Science.gov

Sample records for gas bubbles rising

  1. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  2. Behavior of bubbles in glassmelts. III - Dissolution and growth of a rising bubble containing a single gas

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Weinberg, M. C.; Uhlmann, D. R.

    1981-01-01

    Finite difference solutions of the mass transport equations governing the dissolution (growth) of a rising gas bubble, containing a single gas, in a glassmelt were obtained. These solutions were compared with those obtained from an approximate procedure for a range of the controlling parameters. Applications were made to describe various aspects of O2 and CO2 gas-bubble behavior in a soda-lime-silicate melt.

  3. ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Edge, A. C.; Combes, F.; Murray, N. W.; Parrish, I. J.; Salomé, P.; Sanders, J. S.; Baum, S. A.; Donahue, M.; Main, R. A.; O'Connell, R. W.; O'Dea, C. P.; Oonk, J. B. R.; Tremblay, G.; Vantyghem, A. N.; Voit, G. M.

    2016-05-01

    We present ALMA observations of the CO(1-0) and CO(3-2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS 0745-191. The total molecular gas mass of 4.6± 0.3× 109 M_{⊙}, assuming a Galactic XCO factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament ˜ 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within ± 100 { km s^{-1}} of the galaxy's systemic velocity. Their full width at half-maximum (FWHM) are less than 150 { km s^{-1},} which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on < 107 yr time-scales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ.

  4. Velocity of a freely rising gas bubble in a soda-lime silicate glass melt

    NASA Technical Reports Server (NTRS)

    Hornyak, E. J.; Weinberg, M. C.

    1984-01-01

    A comparison is conducted between measured velocities for the buoyant rise of single bubbles of varying size and composition, in a soda-lime silicate glass melt, with the steady state velocities predicted by the Stokes and Hadamard-Rybczynski formulas. In all cases, the data are noted to fit the Hadamard-Rybczynski expression for steady state rise speed considerably better than the Stokes formula.

  5. Bubble growth and rise in soft sediments

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.; Algar, Chris; Johnson, Bruce D.; Croudace, Ian; Reed, Allen; Furukawa, Yoko; Dorgan, Kelley M.; Jumars, Peter A.; Grader, Abraham S.; Gardiner, Bruce S.

    2005-06-01

    The mechanics of uncemented soft sediments during bubble growth are not widely understood and no rheological model has found wide acceptance. We offer definitive evidence on the mode of bubble formation in the form of X-ray computed tomographic images and comparison with theory. Natural and injected bubbles in muddy cohesive sediments are shown to be highly eccentric oblate spheroids (disks) that grow either by fracturing the sediment or by reopening preexisting fractures. In contrast, bubbles in soft sandy sediment tend to be spherical, suggesting that sand acts fluidly or plastically in response to growth stresses. We also present bubble-rise results from gelatin, a mechanically similar but transparent medium, that suggest that initial rise is also accomplished by fracture. Given that muddy sediments are elastic and yield by fracture, it becomes much easier to explain physically related phenomena such as seafloor pockmark formation, animal burrowing, and gas buildup during methane hydrate melting.

  6. Arrested Bubble Rise in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rbubble and the tube goes to zero in limit of large t like t^{-4/5} , leading to a rapid slow-down of the bubble's mean speed U ∝ t^{-2} . As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.

  7. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Nikolovska, Aneta; Sahling, Heiko; Bohrmann, Gerhard

    2008-10-01

    Detailed acoustic investigation of bubble streams rising from the seafloor were conducted during R/V Meteor cruise M72/3a at a deep submarine hydrocarbon seep environment. The area is located offshore Georgia (eastern part of the Black Sea) at a water depth between 840 m and 870 m. The sediment echosounder Parasound DS-3/P70 was used for detecting bubbles in the water column that causes strong backscatter in the echographs ("flares"). Employing the swath echsounder Kongsberg EM710 flares in the water column were mapped along the entire swath width of approximately 1000 m at high spatial resolution. The exact location of the flares could be extracted manually. Subsequently, the horizontally looking sonar Kongsberg digital telemetry MS1000 mounted on a remotely operated vehicle (ROV) was utilized to quantify the flux of bubbles. A model was developed that is based on the principle of finding the "acoustic mass" in order to quantify the bubble flux at various seeps. The acoustic approach from the backscatter data of the ROV sonar resulted in bubble fluxes in the range of 0.01 to 5.5 L/min (corresponding to 0.037 to 20.5 mol CH4/min) at in situ conditions (˜850 m water depth, ˜9°C). Independent flux estimations using a funnel-shaped device showed that the acoustic model consistently produced lower values but the offset is less than 12%. Furthermore, the deviation decreased with increasing flux rates. A field of bubble streams was scanned three times from different directions in order to reveal the reproducibility of the method. Flux estimations yielded consistent fluxes of about 2 l/min (7.4 mol CH4/min) with variations of less than 10%. Although gas emissions have been found at many sites at the seafloor in a range of geological settings, the amount of escaping gas is still largely unknown. With this study presenting a novel method of quantifying bubble fluxes employing a horizontally looking sonar system, it is intended to contribute to the global effort of better

  8. Scaling law for bubbles rising near vertical walls

    NASA Astrophysics Data System (ADS)

    Dabiri, Sadegh; Bhuvankar, Pramod

    2016-06-01

    This paper examines the rising motion of a layer of gas bubbles next to a vertical wall in a liquid in the presence of an upward flow parallel to the wall to help with the understanding of the fluid dynamics in a bubbly upflow in vertical channels. Only the region near the wall is simulated with an average pressure gradient applied to the domain that balances the weight of the liquid phase. The upward flow is created by the rising motion of the bubbles. The bubbles are kept near the wall by the lateral lift force acting on them as a result of rising in the shear layer near the wall. The rise velocity of the bubbles sliding on the wall and the average rise velocity of the liquid depend on three dimensionless parameters, Archimedes number, Ar, Eötvös number, Eo, and the average volume fraction of bubbles on the wall. In the limit of small Eo, bubbles are nearly spherical and the dependency on Eo becomes negligible. In this limit, the scaling of the liquid Reynolds number with Archimedes number and the void fraction is presented. A scaling argument is presented based on viscous dissipation analysis that matches the numerical findings. Viscous dissipation rates are found to be high in a thin film region between the bubble and the wall. A scaling of the viscous dissipation and steady state film thickness between the bubble and the wall with Archimedes number is presented.

  9. The rising bubble technique for discharge measurements

    NASA Astrophysics Data System (ADS)

    Luxemburg, W.; Hilgersom, K.; van Eekelen, M.

    2010-12-01

    The rising bubble technique is an elegant method to determine the full discharge of a river or a canal in a short moment of time. The method is not new [Sargent, 1982], but hardly applied so far. The method applies air bubbles released from the bottom of a river or canal. While the bubbles rise to the surface they are dragged along by the current. The deeper the stream and the faster the current the longer will be the distance they are dragged along. The horizontal displacement L, of the bubbles can be observed at the surface of the stream. To obtain a discharge, the rising velocity vr, of the bubble is required additionally. When the rising velocity is assumed constant the discharge per unit width amounts to q= Lvr. Placing a tube on the bottom of the stream and releasing bubbles at regular intervals results in a complete discharge profile. The ongoing research is focusing on factors affecting the rising velocity, solving practicalities in applying the method in the field and how modern image processing techniques can enhance determining in a glance the distance travelled by the bubbles. Surfacing of air bubbles in a canal

  10. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  11. Experimental and numerical insights into seismo-acoustic signals generated during the expansion of rising and bursting large gas bubbles in low-viscosity magmas

    NASA Astrophysics Data System (ADS)

    Lane, Stephen; Corder, Steven; James, Michael

    2010-05-01

    Strombolian activity produces gas-rich, magma-poor eruptions suggesting the separation and concentration of volcanic gases within the plumbing system. These gases are assumed to rise as relatively large bubble rafts or individual 'slug' bubbles that can cause detectable seismic activity on interaction with conduit geometry. Rising within the magma column, a gas bubble must expand appreciably in order to maintain magma-static pressure, for instance volume would increase by a factor of c. 200 for a 1 km rise to the magma-atmosphere interface. For a near-conduit-filling gas slug this expansion is one-dimensional (i.e. length-wise) and increases in rate non-linearly on approach to the surface. As they ascend, small gas slugs can expand sufficiently rapidly to maintain approximate magma-static pressure, but large gas slugs become dynamically overpressured. In laboratory experiments, these unsteady flows of gas and liquid generate pressure changes measurable below the gas phase. They also cause apparatus motion that does not apparently relate directly to these changes. Computational fluid dynamic (CFD) simulation of experiments reproduces the pressure changes within the liquid and allows visualisation of the viscous shear force exerted on the conduit wall around and above the slug as it rises and expands. CFD simulations at volcanic scale then give estimates of the various force contributions that could occur in the natural system. During the experiments, pressure change driven by slug expansion and burst was also measured in the ambient atmosphere above the upper liquid surface. We present experimental evidence of a range of burst processes that depend on the degree of gas overpressure in the slug. These processes range from the quiescent formation of a relatively long-lived liquid film that bursts some time after the gas slug has reached the liquid surface, through complex transitional behaviour where the meniscus detaches from the tube walls to form a bubble, to

  12. Significance of viscoelastic effects on the rising of a bubble and bubble-to-bubble interaction

    NASA Astrophysics Data System (ADS)

    Fernandez, Arturo

    2011-11-01

    Numerical results for the rising of a bubble and the interaction between two bubbles in non-Newtonian fluids will be discussed. The computations are carried out using a multiscale method combining front-tracking with Brownian dynamics simulations. The evaluation of the material properties for the non-Newtonian fluid will be discussed firstly. The results from the computations of a single bubble show how elastic effects modify the deformation and rising of the bubble by pulling the tail of it. The relationship between the strength of the elastic forces and the discontinuity in the bubble terminal velocity, when plotted versus bubble volume, is also observed in the computations. The bubble-to-bubble interaction is dominated not only by elastic effects but also by the shear-thinning caused by the leading bubble, which leads the trailing bubble to accelerate faster and coalesce with the leading bubble.

  13. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  14. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.; Cooper, Clay A.

    2014-09-01

    Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

  15. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.

    Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm

  16. Bubble Rise and Break-Up in Volcanic Conduits

    NASA Astrophysics Data System (ADS)

    Soldati, A.; Cashman, K. V.; Rust, A.; Rosi, M.

    2013-12-01

    The continual passive degassing occurring at open-vent mafic volcanoes is often punctuated by bursts of active degassing. The latter are generally thought to be the result of slug flow: large, conduit-filling bubbles periodically rising up the feeder conduit and bursting at the magma-air interface. Existing models of volcanic degassing systems make the simplifying assumption that the conduit is cylindrical; however, while this may be true at shallow levels, a flaring probably connects it to a dyke-like geometry at depth. The overall goal of this research is to assess the influence of conduit geometry on the speed and stability of bubbles rising in open-vent systems, and ultimately to devise a model to infer conduit shape from emerging bubbles size. In order to do that an analogue experimental approach was used. All of the experiments were two-phase (melt+volatiles); the analogue materials of choice were golden syrup-water mixtures ranging in viscosity from 10-1 to 104 Pa*s and air. Two experimental apparatuses were used: a bi-dimensional and a tri-dimensional one. The bi-dimensional set-up is a cell made of two flat transparent PVC plates (44x23cm) 10mm or 5mm apart (the front one having a hole at the bottom permitting bubble injection) containing a variety of parallelepipeds apt to outline different plumbing system geometries. The tri-dimensional one consists of a cylindrical tube (r=1,5cm; l=7cm) allowing bubble injection through the bottom rubber tap and terminating into a square tank (l=22cm). Results indicate that conduit geometry directly controls the slug rise velocity and the surrounding liquid descending speed, which in turn control the slug stability. Small enough bubbles simply deform as they go through the flaring, while bigger ones split into two daughter bubbles. A regime diagram has been constructed, illustrating the bubble break-up threshold dependence on the flare geometry and initial slug size, the two main controlling factors. The phenomenon of

  17. Rising motion of a bubble layer near a vertical wall

    NASA Astrophysics Data System (ADS)

    Dabiri, Sadegh; Bhuvankar, Pramod

    2015-11-01

    Bubbly flows in vertical pipes and channels form a wall-peak distribution of bubbles under certain conditions. The dynamics of the bubbles near the wall is different than in an unbounded liquid. Here we report the rising motion of bubbles in a liquid near a vertical wall. In a simulation of a bubbly flow in a periodic domain with a vertical wall on one side, an average pressure gradient is applied to the domain that balances the weight of the liquid phase. The upward flow is created by the rising motion of the bubbles. The bubbles are kept near the wall by the lateral lift force acting on them as a result of rising in a shear flow which is in turn generated by rising motion of bubbles. The rise velocity of the bubbles on the wall and the average rise velocity of the liquid depend on three dimensionless parameters, Archimedes number, Eotvos number, and the average volume fraction of bubbles near the wall. In the limit of small Eo, bubbles are nearly spherical and the dependency on Eo becomes negligible. In this limit, the scaling of the liquid Reynolds number with Archimedes number and the void fraction is presented.

  18. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  19. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  20. Experimental study on wake structure of single rising clean bubble

    NASA Astrophysics Data System (ADS)

    Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao

    2007-11-01

    Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.

  1. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  2. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  3. Dynamics of Bubbles Rising in Finite and Infinite Media

    SciTech Connect

    C.C. Maneri; P.F. Vassallo

    2000-10-27

    The dynamic behavior of single bubbles rising in quiescent liquid Suva (R134a) in a duct has been examined through the use of a high speed video system. Size, shape and velocity measurements obtained with the video system reveal a wide variety of characteristics for the bubbles as they rise in both finite and infinite media. This data, coupled with previously published data for other working fluids, has been used to assess and extend a rise velocity model given by Fan and Tsuchiya. As a result of this assessment, a new rise velocity model has been developed which maintains the physically consistent characteristics of the surface tension in the distorted bubbly regime. In addition, the model is unique in that it covers the entire range of bubble sizes contained in the spherical, distorted and planar slug regimes.

  4. Dynamics of single rising bubbles in neutrally buoyant liquid-solid suspensions.

    PubMed

    Hooshyar, Nasim; van Ommen, J Ruud; Hamersma, Peter J; Sundaresan, Sankaran; Mudde, Robert F

    2013-06-14

    We experimentally investigate the effect of particles on the dynamics of a gas bubble rising in a liquid-solid suspension while the particles are equally sized and neutrally buoyant. Using the Stokes number as a universal scale, we show that when a bubble rises through a suspension characterized by a low Stokes number (in our case, small particles), it will hardly collide with the particles and will experience the suspension as a pseudoclear liquid. On the other hand, when the Stokes number is high (large particles), the high particle inertia leads to direct collisions with the bubble. In that case, Newton's collision rule applies, and direct exchange of momentum and energy between the bubble and the particles occurs. We present a simple theory that describes the underlying mechanism determining the terminal bubble velocity. PMID:25165930

  5. Dynamics of rising bubble inside a viscosity-stratified medium

    NASA Astrophysics Data System (ADS)

    Tripathi, Manoj; Premlata, A. R.; Sahu, Kirti

    2015-11-01

    The rising bubble dynamics in an unconfined quiescent viscosity-stratified medium has been numerically investigated. This is frequently encountered in industrial as well as natural phenomena. In spite of the large number of studies carried out on bubbles and drops, very few studies have examined the influence of viscosity stratification on bubble rise dynamics. To the best of our knowledge, none of them have isolated the effects of viscosity-stratification alone, even though it is known to influence the dynamics extensively, which is the main objective of the present study. By conducting time-dependent simulations, we present a library of bubble shapes in the Gallilei and the Eötvös numbers plane. Our results demonstrate some counter-intuitive phenomena for certain range of parameters due to the presence of viscosity stratification in the surrounding fluid. We found that in a linearly increasing viscosity medium, for certain values of parameters, bubble undergoes large deformation by forming an elongated skirt, while the skirt tends to physically separate the wake region from the rest of the surrounding fluid. This peculiar dynamics is attributed to the migration of less viscous fluid that is carried in the wake of the bubble as it rises, and thereby creating an increase.

  6. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  7. Gas-rise velocities during kicks

    SciTech Connect

    White, D.B. )

    1991-12-01

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is caused by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.

  8. Dynamics of rising bubble inside a viscosity-stratified medium

    NASA Astrophysics Data System (ADS)

    Premlata, A. R.; Tripathi, Manoj Kumar; Sahu, Kirti Chandra

    2015-07-01

    The rising bubble dynamics in an unconfined quiescent viscosity-stratified medium has been numerically investigated. This is frequently encountered in industrial as well as natural phenomena. In spite of the large number of studies carried out on bubbles and drops, very few studies have examined the influence of viscosity stratification on bubble rise dynamics. To the best of our knowledge, none of them have isolated the effects of viscosity-stratification alone, even though it is known to influence the dynamics extensively, which is the main objective of the present study. By conducting time-dependent simulations, we present a library of bubble shapes in the Galilei and the Eötvös numbers plane. Our results demonstrate some counter-intuitive phenomena for certain range of parameters due to the presence of viscosity stratification in the surrounding fluid. We found that in a linearly increasing viscosity medium, for certain values of parameters, bubble undergoes large deformation by forming an elongated skirt, while the skirt tends to physically separate the wake region from the rest of the surrounding fluid. This peculiar dynamics is attributed to the migration of less viscous fluid that is carried in the wake of the bubble as it rises, and thereby creating an increasingly larger viscosity contrast between the fluid occupied in the wake region and the surrounding fluid, unlike that observed in a constant viscosity medium. It is also observed that the effect of viscosity stratification is qualitatively different for different regimes of the dimensionless parameters. In future, it will be interesting to investigate this problem in three-dimensions.

  9. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Vanka, Surya Pratap; Jin, Kai; Kumar, Purushotam; Thomas, Brian

    2015-11-01

    In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid (VOF) method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong is implemented, validated and used in present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units (GPU) with high parallel efficiency. The motion and the terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The circulation inside of the bubble is seen to be affected by the magnetic field indirectly. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented.

  10. Dynamics of an initially spherical bubble rising in quiescent liquid.

    PubMed

    Tripathi, Manoj Kumar; Sahu, Kirti Chandra; Govindarajan, Rama

    2015-01-01

    The beauty and complexity of the shapes and dynamics of bubbles rising in liquid have fascinated scientists for centuries. Here we perform simulations on an initially spherical bubble starting from rest. We report that the dynamics is fully three-dimensional, and provide a broad canvas of behaviour patterns. Our phase plot in the Galilei-Eötvös plane shows five distinct regimes with sharply defined boundaries. Two symmetry-loss regimes are found: one with minor asymmetry restricted to a flapping skirt; and another with marked shape evolution. A perfect correlation between large shape asymmetry and path instability is established. In regimes corresponding to peripheral breakup and toroid formation, the dynamics is unsteady. A new kind of breakup, into a bulb-shaped bubble and a few satellite drops is found at low Morton numbers. The findings are of fundamental and practical relevance. It is hoped that experimenters will be motivated to check our predictions. PMID:25687557

  11. Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, J.; Dimakopoulos, Y.; Chatzidai, N.; Karapetsas, G.; Pavlidis, M.

    We examine the buoyancy-driven rise of a bubble in a Newtonian or a viscoplastic fluid assuming axial symmetry and steady flow. Bubble pressure and rise velocity are determined, respectively, by requiring that its volume remains constant and its centre of mass remains fixed at the centre of the coordinate system. The continuous constitutive model suggested by Papanastasiou is used to describe the viscoplastic behaviour of the material. The flow equations are solved numerically using the mixed finite-element/Galerkin method. The nodal points of the computational mesh are determined by solving a set of elliptic differential equations to follow the often large deformations of the bubble surface. The accuracy of solutions is ascertained by mesh refinement and predictions are in very good agreement with previous experimental and theoretical results for Newtonian fluids. We determine the bubble shape and velocity and the shape of the yield surfaces for a wide range of material properties, expressed in terms of the Bingham Bn=tau_y(*}/rho({*}g^{*)) R_b(*) Bond Bo =rho(*}g({*)) R_b({*) 2}/gamma(*) and Archimedes Ar=rho(*2}g({*)) R_b(*3}/mu_o({*2)) numbers, where *o the viscosity, *y the yield stress of the material, g* the gravitational acceleration and R*b the radius of a spherical bubble of the same volume. If the fluid is viscoplastic, the material will not be deforming outside a finite region around the bubble and, under certain conditions, it will not be deforming either behind it or around its equatorial plane in contact with the bubble. As Bn increases, the yield surfaces at the bubble equatorial plane and away from the bubble merge and the bubble becomes entrapped. When Bo is small and the bubble cannot deform from the spherical shape the critical Bn is 0.143, i.e. it is a factor of 3/2 higher than the critical Bn for the entrapment of a solid sphere in a Bingham fluid, in direct correspondence with the 3/2 higher terminal velocity of a bubble over that of a sphere

  12. Measurements of the average properties of a bidisperse suspension of bubbles rising in a vertical channel

    NASA Astrophysics Data System (ADS)

    Serrano-Garcia, J. C.; Zenit, R.

    2008-11-01

    This investigation presents an experimental study of a system for which the bubble size is not monodisperse. In this work an experimental equipment was designed to study the behaviour of a bidisperse suspension of bubbles rising in a vertical channel, in which the dual limit of small Weber and large Reynolds number is satisfied. Bubbles were produced using capillaries of two distinct inner diameters. Using water and water-glycerin mixtures, the range of Reynolds numbers was extended from 50 to 500, approximately. To avoid coalescence, a small amount of salt was added to the interstitial fluid, which did not affect the fluid properties significantly. Measurements of the size, bubble velocity, aspect ratio as well the equivalent diameter of the bubbles were obtained as a function of gas volume fraction. We found that the bidisperse nature of the flow changes the dynamics in a significant manner. We observed a modification of the flow agitation, characterized by the liquid velocity variance. Although the decrease of the mean velocity with gas volume fraction is similar to that observed for monodisperse flows (Martínez et. al. 2007), a general increase of the magnitude of fluctuations is observed for certain combinations of bubble size and gas fraction ratios.

  13. A global stability approach to wake and path instabilities of nearly oblate spheroidal rising bubbles

    NASA Astrophysics Data System (ADS)

    Cano-Lozano, José Carlos; Tchoufag, Joël; Magnaudet, Jacques; Martínez-Bazán, Carlos

    2016-01-01

    A global Linear Stability Analysis (LSA) of the three-dimensional flow past a nearly oblate spheroidal gas bubble rising in still liquid is carried out, considering the actual bubble shape and terminal velocity obtained for various sets of Galilei (Ga) and Bond (Bo) numbers in axisymmetric numerical simulations. Hence, this study extends the stability analysis approach of Tchoufag et al. ["Linear stability and sensitivity of the flow past a fixed oblate spheroidal bubble," Phys. Fluids 25, 054108 (2013) and "Linear instability of the path of a freely rising spheroidal bubble," J. Fluid Mech. 751, R4 (2014)] (which considered perfectly spheroidal bubbles with an arbitrary aspect ratio) to the case of bubbles with a realistic fore-aft asymmetric shape (i.e., a flatter front and a more rounded rear). The critical curve separating stable and unstable regimes for the straight vertical path is obtained both in the (Ga,Bo) and the (Re,χ) planes, where Re is the bubble Reynolds number and χ its aspect ratio (i.e., the major-to-minor axes length ratio). This provides new insight into the effect of the shape asymmetry on the wake instability of bubbles held fixed in a uniform stream and on the path instability of freely rising bubbles, respectively. For the range of Ga and Bo explored here, we find that the flow past a bubble with a realistic shape is generally more stable than that past a perfectly spheroidal bubble with the same aspect ratio. This study also provides the first critical curve for the onset of path instability that can be compared with experimental observations. The tendencies revealed by this critical curve agree well with those displayed by available data. The quantitative agreement is excellent for O(1) Bond numbers. However, owing to two simplifying assumptions used in the LSA scheme, namely, the steadiness of the base state and the uncoupling between the bubble shape and the flow disturbances, quantitative discrepancies (up to 20%-30%) with

  14. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  15. The hydrodynamics of bubble rise and impact with solid surfaces.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-09-01

    A bubble smaller than 1mm in radius rises along a straight path in water and attains a constant speed due to the balance between buoyancy and drag force. Depending on the purity of the system, within the two extreme limits of tangentially immobile or mobile boundary conditions at the air-water interface considerably different terminal speeds are possible. When such a bubble impacts on a horizontal solid surface and bounces, interesting physics can be observed. We study this physical phenomenon in terms of forces, which can be of colloidal, inertial, elastic, surface tension and viscous origins. Recent advances in high-speed photography allow for the observation of phenomena on the millisecond scale. Simultaneous use of such cameras to visualize both rise/deformation and the dynamics of the thin film drainage through interferometry are now possible. These experiments confirm that the drainage process obeys lubrication theory for the spectrum of micrometre to millimetre-sized bubbles that are covered in this review. We aim to bridge the colloidal perspective at low Reynolds numbers where surface forces are important to high Reynolds number fluid dynamics where the effect of the surrounding flow becomes important. A model that combines a force balance with lubrication theory allows for the quantitative comparison with experimental data under different conditions without any fitting parameter. PMID:27378067

  16. Numerical simulation of rising bubble with chemical reaction

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Tripathi, Manoj; Matar, Omar; Karapetsas, George

    2014-11-01

    The dynamics of a rising bubble under the action of gravity and in the presence of an exothermic chemical reaction at the interface is investigated via direct numerical simulation using Volume-of-Fluid (VOF) method. The product of the chemical reaction, and temperature rise due to the exothermic chemical reaction influence the local viscosity and surface tension near the interfacial region, which in turn give rise to many interesting dynamics. The flow is governed by continuity, Navier-Stokes equations along with the convection equation of the volume fraction of the outer fluid and the energy equation. The effects of the Bond, Damkohler, and Reynolds numbers, and of the dimensionless heat of reaction are investigated. The results of this parametric study will be presented at the meeting.

  17. On the bubble rise velocity of a continually released bubble chain in still water and with crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Socolofsky, Scott A.

    2015-10-01

    The rise velocities of in-chain bubbles continually released from a single orifice in still water with and without crossflow are investigated in a series of laboratory experiments for wobbling ellipsoidal bubbles with moderate Reynolds number. For the limiting case in still water, that is, crossflow velocity = 0, the theoretical turbulent wake model correctly predicts the in-chain bubble rise velocity. In this case, the bubble rise velocities VB are enhanced compared to the terminal velocities of the isolated bubbles V0 due to wake drafting and are scaled with flow rate Q and bubble diameter D. Here, we also derive an updated wake model with consideration of the superposition of multiple upstream bubble wakes, which removes the nonlinear behavior of the non-distant (i.e., local) wake model. For the cases with crossflow, the enhancement of the in-chain bubble rise velocity can be significantly reduced, and imaging of the experiments shows very organized paring and grouping trajectories of rising bubbles not observed in still water under different crossflow velocities. The in-chain bubble rise velocities in crossflow are described by two models. First, an empirical model is used to correct the still-water equation for the crossflow effect. In addition, a semi-theoretical model considering the turbulent wake flow and the crossflow influence is derived and used to develop a theoretical normalization of bubble rise velocity, crossflow velocity, and the released bubble flow rate. The theoretical model suggests there are two different regimes of bubble-bubble interaction, with strong interaction occurring for the non-dimensional crossflow velocity Uc + = π Uc 3 D 3 V 0 / ( 18 g β Q 2 ) less than 0.06 and weaker interaction occurring for Uc + greater than 0.06, where Uc is the crossflow velocity, g is the acceleration of gravity, and β is the mixing length coefficient.

  18. Numerical study of a Taylor bubble rising in stagnant liquids.

    PubMed

    Kang, Chang-Wei; Quan, Shaoping; Lou, Jing

    2010-06-01

    The dynamics of a Taylor bubble rising in stagnant liquids is numerically investigated using a front tracking coupled with finite difference method. Parametric studies on the dynamics of the rising Taylor bubble including the final shape, the Reynolds number (Re(T)), the Weber number (We(T)), the Froude number (Fr), the thin liquid film thickness (w/D), and the wake length (l(w)/D) are carried out. The effects of density ratio (η), viscosity ratio (λ), Eötvös number (Eo), and Archimedes number (Ar) are examined. The simulations demonstrate that the density ratio and the viscosity ratio under consideration have minimal effect on the dynamics of the Taylor bubble. Eötvös number and Archimedes number influence the elongation of the tail and the wake structures, where higher Eo and Ar result in longer wake. To explain the sudden extension of the tail, a Weber number (We(l)) based on local curvature and velocity is evaluated and a critical We(l) is detected around unity. The onset of flow separation at the wake occurs in between Ar=2×10(3) and Ar=1×10(4), which corresponds to Re(T) between 13.39 and 32.55. Archimedes number also drastically affects the final shape of Taylor bubble, the terminal velocity, the thickness of thin liquid film, as well as the wall shear stress. It is found that w/D=0.32 Ar(-0.1). PMID:20866523

  19. Numerical simulation on single Taylor bubble rising in LBE using moving particle method

    NASA Astrophysics Data System (ADS)

    Li, Xin; Tian, Wen X.; Chen, Rong H.; Su, Guang H.; Qiu, Sui Z.

    2013-07-01

    An improved meshless numerical method (MPS-MAFL) is utilized to simulate single Taylor bubble rising in liquid LBE to study its hydrodynamic characteristics. The computational region is a circular tube in which the liquid is described using discretized particles by un-uniform grid scheme. The gas-liquid interface was approximately treated as a free surface boundary and nonslip conditions are applied on tube wall. Several simulation results and corresponding analysis including Taylor bubble propagation procedure, pressure distribution, velocity profile around bubble nose and in the wake region as well as in the falling film are presented. Some experimental results and CFD numerical simulations from other previous researchers are compared with the present study as validation. The simulation results agree well with both theoretical analysis and experimental results, which demonstrate the reasonable selection of model as well as the accuracy and reliability of moving particle method.

  20. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  1. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  2. Effects of gravity level on bubble formation and rise in low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path.

  3. Evolution of bubble size distribution from gas blowout in shallow water

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; Lee, Kenneth; King, Thomas; Loney, Norman; Geng, Xiaolong

    2016-03-01

    Gas is often emanated from the sea bed during a subsea oil and gas blowout. The size of a gas bubble changes due to gas dissolution in the ambient water and expansion as a result of a decrease in water pressure during the rise. It is important to understand the fate and transport of gas bubbles for the purpose of environmental and safety concerns. In this paper, we used the numerical model, VDROP-J to simulate gas formation in jet/plume upon release, and dissolution and expansion while bubble rising during a relatively shallow subsea gas blowout. The model predictions were an excellent match to the experimental data. Then a gas dissolution and expansion module was included in the VDROP-J model to predict the fate and transport of methane bubbles rising due to a blowout through a 0.10 m vertical orifice. The numerical results indicated that gas bubbles would increase the mixing energy in released jets, especially at small distances and large distances from the orifice. This means that models that predict the bubble size distribution (BSD) should account for this additional mixing energy. It was also found that only bubbles of certain sizes would reach the water surfaces; small bubbles dissolve fast in the water column, while the size of the large bubbles decreases. This resulted in a BSD that was bimodal near the orifice, and then became unimodal.

  4. Non-linear shape oscillations of rising drops and bubbles: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Lalanne, Benjamin; Abi Chebel, Nicolas; Vejražka, Jiří; Tanguy, Sébastien; Masbernat, Olivier; Risso, Frédéric

    2015-12-01

    This paper focuses on shape-oscillations of a gas bubble or a liquid drop rising in another liquid. The bubble/drop is initially attached to a capillary and is released by a sudden motion of that capillary, resulting in the rise of the bubble/drop along with the oscillations of its shape. Such experimental conditions make difficult the interpretation of the oscillation dynamics with regard to the standard linear theory of oscillation because (i) amplitude of deformation is large enough to induce nonlinearities, (ii) the rising motion may be coupled with the oscillation dynamics, and (iii) clean conditions without residual surfactants may not be achieved. These differences with the theory are addressed by comparing experimental observation with numerical simulation. Simulations are carried out using Level-Set and Ghost-Fluid methods with clean interfaces. The effect of the rising motion is investigated by performing simulations under different gravity conditions. Using a decomposition of the bubble/drop shape into a series of spherical harmonics, experimental and numerical time evolutions of their amplitudes are compared. Due to large oscillation amplitude, non-linear couplings between the modes are evidenced from both experimental and numerical signals; modes of lower frequency influence modes of higher frequency, whereas the reverse is not observed. Nevertheless, the dominant frequency and overall damping rate of the first five modes are in good agreement with the linear theory. Effect of the rising motion on the oscillations is globally negligible, provided the mean shape of the oscillation remains close to a sphere. In the drop case, despite the residual interface contamination evidenced by a reduction in the terminal velocity, the oscillation dynamics is shown to be unaltered compared to that of a clean drop.

  5. General formulation of an HCDA bubble rising in a sodium pool and the effect of nonequilibrium on fuel transport

    SciTech Connect

    Kocamustafaogullari, G.; Chan, S.H.

    1980-06-01

    This report investigates the effect of interfacial nonequilibrium mass transfer and radiative heat transfer on the amount of the fuel vapor condensed before the bubble reaches to the cover-gas region. Consideration is given to a fuel dominated bubble which is assumed to have just penetrated into the sodium pool in a spherical form subsequent to an Hypothetical Core Disruptive Accident (HCDA). The two-phase bubble mixture as it rises through the sodium pool to the cover-gas region is formulated. The formulation takes into account the effects of the nonequilibrium mass transfer at the interfaces and of the radiative cooling of the bubble as well as the kinematic, dynamic and thermal effects of the surrounding fields. The results of calculation for the amount of the fuel vapor condensed before the bubble reaches the cover-gas region are presented over a wide possible range of the evaporation coefficient as well as the liquid sodium-bubble interface absorbtivity. The effects of nonequilibrium mass transfer become more meaningful at the later stage of the bubble rise where the temperature difference between the liquid fuel and the gaseous mixture has been increased. The thermal radiative cooling is found to be very effective in attenuating the fuel content of the bubble; depending on the value of the liquid sodium-bubble absorbtivity, a great reduction of fuel vapor is found to be possible. As a result, if the condensed fuel falls out of the bubble, the thermal radiation - which condenses out most of the fuel vapor - can effectively prevent and eliminate most of the fuel leaking out of the reactor vessel.

  6. Temperature Dependence of Behavior of Interface Between Molten Sn and LiCl-KCl Eutectic Melt Due to Rising Gas Bubble

    NASA Astrophysics Data System (ADS)

    Natsui, Shungo; Nashimoto, Ryota; Takai, Hifumi; Kumagai, Takehiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2016-06-01

    The behavior of the interface between molten Sn and the LiCl-KCl eutectic melt system was observed directly. We found that the transient behavior of the interface exhibits considerable temperature dependence through a change in its physical properties. The "metal film" generated in the upper molten salt phase significantly influences the shape of the interface. Although the lifetime of the metal film depends on the gas flow rate, it is not affected by the buoyancy if the interfacial tension is dominant.

  7. Gas bubble dynamics in soft materials.

    PubMed

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-01

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium. PMID:25382720

  8. Gas bubble dynamics in soft materials

    NASA Astrophysics Data System (ADS)

    Solano-Altamirano, J. M.; Malcolm, John D.; Goldman, Saul

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic medium. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the elastic medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a Generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to a simple liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the Generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  9. Detached eddy simulations of Taylor bubbles rising in stagnant liquid columns

    NASA Astrophysics Data System (ADS)

    Shaban, Hassan; Tavoularis, Stavros

    2015-11-01

    The rise of a single air Taylor bubble in a vertical circular tube filled with stagnant water was investigated numerically using the Volume Of Fluid (VOF) method to model the phase distribution and the Detached Eddy Simulation (DES) method for turbulence modelling. The predictions were in good quantitative agreement with previous experimental results. The simulation results provided insight into bubble shedding in the wake of the Taylor bubble, frictional pressure drop along the tube and scalar dispersion caused by the passage of the Taylor bubble. The interaction between adjacent Taylor bubbles and the process of Taylor bubble coalescence were also examined in detail. Supported by NSERC and UNENE.

  10. Inert gas bubbles in bcc Fe

    NASA Astrophysics Data System (ADS)

    Gai, Xiao; Smith, Roger; Kenny, S. D.

    2016-03-01

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  11. Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity

    USGS Publications Warehouse

    Linde, A.T.; Sacks, I.S.; Johnston, M.J.S.; Hill, D.P.; Bilham, R.G.

    1994-01-01

    Aftershocks of large earthquakes tend to occur close to the main rupture zone, and can be used to constrain its dimensions. But following the 1992 Landers earthquake (magnitude M(w) = 7.3) in southern California, many aftershocks were reported in areas remote from the mainshock. Intriguingly, this remote seismicity occurred in small clusters near active volcanic and geothermal systems. For one of these clusters (Long Valley, about 400 km from the Landers earthquake), crustal deformation associated with the seismic activity was also monitored. Here we argue that advective overpressure provides a viable mechanism for remote seismicity triggered by the Landers earthquake. Both the deformation and seismicity data are consistent with pressure increases owing to gas bubbles rising slowly within a volume of magma. These bubbles may have been shaken loose during the passage of seismic waves generated by the mainshock.

  12. The effect of surfactants on path instability of a rising bubble

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Takagi, Shu; Matsumoto, Yoichiro

    2013-11-01

    We experimentally investigate the surfactant effect on path instability of an air bubble rising in quiescent water. An addition of surfactant varies the gas-water boundary condition from zero shear stress to non-zero shear stress. We report three main findings: firstly, while the drag force acting on the bubble increases with the surfactant concentration as expected, the lift force shows a non-monotonic behavior; secondly, the transient trajectory starting from helical to zigzag is observed, which has never been reported in the case of purified water; lastly, a bubble with the intermediate slip conditions between free-slip and no-slip show a helical motion for a broad range of the Reynolds number. Aforementioned results are rationalized by considering the adsorption-desorption kinetics of the surfactants on gas-water interface and the wake dynamics. Y.T. thanks for financial support from Grant-in-Aid for JSPS Fellows (20-10701). We also thank for Grant-in-Aid for Scientific Research (B) (21360079).

  13. Rise velocity of an air bubble in porous media: Theoretical studies

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Cihan, Abdullah; Drazenovic, Mirna

    2004-04-01

    The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble rising in a porous medium. The governing equation incorporates inertial force, added mass force, buoyant force, surface tension and drag force that results from the momentum transfer between the phases. The momentum transfer terms take into account the viscous as well as the kinetic energy losses at high velocities. Analytical solutions are obtained for steady, quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles moving up through a porous medium equilibrate after a short travel time and very short distances of rise. It is determined that the terminal rise velocity of a single air bubble in an otherwise water saturated porous medium cannot exceed 18.5 cm/s. The theoretical model results compared favorably with the experimental data reported in the literature. A dimensional analysis conducted to study the effect of individual forces indicates that the buoyant force is largely balanced by the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With increasing bubble radius, the dimensionless number representing the effect of the surface tension force decreases rapidly. Since the total inertial force is quite small, the accelerated bubble rise velocity can be approximated by the terminal velocity.

  14. General formulation of an HCDA bubble rising in a sodium pool and the effect of nonequilibrium on fuel transport. [LMFBR

    SciTech Connect

    Kocamustafaogullari, G.; Chan, S.H.

    1980-01-01

    This report which improved the formulation of the previous reports is designed to investigate the effect of the interfacial nonequilibrium mass transfer and the radiative heat transfer on the amount of the fuel vapor condensed before the bubble reaches to the cover-gas region. Consideration is given to a fuel dominated bubble which is assumed to have just penetrated into the sodium pool in a spherical form subsequent to an Hypothetical Core Disruptive Accident (HCDA). The two-phase bubble mixture as it rises through the sodium pool to the cover-gas region is formulated. The formulation takes into account the effects of the nonequilibrium mass transfer at the interfaces and of the radiative cooling of the bubble as well as the kinematic, dynamic and thermal effects of the surrounding fields. The results of calculation for the amount of the fuel vapor condensed before the bubble reaches the cover-gas region are presented over a wide possible range of the evaporation coefficient as well as the liquid sodium-bubble interface absorbtivity.

  15. Effects of gravity level on bubble formation and rise in low-viscosity liquids.

    PubMed

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path. PMID:26066251

  16. The wake structures of the air bubbles rising in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Moskun, Eric; Wu, Mingming; Zarandi, Mehrdad M.

    1997-11-01

    The wake structures of the penny-shaped air bubbles rising in a layer of fluid contained in a Hele-Shaw cell were studied qualitatively by colored dye visualization technique, and quantitatively by digital particle imaging velocimetry(DPIV). We found that the straight path of a rising circular bubble was changed to a zigzag path when the Reynolds number R (proportional to the bubble terminal velocity) exceeded a threshold R_c.( Erin Kelley and Mingming Wu, Phys. Rev. Lett.), 79, 1265(1997). The colored dye visualization results demonstrated that the path instability was a consequence of vortex shedding behind the bubbles. The DPIV measurements supplied the full velocity fields behind the bubbles, and revealed the details of the vortex forming processes. The boundary conditions at the surfaces of the small bubbles will be discussed.

  17. A bubble-based microfluidic gas sensor for gas chromatographs.

    PubMed

    Bulbul, Ashrafuzzaman; Kim, Hanseup

    2015-01-01

    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month. PMID:25350655

  18. Rising motion of a single bubble through a liquid metal in the presence of a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Ni, Ming-Jiu; Moreau, René

    2016-03-01

    After a previous investigation of the rising motion of a gas bubble in a liquid metal under the influence of a vertical magnetic field, this new study focuses on the case of a uniform horizontal magnetic field. The numerical code is still the same: it is based on a volume-of-fluid technique and on an unstructured Cartesian adaptive grid system. A consistent and conservative scheme is adopted to compute the induced current density and the Lorentz force. In order to allow a benchmark, most of the parameters selected for this new investigation are the same as in an experiment recently performed in Dresden, Germany. The Ar bubble diameter is either 4.3 mm or 6.4 mm, the liquid metal is GaInSn, resulting in Reynolds numbers (Re) larger than in experiments with water (2000 to 4000, instead of 1000 or less) and allowing significant differences even without any magnetic field. In this paper, the magnetic field strength and therefore the interaction parameter are extended to values higher than in the experiment to provide data on the asymptotic behavior when these parameters get very large. The influence of the horizontal magnetic field on properties as the terminal rising velocity, the observed modifications of the rising paths, the shape of the bubble, and the wake structure is displayed and discussed. It is shown that the unstable bubble trajectory is closely related to the wake instability, which is itself strongly influenced by the horizontal magnetic field. When comparing the results with those obtained in the presence of a vertical magnetic field, significant differences appear together with the lack of axial symmetry, such as a slower rising motion of the bubble and the suppression of the "secondary path instability." Increasing the intensity of the magnetic field results in an approximate exponential law to describe how the terminal rising velocity is reduced. The numerical predictions are interpreted in terms of the predominant physical mechanisms.

  19. Bubble rise velocities and drag coefficients in non-Newtonian polysaccharide solutions.

    PubMed

    Margaritis, A; te Bokkel, D W; Karamanev, D G

    1999-08-01

    Microbially produced polysaccharides have properties which are extremely useful in different applications. Polysaccharide producing fermentations start with liquid broths having Newtonian rheology and end as highly viscous non-Newtonian solutions. Since aerobic microorganisms are used to produce these polysaccharides, it is of great importance to know the mass transfer rate of oxygen from a rising air bubble to the liquid phase, where the microorganisms need the oxygen to grow. One of the most important parameters determining the oxygen transfer rate is the terminal rise velocity of air bubble. The dynamics of the rise of air bubbles in the aqueous solutions of different, mostly microbially produced polysaccharides was studied in this work. Solutions with a wide variety of polysaccharide concentrations and rheological properties were studied. The bubble sizes varied between 0.01 mm3 and 10 cm3. The terminal rise velocities as a function of air bubble volume were studied for 21 different polysaccharide solutions with different rheological properties. It was found that the terminal velocities reached a plateau at higher bubble volumes, and the value of the plateau was nearly constant, between 23 and 27 cm/s, for all solutions studied. The data were analyzed to produce the functional relationship between the drag coefficient and Reynolds number (drag curves). It was found out that all the experimental data obtained from 21 polysaccharide solutions (431 experimental points), can be represented by a new single drag curve. At low values of Reynolds numbers, below 1.0, this curve could be described by the modofoed Hadamard-Rybczynski model, while at Re > 60 the drag coefficient was a constant, equal to 0.95. The latter finding is similar to that observed for bubble rise in Newtonian liquids which was explained on the basis of the "solid bubble" approach. PMID:10397862

  20. Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Surfaces.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2015-06-23

    A force balance model for the rise and impact of air bubbles in a liquid against rigid horizontal surfaces that takes into account effects of buoyancy and hydrodynamic drag forces, bubble deformation, inertia of the fluid via an added mass force, and a film force between the bubble and the rigid surface is proposed. Numerical solution of the governing equations for the position and velocity of the center of mass of the bubbles is compared against experimental data taken with ultraclean water. The boundary condition at the air-water interface is taken to be stress free, which is consistent for bubbles in clean water systems. Features that are compared include bubble terminal velocity, bubbles accelerating from rest to terminal speed, and bubbles impacting and bouncing off different solid surfaces for bubbles that have already or are yet to attain terminal speed. Excellent agreement between theory and experiments indicates that the forces included in the model constitute the main physical ingredients to describe the bouncing phenomenon. PMID:26035016

  1. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  2. Analysis of Rayleigh-Taylor Instability: Statistics on Rising Bubbles and Falling Spikes

    SciTech Connect

    Kamath, C; Gezahegne, A; Miller, P

    2007-10-30

    The analysis of coherent structures in Rayleigh-Taylor simulations is a challenging task as the lack of a precise definition of these structures is compounded by the massive size of the datasets. In an earlier work, we used techniques from image analysis to count these coherent structures in two high-resolution simulations, one a large-eddy simulation with 30 terabytes of analysis data, and the other a direct numerical simulation with 80 terabytes of analysis data. Our analysis indicated that there were four distinct regimes in the process of the mixing of the two fluids, starting from the initial linear stage, followed by the non-linear stage with weak turbulence, the mixing transition stage, and the final stage of strong turbulence. In this paper, we extend our earlier work to focus on only the rising bubbles and the falling spikes. We first consider different ways in which we can constrain the bubble and spike definitions and then extract various statistics on them. Our results on the rising bubble and falling spike counts again show that there are four regimes in the process of fluid mixing, each characterized by an integer-valued slope. Further, the average bubble heights and spike depths are related to similar results obtained using a threshold-based definition. Finally, the ratio of the rising bubbles to all bubbles is very similar in character to the ratio of the falling spikes to all spikes, with near constant values over part of the simulation.

  3. Three-dimensional numerical simulations of a bubble rising in an unbounded weakly viscous fluid

    NASA Astrophysics Data System (ADS)

    Cano-Lozano, Jose Carlos; Martínez-Bazán, Carlos; Tchoufag, Joel; Magnaudet, Jacques

    2015-11-01

    Direct Numerical Simulations (DNS) of a freely rising bubble in an unbounded low-viscosity fluid are performed to analyze the bubble trajectory for values of Galileo and Bond numbers close to the transition between vertical and non-vertical paths. The simulations are performed with the Gerris Flow Solver, based on the Volume of Fluid technique to track the interface, allowing deformations of the bubble during its rising motion. We find the existence of novel regimes of the bubble rise which we describe by tracking the bubble shape, path geometry and wake vortical structures, as well as the temporal evolution of the instantaneous Reynolds number. Besides the traditional rectilinear, zigzag and spiral paths, we observe chaotic, reflectional-symmetry-breaking or reflectional-symmetry-preserving regimes previously reported for axisymmetric solid bodies. The DNS results also allow us to check the accuracy of the neutral curve defining the region of the parameter space within which the vertical path of a buoyancy-driven bubble with fore-and-aft asymmetric shape is linearly stable. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under projects DPI 2014-59292-C3-3-P and P11-TEP7495.

  4. Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma

    NASA Astrophysics Data System (ADS)

    Belien, Isolde B.; Cashman, Katharine V.; Rempel, Alan W.

    2010-08-01

    Gas mobility plays an important role in driving volcanic eruptions and controlling eruption style. The explosivity of an eruption depends, among other factors, on how easily gas can escape from the magma. Many magmatic systems have high concentrations of suspended crystals that inhibit gas migration through the melt. We use suspensions of plastic beads in corn syrup to investigate interactions between rising bubbles and particles. We observe different interaction styles as the ratio ψ of bubble to particle size is varied. Large bubbles (ψ > 1) deform and sometimes break up as they move around particles. Small bubbles (ψ < 1) are frequently trapped within the suspension, increasing the concentration of gas held within the system. We compare our experiments to bubble populations in tephra from Stromboli volcano, Italy. We show that these samples typically have bubbles and crystals of similar sizes and suggest that crystals might play a role in controlling bubble size in this natural system as well as in our experiments. Because small bubbles (ψ < 1) get trapped within the suspension, and can be formed by breakup of larger bubbles, we expect that an increase in gas flux will result in an increase in the population of small bubbles. Changes in bubble number density and vesicularity in tephra erupted during periods of different eruptive intensity may thus provide a way of tracking changes in gas flux through the magma prior to eruption.

  5. On the turbulent structure in the wake of Taylor bubbles rising in vertical pipes

    NASA Astrophysics Data System (ADS)

    Shemer, L.; Gulitski, A.; Barnea, D.

    2007-03-01

    The development of gas-liquid slug flow along pipes is governed by the interaction between consecutive elongated bubbles. It is commonly accepted that the trailing bubble's shape and velocity are affected by the flow field in the liquid phase ahead of it. Particle image velocimetry (PIV) measurements of the velocity field in the wake of an elongated Taylor bubble are performed for different pipe diameters and various Reynolds numbers. Experiments are carried out in both laminar and turbulent background flows. Ensemble-averaged quantities in the frame of reference moving with the Taylor bubble are calculated. Peculiarities regarding the variation of the mean velocity distributions, as well as of the normal and shear Reynolds stresses, with the distance from the Taylor bubble bottom are discussed.

  6. Vortex pairing in the wake of an oscillating bubble rising in a thin-gap cell

    NASA Astrophysics Data System (ADS)

    Ern, Patricia; Filella, Audrey; Roig, Véronique

    2015-11-01

    We investigate experimentally the oscillatory motion and wake of a bubble rising in a counter flow in a thin gap cell (3 mm) by shadowgraphy and PIV. The equivalent diameter d of the bubble in the plane of the cell is used to define the Archimedes number Ar =√{/gd3 } ν (ν is the kinematic viscosity and g the gravitational acceleration). The counter flow is characterized by the Reynolds number Recf based on the mean liquid velocity and the gap thickness. For 500 <= Ar <= 5500 and 0 <=Recf <= 200 , the mean vertical velocity of the bubble relative to the counter flow, Vbr, corresponds to the mean rising velocity in liquid at rest; and the frequency and the amplitude of the oscillatory motion superpose for all Recf when normalized with Vbr and the timescale d /Vbr . For a given size of the bubble (d 9 . 5 mm and Ar 2800) corresponding to a Reynolds number based on Vbr and d of about 1900, we then investigate in detail the wake associated to the bubble in several counter flows. As Recf increases, the number of vortices released increases. Furthermore, the wake of the bubble undergoes vortex pairing for 0 <=Recf <= 110), whereas no vortex pairing is observed for Recf >= 140 .

  7. Lattice Boltzmann simulation of rising bubble dynamics using an effective buoyancy method

    NASA Astrophysics Data System (ADS)

    Ngachin, Merlin; Galdamez, Rinaldo G.; Gokaltun, Seckin; Sukop, Michael C.

    2015-08-01

    This study describes the behavior of bubbles rising under gravity using the Shan and Chen-type multicomponent multiphase lattice Boltzmann method (LBM) [X. Shan and H. Chen, Phys. Rev. E47, 1815 (1993)]. Two-dimensional (2D) single bubble motions were simulated, considering the buoyancy effect for which the topology of the bubble was characterized by the nondimensional Eötvös (Eo), and Morton (M) numbers. In this study, a new approach based on the "effective buoyancy" was adopted and proven to be consistent with the expected bubble shape deformation. This approach expands the range of effective density differences between the bubble and the liquid that can be simulated. Based on the balance of forces acting on the bubble, it can deform from spherical to ellipsoidal shape with skirts appearing at high Eo number. A benchmark computational case for qualitative and quantitative validation was performed using COMSOL Multiphysics based on the level set method. Simulations were conducted for 1 ≤ Eo ≤ 100 and 3 × 10-6 ≤ M ≤ 2.73 × 10-3. Interfacial tension was checked through simulations without gravity, where Laplace's law was satisfied. Finally, quantitative analyses based on the terminal rise velocity and the degree of circularity was performed for various Eo and M values. Our results were compared with both the theoretical shape regimes given in literature and available simulation results.

  8. Why a falling drop does not in general behave like a rising bubble

    PubMed Central

    Tripathi, Manoj Kumar; Sahu, Kirti Chandra; Govindarajan, Rama

    2014-01-01

    Is a settling drop equivalent to a rising bubble? The answer is known to be in general a no, but we show that when the density of the drop is less than 1.2 times that of the surrounding fluid, an equivalent bubble can be designed for small inertia and large surface tension. Hadamard's exact solution is shown to be better for this than making the Boussinesq approximation. Scaling relationships and numerical simulations show a bubble-drop equivalence for moderate inertia and surface tension, so long as the density ratio of the drop to its surroundings is close to unity. When this ratio is far from unity, the drop and the bubble are very different. We show that this is due to the tendency for vorticity to be concentrated in the lighter fluid, i.e. within the bubble but outside the drop. As the Galilei and Bond numbers are increased, a bubble displays underdamped shape oscillations, whereas beyond critical values of these numbers, over-damped behavior resulting in break-up takes place. The different circulation patterns result in thin and cup-like drops but bubbles thick at their base. These shapes are then prone to break-up at the sides and centre, respectively. PMID:24759766

  9. Linear stability of the wake and path of a rising bubble with a realistic shape

    NASA Astrophysics Data System (ADS)

    Cano-Lozano, José Carlos; Tchoufag, Joel; Magnaudet, Jacques; Fabre, David; Martínez-Bazán, Carlos

    2014-11-01

    A global linear stability analysis of the flow past a bubble rising in still liquid is carried out using the real bubble shape and the terminal velocity obtained for various sets of Galileo (Ga) and Bond (Bo) numbers in axisymmetric simulations performed with the multiphase software Gerris Flow Solver. Once the bubble shape is known, the axisymmetric, steady base flow is computed by means of an iterative Newton method with the finite element software FreeFem++, and the eigenvalue problem is solved with the shift-invert Arnoldi technique implemented in the SLEPc library. The critical curve separating stable and unstable regimes is obtained in the (Ga, Bo) and (Reynolds number, aspect ratio) spaces. This allows us to discuss the effect of the bubble shape and aspect ratio on the wake and path instabilities. We observe that the fore-and-aft asymmetry of the bubble has some influence on the stability since, for a given aspect ratio, bubbles with a realistic shape (i.e. a flatter front and a more rounded rear) are more stable that perfectly spheroidal bubbles. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under Projects DPI2011-28356-C03-03 and P11-TEP7495.

  10. The terminal rise velocity of 10-100 microm diameter bubbles in water.

    PubMed

    Parkinson, Luke; Sedev, Rossen; Fornasiero, Daniel; Ralston, John

    2008-06-01

    Single bubbles of very pure N2, He, air and CO2 were formed in a quiescent environment in ultra-clean water, with diameters ranging from 10 to 100 mum. Their terminal rise velocities were measured by high-speed video microscopy. For N2, He and air, excellent agreement with the Hadamard-Rybczynski (H-R) equation was observed, indicating that slip was occurring at the liquid-vapor interface. For CO2 bubbles with diameters less than 60 microm, the terminal rise velocities exceeded those predicted by the H-R equation. This effect was ascribed to the enhanced solubility of CO2 compared with the other gases examined. The presence of a diffusion boundary layer may be responsible for the increased terminal velocity of very small CO2 bubbles. PMID:18405911

  11. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties

    NASA Technical Reports Server (NTRS)

    Nadim, Ali

    1996-01-01

    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  12. Experiment and Numerical Simulation of Bubble Behavior in Argon Gas Injection into Lead-Bismuth Pool

    NASA Astrophysics Data System (ADS)

    Yamada, Yumi; Akashi, Toyou; Takahashi, Minoru

    In a lead-bismuth alloy (45%Pb-55%Bi) cooled direct contact boiling water fast reactor (PBWFR), steam can be produced by direct contact of feed water with primary Pb-Bi coolant in the upper core plenum, and Pb-Bi coolant can be circulated by buoyancy forces of steam bubbles. As a basic study to investigate the two-phase flow characteristics in the chimneys of PBWFR, a two-dimensional two-phase flow was simulated by injecting argon gas into Pb-Bi pool in a rectangular vessel (400mm in length, 1500mm in height), and bubble behavior were investigated experimentally. Bubble sizes, bubble rising velocities and void fractions were measured using void probes. The experimental conditions are the atmospheric pressure and the flow rate of injection Ar gas is 10, 20, and 30 NL/min. The average of measured bubble rising velocity was about 0.6 m/s. The average chord length was about 7mm. An analysis was performed by two-dimensional and two-fluid model. The experimental results were compared with the analytical results to evaluate the validity of the analytical model. Although large diameter bubbles were observed in the experiment, the drag force model of lower value performed better for simulation of the experimental result.

  13. Measurement Of Gas Bubbles In Mercury Using Proton Radiography

    SciTech Connect

    Riemer, Bernie; Bingham, Philip R; Mariam, Fesseha G; Merrill, Frank E

    2007-01-01

    An experiment using proton radiography on a small mercury loop for testing gas bubble injection was conducted at the Los Alamos Neutron Science Center (LANSCE) in December 2006. Small gas bubble injection is one of the approaches under development to reduce cavitation damage in the U.S. Spallation Neutron Source mercury target vessel. Several hundred radiograph images were obtained as the test loop was operated over range of conditions that included two jet type bubble generators, two needle type bubble generators, various mercury flow speeds and gas injection rates, and use of helium, argon and xenon. This paper will describe the analysis of the radiograph images and present the obtained bubble measurement data.

  14. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    SciTech Connect

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  15. Linking Radial Species Segregation and Bubbling Patterns in Gas-Fluidized Beds.

    NASA Astrophysics Data System (ADS)

    Joseph, Gustavo; Hrenya, Christine; Kozlowski, Joe

    2007-11-01

    Binary mixtures of gas-fluidized Geldart Group B particles with size and/or density differences were experimentally investigated at gas velocities up to 3 times the complete fluidization velocities (ufc) of the mixtures. Steady state operation of the bed was ensured prior to data collection. Local bubbling information (mean bubble size, bubble rise velocity, and bubbling frequency) was obtained throughout the bed by means of a backscattered-light optical probe. Segregation data were obtained via bed ``freezing'' and subsequent sieving of layers. Monodisperse runs were also performed as benchmarks for the binary-mixture runs. Perceptible radial variations in species composition were encountered, with the less massive particles tending toward the bed center in most cases. For systems where the species differed in both size and density, the bottom layer presents a reversal of radial segregation pattern at gas velocities below 2ufc. At velocities below 2ufc, bubbling is seen predominantly at the bed periphery, with qualitative differences between monodisperse and mixed systems above 2ufc. A detailed analysis of the bubbling patterns at the various compositions and gas velocities is presented, and links to the observed segregation behavior are made.

  16. Three-dimensional simulations of a rising bubble in a self-rewetting fluid

    NASA Astrophysics Data System (ADS)

    Premlata, Amarnath; Tripathi, Manoj; Sahu, Kirti; Karapetsas, George; Sefiane, Khellil; Matar, Omar

    2015-11-01

    The motion of a gas bubble in a square channel with linearly increasing temperature in the vertical direction is investigated via 3D numerical simulations. The channel contains a so-called ``self-rewetting'' fluid whose surface tension exhibits a parabolic dependence on temperature with a well-defined minimum. An open-source finite-volume fluid flow solver, Gerris, is used with a dynamic adaptive grid refinement technique, based on the vorticity magnitude and position of the interface. We find that in self-rewetting fluids, the buoyancy-induced upward motion of the bubble is retarded by a thermocapillary-driven flow, which occurs as the bubble crosses the location at which the surface tension is minimum. The bubble then migrates downwards when thermocapillarity exceeds buoyancy. In its downward path, the bubble encounters regions of horizontal temperature gradients, which lead to bubble motion towards one of the channel walls. These phenomena are observed at sufficiently small Bond numbers and have no analogue for fluids whose surface tension decreases linearly with temperature. The mechanisms underlying these phenomena are elucidated by considering how the surface tension dependence on temperature affects the thermocapillary stresses in the flow. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  17. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius. PMID:19062834

  18. Density of radiolytic gas bubbles in polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Makkonen, T.; Tiainen, O. J. A.; Valkiainen, M.; Winberg, M.

    The density of the radiolytic gas bubbles in irradiated polymethyl methacrylate was measured during subsequent heat treatment as a function of radiation dose. The samples were irradiated in the core of the Triga Mark II reactor in Otaniemi. After the irradiation periods the samples were heat treated at 393 K. The number of the bubbles could be explained by a thermal activation model. The bubbles are born in material inhomogeneities and the threshold dose for the bubble initiation was about 25 Mrad for the heat treatment at 393 K under the atmospheric pressure.

  19. Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations

    SciTech Connect

    Krishna, R.; Swart, J.W.A. de; Ellenberger, J.; Martina, G.B.; Maretto, C.

    1997-02-01

    In processes for converting natural gas to liquid fuels, bubble-column reactors are finding increasing application. To study the influence of particle concentration on the hydrodynamics of bubble-column slurry reactors operating in the heterogeneous flow regime, experiments were carried out in 0.10, 0.19, and 0.38-m-dia. columns using paraffinic oil as the liquid phase and slurry concentrations of up to 36 vol. %. To interpret experimental results a generalization of the two-phase model for gas-solid fluid beds was used to describe bubble hydrodynamics. The two phases identified are: a dilute phase consisting of fast-rising large bubbles that traverse the column virtually in plug flow and a dense phase that is identified with the liquid phase along with solid particles and entrained small bubbles. The dense phase suffers backmixing considerably. Dynamic gas disengagement was experimented in the heterogeneous flow regime to determine the gas voidage in dilute and dense phases. Experimental data show that increasing the solid concentration decreases the total gas holdup significantly, but the influence on the dilute-phase gas holdup is small. The dense-phase gas voidage significantly decreases gas holdup due to enhanced coalescence of small bubbles resulting from introduction of particles. The dense-phase gas voidage is practically independent of the column diameter. The dilute-phase gas holdup, on the other hand, decreases with increasing column diameter, and this dependence could be described adequately with a slight modification of the correlation of Krishna and Ellenberger developed for gas-liquid systems.

  20. Bubble formation in crustaceans following decompression from hyperbaric gas exposures.

    PubMed

    McDonough, P M; Hemmingsen, E A

    1984-02-01

    In vivo bubble formation was studied in various crustaceans equilibrated with high gas pressures and rapidly decompressed to atmospheric pressure. The species varied widely in susceptibility to bubble formation, and adults were generally more susceptible than larval stages. Bubbles did not form in early brine shrimp larvae unless equilibration pressures of at least 175 atm argon or 350 atm helium were used; for adult brine shrimp, copepods, and the larvae of crabs and shrimps, 100-125 atm argon or 175-225 atm helium were required. In contrast, bubbles formed in the leg joints of megalopa and adult crabs following decompression from only 3-10 atm argon; stimulation of limb movements increased this bubble formation, whereas inhibition of movements decreased it. High hydrostatic compressions applied before gas equilibration or slow compressions did not affect bubble formation. We concluded that circulatory systems, musculature, and storage lipids do not necessarily render organisms susceptible to bubble formation and that bubbles do not generally originate as preformed nuclei. In some cases, tribonucleation appears to be the cause of the bubbles. PMID:6706762

  1. Dust and Gas Emission from MIR Bubble N56

    NASA Astrophysics Data System (ADS)

    Devine, Kathryn E.; Watson, Christer; Candelaria, Tierra; Rodriguez, Paula; Low, Cassiemarie; Pickett, Joseph

    2015-01-01

    Mid-infrared (MIR) bubbles, identified in galactic surveys, have been extensively studied with the aim of understanding both their structure and influence on the surrounding interstellar medium. Studies of MIR bubbles aim to explore the relationship between bubble expansion and subsequent star formation. We present observations toward bubble N56 using the Herschel Space Telescope and Green Bank Telescope (GBT). The Herschel continuum observations indicate that N56 may be forming within a high mass-scale environment. The GBT NH3(1,1) and NH3(2,2) spectral line observations indicate evidence of line broadening and velocity changes coincident with the MIR-identified bubble rim. The temperature, density, and kinematics of the gas along the bubble rim are presented. We also discuss the relationship between the kinematics, physical properties, and star formation in N56.

  2. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    SciTech Connect

    Stover, R.L. |

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  3. Simulation Studies on Cooling of Cryogenic Propellant by Gas Bubbling

    NASA Astrophysics Data System (ADS)

    Sandilya, Pavitra; Saha, Pritam; Sengupta, Sonali

    Injection cooling was proposed to store cryogenic liquids (Larsen et al. [1], Schmidt [2]). When a non-condensable gas is injected through a liquid, the liquid component would evaporate into the bubble if its partial pressure in the bubble is lower than its vapour pressure. This would tend to cool the liquid. Earlier works on injection cooling was analysed by Larsen et al. [1], Schmidt [2], Cho et al. [3] and Jung et al. [4], considering instantaneous mass transfer and finite heat transfer between gas bubble and liquid. It is felt that bubble dynamics (break up, coalescence, deformation, trajectory etc.) should also play a significant role in liquid cooling. The reported work are based on simple assumptions like single bubble, zero bubble deformation, and no inter-bubble interactions. Hence in this work, we propose a lumped parameter model considering both heat and mass interactions between bubble and the liquid to gain a preliminary insight into the cooling phenomenon during gas injection through a liquid.

  4. Natural gas: Life after the bubble

    SciTech Connect

    Parent, L. )

    1989-02-01

    According to the author, the bubble is just about history. The gas supply base shrunk by 6 Tcf to 148 Tcf by year-end 1988 and is expected to fall by another 7 Tcf this year. In 1989, annual deliverability will drop below 19 Tcf or an average of about 1,600 Bcf, which is too close for comfort to the maximum monthly production rate that regularly occurs in winter months. Monthly peaks during severe weather have pushed occasional monthly production to well over 1,700 Bcf. Given any kind of long-lasting cold snap affecting most of the Northeast and Midwest, such peaks could stress the system to the point of random deliverability shortfall this winter. And certainly, if not this winter, shortfall will come earlier and more frequently during the 1989-90 winter season as the deliverability slide goes on. A shortfall will likely be pipeline and/or market area specific, and will result from deliverability as well as operating problems. There are an increasing number of fields in which maximum rates cannot be sustained for any length of time.

  5. Venous gas embolism - Time course of residual pulmonary intravascular bubbles

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Luehr, S.; Katz, J.

    1989-01-01

    A study was carried out to determine the time course of residual pulmonary intravascular bubbles after embolization with known amounts of venous air, using an N2O challenge technique. Attention was also given to the length of time that the venous gas emboli remained as discrete bubbles in the lungs with 100 percent oxygen ventilation. The data indicate that venous gas emboli can remain in the pulmonary vasculature as discrete bubbles for periods lasting up to 43 + or - 10.8 min in dogs ventilated with oxygen and nitrogen. With 100 percent oxygen ventilation, these values are reduced significantly to 19 + or - 2.5 min.

  6. CFD-informed unified closure relation for the rise velocity of Taylor bubbles in pipes

    NASA Astrophysics Data System (ADS)

    Lizarraga-Garcia, Enrique; Buongiorno, Jacopo; Al-Safran, Eissa; Lakehal, Djamel

    2015-11-01

    Two-phase slug flow commonly occurs in gas and oil systems. Current predictive methods are based on the mechanistic models, which require the use of closure relations to complement the conservation equations to predict integral flow parameters such as liquid holdup (or void fraction) and pressure gradient. Taylor bubble velocity in slug flow is one of these closure relations which has been determined to significantly affect the calculation of these parameters. In this work, Computational Fluid Dynamics (CFD) with Level-Set as the Interface Tracking Method (ITM) are employed to simulate the motion of Taylor bubbles in slug flow, for which the commercial code TransAT is used. A large numerical database with stagnant and flowing liquid for various Reynolds numbers is being generated from which a unified Taylor bubble velocity correlation in stagnant liquids for an ample range of fluid properties and pipe geometries is proposed (Mo ∈ [ 1 .10-6 , 5 .103 ] , Eo ∈ [ 10 , 700 ]). Furthermore, it is found that the velocity of Taylor bubbles in inclined pipes is greatly affected by the presence of a lubricating thin film between the bubble and the pipe wall. An analytical and experimentally validated criterion, which predicts the film existence, draiage and breakup, is presented.

  7. Production of Gas Bubbles in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Oguz, Hasan N.; Takagi, Shu; Misawa, Masaki

    1996-01-01

    In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid.

  8. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan)

    NASA Astrophysics Data System (ADS)

    RöMer, Miriam; Sahling, Heiko; Pape, Thomas; Bohrmann, Gerhard; Spieß, Volkhard

    2012-10-01

    Evidence for twelve sites with gas bubble emissions causing hydroacoustic anomalies in 18 kHz echosounder records (`flares') was obtained at the convergent Makran continental margin. The hydroacoustic anomalies originating from hydrocarbon seeps at water depths between 575 and 2870 m disappeared after rising up to 2000 m in the water column. Dives with the remotely operated vehicle `Quest 4000 m' revealed that several individual bubble vents contributed to one hydroacoustic anomaly. Analyzed gas samples suggest that bubbles were mainly composed of methane of microbial origin. Bubble size distributions and rise velocities were determined and the volume flux was estimated by counting the emitted bubbles and using their average volume. We found that a low volume flux (Flare 1 at 575 mbsl: 90 ml/min) caused a weak hydroacoustic signal in echograms whereas high volume fluxes (Flare 2 at 1027 mbsl: 1590 ml/min; Flare 5 C at 2870 mbsl: 760 ml/min) caused strong anomalies. The total methane bubble flux in the study area was estimated by multiplying the average methane flux causing a strong hydroacoustic anomaly in the echosounder record with the total number of equivalent anomalies. An order-of-magnitude estimate further considers the temporal variability of some of the flares, assuming a constant flux over time, and allows a large range of uncertainty inherent to the method. Our results on the fate of bubbles and the order-of-magnitude estimate suggest that all of the ˜40 ± 32 × 106 mol methane emitted per year within the gas hydrate stability zone remain in the deep ocean.

  9. Equatorial plasma bubble rise velocities in the Indian sector determined from multistation scintillation observations

    SciTech Connect

    Dabas, R.S.; Reddy, B.M. )

    1990-04-01

    The velocity of plasma-bubble rise over the magnetic equator is calculated on the basis of simultaneous measurements of the onset times of postsunset VHF scintillations from the Japanese satellite ETS-2, obtained at a meridian array of four Indian stations during February 1980. The data and calculation results are presented in tables and graphs and discussed in detail. It is found that bubble velocities increase with altitude, varying in the ranges 128-416, 38-327, and 15-200 m/sec at altitudes 450-550, 550-1140, and 1140-1270 km, respectively. These results are shown to be in good agreement with satellite and radar measurements and with F-layer vertical drift velocities. 17 refs.

  10. Proton Radiography Experiment to Visualize Gas Bubbles in Mercury

    SciTech Connect

    Riemer, Bernie; Felde, David K; Wendel, Mark W; Mariam, Fesseha G; Merrill, Frank E

    2007-01-01

    An experiment to visualize small gas bubbles injected into mercury flowing in a test loop using proton radiography was conducted at the Los Alamos Neutron Science Center (LANSCE) in December 2006. Radiograph images of bubbles were obtained through two mercury thicknesses: 22 mm and 6 mm. Two jet bubblers and two needle bubblers were operated individually over a range of mercury flow speeds (0 - 1 m/s) and gas injection rates (0.1 - 500 sccm). Helium was most commonly used but Argon and Xenon were injected for limited test conditions. The smallest discernable bubbles were about 0.24 mm in diameter. Resolution was limited by image contrast which was notably improved with 6 mm of mercury thickness. Analysis of the radiograph images from jet bubbler conditions provided data on bubble size distribution and total bubble void fraction. In a few cases radiographs captured a large fraction of the injected gas, but generally 20 to 90% of injected gas was not captured in the images. In all more than 400 radiographs were made during the experiment in addition to several movies. Sound recordings of needle bubbler operation were also made and used to quantify bubble formation rate and size; these results are compared to theoretical predictions. This paper describes the experiment goals, scope and equipment; key results are presented and discussed.

  11. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    PubMed Central

    Jordt, Anne; Zelenka, Claudius; Schneider von Deimling, Jens; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  12. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites.

    PubMed

    Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  13. Studies on pressure response of gas bubbles contributions of condensed droplets in bubbles generated by a uniform nucleation

    NASA Technical Reports Server (NTRS)

    Matsumoto, Y.

    1988-01-01

    The response of a tiny gas bubble under reduced pressure is investigated in its relation to cavitation. Equations of motion are formulated for gas mixtures inside the bubble and numerical calculations performed for several examples. The conclusions are as follows: (1) at the onset of bubble growth, the gas mixture inside it adiabatically expands and the temperature decreases. Condensed droplets appear inside the gas mixture due to a uniform nucleation and the temperature recovers, thus the motion of the bubble is apparently isothermal; (2) the evaporation and condensation coefficient largely affects bubble motions (maximum radius, period and rate of attenuation of the bubble oscillation) including the uniform contraction; (3) the oscillation period of the bubble is longer as the equilibrium bubble radius is larger when the surrounding pressure decreases stepwise. In this circumstance the temperature inside the bubble is kept constant due to condensation evaporation phenomena and is nearly isothermal; and (4) when the surrounding pressure decreases in a stepwise fashion, the critical pressure bubble radius relation becomes closer to that for the isothermal process if the bubble radius is larger than 8 microns.

  14. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  15. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh.

    PubMed

    Sokka, S D; King, R; Hynynen, K

    2003-01-21

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand while rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MRT2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  16. Preliminary study of the effects of a reversible chemical reaction on gas bubble dissolution. [for space glass refining

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1982-01-01

    A preliminary investigation is carried out of the effects of a reversible chemical reaction on the dissolution of an isolated, stationary gas bubble in a glass melt. The exact governing equations for the model system are formulated and analyzed. The approximate quasi-steady-state version of these equations is solved analytically, and a calculation is made of bubble dissolution rates. The results are then compared with numerical solutions obtained from the finite difference form of the exact governing equations. It is pointed out that in the microgravity condition of space, the buoyant rise of a gas bubble in a glass melt will be negligible on the time scale of most experiments. For this reason, a determination of the behavior of a stationary gas bubble in a melt is relevant for an understanding of glass refining in space.

  17. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  18. Behavior of bubbles in glassmelts. II - Dissolution of a stationary bubble containing a diffusing and a nondiffusing gas

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Onorato, P. I. K.; Uhlmann, D. R.

    1980-01-01

    The effect of a foreign nondiffusing gas on the rate of shrinkage of an oxygen bubble in a soda-lime-silica melt was studied. The rate of change of bubble radius with time was computed using the quasi-stationary approximation. The effects of melt undersaturation and initial fraction of foreign gas in the bubble are considered and compared with those calculated using previously derived expressions.

  19. Maximum likelihood analysis of bubble incidence for mixed gas diving.

    PubMed

    Tikuisis, P; Gault, K; Carrod, G

    1990-03-01

    The method of maximum likelihood has been applied to predict the incidence of bubbling in divers for both air and helium diving. Data were obtained from 108 air man-dives and 622 helium man-dives conducted experimentally in a hyperbaric chamber. Divers were monitored for bubbles using Doppler ultrasonics during the period from surfacing until approximately 2 h after surfacing. Bubble grades were recorded according to the K-M code, and the maximum value in the precordial region for each diver was used in the likelihood analysis. Prediction models were based on monoexponential gas kinetics using one and two parallel-compartment configurations. The model parameters were of three types: gas kinetics, gas potency, and compartment gain. When the potency of the gases was not distinguished, the risk criterion used was inherently based on the gas supersaturation ratio, otherwise it was based on the potential bubble volume. The two-compartment model gave a significantly better prediction than the one-compartment model only if the kinetics of nitrogen and helium were distinguished. A further significant improvement with the two-compartment model was obtained when the potency of the two gases was distinguished, thereby making the potential bubble volume criterion a better choice than the gas pressure criterion. The results suggest that when the method of maximum likelihood is applied for the prediction of the incidence of bubbling, more than one compartment should be used and if more than one is used consideration should be given to distinguishing the potencies of the inert gases. PMID:2181767

  20. Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Asai, Ayumu; Okano, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) causes a selective temperature rise in tissue and is used as a noninvasive method for tumor treatment. However, there is a problem in that it typically takes several hours to treat a large tumor. The development of a highly efficient method is required to shorten the treatment time. It is known that cavitation bubbles generated by HIFU enhance HIFU heating. In this study, the enhancement of the heating effect by cavitation was estimated in a numerical simulation solving a bio-heat transfer equation (BHTE) by increasing the absorption coefficients in and out of the volume of cavitation bubbles. The absorption coefficients were obtained by a curve fitting the temperature rise near the focal point between experiment and simulation. The results show that cavitation bubbles caused the increase in ultrasonic absorption not only in but also near the volume of cavitation bubbles.

  1. Water vapor diffusion effects on gas dynamics in a sonoluminescing bubble.

    PubMed

    Xu, Ning; Apfel, Robert E; Khong, Anthony; Hu, Xiwei; Wang, Long

    2003-07-01

    Calculations based on a consideration of gas diffusion of gas dynamics in a sonoluminescing bubble filled with a noble gas and water vapor are carried out. Xenon-, argon-, and helium-filled bubbles are studied. In the absence of shock waves, bubble temperatures are found to be decreased, a decrease attributable to the large heat capacity of water vapor. Peak bubble temperature reductions are seen in bubbles containing Xe or Ar but not in those containing He. Further extrapolations provide evidence for the occurrence of shock waves in bubbles with Xe and water vapor. No shock waves are observed in bubbles with Ar or He. PMID:12935248

  2. Bubble size and gas-liquid interfacial area measurements using molten paraffin waxes in bubble columns

    SciTech Connect

    Bukur, D.B.; Patel, S.A.; Daly, J.G.; Raphael, M.L.

    1987-01-01

    Experiments were conducted in 0.05 m ID and 0.23 m ID by 3 m tall bubble columns with different types of molten waxes as the liquid medium and nitrogen as the gas, under processing conditions typical or Fischer-Tropsch synthesis over iron catalysts (i.e. gas velocities up to 0.15 m s, and temperatures between 200 and 270/sup 0/C) to estimate gas liquid interfacial area from measured values of average gas hold-up and Sauter mean bubble diameter. The gas hold-up was estimated from visual observations of the expanded and static liquid heights, and the Sauter was estimated from bubble size measurements obtained by photography and dynamic gas disengagement. The paraffin wax (FT-300) used in the authors' studies is non-coalescing and has a tendency to foam. The amount of foam is greater for runs conducted in the order of increasing gas velocities, than in runs with decreasing velocities. Thus, two values of hold-up are possible and the start-up procedure determines which one will be attained. At higher gas velocities (> 0.05 m/s) the foam disappears and a transition to the slug flow, churn-turbulent regime takes place. Reactor waxes are coalescing in nature and do not produce foam. Despite similar hold-ups for the different waxes at higher gas velocities, the Sauters are significantly different and this is reflected in the specific gas-liquid interfacial areas, with larger values obtained with the paraffin wax compared to values with reactor waxes.

  3. Gas Bubble Pinch-off in Viscous and Inviscid Liquids

    NASA Astrophysics Data System (ADS)

    Taborek, P.

    2005-11-01

    We have used high-speed video to analyze pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the neck radius scales as &1/2circ; until an instability develops in the gas bubble which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed which breaks apart into micron-sized bubbles. 100,000 frame-per-second videos will be presented which illustrate each of these flow regimes.

  4. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    NASA Astrophysics Data System (ADS)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  5. Computation of the Knife-Edge Cusp of a Rising Bubble in a Viscoelastic Fluid

    NASA Astrophysics Data System (ADS)

    You, Ruobo; Haj-Hariri, Hossein

    2006-11-01

    We consider the buoyant rise of an originally-spherical bubble through a viscoelastic fluid. Experiments have demonstrated that the sharp trailing edge could develop a three dimensional cusp of ``knife-like'' shape under certain conditions (high capillary number, large drop size). In order to understand the complex physics of this phenomenon, we have conducted a linear, three-dimensional temporal stability analysis of a computationally-obtained axisymmetric cusped bubble. The in-house time-accurate code is control-volume based and uses a body-fitted grid. Flux-difference splitting is employed to handle large Deborah numbers. Artificial compressibility is used for time marching. The resulting eigenanalysis shows the only linearly-unstable mode to be the one with azimuthal wavenumber of 2. The eigenvalue is real and the nature of instability is an exchange of stability. Thus an axisymmetric cusp can indeed develop into a knife-like shape. An investigation of the energy production and dissipation for the disturbances shows that the normal pressure gradient of the base-state along the free surface plays an important role in the evolution of the instability.

  6. Anterior chamber gas bubbles in open globe injury.

    PubMed

    Barnard, E B G; Baxter, D; Blanch, R

    2013-01-01

    We present a case of a 40-year-old soldier who was in close proximity to the detonation of an improvised explosive device (IED). Bubbles of gas were visible within the anterior chamber of his left eye. The authors propose that intraocular gas, present acutely after trauma, is diagnostic of open globe injury and is of particular importance in remote military environments. PMID:24079202

  7. Gas permeation of LC films observed by smectic bubble expansion.

    PubMed

    Ishii, Y; Tabe, Y

    2009-11-01

    Gas permeation through liquid crystal (LC) films was examined using hemispherical smectic bubbles. A smectic bubble, when the inside and the outside are filled with different gases, should expand or shrink toward the quasi-equilibrium state, where the influx and efflux caused by osmotic pressure are balanced. Deriving a simple formula that directly converts the quasi-equilibrated bubble radius to the gas permeation, we determined the absolute permeability coefficients of 8 simple gases through the smectic bubble. The permeability was distributed in such a wide range that carbon-dioxide had more than 20 times larger value than nitrogen, the dependence of which on the gas species was mostly dominated by their solubility into the LCs. Dividing the measured permeability by the calculated solubility, we obtained the diffusion constants as well, yet whose magnitude and the dependence on the solute size could not be explained by either conventional continuum theories or microscopic diffusion models. In order to describe the diffusion of small solutes in the liquid solvent composed of large molecules, a new theoretical framework may be necessary. PMID:19816725

  8. Heat transfer between immiscible liquids enhanced by gas bubbling

    NASA Astrophysics Data System (ADS)

    Greene, G. A.; Schwarz, C. E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments were performed with nonreactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies were performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model.

  9. Gas bubbles in marine mud-How small are they?

    NASA Astrophysics Data System (ADS)

    Reed, Allen H.; Briggs, Kevin B.

    2003-10-01

    Free gas in marine mud poses a challenging problem in the realm of ocean acoustics as it readily attenuates (i.e., scatters or absorbs) energy, such that objects lying below the gassy sediment are acoustically masked. Gas-laden sediments were located in 10- to 120-m water depth adjacent to the South Pass of the Mississippi River in East Bay using a 12-kHz transducer and the Acoustic Sediment Classification System. Several cores were collected in this region for physical property measurements. Some of the cores were x-rayed on medical and industrial computed tomography (CT) scanners. Volumetric CT images were used to locate gas bubbles, determine shapes and sizes to within the limits of the CT resolution. Free gas in the East Bay sediments was relegated to worm tubes as well as isolated pockets as was the case in Eckernförde Bay sediments [Abegg and Anderson, Mar. Geol. 137, 137-147 (1997)]. The primary significance of the present work is that gas bubbles have been determined to exist in the tens of μm size range, which is significantly smaller than the smallest bubbles that were previously resolved with medical CT (~440 μm) with NRL's HD-500 micro-CT System. [Work supported by ONR and NRL.

  10. Porosity formation and gas bubble retention in laser metal deposition

    NASA Astrophysics Data System (ADS)

    Ng, G. K. L.; Jarfors, A. E. W.; Bi, G.; Zheng, H. Y.

    2009-11-01

    One of the inherent problems associated with laser metal deposition using gas-assisted powder transfer is the formation of porosity, which can be detrimental to the mechanical properties of the bulk material. In this work, a comprehensive investigation of porosity is carried out using gas atomised Inconel 718 powder. In the analysis, a clear distinction is made between two types of porosity; namely lack of fusion and gas porosity. The results show that the two types of porosity are attributed by different factors. The gas porosity, which is more difficult to eliminate than the lack of fusion, can be as high as 0.7%. The study shows that the gas porosity is dependent on the process parameters and the melt pool dynamics. The flotation of entrapped gas bubbles was analysed, showing that in a stationary melt pool the gas would be retained by Marangoni-driven flow. The overall Marangoni-driven flow of the melt pool is in the order of five times higher than the flotation effect, and this is the reason why the melt pool geometry would tend to dominate the flow direction of the gas bubbles. Through optimisation, the gas porosity can be reduced to 0.037%.

  11. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  12. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  13. HUBBLE PICTURES SHOW HOT GAS BUBBLE EJECTED BY YOUNG STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images taken with the Hubble Space Telescope's Wide Field and Planetary Camera 2 reveal the evolution of bubbles of glowing gas being blown out from the young binary star system XZ Tauri. Gas from an unseen disk around one or both of the stars is channeled through magnetic fields surrounding the binary system and then is forced out into space at nearly 300,000 miles per hour (540,000 kilometers per hour). This outflow, which is only about 30 years old, extends nearly 60 billion miles (96 billion kilometers). Hubble first discovered this unique bubble in 1995, and additional observations were made between 1998 and 2000. These images show that there was a dramatic change in its appearance between 1995 and 1998. In 1995, the bubble's edge was the same brightness as its interior. However, when Hubble took another look at XZ Tauri in 1998, the edge was suddenly brighter. This brightening is probably caused by the hot gas cooling off, which allows electrons in the gas to recombine with atoms, a process that gives off light. This is the first time that astronomers have seen such a cooling zone 'turn on.' These images provide an unprecedented opportunity to study the development of a very recent outflow from young (about 1 million years old) stars. Credits: NASA, John Krist (Space Telescope Science Institute), Karl Stapelfeldt (Jet Propulsion Laboratory), Jeff Hester (Arizona State University), Chris Burrows (European Space Agency/Space Telescope Science Institute)

  14. Progression and severity of gas bubble trauma in juvenile salmonids

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Maule, A.G.

    2000-01-01

    We conducted laboratory experiments to assess the progression and to quantify the severity of signs of gas bubble trauma (GBT) in juvenile chinook salmon Oncorhynchus tshawytscha and steelhead Oncorhynchus mykiss exposed to different levels of total dissolved gas (TDG), and we attempted to relate these signs to the likelihood of mortality. When fish were exposed to 110% TDG for up to 22 d, no fish died, and there were few signs of GBT in the lateral line or gills. Bubbles in the fins, however, were relatively common, and they progressively worsened over the experimental period. When fish were exposed to 120% TDG for up to 140 h, chinook salmon had an LT20 (time necessary to kill 20% of the fish) ranging from 40 to 120 h, whereas steelhead had LT20s ranging from 20 to 35 h. In steelhead, bubbles in the lateral line, fins, and gills displayed poor trends of worsening over time, showed substantial interindividual variability, and were poorly related to mortality. In chinook salmon, only bubbles in the lateral line showed a distinct worsening over time, and the severity of bubbles in the lateral line was highly correlated with mortality. When fish were exposed to 130% TDG for up to 11 h, LT20s for chinook salmon ranged from 3 to 6 h, whereas those for steelhead ranged from 5 to 7 h. In chinook salmon, bubbles in the lateral line and fins, but not those in the gills, showed distinct trends of worsening over time. In steelhead, bubbles in the lateral line displayed the most significant trend of progressive severity. In both species at 130% TDG, the severity of all GBT signs was highly correlated with mortality. The progressive nature of GBT and the methods we developed to examine fish for GBT may be useful for monitoring programs that aim to assess the severity of dissolved gas supersaturation exposures experienced by fish in the wild. However, the efficacy of such programs seems substantially hindered by problems associated with (1) the variable persistence of GBT signs

  15. Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2002-01-01

    Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.

  16. Vertical Mobilization of a Residual Oil Phase in a Bead Pack Due to Flow of Discrete Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Pakkala, Konark; Udell, Kent

    2007-11-01

    Mobilization of trapped oil ganglia is of interest in soil and groundwater clean-up and enhanced oil recovery applications. In this work, experiments with glass beads and various oil phase compositions were performed to determine the volumetric fraction of the non-aqueous phase liquid that may be mobilized with rising discrete gas bubbles. Experiments were performed using 6 mm and 2 mm beads. The oil phase liquids included dodecane, perchloroethene, and trichloroethene representing both spreading and non-spreading oil phases. It was found that bubbles were quite effective in mobilizing all three oils including those with densities greater than that of the suspending water. The effectiveness of the mobilization was greater in bead packs with larger beads than in packs comprised of small beads. Volumetric fractional flows of the oil phase were up to 10% of the bubble-droplet volumes, with volumetric fractions decreasing with decreasing oil phase saturations and bead size. The geometry of the oil ganglia/gas bubble combinatory body was also a function of the bead size with smaller beads producing larger, flatter gas bubbles, and the large beads producing bubbles and ganglia of similar size and geometries as the beads themselves.

  17. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  18. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  19. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  20. Application of Phase-field Method in Predicting Gas Bubble Microstructure Evolution in Nuclear Fuels

    SciTech Connect

    Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Gao, Fei; Devanathan, Ramaswami; Henager, Charles H.; Khaleel, Mohammad A.

    2010-04-30

    Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly affect thermo-mechanical properties such as thermal conductivity, gas release, volumetric swelling and cracking, and hence the fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, the elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The simulations demonstrate the potential application of the phase-field method in investigating 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.

  1. In-water gas combustion in linear and annular gas bubbles

    NASA Astrophysics Data System (ADS)

    Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.; Batraev, I. S.

    2014-08-01

    A new pulsed-cyclic method of in-water gas combustion was developed with separate feed of fuel gas and oxygen with the focus on development of new technologies for heat generators and submerged propellers. The results of calorimetric and hydrodynamic measurements are presented. In-water combustion of acetylene, hydrogen, and propane was tested with the operation frequency of 2-2.5 Hz and with a linear injector. The combustion dynamics of combustion of stoichiometric mixture with propane (C3H8+5O2) was studied for a bubble near a solid wall; the produced gas bubble continues expansion and oscillations (for the case of linear and annular bubbles). It was demonstrated that gas combustion in annular bubbles produces two same-magnitude pulses of force acting on the wall. The first pulse is produced due to expansion of combustion products, and the second pulse is produced due to axial cumulative processes after bubble collapse. This process shapes an annular vortex which facilitates high-speed convective processes between combustion products and liquid; and this convection produces small-size bubbles.

  2. Generation and characterization of gas bubbles in liquid metals

    SciTech Connect

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  3. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  4. Bubble Rising Velocity in Sodium Chloride Aqueous Solution under Horizontal DC High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwai, Kazuhiko; Furuhashi, Ippei

    2008-02-01

    In a continuous casting of steel, argon bubbles are injected from a nozzle to prevent nozzle clogging. However, this sometimes causes a problem of the entrapment of inclusions in a solidifying metal front. On the other hand, an electromagnetic brake has been utilized to control molten metal flow in the continuous casting process. Therefore, the understanding of bubble behavior in molten steel under the electromagnetic brake in which inertial force, Lorentz force and buoyancy force play an important role is essential for the optimization of the continuous casting process of steel. A water model experiment is one of the typical methods for direct observation of bubble behavior while it is impossible to use the water model experiment for this purpose because the Lorentz force is not induced by the bubble motion in the water. The Lorentz force is excited when a molten metal with low melting temperature is used instead of the water, however, the direct observation of the bubble motion is impossible because of opaque nature of metals. In order to overcome this problem and to get useful information for the bubble behavior under the electromagnetic brake, the bubble behavior has been simulated by use of a strong electrolyte under a high magnetic field. The principle of the simulation is based on that the ratios among those forces in the simulation system are the nearly same as the ratios in a practical operation. New knowledge about the effect of Lorentz force on the bubble behavior is discussed in this manuscript.

  5. Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow

    NASA Astrophysics Data System (ADS)

    Iben, Uwe; Wolf, Fabian; Freudigmann, Hans-Arndt; Fröhlich, Jochen; Heller, Winfried

    2015-06-01

    In hydraulic systems, it is common for air release to occur behind valves or throttles in the form of bubbles. These air bubbles can affect the behavior and the performance of these systems to a substantial extent. In the paper, gas release in a liquid flow behind an orifice is analyzed by optical methods for various operation points. The bubbles are observed with a digital camera, and a detection algorithm based on the Hough transformation is used to determine their number and size. The appearance of gas bubbles is very sensitive to the inlet and outlet pressure of the orifice. Gas bubbles are only observed if choking cavitation occurs. An empirical relationship between an adjusted cavitation number and the appearance of gas release is presented. It is assumed that the observed bubbles contain mostly air. With the applied pressure differences, up to 30 % of the dissolved air was degassed in the form of bubbles.

  6. Phase-field simulations of gas density within bubbles under irradiation

    SciTech Connect

    Paul C. Millett; Anter El-Azab; Michael Tonks

    2011-05-01

    Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles. In our simulations, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates, bubble densities, and the distribution of gas concentration within bubbles and in the solid regions. We find that gas densities within bubbles fluctuate drastically in the early nucleation stages, when growth rates are highest, but converge to steady-state values during the later coarsening stages. The steady-state gas densities within bubbles correspond with the ratio of total accumulated vacancy content divided by the total accumulated gas content, in agreement with a thermodynamic analysis concerning free-energy minimization.

  7. Evolution of Bubbles through Gas Injection from a Micro-Tube into Liquid Cross-Flow

    NASA Astrophysics Data System (ADS)

    Ghaemi, Sina; Rahimi, Payam; Nobes, David

    2008-11-01

    Generation of small-size bubbles is of importance in many processes such as chemical, medical and food industries. The most common method of bubble generation is injection of gas from an orifice into the liquid phase. In spite of simplicity of this method, appropriate conditions should exist to avoid bubble growth and obtain required small-size bubbles. Thorough understanding of the bubble formation and growth can reveal the required conditions and ensure detachment of the bubbles from the orifice with desired timing to control their size. In this work, evolution of bubbles from a micro-size gas injection tube into liquid cross-flow is investigated. Special attention has been devoted to optimize the conditions to generate micro-size bubbles. Specifically, the influence of gas injection tube size and location, gas and liquid Reynolds numbers and the geometry of the mixing chamber on the bubbles evolution is studied. High-speed shadowgraphy technique is applied to investigate bubbles size and shape. A Particle Tracking Velocimetry algorithm is also applied to calculate bubbles velocity. The velocity field of the liquid flow surrounding the bubbles is also characterized using a Mirco-Stereo-Particle Image Velocimetry technique.

  8. Bubbling behaviors induced by gas-liquid mixture permeating through a porous medium

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Li, Mingbo; Chen, Wenyu; Xie, Haibo; Fu, Xin

    2016-08-01

    This paper investigates the bubbling behaviors induced by gas-liquid mixture permeating through porous medium (PM), which was observed in developing immersion lithography system and was found having great differences with traditional bubbling behaviors injected with only gas phase through the PM. An experimental setup was built up to investigate the bubbling characteristics affected by the mixed liquid phase. Both the flow regimes of gas-liquid mixture in micro-channel (upstream of the PM) and the bubbling flow regimes in water tank (downstream of the PM) were recorded synchronously by high-speed camera. The transitions between the flow regimes are governed by gas and liquid Weber numbers. Based on the image analysis, the characteristic parameters of bubbling region, including the diameter of bubbling area on PM surface, gas-phase volume flux, and dispersion angle of bubbles in suspending liquid, were studied under different proportions of gas and liquid flow rate. Corresponding empirical correlations were developed to describe and predict these parameters. Then, the pertinent bubble characteristics in different bubbling flow regimes were systematically investigated. Specifically, the bubble size distribution and the Sauter mean diameter affected by increasing liquid flow rate were studied, and the corresponding analysis was given based on the hydrodynamics of bubble-bubble and bubble-liquid interactions. According to dimensionless analysis, the general prediction equation of Sauter mean diameter under different operating conditions was proposed and confirmed by experimental data. The study of this paper is helpful to improve the collection performance of immersion lithography and aims to reveal the differences between the bubbling behaviors on PM caused by only gas flow and gas-liquid mixture flow, respectively, for the researches of fluid flow.

  9. Bubble formation during horizontal gas injection into downward-flowing liquid

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Thomas, Brian G.

    2001-12-01

    Bubble formation during gas injection into turbulent downward-flowing water is studied using high-speed videos and mathematical models. The bubble size is determined during the initial stages of injection and is very important to turbulent multiphase flow in molten-metal processes. The effects of liquid velocity, gas-injection flow rate, injection hole diameter, and gas composition on the initial bubble-formation behavior have been investigated. Specifically, the bubble-shape evolution, contact angles, size, size range, and formation mode are measured. The bubble size is found to increase with increasing gas-injection flow rate and decreasing liquid velocity and is relatively independent of the gas injection hole size and gas composition. Bubble formation occurs in one of four different modes, depending on the liquid velocity and gas flow rate. Uniform-sized spherical bubbles form and detach from the gas injection hole in mode I for a low liquid speed and small gas flow rate. Modes III and IV occur for high-velocity liquid flows, where the injected gas elongates down along the wall and breaks up into uneven-sized bubbles. An analytical two-stage model is developed to predict the average bubble size, based on realistic force balances, and shows good agreement with measurements. Preliminary results of numerical simulations of bubble formation using a volume-of-fluid (VOF) model qualitatively match experimental observations, but more work is needed to reach a quantitative match. The analytical model is then used to estimate the size of the argon bubbles expected in liquid steel in tundish nozzles for conditions typical of continuous casting with a slide gate. The average argon bubble sizes generated in liquid steel are predicted to be larger than air bubbles in water for the same flow conditions. However, the differences lessen with increasing liquid velocity.

  10. Ebullition of biogenic gas bubbles from samples of near-surface peat.

    NASA Astrophysics Data System (ADS)

    Baird, A.; Waldron, S.

    2004-05-01

    There is evidence that peat soils are not water-saturated below the water table (e.g. Rosenberry et al. 2003; Baird and Waldron, 2003), owing to accumulations of biogenic gas bubbles, consisting of poorly-soluble gases such as CH4. It has been shown that gas bubbles can block pores and reduce rates of water flow in peat soils (Baird and Waldron, 2003). It has also been shown that, beyond certain levels, biogenic gas bubble accumulations become unstable, giving rise to large but episodic ebullition events, and that ebullition may be an important mechanism of CH4 transfer between peat soils and the atmosphere (e.g. Romanowicz et al., 1995; Rosenberry et al., 2003). However, the studies that have been done on ebullition have looked at relatively deep peat where the bubbles were apparently held below a confining layer of low hydraulic conductivity. Very little is known about the degree to which gas bubbles accumulate in near-surface peat (i.e. the upper 40 cm) and whether they accumulate to such an extent that ebullition and transfer of carbon gases to the atmosphere occur. To address this lack of knowledge we conducted experiments on eight `undisturbed' samples of near-surface (depths of c. 8 cm to 30 cm) peat taken from two lowland raised bogs, one in SW Scotland and one in W Wales. The samples were c. 10 l in volume and were incubated at 12 deg. C with the water table maintained above the sample surface. Water was allowed to flow through the samples periodically for the measurement of hydraulic conductivity (not reported here). Gas traps were fitted to the tops of the samples and the volume of gas in these was measured c. every 2-3 days. Finally, the samples were fitted with TDR probes and gas permeation samplers to measure gas volume and to take gas samples for the measurement of gas content (CH4 and CO2) using a GC. Ebullition was recorded in every sample but only after a build up of biogenic gas bubbles had occurred. We found that ebullition was not episodic and

  11. Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2003-01-01

    Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.

  12. Low-Reynolds-number rising of a bubble near a free surface at vanishing Bond number

    NASA Astrophysics Data System (ADS)

    Guémas, Marine; Sellier, Antoine; Pigeonneau, Franck

    2016-06-01

    This work considers a nearly spherical bubble and a nearly flat free surface interacting under buoyancy at vanishing Bond number Bo. For each perturbed surface, the deviation from the unperturbed shape is asymptotically obtained at leading order on Bo. The task appeals to the normal traction exerted on the unperturbed surface by the Stokes flow due to a spherical bubble translating toward a flat free surface. The free surface problem is then found to be well-posed and to admit a solution in closed form when gravity is still present in the linear differential equation governing the perturbed profile through a term proportional to Bo. In contrast, the bubble problem amazingly turns out to be over-determined. It however becomes well-posed if the requirement of horizontal tangent planes at the perturbed bubble north and south poles is discarded or if the term proportional to Bo is omitted. Both previous approaches turn out to predict for a small Bond number, quite close solutions except in the very vicinity of the bubble poles. The numerical solution of the proposed asymptotic analysis shows in the overlapping range Bo = O ( 0.1 ) and for both the bubble and the free surface perturbed shapes, a good agreement with a quite different boundary element approach developed in Pigeonneau and Sellier ["Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free surface," Phys. Fluids 23, 092102 (2011)]. It also provides approximated bubble and free surface shapes whose sensitivity to the bubble location is examined.

  13. Bubble Formation at a Submerged Orifice for Aluminum Foams Produced by Gas Injection Method

    NASA Astrophysics Data System (ADS)

    Fan, Xueliu; Chen, Xiang; Liu, Xingnan; Zhang, Huiming; Li, Yanxiang

    2013-02-01

    The bubble formation at a submerged orifice in the process of aluminum foams produced by gas injection method is investigated. The experimental results show that the increase of the gas flow rate and the orifice diameter can lead to increasing of the bubble size. The large orifice can make the frequency of bubble formation decrease by slowing down the increase of the gas chamber pressure when the gas flow rate increases. The effect of the gas chamber volume on the bubble size can be ignored in the experiment when it expands from 1 to 125 cm3. A theoretical model of bubble formation, expansion, and detachment under constant flow conditions is established to predict the bubble size. The theoretical predictions for air-aluminum melt systems are consistent with the experimental results.

  14. Sparger Effects on Gas Volume Fraction Distributions in Vertical Bubble-Column Flows as Measured by Gamma-Densitometry Tomography

    SciTech Connect

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.

    2000-01-18

    Gamma-densitometry tomography is applied to study the effect of sparger hole geometry, gas flow rate, column pressure, and phase properties on gas volume fraction profiles in bubble columns. Tests are conducted in a column 0.48 m in diameter, using air and mineral oil, superficial gas velocities ranging from 5 to 30 cm s{sup -1}, and absolute column pressures from 103 to 517 kPa. Reconstructed gas volume fraction profiles from two sparger geometries are presented. The development length of the gas volume fraction profile is found to increase with gas flow rate and column pressure. Increases in gas flow rate increase the local gas volume fraction preferentially on the column axis, whereas increases in column pressure produce a uniform rise in gas volume fraction across the column. A comparison of results from the two spargers indicates a significant change in development length with the number and size of sparger holes.

  15. Transmission of detonation from a medium with bubbles to an explosive-gas volume

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.

    2015-11-01

    For the first time, the possibility of transmission of detonation from a gas-liquid medium with bubbles of a chemically active gas mixture to an explosive-gas volume occurring above the interface is established. The experiments are fulfilled in a formulation in which bubble detonation was initiated by the explosion of a conductor located inside the bubble medium. The distance between the wire and the bubblemedium boundary was varied by decreasing it to 1 cm, when the gas volume was more frequently initiated by hot products of the conductor explosion and the discharge plasma. The dynamics of the gas-liquid interface after the arrival of the bubble-detonation wave to it is investigated. The probabilities of transmission of detonation from the bubble medium to the gas-mixture volume in dependence on the wire-immersion depth are determined, and the mechanism of ignition of the explosive-gas volume is described.

  16. Hydrodynamics of an endothermic gas with application to bubble cavitation

    NASA Astrophysics Data System (ADS)

    Lutsko, James F.

    2006-10-01

    The hydrodynamics for a gas of hard spheres which sometimes experience inelastic collisions resulting in the loss of a fixed, velocity-independent, amount of energy Δ is investigated with the goal of understanding the coupling between hydrodynamics and endothermic chemistry. The homogeneous cooling state of a uniform system and the modified Navier-Stokes equations are discussed and explicit expressions given for the pressure, cooling rates, and all transport coefficients for D dimensions. The Navier-Stokes equations are solved numerically for the case of a two-dimensional gas subject to a circular piston so as to illustrate the effects of the enegy loss on the structure of shocks found in cavitating bubbles. It is found that the maximal temperature achieved is a sensitive function of Δ with a minimum occurring near the physically important value of Δ ˜12000K˜1eV.

  17. Observations on gas-bubble disease of fish

    USGS Publications Warehouse

    1953-01-01

    SOME DIFFICULTY has been experienced in raising fry and young fingerlings at the Puyallup hatchery of the Washington State Department of Game, a hatchery now in its fourth year of operation. There has been evidence of gas in the yolk-sac fry, and the mortality was always excessive among the fingerlings while reared in the hatchery troughs. The mortality rate decreased and evidence of gas-bubble disease disappeared when the fish mere moved to outside ponds. Also, fish seemed less susceptible to parasitic diseases when held in the ponds rather than 1m hatchery troughs. Strains of fish raised at the station were cutthroat trout (Salmo clarkii clarkii and Salmo clarkii lewisi) rainbow trout (Salmo gairdnerii gairdnerii), and steelhead trout (Salmo gairdnerii iriatus)

  18. On the possibility of diffusionally driven oscillations in two component gas bubbles in fluids

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    The problem of an isolated, stationary, two-component gas bubble in a fluid is analyzed. The appropriate governing equations, and an approximate version of these equations, for this model system are reviewed. The qualitative differences in bubble dissolution behavior between single- and two-component gas bubbles are elucidated. In particular, it is demonstrated that in the latter case the gas bubble radius may exhibit extrema as a function of time for certain values of the controlling parameters. The conditions under which these extrema may occur, and the maximum number of extrema which are permitted are elucidated.

  19. Phase-field Modeling of Gas Bubbles and Thermal Conductivity Evolution in Nuclear Fuels

    SciTech Connect

    Hu, Shenyang Y.; Henager, Charles H.; Heinisch, Howard L.; Stan, Marius; Baskes, Michael I.; Valone, Steven

    2009-07-15

    The major factors that influence the thermal conductivity of the ceramics and metals are temperature, stoichiometry, microstructure, porosity, and point defects. Nuclear fuels and structure materials are subject to a severe radiation environment and their properties, including thermal conductivity change significantly with time and irradiation level. In particular, the accumulation of fission products and the formation of He bubbles can decrease the heat transfer, leading to overheating of the fuel element. In this work, we use the phase-field method to study the effect of microstructural changes on thermal conductivity. We developed a phase-field model to simulate the He bubble formation and growth in a single/polycrystalline material with defects. The model takes into account the generation of gas atoms and defects, gas atom diffusivity inhomogeneity, gas atom segregation, and gas bubble nucleation. With the model, we simulated the gas bubble and temperature evolution, and calculated the effect of gas bubble volume fraction on effective thermal conductivity.

  20. Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian

    2015-08-01

    Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.

  1. Frequency dependence in seismoacoustic imaging of shallow free gas due to gas bubble resonance

    NASA Astrophysics Data System (ADS)

    Tóth, Zsuzsanna; Spiess, Volkhard; Keil, Hanno

    2015-12-01

    Shallow free gas is investigated in seismoacoustic data in 10 frequency bands covering a frequency range between 0.2 and 43 kHz. At the edge of a gassy patch in the Bornholm Basin (Baltic Sea), compressional wave attenuation caused by free gas is estimated from reflection amplitudes beneath the gassy sediment layer. Imaging of shallow free gas is considerably influenced by gas bubble resonance, because in the resonance frequency range attenuation is significantly increased. At the resonance frequency of the largest bubbles between 3 and 5 kHz, high scattering causes complete acoustic blanking beneath the top of the gassy sediment layer. In the wider resonance frequency range between 3 and 15 kHz, the effect of smaller bubbles becomes dominant and the attenuation slightly decreases. This allows acoustic waves to be transmitted and reflections can be observed beneath the gassy sediment layer for higher frequencies. Above resonance beginning at ˜19 kHz, attenuation is low and the presence of free gas can be inferred from the decreased reflection amplitudes beneath the gassy layer. Below the resonance frequency range (<1 kHz), attenuation is generally very low and not dependent on frequency. Using the geoacoustic model of Anderson and Hampton, the observed frequency boundaries suggest gas bubble sizes between 1 and 4-6 mm, and gas volume fractions up to 0.02% in a ˜2 m thick sediment layer, whose upper boundary is the gas front. With the multifrequency acoustic approach and the Anderson and Hampton model, quantification of free gas in shallow marine environments is possible if the measurement frequency range allows the identification of the resonance frequency peak. The method presented is limited to places with only moderate attenuation, where the amplitudes of a reflection can be analyzed beneath the gassy sediment layer.

  2. A new pressure formulation for gas-compressibility dampening in bubble dynamics models.

    PubMed

    Gadi Man, Yezaz Ahmed; Trujillo, Francisco J

    2016-09-01

    We formulated a pressure equation for bubbles performing nonlinear radial oscillations under ultrasonic high pressure amplitudes. The proposed equation corrects the gas pressure at the gas-liquid interface on inertial bubbles. This pressure formulation, expressed in terms of gas-Mach number, accounts for dampening due to gas compressibility during the violent collapse of cavitation bubbles and during subsequent rebounds. We refer to this as inhomogeneous pressure, where the gas pressure at the gas-liquid interface can differ to the pressure at the centre of the bubble, in contrast to homogenous pressure formulations that consider that pressure inside the bubble is spatially uniform from the wall to the centre. The pressure correction was applied to two bubble dynamic models: the incompressible Rayleigh-Plesset equation and the compressible Keller and Miksis equation. This improved the predictions of the nonlinear radial motion of the bubble vs time obtained with both models. Those simulations were also compared with other bubble dynamics models that account for liquid and gas compressibility effects. It was found that our corrected models are in closer agreement with experimental data than alternative models. It was concluded that the Rayleigh-Plesset family of equations improve accuracy by using our proposed pressure correction. PMID:27150768

  3. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  4. Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity

    PubMed

    Allen; Roy

    2000-06-01

    The nonlinear oscillations of spherical gas bubbles in linear viscoelastic fluids are studied. A novel approach is implemented to derive a governing system of nonlinear ordinary differential equations. The linear Maxwell and Jeffreys models are chosen as the fluid constitutive equations. An advantage of this new formulation is that, when compared with previous approaches, it facilitates perturbation methods and numerical investigations. Analytical solutions are obtained using a multiple scale perturbation method and compared with the Newtonian results for various Deborah numbers. Numerical analysis of the full equations supports the perturbation analysis, and further reveals significant differences between the viscoelastic and Newtonian cases. Differences in the oscillation phase and harmonic structure characterize some of the viscoelastic effects. Subharmonic excitations at particular fluid parameters lead to a discrete group modulation of the radial excursions; this appears to be a unique, previously undiscovered phenomenon. Implications for medical ultrasound applications are discussed in light of these current findings. PMID:10875361

  5. Swimming movements initiate bubble formation in fish decompressed from elevated gas pressures.

    PubMed

    McDonough, P M; Hemmingsen, E A

    1985-01-01

    Young specimens of trout, catfish, sculpin and salamanders were equilibrated with elevated gas pressures, then rapidly decompressed to ambient pressure. The newly hatched forms tolerated extremely high gas supersaturations; equilibration pressures of 80-120 atm argon or 150-250 atm helium were required for in vivo bubble formation. During subsequent larval development, the equilibration pressures required decreased to just 5-10 atm and bubbles originated in the fins. Anesthetising older fish before decompression prevented bubble formation in the fins; this suggests that swimming movements mechanically initiate bubbles, possibly by a tribonucleation mechanism. PMID:2859954

  6. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals

    PubMed Central

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  7. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals.

    PubMed

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO(2), suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  8. Phase-field simulation of gas bubble growth and flow in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Sun, Ying

    2005-11-01

    A diffuse interface model has been developed for gas bubble growth and dynamics in a supersaturated liquid. The liquid becomes supersaturated in the gas species because of a drop in the pressure or temperature. The bubbles grow by gas diffusion in the liquid towards the bubble interfaces. During bubble growth, flows are induced by the large density contrast between the phases. The bubbles coarsen due to surface tension effects. The process widely exists in biological systems, materials processing, oil recovery, and other applications. The flows in the gas and liquid phases are solved using a diffuse interface model for two-phase flows with surface tension, phase change, and density and viscosity differences between the phases. This diffuse-interface model for flow is coupled with a phase-field equation for calculating the interface motion, and a species conservation equation for the gas transport. The model is validated for a single bubble growing inside a semi-infinite liquid, and convergence of the results with respect to the interface width is demonstrated. Large-scale numerical simulations for multiple bubbles inside a Hele-Shaw cell reveal the presence of complex interface dynamics and flows. The bubble dynamics, including coarsening and coalescence, are investigated as a function of the initial gas concentration, surface tension, and the density and viscosity contrasts between the phases.

  9. A model of extravascular bubble evolution: effect of changes in breathing gas composition.

    PubMed

    Himm, J F; Homer, L D

    1999-10-01

    Observations of bubble evolution in rats after decompression from air dives (O. Hyldegaard and J. Madsen. Undersea Biomed. Res. 16: 185-193, 1989; O. Hyldegaard and J. Madsen. Undersea Hyperbaric Med. 21: 413-424, 1994; O. Hyldegaard, M. Moller, and J. Madsen. Undersea Biomed. Res. 18: 361-371, 1991) suggest that bubbles may resolve more safely when the breathing gas is a heliox mixture than when it is pure O(2). This is due to a transient period of bubble growth seen during switches to O(2) breathing. In an attempt to understand these experimental results, we have developed a multigas-multipressure mathematical model of bubble evolution, which consists of a bubble in a well-stirred liquid. The liquid exchanges gas with the bubble via diffusion, and the exchange between liquid and blood is described by a single-exponential time constant for each inert gas. The model indicates that bubbles resolve most rapidly in spinal tissue, in adipose tissue, and in aqueous tissues when the breathing gas is switched to O(2) after surfacing. In addition, the model suggests that switching to heliox breathing may prolong the existence of the bubble relative to breathing air for bubbles in spinal and adipose tissues. Some possible explanations for the discrepancy between model and experiment are discussed. PMID:10517787

  10. Nano bubbles in liquid of a noble-gas mixture.

    PubMed

    Yamamoto, Takenori; Ohnishi, Shuhei

    2010-02-01

    Large-scale molecular dynamics (MD) simulations with over one million atoms are used to investigate nano bubbles in Ar-Ne liquid. The simulations demonstrate cavitations in the stretched liquid, and bubble creation and collapse. We find that a small cavity created in the stretched liquid spontaneously transforms into a nano bubble with the homogeneous vapor region. The equilibrium spherical bubble of 11.4 nm in radius is obtained after the long-time MD run. The surface tension of the nano bubble is found to be larger than that of the flat surface. PMID:20094667

  11. Contribution to irradiation creep arising from gas-driven bubbles

    SciTech Connect

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  12. Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones

    NASA Astrophysics Data System (ADS)

    Krol, Magdalena M.; Mumford, Kevin G.; Johnson, Richard L.; Sleep, Brent E.

    2011-04-01

    During thermal remediation the increase in subsurface temperature can lead to bubble formation and mobilization. In order to investigate the effect of gas formation on resulting aqueous concentrations, a 2D finite difference flow and mass transport model was developed which incorporates a macroscopic invasion percolation (MIP) model to simulate bubble expansion and movement. The model was used to simulate three soil scenarios with different permeabilities and entry pressures at various operating temperatures and groundwater velocities. It was observed that discrete bubble formation occurred in all three soils, upward mobility being limited by lower temperatures and higher entry pressures. Bubble mobilization resulted in a different aqueous mass distribution than if no discrete gas formation was modeled, especially at higher temperatures. This was a result of bubbles moving upwards to cooler areas, then collapsing, and contaminating previously clean zones. The cooling effect also led to possible non-aqueous phase liquid (NAPL) formation which was not predicted using a model without discrete bubble formation.

  13. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-01

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  14. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    SciTech Connect

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  15. How sea level rise and storm climate impact the looming morpho-economic bubble in coastal property value.

    NASA Astrophysics Data System (ADS)

    McNamara, D.; Keeler, A.; Smith, M.; Gopalakrishnan, S.; Murray, A.

    2012-12-01

    In the United States, the coastal region is now the most densely populated zone in the country and as a result has become a significant source of tax revenue and has some of the highest property values in the country. The loss of land at the coastline from erosion and damage to property from storms has always been a source of vulnerability to coastal economies. To manage this vulnerability, humans have long engaged in the act of nourishing the coastline - placing sand, typically from offshore sources, onto the beach to widen the beach and increase the height of dunes. As humans alter natural coastal dynamics by nourishing, the altered natural dynamics then influence future beach management decisions. In this way human-occupied coastlines are a strongly coupled dynamical system and because of this coupling, the act of nourishment has become an intrinsic part of the economic value of a coastline. Predictions of increased rates of sea level rise and changing storminess suggest that coastal vulnerability is likely to increase. The evolving vulnerability of the coast has already caused changes to occur in the way humans manage the coastline. For example, the federal government has recently reduced subsidies to help coastal communities nourish their beaches. With a future of changing environmental forcing from sea level and storms, the prospect of changes in nourishment cost could have profound consequences on coastal value and sustainability. We utilize two modeling approaches to investigate how disappearing nourishment subsidies reduce coastal property value and to explore the potential for a bubble and subsequent crash in coastal property value as subsidies dwindle and vulnerability rises. The first model is an optimal control model that couples a cost benefit analysis to coastline dynamics. In the second model, we couple a numerical coastline model with an agent-based model for real estate markets. Results from both models suggest the total present value of coastal

  16. Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency.

    PubMed

    Zhang, Yuning; Du, Xiaoze; Xian, Haizhen; Wu, Yulin

    2015-03-01

    Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency is theoretically investigated. The critical bubble radii dividing stable and unstable regions of bubbles under dual-frequency acoustic excitation are strongly affected by the amplitudes of dual-frequency acoustic excitation rather than the frequencies of dual-frequency excitation. The limitation of the proposed model is also discussed with demonstrating examples. PMID:25164271

  17. Molecular dynamics study of fission gas bubble nucleation in UO2

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Andersson, D. A.

    2015-07-01

    Molecular dynamics (MD) simulations are used to study helium and xenon gas bubble nucleation in UO2. For helium bubbles, the pressure release mechanism is by creating defects on the oxygen sublattice. Helium atoms diffuse away from the bubbles into nearby bulk UO2, thus forming a diffuse interface. For xenon bubbles, over-pressurized bubbles containing xenon can displace uranium atoms, which tend to aggregate around the xenon bubble as a pressure release mechanism. MD simulations of xenon atoms in pre-existing voids suggest that xenon atoms and the replaced uranium atoms occur in a 1:1 ratio, although kinetic factors may reduce that ratio depending on availability of xenon atoms and vacancies around the bubble. Finally, MD simulations suggest that for small bubbles (1-5 xenon atoms), the xenon bubble nucleus at UO2 grain-boundaries has much lower formation energy compared to that of bubbles of similar sizes in the bulk. However, when the xenon bubble grows into larger sizes, this energy difference is reduced.

  18. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  19. Studies of the Hot Gas in the Galactic halo and Local Bubble

    NASA Technical Reports Server (NTRS)

    Shelton, Robin L.

    2003-01-01

    This paper presents a report on the progress made on Studies of the Hot Gas in the Galactic halo and Local Bubble at Johns Hopkins University. The broad goals of this project are to determine the physical conditions and history of the hot phase of the Galaxy's interstellar medium. Such gas resides in the Galactic halo, the Local Bubble surrounding the solar neighborhood, other bubbles, and supernova remnants. A better understanding of the hot gas and the processes occurring within it requires several types of work, including ultraviolet and X-ray data analyses and computer modeling.

  20. The dissolution or growth of a gas bubble inside a drop in zero gravity

    NASA Technical Reports Server (NTRS)

    Kondos, Pericles A.; Subramanian, R. Shankar; Weinberg, Michael C.

    1987-01-01

    The radius-time history of a gas bubble located concentrically within a spherical liquid drop in a space laboratory is analyzed within the framework of the quasi-stationary approximation. Illustrative results are calculated from the theory which demonstrate interesting qualitative features. For instance, when a pure gas bubble dissolves within a liquid drop in an environment containing the same gas and some inert species, the dissolution can be more or less rapid than that in an unbounded liquid depending on the initial relative size of the drop. Further, given a similar growth situation, indefinite growth is not possible, and the bubble will initially grow, but always dissolve in the end.

  1. Bubble splitting in bifurcating tubes: a model study of cardiovascular gas emboli transport.

    PubMed

    Calderón, Andrés J; Fowlkes, J Brian; Bull, Joseph L

    2005-08-01

    The transport of long gas bubbles, suspended in liquid, through symmetric bifurcations, is investigated experimentally and theoretically as a model of cardiovascular gas bubble transport in air embolism and gas embolotherapy. The relevant dimensionless parameters in the models match the corresponding values for arteries and arterioles. The effects of roll angle (the angle the plane of the bifurcation makes with the horizontal), capillary number (a dimensionless indicator of flow), and bubble volume (or length) on the splitting of bubbles as they pass through the bifurcation are examined. Splitting is observed to be more homogenous at higher capillary numbers and lower roll angles. It is shown that, at nonzero roll angles, there is a critical value of the capillary number below which the bubbles do not split and are transported entirely into the upper branch. The value of the critical capillary number increases with roll angle and parent tube diameter. A unique bubble motion is observed at the critical capillary number and for slightly slower flows: the bubble begins to split, the meniscus in the lower branch then moves backward, and finally the entire bubble enters the upper branch. These findings suggest that, in large vessels, emboli tend to be transported upward unless flow is unusually strong but that a more homogeneous distribution of emboli occurs in smaller vessels. This corresponds to previous observations that air emboli tend to lodge in the upper regions of the lungs and suggests that relatively uniform infarction of tumors by gas embolotherapy may be possible. PMID:15790688

  2. Magnetic field induced motion behavior of gas bubbles in liquid

    PubMed Central

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  3. Magnetic field induced motion behavior of gas bubbles in liquid.

    PubMed

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  4. Magnetic field induced motion behavior of gas bubbles in liquid

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-02-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields.

  5. Time series analyses of gas-bubble residence time in porous media

    NASA Astrophysics Data System (ADS)

    Lazik, Detlef; Krauss, Gunnar; Geistlinger, Helmut; Vogel, Hans-Jörg

    2010-05-01

    Gas injection into coarse, water saturated sediments results in buoyancy driven bubble movement between an incoherent more or less stable trapped gas phase. The quantitative understanding of the coupled processes resulting in entrapment and movement of the incoherent gas phase allows for optimizing the interaction of trapped and moving gas clusters during air sparging. For granular media with particles larger than 4 mm gas flow becomes continuous without entrapment of large gas clusters. For particles smaller than 1 mm channeling flow is observed. For intermediate particle sizes the gas phase moves within buoyancy driven bubbles between entrapped clusters. To analyze this phenomena we designed a 2D flow cell filled with 2 mm glass beads. The total gas saturation could be measured gravimetrically at high temporal resolution. Gas was injected close to the lower boundary where the volume of injected gas bubbles could be controlled between 10 cm³ and 5000 cm³. This was achieved by changing the size of a reservoir attached to the injection point in which the gas pressure was increased until the air-enty point of the porous medium was reached and the gas cluster was relesed. The pressure of the reservoir was monitored to detect the frequncy of injected gas bubbles. Based on these data the mean and variance of traveltimes could be reliabely determined. The measurements are related to the bulk material and are not restricted to optical observations at the container wall. Thus our method can be applied to any type of sample containment. Nevertheless, the results are in agreement with additional optical measurements obtained at the transparent cell wall. We found that the mean traveltimes are the same irrespective the size of injected bubbles however the variance depends on bubble size in a non-liner manner. In conclusion we discuss the possibility to control the interaction between injected and trapped gas through the injected bubble size.

  6. 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens; Rasmussen, Tine L.

    2013-04-01

    We study an arctic sediment drift in ~1200 m water depth at Vestnesa Ridge, offshore western Svalbard. The ridge is spotted with pockmarks that range in size from a few meters to hundreds of meters in diameter and centimeters to tens of meters in height (e.g. Vogt et al., 1994). There is a strong negative-polarity seismic reflection below the ridge that is interpreted to record a negative impedance contrast marking the boundary between gas hydrate and water above and free gas and water below: it is the bottom-simulating reflector (BSR). Seismically transparent zones, interpreted as gas chimneys, extend from pockmarks at the seafloor to depths below the BSR (180-220 meters below the seafloor) (Bünz et al., 2012). Gas flares, gas hydrate, and methane-seep-specific biological communities (pogonphora and begiatoa bacterial mats) have been observed adjacent to pockmarks at the ridge (Bünz et al., 2012). We present new single-beam echosounding data that were acquired during 2010 and 2012 cruises on the R/V Helmer Hanssen at Vestnesa Ridge using a Simrad EK60 system that operates at frequencies of 18 and 38 kHz. During both cruises which lasted 3-5 days, we detected continuous bubble release from 4 separate pockmarks in 2010 and 6 separate pockmarks in 2012. There were no noticeable, short-term (hourly or daily) variations in the bubble release from the pockmarks, indicating that the venting from the pockmarks does not undergo rapid changes. Plumes from the pockmarks rise between 875 to 925m above the seafloor to a final water depth of 325 to 275m, respectively. This depth is in excellent agreement with the top of the hydrate stability zone (275 meters below sea level) for the gas composition of hydrate sampled at the ridge (96.31% C1; 3.36% C2; 0.21% C3; 0.11% IC4; 0.01% NC4). This suggests that hydrate skins are forming around the gas bubbles, inhibiting the dissolution of gas, and allowing the bubbles to rise to such great heights in the water column. Our results

  7. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and

  8. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    SciTech Connect

    Maksimov, Alexey

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.

  9. Perturbed breakup of gas bubbles in water: memory, gas flow, and coalescence.

    PubMed

    Keim, Nathan C

    2011-05-01

    The pinch-off of an air bubble from an underwater nozzle ends in a singularity with a remarkable sensitivity to a variety of perturbations. I report on experiments that break both the axial (i.e., vertical) and azimuthal symmetry of the singularity formation. The density of the inner gas influences the axial asymmetry of the neck near pinch-off. For denser gases, flow through the neck late in collapse changes the pinch-off dynamics. Gas density is also implicated in the formation of satellite bubbles. The azimuthal shape oscillations described by Schmidt et al. can be initiated by anisotropic boundary conditions in the liquid as well as with an asymmetric nozzle shape. I measure the n=3 oscillatory mode and observe the nonlinear, highly three-dimensional outcomes of pinch-off with large azimuthal perturbations. These are consistent with prior theory. PMID:21728665

  10. Tidal influence on gas bubble emissions from permanent seafloor observations at Ocean Networks Canada's cabled array NEPTUNE

    NASA Astrophysics Data System (ADS)

    Roemer, M.; Scherwath, M.; Heesemann, M.; Spence, G.; Riedel, M.

    2015-12-01

    Sonar data from the northern Cascadia margin correlate well with tidal pressure changes and not so well with currents, seafloor shaking from storms or earthquakes, or temperature changes. These data are available from Ocean Networks Canada which operates the NEPTUNE observatory with power and communications to gas hydrate sites on the continental slope, allowing 24/7 monitoring of the dynamic gas hydrate activity. Clayoquot Slope at Cascadia's Bullseye Vent and Bubbly Gulch, is equipped with a variety of sensors including a 270 kHz Imagenex 100 m range multibeam sonar, as well as Conductivity-Temperature-Depth (CTD) sensors, high precision Bottom Pressure Recorders (BPR), current meter and Ocean Bottom Seismograph (OBS). This enables statistically meaningful correlation of these data. Hourly sonar data were collected showing venting activity in the form of gas plumes of various strengths. For four years the sonar was located at what appears to be a transient gas site, with longer periods of absolutely no venting observed activity. Here, the strongest correlation of gas bubbling is with rapid decreasing tidal pressure, where subsequent increasing tidal pressure is shutting down the degassing. In May 2014, the sonar was moved by 500 m to a more actively venting site termed Gastown Alley, over a zone of seismic blanking interpreted as having high subsurface gas content. This site is continuously emitting gas bubbles albeit with varying numbers of plumes and intensities. The strongest correlation of gas discharge is with absolute pressures, with maximum flows at higher tidal pressures, hinting at a steady subsurface rise of gas that is squeezed out stronger at high tides, partially emptying the shallow reservoirs, and with subsiding tidal pressure the venting activity also decreases again. Thus, the two sonar sites, though only 500 m apart, show a different behavior in degassing, however, both reacting most strongly to tidal pressure changes.

  11. A Model for Surface Induced Growth of Inert Gas Bubbles in Irradiated Copper-Boron Alloys

    SciTech Connect

    Tiwari, G.P.; Ramadasan, E.

    2006-07-01

    A matrix containing inert gas bubbles dilates in direct proportion to the growth experienced by the gas bubbles. This phenomenon is termed as swelling. A model for the swelling induced by the growth of the helium gas bubbles in irradiated copper-boron alloys is presented. The bubbles grow by acquiring vacancies from the external surface, which acts as a source of vacancies. The vacancies reach the surface of the bubbles mainly via lattice diffusion and to a limited extent via diffusion through short-circuiting paths such as grain boundaries and dislocation pipes. The model predicts that overall swelling of the matrix varies as 1.5 power of time. Another consequence of the present model is that the growth rate of a gas bubble varies inversely as the cube of its distance from the external surface. The model has been applied to the data on irradiated copper-boron alloys and found to be in accord with the experimental results. The model is general and can be applied to the growth of all kinds of stationary inert gas bubbles trapped within a crystalline matrix. (authors)

  12. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2006-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Besides recent interest in bubble oscillation in connection to sonoluminescence, an understanding of oscillating bubbles is of important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. For the case of the airgun, a period of twice Rayleigh's period for the ``total collapse'' of the cavitation bubble is often cited as a good approximation for the period of an air bubble ejected from an air gun port, typically at ˜2000 psi), however for the geophysical example, numerical integration is employed from the outset to determine the dynamics of the bubble and the emitted acoustic energy. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude

  13. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    PubMed

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. PMID:27243604

  14. Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang; Bonsu, Alexander

    2016-01-26

    An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the riser to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.

  15. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  16. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2-1.9 compared to the flat sheet membrane. PMID:26857370

  17. Effects of Intergranular Gas Bubbles on Thermal Conductivity

    SciTech Connect

    K. Chockalingam; Paul C. Millett; M. R. Tonks

    2012-11-01

    Model microstructures obtained from phase-field simulations are used to study the effective heat transfer across bicrys- tals with stationary grain boundary bubble populations. We find that the grain boundary coverage, irrespective of the intergranular bubble radii, is the most relevant parameter to the thermal resistance, which we use to derive effec- tive Kapitza resistances that are dependent on the grain boundary coverage and Kaptiza resistance of the intact grain boundary. We propose a model to predict thermal conductivity as a function of porosity, grain-size, Kaptiza resistance of the intact grain boundary, and grain boundary bubble coverage.

  18. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  19. A novel ultrasound based technique for classifying gas bubble sizes in liquids

    NASA Astrophysics Data System (ADS)

    Hussein, Walid; Salman Khan, Muhammad; Zamorano, Juan; Espic, Felipe; Becerra Yoma, Nestor

    2014-12-01

    Characterizing gas bubbles in liquids is crucial to many biomedical, environmental and industrial applications. In this paper a novel method is proposed for the classification of bubble sizes using ultrasound analysis, which is widely acknowledged for being non-invasive, non-contact and inexpensive. This classification is based on 2D templates, i.e. the average spectrum of events representing the trace of bubbles when they cross an ultrasound field. The 2D patterns are obtained by capturing ultrasound signals reflected by bubbles. Frequency-domain based features are analyzed that provide discrimination between bubble sizes. These features are then fed to an artificial neural network, which is designed and trained to classify bubble sizes. The benefits of the proposed method are that it facilitates the processing of multiple bubbles simultaneously, the issues concerning masking interference among bubbles are potentially reduced and using a single sinusoidal component makes the transmitter-receiver electronics relatively simpler. Results from three bubble sizes indicate that the proposed scheme can achieve an accuracy in their classification that is as high as 99%.

  20. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2005-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Oscillating bubbles are important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.

  1. Experimental technique for observing free oscillation of a spherical gas bubble in highly viscous liquids.

    NASA Astrophysics Data System (ADS)

    Nakajima, Takehiro; Ando, Keita

    2015-11-01

    An experimental technique is developed to observe free oscillations of a spherical gas bubble in highly viscous liquids. It is demonstrated that focusing a nanosecond laser pulse of wavelength 532 nm and energy up to 1.5 mJ leads to the formation of a spherical gaseous bubble, not a vaporous bubble (quickly condensed back to the liquid), whose equilibrium radius is up to 200 microns in glycerin saturated with gases at room temperature. The subsequent free oscillations of the spherical gas bubble is visualized using a high-speed camera. Since the oscillation periods are short enough to ignore bubble translation under gravity and mass transfer out of the bubble, the observed bubble dynamics can be compared to nonlinear and linearized Reyleigh-Plesset-type calculations that account for heat conduction and acoustic radiation as well as the liquid viscosity. In this presentation, we report on the measurements with varying the viscosity and comparisons to the theory to quantify damping mechanisms in the bubble dynamics.

  2. A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Klaasen, B.; Verhaeghe, F.; Blanpain, B.; Fransaer, J.

    2014-01-01

    High-quality observations of mesoscopic gas bubbles in liquid metal are vital for a further development of pyrometallurgical gas injection reactors. However, the opacity of metals enforces the use of indirect imaging techniques with limited temporal or spatial resolution. In addition, accurate interface tracking requires tomography which further complicates the design of a high-temperature experimental setup. In this paper, an alternative approach is suggested that circumvents these two main restrictions. By injecting gas in a thin layer of liquid metal entrapped between two flat and closely spaced plates, bubbles in a Hele-Shaw flow regime are generated. The resulting quasi-2D multiphase flow phenomena can be fully captured from a single point of view and, when using a non-wetted transparent plate material, the bubbles can be observed directly. The feasibility of this approach is demonstrated by observations on buoyancy-driven nitrogen bubbles in liquid mercury in a vertical Hele-Shaw cell. By using a moving high-speed camera to make continuous close up recordings of individual bubbles, the position and geometry of these bubbles are quantified with a high resolution along their entire path. After a thorough evaluation of the experimental accuracy, this information is used for a detailed analysis of the bubble expansion along the path. While the observed bubble growth is mainly caused by the hydrostatic pressure gradient, a careful assessment of the volume variations for smaller bubbles shows that an accurate bubble description should account for significant dynamic pressure variations that seem to be largely regime dependent.

  3. Lander based hydroacoustic monitoring of marine single bubble releases in Eckernförde Bay utilizing the multibeam based GasQuant II system.

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Schneider von Deimling, Jens; Greinert, Jens

    2015-04-01

    The GEOMAR Helmholtz Centre for Ocean Research Kiel is currently developing a Imagenex Delta T based lander system for monitoring and quantifying marine gas release (bubbles). The GasQuant II is built as the successor of the GasQuant I system (Greinert, 2008), that has been successfully used for monitoring tempo-spatial variability of gas release in the past (Schneider von Deimling et al., 2010). The new system is lightweight (40 kg), energy efficient, flexible to use and built for ROV deployment with autonomous operation of up to three days. A prototype has been successfully deployed in Eckernförde Bay during the R/V ALKOR cruise AL447 in October/November 2014 to monitor the tempo-spatial variability of gas bubble seepage and to detect a possible correlation with tidal variations. Two deployments, one in forward- and one in upward looking mode, reveal extensive but scattered single bubble releases rather than distinct and more continuous sources. While these releases are difficult to detect in forward looking mode, they can unambiguously be detected in the upward looking mode even for minor gas releases, bubble rising speeds can be determined. Greinert, J., 2008. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant. J. Geophys. Res. Oceans Vol. 113 Issue C7 CiteID C07048 113, 7048. doi:10.1029/2007JC004704 Schneider von Deimling, J., Greinert, J., Chapman, N.R., Rabbel, W., Linke, P., 2010. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents. Limnol. Oceanogr. Methods 8, 155. doi:10.4319/lom.2010.8.155

  4. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Li, Yanxiang; Wang, Ningzhen; Cheng, Ying; Chen, Xiang

    2016-06-01

    The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure ( P c) and orifice diameter ( D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter ( D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh-Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

  5. Rate of disappearance of gas bubble trauma signs in juvenile salmonids

    USGS Publications Warehouse

    Hans, K.M.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.

  6. Light emission of sonoluminescent bubbles containing a rare gas and water vapor.

    PubMed

    Hammer, Dominik; Frommhold, Lothar

    2002-04-01

    We present numerical simulations of sonoluminescent rare-gas bubbles in water, which account for (i) time variations of the water vapor content, (ii) chemical reactions, and (iii) the ionization of the rare gas and the H2O dissociation products. Peak temperatures exceed 10 000 K at densities of a few hundred amagat ( approximately 10(28) particles per m(3)). The gas mixture in the bubble is weakly ionized. Our model accounts for the light emission by electron-atom, electron-ion, and ion-atom bremsstrahlung, recombination radiation, and radiative attachment of electrons to hydrogen and oxygen atoms, which are all more or less important for single bubble sonoluminescence. Spectral shapes, spectral intensities, and durations of the light pulses are computed for helium, argon, and xenon bubbles. We generally obtain good agreement with the observations for photon numbers and pulse durations. Some calculated spectral profiles agree, however, less well with observations, especially in the case of the low water temperature and for helium bubbles. We try to identify the reasons why computed and observed spectral profiles might discernibly differ when all other computed features considered here seem to be quite consistent with observations. We show that by allowing the bubble to heat somewhat nonisotropically, agreement between observed and computed spectral profiles may be obtained, even in the case of helium bubbles at freezing water temperatures. In this case, charge exchange radiation and related processes involving helium atoms and ions become important. PMID:12006015

  7. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  8. Secondary Vortex Formation in Bifurcated Submerged Entry Nozzles: Numerical Simulation of Gas Bubble Entrapment

    NASA Astrophysics Data System (ADS)

    Pirker, Stefan; Kahrimanovic, Damir; Schneiderbauer, Simon

    2015-04-01

    The submerged entry nozzle (SEN) flow behavior is crucial for continuous casting of slab steel since it controls the mold flow pattern. In this study, we focus on the bottom zone of a bifurcated SEN where the flow deflection determines the port outflow. By applying a hybrid finite volume and lattice Boltzmann-based turbulence model, the dynamic behavior of horizontally orientated secondary vortices is investigated. In addition to the pure liquid metal flow, gas bubbles are traced in both discrete and continuous way. Simulation results indicate the existence of highly turbulent secondary vortices in the deflection zone of a bifurcated SEN, which attract gas bubbles in form of bubble threads or continuous gas volumes at their rotational axes. In addition, cyclically detaching gas volumes are formed at the upper port region at higher gas flow rates. Numerical predictions agree well with observations from physical water-air models.

  9. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  10. Characterization of intergranular fission gas bubbles in U-Mo fuel.

    SciTech Connect

    Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.; Nuclear Engineering Division; SSCR RIAR

    2008-04-14

    This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of {approx}0 at% U-235 (LEU) or a fission density of {approx}3 x 10{sup 21} fissions/cm{sup 3}. Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed

  11. Gas pockets in a wastewater rising main: a case study.

    PubMed

    Pozos-Estrada, Oscar; Fuentes-Mariles, Oscar A; Pozos-Estrada, Adrian

    2012-01-01

    This paper presents a case study of an existing wastewater rising main (WWRM) in which an extreme transient event produced by simultaneous power failure of the pumps caused the rupture of a 1.2 m (48 in) prestressed concrete cylinder pipe (PCCP), causing an important leakage of sewage. The event and the methodology followed in order to validate the diagnostics of the failure are described. The detail study included in situ observation of the system, experimental investigation in a setup, hydraulic analysis, as well as details of the structural strength of the WWRM. After the extensive investigation and several simulations of fluid transients for different scenarios and flow conditions, it was found that stationary small gas pockets accumulated at high points of the WWRM were identified as the principal contributory factor of the failure. This case study serves as clear warning of the consequences of operating a WWRM with gas pockets at its high points. PMID:22949261

  12. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  13. Histopathology and ultrastructure of ocular lesions associated with gas bubble disease in salmonids.

    PubMed

    Speare, D J

    1990-11-01

    Ocular lesions associated with natural and experimental outbreaks of gas bubble disease (GBD) in commercial salmonids were assessed histologically and by scanning electron microscopy. Small gas emboli were first detected in the choroid gland of the posterior uvea. In subacute and chronic cases, bubble size increased markedly and localization in retrobulbar and periocular sites was favoured. During the acute phase of GBD, ocular lesions were limited to anatomical displacement of tissue and local degeneration of compressed tissues around the perimeter of bubbles. Subacute sequelae included the formation of anterior synechia, lens cataract, and suppurative panophthalmitis. During chronic stages, when large retrobulbar bubbles had caused severe exophthalmia, there was stretching of the optic nerve and of retinal blood vessels and severe distortion of the posterior aspects of the globe. The sequential development, pathogenesis and persistence of ocular lesions associated with GBD in fish are discussed. PMID:2079557

  14. An acoustic levitation technique for the study of nonlinear oscillations of gas bubbles in liquids

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Crum, L. A.

    1983-08-01

    A technique of acoustic levitation was developed for the study of individual gas bubbles in a liquid. Isopropyl alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the acoustic pressure antinode of an acoustic wave in the range of 20-22 kHz. Measurements were made of the levitation number as a function of the normalized radius of the bubbles. The levitation number is the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient. These values were then compared to a nonlinear theory. Results were very much in agreement except for the region near the n=2 harmonic. An explanation for the discrepancy between theory and experiment appears to lie in the polytropic exponent associated with the gas in the interior of the bubble.

  15. Gas bubble formation in fused silica generated by ultra-short laser pulses.

    PubMed

    Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael

    2014-06-30

    During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles. PMID:24977843

  16. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  17. Analysis of an oscillatory oil squeeze film containing a central gas bubble

    NASA Technical Reports Server (NTRS)

    Haber, S.; Etsion, I.

    1985-01-01

    A squeeze-film damper, consisting of two circular plates, having only normal oscillatory relative motion is considered. The liquid lubricant between the plates is assumed to contain a single central gas bubble. The effect of the bubble on the damper performance is analyzed. Comparison is made with the performance of a pure liquid damper. Substantial deviations in peak dynamic pressures are predicted which explain discrepancies between experimental and theoretical results reported in the literature.

  18. Gas bubble disease in smallmouth bass and northern squawfish from the Snake and Columbia Rivers

    SciTech Connect

    Montgomery, J.C.; Becker, C.D.

    1980-11-01

    In 1975 and 1976, 179 smallmouth bass (Micropterus dolomieui) and 85 northern squawfish (Ptychocheilus oregonensis) were collected by angling from the lower Snake and mid-Columbia rivers, southeastern Washington. All fish were examined externally for gas bubble syndrome. Emboli were found beneath membranes of the opercula, body, and fins of 72% of the smallmouth bass and 84% of the northern squawfish. Hemorrhage was also noted on the caudal, anal, and pectoral fins of several smallmouth bass. Presence of gas bubble syndrome corresponded to the spring runoff when total dissolved gas supersaturations in river water exceeded 115%.

  19. Sound waves in a liquid with polydisperse vapor-gas bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedorov, Yu. V.

    2016-03-01

    A mathematical model is presented for the propagation of plane, spherical, and cylindrical sound waves in a liquid containing polydisperse vapor-gas bubbles with allowance for phase transitions. A system of integro-differential equations is constructed to describe perturbed motion of a two-phase mixture, and a dispersion relation is derived. An expression for equilibrium sound velocity is obtained for a gas-liquid or vapor-liquid mixture. The theoretical results agree well with the known experimental data. The dispersion curves obtained for the phase velocity and the attenuation coefficient in a mixture of water with vapor-gas bubbles are compared for various values of vapor concentration in the bubbles and various bubble distributions in size. The evolution of pressure pulses of plane and cylindrical waves is demonstrated for different values of the initial vapor concentration in bubbles. The calculated frequency dependence of the phase sound velocity in a mixture of water with vapor bubbles is compared with experimental data.

  20. Gas Bubble Disease Monitoring and Research of Juvenile Salmonids : Annual Report 1996.

    SciTech Connect

    Maule, Alec G.; Beeman, John W.; Hans, Karen M.; Mesa, M.G.; Haner, P.; Warren, J.J.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3).

  1. Bubble-induced aggregation of platelets: effects of gas species, proteins, and decompression.

    PubMed

    Thorsen, T; Klausen, H; Lie, R T; Holmsen, H

    1993-06-01

    We show that bubbles containing different gases (N2, He, Ne, Ar, or an O2-CO2-N2 mixture) are equally potent platelet agonists. The synergistic effect of different platelet antagonists does not seem to be affected by the type of gas in the bubbles. In contrast to aggregation in platelet-rich plasma (PRP), bubbles cause only a weak response in gel-filtered platelets (GFP), i.e., comparison of aggregation in protein-rich and protein-poor platelet suspensions may shed light on the role of different plasma proteins. Extracellular fibrinogen promotes bubble-induced platelet aggregation similar to known physiologic agonists, whereas albumin counteracts this aggregation. Bubble-induced aggregation is inhibited in GFP-fibrinogen by 2-deoxy-D-glucose plus antimycin A, suggesting dependency on ATP generation in the platelets and evidence for direct exposure of the "cryptic" fibrinogen receptor by bubbles. Hyperbaric compression and subsequent rapid, inadequate decompression of PRP caused little change in the aggregation response to gas bubbles and epinephrine at 1 bar, but reduced the response to ADP. Bubbles tended not to form before the surface film was broken. Pressure-induced aggregation was apparently metabolically active and not due to passive agglutination; electron microscopic studies and PRP with added glutaraldehyde did not show platelet activation, clumping, or reduced platelet count. In contrast to aggregation caused by pressure, bubble-induced aggregation in PRP at 1 bar (after treatment in the pressure chamber) was nearly completely inhibited by theophylline, a phosphodiesterase inhibitor that increases intracellular platelet cyclic AMP. PMID:8392414

  2. Gas holdup in cyclone-static micro-bubble flotation column.

    PubMed

    Li, Xiaobing; Zhu, Wei; Liu, Jiongtian; Zhang, Jian; Xu, Hongxiang; Deng, Xiaowei

    2016-01-01

    The present work has been carried out to investigate the effect of process variables on gas holdup and develop an empirical equation and a neural network model for online process control of the gas holdup based on the operating variables. In this study, the effect of process variables (nozzle diameter, circulation pressure, aeration rate, and frother dosage) on gas holdup in a cyclone-static micro-bubble flotation column of an air/oily wastewater system was investigated. Gas holdup was estimated using a pressure difference method and an empirical equation was proposed to predict gas holdup. A general regression neural network (GRNN) model was also introduced to predict gas holdup for the cyclone-static micro-bubble flotation column. The predictions from the empirical equation and the GRNN are in good agreement with the experiment data for gas holdup, while the GRNN provides higher accuracy and stability compared with that of the empirical equation. PMID:26293176

  3. Gas bubble transport and emissions for shallow peat from a northern peatland: The role of pressure changes and peat structure

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Slater, Lee

    2015-01-01

    Gas bubbles are an important pathway for methane release from peatlands. The mechanisms controlling gas bubble transport and emissions in peat remain uncertain. The effects of hydrostatic pressure and peat structure on the dynamics of gas bubbles in shallow peat were therefore tested in laboratory experiments. A peat monolith was retrieved from a raised bog and maintained in a saturated state. Three distinct layers were identified from noninvasive permittivity measurements supported by soil physical properties (porosity, bulk density). Phase I of the experiment involved monitoring for the accumulation of gas bubbles under steady pressure and temperature conditions. The data showed evidence for gas bubbles being impeded by a shallow semiconfining layer at depths between 10 and 15 cm. Visible gas bubbles observed on the side of the sample box were recorded over time to estimate changes in the vertical distribution of volumetric gas content. Porosity estimates derived using the Complex Refraction Index Model (CRIM) suggest that gas bubbles enlarge the pore space when the exerted pressure is high enough. Phase II involved triggering release of trapped bubbles by repeatedly increasing and decreasing hydrostatic pressure in an oversaturated condition. Comparison of changes in pressure head and methane density in the head space confirmed that the increasing buoyancy force during drops in pressure is more important for triggering ebullition than increasing mobility during increases in pressure. Our findings demonstrate the importance of changes in hydrostatic pressure on bubble size and variations in resistance of the peat fabric in regulating methane releases from peatlands.

  4. Dynamics of biogenic gas bubbles in peat: Potential effects on water storage and peat deformation

    NASA Astrophysics Data System (ADS)

    Kellner, E.; Waddington, J. M.; Price, J. S.

    2005-08-01

    Dynamics of biogenic bubbles in peat soils were studied at a field site in southern Québec, Canada. The maximum gas content measured in this study varied spatially with a maximum seasonal increase in volumetric gas content of 0.15. The size of changes in total gas content of a 1 m deep profile was comparable to the seasonal water storage change. Changes in bubble volume in the saturated zone alter the water table level and, consequently, the water content in the unsaturated zone and the apparent water budget. In highly compressible soils (and floating root mats), buoyancy forces from bubbles also cause relations between the surface and the water table to change. These effects cannot be omitted in modeling the hydrology of peatlands. Our results indicate a great spatial variability of trapped bubbles. Using pressure transducers sealed to the surface, we found pressure deviations indicating small areas closed off by bubbles clogging the pores. The hydrological influence of these areas may be considerable as they may restrict or deflect water flows. Open pipe piezometers did not show these pressure deviations, possibly because the closed zones were too small to influence the head in pipes or because of less amount of gas close to the pipe screen.

  5. Modeling the influence of bubble pressure on grain boundary separation and fission gas release

    SciTech Connect

    Pritam Chakraborty; Michael R. Tonks; Giovanni Pastore

    2014-09-01

    Grain boundary (GB) separation as a mechanism for fission gas release (FGR), complementary to gas bubble interlinkage, has been experimentally observed in irradiated light water reactor fuel. However there has been limited effort to develop physics-based models incorporating this mechanism for the analysis of FGR. In this work, a computational study is carried out to investigate GB separation in UO2 fuel under the effect of gas bubble pressure and hydrostatic stress. A non-dimensional stress intensity factor formula is obtained through 2D axisymmetric analyses considering lenticular bubbles and Mode-I crack growth. The obtained functional form can be used in higher length-scale models to estimate the contribution of GB separation to FGR.

  6. Equations of spatial hydrodynamic interaction of weakly nonspherical gas bubbles in liquid in an acoustic field

    NASA Astrophysics Data System (ADS)

    Davletshin, A. I.; Khalitova, T. F.

    2016-01-01

    A mathematical model of spatial hydrodynamic interaction of gas bubbles in liquid in an acoustic field taking into account small deformations of their surfaces is proposed. It is a system of ordinary differential equations of the second order in radii of the bubbles, the position vectors of their centers and the amplitudes of deviation of their shape from the spherical one in the form of spherical harmonics. The equations derived are of the first order of accuracy in A / R and of the fourth order in R / D, where R is the characteristic radius of the bubbles, A is the amplitude of characteristic deviation of their surface from the spherical one in the form of spherical harmonics, D is the characteristic distance between bubbles. The derivation of the equations is carried out by the method of spherical functions with the use of the Bernoulli integral, the kinematic and dynamic boundary conditions on the surface of the bubbles. The effects of viscosity and compressibility of the liquid are considered approximately, the gas in the bubbles is assumed homobaric.

  7. Bubble Continuous Positive Airway Pressure Enhances Lung Volume and Gas Exchange in Preterm Lambs

    PubMed Central

    Pillow, J. Jane; Hillman, Noah; Moss, Timothy J. M.; Polglase, Graeme; Bold, Geoff; Beaumont, Chris; Ikegami, Machiko; Jobe, Alan H.

    2007-01-01

    Rationale: The technique used to provide continuous positive airway pressure (CPAP) to the newborn may influence lung function and breathing efficiency. Objectives: To compare differences in gas exchange physiology and lung injury resulting from treatment of respiratory distress with either bubble or constant pressure CPAP and to determine if the applied flow influences short-term outcomes. Methods: Lambs (133 d gestation; term is 150 d) born via cesarean section were weighed, intubated, and treated with CPAP for 3 hours. Two groups were treated with 8 L/minute applied flow using the bubble (n = 12) or the constant pressure (n = 12) technique. A third group (n = 10) received the bubble method with 12 L/minute bias flow. Measurements at study completion included arterial blood gases, oxygraphy, capnography, tidal flow, multiple breath washout, lung mechanics, static pressure–volume curves, and bronchoalveolar lavage fluid protein. Measurements and Main Results: Birth weight and arterial gas variables at 15 minutes were comparable. Flow (8 or 12 L/min) did not influence the 3-hour outcomes in the bubble group. Bubble technique was associated with a higher pH, PaO2, oxygen uptake, and area under the flow–volume curve, and a decreased alveolar protein, respiratory quotient, PaCO2, and ventilation inhomogeneity compared with the constant pressure group. Conclusions: Compared with constant pressure technique, bubble CPAP promotes enhanced airway patency during treatment of acute postnatal respiratory disease in preterm lambs and may offer protection against lung injury. PMID:17431223

  8. Evolution of a gas bubble in porous matrix filled by methane hydrate

    NASA Astrophysics Data System (ADS)

    Tsiberkin, Kirill; Lyubimov, Dmitry; Lyubimova, Tatyana; Zikanov, Oleg

    2013-04-01

    Behavior of a small isolated hydrate-free inclusion (a bubble) within hydrate-bearing porous matrix is studied analytically and numerically. An infinite porous matrix of uniform properties with pores filled by methane hydrates and either water (excessive water situation) or methane gas (excessive gas situation) is considered. A small spherical hydrate-free bubble of radius R0 exists at initial moment within the matrix due to overheating relative to the surrounding medium. There is no continuing heat supply within the bubble, so new hydrate forms on its boundary, and its radius decreases with time. The process is analysed in the framework of the model that takes into account the phase transition and accompanying heat and mass transport processes and assumes spherical symmetry. It is shown that in the case of small (~ 10-2-10-1 m) bubbles, convective fluxes are negligible and the process is fully described by heat conduction and phase change equations. A spherically symmetric Stefan problem for purely conduction-controlled evolution is solved analytically for the case of equilibrium initial temperature and pressure within the bubble. The self-similar solution is verified, with good results, in numerical simulations based on the full filtration and heat transfer model and using the isotherm migration method. Numerical simulations are also conducted for a wide range of cases not amenable to analytical solution. It is found that, except for initial development of an overheated bubble, its radius evolves with time following the self-similar formula: R(t) ( t)1-2 R0-= 1 - tm- , (1) where tm is the life-time of bubble (time of its complete freezing). The analytical solution shows that tm follows 2 tm ~ (R0-?) , (2) where ? is a constant determined by the temperature difference ΔT between the bubble's interior and far field. We consider implications for natural hydrate deposits. As an example, for a bubble with R0 = 4 cm and ΔT = 0.001 K, we find tm ~ 5.7 ? 106 s (2

  9. Development of the Liposomes Entrapped Ultrasound Imaging Gas (``Bubble Liposomes'') as Novel Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Tanaka, Kumiko; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi; Hagisawa, Kohsuke; Nishioka, Toshihiko; Maruyama, Kazuo

    2006-05-01

    Recently, microbubbles and ultrasound have been investigated with a view to improving the transfection efficiency of nonviral delivery systems for gene by cavitation. However, microbubbles had some problems in terms of stability and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages such as stable and safe in vivo and easy to modify targeting ligand. Previously, we have represented that liposomes are good drug and gene delivery carriers. In addition, we developed that the liposomes ("Bubble liposomes") were entrapped with perfluoropropane known as ultrasound imaging gas. In this study, we assessed about feasibility of "Bubble liposomes" as gene delivery tool utilized cavitation by ultrasound irradiation. "Bubble liposomes" could effectively deliver plasmid DNA to cells by combination of ultrasound irradiation without cyototoxicity. This result suggested that "Bubble liposomes" might be a new class of tool for gene delivery.

  10. Creating Small Gas Bubbles in Flowing Mercury Using Turbulence at an Orifice

    SciTech Connect

    Wendel, Mark W; Abdou, Ashraf A; Paquit, Vincent C; Felde, David K; Riemer, Bernie

    2010-01-01

    Pressure waves created in liquid mercury pulsed spallation targets have been shown to create cavitation damage to the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating such a population in mercury is difficult due to the high surface tension and particularly the non-wetting behavior of mercury on gas-injection hardware. If the larger injected gas bubbles can be broken down into small bubbles after they are introduced to the flow, then the material interface problem is avoided. Research at the Oak Ridge National Labarotory is underway to develop a technique that has shown potential to provide an adequate population of small-enough bubbles to a flowing spallation target. This technique involves gas injection at an orifice of a geometry that is optimized to the turbulence intensity and pressure distribution of the flow, while avoiding coalescence of gas at injection sites. The most successful geometry thus far can be described as a square-toothed orifice having a 2.5 bar pressure drop in the nominal flow of 12 L/s for one of the target inlet legs. High-speed video and high-resolution photography have been used to quantify the bubble population on the surface of the mercury downstream of the gas injection sight. Also, computational fluid dynamics has been used to optimize the dimensions of the toothed orifice based on a RANS computed mean flow including turbulent energies such that the turbulent dissipation and pressure field are best suited for turbulent break-up of the gas bubbles.

  11. Experimental investigation of bubble column hydrodynamics: Effect of elevated pressure and superficial gas velocity

    NASA Astrophysics Data System (ADS)

    Ong, Booncheng

    Bubble column reactors are widely used in the chemical and biochemical industries. They were reactors of choice in syngas conversion to clean fuels and chemicals. Most of the current applications of bubble column reactors in the chemical process industry require operation at high-pressure conditions. Further, to enhance the volumetric productivity, high gas flow rates are employed. The fundamental description of bubble column hydrodynamics under these conditions is very complex and complete understanding has not yet been established in spite of concerted research efforts. In order to improve our ability to quantify phenomena in bubble columns, it is essential that precise and quality experimental information is available to advance the state of the art in bubble column design and operation. In this study, measurements of gas holdup from Computed Tomography, and of time-averaged liquid velocity and turbulence from Computer Automated Radioactive Particle Tracking are obtained in a 6.4″ diameter stainless steel bubble column at elevated pressure and at high superficial gas velocity with different gas spargers. It is shown quantitatively that deep in the churn-turbulent regime, gas holdup and liquid recirculation increase with pressure and superficial gas velocity while sparger effects are predominantly confined to the distributor zone. Additionally, an increase in pressure results in the reduction of turbulent normal stresses and eddy diffusivities most likely due to a reduction in bubble size. Based on the experimental data obtained from this study, a correction factor to the correlation of Zehner (1986) for predicting the centerline liquid velocity is developed to account for pressure effect on liquid recirculation. The correction factor indicates an one-eighth power dependency on gas density. Comparison of the experimentally estimated eddy viscosity with the model of Ohnuki and Akimoto (2001) suggests that the contribution of bubble-induced turbulence to the

  12. The effects of bubbles on the structure of upward gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Gubaidulin, D. A.; Snigerev, B. A.

    2016-01-01

    The paper presents the results of study of the local structure of turbulent gas-liquid flow in vertical pipe. A mathematical model based on the use of Eulerian description for both phases taking into account the action of different forces of interfacial interaction. Special attention is paid to the development of approaches for the simulation of polydispersed bubbly flows taking into account processes of coagulation and fragmentation. Comparison of simulation results with experimental data showed that the developed approach allows to obtain detailed information about the structures of turbulent gas-liquid flows, the distribution of bubbles by size.

  13. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium.

    PubMed

    Ma, Rui; Wang, Jingming; Yang, Zhongjia; Liu, Meng; Zhang, Jingjing; Jiang, Lei

    2015-04-01

    A series of well-ordered, 3D gradient porous interconnected network surfaces composed of micro-nano hierarchical geometries is constructed on a copper wire. A continuous gas film can be trapped around its interface in an aqueous medium acting as an effective channel for gas transportation. Driving by the difference of the Laplace pressure, gas bubbles can be transported spontaneously and directionally. PMID:25688855

  14. Decompression sickness bubbles: are gas micronuclei formed on a flat hydrophobic surface?

    PubMed

    Arieli, R; Marmur, A

    2011-06-30

    It is a long-standing hypothesis that the bubbles which evolve as a result of decompression have their origin in stable gas micronuclei lodged in hydrophobic crevices, micelles of surface-active molecules, or tribonucleation. Recent findings supported by atomic force microscopy have indicated that tiny, flat nanobubbles form spontaneously on smooth, hydrophobic surfaces submerged in water. We propose that these nanobubbles may be the gas micronuclei responsible for the bubbles that evolve to cause decompression sickness. To support our hypothesis, we used hydrophilic and monolayer-covered hydrophobic smooth silicon wafers. The experiment was conducted in three main stages. Double distilled water was degassed at the low pressure of 5.60 kPa; hydrophobic and hydrophilic silicon wafers were placed in a bowl of degassed water and left overnight at normobaric pressure. The bowl was then placed in the hyperbaric chamber for 15 h at a pressure of 1013 kPa (=90 m sea water). After decompression, bubbles were observed and photographed. The results showed that bubbles only evolved on the hydrophobic surfaces following decompression. There are numerous hydrophobic surfaces within the living body (e.g., in the large blood vessels), which may thus be the sites where nanobubbles that serve as gas micronuclei for bubble evolution following decompression are formed. PMID:21376842

  15. Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles

    NASA Astrophysics Data System (ADS)

    Leblond, Isabelle; Scalabrin, Carla; Berger, Laurent

    2014-09-01

    Three decades of continuous ocean exploration have led us to identify subsurface fluid related processes as a key phenomenon in marine earth science research. The number of seep areas located on the seafloor has been constantly increasing with the use of multi-scale imagery techniques. Due to recent advances in transducer technology and computer processing, multibeam echosounders are now commonly used to detect submarine gas seeps escaping from the seafloor into the water column. A growing number of en- route surveys shows that sites of gas emissions escaping from the seafloor are much more numerous than previously thought. Estimating the temporal variability of the gas flow rate and volumes escaping from the seafloor has thus become a challenge of relevant interest which could be addressed by sea-floor continuous acoustic monitoring. Here, we investigate the feasibility of estimating the volumetric flow rates of gas emissions from horizontal backscattered acoustic signals. Different models based on the acoustic backscattering theory of bubbles are presented. The forward volume backscattering strength and the inversion volumetric flow rate solutions were validated with acoustic measurements from artificial gas flow rates generated in controlled sea-water tank experiments. A sensitivity analysis was carried out to investigate the behavior of the 120-kHz forward solution with respect to model input parameters (horizontal distance between transducer and bubble stream, bubble size distribution and ascent rate). The most sensitive parameter was found to be the distance of the bubble stream which can affect the volume backscattering strength by 20 dB within the horizontal range of 0-200 m. Results were used to derive the detection probability of a bubble stream for a given volume backscattering strength threshold according to different bubble flow rates and horizontal distance.

  16. Bubble migration during hydrate formation

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Chiglintseva, A. S.; Rusinov, A. A.

    2015-03-01

    A model of the process of migration of methane bubbles in water under thermobaric conditions of hydrate formation is proposed. The peculiarities of the temperature field evolution, migration rate, and changes in the radius and volume fraction of gas hydrate bubbles are studied. It is shown that, with a constant mass flow of gas from the reservoir bottom, for all parameters of the surfacing gas hydrate disperse system, there is a quasistationary pattern in the form of a "step"-like wave. Depending on the relationship of the initial gas bubble density with the average gas density in the hydrate composition determined by the depth from which bubbles rise to the surface, the final radius of hydrate particles may be larger or smaller than the initial gas bubble radii. It is established that the speed at which gas hydrate inclusions rise to the surface decreases by several times due to an increase in their weight during hydrate formation. The influence of the depth of the water reservoir whose bottom is a gas flow source on the dynamics of hydrate formation is studied.

  17. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  18. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  19. Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall.

    PubMed

    Krasovitski, Boris; Kimmel, Eitan

    2004-08-01

    Some of the effects that therapeutic ultrasound has in medicine and biology may be associated with steady oscillations of gas bubbles in liquid, very close to tissue surface. The bubble oscillations induce on the surface steady shear stress attributed to microstreaming. A mathematical simulation of the problem for both free and capsulated bubbles, known as contrast agents, is presented here. The simulation is based on a solution of Laplace's equation for potential flow and existing models for microstreaming. The solution for potential flow was obtained numerically using a boundary integral method. The solution provides the evolution of the bubble shape, the distribution of the velocity potential on the surface, and the shear stress along the surface. The simulation shows that significant shear stresses develop on the surface when the bubble bounces near the tissue surface. In this case, pressure amplitude of 20 kPa generates maximal steady shear stress of several kilo Pascal. Substantial shear stress on the tissue surface takes place inside a circular zone with a radius about half of the bubble radius. The predicted shear stress is greater than stress that causes hemolysis in blood and several orders of magnitude greater than the physiological stress induced on the vessel wall by the flowing blood. PMID:15344403

  20. Gas bubbles in rats after heliox saturation and different decompression steps and rates.

    PubMed

    Skogland, Steffen; Segadal, Kåre; Sundland, Harald; Hope, Arvid

    2002-06-01

    Effects of pressure reduction, decompression rate, and repeated exposure on venous gas bubble formation were determined in five groups (GI, GII, GIII, GIV, and GV) of conscious and freely moving rats in a heliox atmosphere. Bubbles were recorded with a Doppler ultrasound probe implanted around the inferior caval vein. Rats were held for 16 h at 0.4 MPa (GI), 0.5 MPa (GII and GIII), 1.7 MPa (GIVa), or 1.9 MPa (GIV and GV), followed by decompression to 0.1 MPa in GI to GIII and to 1.1 MPa in GIV and GV. A greater decompression step, but at the same rate (GII vs. GI and GIVb vs. GIVa), resulted in significantly more bubbles (P < 0.01). A twofold decompression step resulted in equal amount of bubbles when decompressing to 1.1 MPa compared with 0.1 MPa. The faster decompression in GII and GVa (10.0 kPa/s) resulted in significantly more bubbles (P < 0.01) compared with GIII and GVb (2.2 kPa/s). No significant difference was observed in cumulative bubble score when comparing first and second exposure. With the present animal model, different decompression regimes may be evaluated. PMID:12015383

  1. Buoyant Bubbles and the Disturbed Cool Core of Abell 133

    NASA Astrophysics Data System (ADS)

    Randall, Scott W.; Clarke, T.; Nulsen, P.; Owers, M.; Sarazin, C.; Forman, W.; Jones, C.; Murray, S.

    2010-03-01

    X-ray cavities, often filled with radio-emitting plasma, are routinely observed in the intracluster medium of clusters of galaxies. These cavities, or "bubbles", are evacuated by jets from central AGN and subsequently rise buoyantly, playing a vital role in the "AGN feedback" model now commonly evoked to explain the balance between heating and radiative cooling in cluster cores. As the bubbles rise, they can displace cool central gas, promoting mixing and the redistribution of metals. I will show a few examples of buoyant bubbles, then argue that the peculiar morphology of the Abell 133 is due to buoyant lifting of cool central gas by a radio-filled bubble.

  2. In vitro surfactant mitigation of gas bubble contact-induced endothelial cell death

    PubMed Central

    2010-01-01

    Interactions of gas embolism bubbles with endothelial cells, as can occur during decompression events or other forms of intravascular gas entry, are poorly characterized. Endothelial cells respond to microbubble contact via mechanotransduction responses that can lead to cell death or aberrant cellular function. Cultured bovine aortic endothelial cells were individually contacted with microbubbles. Cells were loaded with fluorescent dyes indicating calcium- and nitric oxide signaling and cell viability. A surfactant, Pluronic F-127, and/or albumin were added to the culture media. Control experiments utilized calcium-free media as well as probe-poking in place of microbubble contact. We acquired fluorescence microscopy time-lapse images of cell responses to bubble and probe contact and determined contact effects on cell signaling and cell death. Calcium influx was essential for cell death to occur with bubble contact. Bubble contact stimulated extracellular calcium entry without altering nitric oxide levels unless cell death was provoked. Cell responses were independent of bubble contact duration lasting either one or 30 seconds. Microbubble contact provoked cell death over 7 times more frequently than micropipette poking. Albumin and the surfactant each attenuated the calcium response to bubble contact and also reduced the lethality of microbubble contact by 67.4% and 76.0%, respectively, when used alone, and by 91.2% when used together. This suggests that surface interactions between the bubble or probe interface and plasma- and cell surface-borne macromolecules differentially modulate the mechanism of calcium trafficking such that microbubble contact more substantially induces cell death or aberrant cellular function. The surfactant findings provide a cytoprotective approach to mitigate this form of mechanical injury. PMID:21384761

  3. Estimating Trapped Gas Concentrations as Bubbles Within Lake Ice Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Fantello, N.; Parsekian, A.; Walter Anthony, K. M.

    2015-12-01

    Climate warming is currently one of the most important issues that we are facing. The degradation of permafrost beneath thermokarst lakes has been associated with enhanced methane emissions and it presents a positive feedback to climate warming. Thermokarst lakes release methane to the atmosphere mainly by ebullition (bubbling) but there are a large number of uncertainties regarding the magnitude and variability of these emissions. Here we present a methodology to estimate the amount of gas released from thermokarst lakes through ebullition using ground-penetrating radar (GPR). This geophysical technique is well suited for this type of problem because it is non-invasive, continuous, and requires less effort and time than the direct visual inspection. We are studying GPR data collected using 1.2 GHz frequency antennas in Brooklyn Lake, Laramie, WY, in order to quantify the uncertainties in the method. Although this is not a thermokarst lake, gas bubbles are trapped in the ice and spatial variability in bubble concentration within the ice is evident. To assess the variability in bulk physical properties of the ice due to bubbles, we gathered GPR data from different types of ice. We compared the velocity of the groundwave and reflection obtained from radargrams, and found on each case a larger value for the groundwave velocity suggesting a non-homogeneous medium and that the concentration of bubbles is prone to be near the surface instead of at greater depths. We use a multi-phase dielectric-mixing model to estimate the amount of gas present in a sample of volume of ice and found an uncertainty in relative permittivity (estimated using reflection velocity) of 0.0294, which translates to an uncertainty of 1.1% in gas content; and employing groundwave velocity we found 0.0712 and 2.9%, respectively. If locations of gas seeps in lakes could be detected and quantified using GPR along with field measurements, this could help to constrain future lake-source carbon gas

  4. The influence of bubble plumes on air-seawater gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Karle, L. M.; Higgins, B. J.; Farley, P. J.; Monahan, E. C.; Leifer, I. S.

    1996-05-01

    Laboratory results have demonstrated that bubble plumes are a very efficient air-water gas transfer mechanism. Because breaking waves generate bubble plumes, it could be possible to correlate the air-sea gas transport velocity kL with whitecap coverage. This correlation would then allow kL to be predicted from measurements of apparent microwave brightness temperature through the increase in sea surface microwave emissivity associated with breaking waves. In order to develop this remote-sensing-based method for predicting air-sea gas fluxes, a whitecap simulation tank was used to measure evasive and invasive kL values for air-seawater transfer of carbon dioxide, oxygen, helium, sulfur hexafluoride, and dimethyl sulfide at cleaned and surfactant-influenced water surfaces. An empirical model has been developed that can predict kL from bubble plume coverage, diffusivity, and solubility. The observed dependence of kL on molecular diffusivity and aqueous-phase solubility agrees with the predictions of modeling studies of bubble-driven air-water gas transfer. It has also been shown that soluble surfactants can decrease kL even in the presence of breaking waves.

  5. Numerical simulation of bubble collapse and the transfer of vapor and noncondensable gas through the bubble interface using the ghost fluid method

    NASA Astrophysics Data System (ADS)

    Jinbo, Y.; Kobayashi, K.; Watanabe, M.; Takahira, H.

    2015-12-01

    The ghost fluid method is improved to include heat and mass transfer across the gas- liquid interface during the bubble collapse in a compressible liquid. This transfer is due to both nonequilibrium phase transition at the interface and diffusion of the noncondensable gas across the interface. In the present method, the ghost fluids are defined with the intention of conserving the total mass, momentum, and energy, as well as the mass of each component while considering the heat and mass fluxes across the interface. The gas phase inside the bubble is a mixture of vapor and noncondensable gas, where binary diffusion between the mixture components is taken into account. The gas diffusion in the surrounding liquid is also considered. This method is applied to a simulation of a single spherical bubble collapse with heat and mass transfer across the interface in a compressible liquid. When noncondensable gas is present, it accumulates near the interface due to vapor condensation, thereby preventing further condensation. This results in a weaker bubble collapse than the case without noncondensable gas.

  6. The effect of exercise and rest duration on the generation of venous gas bubbles at altitude

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph P.; Powell, Michael R.; Butler, Bruce; Fife, Caroline E.

    2002-01-01

    BACKGROUND: Decompression, as occurs with aviators and astronauts undergoing high altitude operations or with deep-sea divers returning to surface, can cause gas bubbles to form within the organism. Pressure changes to evoke bubble formation in vivo during depressurization are several orders of magnitude less than those required for gas phase formation in vitro in quiescent liquids. Preformed micronuclei acting as "seeds" have been proposed, dating back to the 1940's. These tissue gas micronuclei have been attributed to a minute gas phase located in hydrophobic cavities, surfactant-stabilized microbubbles, or arising from musculoskeletal activity. The lifetimes of these micronuclei have been presumed to be from a few minutes to several weeks. HYPOTHESIS: The greatest incidence of venous gas emboli (VGE) will be detected by precordial Doppler ultrasound with depressurization immediately following lower extremity exercise, with progressively reduced levels of VGE observed as the interval from exercise to depressurization lengthens. METHODS: In a blinded cross-over design, 20 individuals (15 men, 5 women) at sea level exercised by performing knee-bend squats (150 knee flexes over 10 min, 235-kcal x h(-1)) either at the beginning, middle, or end of a 2-h chair-rest period without an oxygen prebreathe. Seated subjects were then depressurized to 6.2 psia (6,706 m or 22,000 ft altitude equivalent) for 120 min with no exercise performed at altitude. RESULTS: Of the 20 subjects with VGE in the pulmonary artery, 10 demonstrated a greater incidence of bubbles with exercise performed just prior to depressurization, compared with decreasing bubble grades and incidence as the interval of rest increased prior to depressurization. No decompression illness was reported. CONCLUSIONS: There is a significant increase in decompression-induced bubble formation at 6.2 psia when lower extremity exercise is performed just prior to depressurization as compared with longer rest intervals

  7. About the equilibrium speed of sound in a liquid with gas-vapor bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2016-01-01

    The general expression of an equilibrium velocity of a sound in vapor-gas-liquid mixtures is presented and influence of concentration of vapor and a volume content of bubbles on the received expression is analyzed. In special cases, for gas-liquid and vapor-liquid mixtures expressions of an equilibrium velocity are presented and the satisfactory consent of the received expressions with known experimental data is discovered.

  8. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  9. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.

    PubMed

    Solovev, Alexander A; Mei, Yongfeng; Bermúdez Ureña, Esteban; Huang, Gaoshan; Schmidt, Oliver G

    2009-07-01

    Strain-engineered microtubes with an inner catalytic surface serve as self-propelled microjet engines with speeds of up to approximately 2 mm s(-1) (approximately 50 body lengths per second). The motion of the microjets is caused by gas bubbles ejecting from one opening of the tube, and the velocity can be well approximated by the product of the bubble radius and the bubble ejection frequency. Trajectories of various different geometries are well visualized by long microbubble tails. If a magnetic layer is integrated into the wall of the microjet engine, we can control and localize the trajectories by applying external rotating magnetic fields. Fluid (i.e., fuel) pumping through the microtubes is revealed and directly clarifies the working principle of the catalytic microjet engines. PMID:19373828

  10. Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Shankar Subramanian, R.

    1987-01-01

    The thermocapillary migration of a gas bubble in an unbounded fluid in the presence of a neighboring rigid plane surface is considered in the limit of negligible Reynolds and Marangoni numbers. Results are given for a scalar interaction parameter defined as the ratio of the speed of the bubble in the presence of the plane surface to the speed in its absence. It is suggested that the weaker interaction effects noted for the case of thermocapillary migration relative to the case of motion due to a body force such as that caused by a gravitational field is attributable to the more rapid decay, away from the bubble, of the disturbance velocity and temperature gradient fields. The surface is found to exert the greatest influence in the case of motion normal to it, and the weakest influence in the case of parallel motion.

  11. Evolution of bubbles from gas micronuclei formed on the luminal aspect of ovine large blood vessels.

    PubMed

    Arieli, R; Marmur, A

    2013-08-01

    It has been shown that tiny gas nanobubbles form spontaneously on a smooth hydrophobic surface submerged in water. These nanobubbles were shown to be the source of gas micronuclei from which bubbles evolved during decompression of silicon wafers. We suggest that the hydrophobic inner surface of blood vessels may be a site of nanobubble production. Sections from the right and left atria, pulmonary artery and vein, aorta, and superior vena cava of sheep (n=6) were gently stretched on microscope slides and exposed to 1013 kPa for 18 h. Hydrophobicity was checked in the six blood vessels by advancing contact angle with a drop of saline of 71±19°, with a maximum of about 110±7° (mean±SD). Tiny bubbles ~30 μm in diameter rose vertically from the blood vessels and grew on the surface of the saline, where they were photographed. All of the blood vessels produced bubbles over a period of 80 min. The number of bubbles produced from a square cm was: in the aorta, 20.5; left atrium, 27.3; pulmonary artery, 17.9; pulmonary vein, 24.3; right atrium, 29.5; superior vena cava, 36.4. More than half of the bubbles were present for less than 2 min, but some remained on the saline-air interface for as long as 18 min. Nucleation was evident in both the venous (superior vena cava, pulmonary artery, right atrium) and arterial (aorta, pulmonary vein, left atrium) blood vessels. This newly suggested mechanism of nucleation may be the main mechanism underlying bubble formation on decompression. PMID:23624230

  12. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  13. The speed of sound in a gas-vapour bubbly liquid.

    PubMed

    Prosperetti, Andrea

    2015-10-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  14. A Mathematical Model of Diffusion-Limited Gas Bubble Dynamics in Tissue with Varying Diffusion Region Thickness

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.; Paloski, William H. (Technical Monitor)

    2000-01-01

    A three-region mathematical model of gas bubble dynamics has been shown suitable for describing diffusion-limited dynamics of more than one bubble in a given volume of extravascular tissue. The model is based on the dynamics of gas exchange between a bubble and a well-stirred tissue region through an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the gas content of the diffusion region remains constant as the volume of the region increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume, because only cases in which the diffusion region volume is a small fraction of the overall tissue volume were considered. We herein extend the three-region model to correct these theoretical inconsistencies by allowing both the thickness and gas content of the diffusion region to vary during bubble evolution. A postulated difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region leads to variation in diffusion region gas content and thickness during bubble growth and resolution. This variable thickness, differential diffusivity (VTDD) model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models for given model and decompression parameters, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects, Keywords: decompression sickness, gas diffusion in tissue, diffusivity

  15. Compositional Discrimination of Decompression and Decomposition Gas Bubbles in Bycaught Seals and Dolphins

    PubMed Central

    Bernaldo de Quirós, Yara; Seewald, Jeffrey S.; Sylva, Sean P.; Greer, Bill; Niemeyer, Misty; Bogomolni, Andrea L.; Moore, Michael J.

    2013-01-01

    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis. PMID:24367623

  16. Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins.

    PubMed

    Bernaldo de Quirós, Yara; Seewald, Jeffrey S; Sylva, Sean P; Greer, Bill; Niemeyer, Misty; Bogomolni, Andrea L; Moore, Michael J

    2013-01-01

    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis. PMID:24367623

  17. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Zenit, R.; Chellppannair, T.; Koch, D. L.; Spelt, P. D. M.; Sangani, A.

    1998-11-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1 and Re >> 1 , so that the bubbles are relatively undeformed and the flow is inviscid and approximately irrotational. Nitrogen is introduced through an array of capillaries at the base of a .2x.02x2 m channel filled with an aqueous electrolyte solution (0.06 molL-1 MgSO_4). The rising bubbles generate a unidirectional shear flow, where the denser suspension at the lower surface of the channel falls, while the less dense suspension at the upper surface rises. Hot-film anemometry is used to measure the resulting gas volume fraction and fluid velocity profiles. The bubble collision rate with the sensor is related to the gas volume fraction and the mean and variance of the bubble velocity using an experimentally measured collision surface area for the sensor. Bubble collisions with the sensor are identified by the characteristic slope of the hot-film anemometer signal when bubbles collide with the sensor. It is observed that the steady shear flow develops a bubble phase pressure gradient across the channel gap as the bubbles interchange momentum through direct collisions. The discrete phase presssure gradient balances the buoyancy force driving bubbles toward the upper surface resulting in a steady void fraction profile across the gap width. The strength of the shear flow is controlled by the extent of bubble segregation and by the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion (Kang et al. 1997; Spelt and Sangani, 1998), for a range of gas volume fractions and channel inclination angles.

  18. Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates

    SciTech Connect

    Paull, C.K.; Ussler, W. III; Borowski, W.S. ); Spiess, F.N. )

    1995-01-01

    Seafloor venting of microbial gases occurs at 2167 m water depth over the Blake Ridge diapir-Gas-rich plumes were identified acoustically in the water column up to 320 m above a pockmarked sea floor associated with active chemosynthetic biological communities. Plumes and venting fluids emanate from near a small fault that extends downward toward a dome in the bottom-simulating reflector, indicating that fluid and/or gas migration is associated with gas hydrate bearing sediment below. These plumes might be caused by gas bubbles or buoyant dumps of gas hydrate that float upward from the seafloor. 18 refs., 3 figs.

  19. First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth

    NASA Astrophysics Data System (ADS)

    Barry, M. A.; Boudreau, B. P.; Johnson, B. D.; Reed, A. H.

    2010-12-01

    Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well-described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco-elasto-plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine-grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine-grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.

  20. Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7wt% Mo dispersion fuels

    SciTech Connect

    B.D. Miller; J. Gan; D.D. Keiser Jr.; A.B. Robinson; J.-F. Jue; J.W. Madden; P.G. Medvedev

    2015-03-01

    Transmission electron microscopy characterization of irradiated U-7wt% Mo dispersion fuel was performed on various samples to understand the effect of irradiation parameters (fission density, fission rate, and temperature) on the self-organized fission-gas-bubble superlattice that forms in the irradiated U-Mo fuel. The bubble superlattice was seen to form a face-centered cubic structure coherent with the host U-7wt% Mo body centered cubic structure. At a fission density between 3.0 and 4.5 x 1021 fiss/cm3, the superlattice bubbles appear to have reached a saturation size with additional fission gas associated with increasing burnup predominately accumulating along grain boundaries. At a fission density of ~4.5x1021 fiss/cm3, the U-7wt% Mo microstructure undergoes grain subdivision and can no longer support the ordered bubble superlattice. The fuel grains are primarily less than 500 nm in diameter with micron-size fission-gas bubbles present on the grain boundaries. Solid fission products decorate the inside surface of the micron-sized fission-gas bubbles. Residual superlattice bubbles are seen in areas where fuel grains remain micron sized. Potential mechanisms of the formation and collapse of the bubble superlattice are discussed.

  1. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  2. Lagrangian coherent structures analysis of gas-liquid flow in a bubble column

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Wang, GuoYu; Huang, Biao; Bai, ZeYu

    2014-06-01

    The objective of this paper is to apply a new identifying method to investigating the gas-liquid two-phase flow behaviors in a bubble column with air injected into water. In the numerical simulations, the standard k- ɛ turbulence model is employed to describe the turbulence phenomenon occurring in the continuous fluid. The Finite-Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures (LCS) are applied to analyze the vortex structures in multiphase flow. Reasonable agreements are obtained between the numerical and experimental data. The numerical results show that the evolution of gas-liquid in the column includes initial and periodical developing stages. During the initial stage, the bubble hose is forming and extending along the vertical direction with the vortex structures formed symmetrically. During the periodical developing stage, the bubble hose starts to oscillate periodically, and the vortexes move along the bubble hose to the bottom of column alternately. Compared to the Euler-system-based identification criterion of a vortex, the FTLE field presents the boundary of a vortex without any threshold defined and the LCS represents the divergence extent of infinite neighboring particles. During the initial stage, the interfaces between the forward and backward flows are highlighted by the LCS. As for the periodical developing stage, the LCS curls near the vortex centers, providing a method of analyzing a flow field from a dynamical system perspective.

  3. Generating singlet oxygen bubbles: a new mechanism for gas-liquid oxidations in water.

    PubMed

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi; Lyons, Alan M; Greer, Alexander

    2012-02-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [(1)O(2) ((1)Δ(g))] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiberoptic receptacles loaded with 150 μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O(2) gas to the reactor chambers. In the presence of O(2), singlet oxygen was generated by illuminating the sensitizer particles with 669 nm light from an optical fiber coupled to the top of the reactor. The generated (1)O(2) was transported through the membrane by the O(2) stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, or N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that (1)O(2) transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow; it arose only from (1)O(2)-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves (1)O(2) mass transfer and solvation, where smaller bubbles provide better penetration of (1)O(2) into the flowing stream due to higher surface-to-volume contact between the probe molecules and (1)O(2). PMID:22260325

  4. Gas Bubble Trauma Monitoring and Research of Juvenile Salmonids, 1994-1995 Progress Report.

    SciTech Connect

    Hans, Karen M.

    1997-07-01

    This report describes laboratory and field monitoring studies of gas bubble trauma (GBT) in migrating juvenile salmonids in the Snake and Columbia rivers. The first chapter describes laboratory studies of the progression of GBT signs leading to mortality and the use of the signs for GBT assessment. The progression and severity of GBT signs in juvenile salmonids exposed to different levels of total dissolved gas (TDG) and temperatures was assessed and quantified. Next, the prevalence, severity, and individual variation of GBT signs was evaluated to attempt to relate them to mortality. Finally, methods for gill examination in fish exposed to high TDG were developed and evaluated. Primary findings were: (1) no single sign of GBT was clearly correlated with mortality, but many GBT signs progressively worsened; (2) both prevalence and severity of GBT signs in several tissues is necessary; (3) bubbles in the lateral line were the earliest sign of GBT, showed progressive worsening, and had low individual variation but may develop poorly during chronic exposures; (4) fin bubbles had high prevalence, progressively worsened, and may be a persistent sign of GBT; and (5) gill bubbles appear to be the proximate cause of death but may only be relevant at high TDG levels and are difficult to examine. Chapter Two describes monitoring results of juvenile salmonids for signs of GBT. Emigrating fish were collected and examined for bubbles in fins and lateral lines. Preliminary findings were: (1) few fish had signs of GBT, but prevalence and severity appeared to increase as fish migrated downstream; (2) there was no apparent correlation between GBT signs in the fins, lateral line, or gills; (3) prevalence and severity of GBT was suggestive of long-term, non-lethal exposure to relatively low level gas supersaturated water; and (4) it appeared that GBT was not a threat to migrating juvenile salmonids. 24 refs., 26 figs., 3 tabs.

  5. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  6. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    NASA Astrophysics Data System (ADS)

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2008-09-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp , in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ , in the range 0.9⩽λ⩽1.05 . For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → - → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble

  7. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    PubMed Central

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2009-01-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble

  8. Bubbles Quantified In vivo by Ultrasound Relates to Amount of Gas Detected Post-mortem in Rabbits Decompressed from High Pressure.

    PubMed

    Bernaldo de Quirós, Yara; Møllerløkken, Andreas; Havnes, Marianne B; Brubakk, Alf O; González-Díaz, Oscar; Fernández, Antonio

    2016-01-01

    The pathophysiological mechanism of decompression sickness is not fully understood but there is evidence that it can be caused by intravascular and autochthonous bubbles. Doppler ultrasound at a given circulatory location is used to detect and quantify the presence of intravascular gas bubbles as an indicator of decompression stress. In this manuscript we studied the relationship between presence and quantity of gas bubbles by echosonography of the pulmonary artery of anesthetized, air-breathing New Zealand White rabbits that were compressed and decompressed. Mortality rate, presence, quantity, and distribution of gas bubbles elsewhere in the body was examined postmortem. We found a strong positive relationship between high ultrasound bubble grades in the pulmonary artery, sudden death, and high amount of intra and extra vascular gas bubbles widespread throughout the entire organism. In contrast, animals with lower bubble grades survived for 1 h after decompression until sacrificed, and showed no gas bubbles during dissection. PMID:27493634

  9. Bubbles Quantified In vivo by Ultrasound Relates to Amount of Gas Detected Post-mortem in Rabbits Decompressed from High Pressure

    PubMed Central

    Bernaldo de Quirós, Yara; Møllerløkken, Andreas; Havnes, Marianne B.; Brubakk, Alf O.; González-Díaz, Oscar; Fernández, Antonio

    2016-01-01

    The pathophysiological mechanism of decompression sickness is not fully understood but there is evidence that it can be caused by intravascular and autochthonous bubbles. Doppler ultrasound at a given circulatory location is used to detect and quantify the presence of intravascular gas bubbles as an indicator of decompression stress. In this manuscript we studied the relationship between presence and quantity of gas bubbles by echosonography of the pulmonary artery of anesthetized, air-breathing New Zealand White rabbits that were compressed and decompressed. Mortality rate, presence, quantity, and distribution of gas bubbles elsewhere in the body was examined postmortem. We found a strong positive relationship between high ultrasound bubble grades in the pulmonary artery, sudden death, and high amount of intra and extra vascular gas bubbles widespread throughout the entire organism. In contrast, animals with lower bubble grades survived for 1 h after decompression until sacrificed, and showed no gas bubbles during dissection. PMID:27493634

  10. Blowing bubbles or smoking pot. [Natural gas availability

    SciTech Connect

    Murray, W.J. Jr.

    1985-06-01

    Updated data showing capacity, demand, and production of natural gas and comparisons of actual versus reported deliverability explore the reasons why producing rates during periods when demand cannot be fully met do not represent true delivery capacity, and contrasts the opinions of experts on the size and durability of US reserves. The author concludes that adequate reserves and deliverability of reasonably priced natural gas will be available for the rest of the century and beyond that for high priority users. However, he argues against relying on overstated gas delivery capacity, if it is actually overstated, to meet future energy needs on the grounds that we could experience the same unplanned for shortages as well experienced in the early 1970s with oil. 5 figures.