the timing model given the low ecliptic latitude of these two pulsars.

  1. Microarcsecond VLBI Pulsar Astrometry with PSRπ. I. Two Binary Millisecond Pulsars with White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Deller, A. T.; Vigeland, S. J.; Kaplan, D. L.; Goss, W. M.; Brisken, W. F.; Chatterjee, S.; Cordes, J. M.; Janssen, G. H.; Lazio, T. J. W.; Petrov, L.; Stappers, B. W.; Lyne, A.

    2016-09-01

    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars and multiwavelength observations of their companion stars. Astrometry using very long baseline interferometry (VLBI) can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary MSPs, PSR J1022+1001 and J2145–0750, over a two-year period and measured their distances to be {700}-10+14 pc and {613}-14+16 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M˜ 0.85 {M}ȯ ) white dwarf companions. Finally, we show that several measurements of the parallax and proper motion of PSR J1022+1001 and PSR J2145–0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5σ. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the errors in the timing model given the low ecliptic latitude of these two pulsars.

  2. POST-PERIASTRON GAMMA-RAY FLARE FROM PSR B1259-63/LS 2883 AS A RESULT OF COMPTONIZATION OF THE COLD PULSAR WIND

    SciTech Connect

    Khangulyan, Dmitry; Bogovalov, Sergey V.; Ribo, Marc E-mail: felix.aharonian@dias.ie E-mail: mribo@am.ub.es

    2012-06-10

    We argue that the bright flare of the binary pulsar PSR B1259-63/LS2883 detected by the Fermi Large Area Telescope is due to the inverse Compton scattering of the unshocked electron-positron pulsar wind with a Lorentz factor {Gamma}{sub 0} Almost-Equal-To 10{sup 4}. The combination of two effects both linked to the circumstellar disk (CD) is a key element in the proposed model. The first effect is related to the impact of the surrounding medium on the termination of the pulsar wind. Inside the disk, the 'early' termination of the wind results in suppression of its gamma-ray luminosity. When the pulsar escapes the disk, the conditions for termination of the wind undergo significant changes. This would lead to a dramatic increase of the pulsar wind zone, and thus to the proportional increase of the gamma-ray flux. On the other hand, if the parts of the CD disturbed by the pulsar can supply infrared photons of density high enough for efficient Comptonization of the wind, almost the entire kinetic energy of the pulsar wind would be converted to radiation, thus the gamma-ray luminosity of the wind could approach the level of the pulsar's spin-down luminosity as reported by the Fermi Collaboration.

  3. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén

    2016-07-01

    The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  4. Discovery of a Millisecond Pulsar in the 5.4 day Binary 3FGL J1417.5-4402: Observing the Late Phase of Pulsar Recycling

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Reynolds, J. E.; Ransom, S. M.; Halpern, J. P.; Bogdanov, S.; Kerr, M.; Ray, P. S.; Cordes, J. M.; Sarkissian, J.; Barr, E. D.; Ferrara, E. C.

    2016-03-01

    In a search of the unidentified Fermi gamma-ray source 3FGL J1417.5-4402 with the Parkes radio telescope, we discovered PSR J1417-4402, a 2.66 ms pulsar having the same 5.4 day orbital period as the optical and X-ray binary identified by Strader et al. The existence of radio pulsations implies that the neutron star is currently not accreting. Substantial outflows from the companion render the radio pulsar undetectable for more than half of the orbit, and may contribute to the observed Hα emission. Our initial pulsar observations, together with the optically inferred orbit and inclination, imply a mass ratio of 0.171 ± 0.002, a companion mass of {M}2=0.33+/- 0.03 M⊙, and a neutron star mass in the range 1.77≤slant {M}1≤slant 2.13 M⊙. However, there remains a discrepancy between the distance of 4.4 kpc inferred from the optical properties of the companion and the smaller radio dispersion measure distance of 1.6 kpc. The smaller distance would reduce the inferred Roche-lobe filling factor, increase the inferred inclination angle, and decrease the masses. As a wide binary, PSR J1417-4402 differs from the radio-eclipsing black widow and redback pulsars being discovered in large numbers by Fermi. It is probably a system that began mass transfer onto the neutron star after the companion star left the main sequence. The companion should end its evolution as a He white dwarf in a 6-20 day orbit, i.e., as a typical binary millisecond pulsar companion.

  5. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  6. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    SciTech Connect

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan; Takata, J.; Cheng, K. S.; Hui, C. Y. E-mail: akong@phys.nthu.edu.tw

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  7. A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039

    SciTech Connect

    Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.; Roberts, Mallory S. E.; Dougherty, Sean M.; Pooley, Guy G. E-mail: paul.ray@nrl.navy.mil E-mail: malloryr@gmail.com E-mail: guy@mrao.cam.ac.uk

    2011-09-01

    LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are between 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.

  8. FERMI-LAT DETECTION OF PULSED GAMMA-RAYS ABOVE 50 GeV FROM THE VELA PULSAR

    SciTech Connect

    Leung, Gene C. K.; Takata, J.; Ng, C. W.; Cheng, K. S.; Kong, A. K. H.; Tam, P. H. T.; Hui, C. Y. E-mail: takata@hku.hk

    2014-12-20

    The first Fermi-Large Area Telescope (LAT) catalog of sources above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at >37 GeV energy bands. Using 62 months of Fermi-LAT data, we analyzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H test (p-value ∼10{sup –77}), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the five observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with a p-value of =3 × 10{sup –5} (4.2σ). The detection of pulsation is significant above 4σ at >79 GeV and above 3σ at >90 GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore the non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.

  9. Where do the progenitors of millisecond pulsars come from?

    NASA Astrophysics Data System (ADS)

    Taani, A.; Zhang, C. M.; Al-Wardat, M.; Zhao, Y. H.

    2012-01-01

    Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low-mass X-ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors relying on accretion induced collapse (AIC) of white dwarfs in binaries. Thus massive CVs (M ≥ 1.1 M⊙) can play a vital role on binary evolution, as well as of the physical processes involved in the formation and evolution of neutron stars and their magnetic fields, and could turn into binary MSPs with different scales of orbital periods; this effect can be explained by the AIC process. This scenario also suggests that some fraction of isolated MSPs in the Galactic disk could be formed through the same channel, forming the contribution of some CVs to the single-degenerate progenitors of Type Ia supernova. Furthermore, we have refined the statistical distribution and evolution by using updated data. This implies that the significant studies of compact objects in binary systems can benefit from the Corbet diagram.

  10. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  11. Identification of candidate millisecond pulsars from Fermi LAT observations

    NASA Astrophysics Data System (ADS)

    Dai, Xue-Jie; Wang, Zhong-Xiang; Vadakkumthani, Jithesh; Xing, Yi

    2016-06-01

    We report our detailed data analysis of 39 γ-ray sources selected from the 992 unassociated sources in the third Fermi Large Area Telescope Third Source Catalog. The selection criteria, which were set for finding candidate millisecond pulsars (MSPs), are non-variables with curved spectra and >5° Galactic latitudes. From our analysis, 24 sources were found to be point-like sources not contaminated by background or nearby unknown sources. Three of them, J1544.6–1125, J1625.1–0021 and J1653.6–0158, have been previously studied, indicating that they are likely MSPs. The spectra of J0318.1+0252 and J2053.9+2922 do not have properties similar to known γ-ray MSPs, and we thus suggest that they are not MSPs. Analysis of archival X-ray data for most of the 24 sources was also conducted. Four sources were found with X-ray objects in their error circles, and 16 with no detection. The ratios between the γ-ray fluxes and X-ray fluxes or flux upper limits are generally lower than those of known γ-ray MSPs, suggesting that if the γ-ray sources are MSPs, none of the X-ray objects are their counterparts. Deep X-ray or radio observations of these sources are needed in order to identify their MSP nature.

  12. DYNAMICAL FORMATION OF MILLISECOND PULSARS IN GLOBULAR CLUSTERS

    SciTech Connect

    Hui, C. Y.; Cheng, K. S.; Taam, Ronald E.

    2010-05-10

    The cumulative luminosity distribution functions (CLFs) of radio millisecond pulsars (MSPs) in globular clusters (GCs) and in the Galactic field at a frequency of 1.4 GHz have been examined. Assuming a functional form, N {proportional_to} L{sup q} where N is the number of MSPs and L is the luminosity at 1.4 GHz, it is found that the CLFs significantly differ with a steeper slope, q = -0.83 {+-} 0.05, in GCs than in the Galactic field (q = -0.48 {+-} 0.04), suggesting a different formation or evolutionary history of MSPs in these two regions of the Galaxy. To probe the production mechanism of MSPs in clusters, a search of the possible relationships between the MSP population and cluster properties was carried out. The results of an investigation of nine GCs indicate positive correlations between the MSP population and the stellar encounter rate and metallicity. This provides additional evidence suggesting that stellar dynamical interactions are important in the formation of the MSP population in GCs.

  13. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales. PMID:24067710

  14. Progenitor neutron stars of the lightest and heaviest millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Bejger, M.; Haensel, P.; Zdunik, J. L.

    2016-02-01

    Context. The recent mass measurements of two binary millisecond pulsars, PSR J1614-2230 and PSR J0751+1807 with a mass M = 1.97 ± 0.04 M⊙ and M = 1.26 ± 0.14 M⊙, respectively, indicate a wide range of masses for such objects and possibly also a broad spectrum of masses of neutron stars born in core-collapse supernovae. Aims: Starting from the zero-age main sequence binary stage, we aim at inferring the birth masses of PSR J1614-2230 and PSR J0751+1807 by taking the differences in the evolutionary stages preceding their formation into account. Methods: Using simulations for the evolution of binary stars, we reconstruct the evolutionary tracks leading to the formation of PSR J1614-2230 and PSR J0751+1807. We analyse in detail the spin evolution due to the accretion of matter from a disk in the intermediate-mass/low-mass X-ray binary. We consider two equations of state of dense matter, one for purely nucleonic matter and the other one including a high-density softening due to the appearance of hyperons. Stationary and axisymmetric stellar configurations in general relativity are used, together with a recent magnetic torque model and observationally-motivated laws for the decay of magnetic field. Results: The estimated birth mass of the neutron stars PSR J0751+1807 and PSR J1614-2230 could be as low as 1.0 M⊙ and as high as 1.9 M⊙, respectively. These values depend weakly on the equation of state and the assumed model for the magnetic field and its accretion-induced decay. Conclusions: The masses of progenitor neutron stars of recycled pulsars span a broad interval from 1.0 M⊙ to 1.9 M⊙. Including the effect of a slow Roche-lobe detachment phase, which could be relevant for PSR J0751+1807, would make the lower mass limit even lower. A realistic theory for core-collapse supernovæ should account for this wide range of mass.

  15. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.

    2016-05-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m_p=1.22_{-0.35}^{+0.5} M_{⊙}, m_c = 0.21_{-0.04}^{+0.06} M_{⊙} and m_p=1.25_{-0.4}^{+0.6} M_{⊙}, m_c = 0.23_{-0.05}^{+0.07} M_{⊙}, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744.

  16. Discovery of the Accretion-Powered Millisecond Pulsar SWIFT 51756.9-2508 with a Low-Mass Companion

    NASA Technical Reports Server (NTRS)

    Krimm, H.A.; Markwardt, C.B.; Deloye, C.J.; Romano, P.; Chakrabarty, S.; Campana. S.; Cummings, J.C.; Galloway, D.K.; Gehrels, N.; Hartman, J.M.; Kaaret, P.; Morgan, E.H.; Tueller, J

    2007-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar: SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 Solar Mass, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 Solar Mass (95% confidence level). Such a low mass is inconsistent with brown dwarf models. and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts. dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approx. 13 days and no earlier outbursts were found in archival data.

  17. Discovery of Pulsations from the Pulsar J0205 6449 in SNR 3C 58 with the Fermi Gamma-Ray Space Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, Marco; Atwood, William B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, Ronaldo; Berenji, Bijan; Blandford, Roger D.; Bloom, Elliott D.; Bonamente, E.; Borgland, Anders W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2011-12-01

    We report the discovery of {gamma}-ray pulsations ({ge}0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the {gamma}-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold {gamma}-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 {+-} 0.01 {+-} 0.01 cycles which are aligned with the X-ray peaks. The first {gamma}-ray peak trails the radio pulse by 0.08 {+-} 0.01 {+-} 0.01, while its amplitude decreases with increasing energy as for the other {gamma}-ray pulsars. Spectral analysis of the pulsed {gamma}-ray emission suggests a simple power law of index -2.1 {+-} 0.1 {+-} 0.2 with an exponential cutoff at 3.0{sub -0.7}{sup +1.1} {+-} 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral {gamma}-ray photon flux above 0.1 GeV is (13.7 {+-} 1.4 {+-} 3.0) x 10{sup -8} cm{sup -2} s{sup -1}, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10{sup 34} erg s{sup -1} and an efficiency {eta} of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10{sup -8} cm{sup -2} s{sup -1} for off-pulse emission from the object.

  18. DISCOVERY OF PULSATIONS FROM THE PULSAR J0205+6449 IN SNR 3C 58 WITH THE FERMI GAMMA-RAY SPACE TELESCOPE

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Baughman, B. M.; Bonamente, E.

    2009-07-10

    We report the discovery of {gamma}-ray pulsations ({>=}0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the {gamma}-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold {gamma}-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 {+-} 0.01 {+-} 0.01 cycles which are aligned with the X-ray peaks. The first {gamma}-ray peak trails the radio pulse by 0.08 {+-} 0.01 {+-} 0.01, while its amplitude decreases with increasing energy as for the other {gamma}-ray pulsars. Spectral analysis of the pulsed {gamma}-ray emission suggests a simple power law of index -2.1 {+-} 0.1 {+-} 0.2 with an exponential cutoff at 3.0{sup +1.1} {sub -0.7} {+-} 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral {gamma}-ray photon flux above 0.1 GeV is (13.7 {+-} 1.4 {+-} 3.0) x 10{sup -8} cm{sup -2} s{sup -1}, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10{sup 34} erg s{sup -1} and an efficiency {eta} of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10{sup -8} cm{sup -2} s{sup -1} for off-pulse emission from the object.

  19. General relativistic corrections in the gamma-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Gonthier, P. L.; Harding, A. K.

    1994-01-01

    We examine the importance of general relativistic corrections to the production of gamma rays near the surface of a neutron star. Due to the change in the magnetic dipole field in curved spacetime, the polar cap angle decreases by 30% compared to flat spacetime. However, the curved photon trajectories compensate for the decrease in the polar cap angle, and, as a result, the pulse profile of the photons emitted parallel to the field is expected to be very similar in curved spacetime and in flat spacetime. We find that the curved spacetime metric significantly increases the magnitude of the magnetic field and, therefore, the attenuation coefficients of curvature radiation gamma rays for pair production in a magnetic field can be increased by factors as large as 100. As a resutl the survival distance of 1 GeV photons for pair production is decreased by a factor of 2 for B is approximately 10(exp 12) G.

  20. Prospects for neutron star equation of state constraints using "recycled" millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-02-01

    "Recycled" millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  1. New measurements of the 12. 6 millisecond pulsar in Cygnus X-3

    SciTech Connect

    Brazier, K.T.S.; Carraminana, A.; Chadwick, P.M.; Dipper, N.A.; Lincoln, E.W. )

    1990-02-01

    Evidence for a 12.59 ms pulsar in Cygnus X-3 is presented on the basis of TeV gamma-ray observations. Evidence for pulsed emission at a phase in the 4.8 hr cycle and with a pulsar period and secular period derivative are compatible with earlier measurements (Chadwick et al., 1985). The conservative overall Rayleigh probability of uniformity of phase for this new result is 1.7 x 10 to the -6th. Data from observations of Cygnus X-3 from 1981 to 1985 are analyzed using a new X-ray ephemeris of the 4.8 hr X-ray cycle. This suggests that Cygnus X-3 is producing sporadic very high energy gamma rays at a fixed time in the 4.8 hr X-ray cycle. 28 refs.

  2. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  3. DETECTION AND FLUX DENSITY MEASUREMENTS OF THE MILLISECOND PULSAR J2145–0750 BELOW 100 MHz

    SciTech Connect

    Dowell, J.; Taylor, G. B.; Craig, J.; Henning, P. A.; Schinzel, F.; Ray, P. S.; Blythe, J. N.; Clarke, T.; Helmboldt, J. F.; Ellingson, S. W.; Wolfe, C. N.; Lazio, T. J. W.; Stovall, K.

    2013-09-20

    We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145–0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detection of pulsed emission from a millisecond pulsar to date. We find that the pulse profile is similar to that observed at 102 MHz. We also find that the flux density spectrum between ≈40 MHz to 5 GHz is suggestive of a break and may be better fit by a model that includes spectral curvature with a rollover around 730 MHz rather than a single power law.

  4. Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.

    1990-01-01

    This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.

  5. Rotochemical heating of millisecond and classical pulsars with anisotropic and density-dependent superfluid gap models

    NASA Astrophysics Data System (ADS)

    González-Jiménez, Nicolás; Petrovich, Cristobal; Reisenegger, Andreas

    2015-03-01

    When a rotating neutron star loses angular momentum, the progressive reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (`rotochemical heating'). This effect has previously been studied by Fernández & Reisenegger for non-superfluid neutron stars and by Petrovich & Reisenegger for superfluid millisecond pulsars. Both studies found that pulsars reach a quasi-steady state in which the compression driving the matter out of beta equilibrium is balanced by the reactions trying to restore the equilibrium. We extend previous studies by considering the effect of density-dependence and anisotropy of the superfluid energy gaps, for the case in which the dominant reactions are the modified Urca processes, the protons are non-superconducting, and the neutron superfluidity is parametrized by models proposed in the literature. By comparing our predictions with the surface temperature of the millisecond pulsar PSR J0437-4715 and upper limits for 21 classical pulsars, we find the millisecond pulsar can be only explained by the models with the effectively largest energy gaps (type B models), the classical pulsars require with the gap models that vanish for some angle (type C) and two different envelope compositions. Thus, no single model for neutron superfluidity can simultaneously account for the thermal emission of all available observations of non-accreting neutron stars, possibly due to our neglect of proton superconductivity.

  6. Fermi LAT Detection of Pulsed Gamma-Rays From the Vela-Like Pulsars PSR J1048-5832 and PSR J2229+6114

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    We report the detection of {gamma}-ray pulsations ({ge}0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the {gamma}-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the {gamma}-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 {+-} 0.01 and 0.57 {+-} 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 {+-} 0.01. The {gamma}-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 {+-} 0.22 {+-} 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 {+-} 0.22 {+-} 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young {gamma}-ray pulsars that make up the dominant population of GeV {gamma}-ray sources in the Galactic plane.

  7. Generation of ultrahigh-energy gamma rays in accreting x ray pulsars

    NASA Technical Reports Server (NTRS)

    Gnedin, Yu. N.; Ikhsanov, N. R.

    1991-01-01

    Relativistic protons producing ultrahigh energy gamma rays as a result of nuclear collisions ought to be generated in close proximity to the surface of a neutron star due to accretion. The main features of the mechanism in question are a high efficiency of conversion of the gravitational energy of the accreting matter into acceleration energy and a high efficiency of the acceleration itself. It is shown that in accretion to a neutron star with a strong magnetic field, a loss cone type distribution of accreting protons is formed, which due to instability effectively generates small scale Alfven and proton cyclotron waves, as well as nonlinear waves (magneto-acoustic and Alfven solitons). The electric field of the moving solitons may accelerate the protons to energies of greater than 10(exp 15) eV. The region of acceleration is not locally isolated, but extends from its surface. New possible sources of ultrahigh energy gamma rays are predicted. They may be binary x ray systems containing neutron stars with magnetic fields of about 10(exp 9) gauss.

  8. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  9. What the Timing of Millisecond Pulsars Can Teach us about Their Interior

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2014-12-01

    The cores of compact stars reach the highest densities in nature and therefore could consist of novel phases of matter. We demonstrate via a detailed analysis of pulsar evolution that precise pulsar timing data can constrain the star's composition, through unstable global oscillations (r modes) whose damping is determined by microscopic properties of the interior. If not efficiently damped, these modes emit gravitational waves that quickly spin down a millisecond pulsar. As a first application of this general method, we find that ungapped interacting quark matter is consistent with both the observed radio and x-ray data, whereas for ordinary nuclear matter some additional enhanced damping mechanism is required.

  10. What the timing of millisecond pulsars can teach us about their interior.

    PubMed

    Alford, Mark G; Schwenzer, Kai

    2014-12-19

    The cores of compact stars reach the highest densities in nature and therefore could consist of novel phases of matter. We demonstrate via a detailed analysis of pulsar evolution that precise pulsar timing data can constrain the star's composition, through unstable global oscillations (r modes) whose damping is determined by microscopic properties of the interior. If not efficiently damped, these modes emit gravitational waves that quickly spin down a millisecond pulsar. As a first application of this general method, we find that ungapped interacting quark matter is consistent with both the observed radio and x-ray data, whereas for ordinary nuclear matter some additional enhanced damping mechanism is required. PMID:25554870

  11. Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339

    NASA Astrophysics Data System (ADS)

    Deneva, J. S.; Ray, P. S.; Camilo, F.; Halpern, J. P.; Wood, K.; Cromartie, H. T.; Ferrara, E.; Kerr, M.; Ransom, S. M.; Wolff, M. T.; Chambers, K. C.; Magnier, E. A.

    2016-06-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M ⊙, and we have identified a V ∼ 20 variable optical counterpart in data from several surveys. The phasing of its ∼1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion’s magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.

  12. ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal

    2012-10-20

    We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

  13. Discovery of near-ultraviolet counterparts to millisecond pulsars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Rivera Sandoval, Liliana E.

    2016-07-01

    Up to date 144 radio millisecond pulsars have been found in Galactic globular clusters, of which about two-thirds are in a binary. However, until recently only for 10 of those binary millisecond pulsars the companion has been firmly identified at optical wavelengths. We present the discovery of 2 likely He white dwarf companions to millisecond pulsars in the globular cluster 47 Tucanae, as well as the confirmation of 2 tentative identifications in the same cluster, using near-ultraviolet images obtained with the Hubble Space Telescope. This represents an important contribution to the total number of optical counterparts known in Galactic globular clusters so far. We have also analyzed optical observations taken with Hubble. From these images, we obtained H_α results for some of the counterparts. Based on our UV photometry and He WD cooling models we derived the ages, the masses and the bolometric luminosities for all the He WD companions. I will discuss our results and their implications in the context of the standard millisecond pulsar formation scenario.

  14. Gamma ray emitting globular clusters: Possible contribution from relativistic jets of intermediate mass black holes

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Gnedin, Yuri; Silant'ev, Nikolai; Natsvlishvili, Tinatin; Buliga, Stanislava

    2016-05-01

    We developed a method that allows us to estimate the high energy gamma ray luminosity of intermediate mass black holes (IMBH) located in the central regions of globular clusters. Our calculations are based on the relation between the relativistic jet kinetic power and the luminosity of the gamma ray radiation that is produced by the jet itself. The power of a relativistic jet is determined via the Blandford-Znajek mechanism. Our calculations show that the contribution of the central IMBH in gamma ray luminosity is comparable with the contribution of the population of millisecond pulsars.

  15. The contribution of millisecond pulsars to the Galactic cosmic-ray lepton spectrum

    NASA Astrophysics Data System (ADS)

    Venter, Christo; Kopp, Andreas; Harding, Alice K.; Gonthier, Peter L.; Büsching, Ingo

    2015-03-01

    Pulsars are believed to be sources of relativistic electrons and positrons. The abundance of detections of γ -ray millisecond pulsars by Fermi Large Area Telescope coupled with their light curve characteristics that imply copious pair production in their magnetospheres, motivated us to investigate this old pulsar population as a source of Galactic electrons and positrons and their contribution to the enhancement in cosmic-ray positron flux at GeV energies. We use a population synthesis code to predict the source properties (number, position, and power) of the present-day Galactic millisecond pulsars, taking into account the latest Fermi and radio observations to calibrate the model output. Next, we simulate pair cascade spectra from these pulsars using a model that invokes an offset-dipole magnetic field. We assume free escape of the pairs from the pulsar environment. We then compute the cumulative spectrum of transported electrons and positrons at Earth, following their diffusion and energy losses as they propagate through the Galaxy. Our results indicate that the predicted particle flux increases for non-zero offsets of the magnetic polar caps. Comparing our predicted local interstellar spectrum and positron fraction to measurements by AMS-02, PAMELA, and Fermi, we find that millisecond pulsars are only modest contributors at a few tens of GeV, after which this leptonic spectral component cuts off. The positron fraction is therefore only slightly enhanced above 10 GeV relative to a background flux model. This implies that alternative sources such as young, nearby pulsars and supernova remnants should contribute additional primary positrons within the astrophysical scenario.

  16. Search for Pulsations from a Nearby Millisecond Pulsar and Wasilewski 49: Mirror for a Hidden Seyfert 1 Nucleus

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1999-01-01

    , such modulation will be further evidence that surface reheating by the impact of particles accelerated along open fiel;d lines operates in these approximately 10(exp -9) year old pulsars. In a second study, a new AM Her star serendipitously in a 25 day observation was detected with the EUVE satellite. A coherent period of 85.82 min is present in the EUVE Deep Survey imager light curve of this source. A spectroscopic optical identification is made with a 19th magnitude blue star that has H and He emission lines, and broad cyclotron humps typical of a magnetic cataclysmic variable. A lower limit to the polar magnetic field of 50 MG is estimated from the spacing of the cyclotron harmonics. EUVE J0425.6-5714 is also detected in archival ROSAT HRI observations spanning two months, and its stable and highly structured light curve permits us to fit a coherent ephemeris linking the ROSAT and EUVE data over a 1.3 yr gap. The derived period is 85.82107 +/- 0.00020 min, and the ephemeris should be accurate to 0.1 cycles until the year 2005. A narrow but partial X-ray eclipse suggests that this object belongs to the group of AM Her stars whose viewing geometry is such that the accretion stream periodically occults the soft X-ray emitting accretion spot on the surface of the white dwarf. A non-detection of hard X-rays from ASCA observations that are contemporaneous with the ROSAT HRI shows that the soft X-rays must dominate by at least an order of magnitude, which is consistent with a known trend among AM Her stars with large magnetic field. This object should not be confused with the Seyfert galaxy IH 0419-577 (= LB 1727), another X-ray/EUV source which lies only 3'95 away, and was the principal target of these monitoring observations. In a third report; the identity of the persistent high-energy (> 100 MeV) gamma-ray sources in the Galaxy, still largely a mystery is investigated. The second installment of the EGRET (2EG) lists a total of 128 sources, of which 51 are likely or

  17. Transformation of a star into a planet in a millisecond pulsar binary.

    PubMed

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction. PMID:21868629

  18. Partial accretion in the propeller stage of accreting millisecond X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Gungor, Can; Gogus, Ersin; Eksi, Kazim Yavuz; Guver, Tolga

    2016-07-01

    Accreting millisecond X-ray pulsars (AMXPs) are very important objects for studying the stages of disk - magnetosphere interaction as these objects may show different stages in an observable duration. A typical X-ray light curve of an outburst of AMXP has a fast rise and an exponential decay phases. Most of the outbursts have a knee where the flux goes from the slow decay stage to the rapid decay stage. This knee may be linked to the transition from accretion to propeller stage. Since, after the knee, the X-ray luminosity of the source is still higher than its quiescent level, the accretion from inner disc must be continuing in the propeller stage with a lower fraction than in the accretion stage. The X-ray does not only come from accretion onto the poles but the inner parts of the disk may also contribute to the total X-ray luminosity. To infer what fraction (f) of the inflowing matter accretes onto the star the light curve in the propeller stage, one should first separate the emission originating from the disk and obtain a light curve of X-ray emission only from the magnetic poles. We provide a new method to infer from the observational data the fraction of accreting matter onto the neutron star pole to the mass transferring from outer layers of the disc to the inner disc (f), as a function of the fastness parameter (ω_{*}), assuming the knee is due to the transition from accretion to the propeller stage. We transform X-ray luminosities to the mass fraction, f, and the time scale of outburst to fastness parameter, ω_*. It allows us to compare different types of outbursts of an AMXP in f - ω_* space which is universal for a unique system. We analysed the Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) observations of the 2000 and the 2011 outbursts and the Swift Gamma-Ray Burst Mission/X-ray Telescope (SWIFT/XRT) data of the 2013 outburst of the most known AMXP, Aql X-1 using a combination of blackbody representing hot spot, disk blackbody

  19. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; Murakami, T.

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  20. ENERGY-DEPENDENT LIGHT CURVES AND PHASE-RESOLVED SPECTRA OF HIGH-ENERGY GAMMA-RAYS FROM THE CRAB PULSAR

    SciTech Connect

    Li, X.; Zhang, L.

    2010-12-20

    Energy-dependent light curves and phase-resolved spectra of high-energy {gamma}-ray emission from the Crab pulsar have been detected recently by the Fermi Large Area Telescope (LAT). Within the framework of a two-pole, three-dimensional outer gap model, we calculate the energy-dependent light curves and phase-resolved spectra in the inertial observer's frame. Our results show that (1) the observed {gamma}-ray properties from both Fermi LAT and MAGIC can be reproduced well in this model; (2) the first peak of the light curves in the energy region less than {approx}10 GeV comes from the sum of emissions from both the north and south poles, and the second peak comes only from the emission from the south pole; however, the relative contribution of the two poles to the first peak changes with increasing {gamma}-ray energy, and the light curve in the energy region greater than {approx}20 GeV comes completely from the emission of the south pole; and (3) {gamma}-rays in the energy region greater than 100 MeV are produced through inverse Compton scattering from secondary pairs and the survival curvature photons, where the latter dominate over {gamma}-ray emission in the energy region greater than several GeV.

  1. Gamma-ray emission in dissipative pulsar magnetospheres: from theory to Fermi observations

    SciTech Connect

    Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-10-01

    We compute the patterns of γ-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed γ-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model γ-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and γ-ray emission on the γ-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the γ-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  2. A New High-Frequency Search for Galactic Center Millisecond Pulsars using DSS-43

    NASA Astrophysics Data System (ADS)

    Lemley, Cameron; Prince, Thomas Allen; Majid, Walid A.; Murchikova, Elena

    2016-01-01

    The primary 70-meter Deep Space Network antenna (DSS-43) in Canberra, Australia was equipped with a new high-frequency (18-28 GHz) receiver system in May 2015 for use in a search for Galactic Center (GC) millisecond pulsars. The primary motivation for this search is that a pulsar in the Galactic Center region (especially one that is gravitationally bound to the massive black hole at the GC) would provide unprecedented tests of gravity in the strong-field regime and would offer an entirely new tool for probing the characteristics of the Galactic Center region. Preparation for the GC pulsar search has involved the development of a single-pulse search pipeline that integrates tools from both Fortran and Python as well as the implementation of this pipeline on high performance CPUs. The original version of the search pipeline was developed using Vela Pulsar data from DSS-43, and a more refined version that relies upon chi-squared fitting techniques was ultimately developed using Crab Pulsar data. Future work will involve continued testing of the single-pulse search pipeline using data from the rotating radio transient (RRAT) J1819-1458, the characterization of RRAT pulses using high time resolution data from the new receiver system on DSS-43, and ultimately the analysis of high-frequency data using the existing pipeline to search for millisecond pulsars in the Galactic Center.

  3. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-06-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and super-luminous supernovae. We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly-rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳ 10 - 100 yr. In the rapidly-rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Second, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (˜10 - 100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  4. Low-Frequency Variability of - for Timing of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Blandford, R.; Narayan, R.

    Rickett, Coles and Bourgois (1984) have argued that long-term (months to years) variation in pulsar flux is caused by fluctuations in the interstellar electron density on length scales ≡1013-16cm. In this paper the authors show that there should then be correlated fluctuations in the pulse arrival time, pulse width, and angular size. PSR 1937+21 is suitable for detecting some of the new effects. The timing noise and pulse width variation in this pulsar is estimated assuming a power-law spectrum for the electron density fluctuations, normalized using scintillation data.

  5. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  6. X-Radiation from the Millisecond Pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Zavlin, V. E.; Pavlov, G. G.; Sanwal, D.; Manchester, R. N.; Truemper, J.; Halpern, J. P.; Becker, W.

    2002-01-01

    We report on spectral and timing observations of the nearest millisecond pulsar, 50437-471 5, with the Chandra X-Ray Observatory. The pulsar spectrum, detected up to 7 keV, cannot be described by a simple one-component model. We suggest that it consists of two components: a nonthermal power-law spectrum generated in the pulsar magnetosphere, with a photon index gamma approx. = 2, and a thermal spectrum emitted by heated polar caps, with a temperature decreasing outward from 2 to 0.5 MK. The lack of spectral features in the thermal component suggests that the neutron star surface is covered by a hydrogen (or helium) atmosphere. The timing analysis shows one X-ray pulse per period, with a pulsed fraction of about 40% and the peak at the same pulse phase as the radio peak. No synchrotron pulsar-wind nebula is seen in X-rays.

  7. PROBING THE PULSAR WIND IN THE {gamma}-RAY BINARY SYSTEM PSR B1259-63/SS 2883

    SciTech Connect

    Takata, Jumpei; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2009-09-01

    The spectral energy distribution from the X-ray to the very high energy regime (>100 GeV) has been investigated for the {gamma}-ray binary system PSR B1259-63/SS 2883 as a function of the orbital phase within the framework of a simple model of a pulsar wind nebula. The emission model is based on the synchrotron radiation process for the X-ray regime and the inverse Compton scattering process boosting stellar photons from the Be star companion to the very high energy (100 GeV-TeV) regime. With this model, the observed temporal behavior can, in principle, be used to probe the pulsar wind properties at the shock as a function of the orbital phase. Due to theoretical uncertainties in the detailed microphysics of the acceleration process and the conversion of magnetic energy into particle kinetic energy, the observed X-ray data for the entire orbit are fitted using two different methods. In the first method, the magnetization parameter and the Lorentz factor of the wind at the shock are allowed to vary for a given power law index characterizing the accelerated particles at the shock. In this case, the observed photon index of {approx}1.2 in the 1-10 keV energy band near the periastron passage can be understood provided that (1) the electron energy distribution is described by a broken power law and (2) there is a break at an energy of about 8 x 10{sup 6} in units of the electron rest mass energy. In the second method, the magnetization parameter and the power law index are varied for a fixed Lorentz factor. Here, the photon index of {approx}1.2 can result from a particle distribution described by a power law index of {approx}1.5. The calculated emission in the energy band corresponding to 10 MeV-1 GeV from the shocked pulsar wind indicates that these two cases can be distinguished by future Fermi observations near the periastron. It is also found that the emission from the unshocked wind could be detectable by the Fermi telescope near the periastron passage if most of

  8. Soft x-ray properties of the binary millisecond pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1995-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.

  9. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray

  10. RADIO DETECTION OF LAT PSRs J1741-2054 AND J2032+4127: NO LONGER JUST GAMMA-RAY PULSARS

    SciTech Connect

    Camilo, F.; Gotthelf, E. V.; Halpern, J. P.; Ray, P. S.; Abdo, A. A.; Ransom, S. M.; Demorest, P.; Burgay, M.; Johnson, T. J.; Thompson, D. J.; Harding, A. K.; Kerr, M.; Reynolds, J.; Johnston, S.; Romani, R. W.; Van Straten, W.; Parkinson, P. M. Saz; Ziegler, M.; Dormody, M.; Smith, D. A.

    2009-11-01

    Sixteen pulsars have been discovered so far in blind searches of photons collected with the Large Area Telescope on the Fermi Gamma-ray Space Telescope. We here report the discovery of radio pulsations from two of them. PSR J1741-2054, with period P = 413 ms, was detected in archival Parkes telescope data and subsequently has been detected at the Green Bank Telescope (GBT). Its received flux varies greatly due to interstellar scintillation and it has a very small dispersion measure of DM = 4.7 pc cm{sup -3}, implying a distance of approx0.4 kpc and possibly the smallest luminosity of any known radio pulsar. At this distance, for isotropic emission, its gamma-ray luminosity above 0.1 GeV corresponds to 28% of the spin-down luminosity of E-dot=9.4x10{sup 33} erg s{sup -1}. The gamma-ray profile occupies 1/3 of pulse phase and has three closely spaced peaks with the first peak lagging the radio pulse by delta = 0.29 P. We have also identified a soft Swift source that is the likely X-ray counterpart. In many respects PSR J1741-2054 resembles the Geminga pulsar. The second source, PSR J2032+4127, was detected at the GBT. It has P = 143 ms, and its DM = 115 pc cm{sup -3} suggests a distance of approx3.6 kpc, but we consider it likely that it is located within the Cyg OB2 stellar association at half that distance. The radio emission is nearly 100% linearly polarized, and the main radio peak precedes by delta = 0.15 P the first of two narrow gamma-ray peaks that are separated by DELTA = 0.50 P. The second peak has a harder spectrum than the first one, following a trend observed in young gamma-ray pulsars. Faint, diffuse X-ray emission in a Chandra image is possibly its pulsar wind nebula. The wind of PSR J2032+4127 is responsible for the formerly unidentified HEGRA source TeV J2032+4130. PSR J2032+4127 is coincident in projection with MT91 213, a Be star in Cyg OB2, although apparently not a binary companion of it.

  11. The NANOGrav Nine-year Data Set: Astrometric Measurements of 37 Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Matthews, Allison M.; Nice, David J.; Fonseca, Emmanuel; Arzoumanian, Zaven; Crowter, Kathryn; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Gonzalez, Marjorie E.; Jones, Glenn; Jones, Megan L.; Lam, Michael T.; Levin, Lina; McLaughlin, Maura A.; Pennucci, Timothy T.; Ransom, Scott M.; Stairs, Ingrid H.; Stovall, Kevin; Swiggum, Joseph K.; Zhu, Weiwei

    2016-02-01

    Using the nine-year radio-pulsar timing data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), collected at Arecibo Observatory and the Green Bank Telescope, we have measured the positions, proper motions, and parallaxes for 37 millisecond pulsars. We report twelve significant parallax measurements and distance measurements, and eighteen lower limits on distance. We compare these measurements to distances predicted by the NE2001 interstellar electron density model and find them to be in general agreement. We use measured orbital-decay rates and spin-down rates to confirm two of the parallax distances and to place distance upper limits on other sources; these distance limits agree with the parallax distances with one exception, PSR J1024-0719, which we discuss at length. Using the proper motions of the 37 NANOGrav pulsars in combination with other published measurements, we calculate the velocity dispersion of the millisecond pulsar population in Galactocentric coordinates. We find the radial, azimuthal, and perpendicular dispersions to be 46, 40, and 24 {km} {{{s}}}-1, respectively, in a model that allows for high-velocity outliers; or 81, 58, and 62 {km} {{{s}}}-1 for the full population. These velocity dispersions are far smaller than those of the canonical pulsar population, and are similar to older Galactic disk populations. This suggests that millisecond pulsar velocities are largely attributable to their being an old population rather than being artifacts of their birth and evolution as neutron star binary systems. The components of these velocity dispersions follow similar proportions to other Galactic populations, suggesting that our results are not biased by selection effects.

  12. AN ASTEROID BELT INTERPRETATION FOR THE TIMING VARIATIONS OF THE MILLISECOND PULSAR B1937+21

    SciTech Connect

    Shannon, R. M.; Cordes, J. M.; Metcalfe, T. S.; Lazio, T. J. W.; Jessner, A.; Kramer, M.; Lazaridis, K. E-mail: cordes@astro.cornell.edu

    2013-03-20

    Pulsar timing observations have revealed companions to neutron stars that include other neutron stars, white dwarfs, main-sequence stars, and planets. We demonstrate that the correlated and apparently stochastic residual times of arrival from the millisecond pulsar B1937+21 are consistent with the signature of an asteroid belt having a total mass {approx}< 0.05 M{sub Circled-Plus }. Unlike the solar system's asteroid belt, the best fit pulsar asteroid belt extends over a wide range of radii, consistent with the absence of any shepherding companions. We suggest that any pulsar that has undergone accretion-driven spin-up and subsequently evaporated its companion may harbor orbiting asteroid mass objects. The resulting timing variations may fundamentally limit the timing precision of some of the other millisecond pulsars. Observational tests of the asteroid belt model include identifying periodicities from individual asteroids, which are difficult; testing for statistical stationarity, which becomes possible when observations are conducted over a longer observing span; and searching for reflected radio emission.

  13. The Amazing Pulsar Machine

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Large Area Telescope, Fermi

    2014-01-01

    How rotation-powered pulsars accelerate particles to PeV energies and radiate pulsed emission from radio to gamma-ray wavelengths has remained a mystery for over 40 years. But in the last few years, the Fermi Large Area Telescope has revolutionized the study of pulsars and allowed us to peer deeper into the inner workings of this incredibly efficient natural accelerator. Thanks to Fermi discoveries, we now know that the high-energy emission is radiated in the outer magnetosphere, near the light cylinder, that millisecond pulsars are extremely efficient at emitting gamma-ray pulses and that the Crab nebula undergoes dramatic flaring that challenges particle acceleration theory. I will review how these discoveries, together with recent progress in global simulation of pulsar magnetospheres, are changing our models of pulsar particle acceleration, cascade pair production and high-energy emission.

  14. Detection of gamma-ray emission from globular clusters M15, NGC 6397, 5904, 6218 and 6139 with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Zhang, P. F.; Xin, Y. L.; Fu, L.; Zhou, J. N.; Yan, J. Z.; Liu, Q. Z.; Zhang, L.

    2016-06-01

    In the third Fermi catalogue (3FGL) there are 16 gamma-ray globular clusters. Following an analysis of the recently released Pass 8 data from the Fermi Large Area Telescope (LAT), we report the discovery of significant gamma-ray emission from M15 and NGC 6397, confirm that NGC 5904 is a gamma-ray-emitter and provide evidence of gamma-ray emission from NGC 6218 and 6139. Interestingly, in the globular clusters M15, NGC 6397 and 5904, millisecond pulsars (MSPs) have been found in the radio or X-ray, which strongly support the MSP origin of the gamma-ray emission. Owing to the relatively low luminosity of the gamma-ray emission, however, we do not find any evidence for gamma-ray pulsation or flux variability in these sources.

  15. Improved timing of the millisecond pulsar PSR 1937+21 using real-time coherent dedispersion

    SciTech Connect

    Hankins, T.H.; Stinebring, D.R.; Rawley, L.A.

    1987-04-01

    Profiles of the millisecond pulsar PSR 1937+21 have been obtained with 6-micron resolution using a real-time hardware dispersion removal device. This dedisperser has a potential resolution of better than 0.5 microsec and is immune to time-of-arrival jitter caused by scintillation-induced spectral gradients across the receiver passband. It significantly reduces the time-of-arrival residuals when compared with the timing technique currently in use. This increased timing accuracy, when utilized in a long-term timing program of millisec pulsars, will improve the solar system ephemeris and will substantially improve the detection limit of a gravitational wave background. 27 references.

  16. Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; G´rard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; K´ski, K.; Katz, U.; Kaufmann, S.; K´lifi, B.; Klochkov, D.; K´niak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; M´hault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Lstrok; .; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-09-01

    We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N 157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N 157B is associated with PSR J0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 ± 0.2stat ± 0.3syst and a normalisation at 1 TeV of (8.2 ± 0.8stat ± 2.5syst) × 10-13 cm-2 s-1 TeV-1. A leptonic multi-wavelength model shows that an energy of about 4 × 1049 erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsar's spin-down luminosity, 0.08% ± 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsar's favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsar's birth period is estimated to be shorter than 10 ms. Data set is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/L2

  17. The Crab pulsar light curve in the soft gamma ray range: FIGARO II results

    NASA Technical Reports Server (NTRS)

    Massaro, E.; Agrinier, B.; Barouch, E.; Comte, R.; Costa, E.; Cusumano, G. C.; Gerardi, G.; Lemoine, D.; Mandrou, P.; Masnou, J. L.

    1992-01-01

    The FIGARO II experiment (a large area, balloon borne, crystal scintillator detector working from 0.15 to 4.3 MeV) observed the Crab pulsar on 1990 Jul. 9 for about seven hours. The study of the pulse profile confirms some structures detected with a low significance during the shorter observation of 1986, and adds new important elements to the picture. In particular, between the two main peaks, two secondary peaks appear centered at phase values 0.1 and 0.3, in the energy range 0.38 to 0.49 MeV; in the same energy range, a spectral feature at 0.44 MeV, interpreted as a redshifted positron annihilation line, was observed during the same balloon flight in the phase interval including the second main peak and the neighboring secondary peak. If the phase interval considered is extended to include also the other secondary peak, the significance of the spectral line appears to increase.

  18. Was the millisecond pulsar in SN1987A spun up or born spinning fast?

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Chevalier, R. A.

    1989-03-01

    It is argued here that the millisecond pulsar in SN1987A has been spun up by accretion. The accreted angular momentum in this case comes from the mixed mantle and helium core of the ejecta, of which roughly 0.1 solar mass fell back during the first day after the explosion. This sizable mass, and hence angular momentum, of the reimploded material is at least partly a consequence of the blue supergiant nature of the progenitor star.

  19. Was the millisecond pulsar in SN1987A spun up or born spinning fast?

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Chevalier, R. A.

    1989-01-01

    It is argued here that the millisecond pulsar in SN1987A has been spun up by accretion. The accreted angular momentum in this case comes from the mixed mantle and helium core of the ejecta, of which roughly 0.1 solar mass fell back during the first day after the explosion. This sizable mass, and hence angular momentum, of the reimploded material is at least partly a consequence of the blue supergiant nature of the progenitor star.

  20. Orbit Solution for the Millisecond Pulsar IGR J00291+5934

    NASA Astrophysics Data System (ADS)

    Markwardt, C. B.; Galloway, D. K.; Chakrabarty, D.; Morgan, E. H.; Strohmayer, T. E.

    2004-12-01

    The INTEGRAL Transient IGR J00291+5934 (ATEL #352), now known to be a 1.67 millisecond X-ray pulsar (ATEL #353), was observed by the RXTE PCA on Dec 5 and 6. The source has decayed to approximately 27 mCrab (2-10 keV). The data were barycentered using the Fox & Kulkarni optical counterpart position (ATEL #354). Pulsations with a sinusoidal frequency modulation are clearly detected in each observation.

  1. Real-Time Detection and Constraining Pulsar Emission Physics through Radio/Gamma-Ray Correlation of Crab Giant Pulses

    NASA Astrophysics Data System (ADS)

    Mickaliger, Mitchell B.; Ransom, S.; Langston, G.; McLaughlin, M.; Lorimer, D.; Bilous, A.; Kondratiev, V.; Lyutikov, M.

    2010-01-01

    Giant pulses are rare, short, bright bursts of radio emission. Although giant pulses are well documented, the physical processes behind them are not well known. To determine these processes, certain properties of giant pulses need to be constrained. Among these constraints are the rate of giant pulses and the number of giant pulses as a function of intensity. Data have been taken with the 43-m telescope at Green Bank over a time span of several months and reduced in real time to search for giant pulses. We have developed a real time detection algorithm to search the data for pulses, ruling out periodic signal. When a pulse is found, the intensity vs time profile, frequency vs time plot, and raw data within a second of the burst are saved. This real time detection algorithm allows us to take a large amount of data on the Crab with minimal disk space and human intervention. Another way we are trying to determine emission processes is by correlating Fermi data with giant pulse data from the 100-m Green Bank Telescope and the 43-m telescope. The main purpose of this is to test whether giant pulses are due to changes in the coherence of the radio emission mechanism, variations in the pair creation rate in the pulsar magnetosphere, or changes in the beaming direction. Also being tested is a specific giant pulse emission model proposed by Lyutikov, in which Crab giant pulses are generated on closed magnetic field lines near the light cylinder via anomalous cyclotron resonance of the ordinary mode. This model gives a clear prediction that radio giant pulses should be accompanied by gamma-ray photons.

  2. The 2002 Outburst of the Millisecond Accreting Pulsar XTE J1751-305

    NASA Astrophysics Data System (ADS)

    Markwardt, C. B.; Swank, J. H.

    2002-12-01

    The millisecond accreting pulsar XTE J1751--305 was discovered in the galactic bulge region by the RXTE PCA in early 2002. It is one of only a handful of now-known millisecond pulsars that are presumably spinning up by mass accretion (along with SAX J1808.4--3658 and XTE J0929--314). We will present an analysis of the complete outburst of XTE J1751--305, including spectroscopy and timing. The outburst followed a similar track to the first known millisecond accreting pulsar, SAX J1808.4--3658, with a fast rise, exponential decay (time constant ~ 7 day), and a sudden cut-off. Over the outburst, the energy spectral shape remained essentially constant, and showed no strong line features. Aside from the pulsations, XTE J1751--305 also exhibited lower frequency fluctuations in the power spectrum, which are typical of low mass X-ray binaries. While there appears to be no strong kiloHertz quasiperiodic oscillations, there is some evidence for a weak and broad power spectral excess feature centered on a few hundred Hertz.

  3. A Possible X-Ray Detection of the Binary Millisecond Pulsar J1012+5307

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A possible X-ray detection of the newly discovered binary millisecond radio pulsar PSR J1012+5307 was obtained from an archival ROSAT observation. The 80 +/- 24 photons detected correspond to a 0.1 - 2.4 keV luminosity of approx. = 2.5 x 10(exp 30) erg/s at the nominal dispersion-measure distance of 520 pc. This luminosity is a factor of 2 less than that of PSR J0437-4715, a near twin of PSR J1012+5307 in its spin parameters and energetics, and the only millisecond pulsar from which pulsed X-rays have definitely been detected. PSR J1012+5307 is also within 6 deg of the "HI hole" in Ursa Major, providing a new estimate of the electron column density through this region which confirms that the ionized column density is also low. The small neutral column density to PSR J1012+5307, N(sub H) less than 7.5 x 10(exp 19)/sq cm, will facilitate future soft X-ray study, which will help to discriminate between thermal and nonthermal origins of the X-ray emission in millisecond pulsars.

  4. IDENTIFICATION OF THE OPTICAL COUNTERPART OF FERMI BLACK WIDOW MILLISECOND PULSAR PSR J1544+4937

    SciTech Connect

    Tang, Sumin; Phinney, E. Sterl; Prince, Thomas A.; Bellm, Eric; Cao, Yi; Perley, Daniel A.; Kaplan, David L.; Breton, Rene P.; Bildsten, Lars; Kong, Albert K. H.; Yen, T.-C.; Sesar, Branimir; Wolf, William M.

    2014-08-10

    We report the optical identification of the companion to the Fermi black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck Low Resolution Imaging Spectrometer images at the nominal pulsar position, with 2 mag variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.

  5. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    SciTech Connect

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-11-10

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  6. On the Formation of Eccentric Millisecond Pulsars with Helium White-dwarf Companions

    NASA Astrophysics Data System (ADS)

    Antoniadis, John

    2014-12-01

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire & Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (104-105 yr) disk can result in eccentricities of e ~= 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  7. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    SciTech Connect

    Antoniadis, John

    2014-12-20

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  8. ON THE EVOLUTION OF ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS WITH FALL BACK DISKS

    SciTech Connect

    Ertan, Ue.; Alpar, M. A.; Eksi, K. Y.; Erkut, M. H.

    2009-09-10

    We show that the period clustering of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), their X-ray luminosities, ages, and statistics can be explained with fall back disks with large initial specific angular momentum. The disk evolution models are developed by comparison to self-similar analytical models. The initial disk mass and angular momentum set the viscous timescale. An efficient torque, with (1 - {omega}{sup 2}{sub *}) dependence on the fastness parameter {omega}{sub *}, leads to period clustering in the observed AXP-SGR period range under a wide range of initial conditions. The timescale t{sub 0} for the early evolution of the fall back disk, and the final stages of fall back disk evolution, when the disk becomes passive, are the crucial determinants of the evolution. The disk becomes passive at temperatures around 100 K, which provides a natural cutoff for the X-ray luminosity and defines the end of evolution in the observable AXP and SGR phase. This low value for the minimum temperature for active disk turbulence indicates that the fall back disks are active up to a large radius, {approx}>10{sup 12} cm. We find that transient AXPs and SGRs are likely to be older than their persistent cousins. A fall back disk with mass transfer rates corresponding to the low quiescent X-ray luminosities of the transient sources in early evolutionary phases would have a relatively lower initial mass, such that the mass-flow rate in the disk is not sufficient for the inner disk to penetrate into the light cylinder of the young neutron star, making mass accretion onto the neutron star impossible. The transient AXP phase therefore must start later. The model results imply that the transient AXP/SGRs, although older, are likely to be similar in number to persistent sources. This is because the X-ray luminosities of AXPs and SGRs are found to decrease faster at the end of their evolution, and the X-ray luminosities of transient AXP and SGRs in quiescence lie

  9. MILLISECOND PULSAR AGES: IMPLICATIONS OF BINARY EVOLUTION AND A MAXIMUM SPIN LIMIT

    SciTech Connect

    Kiziltan, Buelent; Thorsett, Stephen E.

    2010-05-20

    In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low-mass X-ray binary (LMXB) phase pose additional constraints on the period (P) and spin-down rates ( P-dot ) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age while the standard spin-down age may overestimate or underestimate the age of the pulsar by more than a factor of {approx}10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n = 3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known 'age bias' due to secular acceleration and 'age contamination' driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates ( m-dot << M-dot{sub Edd}) will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution, and the post-accretion energy loss mechanism.

  10. X-Ray Emission from the Millisecond Pulsar J1012+5307

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Wang, F. Y.-H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(exp 19)/sq cm, which facilitates soft X-ray observations. Halpern reported a possible ROSAT PSPC detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+5307 in a 23 ksec observation with the ROSAT HRI. A point source is detected within 3 sec. of the radio position. Its count rate of 1.6 +/- 0.3 x 10(exp -3)/s corresponds to an unabsorbed 0.1 - 2.4 keV flux of 6.4 x 10(exp -14) ergs/sq cm s, similar to that reported previously. This counts-to-flux conversion is valid for N(sub H) = 5 x 10(exp 19)/sq cm, and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(exp 30) ergs/ s is 5 x 10(exp -4) of the pulsar's spin-down power E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P and E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of of the interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact of particles accelerated along open field lines operates in these approx

  11. PSR J1723–2837: AN ECLIPSING BINARY RADIO MILLISECOND PULSAR

    SciTech Connect

    Crawford, Fronefield; Lyne, Andrew G.; Stairs, Ingrid H.; Kaplan, David L.; McLaughlin, Maura A.; Lorimer, Duncan R.; Freire, Paulo C. C.; Kramer, Michael; Burgay, Marta; D'Amico, Nichi; Possenti, Andrea; Camilo, Fernando; Faulkner, Andrew; Manchester, Richard N.; Steeghs, Danny

    2013-10-10

    We present a study of PSR J1723–2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ∼15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 ± 0.5, corresponding to a companion mass range of 0.4 to 0.7 M{sub ☉} and an orbital inclination angle range of between 30° and 41°, assuming a pulsar mass range of 1.4-2.0 M{sub ☉}. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723–2837 indicate that it is likely a 'redback' system. Unlike the five other Galactic redbacks discovered to date, PSR J1723–2837 has not been detected as a γ-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.

  12. Detection of Pulsed Emission from the Millisecond Pulsar PSR J2145-0750 Below 100 MHz

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory B.; Dowell, J.; Wavelength Array, Long

    2014-01-01

    Millisecond pulsars (MPSs) are distinguished from normal pulsars by faster rotation periods, weaker magnetic fields, and flux density spectra that are well fit by a single power law down to 100 MHz. Below 100 MHz some MSPs show a break in the power law, however, additional observations, particularly of the pulse profile, are needed in this frequency range to provide better constraints on emission mechanisms. The first station of the Long Wavelength Array, LWA1, is a low frequency telescope that is ideally suited to address these questions. We present recent results from LWA1 on the millisecond pulsar PSR J2145-0750. Using coherent dedispersion we detected pulsed emission between 37 and 85 MHz. From this we derive flux densities and pulse profiles at 41, 57, 65, 73, and 81 MHz. We find that the flux density spectrum of PSR J2145-0750 appears to flatten below 100 MHz relative to the spectral index of ~-1.6 found in the literature. We also find that the pulse profile shows little evolution over this frequency range and is similar to profiles found at 102 MHz. We also discuss the prospects for precision dispersion measure monitoring at these frequencies. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  13. Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess.

    PubMed

    Bartels, Richard; Krishnamurthy, Suraj; Weniger, Christoph

    2016-02-01

    Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the Inner Galaxy, at energies around a few GeV. This excess resembles remarkably well a signal from dark-matter annihilation. One of the most compelling astrophysical interpretations is that the excess is caused by the combined effect of a previously undetected population of dim γ-ray sources. Because of their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the γ-ray sky and the statistics of Gaussian random fields. Using almost seven years of Fermi-LAT data, we detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10.0σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission. We argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation. PMID:26894696

  14. High energy gamma-ray astronomy; Proceedings of the International Conference, ANN Arbor, MI, Oct. 2-5, 1990

    NASA Astrophysics Data System (ADS)

    Matthews, James

    The present volume on high energy gamma-ray astronomy discusses the composition and properties of heavy cosmic rays greater than 10 exp 12 eV, implications of the IRAS Survey for galactic gamma-ray astronomy, gamma-ray emission from young neutron stars, and high-energy diffuse gamma rays. Attention is given to observations of TeV photons at the Whipple Observatory, TeV gamma rays from millisecond pulsars, recent data from the CYGNUS experiment, and recent results from the Woomera Telescope. Topics addressed include bounds on a possible He/VHE gamma-ray line signal of Galactic dark matter, albedo gamma rays from cosmic ray interactions on the solar surface, source studies, and the CANGAROO project. Also discussed are neural nets and other methods for maximizing the sensitivity of a low-threshold VHE gamma-ray telescope, a prototype water-Cerenkov air-shower detector, detection of point sources with spark chamber gamma-ray telescopes, and real-time image parameterization in high energy gamma-ray astronomy using transputers. (For individual items see A93-25002 to A93-25039)

  15. Flux Density Variations in the Parkes Pulsar Timing Array Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Shannon, Ryan; Hobbs, George; Kerr, Matthew

    2015-01-01

    Precise timing of an ensemble of pulsars spread across the sky (a pulsar timing array, PTA) can be used to search for gravitational waves. The Parkes Pulsar Timing Array project (PPTA) currently observes 23 pulsars with the Parkes Radio Telescope, largely in the southern sky, with the primary goal of searching for gravitational waves. The pulsars in the sample show large variations in flux density due to refractive scintillation in the interstellar medium (ISM). These flux variations cause timing uncertainty to vary by more than an order of magnitude. A better understanding of flux-density variations associated with the interstellar medium (ISM) is crucial for optimizing observing strategy and increase the sensitivity of the PPTA to gravitational waves. Flux-density variations can also potentially be caused by magnetospheric state changes. We use flux density time series and structure functions to examine both the properties of the ISM and search for intrinsic flux variation in these pulsars. We present intriguing features of the datasets and general implications of the results.

  16. A Likely Millisecond Pulsar Binary Counterpart for Fermi Source 2FGL J2039.6-5620

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2015-10-01

    We have identified an optical/X-ray binary with an orbital period of Pb = 5.47 hr as the likely counterpart of the Fermi source 2FGL J2039.6-5620. GROND, SOAR, and DES observations provide an accurate orbital period and allow us to compare to the light curve of an archival XMM exposure. Like many short-period optical/X-ray binaries associated with Large Area Telescope sources, this may be an interacting (black widow/redback) millisecond pulsar binary. The X-ray light curve is consistent with the emission associated with an intrabinary shock. The optical light curve shows evidence of companion heating, but has a peculiar asymmetric double peak. The nature of this optical structure is not yet clear; additional optical studies and, in particular, detection of an orbital modulation in a γ-ray pulsar are needed to elucidate the nature of this peculiar source.

  17. PSR J1024–0719: A Millisecond Pulsar in an Unusual Long-period Orbit

    NASA Astrophysics Data System (ADS)

    Kaplan, David L.; Kupfer, Thomas; Nice, David J.; Irrgang, Andreas; Heber, Ulrich; Arzoumanian, Zaven; Beklen, Elif; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Gentile, Peter A.; Jones, Glenn; Jones, Megan L.; Kreuzer, Simon; Lam, Michael T.; Levin, Lina; Lorimer, Duncan R.; Lynch, Ryan S.; McLaughlin, Maura A.; Miller, Adam A.; Ng, Cherry; Pennucci, Timothy T.; Prince, Tom A.; Ransom, Scott M.; Ray, Paul S.; Spiewak, Renee; Stairs, Ingrid H.; Stovall, Kevin; Swiggum, Joseph; Zhu, Weiwei

    2016-07-01

    PSR J1024–0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to a reexamination of its properties. We present updated radio timing observations along with new and archival optical data which show that PSR J1024–0719 is most likely in a long-period (2–20 kyr) binary system with a low-mass (≈ 0.4 {M}ȯ ), low-metallicity (Z≈ -0.9 dex) main-sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, which is consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.

  18. Twenty-one millisecond pulsars in Terzan 5 using the Green Bank Telescope.

    PubMed

    Ransom, Scott M; Hessels, Jason W T; Stairs, Ingrid H; Freire, Paulo C C; Camilo, Fernando; Kaspi, Victoria M; Kaplan, David L

    2005-02-11

    We have identified 21 millisecond pulsars (MSPs) in globular cluster Terzan 5 by using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass 1.68 times greater than the mass of the Sun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density. PMID:15653465

  19. Constraints on the R-mode oscillations from surface temperatures of millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Guver, Tolga; Schwenzer, Kai

    2016-07-01

    r-modes are toroidal oscillation modes expected to occur in neutron stars and carry away energy and angular momentum in the form of gravitational waves. These modes can be unstable as long as the gravitational wave emission drives the oscillation faster than viscosity damps it. Unstable r-modes have to be saturated by a non-linear dissipative mechanism which could strongly heat the star and result in observable X-ray signatures. Using the existing spin frequency and surface temperature measurements or limits of millisecond pulsars we present our initial results constraining the physics of the r-mode oscillations.

  20. Magnetic fields generated by r-modes in accreting millisecond pulsars

    SciTech Connect

    Cuofano, Carmine; Drago, Alessandro

    2010-10-15

    In rotating neutron stars the existence of the Coriolis force allows the presence of the so-called Rossby oscillations (r-modes) which are known to be unstable to emission of gravitational waves. Here, for the first time, we introduce the magnetic damping rate in the evolution equations of r-modes. We show that r-modes can generate very strong toroidal fields in the core of accreting millisecond pulsars by inducing differential rotation. We shortly discuss the instabilities of the generated magnetic field and its long time-scale evolution in order to clarify how the generated magnetic field can stabilize the star.

  1. Multi-wavelength Observations of 3FGL J2039.6-5618: A Candidate Redback Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Salvetti, D.; Mignani, R. P.; De Luca, A.; Delvaux, C.; Pallanca, C.; Belfiore, A.; Marelli, M.; Breeveld, A. A.; Greiner, J.; Becker, W.; Pizzocaro, D.

    2015-12-01

    We present multi-wavelength observations of the unassociated γ-ray source 3FGL J2039.6-5618 detected by the Fermi Large Area Telescope. The source γ-ray properties suggest that it is a pulsar, most likely a millisecond pulsar, for which neither radio nor γ-ray pulsations have been detected. We observed 3FGL J2039.6-5618 with XMM-Newton and discovered several candidate X-ray counterparts within/close to the γ-ray error box. The brightest of these X-ray sources is variable with a period of 0.2245 ± 0.0081 days. Its X-ray spectrum can be described by a power law with photon index ΓX = 1.36 ± 0.09, and hydrogen column density NH < 4 × 1020 cm-2, which gives an unabsorbed 0.3-10 keV X-ray flux of 1.02 × 10-13 erg cm-2 s-1. Observations with the Gamma-Ray Burst Optical/Near-Infrared Detector discovered an optical counterpart to this X-ray source, with a time-averaged magnitude g‧ ˜ 19.5. The counterpart features a flux modulation with a period of 0.22748 ± 0.00043 days that coincides, within the errors, with that of the X-ray source, confirming the association based on the positional coincidence. We interpret the observed X-ray/optical periodicity as the orbital period of a close binary system where one of the two members is a neutron star. The light curve profile of the companion star, which has two asymmetric peaks, suggests that the optical emission comes from two regions with different temperatures on its tidally distorted surface. Based upon its X-ray and optical properties, we consider this source as the most likely X-ray counterpart to 3FGL J2039.6-5618, which we propose to be a new redback system.

  2. A CHANDRA X-RAY OBSERVATION OF THE BINARY MILLISECOND PULSAR PSR J1023+0038

    SciTech Connect

    Bogdanov, Slavko; Archibald, Anne M.; Kaspi, Victoria M.; Hessels, Jason W. T.; Lorimer, Duncan; McLaughlin, Maura A.; Ransom, Scott M.; Stairs, Ingrid H.

    2011-12-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5{sigma}) large-amplitude (factor of two to three) orbital variability over the five consecutive orbits covered by the observation, with a pronounced decline in the flux at all energies at superior conjunction. This can be naturally explained by a partial geometric occultation by the secondary star of an X-ray-emitting intrabinary shock, produced by the interaction of outflows from the two stars. The depth and duration of the eclipse imply that the intrabinary shock is localized near or at the surface of the companion star and close to the inner Lagrangian point. The energetics of the shock favor a magnetically dominated pulsar wind that is focused into the orbital plane, requiring close alignment of the pulsar spin and orbital angular momentum axes. The X-ray spectrum consists of a dominant non-thermal component and at least one thermal component, likely originating from the heated pulsar polar caps, although a portion of this emission may be from an optically thin 'corona'. We find no evidence for extended emission due to a pulsar wind nebula or bow shock down to a limiting luminosity of L{sub X} {approx}< 3.6 Multiplication-Sign 10{sup 29} erg s{sup -1} (0.3-8 keV), {approx}< 7 Multiplication-Sign 10{sup -6} of the pulsar spin-down luminosity, for a distance of 1.3 kpc and an assumed power-law spectrum with photon index {Gamma} = 1.5.

  3. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    SciTech Connect

    Van Straten, W.

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  4. HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES

    SciTech Connect

    Gonzalez, M. E.; Stairs, I. H.; Ferdman, R. D.; Lyne, A. G.; Freire, P. C. C.; Kramer, M.; Nice, D. J.; Demorest, P. B.; Ransom, S. M.; Camilo, F.; Hobbs, G.; Manchester, R. N.

    2011-12-20

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km s{sup -1}, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems, we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M{sub Sun }. The implications of the results presented here to our understanding of binary pulsar evolution are discussed. The updated parameters for the binary systems studied here, together with recently discovered similar systems, allowed us to update previous limits on the violation of the strong equivalence principle through the parameter |{Delta}| to 4.6 Multiplication-Sign 10{sup -3} (95% confidence) and the violation of Lorentz invariance/momentum conservation through the parameter |{alpha}-hat3| to 5.5 Multiplication-Sign 10{sup -20} (95% confidence).

  5. A massive neutron star in the millisecond pulsar PSR J2215+5135

    NASA Astrophysics Data System (ADS)

    Shahbaz, Tariq

    2016-07-01

    Binary evolution may increase neutron masses via accretion. Hence the most massive neutron stars (NSs) are expected to be located amongst the binary millisecond pulsars (MSPs) spun-up within X-ray binaries. Most MSPs are found with brown dwarf lookalikes or ˜0.2 M stars in systems called "black widows" and "redbacks", respectively, because these companions are ablated by the pulsar wind. These systems offer some advantages over white dwarf-pulsar binaries: they are typically brighter, they present strongly irradiated hemispheres, and they fill significant fractions of their Roche lobes. As a result, their optical light curves exhibit variability due to a combination of their ellipsoidal shape and irradiation, which can be modelled in order to determine orbital parameters such as the mass ratio and inclination. Combining these with optical spectroscopy and/or pulsar timing enables one to determine a reliable NS masses. Here we present the results of our detailed modelling of the optical lightcurves and radial velocity curves of J2215+5135, which allows us to determine various ystem parameters, including the NS mass.

  6. FORMATION OF BLACK WIDOWS AND REDBACKS—TWO DISTINCT POPULATIONS OF ECLIPSING BINARY MILLISECOND PULSARS

    SciTech Connect

    Chen, Hai-Liang; Chen, Xuefei; Han, Zhanwen; Tauris, Thomas M.

    2013-09-20

    Eclipsing binary millisecond pulsars (MSPs; the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars, and the evolutionary link between accreting X-ray pulsars and isolated MSPs. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between 0.1 and 1.0 days, their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via the evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary MSPs using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks absorb a larger fraction of the emitted spin-down energy of the radio pulsar (resulting in more efficient mass loss via evaporation) compared to that of the black widow systems. We argue that geometric effects (beaming) are responsible for the strong bimodality of these two populations. Finally, we conclude that redback systems do not evolve into black widow systems with time.

  7. SAS-2 galactic gamma ray results. 2. Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  8. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  9. Discovery of near-ultraviolet counterparts to millisecond pulsars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Rivera-Sandoval, L. E.; van den Berg, M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Freire, P.; Anderson, J.; Serenelli, A. M.; Althaus, L. G.; Cool, A. M.; Grindlay, J. E.; Edmonds, P. D.; Wijnands, R.; Ivanova, N.

    2015-11-01

    We report the discovery of the likely white dwarf companions to radio millisecond pulsars 47 Tuc Q and 47 Tuc S in the globular cluster 47 Tucanae. These blue stars were found in near-ultraviolet images from the Hubble Space Telescope for which we derived accurate absolute astrometry, and are located at positions consistent with the radio coordinates to within 0.016 arcsec (0.2σ). We present near-ultraviolet and optical colours for the previously identified companion to millisecond pulsar 47 Tuc U, and we unambiguously confirm the tentative prior identifications of the optical counterparts to 47 Tuc T and 47 Tuc Y. For the latter, we present its radio-timing solution for the first time. We find that all five near-ultraviolet counterparts have U300 - B390 colours that are consistent with He white dwarf cooling models for masses ˜0.16-0.3 M⊙ and cooling ages within ˜0.1-6 Gyr. The Hα - R625 colours of 47 Tuc U and 47 Tuc T indicate the presence of a strong Hα absorption line, as expected for white dwarfs with an H envelope.

  10. NuSTAR Discovery Of A Young, Energetic Pulsar Associated with the Luminous Gamma-Ray Source HESS J1640-465

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.; Gelfand, J. D.; Harrison, F. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, J. C.; Kaspi, V. M.; Stern, D. K.; Zhang, W. W.

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV gamme-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shelltype supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P = 9.758(44) × 10(exp -13), yielding a spin-down luminosity E = 4.4 × 10(exp 36) erg s(exp -1), characteristic age tau(sub c) if and only if P/2 P = 3350 yr, and surface dipole magnetic field strength B(sub s) = 1.4×10(exp 13) G. For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present E. The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no gamma-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n approximately equal to 2, and that its initial spin period was P(sub 0) approximately 15 ms.

  11. Electron-positron heating and the eclipsing millisecond pulsar PSR 1957 + 20

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Sincell, Mark W.

    1990-01-01

    The companion in the eclipsing millisecond PSR 1957 + 20 appears to be strongly heated by the pulsar and may also be rapidly losing mass due to that heating. A new mechanism is presented by which the heating may be accomplished: diffusion of mildly relativistic electron-positron pairs from the pulsar's relativistic wind through a thermal wind issuing from the companion. Wave-particle scattering regulates the depth at which the pairs deposit their energy; requirements of self-consistency place bounds on the wave spectrum and pair distribution function. If the pairs carry over about 10 percent of the pulsar spin-down luminosity, and the companion's heavy element abundance is subsolar, the heating rate can be adequate to drive a wind with sufficient momentum flux to explain the eclipse geometry. Annihilation photons then heat the companion beneath its photosphere and supply a significant part of the power for the optical luminosity. This model also suggests that the eclipse duration decreases sharply above a critical photon frequency.

  12. TWO MILLISECOND PULSARS DISCOVERED BY THE PALFA SURVEY AND A SHAPIRO DELAY MEASUREMENT

    SciTech Connect

    Deneva, J. S.; Camilo, F.; Freire, P. C. C.; Champion, D. J.; Desvignes, G.; Cordes, J. M.; Brazier, A.; Chatterjee, S.; Lyne, A. G.; Ransom, S. M.; Cognard, I.; Nice, D. J.; Stairs, I. H.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Crawford, F.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; and others

    2012-09-20

    We present two millisecond pulsar discoveries from the PALFA survey of the Galactic plane with the Arecibo telescope. PSR J1955+2527 is an isolated pulsar with a period of 4.87 ms, and PSR J1949+3106 has a period of 13.14 ms and is in a 1.9 day binary system with a massive companion. Their timing solutions, based on 4 years of timing measurements with the Arecibo, Green Bank, Nancay, and Jodrell Bank telescopes, allow precise determination of spin and astrometric parameters, including precise determinations of their proper motions. For PSR J1949+3106, we can clearly detect the Shapiro delay. From this we measure the pulsar mass to be 1.47{sup +0.43}{sub -0.31} M{sub Sun }, the companion mass to be 0.85{sup +0.14}{sub -0.11} M{sub Sun }, and the orbital inclination to be i = 79.9{sup -1.9}{sub +1.6} deg, where uncertainties correspond to {+-}1{sigma} confidence levels. With continued timing, we expect to also be able to detect the advance of periastron for the J1949+3106 system. This effect, combined with the Shapiro delay, will eventually provide very precise mass measurements for this system and a test of general relativity.

  13. Heating Before Eating: X-Ray Observations of Redback Millisecond Pulsar Systems in the Ablation State

    NASA Astrophysics Data System (ADS)

    Roberts, Mallory; McLaughlin, Maura; Ray, Paul S.; Ransom, Scott M.; Hessels, Jason

    2015-01-01

    Redbacks are eclipsing millisecond radio pulsars in close orbits around companions which are non-degenerate and nearly Roche-lobe filling. Several have been observed to transition between a state where the radio pulsar is visible and there is X-ray emission from a shock between the pulsar wind and the ablated material off of the companion, and a state where there appears to be an accretion disk and the radio pulsations are not visible. Here we present X-Ray studies of two recently discovered systems. A Chandra observation of PSR J1628-3205 over its entire 5 hour orbit with Chandra shows little evidence for X-Ray variability. An XMM-Newton observation of PSR J2129-0429 over its 15.2 hour orbit shows strong orbital variability with an intriguing two peaked light curve. We compare these systems' X-Ray properties to other redbacks and comment on the differences between their properities and those of black widows.

  14. Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Van Guilder, Robert; Harding, Alice K.

    2004-04-01

    We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multibeam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and γ-ray beams are included in our Monte Carlo computer code, which simulates the characteristics of the Galactic population of radio and γ-ray pulsars. We adopted with some modifications the radio-beam geometry of Arzoumanian, Chernoff, and Cordes. For the γ-ray beam, we have assumed the slot gap geometry described in the work of Muslimov and Harding. To account for the shape of the distribution of radio pulsars in the P-P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen seven radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud γ-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud γ-ray pulsars, while GLAST, with greater sensitivity, is expected to detect 276 radio-quiet and 344 radio-loud γ-ray pulsars. When the Parkes multibeam pulsar survey is excluded, the ratio of radio-loud to radio-quiet γ-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud γ-ray pulsars. In the radio geometry adopted, short-period pulsars are core dominated. Unlike the EGRET γ-ray pulsars, our model predicts that when two γ-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the γ-ray peaks. Our findings suggest that further improvements are required in describing both the radio and γ-ray geometries.

  15. Implications of the pulsar wind nebula scenario for a TeV gamma-ray source VER J2016+371

    NASA Astrophysics Data System (ADS)

    Saha, Lab

    2016-08-01

    We present multiwavelength studies of a TeV gamma-ray source VER J2016+371 suggested to be associated with a supernova remnant CTB 87 (G74.9+1.2) and based on X-ray and radio morphologies, CTB 87 is identified as an evolved pulsar wind nebula. A source in the vicinity of VER J2016+371 is also detected at GeV energies by Fermi Gamma Ray Space Telescope suggesting a likely counterpart at GeV energies. We find that a broken power-law (BPL) distribution of electrons can explain the observed data at radio, X-ray and TeV energies, however, is not sufficient to explain the data at MeV-GeV energies. A Maxwellian distribution of electrons along with the BPL distribution of electrons in low magnetic fields can explain the observed multiwavelength data spanned from radio to TeV energies suggesting this as the most likely scenario for this source. We also find that although the hadronic model can explain the observed GeV-TeV data for the ambient matter density of ˜ 20 cm- 3, no observational support for such high ambient density makes this hadronic scenario unlikely for this source.

  16. Implications of the pulsar wind nebula scenario for a TeV gamma-ray source VER J2016+371

    NASA Astrophysics Data System (ADS)

    Saha, Lab

    2016-08-01

    We present multiwavelength studies of a TeV gamma-ray source VER J2016+371 suggested to be associated with a supernova remnant CTB 87 (G74.9+1.2) and based on X-ray and radio morphologies, CTB 87 is identified as an evolved pulsar wind nebula. A source in the vicinity of VER J2016+371 is also detected at GeV energies by Fermi Gamma Ray Space Telescope suggesting a likely counterpart at GeV energies. We find that a broken power-law (BPL) distribution of electrons can explain the observed data at radio, X-ray and TeV energies, however, is not sufficient to explain the data at MeV--GeV energies. A Maxwellian distribution of electrons along with the BPL distribution of electrons in low magnetic fields can explain the observed multiwavelength data spanned from radio to TeV energies suggesting this as the most likely scenario for this source. We also find that although the hadronic model can explain the observed GeV--TeV data for the ambient matter density of $\\sim 20~ \\rm cm^{-3}$, no observational support for such high ambient density makes this hadronic scenario unlikely for this source.

  17. THE OPTICAL COMPANION TO THE BINARY MILLISECOND PULSAR J1824-2452H IN THE GLOBULAR CLUSTER M28

    SciTech Connect

    Pallanca, C.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Rood, R. T.; Possenti, A.; D'Amico, N.; Freire, P. C.; Stairs, I.; Begin, S.; Ransom, S. M.

    2010-12-10

    We report on the optical identification of the companion star to the eclipsing millisecond pulsar (MSP) PSR J1824-2452H in the galactic globular cluster M28 (NGC 6626). This star is at only 0.''2 from the nominal position of the pulsar and it shows optical variability ({approx}0.25 mag) that nicely correlates with the pulsar orbital period. It is located on the blue side of the cluster main sequence, {approx}1.5 mag fainter than the turnoff point. The observed light curve shows two distinct and asymmetric minima, suggesting that the companion star is suffering tidal distortion from the pulsar. This discovery increases the number of non-degenerate MSP companions optically identified so far in globular clusters (four out of seven), suggesting that these systems could be a common outcome of the pulsar recycling process, at least in dense environments where they can be originated by exchange interactions.

  18. INTEGRAL detects a new outburst from the millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Kuulkers, E.; Bazzano, A.; Beckmann, V.; Bird, T.; Bodaghee, A.; Chenevez, J.; Del Santo, M.; Domingo, A.; Jonker, P.; Kretschmar, P.; Markwardt, C.; Paizis, A.; Pottschmidt, K.; Sanchez-Fernandez, C.; Wijnands, R.; Ferrigno, C.; Tuerler, M.

    2015-03-01

    During the observations performed in the direction of the Galactic Bulge on 2015 March 23 from 02:49 to 07:26 (UTC), the instruments on-board INTEGRAL detected a new outburst from the millisecond X-ray pulsar IGR J17511-3057 (ATel #2196, #2197; Papitto et al., 2010, MNRAS, 407, 2575).

  19. Multi-wavelength analysis of young pulsars: an overview.

    NASA Astrophysics Data System (ADS)

    Maritz, J. M.; Meintjes, P. J.; Buchner, S. J.

    Young pulsars emit a broad spectrum of radiation that range from radio to gamma ray energies. These pulsars are considered as rotation powered pulsars that spin rapidly and are strongly magnetized. Following the discovery of pulsars nearly four decades ago, the population of known pulsars already reached a number of roughly two thousand. This known population of pulsars includes both millisecond and normal pulsars that were discovered by several telescopes. We analyze both HartRAO radio data and Fermi gamma ray data of the Vela pulsar. We also explore a proposed method of probing the electron column density of the instellar gas through analyzing the gamma ray diffuse data associated with the Fermi two-year observation. This paper serves as an overview of gamma ray and radio timing analysis of bright young pulsars with respect to the use of open source timing analysis tools (Tempo2, Psrchive, Enrico and the Fermi tools). We reason that the multi-wavelength picture of pulsars can help clarify questions regarding the origin of pulsed radiation emission mechanisms in several energy bands, but that radio observations will prove adequate for timing noise analysis, given the accurate and long radio data sets. The process of identifying gravitational waves in timing data, rests on gaining a deeper insight into the timing noise phenomena.

  20. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  1. Quiescent emission in accreting neutron star transients: comparing Cen X-4 and the transitional millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2016-07-01

    Many accreting neutron star in low-mass X-ray binaries are transient X-ray sources, undergoing bright X-ray outbursts lasting days to weeks alternating with long quiescent intervals lasting months to years. The origin of their faint quiescent power-law X-ray emission has been a longstanding question, with theorists primarily debating between Comptonization and synchrotron shock models. However, recent NuSTAR observations of the nearby source Cen X-4 unexpectedly revealed a bremsstrahlung origin for the quiescent hard X-ray component. I will discuss the implications of this result, and will also compare Cen X-4 with the "transitional" millisecond pulsars, which exhibit markedly different behavior at comparable X-ray luminosities.

  2. DISCOVERY OF A FAINT X-RAY COUNTERPART AND A PARSEC-LONG X-RAY TAIL FOR THE MIDDLE-AGED, {gamma}-RAY-ONLY PULSAR PSR J0357+3205

    SciTech Connect

    De Luca, A.; Bignami, G. F.; Marelli, M.; Caraveo, P. A.; Mignani, R. P.; Hummel, W.; Collins, S.; Shearer, A.; Parkinson, P. M. Saz; Belfiore, A.

    2011-06-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope opened a new era for pulsar astronomy, detecting {gamma}-ray pulsations from more than 60 pulsars, {approx}40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged ({tau}{sub C} {approx} 0.5 Myr) pulsar standing out for its very low spin-down luminosity (E-dot{sub rot}{approx}6x10{sup 33} erg s{sup -1}), indeed the lowest among non-recycled {gamma}-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index {Gamma} = 2.53 {+-} 0.25). The absorbing column (N{sub H} = 8 {+-} 4 x 10{sup 20} cm{sup -2}) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.

  3. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.

    2015-11-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.

  4. DISCOVERY OF AN ENERGETIC 38.5 ms PULSAR POWERING THE GAMMA-RAY SOURCE IGR J18490-0000/HESS J1849-000

    SciTech Connect

    Gotthelf, E. V.; Halpern, J. P.; Terrier, R.; Mattana, F.

    2011-03-10

    We report the discovery of a 38.5 ms X-ray pulsar in observations of the soft {gamma}-ray source IGR J18490-0000 with the Rossi X-ray Timing Explorer (RXTE). PSR J1849-0001 is spinning down rapidly with period derivative 1.42 x 10{sup -14} s s{sup -1}, yielding a spin-down luminosity E-dot = 9.8 x 10{sup 36} erg s{sup -1}, characteristic age {tau}{sub c}{identical_to}P/2 P-dot = 42.9 kyr, and surface dipole magnetic field strength B{sub s} = 7.5 x 10{sup 11} G. Within the INTEGRAL/IBIS error circle lies a point-like XMM-Newton and Chandra X-ray source that shows evidence of faint extended emission consistent with a pulsar wind nebula (PWN). The XMM-Newton spectrum of the point source is well fitted by an absorbed power-law model with photon index {Gamma}{sub PSR} = 1.1 {+-} 0.2, N{sub H} = (4.3 {+-} 0.6) x 10{sup 22} cm{sup -2}, and F{sub PSR}(2-10 keV) = (3.8 {+-} 0.3) x 10{sup -12} erg cm{sup -2} s{sup -1}, while the spectral parameters of the extended emission are roughly {Gamma}{sub PWN} {approx} 2.1 and F{sub PWN}(2-10 keV) {approx} 9 x 10{sup -13} erg cm{sup -2} s{sup -1}. IGR J18490-0000 is also coincident with the compact TeV source HESS J1849-000. For an assumed distance of 7 kpc in the Scutum arm tangent region, the 0.35-10 TeV luminosity of HESS J1849-000 is 0.13% of the pulsar's spin-down energy, while the ratio F(0.35-10 TeV)/F{sub PWN}(2-10 keV) {approx} 2. These properties are consistent with leptonic models of TeV emission from PWNe, with PSR J1849-0001 in a stage of transition from a synchrotron X-ray source to an inverse Compton {gamma}-ray source.

  5. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    PubMed

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1millisecond pulsars with heavy CO white dwarfs and relatively short orbital periods (3-50 days). However, we conclude that to produce a binary pulsar with a O-Ne-Mg white dwarf or Porb approximately 1 day (e.g., PSR B0655+64) the above scenario does not work, and a spiral-in phase is still considered the most plausible scenario for the formation of such a system. PMID:10655173

  6. Evidence of Fast Magnetic Field Evolution in an Accreting Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Patruno, A.

    2012-07-01

    The large majority of neutron stars (NSs) in low-mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the spin frequency of most accreting NSs. The accreting millisecond X-ray pulsar (AMXP) HETE J1900.1-2455 is an intermittent pulsar that exhibited pulsations at about 377 Hz for the first two months and then turned into a nonpulsating source. Understanding why this happened might help us to understand why most LMXBs do not pulsate. We present a seven-year coherent timing analysis of data taken with the Rossi X-ray Timing Explorer. We discover new sporadic pulsations that are detected on a baseline of about 2.5 years. We find that the pulse phases anti-correlate with the X-ray flux as previously discovered in other AMXPs. We place stringent upper limits of 0.05% rms on the pulsed fraction when pulsations are not detected and identify an enigmatic pulse phase drift of ~180° in coincidence with the first disappearance of pulsations. Thanks to the new pulsations we measure a long term spin frequency derivative whose strength decays exponentially with time. We interpret this phenomenon as evidence of magnetic field burial.

  7. Multi-wavelength modeling of globular clusters–the millisecond pulsar scenario

    SciTech Connect

    Kopp, A.; Venter, C.; Büsching, I.; De Jager, O. C.

    2013-12-20

    The potentially large number of millisecond pulsars (MSPs) in globular cluster (GC) cores makes these parent objects ideal laboratories for studying the collective properties of an ensemble of MSPs. Such a population is expected to radiate several spectral components in the radio through γ-ray waveband. First, pulsed emission is expected via curvature and synchrotron radiation (CR and SR) and possibly even via inverse Compton (IC) scattering inside the pulsar magnetospheres. Second, unpulsed emission should transpire through the continuous injection of relativistic leptons by the MSPs into the ambient region, which in turn produce SR and IC emission when they encounter the cluster magnetic field, as well as several background photon components. In this paper we continue to develop the MSP scenario for explaining the multi-wavelength properties of GCs by considering the entire modeling chain, including the full transport equation, refined emissivities of stellar and Galactic background photons, integration of the flux along the line of sight, and comparison with observations. As an illustration, we apply the model to Terzan 5, where we can reasonably fit both the (line-of-sight-integrated) X-ray surface flux and spectral energy density data, using the first to constrain the leptonic diffusion coefficient within the GC. We lastly discuss possible future extensions to and applications of this maturing model.

  8. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s-1, which is less than that of any pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  9. VizieR Online Data Catalog: ATNF Pulsar Catalogue (Manchester+, 2005)

    NASA Astrophysics Data System (ADS)

    Manchester, R. N.; Hobbs, G. B.; Teoh, A.; Hobbs, M.

    2016-05-01

    The catalogue is a compilation of the principal observed parameters of pulsars, including positions, timing parameters, pulse widths, flux densities, proper motions, distances, and dispersion, rotation, and scattering measures. It also lists the orbital elements of binary pulsars, and some commonly used parameters derived from the basic measurements. The catalogue includes all published rotation-powered pulsars, including those detected only at high energies. It also includes Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) for which coherent pulsations have been detected. However, it excludes accretion-powered pulsars such as Her X-1 and the recently discovered X-ray millisecond pulsars. (2 data files).

  10. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    NASA Astrophysics Data System (ADS)

    Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.

    2015-06-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  11. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  12. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    SciTech Connect

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben; Ray, Paul S.; Wolff, Michael; Wood, Kent S.; Chengalur, Jayaram N.; Deneva, Julia; Camilo, Fernando; Johnson, Tyrel J.; Hessels, Jason W. T.; Bassa, Cees G.; Keane, Evan F.; Ferrara, Elizabeth C.; Harding, Alice K.

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  13. HIGH-RESOLUTION X-RAY OBSERVATIONS OF THE PULSAR WIND NEBULA ASSOCIATED WITH THE GAMMA-RAY SOURCE HESS J1640-465

    SciTech Connect

    Lemiere, A.; Slane, P.; Murray, S.; Gaensler, B. M.

    2009-12-01

    We present a Chandra X-ray observation of the very high energy gamma-ray source HESS J1640 - 465. We identify a point source surrounded by a diffuse emission that fills the extended object previously detected by XMM-Newton at the centroid of the HESS source, within the shell of the radio supernova remnant (SNR) G338.3 - 0.0. The morphology of the diffuse emission strongly resembles that of a pulsar wind nebula (PWN) and extends asymmetrically to the southwest of a point source presented as a potential pulsar. The spectrum of the putative pulsar and compact nebula are well characterized by an absorbed power-law model which, for a reasonable N{sub H} value of 14 x 10{sup 22} cm{sup -2}, exhibit an index of 1.1 and 2.5 respectively, typical of Vela-like PWNe. We demonstrate that, given the H I absorption features observed along the line of sight, the SNR and the H II surrounding region are probably connected and lie between 8 kpc and 13 kpc. The resulting age of the system is between 10 and 30 kyr. For a 10 kpc distance (also consistent with the X-ray absorption) the 2-10 keV X-ray luminosities of the putative pulsar and nebula are L{sub PSR} approx 1.3 x 10{sup 33} d {sup 2}{sub 10kpc} erg s{sup -1} and L{sub PWN} approx 3.9 x 10{sup 33} d {sup 2}{sub 10} erg s{sup -1} (d {sub 10} = d/10 kpc). Both the flux ratio of L {sub PWN}/L{sub PSR} approx 3.4 and the total luminosity of this system predict a pulsar spin-down power around E-dotapprox4 x 10{sup 36} erg s{sup -1}. We finally consider several reasons for the asymmetries observed in the PWN morphology and discuss the potential association with the HESS source in terms of a time-dependent one-zone leptonic model.

  14. The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational-wave searches

    NASA Astrophysics Data System (ADS)

    Caballero, R. N.; Lee, K. J.; Lentati, L.; Desvignes, G.; Champion, D. J.; Verbiest, J. P. W.; Janssen, G. H.; Stappers, B. W.; Kramer, M.; Lazarus, P.; Possenti, A.; Tiburzi, C.; Perrodin, D.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Karuppusamy, R.; Lassus, A.; Liu, K.; McKee, J.; Mingarelli, C. M. F.; Petiteau, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; van Haasteren, R.; Vecchio, A.

    2016-04-01

    The sensitivity of Pulsar Timing Arrays to gravitational waves (GWs) depends on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterizing the low-frequency, stochastic and achromatic noise component, or `timing noise', we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95 per cent confidence level. We additionally place an upper limit on the contribution to the pulsar noise budget from errors in the reference terrestrial time standards (below 1 per cent), and we find evidence for a noise component which is present only in the data of one of the four used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable, inspiralling supermassive black hole binaries with circular orbits.

  15. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    SciTech Connect

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Hui, C. Y.; Wu, E. M. H.; Takata, J.; Cheng, K. S. E-mail: cyhui@cnu.ac.kr

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  16. Disrupted Globular Clusters Can Explain the Galactic Center Gamma-Ray Excess

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; Kocsis, Bence

    2015-10-01

    The Fermi satellite has recently detected gamma-ray emission from the central regions of our Galaxy. This may be evidence for dark matter particles, a major component of the standard cosmological model, annihilating to produce high-energy photons. We show that the observed signal may instead be generated by millisecond pulsars that formed in dense star clusters in the Galactic halo. Most of these clusters were ultimately disrupted by evaporation and gravitational tides, contributing to a spherical bulge of stars and stellar remnants. The gamma-ray amplitude, angular distribution, and spectral signatures of this source may be predicted without free parameters, and are in remarkable agreement with the observations. These gamma-rays are from fossil remains of dispersed clusters, telling the history of the Galactic bulge.

  17. High Energy Astronomy with the Fermi Gamma-Ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    2011-05-01

    The Fermi Gamma-ray Space Telescope, launched in 2008, has revolutionized our knowledge of the gamma-ray sky. After briefly summarizing the observing techniques of the Large Area Telescope on Fermi, major results are described. The source catalog made with the first 11 monts of science data contain 1451 sources and several new classes of gamma-ray sources, including millisecond pulsars, starburst galaxies and radio galaxies. This talk will emphasize Galactic and ultra-high energy cosmic rays, particle acceleration in GRBs and blazars, new physics results related to tests of Lorentz invariance violations, and measurements of the intergalactic magnetic field. Implications of bulk outflow Lorentz factors inferred from gamma-gamma opacity arguments will be considered in light of the search for high-energy neutrinos from black-hole jet sources.

  18. PSR J2021+4026 in the Gamma Cygni Region: The First Variable Gamma-Ray Pulsar Seen by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; D’Ammando, F.; Harding, A. K.; Hays, E.; Hewitt, J.; Thompson, D. J.

    2013-01-01

    Long-term monitoring of PSR J2021+4026 in the heart of the Cygnus region with the Fermi Large Area Telescope unveiled a sudden decrease in flux above 100 MeV over a timescale shorter than a week. The "jump" was near MJD 55850 (2011 October 16), with the flux decreasing from (8.33 plus or minus 0.08)×10(exp -10) erg cm(exp -2) s(exp -1) to (6.86 plus or minus 0.13)× 10 (exp -1)0 erg cm (exp -2) s(exp -1). Simultaneously, the frequency spindown rate increased from (7.8 plus or minus 0.1) × 10(exp -13) Hz s(exp -1) to (8.1 plus or minus 0.1) × 10(exp -1)3 Hz s(exp -1). Significant (greater than 5 sigma) changes in the pulse profile and marginal (less than 3 sigma) changes in the emission spectrum occurred at the same time. There is also evidence for a small, steady flux increase over the 3 yr preceding MJD 55850. This is the first observation at gamma-ray energies of mode changes and intermittent behavior, observed at radio wavelengths for other pulsars. We argue that the change in pulsed gamma-ray emission is due to a change in emission beaming and we speculate that it is precipitated by a shift in the magnetic field structure, leading to a change of either effective magnetic inclination or effective current.

  19. SAS-2 galactic gamma-ray results. 2: Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Gamma ray emission was detected from the radio pulsars PSR 1818-04 and PSR 1747-46, in addition to the previously reported gamma ray emission from the Crab and Vela pulsars. Because the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma ray observations suggest a uniquely gamma ray phenomenon occurring in a fraction of the radio pulsars. PSR 1818-04 has a gamma ray luminosity comparable to that of the Crab pulsar, whereas the luminosities of PSR 1747-46 and the Vela pulsar are approximately an order of magnitude lower. SAS-2 data for pulsar correlations yielded upper limits to gamma ray luminosity for 71 other radio pulsars. For five of the closest pulsars, upper limits for gamma ray luminosity are found to be at least three orders of magnitude lower than that of the Crab pulsar. Gamma ray enhancement near the Milky Way satellite galaxy and the galactic plane in the Cygnus region is also discussed.

  20. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  1. Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Salaris, M.; Dalessandro, E.; Lanzoni, B.; Freire, P. C. C.

    2015-10-01

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color-magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M⊙ and 0.20 M⊙. For each identified companion, mass, cooling age, temperature, and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs. Based on observations collected with the NASA/ESA HST (Prop. 12950), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  2. A METAL-RICH LOW-GRAVITY COMPANION TO A MASSIVE MILLISECOND PULSAR

    SciTech Connect

    Kaplan, D. L.; Bhalerao, V. B.; Van Kerkwijk, M. H.; Koester, D.; Kulkarni, S. R.; Stovall, K. E-mail: mhvk@astro.utoronto.ca

    2013-03-10

    Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 {+-} 7 km s{sup -1}, implying a high pulsar mass, M{sub psr}sin {sup 3} i = 1.84 {+-} 0.11 M{sub Sun }, and a companion mass M{sub c} sin {sup 3} i = 0.193 {+-} 0.012 M{sub Sun }, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log{sub 10}(g) = 4.9 {+-} 0.3, and effective temperature 16, 000 {+-} 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.

  3. Pulsar Animation

    NASA Video Gallery

    Pulsars are thought to emit relatively narrow radio beams, shown as green in this animation. If these beams don't sweep toward Earth, astronomers cannot detect the radio signals. Pulsar gamma-ray e...

  4. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    SciTech Connect

    Jia, Kun; Li, X.-D.

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  5. Testing Einstein's theory of gravity in a millisecond pulsar triple system

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Einstein's theory of gravity depends on a key postulate, the strong equivalence principle. This principle says, among other things, that all objects fall the same way, even objects with strong self-gravity. Almost every metric theory of gravity other than Einstein's general relativity violates the strong equivalence principle at some level. While the weak equivalence principle--for objects with negligible self-gravity--has been tested in the laboratory, the strong equivalence principle requires astrophysical tests. Lunar laser ranging provides the best current tests by measuring whether the Earth and the Moon fall the same way in the gravitational field of the Sun. These tests are limited by the weak self-gravity of the Earth: the gravitational binding energy (over c2) over the mass is only 4 . 6 ×10-10 . By contrast, for neutron stars this same ratio is expected to be roughly 0 . 1 . Thus the recently-discovered system PSR J0337+17, a hierarchical triple consisting of a millisecond pulsar and two white dwarfs, offers the possibility of a test of the strong equivalence principle that is more sensitive by a factor of 20 to 100 than the best existing test. I will describe our observations of this system and our progress towards such a test.

  6. Search for VHE gamma-ray emission from the globular cluster M13 with VERITAS

    NASA Astrophysics Data System (ADS)

    McCutcheon, Michael Warren

    2012-06-01

    Globular clusters, such as M13, are very dense star clusters and are known to contain many more millisecond pulsars per unit mass than the galaxy as a whole. These pulsars are concentrated in the core regions of globulars and are expected to generate relativistic winds of electrons. Such energetic electrons may then interact with the intense field of optical photons, which is supported by the numerous normal stars of the cluster, to generate Very High-Energy (VHE) gamma rays. Herein, this emission model, as implemented by Bednarek & Sitarek (2007), is described and justified in more detail and data from observations of M13, undertaken to confront this model, are analysed. No evidence for VHE gamma-ray emission from M13 is found. A decorrelated, integral upper limit of 0.306 × 10-12 cm -2 s-1 above 0.8 TeV, at a confidence level of 95%, is determined. Spectral upper limits are also determined and compared to emission curves presented in Bednarek & Sitarek (2007). A detailed examination of the parameters of the model is performed and it is found that the predicted curves were based upon over-optimistic estimations of several of these. Nonetheless, the model can be related to existing theories of pulsar winds and, thereby, it is found that the acceleration of electrons in millisecond pulsar winds (outside pulsar light-cylinders) to TeV energies is excluded by these observations, under self-consistent assumptions of the properties of this population of millisecond pulsars.

  7. A 24 Hr Global Campaign to Assess Precision Timing of the Millisecond Pulsar J1713+0747

    NASA Astrophysics Data System (ADS)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lee, K. J.; McLaughlin, M. A.; Roy, J.; Shannon, R. M.; Stairs, I.; Stovall, K.; Verbiest, J. P. W.; Madison, D. R.; Palliyaguru, N.; Perrodin, D.; Ransom, S.; Stappers, B.; Zhu, W. W.; Dai, S.; Desvignes, G.; Guillemot, L.; Liu, K.; Lyne, A.; Perera, B. B. P.; Petroff, E.; Rankin, J. M.; Smits, R.

    2014-10-01

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized \\sqrt{N} improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  8. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    SciTech Connect

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V.; Bhattacharyya, B.; Jordan, C.; Keith, M.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Cognard, I.; Demorest, P. B.; Jenet, F. A.; Jones, G.; and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  9. A Non-radial Oscillation Mode in an Accreting Millisecond Pulsar?

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod; Mahmoodifar, Simin

    2014-03-01

    We present results of targeted searches for signatures of non-radial oscillation modes (such as r- and g-modes) in neutron stars using RXTE data from several accreting millisecond X-ray pulsars (AMXPs). We search for potentially coherent signals in the neutron star rest frame by first removing the phase delays associated with the star's binary motion and computing fast Fourier transform power spectra of continuous light curves with up to 230 time bins. We search a range of frequencies in which both r- and g-modes are theoretically expected to reside. Using data from the discovery outburst of the 435 Hz pulsar XTE J1751-305 we find a single candidate, coherent oscillation with a frequency of 0.5727597 × νspin = 249.332609 Hz, and a fractional Fourier amplitude of 7.46 × 10-4. We estimate the significance of this feature at the 1.6 × 10-3 level, slightly better than a 3σ detection. Based on the observed frequency we argue that possible mode identifications include rotationally modified g-modes associated with either a helium-rich surface layer or a density discontinuity due to electron captures on hydrogen in the accreted ocean. In the latter case the presence of sufficient hydrogen in this ultracompact system with a likely helium-rich donor would present an interesting puzzle. Alternatively, the frequency could be identified with that of an inertial mode or a core r-mode modified by the presence of a solid crust; however, the r-mode amplitude required to account for the observed modulation amplitude would induce a large spin-down rate inconsistent with the observed pulse timing measurements. For the AMXPs XTE J1814-338 and NGC 6440 X-2 we do not find any candidate oscillation signals, and we place upper limits on the fractional Fourier amplitude of any coherent oscillations in our frequency search range of 7.8 × 10-4 and 5.6 × 10-3, respectively. We briefly discuss the prospects and sensitivity for similar searches with future, larger X-ray collecting area

  10. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, Ruben

    2015-07-01

    The history of astronomy is as ancient as the reach of our written records. All the human civilizations have been interested in the study and interpretation of the night sky and its objects and phenomena. These observations were performed with the naked eye until the beginning of the 17th century, when Galileo Galilei started to use an instrument recently developed called telescope. Since then, the range of accessible wavelengths has been increasing, with a burst in the 20th century with the developing of instruments to observe them: antennas (radio and submillimeter), telescopes (optical, IR) and satellites (UV, X-rays and soft gamma rays). The last wavelength range accessed was the Very-High-Energy (VHE) gamma rays. At this range fluxes are so low that it is not possible to use space-based instruments with typical collection areas of O(1) m2. We must resort to the imaging atmospheric Cherenkov technique, which is based on the detection of the flashes of Cherenkov light that VHE gamma rays produce when they interact with the Earth's atmosphere. The field is very young, with the first source discovered in 1989 by the pioneering Whipple telescope. It is very dynamic with more than 150 sources detected to date, most of them by MAGIC, HESS and VERITAS, that make up the current generation of instruments. Finally, the field is also very promising, with the preparation of a next generation of imaging atmospheric Cherenkov telescopes: CTA, that is expected to start full operation in 2020. The work presented in this thesis comprises my efforts to take the ground-based γ-ray astronomy one step forward. Part I of the thesis is an introduction to the non- thermal universe, the imaging atmospheric Cherenkov technique and the Imaging Atmospheric Cherenkov Telescopes (IACTs) MAGIC and CTA. Part II deals with several ways to reduce the trigger threshold of IACTs. This includes the simula- tion, characterization and test of an analog trigger especially designed to achieve the

  11. Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P. M.; Xu, H.; Yu, P. L. H.; Salvetti, D.; Marelli, M.; Falcone, A. D.

    2016-03-01

    We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or active galactic nuclei (AGNs). Using 1904 3FGL sources that have been identified/associated with AGNs (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a subsample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (∼90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of unassociated sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g., binaries, supernova remnants/pulsar wind nebulae). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest both for in-depth follow-up searches (e.g., pulsar) at various wavelengths and for broader population studies.

  12. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Burderi, L.; Riggio, A.; Pintore, F.; Di Salvo, T.; Gambino, A. F.; Iaria, R.; Matranga, M.; Scarano, F.

    2016-06-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase connecting the time of arrivals of the observed pulses, we derived the best-fitting orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with dot{P}_{orb}=(1.1± 0.3)× 10^{-10} s s-1. We note that this value is significant at 3.5σ confidence level, because of significant fluctuations with respect to the parabolic trend and more observations are needed in order to confirm the finding. Assuming the reliability of the result, we suggest that the large value of the orbital-period derivative can be explained as a result of a highly non-conservative mass transfer driven by emission of gravitational waves, which implies the ejection of matter from a region close to the inner Lagrangian point. We also discuss possible alternative explanations.

  13. Statistical and polarization properties of giant pulses of the millisecond pulsar B1937+21

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. I.; Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kovalev, Y. Y.; Bartel, N.; Ghigo, F.

    2013-04-01

    We have studied the statistical and polarization properties of giant pulses (GPs) emitted by the millisecond pulsar B1937+21, with high sensitivity and time resolution. The observations were made in 2005 June with the 100-m Robert C. Byrd Green Bank Telescope at S-band (2052-2116 MHz) using the Mk5A Very Long Baseline Interferometry recording system, with formal time resolution of 16 ns. The total observing time was about 4.5 h; the rate of detection of GPs was about 130 per hour at the average longitudes of the main pulse (MPGPs) and 60 per hour at the interpulse (IPGPs). While the average profile shows well-defined polarization behaviour, with regular evolution of the linear polarization position angle (PA), GPs exhibit random properties, occasionally having high linear or circular polarization. Neither MPGPs nor IPGPs show a preferred PA. The cumulative probability distribution (CPD) of GP pulse energy was constructed down to the level where GPs merge with regular pulses and noise. For both MPGPs and IPGPs, the CPD follows a power law with a break, the power index changing from -2.4 at high energy to -1.6 for low energy. Pulse smearing due to scattering masks the intrinsic shape and duration of the detected GPs. The smearing time varied during the observing session within a range of a few hundred nanoseconds. The measured polarization and statistical properties of GPs impose strong constraints on physical models of GPs. Some of these properties support a model in which GPs are generated by the electric discharge caused by magnetic reconnection of field lines connecting the opposite magnetic poles of a neutron star.

  14. Study of frame tie between planetary ephemerids and ICRF with millisecond and young pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Hobbs, George; Coles, William

    2016-07-01

    The positions of pulsar can be measured by pulsar timing technology and VLBI astrometry with high precision. They can be used to tie between referece frame based on solar system ephemerids and distant quasars with high accuracy. In this paper, we have collect the pulsar positions with VLBI measurement and obtain the pulsar timing position form Nanshan and Parkes data archive. We derive the rotation matrix between JPL DE and ICRF reference frame.

  15. A blind search for prompt gamma-ray counterparts of fast radio bursts with Fermi-LAT data

    NASA Astrophysics Data System (ADS)

    Yamasaki, Shotaro; Totani, Tomonori; Kawanaka, Norita

    2016-08-01

    Fast Radio Bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompt gamma-ray flashes. Here we carry out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b|>20 deg). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as xi \\equiv (nu L_nu)_gamma / (nu L_nu)_radio < 10^8, depending on the assumed FRB rate evolution. This limit is comparable with the largest value found for pulsars, though xi of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.

  16. A blind search for prompt gamma-ray counterparts of fast radio bursts with Fermi-LAT data

    NASA Astrophysics Data System (ADS)

    Yamasaki, Shotaro; Totani, Tomonori; Kawanaka, Norita

    2016-08-01

    Fast radio bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompted gamma-ray flashes. Here, we carry out a blind search for ms-duration gamma-ray flashes using the 7-yr Fermi Large Area Telescope all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b| > 20°). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as ξ ≡ (νLν)γ/(νLν)radio ≲ (4.2-12) × 107, depending on the assumed FRB rate evolution index β = 0-4 [cosmic FRB rate ΦFRB ∝ (1 + z)β]. This limit is comparable with the largest value found for pulsars, though ξ of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.

  17. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    SciTech Connect

    Bogdanov, Slavko; Esposito, Paolo; Crawford III, Fronefield; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  18. A 5.75-millisecond pulsar in the globular cluster 47 Tucanae

    NASA Technical Reports Server (NTRS)

    Manchester, R. N.; Lyne, A. G.; Johnston, S.; D'Amico, N.; Lim, J.; Kniffen, D. A.

    1990-01-01

    A pulsar with a period of 5.75 ms and a dispersion measure of 25/cu cm pc has been found in the direction of 47 Tucanae. Despite its probable origin as a member of a binary system, timing measurements show that the pulsar is now single. The observed dispersion measure is consistent with the pulsar lying outside the Galactic electron layer and within 47 Tucanae, but it is very different from the value of 67/cu cm pc for the pulsars that were reported recently as being in this globular cluster. It is suggested that the latter pulsars probably do not in fact lie within 47 Tucanae.

  19. How to get the reduced B fields of millisecond pulsars: Flux expulsion by spindown before the LMXB phase

    NASA Astrophysics Data System (ADS)

    Alpar, Mehmet Ali; Gügercinoǧlu, Erbil

    2016-07-01

    The physical interaction between quantized flux lines of the Type II proton superconductor and the quantized vortex lines of the neutron superfluid is re-visited. Srinivasan et al. (1990) had proposed that this interaction led to reduction of the magnetic field to the B ˜10^9 G range as the flux lines were expelled together with vortex lines during the spindown of the neutron star in an early epoch of binary evolution. The model is discussed with reference to spindown by the wind from the companion prior to the Roche lobe filling LMXB phase. An evolutionary model for the magnetic field and the rotation rate is presented, with application to the 11 Hz accreting pulsar in the LMXB IGR J17480-2446 in Terzan 5 (Patruno et al 2012) as well as 'standard' accreting and radio millisecond pulsar evolution.

  20. A Shapiro Delay Detection in the Binary System Hosting the Millisecond Pulsar PSR J1910-5959A

    NASA Astrophysics Data System (ADS)

    Corongiu, A.; Burgay, M.; Possenti, A.; Camilo, F.; D'Amico, N.; Lyne, A. G.; Manchester, R. N.; Sarkissian, J. M.; Bailes, M.; Johnston, S.; Kramer, M.; van Straten, W.

    2012-12-01

    PSR J1910-5959A is a binary pulsar with a helium white dwarf (HeWD) companion located about 6 arcmin from the center of the globular cluster NGC 6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass MC = 0.180 ± 0.018 M ⊙ (1σ) implying that the pulsar mass lies in the range 1.1 M ⊙ <= MP <= 1.5 M ⊙. We compare our results with previous optical determinations of the companion mass and examine prospects for using this new measurement for calibrating the mass-radius relation for HeWDs and for investigating their evolution in a pulsar binary system. Finally, we examine the set of binary systems hosting a millisecond pulsar and a low-mass HeWD for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris & Savonije reproduces the observed values but find that the predicted MP -PB correlation overestimates the neutron star mass by about 0.5 M ⊙ in the orbital period range covered by the observations. Moreover, a few systems do not obey the observed MP -PB correlation. We discuss these results in the framework of the mechanisms that inhibit the accretion of matter by a neutron star during its evolution in a low-mass X-ray binary.

  1. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M.

    2014-01-01

    Magnetic spin-down of a rapidly rotating (millisecond) neutron star has been proposed as the power source of hydrogen-poor `superluminous' supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ˜0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity LX ˜ 1043-1045 erg s-1. This `ionization break-out' may explain the luminous X-ray emission observed from the transient SCP 06F, providing direct evidence that this SLSN was indeed engine powered. Luminous break-out requires a low ejecta mass and that the spin-down time of the pulsar be comparable to the photon diffusion time-scale at optical maximum, the latter condition being similar to that required for a supernova with a high optical fluence. These relatively special requirements may explain why most SLSNe-I are not accompanied by detectable X-ray emission. Global asymmetry of the supernova ejecta increases the likelihood of an early break-out along the direction of lowest density. Atomic states with lower threshold energies are more readily ionized at earlier times near optical maximum, allowing `UV break-out' across a wider range of pulsar and ejecta properties than X-ray break-out, possibly contributing to the blue/UV colours of SLSNe-I.

  2. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  3. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    SciTech Connect

    Paizis, A.; Nowak, M. A.; Rodriguez, J.; Chaty, S.; Del Santo, M.; Ubertini, P. E-mail: mnowak@space.mit.edu

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  4. Evidence for a Millisecond Pulsar in 4U 1636-53 During a Superburst

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Markwardt, Craig B.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the Proportional Counter Array on board the Rossi X-ray Timing Explorer of highly coherent 582 Hz pulsations during the February 22, 2001 (UT) 'superburst' from 4U 1636-53. The pulsations are detected during an 800 s interval spanning the flux maximum of the burst. Within this interval the barycentric oscillation frequency increases in a monotonic fashion from 581.89 to 581.93 Hz. The predicted orbital motion of the neutron star during this interval is consistent with such an increase as long as optical maximum corresponds roughly with superior conjunction of V801 Arae, the optical companion to the neutron star in 4U 1636-53. We show that a range of circular orbits with 90 < v(sub ns) sin i < 175 km/s and 0.336 > phi(sub 0) > 0.277 for the neutron star can provide an excellent description of the frequency and phase evolution. The brevity of the observed pulse train with respect to the 3.8 hour orbital period unfortunately does not allow more precise constraints. The average pulse profile is sinusoidal and the time averaged pulsation amplitude, as inferred from the half amplitude of the sinusoid is 1%, smaller than typical for burst oscillations observed in normal thermonuclear bursts. We do not detect any higher harmonics nor the putative subharmonic near 290 Hz. The 90% upper limits on signal amplitude at the subharmonic and first harmonic are 0.1 and 0.06%, respectively. The highly coherent pulsation, with a Q = v(sub 0)/delta-v > 4.5 x 10(exp 5) provides compelling evidence for a rapidly rotating neutron star in 4U 1636-53, and further supports the connection of burst oscillation frequencies with the spin frequencies of neutron stars. Our results provide further evidence that some millisecond pulsars are spun up via accretion in LMXBs. We also discuss the implications of our orbital velocity constraint for the masses of the components of 4U 1636-53.

  5. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class; pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  6. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST) will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class, pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  7. THE NEAREST MILLISECOND PULSAR REVISITED WITH XMM-NEWTON: IMPROVED MASS-RADIUS CONSTRAINTS FOR PSR J0437-4715

    SciTech Connect

    Bogdanov, Slavko

    2013-01-10

    I present an analysis of the deepest X-ray exposure of a radio millisecond pulsar (MSP) to date, an X-ray Multi Mirror-Newton European Photon Imaging Camera spectroscopic and timing observation of the nearest known MSP, PSR J0437-4715. The timing data clearly reveal a secondary broad X-ray pulse offset from the main pulse by {approx}0.55 in rotational phase. In the context of a model of surface thermal emission from the hot polar caps of the neutron star, this can be plausibly explained by a magnetic dipole field that is significantly displaced from the stellar center. Such an offset, if commonplace in MSPs, has important implications for studies of the pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic-ray positrons. The continuum emission shows evidence for at least three thermal components, with the hottest radiation most likely originating from the hot magnetic polar caps and the cooler emission from the bulk of the surface. I present pulse phase-resolved X-ray spectroscopy of PSR J0437-4715, which for the first time properly accounts for the system geometry of a radio pulsar. Such an approach is essential for unbiased measurements of the temperatures and emission areas of polar cap radiation from pulsars. Detailed modeling of the thermal pulses, including relativistic and atmospheric effects, provides a constraint on the redshift-corrected neutron star radius of R > 11.1 km (at 3{sigma} conf.) for the current radio timing mass measurement of 1.76 M {sub Sun }. This limit favors 'stiff' equations of state.

  8. The Nearest Millisecond Pulsar Revisited with XMM-Newton: Improved Mass-radius Constraints for PSR J0437-4715

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2013-01-01

    I present an analysis of the deepest X-ray exposure of a radio millisecond pulsar (MSP) to date, an X-ray Multi Mirror-Newton European Photon Imaging Camera spectroscopic and timing observation of the nearest known MSP, PSR J0437-4715. The timing data clearly reveal a secondary broad X-ray pulse offset from the main pulse by ~0.55 in rotational phase. In the context of a model of surface thermal emission from the hot polar caps of the neutron star, this can be plausibly explained by a magnetic dipole field that is significantly displaced from the stellar center. Such an offset, if commonplace in MSPs, has important implications for studies of the pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic-ray positrons. The continuum emission shows evidence for at least three thermal components, with the hottest radiation most likely originating from the hot magnetic polar caps and the cooler emission from the bulk of the surface. I present pulse phase-resolved X-ray spectroscopy of PSR J0437-4715, which for the first time properly accounts for the system geometry of a radio pulsar. Such an approach is essential for unbiased measurements of the temperatures and emission areas of polar cap radiation from pulsars. Detailed modeling of the thermal pulses, including relativistic and atmospheric effects, provides a constraint on the redshift-corrected neutron star radius of R > 11.1 km (at 3σ conf.) for the current radio timing mass measurement of 1.76 M ⊙. This limit favors "stiff" equations of state.

  9. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  10. Fermi Gamma-Ray Observatory-Science Highlights for the First 8 Months

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    This viewgraph presentation reviews the science highlights for the first 8 months of the Fermi Gamma-Ray Observatory. Results from pulsars, flaring AGN, gamma ray bursts, diffuse radiation, LMC and electron spectrum are also presented.

  11. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  12. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  13. A SHAPIRO DELAY DETECTION IN THE BINARY SYSTEM HOSTING THE MILLISECOND PULSAR PSR J1910-5959A

    SciTech Connect

    Corongiu, A.; Burgay, M.; Possenti, A.; D'Amico, N.; Camilo, F.; Lyne, A. G.; Kramer, M.; Manchester, R. N.; Johnston, S.; Sarkissian, J. M.; Bailes, M.; Van Straten, W.

    2012-12-01

    PSR J1910-5959A is a binary pulsar with a helium white dwarf (HeWD) companion located about 6 arcmin from the center of the globular cluster NGC 6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass M{sub C} = 0.180 {+-} 0.018 M {sub Sun} (1{sigma}) implying that the pulsar mass lies in the range 1.1 M {sub Sun} {<=} M{sub P} {<=} 1.5 M {sub Sun }. We compare our results with previous optical determinations of the companion mass and examine prospects for using this new measurement for calibrating the mass-radius relation for HeWDs and for investigating their evolution in a pulsar binary system. Finally, we examine the set of binary systems hosting a millisecond pulsar and a low-mass HeWD for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris and Savonije reproduces the observed values but find that the predicted M{sub P} -P{sub B} correlation overestimates the neutron star mass by about 0.5 M {sub Sun} in the orbital period range covered by the observations. Moreover, a few systems do not obey the observed M{sub P} -P{sub B} correlation. We discuss these results in the framework of the mechanisms that inhibit the accretion of matter by a neutron star during its evolution in a low-mass X-ray binary.

  14. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    SciTech Connect

    Schroeder, Joshua; Halpern, Jules

    2014-10-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M {sub NS} > 1.75 M {sub ☉} at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M {sub c} > 0.1 M {sub ☉}), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  15. The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.

    PubMed

    van Kerkwijk MH; Bell; Kaspi; Kulkarni

    2000-02-10

    We report on Keck and Hubble Space Telescope observations of the binary millisecond pulsar PSR B1855+09. We detect its white dwarf companion and measure mF555W=25.90+/-0.12 and mF814W=24.19+/-0.11 (Vega system). From the reddening-corrected color, (mF555W-mF814W&parr0;0=1.06+/-0.21, we infer a temperature Teff=4800+/-800 K. The white dwarf mass is known accurately from measurements of the Shapiro delay of the pulsar signal, MC=0.258+0.028-0.016 M middle dot in circle. Hence, given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which is set by the thickness of the hydrogen layer surrounding the helium core. From the properties of similar systems, it has been inferred that helium white dwarfs form with thick hydrogen layers, with mass greater, similar3x10-3 M middle dot in circle, which leads to significant additional heating. This is consistent with expectations from simple evolutionary models of the preceding binary evolution. For PSR B1855+09, though, such models lead to a cooling age of approximately 10 Gyr, which is twice the spin-down age of the pulsar. It could be that the spin-down age were incorrect, which would call the standard vacuum dipole braking model into question. For two other pulsar companions, however, ages well over 10 Gyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers ( less, similar3x10-4 M middle dot in circle). PMID:10642200

  16. Gamma-ray binaries and related systems

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume

    2013-08-01

    After initial claims and a long hiatus, it is now established that several binary stars emit high- (0.1-100 GeV) and very high-energy (>100 GeV) gamma rays. A new class has emerged called "gamma-ray binaries", since most of their radiated power is emitted beyond 1 MeV. Accreting X-ray binaries, novae and a colliding wind binary ( η Car) have also been detected—"related systems" that confirm the ubiquity of particle acceleration in astrophysical sources. Do these systems have anything in common? What drives their high-energy emission? How do the processes involved compare to those in other sources of gamma rays: pulsars, active galactic nuclei, supernova remnants? I review the wealth of observational and theoretical work that have followed these detections, with an emphasis on gamma-ray binaries. I present the current evidence that gamma-ray binaries are driven by rotation-powered pulsars. Binaries are laboratories giving access to different vantage points or physical conditions on a regular timescale as the components revolve on their orbit. I explain the basic ingredients that models of gamma-ray binaries use, the challenges that they currently face, and how they can bring insights into the physics of pulsars. I discuss how gamma-ray emission from microquasars provides a window into the connection between accretion-ejection and acceleration, while η Car and novae raise new questions on the physics of these objects—or on the theory of diffusive shock acceleration. Indeed, explaining the gamma-ray emission from binaries strains our theories of high-energy astrophysical processes, by testing them on scales and in environments that were generally not foreseen, and this is how these detections are most valuable.

  17. Pulsars

    NASA Astrophysics Data System (ADS)

    Stappers, Benjamin W.

    2012-04-01

    Pulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency. By probing these and slightly longer time-scales we find that pulsars exhibit ``glitches'', which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars-the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system. Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars

  18. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered p ulsars. As the only presently known galactic GeV source class, pulsar s will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsar s, including millisecond pulsars, giving much better statistics for e lucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric partic le acceleration and radiation mechanisms, by comparing data with theo retical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all un identified EGRET sources, to possibly uncover more radio-quiet Geming a-like pulsars.

  19. Balloon-Borne Gamma-Ray Polarimeter (PoGO) to Study Black Holes, Pulsars, and AGN Jets: Design and Calibration(SULI)

    SciTech Connect

    Apte, Zachary; /Hampshire Coll. /SLAC

    2005-12-15

    Polarization measurements at X-ray and gamma-ray energies can provide crucial information on the emission region around massive compact objects such as black holes and neutron stars. The Polarized Gamma-ray Observer (PoGO) is a new balloon-borne instrument designed to measure polarization from such astrophysical objects in the 30-100 keV range, under development by an international collaboration with members from United States, Japan, Sweden and France. The PoGO instrument has been designed by the collaboration and several versions of prototype models have been built at SLAC. The purpose of this experiment is to test the latest prototype model with a radioactive gamma-ray source. For this, we have to polarize gamma-rays in a laboratory environment. Unpolarized gamma-rays from Am241 (59.5 keV) were Compton scattered at around 90 degrees for this purpose. Computer simulation of the scattering process in the setup predicts a 86% polarization. The polarized beam was then used to irradiate the prototype PoGO detector. The data taken in this experiment showed a clear polarization signal, with a measured azimuthal modulation factor of 0.35 {+-} 0.02. The measured modulation is in very close agreement with the value expected from a previous beam test study of a polarized gamma-ray beam at the Argonne National Laboratories Advanced Photon Source. This experiment has demonstrated that the PoGO instrument (or any other polarimeter in the energy range) can be tested in a libratory with a simple setup to a similar accuracy.

  20. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  1. Application of the relativistic precession model to the accreting millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Stefanov, I. Zh.

    2016-03-01

    The observation of a pair of simultaneous twin kHz QPOs in the power density spectrum of a neutron star or a black hole allows its mass-angular-momentum relation to be constrained. Situations in which the observed simultaneous pairs are more than one allow the different models of the kHz QPOs to be falsified. Discrepancy between the estimates coming from the different pairs would call the used model into question. In the current paper, the relativistic precession model is applied to the twin kHz QPOs that appear in the light curves of three groups of observations of the accreting millisecond X-ray pulsar IGR J17511-3057. It was found that the predictions of one of the groups are practically in conflict with the other two. Another interesting result is that the region in which the kHz QPOs have been born is rather broad and extends quite far from the ISCO.

  2. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  3. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    SciTech Connect

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Kerr, M.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  4. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  5. Polynomial regression calculation of the Earth's position based on millisecond pulsar timing

    NASA Astrophysics Data System (ADS)

    Tian, Feng; Tang, Zheng-Hong; Yan, Qing-Zeng; Yu, Yong

    2012-02-01

    Prior to achieving high precision navigation of a spacecraft using X-ray observations, a pulsar rotation model must be built and analysis of the precise position of the Earth should be performed using ground pulsar timing observations. We can simulate time-of-arrival ground observation data close to actual observed values before using pulsar timing observation data. Considering the correlation between the Earth's position and its short arc section of an orbit, we use polynomial regression to build the correlation. Regression coefficients can be calculated using the least square method, and a coordinate component series can also be obtained; that is, we can calculate Earth's position in the Barycentric Celestial Reference System according to pulse arrival time data and a precise pulsar rotation model. In order to set appropriate parameters before the actual timing observations for Earth positioning, we can calculate the influence of the spatial distribution of pulsars on errors in the positioning result and the influence of error source variation on positioning by simulation. It is significant that the threshold values of the observation and systematic errors can be established before an actual observation occurs; namely, we can determine the observation mode with small errors and reject the observed data with big errors, thus improving the positioning result.

  6. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    SciTech Connect

    Bult, Peter; Van der Klis, Michiel

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  7. The nature of the Diffuse Gamma-Ray Background

    NASA Astrophysics Data System (ADS)

    Fornasa, Mattia; Sánchez-Conde, Miguel A.

    2015-10-01

    We review the current understanding of the Diffuse Gamma-Ray Background (DGRB). The DGRB is what remains of the total measured gamma-ray emission after the subtraction of the resolved sources and of the diffuse Galactic foregrounds. It is interpreted as the cumulative emission of sources that are not bright enough to be detected individually. Yet, its exact composition remains unveiled. Well-established astrophysical source populations (e.g. blazars, misaligned AGNs, star-forming galaxies and millisecond pulsars) all represent guaranteed contributors to the DGRB. More exotic scenarios, such as Dark Matter annihilation or decay, may contribute as well. In this review, we describe how these components have been modeled in the literature and how the DGRB can be used to provide valuable information on each of them. We summarize the observational information currently available on the DGRB, paying particular attention to the most recent measurement of its intensity energy spectrum by the Fermi LAT Collaboration. We also discuss the novel analyses of the auto-correlation angular power spectrum of the DGRB and of its cross-correlation with tracers of the large-scale structure of the Universe. New data sets already (or soon) available are expected to provide further insight on the nature of this emission. By summarizing where we stand on the current knowledge of the DGRB, this review is intended both as a useful reference for those interested in the topic and as a means to trigger new ideas for further research.

  8. Radiation-driven evolution of low-mass x-ray binaries and the formation of millisecond pulsars

    SciTech Connect

    Tavani, M. California Univ., Berkeley, CA . Dept. of Astronomy)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and millisecond pulsars (MSPs) pose a challenge to evolutionary theories which neglect the effects of disk and comparison irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, radiation from the accreting compact star in LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn off occurs. The main characteristics of the RD-evolution are: (1) lifetime of RD-LMXB's is of order 10{sup 7} years or less; (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degeneration companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) a class of recycled MSPs can continue to vaporize the low-mass companions by a strong pulsar wind even after the accretion turn-off; (5) the RD-evolutionary model resolves the apparent statistical descrepancy between the number of MSPs and their LMXB progenitors in the Galaxy. We discuss the implications of the discovery of single MSPs in low-density globular clusters and the recent measurements of short orbital timescales of four LMXBs. 34 refs., 3 figs., 2 tabs.

  9. Excitation of a non-radial mode in a millisecond X-ray pulsar XTE J1751-305

    NASA Astrophysics Data System (ADS)

    Lee, Umin

    2014-08-01

    We discuss non-radial modes in mass-accreting and rapidly rotating neutron stars for the coherent frequency detected in a millisecond X-ray pulsar XTE J1751-305. The spin frequency of the pulsar is νspin ≅ 435 Hz and the identified frequency is νosc = 0.572 7595 × νspin. Assuming that the frequency detected is that in the corotating frame of the star, we examine r and g modes in the surface layer of accreting matter composed mostly of helium, inertial and r modes in the fluid core, and toroidal modes in the solid crust. We find that the r modes of l' = m = 1 and 2 excited by ɛ-mechanism in the surface layer can give the ratio κ = νosc/νspin ≃ 0.57 at νspin = 435 Hz, where m and l' are the azimuthal wavenumber and the harmonic degree of the modes. We also suggest a toroidal crust mode and a core r mode destabilized by gravitational wave emission for the observed ratio κ. We find that the amplitude of the core r mode of l' = m = 2 can be amplified at the surface layer by a large factor famp ˜ 102 at νspin = 435 Hz for a M = 1.4 M⊙ neutron-star model. This amplification, however, may not be large enough for the r-mode amplitude to be consistent with an estimation by Mahmoodifar & Strohmayer (2013).

  10. The NANOGrav Nine-year Data Set: Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    The NANOGrav Collaboration; Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil; Crowter, Kathryn; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gonzalez, Marjorie E.; Jenet, Fredrick A.; Jones, Glenn; Jones, Megan L.; Kaspi, Victoria M.; Koop, Michael; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea N.; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; McLaughlin, Maura A.; McWilliams, Sean T.; Nice, David J.; Palliyaguru, Nipuni; Pennucci, Timothy T.; Ransom, Scott M.; Siemens, Xavier; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Vallisneri, Michele; van Haasteren, Rutger; Wang, Yan; Zhu, Weiwei

    2015-11-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.

  11. Discovery of a Young, Energetic Pulsar Near the Supernova Remnant G290.1-0.8 and the Gamma-Ray Source 2EG J1103-6106

    NASA Technical Reports Server (NTRS)

    Kaspi, V. M.; Bailes, M.; Manchester, R. N.; Stappers, B. W.; Sandhu, J.; Navarro, J.; D'Amico, N.

    1996-01-01

    We report on the discovery and follow-up timing observations of a 63-ms radio pulsar, PSR J1105-6107. We show that the pulsar is young, having a characteristic age of only 63kyr. We consider its possible association with the nearby remnant G290.1-0.8 (MSH 11-61A) but uncertainties in the distances and ages preclude a firm conclusion.

  12. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2015-04-01

    The gamma-ray sky offers a unique view into broad range of astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. The Fermi mission has dramatically demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, covering the electromagnetic spectrum at energies above about 100 keV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has recently embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. The GammaSIG, as a part of the Physics of the Cosmos Program Analysis Group, provides a forum open to all members of the gamma-ray community. The GammaSIG is currently working to bring the community together with a common vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories, including both Fermi and INTEGRAL, and will summarize the status of the community roadmap effort.

  13. Variability Profiles of Millisecond X-Ray Pulsars: Results of Pseudo-Newtonian Three-dimensional Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. K.; Romanova, M. M.

    2005-11-01

    We model the variability profiles of millisecond-period X-ray pulsars. We performed three-dimensional magnetohydrodynamic simulations of disk accretion to millisecond-period neutron stars with a misaligned magnetic dipole moment, using the pseudo-Newtonian Paczyński-Wiita potential to model general relativistic effects. We found that the shapes of the resulting funnel streams of accreting matter and the hot spots on the surface of the star are quite similar to those for more slowly rotating stars obtained from earlier simulations using the Newtonian potential. The funnel streams and hot spots rotate approximately with the same angular velocity as the star. The spots are bow-shaped (bar-shaped) for small (large) misalignment angles. We found that the matter falling on the star has a higher Mach number when we use the Paczyński-Wiita potential than in the Newtonian case. Having obtained the surface distribution of the emitted flux, we calculated the variability curves of the star, taking into account general relativistic, Doppler, and light-travel time effects. We found that general relativistic effects decrease the pulse fraction (flatten the light curve), while Doppler and light-travel time effects increase it and distort the light curve. We also found that the light curves from our hot spots are reproduced reasonably well by spots with a Gaussian flux distribution centered at the magnetic poles. We also calculated the observed image of the star in a few cases and saw that for certain orientations, both the antipodal hot spots are simultaneously visible, as noted by earlier authors.

  14. On the origin of sub-TeV gamma-ray pulsed emission from rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2012-08-01

    Intriguing sub-TeV tails in the pulsed γ-ray emission from the Crab pulsar have recently been discovered by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope and Very Energetic Radiation Imaging Telescope Array System (VERITAS) collaborations. These were not clearly predicted by any pulsar model. At present, it is argued that this emission is produced by electrons in the inverse Compton process that occur either in the outer gap of the pulsar magnetosphere or in the pulsar wind region at some distance from the light cylinder. We analyse another scenario, which is consistent with the basic features of this enigmatic emission. It is proposed that this emission is caused by electrons accelerated very close to the light cylinder where the e± plasma cannot saturate the induced huge electric fields. Electrons reach energies sufficient for the production of hard γ-ray spectra in the curvature radiation process. Because of different curvature radii of the leading and trailing magnetic field lines, the γ-ray spectra from separate pulses should extend to different maximum energies. The scenario can also explain the lower-level γ-ray emission from the interpulse region (between P1 and P2) observed in the light curve of the Crab pulsar. Moreover, we argue that pulsars with parameters close to the Vela pulsar should also show pulsed emission, with the cut-off clearly at lower energies (˜50 GeV) than that observed for the Crab pulsar. However, such tail emission is not expected in pulsars with parameters close to the Geminga pulsar. The model also predicts the tail γ-ray emission extending up to ˜50 GeV from some millisecond pulsars with extreme parameters, such as PSR J0218+4243 and PSR J1823-3021A.

  15. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  16. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    SciTech Connect

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10{sup −15}, which corresponds to spin-down luminosity E-dot =6.1×10{sup 35} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot =2.9×10{sup 5} yr, and surface dipole magnetic field strength B{sub s} = 4.4 × 10{sup 11} G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 10{sup 32} erg s{sup –1}, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  17. ACCRETION TORQUES AND MOTION OF THE HOT SPOT ON THE ACCRETING MILLISECOND PULSAR XTE J1807-294

    SciTech Connect

    Patruno, Alessandro; Wijnands, R.; Van der Klis, Michiel; Hartman, Jacob M.; Chakrabarty, Deepto

    2010-07-10

    We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar (AMXP) XTE J1807-294. We find a 95% confidence interval for the pulse frequency derivative of (+0.7, + 4.7) x 10{sup -14} Hz s{sup -1} and (-0.6, + 3.8) x 10{sup -14} Hz s{sup -1} for the fundamental and second harmonics, respectively. The sinusoidal fractional amplitudes of the pulsations are the highest observed among AMXPs and can reach values of up to 27% (2.5-30 keV). The pulse arrival time residuals of the fundamental frequency follow a linear anti-correlation with the fractional amplitudes that suggests hot spot motion both in longitude and latitude over the surface of the neutron star. An anti-correlation between residuals and X-ray flux suggests an influence of the accretion rate on pulse phase and casts doubts on the interpretation of pulse frequency derivatives in terms of changes of spin rates and torques on the neutron star.

  18. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  19. DISCOVERY OF AN ACCRETING MILLISECOND PULSAR IN THE ECLIPSING BINARY SYSTEM SWIFT J1749.4-2807

    SciTech Connect

    Altamirano, D.; Cavecchi, Y.; Patruno, A.; Watts, A.; Degenaar, N.; Kalamkar, M.; Van der Klis, M.; Armas Padilla, M.; Kaur, R.; Yang, Y. J.; Wijnands, R.; Linares, M.; Rea, N.; Casella, P.; Soleri, P.

    2011-01-20

    We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of {approx}517.9 Hz and is in a binary system with an orbital period of 8.8 hr and a projected semimajor axis of {approx}1.90 lt-s. Assuming a neutron star between 0.8 and 2.2 M{sub sun} and using the mass function of the system and the eclipse half-angle, we constrain the mass of the companion and the inclination of the system to be in the {approx}0.46-0.81 M{sub sun} and {approx} 74.{sup 0}4-77.{sup 0}3 range, respectively. To date, this is the tightest constraint on the orbital inclination of any AMXP. As in other AMXPs, the pulse profile shows harmonic content up to the third overtone. However, this is the first AMXP to show a first overtone with rms amplitudes between {approx}6% and {approx}23%, which is the strongest ever seen and which can be more than two times stronger than the fundamental. The fact that SWIFT J1749.4-2807 is an eclipsing system that shows uncommonly strong harmonic content suggests that it might be the best source to date to set constraints on neutron star properties including compactness and geometry.

  20. A Chandra look at the X-ray faint millisecond pulsars in the globular cluster NGC 6752

    NASA Astrophysics Data System (ADS)

    Forestell, L. M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Sivakoff, G. R.; Bogdanov, S.; Cool, A. M.; Anderson, J.

    2014-06-01

    We combine new and archival Chandra observations of the globular cluster NGC 6752 to create a deeper X-ray source list, and study the faint radio millisecond pulsars (MSPs) of this cluster. We detect four of the five MSPs in NGC 6752, and present evidence for emission from the fifth. The X-rays from these MSPs are consistent with thermal emission from the neutron star surfaces, with significantly higher fitted blackbody temperatures than other globular cluster MSPs (though we cannot rule out contamination by non-thermal emission or other X-ray sources). NGC 6752 E is one of the lowest-LX MSPs known, with LX(0.3-8 keV) = 1.0^{+0.9}_{-0.5}× 10^{30} erg s-1. We check for optical counterparts of the three isolated MSPs in the core using new Hubble Space Telescope Advanced Camera for Surveys images, finding no plausible counterparts, which is consistent with their lack of binary companions. We compile measurements of LX and spin-down power for radio MSPs from the literature, including errors where feasible. We find no evidence that isolated MSPs have lower LX than MSPs in binary systems, omitting binary MSPs showing emission from intrabinary wind shocks. We find weak evidence for an inverse correlation between the estimated temperature of the MSP X-rays and the known MSP spin period, consistent with the predicted shrinking of the MSP polar cap size with increasing spin period.

  1. DISCOVERY OF ECLIPSES FROM THE ACCRETING MILLISECOND X-RAY PULSAR SWIFT J1749.4-2807

    SciTech Connect

    Markwardt, C. B.; Strohmayer, T. E.

    2010-07-10

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 M{sub sun} for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90{sup 0} longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172 {+-} 13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of 'Shapiro' delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 M{sub sun}.

  2. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  3. Polarized gamma-ray emission from the crab.

    PubMed

    Dean, A J; Clark, D J; Stephen, J B; McBride, V A; Bassani, L; Bazzano, A; Bird, A J; Hill, A B; Shaw, S E; Ubertini, P

    2008-08-29

    Pulsar systems accelerate particles to immense energies. The detailed functioning of these engines is still poorly understood, but polarization measurements of high-energy radiation may allow us to locate where the particles are accelerated. We have detected polarized gamma rays from the vicinity of the Crab pulsar using data from the spectrometer on the International Gamma-Ray Astrophysics Laboratory satellite. Our results show polarization with an electric vector aligned with the spin axis of the neutron star, demonstrating that a substantial fraction of the high-energy electrons responsible for the polarized photons are produced in a highly ordered structure close to the pulsar. PMID:18755970

  4. On Gravitational Wave Limit Determination in the 10 micro-Hertz to 20 milli-Hertz Band Using Millisecond Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Dolch, Timothy; Chatterjee, Shami; Cordes, James M.; Lam, Michael T.; Madison, Dustin Ray; Nanograv Collaboration

    2015-01-01

    Continuous pulsar timing observations over a 24-hr period provide a method for probing intermediate gravitational wave (GW) frequencies of 10 micro-Hertz to 20 milli-Hertz. Despite the fact that we expect no particularly strong GW sources at these GW frequencies typically associated with eLISA, there are nonetheless no current constraints from pulsar timing arrays (PTAs) in the 10 micro-Hertz regime. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array, the European Pulsar Timing Array, and the entire International Pulsar Timing Array all use millisecond pulsar observations to constrain GWs at nano-Hz frequencies. PTAs have also been shown to be well-suited for probing GWs at frequencies from approximately 1 nano-Hertz to 10 micro-Hertz. We show a calculation that takes into account the changes in time-of-arrival precision vs. time due to interstellar scintillation modulations and to different telescope sensitivities. In the case of the J1713 24-Hour Global Campaign (Dolch & Lam et al. 2014), a continuous set of broadband timing residuals from PSR J1713+0747, the negligible change in dispersion measure allows for a white noise model to be used with the timing residuals in order to constrain any contributions from GWs. Finally, we show that improved GW strain limits at GW frequencies ~10 micro-Hertz can be obtained with simultaneous, dense timing campaigns using large collecting area telescopes, with one telescope per pulsar. The PTA limits are higher than those obtained using Cassini Doppler tracking but can be improved by simultaneous, continuous observations of multiple pulsars.

  5. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2016-03-01

    The gamma-ray sky offers a unique view into broad range of high energy astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. In recent years, results from the Fermi mission have further demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, from about 100 keV up to about 100 TeV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. Through a series of workshops and symposia, the GammaSIG is working to bring the community together with one common vision, a vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories and will summarize the status of the community roadmap effort.

  6. NuSTAR discovery of a young, energetic pulsar associated with the luminous gamma-ray source HESS J1640–465

    SciTech Connect

    Gotthelf, E. V.; Halpern, J. P.; Hailey, J. C.; Tomsick, J. A.; Boggs, S. E.; Craig, W. W.; Gelfand, J. D.; Harrison, F. A.; Christensen, F. E.; Kaspi, V. M.; Stern, D. K.; Zhang, W. W.

    2014-06-20

    We report the discovery of a 206 ms pulsar associated with the TeV γ-ray source HESS J1640–465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640–4631 lies within the shell-type supernova remnant (SNR) G338.3–0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P-dot = 9.758(44) × 10{sup –13}, yielding a spin-down luminosity E-dot = 4.4 × 10{sup 36} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot = 3350 yr, and surface dipole magnetic field strength B{sub s} = 1.4 × 10{sup 13} G. For the measured distance of 12 kpc to G338.3–0.0, the 0.2-10 TeV luminosity of HESS J1640–465 is 6% of the pulsar's present E-dot . The Fermi source 1FHL J1640.5–4634 is marginally coincident with PSR J1640–4631, but we find no γ-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640–465, provided that the pulsar's braking index is n ≈ 2, and that its initial spin period was P {sub 0} ∼ 15 ms.

  7. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  8. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  9. High-Energy Pulsar Models: Developments and New Questions

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  10. Searching for Pulsations from a Helium White Dwarf Companion to a Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2009-07-01

    The low mass white dwarf {WD} companion to the 3.26 ms pulsar PSR J1911-5958A offers an unprecedented opportunity for seismological study of the interior of a helium core WD. While much more massive carbon/oxygen core WDs are observed to pulsate in normal modes of oscillation called g-modes {known as ZZ Ceti stars}, no helium core pulsator is known. By extrapolating the boundaries of the ZZ Ceti instability strip downward in surface gravity by a factor of 20 below any known pulsator, we find that the effective temperature of this WD makes it an excellent candidate to search for pulsation. Detection of g-mode pulsations in the lightcurve would have a transformative effect on the field of WD pulsations, as this would allow the first seismological study of the interior of a helium core WD, and the low gravity strongly constrains theories for the driving and amplitudes of pulsations. We show that with 3 orbits of HST, we will detect photometric variations with amplitudes of 1%, lower than typically seen in other hydrogen-dominated ZZ Ceti stars. A set of measured mode periods would also constrain the thickness of the presumed stably hydrogen burning shell, and help us determine its age more securely.

  11. NuSTAR observations of the state transition of millisecond pulsar binary PSR J1023+0038

    SciTech Connect

    Tendulkar, Shriharsh P.; Bellm, Eric; Harrison, Fiona A.; Yang, Chengwei; An, Hongjun; Kaspi, Victoria M.; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Bogdanov, Slavko; Lyne, Andrew G.; Stappers, Benjamin; Patruno, Alessandro; Stern, Daniel; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Chakrabarty, Deepto; Christensen, Finn E.; and others

    2014-08-20

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ=1.17{sub −0.07}{sup +0.08} (at 90% confidence) with a 3-79 keV luminosity of 7.4 ± 0.4 × 10{sup 32} erg s{sup –1}. Significant orbital modulation was observed with a modulation fraction of 36% ± 10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ=1.66{sub −0.05}{sup +0.06}) with an average luminosity of 5.8 ± 0.2 × 10{sup 33} erg s{sup –1} and a peak luminosity of ≈1.2 × 10{sup 34} erg s{sup –1} observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multiwavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp-edged, flat-bottomed dips are observed with widths between 30 and 1000 s and ingress and egress timescales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824–2452I and XSS J1227.0–4859 and discuss possible interpretations based on the transitions in the inner disk.

  12. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NASA Astrophysics Data System (ADS)

    Patruno, Alessandro; D'Angelo, Caroline

    2013-07-01

    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion rates (the so-called propeller regime). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here, we associate the strong ~1 Hz modulation seen in the AMXP NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another AMXP (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow—of the order of 1 km. Modeling further suggests that there is a transition region (~1-10 km) around the corotation radius where the disk-field torque changes sign from spin-up to spin-down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region, in the frame of the trapped-disk instability model.

  13. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  14. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  15. High Energy Emission in Pulsar Magnetospheres: Modeling in the FERMI Era

    NASA Astrophysics Data System (ADS)

    Kalapotharakos, Constantinos; Kust Harding, Alice; Kazanas, Demosthenes; Brambilla, Gabriele

    2016-01-01

    Our study of pulsar high-energy emission in dissipa