Sample records for gas centrifuge theory

  1. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  2. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  3. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  4. Isotope Separation in Concurrent Gas Centrifuges

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.

    An analytical equation defining separative power of an optimized concurrent gas centrifuge is obtained for an arbitrary binary mixture of isotopes. In the case of the uranium isotopes the equation gives δU= 12.7(V/700 m/s)2(300 K/T)L, kg SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge, T is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges.

  5. Waves in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2016-09-01

    Impact of the pulsed braking force on the axial gas circulation and gas content in centrifuges for uranium isotope separation was investigated by the method of numerical simulation. Pulsed brake of the rotating gas by the momentum source results into generation of the waves which propagate along the rotor of the centrifuge. The waves almost doubles the axial circulation flux in the working camera in compare with the case of the steady state breaking force with the same average power in the model under the consideration. Flux through the hole in the bottom baffle on 15% exceeds the flux in the stationary case for the same pressure and temperature in the model. We argue that the waves reduce the pressure in the GC on the same 15%.

  6. Optimizing the separation performance of a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Wood, H. G.

    1997-11-01

    Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.

  7. Gas dynamics in strong centrifugal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarizedmore » along the rotational axis having the smallest dumping due to the viscosity.« less

  8. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  9. Hydraulic and separation characteristics of an industrial gas centrifuge calculated with neural networks

    NASA Astrophysics Data System (ADS)

    Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey

    2018-03-01

    Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.

  10. Laser and gas centrifuge enrichment

    NASA Astrophysics Data System (ADS)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  11. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  12. Numerical modeling and optimization of the Iguassu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  13. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Milner, V

    2017-06-16

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  14. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  15. Combined centrifugal force/gravity gas/liquid separator system

    NASA Astrophysics Data System (ADS)

    Lema, Luis E.

    1993-04-01

    A gas/liquid separator system has an outer enclosing tank filled with a demisting packing material. The tank has a gas outlet port and a liquid outlet port located at its top and bottom, respectively. At least one cylindrical, centrifugal force gas/liquid separator is vertically aligned and centrally located within the tank and is surrounded by the packing material. The cylindrical separator receives a gas/liquid mixture, separates the mixture into respective substantially gas and substantially liquid components, and allows the substantially gas components to exit its gas escape port. It also allows the substantially liquid components to exit its liquid escape port. The packing material in the tank further separates the substantially gas and liquid components as they rise and fall, respectively, through the packing material. An inflow line introduces the mixture into the cylindrical separator. The inflow line is upwardly inclined in a direction of flow of the mixture at a point where the inflow line communicates with the cylindrical separator.

  16. Gas diffusion as a new fluidic unit operation for centrifugal microfluidic platforms.

    PubMed

    Ymbern, Oriol; Sández, Natàlia; Calvo-López, Antonio; Puyol, Mar; Alonso-Chamarro, Julian

    2014-03-07

    A centrifugal microfluidic platform prototype with an integrated membrane for gas diffusion is presented for the first time. The centrifugal platform allows multiple and parallel analysis on a single disk and integrates at least ten independent microfluidic subunits, which allow both calibration and sample determination. It is constructed with a polymeric substrate material and it is designed to perform colorimetric determinations by the use of a simple miniaturized optical detection system. The determination of three different analytes, sulfur dioxide, nitrite and carbon dioxide, is carried out as a proof of concept of a versatile microfluidic system for the determination of analytes which involve a gas diffusion separation step during the analytical procedure.

  17. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  18. Two optimal working regimes of the ”long” Iguasu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of optimization calculations that the dependence of the optimal separative power of the Iguasu gas centrifuge with 2 m rotor has two local maxima,corresponding pressures of p max1 = 35 mmHg and p max2 = 350 mmHg. The optimal separative power values in these maxima differ by the value of 0.6%. Low pressure maximum is caused by the thermal drive, whereas high pressure maximum is caused by both thermal and mechanical drives. High pressure maximum is located on wide ’’plateau” from p 1 = 200 mmHg to p 2 = 500 mmHg, where the optimal separative power changes in the range of 0.7%. In this way, Iguasu gas centrifuge has two optimal working regimes with different sets of working parameters and close slightly different values of the separative power. Calculations show that high pressure regime is less sensitive to the parameters change than low pressure one.

  19. Dependence of optimal separative power of the “high-speed” Iguasu centrifuge on pressure of working gas

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Davidenko, O. V.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    The results of optimization calculations of the separative power of the ’’high-speed” Iguasu gas centrifuge are presented. Iguasu gas centrifuge has the rotational speed of 1000 m/s, the rotor length of 1 m. The dependence of the optimal separative power on the pressure of the working gas on the rotor wall was obtained using the numerical simulations. It is shown, that maximum of the optimal separative power corresponds to the pressure of 1100 mmHg. Maximum value of separative power is 31.9 SWU.

  20. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Gas Centrifuge Enrichment Plant... 110—Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...×109 N/m2 (67,000 lb/in.2 ) or more. (c) Filamentary materials suitable for use in composite structures...

  1. Gas centrifuge with driving motor

    DOEpatents

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  2. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  3. Aerodynamically induced radial forces in a centrifugal gas compressor. Part 1: Experimental measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.J.; Flathers, M.B.

    1998-04-01

    Net radial loading arising from asymmetric pressure fields in the volutes of centrifugal pumps during off-design operation is well known and has been studied extensively. In order to achieve a marked improvement in overall efficiency in centrifugal gas compressors, vaneless volute diffusers are matched to specific impellers to yield improved performance over a wide application envelope. As observed in centrifugal pumps, nonuniform pressure distributions that develop during operation above and below the design flow create static radial loads on the rotor. In order to characterize these radial forces, a novel experimental measurement and post-processing technique is employed that yields bothmore » the magnitude and direction of the load by measuring the shaft centerline locus in the tilt-pad bearings. The method is applicable to any turbomachinery operating on fluid film radial bearings equipped with proximity probes. The forces are found to be a maximum near surge and increase with higher pressures and speeds. The results are nondimensionalized, allowing the radial loading for different operating conditions to be predicted.« less

  4. Centrifugal adsorption system

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)

    2006-01-01

    A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.

  5. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station

    NASA Astrophysics Data System (ADS)

    Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.

    2017-08-01

    The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.

  6. Impact of waves on the circulation flow in the Iguasu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S.; Kislov, V.; Tronin, I.

    2017-01-01

    2D axisymmetric transient flow induced by a pulsed braking force in the Iguasu gas centrifuge (GC) is simulated numerically. The simulation is performed for two cases: transient and stationary. The braking forces averaged over the period of rotation are equal to each other in both cases. The transient case is compared with the stationary case where the flow is excited by the stationary braking force.Two models of the gas cenrifuge is simulated. There are two cameras in the first model and three cameras in the second one. In the transient case for the two cameras model pulsations almost doubles the axial circulation flux in the working camera. In the transient case for the three cameras model the gas flux through the gap in the bottom baffle exceeds on 15 % the same flux in the stationary case for the same gas content and temperature at the walls of the rotor. We argue that the waves can reduce the gas content in the GC on the same 15 %.

  7. Numerical analysis on centrifugal compressor with membrane type dryer

    NASA Astrophysics Data System (ADS)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  8. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  9. Systems approach used in the Gas Centrifuge Enrichment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooks, W.A. Jr.

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materialsmore » and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.« less

  10. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  11. Numerical Modeling of Dependence of Separative Power of the Gas Centrifuge on the Length of Rotor

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the rotor is taken to be constant.

  12. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators.

    PubMed

    Subczynski, Witold K; Felix, Christopher C; Klug, Candice S; Hyde, James S

    2005-10-01

    Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.

  13. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators

    NASA Astrophysics Data System (ADS)

    Subczynski, Witold K.; Felix, Christopher C.; Klug, Candice S.; Hyde, James S.

    2005-10-01

    Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.

  14. Full load shop testing of 18,000-hp gas turbine driven centrifugal compressor for offshore platform service: Evaluation of rotor dynamics performance

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Simpson, M.

    1985-01-01

    The results for in-plant full load testing of a 13.4 MW (18000 HP) gas turbine driven centrifugal compressor are presented and compared to analytical predictions of compressor rotor stability. Unique problems from both oil seals and labyrinth gas seals were encountered during the testing. The successful resolution of these problems are summarized.

  15. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... materials of construction for the rotating rotor assembly, and hence its individual components, have to be... gas centrifuge for uranium enrichment is characterized by having within the rotor chamber a rotating... featuring at least 3 separate channels of which 2 are connected to scoops extending from the rotor axis...

  16. HOUSINGS AND MOUNTINGS FOR CENTRIFUGES

    DOEpatents

    Rushing, F.C.

    1960-08-16

    A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.

  17. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman

    2016-08-01

    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment

  18. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The... critical items which do not rotate and which, although they are especially designed, are not difficult to...) Rotor Tubes: Especially designed or prepared thin-walled cylinders with thickness of 12mm (.50 in.) or...

  19. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The... critical items which do not rotate and which, although they are especially designed, are not difficult to...) Rotor Tubes: Especially designed or prepared thin-walled cylinders with thickness of 12mm (.50 in.) or...

  20. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The... critical items which do not rotate and which, although they are especially designed, are not difficult to...) Rotor Tubes: Especially designed or prepared thin-walled cylinders with thickness of 12mm (.50 in.) or...

  1. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-10-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  2. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-09-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  3. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  4. Fluid-structure interaction analysis and lifetime estimation of a natural gas pipeline centrifugal compressor under near-choke and near-surge conditions

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Liu, Hui; Yao, Ziyun; Xing, Peng; Zhang, Chuhua

    2015-11-01

    Up to present, there have been no studies concerning the application of fluid-structure interaction (FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics (CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics (CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.

  5. Constraints complicate centrifugal compressor depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, B.; Colbert, F.L.

    1993-05-10

    Blowdown of a centrifugal compressor is complicated by process constraints that might require slowing the depressurization rate and by mechanical constraints for which a faster rate might be preferred. The paper describes design constraints such as gas leaks; thrust-bearing overload; system constraints; flare extinguishing; heat levels; and pressure drop.

  6. Splitter-bladed centrifugal compressor impeller designed for automotive gas turbine application. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Pampreen, R. C.

    1977-01-01

    Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.

  7. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  8. Subjective stress factors in centrifuge training for military aircrews.

    PubMed

    Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin

    2012-07-01

    This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  10. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    NASA Astrophysics Data System (ADS)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Paffett, M. T.; Ianakiev, K. D.

    2018-01-01

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. We describe our research to develop such a passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. We present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.

  11. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  12. Centrifugal lyophobic separator

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A. (Inventor)

    1974-01-01

    A centrifugal separator is described using a lyophobic filter for removing liquid particles from a mixed stream of gas and liquid under various negative or positive external acceleration conditions as well as zero g or weightless conditions. Rotating the lyophobic filter and inclining the filter to the entering flow improves the lyophobic properties of the filter, provides gross separation of larger liquid particles, and prevents prolonged contact of liquid droplets with the spinning filter which might change the filter properties or block the filter.

  13. Demonstration of Reduced Gas Pressure in a Centrifugal Field.

    ERIC Educational Resources Information Center

    Fischer, Fred; Wild, R. L.

    1979-01-01

    Describes a simple demonstration that shows the change in molecular density and the reduction in pressure of air in a centrifugal field. Uses two circular disks with the same radius and rotating with the same angular velocity, in loose mutual contact, around their symmetry axis. (GA)

  14. Subsychronous vibration of multistage centrifugal compressors forced by rotating stall

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1987-01-01

    A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.

  15. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    DOE PAGES

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; ...

    2017-09-14

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less

  16. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less

  17. Centrifugation. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Best, Richard A.

    An introductory description of the use of centrifuges in the process of volume reduction is provided in this lesson. Three basic centrifuges, their theory of operation, quality of cake and centrate, and operational control testing are discussed. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…

  18. Prototyping of ultra micro centrifugal compressor-influence of meridional configuration

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Muto, Tadataka; Tsujita, Hoshio

    2011-08-01

    In order to investigate the design method for a micro centrifugal compressor, which is the most important component of an ultra micro gas turbine, two types of centrifugal impeller with 2-dimensional blade were designed, manufactured and tested. These impellers have different shapes of hub on the meridional plane with each other. Moreover, these types of impeller were made for the 5 times and the 6 times size of the final target centrifugal impeller with the outer diameter of 4mm in order to assess the similitude for the impellers. The comparison among the performance characteristics of the impellers revealed the influence of the meridional configuration on the performance and the similitude of the compressors.

  19. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  20. On the characteristics of centrifugal-reciprocating machines. [cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1980-01-01

    A method of compressing helium gas for cryogenic coolers is presented which uses centrifugal force to reduce the forces on the connecting rod and crankshaft in the usual reciprocating compressor. This is achieved by rotating the piston-cylinder assembly at a speed sufficient for the centrifugal force on the piston to overcome the compressional force due to the working fluid. The rotating assembly is dynamically braked in order to recharge the working space with fluid. The intake stroke consists of decelerating the rotating piston-cylinder assembly and the exhaust stroke consists of accelerating the assembly.

  1. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met

    NASA Astrophysics Data System (ADS)

    Vanyashov, A. D.; Karabanova, V. V.

    2017-08-01

    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  2. Perfect gas effects in compressible rapid distortion theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Myers, M. R.

    1987-01-01

    The governing equations presented for small amplitude unsteady disturbances imposed on steady, compressible mean flows that are two-dimensional and nearly uniform have their basis in the perfect gas equations of state, and therefore generalize previous results based on tangent gas theory. While these equations are more complex, this complexity is required for adequate treatment of high frequency disturbances, especially when the base flow Mach number is large; under such circumstances, the simplifying assumptions of tangent gas theory are not applicable.

  3. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and

  4. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    NASA Astrophysics Data System (ADS)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  5. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    PubMed

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  6. Stress analysis of bolted joints under centrifugal force

    NASA Astrophysics Data System (ADS)

    Imura, Makoto; Iizuka, Motonobu; Nakae, Shigeki; Mori, Takeshi; Koyama, Takayuki

    2014-06-01

    Our objective is to develop a long-life rotary machine for synchronous generators and motors. To do this, it is necessary to design a high-strength bolted joint, which is responsible for fixing a salient pole on a rotor shaft. While the rotary machine is in operation, not only centrifugal force but also moment are loaded on a bolted joint, because a point of load is eccentric to a centre of a bolt. We tried to apply the theory proposed in VDI2230-Blatt1 to evaluate the bolted joint under eccentric force, estimate limited centrifugal force, which is the cause of partial separation between the pole and the rotor shaft, and then evaluate additional tension of a bolt after the partial separation has occurred. We analyzed the bolted joint by FEM, and defined load introduction factor in that case. Additionally, we investigated the effect of the variation of bolt preload on the partial separation. We did a full scale experiment with a prototype rotor to reveal the variation of bolt preload against tightening torque. After that, we verified limited centrifugal force and the strength of the bolted joint by the VDI2230-Blatt1 theory and FEM considering the variation of bolt preload. Finally, we could design a high-strength bolted joint verified by the theoretical study and FEM analysis.

  7. Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm

    DOEpatents

    Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

    2014-08-26

    An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

  8. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  9. Renormalization Group Theory for the Imbalanced Fermi Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Stoof, H. T. C.

    2008-04-11

    We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].

  10. Influence of the positive prewhirl on the performance of centrifugal pumps with different airfoils

    NASA Astrophysics Data System (ADS)

    Zhou, C. M.; Wang, H. M.; Huang, X.; Lin, H.

    2012-11-01

    According to the basic theory of turbomachinery design and inlet guide vanes prewhirl regulation, two different airfoils inlet guide vanes of prewhirl regulation device were designed, the influence of the positive prewhirl to the performance of centrifugal pump were studied based on different airfoils. The results show that, for a single-suction centrifugal pump: Gottingen bowed blade-type inlet guide vane adjustment effect is better than straight blade-type inlet guide; appropriate design of positive prewhirl can elevate the efficiency of centrifugal pumps. Compared with no vane conditions, the efficiency of centrifugal pump with prewhirl vanes has been greatly improved and the power consumption has been reduced significantly, while has little influence on the head.

  11. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2017-03-01

    We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.

  12. CENTRIFUGE

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  13. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1997-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  14. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1992-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  15. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...

  16. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274

  17. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  18. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  19. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    NASA Astrophysics Data System (ADS)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  20. Theories and Conflict: The Origins of Natural Gas. Instructional Materials.

    ERIC Educational Resources Information Center

    Anderson, Susan

    This unit explores a recent and controversial theory of the origin of much of the Earth's natural gas and oil. The materials provided will give students the opportunity to: (1) gain an understanding of science and what is involved in the acceptance or rejection of theories; (2) learn about fossil fuels, especially natural gas; (3) learn the…

  1. Numerical analysis of flow in ultra micro centrifugal compressor -influence of meridional configuration

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanao; Tsujita, Hoshio; Hirano, Toshiyuki

    2013-04-01

    A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As a consequence, the aerodynamic losses can be increased by the interaction of a shock wave with the boundary layer on the blade surface. Moreover, the centrifugal force which exceeds the allowable stress of the impeller material can act on the root of blades. On the other hand, the restrictions of processing technology for the downsizing of impeller not only relatively enlarge the size of tip clearance but also make it difficult to shape the impeller with the three-dimensional blade. Therefore, it is important to establish the design technology for the impeller with the two-dimensional blade which possesses the sufficient aerodynamic performance and enough strength to bear the centrifugal force caused by the high rotational speed. In this study, the flow in two types of impeller with the two-dimensional blade which have different meridional configuration was analyzed numerically. The computed results clarified the influence of the meridional configuration on the loss generations in the impeller passage.

  2. Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Alesemi, Meshari

    2018-04-01

    The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.

  3. Metal/gas MHD conversion

    NASA Astrophysics Data System (ADS)

    Thibault, J. P.; Joussellin, F.; Alemany, A.; Dupas, A.

    1982-09-01

    Operation features, theory, performance, and possible spatial applications of metal/gas MHD electrical generators are described. The working principle comprises an MHD channel, surrounded by a magnet, filled with a molten, highly conductive metal into which gas is pumped. The heat of the metal expands the gas, forcing a flow through the magnetic field crossing the channel, thus creating an electrical current conducted by the metal. The gas and metal are separated by a centrifugal device and both are redirected into the channel, forming thereby a double closed circuit when the heat of the molten metal is returned to the flow. Necessary characteristics for the gas such as a fairly low vaporization temperature and nonmiscibility with the metal, are outlined, and a space system using Li-Cs or Z-K as the heat carrier kept molten by a parabolic dish system is sketched. Equations governing the fluid mechanics, thermodynamics, and the electrical generation are defined. The construction of a prototype MHD generator using a tin-water flow operating at 250 C, a temperature suitable for coupling to solar heat sources, is outlined, noting expected efficiencies of 20-30 percent.

  4. Centrifuge apparatus

    DOEpatents

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  5. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  6. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  7. Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours

    NASA Astrophysics Data System (ADS)

    Persico, Giacomo

    2017-03-01

    This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.

  8. The Students’ misconceptions profile on chapter gas kinetic theory

    NASA Astrophysics Data System (ADS)

    Jauhariyah, M. N. R.; Suprapto, N.; Suliyanah; Admoko, S.; Setyarsih, W.; Harizah, Z.; Zulfa, I.

    2018-03-01

    Students have conception and misconceptions in the learning process. Misconceptions are caused by the teacher, students, and learning source. In the previous study, the researcher developed a misconception diagnosis instrument using three-tier on chapter gas kinetic theory. There are 14 items including 5 sub-chapters on gas kinetic theory. The profile of students’ misconceptions shows that students have misconceptions in each sub-chapter. The cause of misconceptions came from preconceptions, associative thinking, reasoning, intuition, and false negative. The highest cause of misconception in this chapter is student’s humanistic thinking.

  9. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  10. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to

  11. Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion

    NASA Astrophysics Data System (ADS)

    Morozova, A.; Eskin, A.

    2017-11-01

    In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.

  12. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  13. 76 FR 52652 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... gas-fired turbines for compressor units A2 and A3 and restaging of centrifugal compressors for units.... CP11-133-000] National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of... assessment (EA) for National Fuel Gas Supply Corporation's (National Fuel) proposed Northern Access Project...

  14. Regimes of Coriolis-Centrifugal Convection

    NASA Astrophysics Data System (ADS)

    Horn, Susanne; Aurnou, Jonathan M.

    2018-05-01

    Centrifugal buoyancy affects all rotating turbulent convection phenomena, but is conventionally ignored in rotating convection studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-centrifugal convection (C3 ), characterizing two so far unexplored regimes, one where the flow is in quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ . Hence, turbulent convection experiments with small γ may encounter centrifugal effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that C3 may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.

  15. Regimes of Coriolis-Centrifugal Convection.

    PubMed

    Horn, Susanne; Aurnou, Jonathan M

    2018-05-18

    Centrifugal buoyancy affects all rotating turbulent convection phenomena, but is conventionally ignored in rotating convection studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-centrifugal convection (C^{3}), characterizing two so far unexplored regimes, one where the flow is in quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ. Hence, turbulent convection experiments with small γ may encounter centrifugal effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that C^{3} may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.

  16. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  17. Centrifuge for SLS-1

    NASA Image and Video Library

    1981-01-16

    S81-25565 (Feb 1981) --- Expected to be a busy item of flight hardware on the Spacelab Life Sciences (SLS-1) mission is this low-gravity centrifuge. To be flown onboard Columbia for STS-40, the centrifuge is able to simulate several gravity levels (0.5 g, 1.0 g, 1.5 g. and 2.0 g). Blood samples, taken during the flight, will be placed in the centrifuge, fixed for post flight analysis and transferred to a freezer.

  18. Theory of gas hydrates: effect of the approximation of rigid water lattice.

    PubMed

    Pimpalgaonkar, Hrushikesh; Veesam, Shivanand K; Punnathanam, Sudeep N

    2011-08-25

    One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed. © 2011 American Chemical Society

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Centrifugal bubble O2 (1Δ) gas generator with a total pressure of 100 Torr

    NASA Astrophysics Data System (ADS)

    Zagidulin, M. V.; Nikolaev, V. D.; Svistun, M. I.; Khvatov, N. A.

    2008-08-01

    A centrifugal bubbling singlet-oxygen gas generator is developed in which chlorine with helium are injected into the rotating layer of the alkali solution of hydrogen peroxide through cylindrical nozzles directed at an angle of 30° to the bubbler surface. The concentrations of water vapour and O2 (1Δ) and the gas temperature were determined by using the multichannel recording of the emission bands of oxygen at 634, 703, 762 and 1268 nm. For the chlorine and helium flow rates of 60 and 90 mmol s-1, respectively, the specific chlorine load of 3.2 mmol cm-2, a total pressure of 100 Torr in the working region of the gas generator and the oxygen partial pressure of 36 Torr, the chlorine utilisation was 90% and the content of O2 (1Δ) was ≈60%. For the ratio of the flow rates of chlorine and the alkali solution of hydrogen peroxide equal to 1 mol L-1, the water vapour content was ≈25%. The chemical efficiency of the oxygen—iodine laser with this gas generator achieved 23% for the specific power of 12.7 W cm per 1 cm3 s-1 per pass of the solution through the gas generator.

  20. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  1. Membrane-Based Characterization of a Gas Component — A Transient Sensor Theory

    PubMed Central

    Lazik, Detlef

    2014-01-01

    Based on a multi-gas solution-diffusion problem for a dense symmetrical membrane this paper presents a transient theory of a planar, membrane-based sensor cell for measuring gas from both initial conditions: dynamic and thermodynamic equilibrium. Using this theory, the ranges for which previously developed, simpler approaches are valid will be discussed; these approaches are of vital interest for membrane-based gas sensor applications. Finally, a new theoretical approach is introduced to identify varying gas components by arranging sensor cell pairs resulting in a concentration independent gas-specific critical time. Literature data for the N2, O2, Ar, CH4, CO2, H2 and C4H10 diffusion coefficients and solubilities for a polydimethylsiloxane membrane were used to simulate gas specific sensor responses. The results demonstrate the influence of (i) the operational mode; (ii) sensor geometry and (iii) gas matrices (air, Ar) on that critical time. Based on the developed theory the case-specific suitable membrane materials can be determined and both operation and design options for these sensors can be optimized for individual applications. The results of mixing experiments for different gases (O2, CO2) in a gas matrix of air confirmed the theoretical predictions. PMID:24608004

  2. Meteor Crater: Energy of formation - Implications of centrifuge scaling

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.

    1980-01-01

    Recent work on explosive cratering has demonstrated the utility of performing subscale experiments on a geotechnic centrifuge to develop scaling rules for very large energy events. The present investigation is concerned with an extension of this technique to impact cratering. Experiments have been performed using a projectile gun mounted directly on the centrifuge rotor to launch projectiles into a suitable soil container undergoing centripetal accelerations in excess of 500 G. The pump tube of a two-stage light-gas gun was used to attain impact velocities of approximately 2 km/sec. The results of the experiments indicate that the energy of formation of any large impact crater depends upon the impact velocity. This dependence, shown for the case of Meteor Crater, is consistent with analogous results for the specific energy dependence of explosives and is expected to persist to impact velocities in excess of 25 km/sec.

  3. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.

    2002-01-01

    Elevated elastic velocities are a distinct physical property of gas hydrate-bearing sediments. A number of velocity models and equations (e.g., pore-filling model, cementation model, effective medium theories, weighted equations, and time-average equations) have been used to describe this effect. In particular, the weighted equation and effective medium theory predict reasonably well the elastic properties of unconsolidated gas hydrate-bearing sediments. A weakness of the weighted equation is its use of the empirical relationship of the time-average equation as one element of the equation. One drawback of the effective medium theory is its prediction of unreasonably higher shear-wave velocity at high porosities, so that the predicted velocity ratio does not agree well with the observed velocity ratio. To overcome these weaknesses, a method is proposed, based on Biot-Gassmann theories and assuming the formation velocity ratio (shear to compressional velocity) of an unconsolidated sediment is related to the velocity ratio of the matrix material of the formation and its porosity. Using the Biot coefficient calculated from either the weighted equation or from the effective medium theory, the proposed method accurately predicts the elastic properties of unconsolidated sediments with or without gas hydrate concentration. This method was applied to the observed velocities at the Mallik 2L-39 well, Mackenzie Delta, Canada.

  4. The Human Centrifuge

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    2009-01-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

  5. Characterization of centrifugally-loaded flame migration for ultra-compact combustors

    NASA Astrophysics Data System (ADS)

    LeBay, Kenneth D.

    The Air Force Research Laboratory (AFRL) has designed a centrifugally-loaded Ultra-Compact Combustor (UCC) showing viable merit for reducing gas turbine combustor length by as much as 66%. The overarching goal of this research was to characterize the migration of centrifugally-loaded flames in a sectional model of the UCC to enable scaling of the design from 15 cm to the 50--75 cm diameter of most engines. Two-line Planar Laser-Induced Fluorescence thermometry (PLIF) of OH, time-resolved Particle Image Velocimetry (PIV), and high-speed video data were collected. Using a sectional UCC model, the flame migration angle was determined to be a function of the UCC/core velocity ratio (VR) while both the VR and the centrifugal or "g-load" affected the migration quantity. Higher g-loads and lower VRs yielding higher migration but lower VRs had lower core flow temperatures due to higher core air mass flow. A comparison of the straight and curved UCC sections showed the centrifugal load increased the flame migration but increased unsteadiness. The flame migration into the core was estimated using pressure and temperature measurements upstream, and PIV measurements downstream of the core flow interface with constant density and velocity profile assumptions. The flame migration quantity was used to estimate the core flow temperature which was in relatively good agreement with the measured PLIF values. The migration quantity scaled relatively linearly with the UCC tangential velocity, which corresponds to the g-load value, with the slope determined by the VR. A simple analytical model resulted for the dependence of the migration quantity on the tangential velocity and VR. The quantitative relationships determined in this research provided a detailed description of the migration of centrifugally-loaded flames in a sectional UCC.

  6. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  7. Centrifugal dryers keep pace with the market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  8. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  9. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  10. Analysis of senior high school student understanding on gas kinetic theory material

    NASA Astrophysics Data System (ADS)

    Anri, Y.; Maknun, J.; Chandra, D. T.

    2018-05-01

    The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.

  11. Direct numerical simulation of vacillation in convection induced by centrifugal buoyancy

    NASA Astrophysics Data System (ADS)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John W.

    2017-11-01

    Flows induced by centrifugal buoyancy occur in industrial systems, such as in the compressor cavities of gas turbines, as well as in flows of geophysical interest. In this numerical study we use direct numerical simulation (DNS) to investigate the transition between the steady waves regime, which is characterized by great regularity, to the vacillation regime, which is critical to understand transition to the fully turbulent regime. From previous work it is known that the onset of convection occurs in the form of pairs of nearly-circular rolls which span the entire axial length of the cavity, with small deviations near the parallel, no-slip end walls. When non-linearity sets in triadic interactions occur and, depending on the value of the centrifugal Rayleigh number, the flow is dominated by either a single mode and its harmonics or by broadband effects if turbulence develops. In this study we increase the centrifugal Rayleigh number progressively and investigate mode interactions during the vacillation regime which eventually lead to chaotic motion. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  12. Miniature Gas-Circulating Machine

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier A.; Sixsmith, Herbert; Nutt, William E.

    1993-01-01

    Proposed gas-circulating machine consists essentially of centrifugal pump driven by induction motor. Noncontact bearings suppress wear and contamination. Used to circulate helium (or possibly hydrogen or another gas) in regeneration sorption-compressor refrigeration system aboard spacecraft. Also proves useful in terrestrial applications in which long life, reliability, and low contamination essential.

  13. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    PubMed

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation

    NASA Astrophysics Data System (ADS)

    Michal, Tomášek; Richard, Matas; Tomáš, Syka

    2017-09-01

    This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.

  15. Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.

    2007-06-01

    An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.

  16. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  17. Recycle dynamics during centrifugal compressor ESD, start-up and surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Jones, B.J.; Richards, D.J.

    1996-12-31

    Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less

  18. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    PubMed

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  19. Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.

    1999-10-01

    Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less

  20. Squat exercise biomechanics during short-radius centrifugation.

    PubMed

    Duda, Kevin R; Jarchow, Thomas; Young, Laurence R

    2012-02-01

    Centrifuge-induced artificial gravity (AG) with exercise is a promising comprehensive countermeasure against the physiological de-conditioning that results from exposure to weightlessness. However, body movements onboard a rotating centrifuge are affected by both the gravity gradient and Coriolis accelerations. The effect of centrifugation on squat exercise biomechanics was investigated, and differences between AG and upright squat biomechanics were quantified. There were 28 subjects (16 male) who participated in two separate experiments. Knee position, foot reaction forces, and motion sickness were recorded during the squats in a 1-G field while standing upright and while supine on a horizontally rotating 2 m radius centrifuge at 0, 23, or 30 rpm. No participants terminated the experiment due to motion sickness symptoms. Total mediolateral knee deflection increased by 1.0 to 2.0 cm during centrifugation, and did not result in any injuries. There was no evidence of an increased mediolateral knee travel "after-effect" during postrotation supine squats. Peak foot reaction forces increased with rotation rate up to approximately 200% bodyweight (iRED on ISS provides approximately 210% bodyweight resistance). The ratio of left-to-right foot force throughout the squat cycle on the centrifuge was nonconstant and approximately sinusoidal. Total foot reaction force versus knee flexion-extension angles differed between upright and AG squats due to centripetal acceleration on the centrifuge. A brief exercise protocol during centrifugation can be safely completed without significant after-effects in mediolateral knee position or motion sickness. Several recommendations are made for the design of future centrifuge-based exercise protocols for in-space applications.

  1. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDAmore » systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.« less

  2. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  3. Centrifugal separators and related devices and methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  4. Oil-free centrifugal hydrogen compression technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technologymore » is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full

  5. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  6. Centrifuge advances using HTS magnetic bearings

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  7. Advances in electron kinetics and theory of gas discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolobov, Vladimir I.; The University of Alabama in Huntsville, Huntsville, Alabama 35899

    2013-10-15

    “Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples ofmore » the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.« less

  8. Centrifuge impact cratering experiments: Scaling laws for non-porous targets

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.

    1987-01-01

    A geotechnical centrifuge was used to investigate large body impacts onto planetary surfaces. At elevated gravity, it is possible to match various dimensionless similarity parameters which were shown to govern large scale impacts. Observations of crater growth and target flow fields have provided detailed and critical tests of a complete and unified scaling theory for impact cratering. Scaling estimates were determined for nonporous targets. Scaling estimates for large scale cratering in rock proposed previously by others have assumed that the crater radius is proportional to powers of the impactor energy and gravity, with no additional dependence on impact velocity. The size scaling laws determined from ongoing centrifuge experiments differ from earlier ones in three respects. First, a distinct dependence of impact velocity is recognized, even for constant impactor energy. Second, the present energy exponent for low porosity targets, like competent rock, is lower than earlier estimates. Third, the gravity exponent is recognized here as being related to both the energy and the velocity exponents.

  9. Centrifuge workers study. Phase II, completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey tomore » evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.« less

  10. Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam

    2018-03-01

    The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.

  11. Theory for a gas composition sensor based on acoustic properties

    NASA Technical Reports Server (NTRS)

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M.

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent.

  12. Scaled Centrifugal Compressor Program.

    DTIC Science & Technology

    1986-10-31

    small compressors in turbo - shaft, turbofan , and turboprop engines used in rotorcraft; fixed-wing general aviation, and cruise missile aircraft . Included...AD-A±74 "I SCALED CENTRIFUGAL COMPRESSOR PEOGRAN(U) GARRETT13 TURBINE ENGINE CO PHOENIX AZ G CRGILL ET AL. 31 OCT 86 21-5464 MASA-CR-i?4912 NAS3...REPORT 6’ FOR SCALED CENTRIFUGAL COMPRESSOR PROGRAM GARRETT TURBINE ENGINE COMPANY A DIVISION OF THE GARRETT CORPORATION I111 SOUTH 34TH STREET - P.O

  13. NASA low speed centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  14. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  15. Erosion in radial inflow turbines. Volume 2: Balance of centrifugal and radial drag forces on erosive particles

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1974-01-01

    The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.

  16. Centrifuge Facility for the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  17. Centrifugal distortion and the ring puckering vibration in the microwave spectrum of 2,3-dihydrofuran

    NASA Astrophysics Data System (ADS)

    Cervellati, R.; Degli Esposti, A.; Lister, D. G.; Lopez, J. C.; Alonso, J. L.

    1986-10-01

    The microwave spectrum of 2,3-dihydrofuran has been reinvestigated and measurements for the ground and first five excited states of the ring puckering vibration have been extended to higher frequencies and rotational quantum numbers in order to study the vibrational dependence of the rotational and centrifugal distortion constants. The ring puckering potential function derived by Green from the far infrared spectrum does not reproduce the vibrational dependence of the rotational constants well. A slightly different potential function is derived which gives a reasonable fit both to the far infrared spectrum and the rotational constants. This changes the barrier to ring inversion from 1.00 kJ mol -1 to 1.12 kJ mol -1. The vibrational dependence of the centrifugal distortion constants is accounted for satisfactorily by the theory developed by Creswell and Mills. An attempt to reproduce the vibrational dependence of the rotational and centrifugal distortion constants using the ring puckering potential function and a simple model for this vibration has very limited success.

  18. Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motriuk, R.W.; Harvey, D.P.

    1998-08-01

    High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less

  19. Quantum versus classical dynamics in the optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  20. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  1. The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, R.G.; Finney, D.; Davidson, D.F.

    1988-07-01

    The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less

  2. Attack on centrifugal costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, P.F.

    1986-03-01

    The Monsanto Chocolate Bayou plant has had an aggressive and successful energy conservation program. The combined efforts have resulted in a 80% reduction in unit energy consumption compared to 1972. The approach of using system audits to optimize fluid systems was developed. Since most of the fluid movers are centrifugal, the name Centrifugal Savings Task Force was adopted. There are three tools that are particularly valuable in optimizing fluid systems. First, a working level understanding of the Affinity Laws seems a must. In addition, the performance curves for the fluid movers is needed. The last need is accurate system fieldmore » data. Systems effectively managed at the Chocolate Bayou plant were process air improvement, feed-water pressure reduction, combustion air blower turbine speed control, and cooling tower pressure reduction. Optimization of centrifugal systems is an often-overlooked opportunity for energy savings. The basic guidelines are to move only the fluid needed, and move it at as low a pressure as possible.« less

  3. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-06-01

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  4. Parents of two-phase flow and theory of "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.

  5. Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats

    NASA Astrophysics Data System (ADS)

    Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.

    2005-08-01

    We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.

  6. Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.

    2005-01-01

    We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.

  7. Autobalancing and FDIR for a space-based centrifuge prototype

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  8. 26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  9. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    PubMed

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  10. Active identification and control of aerodynamic instabilities in axial and centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Krichene, Assad

    In this thesis, it is experimentally shown that dynamic cursors to stall and surge exist in both axial and centrifugal compressors using the experimental axial and centrifugal compressor rigs located in the School of Aerospace Engineering at the Georgia Institute of Technology. Further, it is shown that the dynamic cursors to stall and surge can be identified in real-time and they can be used in a simple control scheme to avoid the occurrence of stall and surge instabilities altogether. For the centrifugal compressor, a previously developed real-time observer is used in order to detect dynamic cursors to surge in real-time. An off-line analysis using the Fast Fourier Transform (FFT) of the open loop experimental data from the centrifugal compressor rig is carried out to establish the influence of compressor speed on the dynamic cursor frequency. The variation of the amplitude of dynamic cursors with compressor operating condition from experimental data is qualitatively compared with simulation results obtained using a generic compression system model subjected to white noise excitation. Using off-line analysis results, a simple control scheme based on fuzzy logic is synthesized for surge avoidance and recovery. The control scheme is implemented in the centrifugal compressor rig using compressor bleed as well as fuel flow to the combustor. Closed loop experimental results are obtained to demonstrate the effectiveness of the controller for both surge avoidance and surge recovery. The existence of stall cursors in an axial compression system is established using the observer scheme from off-line analysis of an existing database of a commercial gas turbine engine. However, the observer scheme is found to be ineffective in detecting stall cursors in the experimental axial compressor rig in the School of Aerospace Engineering at the Georgia Institute of Technology. An alternate scheme based on the amplitude of pressure data content at the blade passage frequency obtained

  11. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  12. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  13. Enhancement of Identity in the Hydraulic Characteristics of a Gas Centrifuge for Isotope Separation

    NASA Astrophysics Data System (ADS)

    Yatsenko, D. V.; Borisevich, V. D.; Godisov, O. N.

    The problem of non-identity in characteristics of the GCs for uranium isotope separation grows up with increase of a rotor speed of rotation. It may lead to noticeable decrease of the separative power of the centrifugal machines. The carried out assessments allowed to get the dependence of the relative separation performance losses on the non-identity in the hydraulic characteristics of the GCs connected in parallel. The results of calculation are compared with that of obtained in experiments.

  14. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  15. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  16. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for

  17. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for

  18. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  19. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  20. Axial inlet conversion to a centrifugal compressor with magnetic bearings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novecosky, T.

    1994-01-01

    NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings havemore » been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).« less

  1. Gas Dynamics and Kinetics in the Cometary Coma: Theory and Observations

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Harris, Walter M.; Smyth, William H.

    2005-01-01

    Our ability to describe the physical state of the expanding coma affects fundamental areas of cometary study both directly and indirectly. In order to convert measured abundances of gas species in the coma to gas production rates, models for the distribution and kinematics of gas species in the coma are required. Conversely, many different types of observations, together with laboratory data and theory, are still required to determine coma model attributes and parameters. Accurate relative and absolute gas production rates and their variations with time and from comet to comet are crucial to our basic understanding of the composition and structure of cometary nuclei and their place in the solar system. We review the gas dynamics and kinetics of cometary comae from both theoretical and observational perspectives, which are important for understanding the wide variety of physical conditions that are encountered.

  2. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gasmore » is taken to be constant.« less

  3. Rotatingwall Technique and Centrifugal Separation

    NASA Astrophysics Data System (ADS)

    Anderegg, François

    This chapter describes the "rotating wall" technique which enables essentially unlimited confinement time of 109-1010 charged particles in a Penning trap. The applied rotating wall electric field provides a positive torque that counteracts background drags, resulting in radial compression or steady-state confinement in near-thermal equilibrium states. The last part of the chapter discusses centrifugal separation in a rotating multi-species non-neutral plasma. Separation occurs when the centrifugal energy is larger than the mixing due to thermal energy.

  4. Effects of centrifugation stress on pituitary-gonadal function in male rats

    NASA Technical Reports Server (NTRS)

    Gray, G. D.; Smith, E. R.; Damassa, D. A.; Davidson, J. M.

    1980-01-01

    The effects of centrifugation for various lengths of time on circulating levels of luteinizing hormone (LH) and testosterone in male rats were investigated. In a chronic 52-day experiment, centrifugation at 4.1 G significantly reduced LH and testosterone levels for the entire period. Centrifugation at 2.3 G had less effect inasmuch as LH levels were not significantly decreased and testosterone levels were significantly reduced only during the first few days of centrifugation. In more acute experiments, centrifugation at 4.1 G for 4 h resulted in reduced testosterone levels, whereas centrifugation for 15 min did not significantly alter the hormone levels. These results indicate that centrifugation can decrease circulating LH and testosterone levels if the gravitational force is of sufficient magnitude and is maintained for a period of hours. Chronic centrifugation may also inhibit the acute excitatory response of LH to handling and ether stress.

  5. Distribution of fluids in the body of the centrifuged rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1983-01-01

    The effects of exposure to an elevated g-level throughout the period of rapid growth is investigated in a comparison of a group of female Sprague-Dawley rats centrifuged as adults with other groups centrifuged for prolonged intervals starting shortly after weaning. The fluid-solid composition of total body, heart, liver, gut, skin, and muscle for both study groups is compared with that of a control group. None of the changes as a result of centrifugation were truly persistent. The only increases in mass associated with centrifugation and the only responses to centrifugation per se were observed in the skin values.

  6. The gas-sensing potential of nanocrystalline SnO2 produced by a mechanochemical milling via centrifugal action

    NASA Astrophysics Data System (ADS)

    Kersen, Ü.

    In this work, the synthesis of undoped nanocrystalline tin dioxide powders and the subsequent preparation of SnO2 thick-films were studied. An initial mixture of SnCl2 and Ca(OH)2 was sealed in a vial for milling in an air atmosphere. Heat treatment of the milled powder resulted in the formation of tetragonal and orthorhombic SnO2 phases, which was confirmed by X-ray diffraction (XRD) analysis. It was found that crystallite size could be controlled by varying the milling time, the rotation speed and the temperature used for the heat treatment. Crystallite sizes in the range 20 to 30 nm (determined by XRD measurements) were obtained. The total pore volume was 0.22 ml/g for a measured particle size of 37 m2/g. No contamination of the powder during milling was found. The response of the prepared thick-films to H2S gas in the concentration range 0.5 to 10 ppm in air was investigated as a function of the preparation conditions. The advantage of mechanochemical synthesis of powder is its relative simplicity, low cost and possibility of obtaining isolated, unagglomerated nanosized grains. It is shown that chemical reactions, which usually occur in the vibratory mill to produce the SnO phase, can also be initiated during a short processing time in the centrifugal mill.

  7. Unsteady flow phenomena in industrial centrifugal compressor stage

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.; Tesei, A.

    1982-01-01

    The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.

  8. Separation Of Liquid And Gas In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Howard, Frank S.; Fraser, Wilson S.

    1991-01-01

    Pair of reports describe scheme for separating liquid from gas so liquid could be pumped. Designed to operate in absence of gravitation. Jet of liquid, gas, or liquid/gas mixture fed circumferentially into cylindrical tank filled with liquid/gas mixture. Jet starts liquid swirling. Swirling motion centrifugally separates liquid from gas. Liquid then pumped from tank at point approximately diametrically opposite point of injection of jet. Vortex phase separator replaces such devices as bladders and screens. Requires no components inside tank. Pumps for gas and liquid outside tank and easily accessible for maintenance and repairs.

  9. Preliminary investigation and application of alternate dry gas seal face materials{copyright}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, R.; Peterson, R.; Hanson, R.

    1994-01-01

    Traditional seal mating ring materials such as tungsten carbide (WC) are commonly used in high pressure centrifugal gas compressor dry gas (gas lubricating film) seal applications. Although these materials possess desirable properties for minimizing thermal distortion and deformation when subjected to pressure and centrifugal force, they have low toughness, i.e., they are brittle and have poor resistance to thermal shock. It has been found that these materials are easily heat checked during seal face touchdown. Heat checking as well as other crack indications inherent in these materials can quickly propagate, resulting in a catastrophic seal ring failure. In this paper,more » an investigation of alternate seal face materials is described. Two ductile, nitrided, low ferrous materials proved to be readily manufacturable into dry gas seal rings and performed comparably to tungsten carbide in natural gas service. 10 refs., 13 figs., 5 tabs.« less

  10. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    NASA Astrophysics Data System (ADS)

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  11. Theory of multicolor lattice gas - A cellular automaton Poisson solver

    NASA Technical Reports Server (NTRS)

    Chen, H.; Matthaeus, W. H.; Klein, L. W.

    1990-01-01

    The present class of models for cellular automata involving a quiescent hydrodynamic lattice gas with multiple-valued passive labels termed 'colors', the lattice collisions change individual particle colors while preserving net color. The rigorous proofs of the multicolor lattice gases' essential features are rendered more tractable by an equivalent subparticle representation in which the color is represented by underlying two-state 'spins'. Schemes for the introduction of Dirichlet and Neumann boundary conditions are described, and two illustrative numerical test cases are used to verify the theory. The lattice gas model is equivalent to a Poisson equation solution.

  12. Evaluation of automated enzyme immunoassays for five anticonvulsants and theophylline adapted to a centrifugal analyzer.

    PubMed

    Urquhart, N; Godolphin, W; Campbell, D J

    1979-05-01

    We report a clinical evaluation of the enzyme immunoassay (EMIT) performed with the GEMSAEC centrifugal analyzer as compared to gas-liquid and liquid chromatography for anticonvulsant drugs and theophylline, respectively. A good correlation was obtained for all drugs, although some difficulties were experienced with one lot of reagent for ethosuximide. The analyzer has an economic advantage if many samples are being analyzed for few drugs in each sample.

  13. Colloid centrifugation of boar semen.

    PubMed

    Morrell, J M; Wallgren, M

    2011-09-01

    Colloid centrifugation of boar semen has been reported sporadically for at least the last two decades, beginning with density gradient centrifugation (DGC) and progressing more recently to single layer centrifugation (SLC). Single layer centrifugation through a species-specific colloid has been shown to be effective in selecting the best spermatozoa (spermatozoa with good motility and normal morphology) from boar sperm samples. The method is easier to use and less time-consuming than DGC and has been scaled-up to allow whole ejaculates from other species, e.g. stallions, to be processed in a practical manner. The SLC technique is described, and various scale-up versions are presented. The potential applications for SLC in boar semen preservation are as follows: to improve sperm quality in artificial insemination (AI) doses for 'problem' boars; to increase the shelf-life of normal stored sperm samples, either by processing the fresh semen before preparing AI doses or by processing the stored semen dose to extract the best spermatozoa; to remove pathogens (viruses, bacteria), thus improving biosecurity of semen doses and potentially reducing the use of antibiotics; to improve cryosurvival by removing dead and dying spermatozoa prior to cryopreservation; to select spermatozoa for in vitro fertilization. These applications are discussed and practical examples are provided. Finally, a few thoughts about the economic value of the technique to the boar semen industry are presented. © 2011 Blackwell Verlag GmbH.

  14. Effect of science laboratory centrifuge of space station environment

    NASA Technical Reports Server (NTRS)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  15. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  16. Centrifuge impact cratering experiments: Scaling laws for non-porous targets

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.

    1987-01-01

    This research is a continuation of an ongoing program whose objective is to perform experiments and to develop scaling relationships for large body impacts onto planetary surfaces. The development of the centrifuge technique has been pioneered by the present investigator and is used to provide experimental data for actual target materials of interest. With both powder and gas guns mounted on a rotor arm, it is possible to match various dimensionless similarity parameters, which have been shown to govern the behavior of large scale impacts. Current work is directed toward the determination of scaling estimates for nonporous targets. The results are presented in summary form.

  17. Apparatus for centrifugal separation of coal particles

    DOEpatents

    Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  18. Lubrication free centrifugal compressor. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottschlich, J.M.; Scaringe, R.P.; Gui, F.

    1994-04-22

    This paper describes an effort to demonstrate the benefits of an innovative, lightweight, lubrication free centrifugal compressor that allows the use of environmentally sale alternate refrigerants with improved system efficiencies over current state-of-the-art technology. This effort couples the recently developed 3-D high efficiency centrifugal compressor and fabrication technologies with magnetic bearing technology and will then prove the performance, life and reliability of the compressor.

  19. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  20. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  1. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  2. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  3. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  4. Mechanisms of Sensorimotor Adaptation to Centrifugation

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Wood, S. J.; Kaufman, G. D.

    1999-01-01

    We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.

  5. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    PubMed

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  6. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  7. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    PubMed Central

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  8. Effect of Centrifuge Temperature on Routine Coagulation Tests.

    PubMed

    Yazar, Hayrullah; Özdemir, Fatma; Köse, Elif

    2018-01-01

    This study investigated the effects of cooled and standard centrifuges on the results of coagulation tests to examine the effects of centrifugation temperature. Equal-volume blood samples from each patient were collected at the same time intervals and subjected to standard (25°C) and cooled centrifugation (2-4°C). Subsequently, the prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, and D-dimer values were determined in runs with the same lot numbers in the same coagulation device using the Dia-PT R (PT and INR), Dia-PTT-liquid (aPTT), Dia-FIB (fibrinogen), and Dia-D-dimer kits, respectively. The study enrolled 771 participants. The PT was significantly (p < 0.018) higher in participants on anticoagulant therapy. The respective median values of the test parameters determined using the standard and cooled centrifuges were as follows: PT 10.30 versus 10.50 s; PT (INR) 1.04 versus 1.09 s; APTT 28.90 versus 29.40 s; fibrinogen 321.5 versus 322.1 mg/dL; and D-dimer 179.5 versus 168.7 µg FEU/mL. There were significant differences (p < 0.001) in the parameters between the values obtained with the standard and cooled centrifuges. Centrifuge temperature can have a significant effect on the results of coagulation tests. However, broad and specific disease-based studies are needed. © 2018 S. Karger AG, Basel.

  9. Circulation Plasma Centrifuge with Product Flow

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Potanin, E. P.

    2018-05-01

    We have analyzed the isotope separation in a high-frequency plasma circulating centrifuge operating with a product flow. The rotation of a weakly ionized plasma is ensured by a rotating magnetic field, while the countercurrent flow (circulation) is produced by a traveling magnetic field. We have calculated the dependences of the enrichment factor and the separative power of the centrifuge on a product flow. The optimal characteristics of the separation unit have been determined.

  10. Fundamental equations of a mixture of gas and small spherical solid particles from simple kinetic theory.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.

    1973-01-01

    The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.

  11. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary tomore » relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.« less

  12. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  13. Probing molecular potentials with an optical centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Hepburn, J W; Milner, V

    2017-09-28

    We use an optical centrifuge to excite coherent rotational wave packets in N 2 O, OCS, and CS 2 molecules with rotational quantum numbers reaching up to J≈465, 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

  14. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  15. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  16. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    PubMed

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  18. Relativistic centrifugal instability

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  19. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  20. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  1. DEM simulation of granular flows in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  2. The Lifshitz-Kosevich-Shoenberg theory of relativistic electronic gas in neutron stars

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua

    2014-10-01

    Similar to the de Haas-van Alphen magnetic oscillatory in some normal metals when the Landau quantization is predominant, the magnetic oscillation can also occur in highly degenerate and relativistic electron gas in neutron stars. At large Landau quantum number (Landau quantum number r≥2), we generalize the Lifshitz-Kosevich-Shoenberg theory in non-relativistic electron gas to relativistic gas. At small Landau quantum number ( r<2), we expand the grand potential into Fourier series and get similar harmonic oscillatory formula of magnetization. These results indicate that magnetic phase transition similar as Condon transition observed in metals can appear in neutron stars when the differential susceptibility exceeds 1/4 π.

  3. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    PubMed

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  4. Microfluidic size separation of cells and particles using a swinging bucket centrifuge

    PubMed Central

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-01-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900

  5. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    PubMed

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  6. Probing molecular potentials with an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Hepburn, J. W.; Milner, V.

    2017-09-01

    We use an optical centrifuge to excite coherent rotational wave packets in N2O, OCS, and CS2 molecules with rotational quantum numbers reaching up to J ≈465 , 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

  7. Rotating stall simulation for axial and centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  8. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  9. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  10. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    USGS Publications Warehouse

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  11. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  12. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  13. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-04-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  14. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.

    PubMed

    DENNISON, D S

    1961-09-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.

  16. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  17. Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [ 3 H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.

  18. Isolation of symbiotic dinoflagellates by centrifugal elutriation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, A.E.; Quinn, R.J.

    1986-01-01

    Centrifugal elutriation, a method combining centripetal liquid flow with centrifugal force, has been used to isolate symbiotic dinoflagellates from a cnidarian host. The elutriated cells were shown to be viable by photosynthetic incorporation of /sup 14/CO/sub 2/ and low release of photosynthetic products into the incubation medium. The level of contamination by clinging debris was low and by host solids was negligible.

  19. Prediction and optimization of the recovery rate in centrifugal separation of platelet-rich plasma (PRP)

    NASA Astrophysics Data System (ADS)

    Piao, Linfeng; Park, Hyungmin; Jo, Chris

    2016-11-01

    We present a theoretical model of the recovery rate of platelet and white blood cell in the process of centrifugal separation of platelet-rich plasma (PRP). For the practically used conditions in the field, the separation process is modeled as a one-dimensional particle sedimentation; a quasi-linear partial differential equation is derived based on the kinematic-wave theory. This is solved to determine the interface positions between supernatant-suspension and suspension-sediment, used to estimate the recovery rate of the plasma. While correcting the Brown's hypothesis (1989) claiming that the platelet recovery is linearly proportional to that of plasma, we propose a new correlation model for prediction of the platelet recovery, which is a function of the volume of whole blood, centrifugal acceleration and time. For a range of practical parameters, such as hematocrit, volume of whole blood and centrifugation (time and acceleration), the predicted recovery rate shows a good agreement with available clinical data. We propose that this model is further used to optimize the preparation method of PRP that satisfies the customized case. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  20. Biohazards Assessment in Large-Scale Zonal Centrifugation

    PubMed Central

    Baldwin, C. L.; Lemp, J. F.; Barbeito, M. S.

    1975-01-01

    A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both centrifuge chamber interior and rotor surfaces. Images PMID:1124921

  1. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    PubMed

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  2. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments

    PubMed Central

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments. PMID:26221724

  3. View of new centrifuge at Flight Acceleration Facility

    NASA Technical Reports Server (NTRS)

    1966-01-01

    View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.

  4. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  5. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  6. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  7. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  8. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  9. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  10. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    PubMed

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  11. Multifunctional centrifugal grinding unit

    NASA Astrophysics Data System (ADS)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  12. Centrifugal compressor design for electrically assisted boost

    NASA Astrophysics Data System (ADS)

    Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.

    2013-12-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.

  13. Pump Propels Liquid And Gas Separately

    NASA Technical Reports Server (NTRS)

    Harvey, Andrew; Demler, Roger

    1993-01-01

    Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.

  14. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  15. Progress on 2 MW STI8 gas turbine from Pratt & Whitney Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-01

    In 1995 Pratt & Whitney Canada announced their intention to offer industrial and marine versions of the PW100 series aircraft gas turbine widely used in turboprop applications. The new ST18 gas turbine is rated in the two megawatt range for industrial and marine applications and offers an especially compact and lightweight gas turbine for this output level. As in other aeroderivative designs from Pratt & Whitney Canada, headquartered in Longueuil, Quebec, the ST18 gas turbine features a centrifugal compressor design. The two-stage centrifugal compressor, with a unique high efficiency external pipe diffuser system connecting the low pressure and high pressuremore » compressor, achieves an overall compression ratio of 15:1, with air flow of 7.7 kg/s. A relatively good thermal efficiency level of about 30% is achieved in this design. For exhaust emission control purposes, water injection in excess of a 1:1 ratio is utilized in the reverse flow annular combustion system to achieve less than 35 ppm NO{sub x} on natural gas fuel. This paper provides some of the design details of this gas turbine and changes made for the industrial and marine configuration. 4 figs.« less

  16. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    PubMed

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  17. Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.

    2002-01-01

    Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.

  18. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  19. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  20. A 'smart' tube holder enables real-time sample monitoring in a standard lab centrifuge.

    PubMed

    Hoang, Tony; Moskwa, Nicholas; Halvorsen, Ken

    2018-01-01

    The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their "black box" nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades.

  1. Ocular Counter-Rolling During Centrifugation and Static Tilt

    NASA Technical Reports Server (NTRS)

    Cohen, Bernard; Clement, Gilles; Moore, Steven; Curthoys, Ian; Dai, Mingjia; Koizuka, Izumi; Kubo, Takeshi; Raphan, Theodore

    2003-01-01

    Activation of the gravity sensors in the inner ear-the otoliths-generates reflexes that act to maintain posture and gaze. Ocular counter-rolling (OCR) is an example of such a reflex. When the head is tilted to the side, the eyes rotate around the line of sight in the opposite direction (i.e., counter-rolling). While turning comers, undergoing centrifugation, or making side-to-side tilting head movements, the OCR reflex orients the eyes towards the sum of the accelerations from body movements and gravity. Deconditioning of otolith-mediated reflexes following adaptation to microgravity has been proposed as the basis of many of the postural, locomotor, and gaze control problems experienced by returning astronauts. Evidence suggests that OCR is reduced postflight in about 75% of astronauts tested; but the data are sparse, primarily due to difficulties in recording rotational eye movements. During the Neurolab mission, a short-arm human centrifuge was flown that generated sustained sideways accelerations of 0.5-G and one-G to the head and upper body. This produces OCR; and so for the first time, the responses to sustained centrifugation could be studied without the influence of Earth's gravity on the results. This allowed us to determine the relative importance of sideways and vertical acceleration in the generation of OCR. This also provided the first test of the effects of exposure to artificial gravity in space on postflight otolith-ocular reflexes. There was little difference between the responses to centrifugation in microgravity and on Earth. In both conditions, the induced OCR was roughly proportional to the applied acceleration, with the OCR magnitude during 0.5-G centrifugation approximately 60% of that generated during one-G centrifugation. The overall mean OCR from the four payload crewmembers in response to one-G of sideways acceleration was 5.7 plus or minus 1.1 degree (mean and SD) on Earth. Inflight one-G centrifugation generated 5.7 plus or minus 1

  2. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.

    PubMed

    Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon

    2015-01-01

    The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Cycle-powered short radius (1.9M) centrifuge: exercise vs. passive acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Marchman, N.; Looft-Wilson, R.; Hargens, A. R.

    1996-01-01

    A human-powered short-arm centrifuge is described. This centrifuge could be used during spaceflight to provide +Gz acceleration while subjects performed exercise, thus supplying two forms of weightlessness countermeasures. Results from a study of cardiovascular responses while using the centrifuge are presented.

  4. Increased mitogenic response in lymphocytes from chronically centrifuged mice

    NASA Technical Reports Server (NTRS)

    Mueller, Otfried; Hunzinger, E.; Cogoli, Augusto; Bechler, B.; Lee, J.; Moore, J.; Duke, J.

    1990-01-01

    The effects upon the mitogenic response of splenic lymphocytes when exposing mice to prolonged hypergravity conditions (3.5 G for 1 year) were studied. Cultures of splenic lymphocytes isolated from both centrifuged and control (1 G) animals were stimulated with Concanavalin A and the response measured using both morphological and biochemical means. Lymphocytes obtained from centrifuged mice exhibited much higher activation rates (as measured by the incorporation of H-3 thymidine) and larger cell aggregates consisting of more lymphoblasts and mitotic figures than those observed in non centrifuged control animals. Isolated splenic lymphocytes thus appear to have been conditioned by hypergravity state.

  5. A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the 'open-vessel' artifact.

    PubMed

    Yin, Pengxian; Meng, Feng; Liu, Qing; An, Rui; Cai, Jing; Du, Guangyuan

    2018-03-30

    A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static- and flow-centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open-vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centred on whether exponential VCs are more reliable when the static-centrifuge method is used than with the flow-centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static- and flow-centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. Additionally, the injection of water in the flow-centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench-dehydration VC. This article is protected by copyright. All rights reserved.

  6. Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Rongrong; Deng Liezheng; Shi Wenbo

    An attempt is made to produce gas-phase singlet oxygen O{sub 2}(a{sup 1{Delta}}{sub g}) in a liquid-liquid reaction between acidic hydrogen peroxide (AHP) and sodium hypochlorite (NaOCl). The attempt arises from the fact that basic hydrogen peroxide (BHP) has long been the prime source for producing singlet delta oxygen through its reaction with chlorine. However, BHP suffers from the defect of being unstable during storage. Exploratory experiments were performed in a centrifugal flow singlet oxygen generator (CF-SOG) with two streams of solutions, AHP and NaOCl, mixed in a slit nozzle and then injected into the arc-shaped concavity in the CF-SOG tomore » form a rotating liquid flow with a remarkable centrifugal force. With the help of this centrifugal force, the product of the O{sub 2}({sup 1{Delta}}) reaction was quickly separated from the liquid phase. The gas-phase O{sub 2}({sup 1{Delta}}) was detected via the spectrum of O{sub 2}({sup 1{Delta}}) cooperative dimolecular emission with a CCD spectrograph. Experimental results show that it is feasible to produce gas-phase O{sub 2}({sup 1{Delta}}) from the AHP + NaOCl reaction, and the stronger the acidity, the more efficient the O{sub 2}({sup 1{Delta}}) production. However, since in the AHP + NaOCl reaction, Cl{sub 2} unavoidably appears as a byproduct, its catalytic action on the decomposition of H{sub 2}O{sub 2} into ground-state O{sub 2} remains a major obstacle to utilising the AHP + NaOCl reaction in producing gas-phase O{sub 2}({sup 1{Delta}}). Qualitative interpretation shows that the AHP + NaOCl reaction is virtually the reaction of interaction of molecular H{sub 2}O{sub 2} with molecular HOCl, its mechanism being analogous to that of reaction of BHP with Cl{sub 2}, where HOOCl is the key intermediate. It is difficult to form the intermediate HOOCl via the H{sub 2}O{sub 2} + NaOCl reaction in a basic medium, thus gas-phase O{sub 2}({sup 1{Delta}}) cannot be obtained in appreciable quantities. (active

  7. Maintenance free gas bearing helium blower for nuclear plant

    NASA Astrophysics Data System (ADS)

    Molyneaux, A., Dr; Harris, M., Prof; Sharkh, S., Prof; Hill, S.; de Graaff, T.

    2017-08-01

    This paper describes the design, testing and operation of novel helium blowers used to recirculate the helium blanketing gas in the nuclear reactor used as a neutron source at the Institut Laue Langevan, Grenoble, France. The laser sintered shrouded centrifugal wheel operates at speeds up to 45000 rpm supported on helium lubricated hydrodynamic spiral groove bearings, and is driven by a sensorless permanent magnet motor. The entire machine is designed to keep the helium gas (polluted by a small amount of D2O) out of contact with any iron or copper materials which would contribute to the corrosion of parts of the circuit. It is designed to have zero maintenance during a lifetime of 40,000 hours of continuous operation. This paper will describe the spiral groove journal and thrust bearings. Design and manufacture of the 1 kW motor and centrifugal wheel will be explained including their CFD and FEA analyses. Measurements of rotor displacement will be presented showing the behaviour under factory testing as well as details of the measured centrifugal wheel and motor performances. Two machines are incorporated into the circuit to provide redundancy and the first blower has been in continuous operation since Jan 2015. The blower was designed, manufactured, assembled and tested in the UK using predominantly UK suppliers.

  8. Return to Flying Duties Following Centrifuge or Vibration Exposures

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  9. Spectroscopy of molecules in very high rotational states using an optical centrifuge.

    PubMed

    Yuan, Liwei; Toro, Carlos; Bell, Mack; Mullin, Amy S

    2011-01-01

    We have developed a high power optical centrifuge for measuring the spectroscopy of molecules in extreme rotational states. The optical centrifuge has a pulse energy that is more than 2 orders of magnitude greater than in earlier instruments. The large pulse energy allows us to drive substantial number densities of molecules to extreme rotational states in order to measure new spectroscopic transitions that are not accessible with traditional methods. Here we demonstrate the use of the optical centrifuge for measuring IR transitions of N2O from states that have been inaccessible until now. In these studies, the optical centrifuge drives N2O molecules into states with J ~ 200 and we use high resolution transient IR probing to measure the appearance of population in states with J = 93-99 that result from collisional cooling of the centrifuged molecules. High resolution Doppler broadened line profile measurements yield information about the rotational and translational energy distributions in the optical centrifuge.

  10. Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Somers, Jeffery T.; Krnavek, Jody; Fisher, Elizibeth; Ford, George; Paloski, William H.

    2007-01-01

    It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are

  11. Preflight screening techniques for centrifuge-simulated suborbital spaceflight.

    PubMed

    Pattarini, James M; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2014-12-01

    Historically, space has been the venue of the healthy individual. With the advent of commercial spaceflight, we face the novel prospect of routinely exposing spaceflight participants (SPFs) with multiple comorbidities to the space environment. Preflight screening procedures must be developed to identify those individuals at increased risk during flight. We examined the responses of volunteers to centrifuge accelerations mimicking commercial suborbital spaceflight profiles to evaluate how potential SFPs might tolerate such forces. We evaluated our screening process for medical approval of subjects for centrifuge participation for applicability to commercial spaceflight operations. All registered subjects completed a medical questionnaire, physical examination, and electrocardiogram. Subjects with identified concerns including cardiopulmonary disease, hypertension, and diabetes were required to provide documentation of their conditions. There were 335 subjects who registered for the study, 124 who completed all prescreening, and 86 subjects who participated in centrifuge trials. Due to prior medical history, five subjects were disqualified, most commonly for psychiatric reasons or uncontrolled medical conditions. Of the subjects approved, four individuals experienced abnormal physiological responses to centrifuge profiles, including one back strain and three with anxiety reactions. The screening methods used were judged to be sufficient to identify individuals physically capable of tolerating simulated suborbital flight. Improved methods will be needed to identify susceptibility to anxiety reactions. While severe or uncontrolled disease was excluded, many subjects successfully participated in centrifuge trials despite medical histories of disease that are disqualifying under historical spaceflight screening regimes. Such screening techniques are applicable for use in future commercial spaceflight operations.

  12. Transport modes during crystal growth in a centrifuge

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.

    1992-01-01

    Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.

  13. Research opportunities with the Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.

    1992-01-01

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  14. Lightweight Shield for Centrifuge

    NASA Technical Reports Server (NTRS)

    Luper, C.

    1982-01-01

    Centrifuge bowl composed of laminated aluminum offers required combination of high strength at reduced weight. Around outside wall of bowl core of 1/16 inch thick spun aluminum are wrapped two layers of aluminum, each also one-sixteenth inch thick. Layered structure prevents cracks from propagating through wall.

  15. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  16. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  17. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  18. 25. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879, 1881. View: After sugar was granulated and cooled it had to be dried and drained, completely separating the sugar crystals from the molasses. Revolving at 1200 rpm the inner basket drove the molasses outward into the stationary outer basket leaving dried sugar behind. The steam engine counter-shaft at the left was belt driven and belts running from the counter-shaft pulleys to the centrifugals' base-pulleys provided the necessary power. Part of the clutch system which moved the belt from a moving to a stationary pulley, thus turning the centrifugals on and off, is seen in Between the counter-shaft and the centrifugals. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  19. A ‘smart’ tube holder enables real-time sample monitoring in a standard lab centrifuge

    PubMed Central

    Hoang, Tony; Moskwa, Nicholas

    2018-01-01

    The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their “black box” nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades. PMID:29659624

  20. Conserving and gapless Hartree-Fock-Bogoliubov theory for the three-dimensional dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Hui; Li, Dingping

    2013-11-01

    The excitation spectrum for the three-dimensional Bose gas in the Bose-Einstein condensation phase is calculated nonperturbatively with the modified Hartree-Fock-Bogoliubov theory, which is both conserving and gapless. From improved Φ-derivable theory, the diagrams needed to preserve the Ward-Takahashi identity are re-summed in a systematic and nonperturbative way. It is valid up to the critical temperature where the dispersion relation of the low-energy excitation spectrum changes from linear to quadratic. Because including the higher-order fluctuation, the results show significant improvement on the calculation of the shift of critical temperature with other conserving and gapless theories.

  1. Development of a high-specific-speed centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, C.

    1997-07-01

    This paper describes the development of a subscale single-stage centrifugal compressor with a dimensionless specific speed (Ns) of 1.8, originally designed for full-size application as a high volume flow, low pressure ratio, gas booster compressor. The specific stage is noteworthy in that it provides a benchmark representing the performance potential of very high-specific-speed compressors, of which limited information is found in the open literature. Stage and component test performance characteristics are presented together with traverse results at the impeller exit. Traverse test results were compared with recent CFD computational predictions for an exploratory analytical calibration of a very high-specific-speed impellermore » geometry. The tested subscale (0.583) compressor essentially satisfied design performance expectations with an overall stage efficiency of 74% including, excessive exit casing losses. It was estimated that stage efficiency could be increased to 81% with exit casing losses halved.« less

  2. Implementation of centrifuge testing of expansive soils for pavement design.

    DOT National Transportation Integrated Search

    2017-03-01

    The novel centrifuge-based method for testing of expansive soils from project 5-6048-01 was implemented into : use for the determination of the Potential Vertical Rise (PVR) of roadways that sit on expansive subgrades. The : centrifuge method was mod...

  3. System analysis of plasma centrifuges and sputtering

    NASA Technical Reports Server (NTRS)

    Hong, S. H.

    1978-01-01

    System analyses of cylindrical plasma centrifuges are presented, for which the velocity field and electromagnetic fields are calculated. The effects of different electrode geometrics, induced magnetic fields, Hall-effect, and secondary flows are discussed. It is shown that speeds of 10000 m/sec can be achieved in plasma centrifuges, and that an efficient separation of U238 and U235 in uranium plasmas is feasible. The external boundary-value problem for the deposition of sputtering products is reduced to a Fredholm integral equation, which is solved analytically by means of the method of successive approximations.

  4. The effect of balance holes to centrifugal pump performance

    NASA Astrophysics Data System (ADS)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  5. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    PubMed Central

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792

  6. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...

  7. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...

  8. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...

  9. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...

  10. Guided imagery, anxiety, heart rate, and heart rate variability during centrifuge training.

    PubMed

    Jing, Xiaolu; Wu, Ping; Liu, Fang; Wu, Bin; Miao, Danmin

    2011-02-01

    Centrifuge training is an important method of improving the hypergravity tolerance of pilots, cosmonauts, and Chinese astronauts. However, the concomitants of tension or anxiety often impede training. Guided imagery (GI), a mind-body relaxation technique, provides a behavioral and cognitive means whereby individuals are able to exert control over the focus of attention. This study aims to investigate the immediate effects of GI for reducing stress in centrifuge training. There were 12 healthy young men who were randomly assigned to a GI group or music group. We measured changes in heart rate during centrifuge training, in heart rate variability before and after centrifuge training, and also evaluated relaxation and anxiety in three phases: before intervention, after intervention, and following centrifuge training. The change in the pattern of anxiety was different in the two groups over the three phases. Anxiety (measured by State Anxiety Inventory) in the GI group changed from 31.7 +/- 5.9 to 26.8 +/- 2.6 and 27.8 +/- 4.1, whereas for the music group this changed from 32.2 +/- 7.6 to 31.2 +/- 8.3 and 26.8 +/- 6.8. During centrifuge training, the maximal HR for the GI group (101.2 +/- 8.8) was lower than that of the music group (123.0 +/- 19.1). In addition GI showed a decrease in low frequency (LF, 0.04-0.15 Hz) components and an increase in high frequency (HF, 0.15-0.4 Hz) components before and after centrifuge training. GI was capable of decreasing tension, anxiety, and sympathetic nervous system activity pre- or post-centrifugation.

  11. Impact of centrifugal drifts on ion turbulent transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, Emily A.; Candy, J.

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less

  12. Impact of centrifugal drifts on ion turbulent transport

    DOE PAGES

    Belli, Emily A.; Candy, J.

    2018-03-01

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less

  13. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  14. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  15. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  16. Propulsive force of Paramecium as revealed by the video centrifuge microscope.

    PubMed

    Kuroda, K; Kamiya, N

    1989-09-01

    Using the video centrifuge microscope we constructed, we observed the behavior of Paramecium cells in a solution of graded densities under centrifugal acceleration. Beyond 300g, they not only gather in the zone where the density is closest to theirs, but also orient themselves with their longitudinal axis parallel to the direction of centrifugation turning their anterior ends toward either centripetal or centrifugal direction. Since all of them retain still active swimming capacity, it is possible to calculate their propulsive force from the difference in density between theirs (1.04 g cm-3) and that of the upper or lower layer which they can reach. The propulsive force of single Paramecium cells thus obtained was calculated to be about 7 x 10(-4) dyn.

  17. Unsteady Newton-Busemann flow theory. Part 2: Bodies of revolution

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1981-01-01

    Newtonian flow theory for unsteady flow past oscillating bodies of revolution at very high Mach numbers is completed by adding a centrifugal force correction to the impact pressures. Exact formulas for the unsteady pressure and the stability derivatives are obtained in closed form and are applicable to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and either sharp or blunt noses. The centrifugal force correction arising from the curved trajectories followed by the fluid particles in unsteady flow cannot be neglected even for the case of a circular cone. With this correction, the present theory is in excellent agreement with experimental results for sharp cones and for cones with small nose bluntness; gives poor agreement with the results of experiments in air for bodies with moderate or large nose bluntness. The pitching motions of slender power-law bodies of revulution are shown to be always dynamically stable according to Newton-Busemann theory.

  18. A hand-powered, portable, low-cost centrifuge for diagnosing anemia in low-resource settings.

    PubMed

    Brown, Jocelyn; Theis, Lauren; Kerr, Lila; Zakhidova, Nazima; O'Connor, Kelly; Uthman, Margaret; Oden, Z Maria; Richards-Kortum, Rebecca

    2011-08-01

    This report describes the development of a hand-powered centrifuge to determine hematocrit values in low-resource settings. A hand-powered centrifuge was constructed by using a salad spinner. Hematocrit values were measured by using the hand-powered device, and results were compared with those of a benchtop centrifuge. The packed cell volume (PCV) measured with the hand-powered device correlated linearly with results obtained with a benchtop centrifuge (r = 0.986, P < 0.001). The PCVs measured with the hand-powered centrifuge were consistently 1.14 times higher than those measured with the benchtop system. The 14% increase in PCV measured with the hand-powered centrifuge is caused by increased plasma trapped in the cell column. The reader card was adjusted to compensate for trapped plasma. A hand-powered centrifuge and calibrated reader card can be constructed for U.S. $35 and can accurately determine hematocrit values. It is suitable for use in low-resource settings because it is mechanically-powered, inexpensive, and accurate.

  19. A Hand-Powered, Portable, Low-Cost Centrifuge for Diagnosing Anemia in Low-Resource Settings

    PubMed Central

    Brown, Jocelyn; Theis, Lauren; Kerr, Lila; Zakhidova, Nazima; O'Connor, Kelly; Uthman, Margaret; Oden, Z. Maria; Richards-Kortum, Rebecca

    2011-01-01

    This report describes the development of a hand-powered centrifuge to determine hematocrit values in low-resource settings. A hand-powered centrifuge was constructed by using a salad spinner. Hematocrit values were measured by using the hand-powered device, and results were compared with those of a benchtop centrifuge. The packed cell volume (PCV) measured with the hand-powered device correlated linearly with results obtained with a benchtop centrifuge (r = 0.986, P < 0.001). The PCVs measured with the hand-powered centrifuge were consistently 1.14 times higher than those measured with the benchtop system. The 14% increase in PCV measured with the hand-powered centrifuge is caused by increased plasma trapped in the cell column. The reader card was adjusted to compensate for trapped plasma. A hand-powered centrifuge and calibrated reader card can be constructed for U.S. $35 and can accurately determine hematocrit values. It is suitable for use in low-resource settings because it is mechanically-powered, inexpensive, and accurate. PMID:21813855

  20. Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Dreyer, Christopher; Riedel, Edward

    2013-01-01

    Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation

  1. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    PubMed

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  2. Influence of centrifuge brake on residual platelet count and routine coagulation tests in citrated plasma.

    PubMed

    Daves, Massimo; Giacomuzzi, Katia; Tagnin, Enrico; Jani, Erika; Adcock Funk, Dorothy M; Favaloro, Emmanuel J; Lippi, Giuseppe

    2014-04-01

    Sample centrifugation is an essential step in the coagulation laboratory, as clotting tests are typically performed on citrated platelet (PLT) poor plasma (PPP). Nevertheless, no clear indication has been provided as to whether centrifugation of specimens should be performed with the centrifuge brake set to on or off. Fifty consecutive sodium citrate anticoagulated samples were collected and divided into two aliquots. The former was centrifuged as for Clinical Laboratory Standards Institute (CLSI) guidelines with the centrifuge brake set to on, whereas the latter was centrifuged again as for CLSI guidelines, but with the brake set to off. In the PPP of all samples, a PLT count was performed, followed by the analysis of activated partial thromboplastin time (APTT), prothrombin time (PT) and fibrinogen (FBG). The PLT count after samples centrifugation was substantially reduced, either with centrifuge brake set to on or off (5 ± 1 versus 3 ± 1 × 10/l; P = 0.009). The frequency of samples exceeding a PLT count less than 10 × 10/l was nearly double in samples centrifuged with the brake on than in those with the brake off (14 versus 8%; P < 0.01). Although no significant difference was found for APTT values, PT was slightly prolonged using the centrifuge brake set to on (mean bias 0.2 s; P < 0.001). FBG values were also significantly higher using the centrifuge brake set to on (mean bias 0.29 g/l; P < 0.001). The results of this study indicate that sample centrifugation for routine coagulation testing should be preferably performed with the centrifuge brake set to off for providing a better quality specimen.

  3. Performance characteristics of the Cooper PC-9 centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, R.E.; Neely, R.F.

    1988-06-30

    Mathematical performance modeling of the PC-9 centrifugal compressor has been completed. Performance characteristics curves have never been obtained for them in test loops with the same degree of accuracy as for the uprated axial compressors and, consequently, computer modeling of the top cascade and purge cascades has been very difficult and of limited value. This compressor modeling work has been carried out in an attempt to generate data which would more accurately define the compressor's performance and would permit more accurate cascade modeling. A computer code, COMPAL, was used to mathematically model the PC-9 performance with variations in gas composition,more » flow ratios, pressure ratios, speed and temperature. The results of this effort, in the form of graphs, with information about the compressor and the code, are the subject of this report. Compressor characteristic curves are featured. 13 figs.« less

  4. The Function of Gas Vesicles in Halophilic Archaeaand Bacteria: Theories and Experimental Evidence

    PubMed Central

    Oren, Aharon

    2012-01-01

    A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms. PMID:25371329

  5. Differential white cell count by centrifugal microfluidics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generationmore » of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.« less

  6. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  7. Space Station Centrifuge: A Requirement for Life Science Research

    NASA Technical Reports Server (NTRS)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  8. Dysrhythmias in Laypersons During Centrifuge-Simulated Suborbital Spaceflight.

    PubMed

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M

    2017-11-01

    There are limited data on cardiac dysrhythmias in laypersons during hypergravity exposure. We report layperson electrocardiograph (ECG) findings and tolerance of dysrhythmias during centrifuge-simulated suborbital spaceflight. Volunteers participated in varied-length centrifuge training programs of 2-7 centrifuge runs over 0.5-2 d, culminating in two simulated suborbital spaceflights of combined +Gz and +Gx (peak +4.0 Gz, +6.0 Gx, duration 5 s). Monitors recorded pre- and post-run mean arterial blood pressure (MAP), 6-s average heart rate (HR) collected at prespecified points during exposures, documented dysrhythmias observed on continuous 3-lead ECG, self-reported symptoms, and objective signs of intolerance on real-time video monitoring. Participating in the study were 148 subjects (43 women). Documented dysrhythmias included sinus pause (N = 5), couplet premature ventricular contractions (N = 4), bigeminy (N = 3), accelerated idioventricular rhythm (N = 1), and relative bradycardia (RB, defined as a transient HR drop of >20 bpm; N = 63). None were associated with subjective symptoms or objective signs of acceleration intolerance. Episodes of RB occurred only during +Gx exposures. Subjects had a higher post-run vs. pre-run MAP after all exposures, but demonstrated no difference in pre- and post-run HR. RB was more common in men, younger individuals, and subjects experiencing more centrifuge runs. Dysrhythmias in laypersons undergoing simulated suborbital spaceflight were well tolerated, though RB was frequently noted during short-duration +Gx exposure. No subjects demonstrated associated symptoms or objective hemodynamic sequelae from these events. Even so, heightened caution remains warranted when monitoring dysrhythmias in laypersons with significant cardiopulmonary disease or taking medications that modulate cardiac conduction.Suresh R, Blue RS, Mathers CH, Castleberry TL, Vanderploeg JM. Dysrhythmias in laypersons during centrifuge-stimulated suborbital

  9. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    PubMed

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  10. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.

    PubMed

    Korobenko, A; Milner, V

    2016-05-06

    We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

  11. Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation.

    PubMed

    Mercado, Karla P; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J

    2016-05-01

    Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.

  12. Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation

    PubMed Central

    Mercado, Karla P.; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J.

    2016-01-01

    Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions. PMID:27250199

  13. Gas production in the Barnett Shale obeys a simple scaling theory

    PubMed Central

    Patzek, Tad W.; Male, Frank; Marder, Michael

    2013-01-01

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States’ oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet. PMID:24248376

  14. Gas production in the Barnett Shale obeys a simple scaling theory.

    PubMed

    Patzek, Tad W; Male, Frank; Marder, Michael

    2013-12-03

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.

  15. Optimisation of a double-centrifugation method for preparation of canine platelet-rich plasma.

    PubMed

    Shin, Hyeok-Soo; Woo, Heung-Myong; Kang, Byung-Jae

    2017-06-26

    Platelet-rich plasma (PRP) has been expected for regenerative medicine because of its growth factors. However, there is considerable variability in the recovery and yield of platelets and the concentration of growth factors in PRP preparations. The aim of this study was to identify optimal relative centrifugal force and spin time for the preparation of PRP from canine blood using a double-centrifugation tube method. Whole blood samples were collected in citrate blood collection tubes from 12 healthy beagles. For the first centrifugation step, 10 different run conditions were compared to determine which condition produced optimal recovery of platelets. Once the optimal condition was identified, platelet-containing plasma prepared using that condition was subjected to a second centrifugation to pellet platelets. For the second centrifugation, 12 different run conditions were compared to identify the centrifugal force and spin time to produce maximal pellet recovery and concentration increase. Growth factor levels were estimated by using ELISA to measure platelet-derived growth factor-BB (PDGF-BB) concentrations in optimised CaCl 2 -activated platelet fractions. The highest platelet recovery rate and yield were obtained by first centrifuging whole blood at 1000 g for 5 min and then centrifuging the recovered platelet-enriched plasma at 1500 g for 15 min. This protocol recovered 80% of platelets from whole blood and increased platelet concentration six-fold and produced the highest concentration of PDGF-BB in activated fractions. We have described an optimised double-centrifugation tube method for the preparation of PRP from canine blood. This optimised method does not require particularly expensive equipment or high technical ability and can readily be carried out in a veterinary clinical setting.

  16. Subject anxiety and psychological considerations for centrifuge-simulated suborbital spaceflight.

    PubMed

    Mulcahy, Robert A; Blue, Rebecca S; Vardiman, Johnené L; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M

    2014-08-01

    Anxiety and psychological concerns may pose a challenge to future commercial spaceflight. To help identify potential measures of anxiousness and indicators of flight-related stress, the psychiatric histories and anxiousness responses of volunteers exposed to G forces in centrifuge-simulated spaceflight acceleration profiles were examined. Over 2 d, 86 individuals (63 men, 23 women), 20-78 yr old, underwent up to 7 centrifuge runs. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z)) and two +Gx runs (peak = +6.0 G(x)). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z)). Hemodynamic data were collected during the profiles. Subjects completed a retrospective self-report anxiety questionnaire. Medical monitors identified individuals exhibiting varying degrees of anxiousness during centrifuge exposure, medical histories of psychiatric disease, and other potential indicators of psychological intolerance of spaceflight. The retrospective survey identified 18 individuals self-reporting anxiousness, commonly related to unfamiliarity with centrifuge acceleration and concerns regarding medical history. There were 12 individuals (5 men, 7 women, average age 46.2 yr) who were observed to have anxiety that interfered with their ability to complete training; of these, 4 reported anxiousness on their questionnaire and 9 ultimately completed the centrifuge profiles. Psychiatric history was not significantly associated with anxious symptoms. Anxiety is likely to be a relevant and potentially disabling problem for commercial spaceflight participants; however, positive psychiatric history and self-reported symptoms did not predict anxiety during centrifuge performance. Symptoms of anxiousness can often be ameliorated through training and coaching. Even highly anxious individuals are likely capable of tolerating commercial spaceflight.

  17. Continuous centrifuge decelerator for polar molecules.

    PubMed

    Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G

    2014-01-10

    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200  m s(-1) to obtain beams with velocities below 15  m s(-1) and intensities of several 10(9)  mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.

  18. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol

    NASA Astrophysics Data System (ADS)

    Livshts, Mikhail A.; Khomyakova, Elena; Evtushenko, Evgeniy G.; Lazarev, Vassili N.; Kulemin, Nikolay A.; Semina, Svetlana E.; Generozov, Edward V.; Govorun, Vadim M.

    2015-11-01

    Exosomes, small (40-100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for “fixed-angle” rotors. For both types of rotors - “swinging bucket” and “fixed-angle” - we express the theoretically expected proportion of pelleted vesicles of a given size and the “cut-off” size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the “cut-off” sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this “cut-off”-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.

  19. [Effect of Parasep® feces centrifuge tube method on detecting schistosome eggs].

    PubMed

    Ma, Nian; Zhang, Hua-ming; Liu, Xiong; Xiao, Chuan-yun; Wen, Xiao-hong; Li, Xia; Dong, Li-chun; Cui, Cai-xia; Tu, Zu-wu

    2014-08-01

    To evaluate the effect of the Parasep® feces centrifuge tube method on detecting schistosome eggs. A total of 803 residents aged from 6-65 years were selected in 2 schistosomiasis endemic villages, Jiangling County, Hubei Province, and their stool samples were collected and detected parallelly by the Kato-Katz technique, nylon silk egg hatching method, and Parasep® feces centrifuge tube method at the same time. Among the 803 people, 15 cases were found of schistosome egg positive, and the positive rate was 1.87%. The positive rates of the Kato-Katz technique, nylon silk egg hatching method, and Parasep® feces centrifuge tube method were 0.75%, 1.49% and 1.12%, respectively. The schistosome eggs got with the Parasep® feces centrifuge tube method were clear and easy to identify. In low endemic areas of schistosomiasis, the Parasep® feces centrifuge tube method can be used as schistosomiasis japonica etiology diagnosis method.

  20. 27. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Ironworks, Honolulu Hawaii, 1879, 1881. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. With the inner basket of the centrifugal revolving at 1200 rpm molasses flew outward from the granulated sugar, through the holes in the brass lining, and into the stationary outer basket. The molasses drained through the spout at the right and into molasses storage pits below the floor. The centrifugals were underdriven with a belt connected to the pulley beneath the basket. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  1. Effect of density gradient centrifugation on reactive oxygen species in human semen.

    PubMed

    Takeshima, Teppei; Yumura, Yasushi; Kuroda, Shinnosuke; Kawahara, Takashi; Uemura, Hiroji; Iwasaki, Akira

    2017-06-01

    Density gradient centrifugation can separate motile sperm from immotile sperm and other cells for assisted reproduction, but may also remove antioxidants from seminal plasma, resulting in oxidative stress. Therefore, we investigated reactive oxygen species (ROS) concentrations and distribution in semen before and after density gradient centrifugation. We assessed semen volume, sperm concentration, sperm motility, and ROS levels before and after density gradient centrifugation (300 x g for 20 minutes) in 143 semen samples from 118 patients. The ROS removal rate was evaluated in ROS-positive samples and ROS formation rate in ROS-negative samples. Thirty-eight of 143 untreated samples (26.6%) were ROS-positive; sperm motility was significantly lower in these samples than in ROS-negative samples (p < 0.05). After density gradient centrifugation, only seven of the 38 ROS-positive samples (18.42%) exhibited a ROS-positive lower layer (containing motile sperm) with a ROS removal rate of 81.58%, whereas the upper layer was ROS-positive in 24 samples (63.16%). In the ROS-negative group (n = 105), ROS was detected in 19 samples after centrifugation (18.10%, ROS generation rate), of which 18 were ROS-positive only in the upper layer or interface and the other was ROS-positive in both layers. Density gradient centrifugation can separate motile sperm from immotile sperm as well as remove ROS (including newly generated ROS). This data supports the view that density gradient centrifugation can select motile spermatozoa without enhancing oxidative stress. ROS: reactive oxygen species; SOD: superoxide dismutase; GPx: glutathione peroxidase; DNA: deoxyribonucleic acid; DGC: density gradient centrifugation; IUI: intrauterine insemination; IVF: in vitro fertilization; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA: ethylenediaminetetraacetic acid; HTF: HEPES-buffered human tubal fluid; IMSI: intracytoplasmic morphologically selected sperm injection; SMAS: sperm

  2. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  3. Pitch-Plane Angular Displacement Perception During Helicopter Flight and Gondola Centrifugation.

    PubMed

    Tribukait, Arne; Bergsten, Eddie; Eiken, Ola

    During hovering with a helicopter, an involuntary change in attitude (during brownout) results in reduced lifting force and a horizontal acceleration component. This movement pattern is difficult to perceive via the otolith organs. If the angular displacement occurs rapidly, it will, however, activate the semicircular canals. The major aim of this study was to establish to what extent pitch-plane angular displacements can be perceived based on canal information when there is no tilt stimulus to the otoliths. In a helicopter, 9 nonpilots (N) and 8 helicopter pilots (P) underwent 5-6 pitch-forward displacements (magnitude 14-33°, angular velocity 2-7° · s -1 ). In a swing-out gondola centrifuge, 9 N and 3 P were exposed to a similar canal-otolith conflict (acceleration, seated centripetally) with four displacements of 25° and two of 60°. The visually perceived eye level (VPEL) was continuously recorded using an adjustable luminous dot in darkness. For each helicopter dive and centrifuge run the gain was calculated as the ratio (VPEL deflection)/(displacement of helicopter or gondola). In the helicopter there was no difference between N (0.28 ± 0.13) and P (0.36 ± 0.22). In the centrifuge the gains were 0.34 ± 0.18° (25° displacements) and 0.30 ± 0.16° (60° displacements). Values obtained in the helicopter did not differ significantly from those in the centrifuge. There was a correlation between data obtained during the 25° and 60° displacements in the centrifuge. There was a pronounced underestimation of pitch angular displacements in a helicopter. The interindividual variability was considerable. Gains for perceived displacement were similar in helicopter and centrifuge. Tribukait A, Bergsten E, Eiken O. Pitch-plane angular displacement perception during helicopter flight and gondola centrifugation. Aerosp Med Hum Perform. 2016; 87(10):852-861.

  4. Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

    NASA Astrophysics Data System (ADS)

    Diaz, Ana; Trigg, Chris; Young, Laurence R.

    2015-08-01

    Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.

  5. Centrifuge: rapid and sensitive classification of metagenomic sequences

    PubMed Central

    Song, Li; Breitwieser, Florian P.

    2016-01-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649

  6. Excessive centrifugal fields damage high density lipoprotein[S

    PubMed Central

    Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.

    2015-01-01

    HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941

  7. Exosome enrichment of human serum using multiple cycles of centrifugation.

    PubMed

    Kim, Jeongkwon; Tan, Zhijing; Lubman, David M

    2015-09-01

    In this work, we compared the use of repeated cycles of centrifugation at conventional speeds for enrichment of exosomes from human serum compared to the use of ultracentrifugation (UC). After removal of cells and cell debris, a speed of 110 000 × g or 40 000 × g was used for the UC or centrifugation enrichment process, respectively. The enriched exosomes were analyzed using the bicinchoninic acid assay, 1D gel separation, transmission electron microscopy, Western blotting, and high-resolution LC-MS/MS analysis. It was found that a five-cycle repetition of UC or centrifugation is necessary for successful removal of nonexosomal proteins in the enrichment of exosomes from human serum. More significantly, 5× centrifugation enrichment was found to provide similar or better performance than 5× UC enrichment in terms of enriched exosome protein amount, Western blot band intensity for detection of CD-63, and numbers of identified exosome-related proteins and cluster of differentiation (CD) proteins. A total of 478 proteins were identified in the LC-MS/MS analyses of exosome proteins obtained from 5× UCs and 5× centrifugations including many important CD membrane proteins. The presence of previously reported exosome-related proteins including key exosome protein markers demonstrates the utility of this method for analysis of proteins in human serum. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design Optimization of a Centrifugal Fan with Splitter Blades

    NASA Astrophysics Data System (ADS)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  9. Cause of kinematic differences during centrifugal and centripetal saccades.

    PubMed

    Koene, Ansgar R; Erkelens, Casper J

    2002-06-01

    Measurements of eye movements have shown that centrifugal movements (i.e. away from the primary position) have a lower maximum velocity and a longer duration than centripetal movements (i.e. toward the primary position) of the same size. In 1988 Pelisson proposed that these kinematic differences might be caused by differences in the neural command signals, oculomotor mechanics or a combination of the two. By using the result of muscle force measurements that were made in recent years (Orbit 1.8 Gaze mechanics simulation, Eidactics, San Francisco, 1999) we simulated the muscle forces during centrifugal and centripetal saccades. Based on these simulations we show that the cause of the kinematic differences between the centrifugal and centripetal saccades is the non-linear force-velocity relationship (i.e. muscle viscosity) of the muscles.

  10. Investigation on centrifugal impeller in an axial-radial combined compressor with inlet distortion

    NASA Astrophysics Data System (ADS)

    Li, Du; Yang, Ce; Zhao, Ben; Zhou, Mi; Qi, Mingxu; Zhang, Jizhong

    2011-12-01

    Assembling an axial rotor and a stator at centrifugal compressor upstream to build an axial-radial combined compressor could achieve high pressure ratio and efficiency by appropriate size augment. Then upstream potential flow and wake effect appear at centrifugal impeller inlet. In this paper, the axial-radial compressor is unsteadily simulated by three-dimensional Reynolds averaged Navier-Stokes equations with uniform and circumferential distorted total pressure inlet condition to investigate upstream effect on radial rotor. The results show that span-wise nonuniform total pressure distribution is generated and radial and circumferential combined distortion is formed at centrifugal rotor inlet. The upstream stator wake deflects to rotor rotation direction and decreases with blade span increases. Circumferential distortion causes different separated flow formations at different pitch positions. The tip leakage vortex is suppressed in centrifugal blade passages. Under distorted inlet condition, flow direction of centrifugal impeller leading edge upstream varies evidently near hub and shroud but varies slightly at mid-span. In addition, compressor stage inlet distortion produces remarkable effect on blade loading of centrifugal blade both along chordwise and pitchwise.

  11. Centrifugal precipitation chromatography

    PubMed Central

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  12. Centrifugal accelerator, system and method for removing unwanted layers from a surface

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1995-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  13. Effect of 30-min +3 Gz centrifugation on vestibular and autonomic cardiovascular function

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Harm, Deborah L.; Rupert, A. H.

    2003-01-01

    INTRODUCTION: Repeated exposure to increased +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, it is not known whether such enhancements might also result from a single, more prolonged exposure to increased +Gz. Our study was designed to investigate whether baroreflex function and orthostatic tolerance are acutely improved by a single prolonged exposure to +3 Gz, and moreover, whether changes in autonomic cardiovascular function resulting from exposure to increased +Gz are correlated with changes in otolith function. METHODS: We exposed 15 healthy human subjects to +3 Gz centrifugation for up to 30 min or until symptoms of incipient G-induced loss of consciousness (G-LOC) ensued. Tests of autonomic cardiovascular function both before and after centrifugation included: 1) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; 2) carotid-cardiac baroreflex tests; 3) Valsalva tests; and 4) 30-min head-up tilt tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: Of the 15 subjects who underwent prolonged +3 Gz, 4 were intolerant to 30 min of head-up tilt before centrifugation but became tolerant to such tilt after centrifugation. The Valsalva-related baroreflex as well as a measure of the carotid-cardiac baroreflex were also enhanced after centrifugation. No significant vestibular-autonomic relationships were detected beyond a vestibular-cerebrovascular interaction reported earlier in a subset of seven participants. CONCLUSIONS: A single prolonged exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance.

  14. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  15. Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments validate the 'thaw-expansion hypothesis' but conflict with ultrasonic emission data.

    PubMed

    Mayr, Stefan; Sperry, John S

    2010-03-01

    *The 'thaw-expansion hypothesis' postulates that xylem embolism is caused by the formation of gas bubbles on freezing and their expansion on thawing. We evaluated the hypothesis using centrifuge experiments and ultrasonic emission monitoring in Pinus contorta. *Stem samples were exposed to freeze-thaw cycles at varying xylem pressure (P) in a centrifuge before the percentage loss of hydraulic conductivity (PLC) was measured. Ultrasonic acoustic emissions were registered on samples exposed to freeze-thaw cycles in a temperature chamber. *Freeze-thaw exposure of samples spun at -3 MPa induced a PLC of 32% (one frost cycle) and 50% (two cycles). An increase in P to -0.5 MPa during freezing had no PLC effect, whereas increased P during thaw lowered PLC to 7%. Ultrasonic acoustic emissions were observed during freezing and thawing at -3 MPa, but not in air-dried or water-saturated samples. A decrease in minimum temperature caused additional ultrasonic acoustic emissions, but had no effect on PLC. *The centrifuge experiments indicate that the 'thaw-expansion hypothesis' correctly describes the embolization process. Possible explanations for the increase in PLC on repeated frost cycles and for the ultrasonic acoustic emissions observed during freezing and with decreasing ice temperature are discussed.

  16. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  17. Effects of different centrifugation conditions on clinical chemistry and Immunology test results.

    PubMed

    Minder, Elisabeth I; Schibli, Adrian; Mahrer, Dagmar; Nesic, Predrag; Plüer, Kathrin

    2011-05-10

    The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One) were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p < 0.05, which was less than the expected 5%. This suggests that the outliers are the result of random variation and the large number of statistical tests performed. Further, we found that our data are sufficient not to miss a biased test (beta error) with a probability of 0.10 to 0.05 in most parameters. A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study.

  18. Effects of different centrifugation conditions on clinical chemistry and Immunology test results

    PubMed Central

    2011-01-01

    Background The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. Methods We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One) were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Results Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p < 0.05, which was less than the expected 5%. This suggests that the outliers are the result of random variation and the large number of statistical tests performed. Further, we found that our data are sufficient not to miss a biased test (beta error) with a probability of 0.10 to 0.05 in most parameters. Conclusion A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study. PMID:21569233

  19. Theory versus Practice in the Twentieth-Century Search for the Ideal Anaesthetic Gas.

    PubMed

    Rae, Ian D

    2016-02-01

    At the beginning of the twentieth century, an anaesthetist could choose between nitrous oxide, chloroform, and ether (diethyl ether) for the induction of painrelieving unconsciousness. By the end of century, the choice was between a small number of fluorinated aliphatic ethers such as Enflurane, Desflurane, and Sevoflurane, and (in some jurisdictions) the rare gas, xenon. Between these endpoints researchers had identified a surprisingly broad range of hydrocarbons, noble gases, organohalogens, and aliphatic ethers that possessed anaesthetic properties. None was entirely satisfactory, but clinicians at various times and in various places employed substances in each of these categories. Behind the search for new anaesthetic gases was a theory of action (Meyer- Overton theory) that was known to be inadequate, but as no alternative was strong enough to displace it the search continued on purely empirical grounds, while lip-service was paid to the theory. By the time a theory couched in more modern terms was proposed, a suite of modern anaesthetic gases was in place, and there have been no attempts to use that theory to drive a new search.

  20. Determination of the optimal mesh parameters for Iguassu centrifuge flow and separation calculations

    NASA Astrophysics Data System (ADS)

    Romanihin, S. M.; Tronin, I. V.

    2016-09-01

    We present the method and the results of the determination for optimal computational mesh parameters for axisymmetric modeling of flow and separation in the Iguasu gas centrifuge. The aim of this work was to determine the mesh parameters which provide relatively low computational cost whithout loss of accuracy. We use direct search optimization algorithm to calculate optimal mesh parameters. Obtained parameters were tested by the calculation of the optimal working regime of the Iguasu GC. Separative power calculated using the optimal mesh parameters differs less than 0.5% from the result obtained on the detailed mesh. Presented method can be used to determine optimal mesh parameters of the Iguasu GC with different rotor speeds.

  1. Effect of chronic centrifugation on body composition in the rat.

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1972-01-01

    Two groups of adult female rats were chronically centrifuged for 60 days (2.76 G, 4.15 G, controls at 1.00 G). Live weights of centrifugal rats decreased about 20 g (6%) per Delta 1 G above control. This weight loss comprised reductions in both body fat and fat-free body weight (FFBW) as determined by body-composition studies on eight rats per group killed at the end of centrifugation. Of nine components constituting the FFBW, only skeletal muscle, liver, and heart changed significantly in weight. Chemical composition showed reductions (compared with controls) in the fat fraction of most components and increases in the water fraction of liver and gut. Identical measurements were made on the remaining eight rats per group killed 43 days after return to 1 G. Neither centrifuged group had reached the control body-weight level at this time. No statistically significant effect of previous G level was found in any of the body-composition parameters. The possible involvment of physiological regulation was considered.

  2. Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement

    NASA Technical Reports Server (NTRS)

    Florjancic, S.; Stuerchler, R.; Mccloskey, T.

    1991-01-01

    Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.

  3. Does flowpath alteration by centrifugal force cause deviation from Darcy's law?

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Turturro, A. C.; MA, B.; Caputo, M. C.; Perkins, K. S.

    2016-12-01

    Though driving force much larger than gravity is unnatural, centrifugal force has proven useful for investigating flow in soil and rock. It affords practical measurement techniques, as well as a means of perturbation that can provide insights into the fundamentals of flow. Many centrifugally-driven flow experiments have been carried out in the USGS Menlo Park facility since 1980. Notable developments include the Steady-State Centrifuge (SSC) method and the Quasi-Steady Centrifuge (QSC) method for accurate measurements of unsaturated hydraulic properties over a wide range of water content. Centrifugal force can affect flowpaths in at least two ways: (1) deformation of pores by compression, and (2) distortion of air-water interfaces. Compression reduces the hydraulic conductivity K. We have measured this effect on saturated K of several core samples from several m depth. For forces over a 50X (factor-of-50) range, saturated K varied by as much as 10X. In unsaturated soil, the effect is less because much of the pore size reduction occurs in large pores and in air-filled space. A complication is that some portion of the compressional strain is elastic, and its rebound after centrifugation prevents easy determination of how much strain occurred at the time of measurement. Experiments with a linear displacement transducer inside a centrifuge bucket showed for a silty soil of massive structure that about one-third of the strain is elastic. Centrifugal force affords rigorous tests of Darcy's law. If flux measured at a single water content varies in direct proportion to driving force, Darcy's law is confirmed for the conditions tested. The SSC and QSC methods are ideally suited to this purpose as they allow great force variation with minimal effect on water content. Our tests at forces up to 1000 or more times normal gravity in a sandy soil at low water content, and in a porous sandstone (calcarenite) at intermediate water content, show strong agreement with Darcy's law

  4. A vibration model for centrifugal contactors

    NASA Astrophysics Data System (ADS)

    Leonard, R. A.; Wasserman, M. O.; Wygmans, D. G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet 'Beam' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k(sub B)) of a motor after measuring the k(sub B) value for three different motors. The k(sub B) value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  5. Effect of chronic centrifugation of the musculoskeletal system of the dog.

    PubMed

    Amtmann, E; Oyama, J; Fisher, G L

    1976-04-21

    Sixteen male Beagle dogs, 293 to 509 days old, were exposed almost continuously for 3 months to 2.0 G on a 7.9 meter radius centrifuge. The dogs were maintained on the centrifuge, by means of a specially designed automated waste disposal and life support system. As compared to the mean values of normal gravity controls, centrifuged dogs showed no differences in femur length; cross-sectional area, outer and inner radii at mid-shaft of the femur; dry weights of the biceps femoris, quadriceps femoris, and gastrocnemius muscles. It was shown by analysis of covariance that chronic centrifugation has no effect on the relationship between the length and the cross-sectional dimensions at mid-shaft of the femur. Photon absorptiometry, however, revealed significant mineral content increases averaging 1.5% at 3 sites, i.e., at the 1/4, 1/2 and 3/4 length of the femur.

  6. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  7. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge.

    PubMed

    Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.

  8. Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method.

    PubMed

    Tobin, M F; Pratt, R B; Jacobsen, A L; De Guzman, M E

    2013-05-01

    Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm.

    PubMed

    Edmond, A J; Brinsko, S P; Love, C C; Blanchard, T L; Teague, S R; Varner, D D

    2012-03-15

    Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  11. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane.

    PubMed

    Dohan Ehrenfest, David M; Pinto, Nelson R; Pereda, Andrea; Jiménez, Paula; Corso, Marco Del; Kang, Byung-Soo; Nally, Mauricio; Lanata, Nicole; Wang, Hom-Lay; Quirynen, Marc

    2018-03-01

    L-PRF (leukocyte- and platelet-rich fibrin) is one of the four families of platelet concentrates for surgical use and is widely used in oral and maxillofacial regenerative therapies. The first objective of this article was to evaluate the mechanical vibrations appearing during centrifugation in four models of commercially available table-top centrifuges used to produce L-PRF and the impact of the centrifuge characteristics on the cell and fibrin architecture of a L-PRF clot and membrane. The second objective of this article was to evaluate how changing some parameters of the L-PRF protocol may influence its biological signature, independently from the characteristics of the centrifuge. In the first part, four different commercially available centrifuges were used to produce L-PRF, following the original L-PRF production method (glass-coated plastic tubes, 400 g force, 12 minutes). The tested systems were the original L-PRF centrifuge (Intra-Spin, Intra-Lock, the only CE and FDA cleared system for the preparation of L-PRF) and three other laboratory centrifuges (not CE/FDA cleared for L-PRF): A-PRF 12 (Advanced PRF, Process), LW-UPD8 (LW Scientific) and Salvin 1310 (Salvin Dental). Each centrifuge was opened for inspection, two accelerometers were installed (one radial, one vertical), and data were collected with a spectrum analyzer in two configurations (full-load or half load). All clots and membranes were collected into a sterile surgical box (Xpression kit, Intra-Lock). The exact macroscopic (weights, sizes) and microscopic (photonic and scanning electron microscopy SEM) characteristics of the L-PRF produced with these four different machines were evaluated. In the second part, venous blood was taken in two groups, respectively, Intra-Spin 9 ml glass-coated plastic tubes (Intra-Lock) and A-PRF 10 ml glass tubes (Process). Tubes were immediately centrifuged at 2700 rpm (around 400 g) during 12 minutes to produce L-PRF or at 1500 rpm during 14 minutes to produce A

  12. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  13. A single center's conversion from roller pump to centrifugal pump technology in extracorporeal membrane oxygenation.

    PubMed

    Shade, Brandon C; Schiavo, Kellie; Rosenthal, Tami; Connelly, James T; Melchior, Richard W

    2016-06-05

    Recent advances in blood pump technology have led to an increased use of centrifugal pumps for prolonged extracorporeal membrane oxygenation (ECMO). Data from the Extracorporeal Life Support Organization confirms that many institutions have converted to centrifugal pumps after prior experience with roller pump technology. Centrifugal pump technology is more compact and may generate less heat and hemolysis than a conventional roller pump. Based on the potential advantages of centrifugal pumps, a decision was made institution-wide to convert to centrifugal pump technology in pediatric implementation of ECMO. Based on limited prior experience with centrifugal pumps, a multidisciplinary approach was used to implement this new technology. The new centrifugal pump (Sorin Revolution, Arvada, CO) was intended for ECMO support in the cardiac intensive care unit (CICU), the pediatric intensive care unit (PICU) and the neonatal intensive care unit (NICU). The perfusion team used their knowledge and expertise with centrifugal pumps to create the necessary teaching tools and interactive training sessions for the technical specialists who consisted primarily of registered nurses and respiratory therapists. The first phase consisted of educating all personnel involved in the care of the ECMO patient, followed by patient implementation in the CICU, followed by the PICU and NICU. The institution-wide conversion took several months to complete and was well received among all disciplines in the CICU and PICU. The NICU personnel did use the centrifugal pump circuit, but decided to revert back to using the roller pump technology. A systematic transition from roller pump to centrifugal pump technology with a multidisciplinary team can ensure a safe and successful implementation. © The Author(s) 2016.

  14. Centrifuge: rapid and sensitive classification of metagenomic sequences.

    PubMed

    Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L

    2016-12-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  16. A Report of Transverse Process Fractures Secondary to the Centrifuge in a Healthy Aviator.

    PubMed

    Puderbaugh, Matthew A

    2016-07-01

    Centrifuge training, while an integral component in pilot training, is not without risks. To date there has never been a reported case of isolated transverse process fractures associated with centrifuge training. A 32-yr-old Flight Surgeon underwent centrifuge training as part of an educational course. She had increasing back pain after exposure to the centrifuge. Follow-up studies showed left L2 and bilateral L3 transverse process fractures. No other contributory causes could be identified except for mild vitamin D deficiency. The etiology, incidence, and treatment of transverse process fractures are examined to better prepare the clinician for the management of these cases. Puderbaugh MA. A report of transverse process fractures secondary to the centrifuge in a healthy aviator. Aerosp Med Hum Perform. 2016; 87(7):655-658.

  17. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    PubMed

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  18. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  19. Materials processing in a centrifuge - Numerical modeling of macrogravity effects

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Jones, J. C.; Curreri, P. A.

    1992-01-01

    The fluid mechanics associated with crystal growth processes on a centrifuge is investigated. A simple scaling analysis is used to examine the relative magnitudes of the forces acting on the system and good agreement is obtained with previous studies. A two-dimensional model of crystal growth on a centrifuge is proposed and calculations are undertaken to help in understanding the fundamental transport processes within the crystal growth cell. Results from three-dimensional calculations of actual centrifuge-based crystal growth systems are presented both for the thermodynamically stable and unstable configurations. The calculations show the existence of flow bifurcations in certain configurations but not in all instances. The numerical simulations also show that the centrifugal force is the dominant stabilizing force on fluid convection in the stable configuration. The stabilizing influence of the Coriolis force is found to be only secondary in nature. No significant impact of gravity gradient is found in the calculations. Simulations of unstable configurations show that the Coriolis force has a stabilizing influence on fluid motion by delaying the onset of unsteady convection. Detailed flow and thermal field characteristics are presented for all the different cases that are simulated.

  20. Numerical and experimental analysis of the sedimentation of spherical colloidal suspensions under centrifugal force

    NASA Astrophysics Data System (ADS)

    Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.

    2018-03-01

    Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.

  1. Centrifugal compressor surge detecting method based on wavelet analysis of unsteady pressure fluctuations in typical stages

    NASA Astrophysics Data System (ADS)

    Izmaylov, R.; Lebedev, A.

    2015-08-01

    Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.

  2. Multiplexed single-molecule force spectroscopy using a centrifuge.

    PubMed

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-03-17

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  3. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  4. An Investigation of Backflow Phenomenon in Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Benser, William A; Moses, Jason J

    1945-01-01

    Report presents the results of an investigation conducted to determine the nature and the extent of the reversal of flow, which occurs at the inlet of centrifugal compressors over a considerable portion of the operating range. Qualitative studies of this flow reversal were made by lampblack patterns taken on a mixed-flow-type impeller and by tuft studies made on a conventional centrifugal compressor. Quantitative studies were made on a compressor specially designed to enable survey of angularity of flow, static and total pressures, and temperatures to be taken very close to the impeller front housing.

  5. Development of Interactive Learning Media on Kinetic Gas Theory at SMAN 2 Takalar

    NASA Astrophysics Data System (ADS)

    Yanti, M.; Ihsan, N.; Subaer

    2017-02-01

    Learning media is the one of the most factor in supporting successfully in the learning process. The purpose of this interactive media is preparing students to improve skills in laboratory practice without need for assistance and are not bound by time and place. The subject of this study was 30 students grade XI IPA SMAN 2 Takalar. This paper discuss about the development of learning media based in theory of gas kinetic. This media designed to assist students in learning independently. This media made using four software, they are Microsoft word, Snagit Editor, Macromedia Flash Player and Lectora. This media are interactive, dynamic and could support the users desires to learn and understand course of gas theory. The development produce followed the four D models. Consisted of definition phase, design phase, development phase and disseminate phase. The results showed 1) the media were valid and reliable, 2) learning tools as well as hardcopy and softcopy which links to website 3) activity learners above 80% and 4) according to the test results, the concept of comprehension of student was improved than before given interactive media.

  6. Research on energy conversion mechanism of rotodynamic pump and design of non-overload centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.

    2016-05-01

    In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.

  7. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  8. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  9. Centrifugal and Numerical Modeling of Buried Structures. Volume 2. Dynamic Soil-Structure Interaction.

    DTIC Science & Technology

    1987-07-14

    RD-RISE 368 CENTRIFUGAL AND NUMERICAL MODELING OF BURIED STRUCTURES 1/3 VOLUME 2 DYNAMIC..(U) COLORADO UNIV AT BOULDER DEPT OF CIVIL ENVIRONMENTAL...20332-6448 ELEMENT NO NO. NO ACCESSION NO 61102F 2302 Cl 11 TITLE (Include Security Classification) (U) Centrifugal and Numerical Modeling of Buried ...were buried in a dry sand and tested in the centrifuge to simulate the effects of gravity-induced overburden stresses which played a major role in

  10. Medical Monitoring during Short Radius Centrifugation in Bed-rested Subjects

    NASA Technical Reports Server (NTRS)

    Reinertson, Randal; Nelson, Victor; Aunon, Serena; Schlegel, Todd; Paloski, William

    2007-01-01

    The artificial gravity pilot project was designed to investigate the efficacy of daily exposure to a Gz acceleration gradient for counteracting the physiologic decrements induced by prolonged bed rest. A short radius centrifuge was used to produce a Gz gradient such that 1 g was applied at the level of the subject s heart and 2.5 g at the feet. For inclusion in the study, subjects were required to complete a 75-minute screening spin on the centrifuge. During the study, each active treatment subject was scheduled for a 60-minute spin each day for 20 consecutive days. During centrifugation, subjects were continuously monitored by a physician for signs and symptoms of pre-syncope, motion sickness, arrhythmias, joint/muscle pain and any other unanticipated problems. The physician was also present to provide emergency care in the case of a medical emergency. Cameras mounted on the centrifuge were used to provide a means of observing the subject s face and torso. Audio communication was continuously maintained. Other monitoring tools included two-lead EKG tracings, pulse oximetry, intermittent sphygmomanometer readings, lights in the peripheral visual field, and continuous blood pressure readout from a tonometry device. Thirty screening runs were attempted using twenty-seven subjects. Seven of these runs were terminated early for symptoms of pre-syncope, motion sickness, or GI distress. A total of eight subjects completed the active treatment arm of the study. Of the 160 centrifuge runs that were scheduled for these eight treatment subjects, 152 were completed, seven were terminated early, and one was not attempted. Of the seven early terminations, four were related to symptoms of pre-syncope, one to leg pain, one to GI discomfort, and one to equipment failure. Three terminations for adverse symptoms occurred on the first treatment day. Three terminations occurred on day nineteen of treatment and within 24 hours after scheduled soleus and quadriceps muscle biopsies. We

  11. Response of rat body composition to simultaneous exercise and centrifugation at 3.14g

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1982-01-01

    A study is described calling into question the hypothesis that an increased physical load during chronic centrifugation contributes to the body composition changes observed in centrifuged rats. Considering fat-free and fat-free dry masses of the total body and carcass, it is seen that centrifugation combined with either wheel running or restraint reduced these masses to approximately 85% of the respective 1-g values, that is, the same result with either sedentary rats or rats running several hundred meters per day. It is pointed out that if an effect of a centrifugation-induced load is present but hidden by opposing factors, an analysis of variance should reveal it as an interaction between acceleration and other variables; however, no such interactions are found here. Tables are included emphasizing the pervasive influence of chronic centrifugation after only 12 days exposure.

  12. Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers

    NASA Astrophysics Data System (ADS)

    Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han

    2013-03-01

    This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.

  13. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  14. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  15. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  16. An examination of gas compressor stability and rotating stall

    NASA Technical Reports Server (NTRS)

    Fozi, Aziz A.

    1987-01-01

    The principal sources of vibration related reliability problems in high pressure centrifugal gas compressors are the re-excitation of the first critical speed or Resonant Subsynchronous Vibration (RSSV), and the forced vibration due to rotating stall in the vaneless diffusers downstream of the impellers. An example of such field problems is given elsewhere. This paper describes the results of a test program at the author's company, initiated in 1983 and completed during 1985, which studied the RSSV threshold and the rotating stall phenomenon in a high pressure gas compressor.

  17. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  18. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less

  20. Centrifuge in Free Fall: Combustion at Partial Gravity

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul

    2017-01-01

    A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.

  1. Progress in Geotechnical Dynamic Centrifuge Modeling.

    DTIC Science & Technology

    1985-06-01

    Engineer, 1932. 4. Pokrovsky, G.I., Centrifugal Model Testing, ONII Publishing House, 1935. 5. Arulanandan, K., Canclini , J., and Anandarajah, A...Philosophy. 21. Arulananaan, K., Canclini , J., and Anandarajah, A., "Simulation of Earthquate Motions in the Centrituge,"ASCE J. of the Geotechnical

  2. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  3. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  4. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  5. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  6. Centripetal/Centrifugal Family Style of Families with Aggressive and Non-Aggressive Boys.

    ERIC Educational Resources Information Center

    Hurst, Duane F.; And Others

    Research on family interaction has characterized family style on centripetal and centrifugal dimensions, representing opposing natures with their own continua. Centripetal forces produce binding, or a prolonged process of separation of parent and child; centrifugal forces preciptate expelling, or hastened separation and premature autonomy. To…

  7. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGES

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  8. Review of noise reduction methods for centrifugal fans

    NASA Astrophysics Data System (ADS)

    Neise, W.

    1981-11-01

    Several methods for the reduction of centrifugal fan noise are presented, the most of which are aimed at a lower blade passage frequency level. The methods are grouped into five categories: casing modifications to increase the distance between impeller and cutoff, the introduction of a phase shift of the source pressure fluctuations, impeller modifications, radial clearance between impeller eye and inlet nozzle, and acoustical measures. Resonators mounted at the cutoff of centrifugal fans appear to be a highly efficient and simple means of reducing the blade passage tone, and the method can be used for new fan construction and existing installations without affecting the aerodynamic performance of the fan.

  9. Potential Application of Centrifuges to Protect the CNS in Space and on Earth.

    PubMed

    Hashimoto, Makoto; Ho, Gilbert; Shimizu, Yuka; Sugama, Shuei; Takenouchi, Takato; Waragai, Masaaki; Wei, Jianshe; Takamatsu, Yoshiki

    2018-01-01

    Centrifuges are the principal means of generating physiological hypergravity and have been used for many medical purposes, including the therapy of psychiatric diseases and evaluation of vestibular system in the pilots. In particular, modern centrifuges have evolved into mechanically sophisticated precision instruments compared to primitive ones in old times, indicating that centrifuges might possess great potential in modern medicine. Indeed, studies are in progress to apply centrifuges to musculoskeletal degenerative diseases, such as osteoporosis and sarcopenia. Given that the agingrelated diseases are manifested under microgravity conditions, including astronauts and the bed-ridden elderly, it is reasonable to speculate that centrifuge-induced hypergravity may counteract the progression of these diseases. Such a view may also be important for neurodegenerative diseases for which the radical treatments are yet to be established. Therefore, the main objective of this paper is to discuss a potential therapeutic use of centrifuges for protection against the central nervous system (CNS) disorders, both in space and on Earth. Mechanistically hypergravity may exert stimulatory effects on preconditioning, chaperone expression, synapse plasticity, and growth and differentiation in the nervous system. Furthermore, hypergravity may suppress the progress of type II diabetes mellitus (T2DM), leading to inhibition of T2DM-triggered CNS disorders, including neurodegenerative diseases, ischemia and depression. Moreover, it is possible that hypergravity may counteract the neurodegeneration in hippocampus induced by the microgravity conditions and psychiatric diseases. Collectively, further investigations are warranted to demonstrate that centrifuge-induced hypergravity may be beneficial for the therapy of the CNS disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Flow in a centrifugal fan impeller at off-design conditions

    NASA Astrophysics Data System (ADS)

    Wright, T.; Tzou, K. T. S.; Madhavan, S.

    1984-06-01

    A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.

  11. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  12. Centrifugal Contactor Efficiency Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce Jay; Tillotson, Richard Dean; Grimes, Travis Shane

    2017-01-01

    The contactor efficiency of a 2-cm acrylic centrifugal contactor, fabricated by ANL using 3D printer technology was measured by comparing a contactor test run to 5-min batch contacts. The aqueous phase was ~ 3 ppm depleted uranium in 3 M HNO3, and the organic phase was 1 M DAAP/dodecane. Sampling during the contactor run showed that equilibrium was achieved within < 3 minutes. The contactor efficiency at equilibrium was 95% to 100 %, depending on flowrate.

  13. The use of centrifugation to study early Drosophila embryogenesis

    NASA Technical Reports Server (NTRS)

    Abbott, M. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    By the end of 10th nuclear cycle, the somatic nuclei of the Drosophila embryo have migrated to the periphery of the egg. Centrifugation of embryos did not result in the displacement of these nuclei, since cytoskeletal elements anchor them to the cortex. But, mild centrifugal forces displace the centrally located, nascent yolk nuclei. If this increased sensitivity to hypergravity occurs before the beginning of nuclear differentiation during cycle 8, when the nascent yolk and somatic nuclei physically separate, then it would mark the earliest functional difference between these two lineages.

  14. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  15. Separation of human bone marrow by counterflow centrifugation monitored by DNA-flowcytometry.

    PubMed

    de Witte, T; Plas, A; Koekman, E; Blankenborg, G; Salden, M; Wessels, J; Haanen, C

    1984-10-01

    Human bone marrow was fractionated by counterflow centrifugation into 16 fractions with increasing cell size. Three distinct subpopulations could be recognized: small lymphocytic cells, medium-sized nucleated erythroid cells and large myeloid elements. DNA-flowcytometry and 3H-thymidine uptake showed that within the erythroid and myeloid cell populations counterflow centrifugation separates each population according to the cell cycle phase. Hypotonic treatment of bone marrow for removal of the erythroid nucleated cells resulted in a complete abrogation of the proliferating erythroid cell population. Counterflow centrifugation also separates the small non-proliferating myeloid and erythroid committed stem cells from the larger proliferating stem cells. It appeared feasible to separate the small lymphocytic cells from the majority of BFU-E and CFU-GM, due to the larger size of the proliferating normoblasts and the committed progenitor cells. Elimination of the mature lymphocytes from the haematopoietic stem cells by counterflow centrifugation may offer an alternative approach to the prevention of graft versus host disease (GvHD).

  16. Scientific uses and technical implementation of a variable gravity centrifuge on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Hargens, A. R.

    1990-01-01

    The potential need and science requirements for a centrifuge to be designed and flown on Space Station Freedom are discussed, with a focus on a design concept for a centrifuge developed at NASA Ames. Applications identified for the centrifuge include fundamental studies in which gravity is a variable under experimental control, the need to provide a 1-g control, attempts to discover the threshold value of gravitation force for psychological response, and an effort to determine the effects of intermittent hypergravity. Science requirements specify the largest possible diameter at approximately 2.5 m, gravity levels ranging from 0.01 to 2 g, a nominal ramp-up rate of 0.01 g/sec, and life support for plants and animals. Ground-based studies using rats and squirrel monkeys on small-diameter centrifuges have demonstrated that animals can adapt to centrifugation at gravity gradients higher than those normally used in ground-based hypergravity studies.

  17. Semicircular canal influence on the visually perceived eye level during gondola centrifugation.

    PubMed

    Tribukait, Arne; Eiken, Ola

    2006-05-01

    When exposed to an increased gravitoinertial force, a subject, sitting upright, experiences an illusion of being tilted backwards. This so-called "G-excess illusion" is generally ascribed to the otolith organs. The present study aimed at elucidating how stimulation of the semicircular canals may influence the development of the G-excess illusion. The visually perceived eye level (VPEL) was measured by means of a visual indicator in a large swing-out gondola centrifuge. The roll position of the gondola was controlled so that the subject was always upright with respect to the resultant vector of the Earth gravity force and the centrifugal force. Subjects (n = 8) underwent four centrifuge runs (2 G, 5 min), sitting in different positions, i.e., heading forwards, backwards, centripetally, and centrifugally. At the 2-G plateau there was a depression of the VPEL which was initially small but increased with a time constant of 90 +/- 30 s toward an asymptote of -22.0 +/- 6.9 degrees (mean and 1 SD for all positions). The initial depression was significantly smaller for the centripetal (+2.0 +/- 14.6 degrees) than for the centrifugal position (-14.5 +/- 10.4 degrees). However, there was no difference between the forward (-5.6 +/- 4.8 degrees) and backward (-4.0 +/- 4.5 degrees) positions. Initially after deceleration of the centrifuge to 1 G there was still a significant depression of the VPEL (-13.5 +/- 7.9 degrees), decreasing with a time constant of 100 +/- 46 s. The considerable delay in the otolith-mediated changes in the VPEL is interpreted as due to the absence of adequate canal information for a change in head position. The difference in VPEL between the centripetal and centrifugal positions suggests an influence of canal change-in-position information. However, pitch-plane angular velocity, being of considerable magnitude but of opposite sign for the forward and backward positions, did not influence the VPEL.

  18. Respiratory Syncytial Virus Isolation by Combined Continuous Flow-Isopycnic Banding Centrifugation

    PubMed Central

    Cline, G. B.; Coates, Helen; Anderson, N. G.; Chanock, R. M.; Harris, W. W.

    1967-01-01

    A new zonal centrifuge rotor (B-IX) which combines continuous sample flow centrifugation with isopycnic banding has been used to isolate and concentrate respiratory syncytial virus from liter volumes of culture fluid. This isolation technique utilizes a sucrose density gradient to trap and isopycnically band the virus particles, and permits recovery of the particles from the rotor in an unaggregated condition. PMID:5621468

  19. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  20. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  1. Effect of centrifuge test on blood serum lipids index of cadet pilots.

    PubMed

    Wochyński, Zbigniew; Kowalczuk, Krzysztof; Kłossowski, Marek; Sobiech, Krzysztof A

    2016-01-01

    This study aimed at investigating the relationship between the lipid index (WS) in the examined cadets and duration of exposure to +Gz in the human centrifuge. The study involved 19 first-year cadets of the Polish Air Force Academy in Dęblin. Tests in the human centrifuge were repeated twice, i.e. prior to (test I) and 45 days after (test II). After exposure to +Gz, the examined cadets were divided into 2 groups. Group I (N=11) included cadets subjected to a shorter total duration of exposure to +Gz, while group II (N=8) included cadets with a longer total duration of exposure to +Gz. Total cholesterol (TC), high density lipoprotein (HDL), triglycerides (TG), and apolipoproteins A1 and B were assayed in blood serum prior to (assay A) and after (assay B) both exposures to +Gz. Low density lipoprotein (LDL) level was estimated from the Friedewald formula. WS is an own mathematical algorithm. WS was higher in group II, assay A - 10.0 and B - 10.08 of test I in the human centrifuge than in group I where the WS values were 6.91 and 6.96, respectively. WS was also higher in group II in assay A - 10.0 and B -10.1 of test II in the human centrifuge than in group I - 6.96 and 6.80, respectively. The higher value of WS in group II, both after the first and second exposure to +Gz in human centrifuge, in comparison with group I, indicated its usefulness for determination of the maximum capability of applying acceleration of the interval type during training in the human centrifuge.

  2. The sensitivity of direct faecal examination, direct faecal flotation, modified centrifugal faecal flotation and centrifugal sedimentation/flotation in the diagnosis of canine spirocercosis.

    PubMed

    Christie, J; Schwan, E V; Bodenstein, L L; Sommerville, J E M; van der Merwe, L L

    2011-06-01

    Several faecal examination techniques have shown variable sensitivity in demonstrating Spirocerca lupi (S. lupi) eggs. The objective of this study was to determine which faecal examination technique, including a novel modified centrifugal flotation technique, was most sensitive to diagnose spirocercosis. Ten coproscopic examinations were performed on faeces collected from 33 dogs confirmed endoscopically to have spirocercosis. The tests included a direct faecal examination, a faecal sedimentation/flotation test, 4 direct faecal flotations and 4 modified faecal centrifugal flotations. These latter 2 flotation tests utilised 4 different faecal flotation solutions: NaNO3 (SG 1.22), MgSO4 (SG 1.29), ZnSO4 (SG 1.30) and sugar (SG 1.27). The sensitivity of the tests ranged between 42% and 67%, with the NaNO3 solution showing the highest sensitivity in both the direct and modified-centrifugal flotations. The modified NaNO3 centrifugal method ranked 1st with the highest mean egg count (45.24 +/- 83), and was superior (i.e. higher egg count) and significantly different (P < 0.05) compared with the routine saturated sugar, ZnSO4 and MgSO4 flotation methods. The routine NaNO3 flotation method was also superior and significantly different (P < 0.05) compared with the routine ZnSO4 and MgSO4 flotation methods. Fifteen per cent (n = 5) of dogs had neoplastic oesophageal nodules and a further 18% (n = 6) had both neoplastic and non-neoplastic nodules. S. lupi eggs were demonstrated in 40% of dogs with neoplastic nodules only and 72.9% of the dogs with non-neoplastic nodules. The mean egg count in the non-neoplastic group (61) was statistically greater (P = 0.02) than that of the neoplastic group (1). The results show that faecal examination using a NaNO3 solution is the most sensitive in the diagnosis of spirocercosis. The modified centrifugal flotation faecal method using this solution has the highest egg count. The study also found that dogs with neoplastic nodules shed

  3. Theory of finite disturbances in a centrifugal compression system with a vaneless radial diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1990-01-01

    A previous small perturbation analysis of circumferential waves in circumferential compression systems, assuming inviscid flow, is shown to be consistent with observations that narrow diffusers are more stable than wide ones, when boundary layer displacement effect is included. The Moore-Greitzer analysis for finite strength transients containing both surge and rotating stall in axial machines is adapted for a centrifugal compression system. Under certain assumptions, and except for a new second order swirl, the diffuser velocity field, including resonant singularities, can be carried over from the previous inviscid linear analysis. Nonlinear transient equations are derived and applied in a simple example to show that throttling through a resonant value of flow coefficient must occur in a sudden surge-like drop, accompanied by a transient rotating wave. This inner solution is superseded by an outer surge response on a longer time scale. Surge may occur purely as result of circumferential wave resonance. Numerical results are shown for various parametric choices relating to throttle schedule and the characteristic slope. A number of circumferential modes considered simultaneously is briefly discussed.

  4. Experiments and modelling of surge in small centrifugal compressor for automotive engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo, J.; Serrano, J.R.; Climent, H.

    2008-01-15

    In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneousmore » pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)« less

  5. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  6. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  7. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  8. A Stability Enhancement Method for Centrifugal Compressors using Active Control Casing Treatment System

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le

    2015-08-01

    The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.

  9. Sustained Accelerated Idioventricular Rhythm in a Centrifuge-Simulated Suborbital Spaceflight.

    PubMed

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-08-01

    Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.

  10. Experimental testing of centrifugal pump: small and medium sized enterprise product

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Paddiyatu, F.; Khafidh, M.; Nugroho, S.; Sugiyanto, S.; Jamari, J.

    2014-06-01

    This paper reports the experimental testing for centrifugal pump for fisherman ship, manufactured by small and medium sized enterprises in Central Java Province, Indonesia. The research covers material analysis, component observation, endurance and vibration test. Six centrifugal pumps are tested and three main pump components are discussed: shaft, bearings and seals. The results show that the material of the shaft is predicted to support and transmit the load from the engine to impeller. The problem found in the tolerance and geometry accuracy of the shaft which causes difficulties during assembling process, excessive wear and leakage during testing. From the endurance and vibration test, the ball bearings fail and lock the shaft due to the fatigue on the rolling elements and raceways. The oil seal and water seal also fail in maintaining the oil and water in the chamber and induce the unlubricated system for the ball bearings. Some suggestions are delivered to improve the product quality of the centrifugal pump. A good quality of the centrifugal pump for fishermen ship and long life span is expected to be produced by local SMEs to win the free trade competition in the Indonesian market.

  11. Gas-permeable membrane technology coupled with anaerobic digestion for swine manure treatment

    USDA-ARS?s Scientific Manuscript database

    This study was aimed at evaluating gas-permeable membrane technology (N-recovery) coupled to anaerobic digestion for the treatment of swine manure. For this purpose, 69 percent (%) of the initial ammonium contained in centrifuged swine manure (SM) (i.e. 3.5 g N-NH4 per liter (L) was firstly recovere...

  12. A Large Radius Human Centrifuge: The Human Hypergravity Havitat

    NASA Astrophysics Data System (ADS)

    van Loon, J. J. W. A.

    2008-06-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, but how would plants and animals have evolved on a larger planet, i.e. larger than Earth? We are able to address this question simply by studies using centrifuges. In the past decades numerous experiments have been performed on cells, plants and animals grown for longer durations, even multi generations, under hypergravity conditions. Based on these studies we have gained interesting insights in the physiological process of these systems when exposed to artificial gravity. Animals and plants adapt themselves to this new high-g environment. Information of adaptation to hyper-g in mammals is interesting, or maybe even proof vital, for future human space flight programs especially in light of long duration missions to Moon and Mars. We know from long duration animal studies that numerous physiological processes and structures like muscles, bones, neuro-vestibular, or the cardiovascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Human studies are mostly in the order of hours at most. Current work on human centrifuges is all focused on short arm systems to apply artificial gravity in long duration space missions. In this paper we want to address the possible usefulness of a large radius human centrifuge on Earth, or even on Moon or Mars, for both basic research and possible applications. In such a centrifuge a group of humans may be exposed to hypergravity for, in principle, an unlimited period of time.

  13. Centrifuge training program with "push-pull" elements.

    PubMed

    Mikuliszyn, Romuald; Zebrowski, Mariusz; Kowalczuk, Krzysztof

    2005-05-01

    Pilots of fighter aircraft are often exposed to maneuvers that produce negative acceleration (-Gz) immediately followed by positive acceleration (+Gz). This sequence has been found to reduce tolerance to +Gz, a phenomenon known as the "push-pull" effect. We devised a centrifuge training program to demonstrate this phenomenon to pilots. The centrifuge of the Military Institute of Aviation Medicine in Warsaw, Poland, was modified in 1996 to allow active positioning of the gondola during rotation. Head-down position of -6 degrees to -40 degrees were used to produce relative -Gz (r-Gz) in a range down to 0.2. As a side effect, this produces Gy acceleration between -1.3 Gy and -1.6 Gy. Pilots completed normal centrifuge training, including a relaxed, gradual-onset run and three rapid-onset runs. They were then exposed to a profile that included a series of push-pull exposures where r-Gz was followed by +Gz with stepwise increases in the latter from +2.5 to +5 Gz. The final profile was a simulated aerial combat maneuver with push-pull elements. The trainees expressed surprise at the push-pull effect, which forced them to begin an anti-G straining maneuver at lower levels than normal. They complained about the presence of the Gy, which rarely occurs in aircraft. This type of profile appears useful for training pilots about the push-pull phenomenon. After collection of additional data, the profiles may be refined.

  14. Apollo 8 prime crew inside centrifuge gondola in bldg 29 during training

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The Apollo 8 prime crew inside the centrifuge gondola in bldg 29 during centrifuge training in the Manned Spacecraft Center's (MSC) Flight Acceleration Facility (view with crew lying on back). Left to right, are Astronauts Frank Borman, commander; James A. Lovell Jr., command module pilot; and William A. Anders, lunar module pilot.

  15. Vibration analysis of large centrifugal pump rotors

    NASA Astrophysics Data System (ADS)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.

  16. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  17. Dynamics and stability of a tethered centrifuge in low earth orbit

    NASA Technical Reports Server (NTRS)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  18. Validation of Centrifugation as a Countermeasure for Otolith Deconditioning During Spaceflight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.

    2004-01-01

    In contrast to previous studies, post-flight measures of both otolith-ocular function and orthostatic tolerance were unimpaired in four payload crewmembers exposed to artificial gravity generated by in-flight centrifugation during the Neurolab (STS-90) mission. The aim of the current proposal is to obtain control measures of otolith and orthostatic function following short duration missions, utilizing the centrifugation and autonomic testing techniques developed for the Neurolab mission, from astronauts who have not been exposed to in-flight centrifugation. This will enable a direct comparison with data obtained from the Neurolab crew. Deficits in otolith-ocular reflexes would support the hypothesis that intermittent exposure to in-flight centripetal acceleration is a countermeasure for otolith deconditioning. Furthermore, a correlation between post-flight otolith deconditioning and orthostatic intolerance would establish an otolithic basis for this condition.

  19. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood bank centrifuge for in vitro diagnostic use. 864.9275 Section 864.9275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a...

  20. Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction

    PubMed Central

    Hu, Sanbao

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  1. Orientation illusions and heart-rate changes during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.

    2001-01-01

    Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested 20 subjects who executed yaw and pitch head movements while rotating at constant angular velocity. They were supine with their main body axis perpendicular to earth gravity. The head was placed at the centrifuge's axis of rotation. Head movements produced a transient elevation of heart-rate. All observers reported head-contingent sensations of body tilt although their bodies remained supine. Mostly, the subjective sensations conform to a model based on semicircular canal responses to angular acceleration. However, some surprising deviations from the model were found. Also, large inter-individual differences in direction, magnitude, and quality of the illusory body tilt were observed. The results have implications for subject screening and prediction of subjective tolerance for centrifugation.

  2. New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen.

    PubMed

    Wegener, Jakob; May, Tanja; Kamp, Günter; Bienefeld, Kaspar

    2014-02-01

    Centrifugation of Apis mellifera L. drone semen is a necessary step in the homogenization of semen pools for the enlargement of the effective breeding population, as well as in the collection of semen by the so-called washing technique. It is also of interest for the removal of cryoprotectants after cryopreservation. The adoption of methods involving semen centrifugation has been hampered by their damaging effect to sperm. Here, we tested four new diluents as well as three additives (catalase, hen egg yolk, and a protease inhibitor), using sperm motility and dual fluorescent staining as indicators of semen quality. Three of the new diluents significantly reduced motility losses after centrifugation, as compared with the literature standard. Values of motility and propidium iodide negativity obtained with two of these diluents were not different from those measured with untreated semen. The least damaging diluent, a citrate-HEPES buffer containing trehalose, was then tested in an insemination experiment with centrifuged semen. Most queens receiving this semen produced normal brood, and the number of sperm reaching the storage organ of the queen was not significantly different from that in queens receiving untreated semen. These results could improve the acceptance of techniques involving the centrifugation of drone semen. The diluent used in the insemination experiment could also serve as semen extender for applications not involving centrifugation.

  3. Vestibular Stimulus and Perceived Roll Tilt During Coordinated Turns in Aircraft and Gondola Centrifuge.

    PubMed

    Tribukait, Arne; Ström, Adrian; Bergsten, Eddie; Eiken, Ola

    2016-05-01

    One disorienting movement pattern, common during flight, is the entering of a coordinated turn. While the otoliths persistently sense upright head position, the change in roll attitude constitutes a semicircular canal stimulus. This sensory conflict also arises during acceleration in a swing-out gondola centrifuge. From a vestibular viewpoint there are, however, certain differences between the two stimulus situations; the aim of the present study was to elucidate whether these differences are reflected in the perceived roll attitude. Eight nonpilots were tested in a centrifuge (four runs) and during flight (two turns). The subjective visual horizontal (SVH) was measured using an adjustable luminous line in darkness. The centrifuge was accelerated from stationary to 1.56 G (roll 50°) within 7 s; the duration of the G plateau was 5 min. With the aircraft, turns with approximately 1.4 G (45°) were entered within 15 s and lasted for 5 min. Tilt perception (TP) was defined as the ratio of SVH/real roll tilt; initial and final values were calculated for each centrifugation/turn. In both systems there was a sensation of tilt that declined with time. The initial TP was (mean ± SD): 0.40 ± 0.27 (centrifuge) and 0.37 ± 0.30 (flight). The final TP was 0.20 ± 0.26 and 0.17 ± 0.19, respectively. Both initial and final TP correlated between the two conditions. The physical roll tilt is under-estimated to a similar degree in the centrifuge and aircraft. Also the correspondence at the individual level suggests that the vestibular dilemma of coordinated flight can be recreated in a lifelike manner using a gondola centrifuge.

  4. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  5. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    PubMed

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  6. Centrifugal acceleration of the polar wind

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Ho, C. W.; Scarbro, H. D.; Wilson, G. R.; Moore, T. E.

    1994-01-01

    The effect of parallel ion acceleration associated with convection was first applied to energization of test particle polar ions by Cladis (1986). However, this effect is typically neglected in 'self-consistent' models of polar plasma outflow, apart from the fluid simulation by Swift (1990). Here we include approximations for this acceleration, which we broadly characterize as centrifugal in nature, in our time-dependent, semikinetic model of polar plasma outflow and describe the effects on the bulk parameter profiles and distribution functions of H+ and O+. For meridional convection across the pole the approximate parallel force along a polar magnetic field line may be written as F(sub cent, pole) = 1.5m(E(sub i))/B(sub i))squared (r(squared)/r(sup 3)(sub i)) where m is ion mass, r is geometric distance; and E(sub i), B(sub i) and r(sub i) refer to the electric and magnetic field magnitudes and geocentric distance at the ionosphere, respectively. For purely longitudinal convection along a constant L shell the parallel force is F(cent. long) = F(sub cent, pole)(1 - (r/(r(sub i)L))(sup 3/2)/(1 - 3r/(4 r(sub i)L))(sup 5/2). For high latitudes the difference between these two cases is relatively unimportant below approximately 5 R(sub E). We find that the steady state O+ bulk velocities and parallel temperatures strongly increase and decrease, respectively, with convection strength. In particular, the bulk velocities increase from near 0 km/s at 4000 km altitude to approximately 10 km/s at 5 R(sub E) geocentric distance for 50-mV/m ionospheric convection electric field. However, the centrifugal effect on the steady O+ density profiles depends on the exobase ion and electron temperatures: for low-base temperatures (T(sub i) = T(sub e) = 3000 K) the O+ density at high altitudes increases greatly with convection, while for higher base temperatures (T(sub i) = 5000 K, T(sub e) = 9000 K), the high-altitude O+ density decreases somewhat as convection is enhanced. The

  7. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory

    Treesearch

    Kimberly A. Novick; Chelcy F. Miniat; James M. Vose

    2016-01-01

    We merge concepts from stomatal optimization theory and cohesion–tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning; (2) ‘hydraulic limitation’ of water movement from the roots to the leaves...

  8. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    NASA Technical Reports Server (NTRS)

    Greening, Gage J.

    2016-01-01

    The Project Management and Engineering Branch (SF4) supports the Human Health and Performance Directorate (HH&P) and is responsible for developing and supporting human systems hardware for the International Space Station (ISS). When a principal investigator's (PI) medical research project on the ISS is accepted, SF4 develops the necessary hardware and software to transport to the ISS. The two projects I primarily worked on were the centrifuge and ultrasound projects. Centrifuge: One concern with spacecraft such as the ISS is electromagnetic interference (EMI) from onboard equipment, typically from radio waves (frequencies of 3 kHz to 300 GHz), which can negatively affect nearby circuitry. Standard commercial centrifuges produce EMI above safety limits, so my task was to help reduce EMI production from this equipment. Two centrifuges were tested: one unmodified as a control and one modified. To reduce EMI below safety limits, one centrifuge was modified to become a Faraday shield, in which significant electrical contact was made between all regions of the centrifuge housing. This included removing non-conductive paint, applying conductive fabric to the lid and foam sealer, adding a 10,000 µF decoupling capacitor across the power supply, and adding copper adhesive-mount gaskets to the housing interior. EMI testing of both centrifuges was performed in the EMI/EMC Control Test and Measurement Facility. EMI for both centrifuges was below safety limits for frequencies between 10 MHz and 15 GHz (pass); however, between 14 kHz and 10 MHz, EMI for the unmodified centrifuge exceeded safety limits (fail) as expected. Alternatively, for the modified centrifuge with the Faraday shield, EMI was below the safely limit of 55 dBµV/m for electromagnetic frequencies between 14 kHz and 10 MHz. This result indicates our modifications were successful. The successful EMI test allowed us to communicate with the vendor what modifications they needed to make to their commercial unit to

  9. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  10. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  11. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.

    PubMed

    Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M

    2014-07-01

    We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.

  12. Removal of bacteria from stallion semen by colloid centrifugation.

    PubMed

    Morrell, J M; Klein, C; Lundeheim, N; Erol, E; Troedsson, M H T

    2014-02-01

    Bacteria (environmental contaminants and occasionally potential pathogens) are found in most stallion ejaculates and may negatively affect sperm quality during storage. Since the use of antibiotics can lead to the development of resistance, an alternative means of microbial control is desirable. The removal of bacteria from stallion semen using Single Layer Centrifugation through Androcoll-E was investigated. Known doses of cultured bacteria were added to freshly collected ejaculates (15mL aliquots) before processing by Single Layer Centrifugation. The resulting sperm pellets and controls (not processed by Single Layer Centrifugation) were cultured and the bacteria identified. In experiment 1, doses of E. coli from 2×10(2) to 2×10(7) colony forming units were added to aliquots of semen. In experiment 2, Taylorella equigenitalis or a mix of E. coli, Klebsiella pneumoniae and Streptococcus equi subsp. zooepidemicus (approximately 7×10(6), 5×10(6), and 6×10(6)cfu, respectively) were added to 15mL aliquots of semen. In experiment 1, more than 90% of the bacteria were removed where loading doses were >×10(4)cfu/mL. In experiment 2, varying proportions of different bacteria were removed, ranging from 68% for naturally occurring Corynebacterium spp. to >97% for added cultured E. coli. Thus, Single Layer Centrifugation can separate spermatozoa from many, but not all bacteria in stallion ejaculates and could be a useful alternative to adding antibiotics to semen extenders to control bacterial contamination. However, further research is needed to determine the effect of small numbers of bacteria on sperm quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars.

    PubMed

    Coats, Brandon W; Sharp, M Keith

    2010-03-01

    One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n=8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test ("male finisher"), "non-finishing male" and "female" (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched.

  14. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    NASA Astrophysics Data System (ADS)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  15. Centrifugal inertia effects in two-phase face seal films

    NASA Technical Reports Server (NTRS)

    Basu, P.; Hughes, W. F.; Beeler, R. M.

    1987-01-01

    A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.

  16. Artificial gravity studies and design considerations for Space Station centrifuges

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.

    1984-01-01

    The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.

  17. 24. RW Meyer Sugar Mill: 18761889. Centrifugal inner basket, 1879. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. RW Meyer Sugar Mill: 1876-1889. Centrifugal inner basket, 1879. Manufacturer, unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879. View: After sugar was granulated and cooled it was dried and drained, completely separating the sugar crystals from the molasses, in the centrifugal. Revolving at 1200 rpm the sugar charge was forced outward with the molasses flying through the holes in the brass lining. Dried sugar was left behind in the inner basket and was dug out by hand. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  18. Apparatus and method for centrifugation and robotic manipulation of samples

    NASA Technical Reports Server (NTRS)

    Ormsby, Rachel A. (Inventor); Kurk, Michael A. (Inventor); Vellinger, John C. (Inventor); Metz, George W. (Inventor); Kennedy, David J. (Inventor); Thomas, Nathan A. (Inventor); Shulthise, Leo A. (Inventor)

    2007-01-01

    A device for centrifugation and robotic manipulation of specimen samples, including incubating eggs, and uses thereof are provided. The device may advantageously be used for the incubation of avian, reptilian or any type of vertebrate eggs. The apparatus comprises a mechanism for holding samples individually, rotating them individually, rotating them on a centrifuge collectively, injecting them individually with a fixative or other chemical reagent, and maintaining them at controlled temperature, relative humidity and atmospheric composition. The device is applicable to experiments involving entities other than eggs, such as invertebrate specimens, plants, microorganisms and molecular systems.

  19. A portable system for processing donated whole blood into high quality components without centrifugation.

    PubMed

    Gifford, Sean C; Strachan, Briony C; Xia, Hui; Vörös, Eszter; Torabian, Kian; Tomasino, Taylor A; Griffin, Gary D; Lichtiger, Benjamin; Aung, Fleur M; Shevkoplyas, Sergey S

    2018-01-01

    The use of centrifugation-based approaches for processing donated blood into components is routine in the industrialized world, as disparate storage conditions require the rapid separation of 'whole blood' into distinct red blood cell (RBC), platelet, and plasma products. However, the logistical complications and potential cellular damage associated with centrifugation/apheresis manufacturing of blood products are well documented. The objective of this study was to evaluate a proof-of-concept system for whole blood processing, which does not employ electromechanical parts, is easily portable, and can be operated immediately after donation with minimal human labor. In a split-unit study (n = 6), full (~500mL) units of freshly-donated whole blood were divided, with one half processed by conventional centrifugation techniques and the other with the new blood separation system. Each of these processes took 2-3 hours to complete and were performed in parallel. Blood products generated by the two approaches were compared using an extensive panel of cellular and plasma quality metrics. Comparison of nearly all RBC parameters showed no significant differences between the two approaches, although the portable system generated RBC units with a slight but statistically significant improvement in 2,3-diphosphoglyceric acid concentration (p < 0.05). More notably, several markers of platelet damage were significantly and meaningfully higher in products generated with conventional centrifugation: the increase in platelet activation (assessed via P-selectin expression in platelets before and after blood processing) was nearly 4-fold higher for platelet units produced via centrifugation, and the release of pro-inflammatory mediators (soluble CD40-ligand, thromboxane B2) was significantly higher for centrifuged platelets as well (p < 0.01). This study demonstrated that a simple, passive system for separating donated blood into components may be a viable alternative to centrifugation

  20. A first look at the use of centrifuge modelling for glacier crevassing

    NASA Astrophysics Data System (ADS)

    Rea, B. R.; Brennan, A.; Benn, D.

    2013-12-01

    Realisation of the importance of calving margins and supraglacial meltwater routing to the bed of ice sheets both of which have potential roles to play in controlling mass flux from the Greenland and Antarctic Ice Sheets has raised interest in crevassing processes. Advances have been made in, theoretical treatments of crevasse formation and propagation, the development of physically-based calving models with subsequent implementation in ice sheet/glacier flow models utilising a number of different approaches. To-date only one study has tested crevassing propagation theory against empirical data and this dealt only with shallow water-free crevasses. There is a need for more such studies where key parameters are well constrained, for example crevasse water depths, crevasse depth, stress/strain regime, temperature. The challenges for a field-based study are great due in part to the difficulty in determining crevasse depths/crevasse water depths and with the general working environment in which crevasses generally form. An alternative solution is to utilise physical modelling and here we report on the preliminary stages of such a project using a geotechnical beam centrifuge. The centrifuge creates real-world (prototype) stress conditions in scaled models, by testing in an enhanced ';gravity' field, and is ideal for problems governed by self-weight stresses. Scaling factors, for model to prototype, have to be confirmed. Following the Linear Elastic Fracture Mechanics (LEFM) approach crevasses propagate instantaneously when KI, (the stress intensity at the crack tip) exceeds KIC (the fracture toughness). KI is determined from the sum of three stress intensity factors (SIF): KI-1 a positive tensile stress resulting from the resistive stress, KI-2 the lithostatic stress which is negative (compressive) and for a water holding crevasse, KI-3 the hydrostatic stress which is positive. Experiments start with a pre-cast crevasse and as the models are constructed at 1g the

  1. SCHIRRA, WALTER, JR., ASTRONAUT - TRAINING - CENTRIFUGE - PA

    NASA Image and Video Library

    1960-11-22

    G60-02461 (1960) --- Astronaut Walter M. Schirra Jr. prepares to enter gondola of centrifuge which is used to test gravitational stress on astronauts training for spaceflight. Schirra became the pilot of the Mercury-Atlas 8 (MA-8) six-orbit space mission. Photo credit: NASA

  2. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Evans, J. W.

    1982-01-01

    The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.

  3. Suppression of tonal noise in a centrifugal fan using guide vanes

    NASA Astrophysics Data System (ADS)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  4. Variational Transition State Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truhlar, Donald G.

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  5. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  6. A scale‐down mimic for mapping the process performance of centrifugation, depth and sterile filtration

    PubMed Central

    Joseph, Adrian; Kenty, Brian; Mollet, Michael; Hwang, Kenneth; Rose, Steven; Goldrick, Stephen; Bender, Jean; Farid, Suzanne S.

    2016-01-01

    ABSTRACT In the production of biopharmaceuticals disk‐stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot‐scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization. A scale‐down approach based upon the use of a shear device and a bench‐top centrifuge has been extended in this work towards a preparative methodology that successfully predicts the performance of the continuous centrifuge and polishing filters. The use of this methodology allows the effects of cell culture conditions and large‐scale centrifugal process parameters on subsequent filtration performance to be assessed at an early stage of process development where material availability is limited. Biotechnol. Bioeng. 2016;113: 1934–1941. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26927621

  7. Fractal structures in centrifugal flywheel governor system

    NASA Astrophysics Data System (ADS)

    Rao, Xiao-Bo; Chu, Yan-Dong; Lu-Xu; Chang, Ying-Xiang; Zhang, Jian-Gang

    2017-09-01

    The global structure of nonlinear response of mechanical centrifugal governor, forming in two-dimensional parameter space, is studied in this paper. By using three kinds of phases, we describe how responses of periodicity, quasi-periodicity and chaos organize some self-similarity structures with parameters varying. For several parameter combinations, the regular vibration shows fractal characteristic, that is, the comb-shaped self-similarity structure is generated by alternating periodic response with intermittent chaos, and Arnold's tongues embedded in quasi-periodic response are organized according to Stern-Brocot tree. In particular, a new type of mixed-mode oscillations (MMOs) is found in the periodic response. These unique structures reveal the natural connection of various responses between part and part, part and the whole in parameter space based on self-similarity of fractal. Meanwhile, the remarkable and unexpected results are to contribute a valid dynamic reference for practical applications with respect to mechanical centrifugal governor.

  8. A compact centrifugal pump for cardiopulmonary bypass.

    PubMed

    Sasaki, T; Jikuya, T; Aizawa, T; Shiono, M; Sakuma, I; Takatani, S; Glueck, J; Noon, G P; Nosé, Y; DeBakey, M E

    1992-12-01

    A majority of the cardiopulmonary bypass (CPB) systems still utilize bulky roller pumps. A direct-drive small centrifugal pump intended for second-generation CPB pump has been developed. The pump has a 50 mm diameter impeller and provides a 6 L/min flow at 3,000 rpm against 300 mm Hg. A flexible drive shaft allows us to separate the pump head from the console resulting in easier manipulation. An in vitro study showed that the pump generated less hemolysis (index of hemolysis = 0.0011, comparable to the value for Bio-medicus BP-80). To improve blood flow around the shaft-seal region and to reduce thrombus formation around the shaft, six holes were drilled through the impeller. In biventricular bypass experiments using calves, our pump demonstrated excellent antithrombogenicity and durability for 48 h. And the compact and atraumatic centrifugal pump system showed excellent performance and easy manipulation under actual CPB conditions in animal.

  9. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  10. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg

    2016-04-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  11. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2016-01-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  12. The Centrifugal Simulation of Blast Parameters.

    DTIC Science & Technology

    1983-12-01

    a is to be experimentally evaluated. The terms that remain in Equation (1) are not nondimensional; that is, they are not true i-terms. This does not...If necessary and identify by block number This study is concerned with the use oT a centrifuge as an experimental device on which free-field blast...5 SIMILITUDE. .. .. ..... ...... ...... ... 9 Ill. EXPERIMENTAL PROCEDURES .. .. ... ...... ........13 INTRODUCTION

  13. Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dirican, Mahmut; Zhang, Xiangwu

    2016-09-01

    Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

  14. Need, utilization, and configuration of a large, multi-G centrifuge on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1987-01-01

    A large, multi-g centrifuge is required on the Space Station (1) to provide valid 1-g controls for the study of zero-g effects on animals and plants and to study readaptation to 1 g; (2) to store animals at 1 g prior to short-term zero-g experimentation; (3) to permit g-level threshold studies of gravity effects. These requirements can be met by a 13-ft-diam., center-mounted centrifuge, on which up to 48 modular habitats with animals (squirrel monkey, rat, mouse) and plants are attached. The advantages of locating this centrifuge with the vivarium, a common environmental control and life support system, a general-purpose work station and storage of food, water, and supplies in an attached short module, are elaborated. Servicing and operation of the centrifuge, as well as minimizing its impact on other Space Station functions are also considered.

  15. Development of a WES Centrifuge,

    DTIC Science & Technology

    1992-09-01

    soil container 2 flexible strips 6 catch pieces 3 centrifuge arm 7 minature jacks 4 springs 8 underlying decking Fig. B 1 The spring-actuated shaker...flow (and so the heat transfer) evenly across the model; "* air may be injected downwards through a central hole above the model and vented through... holes at the sides or vice versa; "* air can be injected at several locations and then vented at intermediate positions. The choice will be determined

  16. Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.

    PubMed

    Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang

    2016-01-01

    The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.

  17. Oxygen-iodine ejector laser with a centrifugal bubbling singlet-oxygen generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Nikolaev, V D; Svistun, M I

    2005-10-31

    It is shown that if a supersonic oxygen-iodine ejector laser is fed by singlet oxygen from a centrifugal bubbling generator operating at a centrifugal acceleration of {approx}400g, the laser output power achieves a value 1264 W at a chemical efficiency of 24.6% for an alkaline hydrogen peroxide flow rate of 208 cm{sup 3}s{sup -1} and a specific chlorine load of 1.34 mmol s{sup -1} per square centimetre of the bubble layer. (lasers)

  18. Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection.

    PubMed

    Becker, Nathan; Scheel, J D; Cross, M C; Ahlers, Guenter

    2006-06-01

    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects the domain-chaos state observed in rotating Rayleigh-Bénard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly stationary nearly radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f approximately epsilon(mu) with mu approximately equal to 1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, mu and the domain size were consistent with experiment.

  19. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  20. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate that a propeller complies with paragraphs (a), (b) and (c) of this section without evidence of failure, malfunction, or permanent deformation that would result in a major or hazardous propeller effect. When the...

  1. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate that a propeller complies with paragraphs (a), (b) and (c) of this section without evidence of failure, malfunction, or permanent deformation that would result in a major or hazardous propeller effect. When the...

  2. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate that a propeller complies with paragraphs (a), (b) and (c) of this section without evidence of failure, malfunction, or permanent deformation that would result in a major or hazardous propeller effect. When the...

  3. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate that a propeller complies with paragraphs (a), (b) and (c) of this section without evidence of failure, malfunction, or permanent deformation that would result in a major or hazardous propeller effect. When the...

  4. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate that a propeller complies with paragraphs (a), (b) and (c) of this section without evidence of failure, malfunction, or permanent deformation that would result in a major or hazardous propeller effect. When the...

  5. Gas/oil capillary pressure at chalk at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, K.R.; Whitson, C.H.

    1995-09-01

    Accurate capillary pressure curves are essential for studying the recovery of oil by gas injection in naturally fractured chalk reservoirs. A simple and fast method to determine high-pressure drainage capillary pressure curves has been developed. The effect of gas/oil interfacial tension (IFT) on the capillary pressure of chalk cores has been determined for a methane/n-pentane system. Measurements on a 5-md outcrop chalk core were made at pressures of 70, 105, and 130 bar, with corresponding IFT`s of 6.3, 3.2, and 1.5 mN/m. The results were both accurate and reproducible. The measured capillary pressure curves were not a linear function ofmore » IFT when compared with low-pressure centrifuge data. Measured capillary pressures were considerably lower than IFT-scaled centrifuge data. It appears that the deviation starts at an IFT of about 5 mN/m. According to the results of this study, the recovery of oil by gravity drainage in naturally fractured chalk reservoirs may be significantly underestimated if standard laboratory capillary pressure curves are scaled by IFT only. However, general conclusions cannot be made on the basis on only this series of experiments on one chalk core.« less

  6. Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhu; Chen, Gang; Zhu, Changyun; Qin, Guoliang

    2013-03-01

    In order to study the flow field in the impeller in the accelerating start-up process of centrifugal compressor, the 3-D and 1-D transient accelerated flow governing equations along streamline in the impeller of the centrifugal compressor are derived in detail, the assumption of pressure gradient distribution is presented, and the solving method for 1-D transient accelerating flow field is given based on the assumption. The solving method is achieved by programming and the computing result is obtained. It is obtained by comparison that the computing method is met with the test result. So the feasibility and effectiveness for solving accelerating start-up problem of centrifugal compressor by the solving method in this paper is proven.

  7. Pea Chaperones under Centrifugation

    NASA Astrophysics Data System (ADS)

    Talalaiev, Oleksandr

    2008-06-01

    Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.

  8. Histological assessments on the abnormalities of mouse epiphyseal chondrocytes with short term centrifugal loading.

    PubMed

    de Freitas, Paulo Henrique Luiz; Kojima, Taku; Ubaidus, Sobhan; Li, Minqi; Shang, Guangwei; Takagi, Ritsuo; Maeda, Takeyasu; Oda, Kimimitsu; Ozawa, Hidehiro; Amizuka, Norio

    2007-08-01

    We have examined the morphological changes in chondrocytes after exposure to experimental hypergravity. Tibial epiphyseal cartilages of 17-days-old mouse fetuses were exposed to centrifugation at 3G for 16 h mimicking hypergravitational environment (experimental group), or subjected to stationary cultures (control group). Centrifugation did not affect the sizes of epiphyseal cartilage, chondrocyte proliferation, type X collagen-positive hypertrophic zone, and the mRNA expressions of parathyroid hormone-related peptide and fibroblast growth factor receptor III. However, centrifuged chondrocytes showed abnormal morphology and aberrant spatial arrangements, resulting in disrupted chondrocytic columns. Through histochemical assessments, actin filaments were shown to distribute evenly along cell membranes of control proliferative chondrocytes, while chondrocytes subjected to centrifugal force developed a thicker layer of actin filaments. Transmission electron microscopic observations revealed spotty electron-dense materials underlying control chondrocytes' cell membranes, while experimental chondrocytes showed their thick layer. In the intracolumnar regions of the control cartilage, longitudinal electron-dense fibrils were associated with short cytoplasmic processes of normal chondrocytes, indicating assumed cell-tomatrix interactions. These extracellular fibrils were disrupted in the centrifuged samples. Summarizing, altered actin filaments associated with cell membranes, irregular cell shape and disappearance of intracolumnar extracellular fibrils suggest that hypergravity disturbs cell-to-matrix interactions in our cartilage model.

  9. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  10. Centrifuge Modeling of Rainfall Induced Slope Failure

    NASA Astrophysics Data System (ADS)

    Ling, H.; Wu, M.

    2006-12-01

    Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves

  11. Centrifugation assay for measuring adhesion of serially passaged bovine chondrocytes to polystyrene surfaces.

    PubMed

    Kaplan, David S; Hitchins, Victoria M; Vegella, Thomas J; Malinauskas, Richard A; Ferlin, Kimberly M; Fisher, John P; Frondoza, Carmelita G

    2012-07-01

    A major obstacle in chondrocyte-based therapy for cartilage repair is the limited availability of cells that maintain their original phenotype. Propagation of chondrocytes as monolayer cultures on polystyrene surfaces is used extensively for amplifying cell numbers. However, chondrocytes undergo a phenotypic shift when propagated in this manner and display characteristics of more adherent fibroblastic cells. Little information is available about the effect of this phenotypic shift on cellular adhesion properties. We evaluated changes in adhesion property as bovine chondrocytes were serially propagated up to five passages in monolayer culture using a centrifugation cell adhesion assay, which was based on counting of cells before and after being exposed to centrifugal dislodgement forces of 120 and 350 g. Chondrocytes proliferated well in a monolayer culture with doubling times of 2-3 days, but they appeared more fibroblastic and exhibited elongated cell morphology with continued passage. The centrifugation cell adhesion assay showed that chondrocytes became more adhesive with passage as the percentage of adherent cells after centrifugation increased and was not statistically different from the adhesion of the fibroblast cell line, L929, starting at passage 3. This increased adhesiveness correlated with a shift to a fibroblastic morphology and increased collagen I mRNA expression starting at passage 2. Our findings indicate that the centrifugation cell adhesion assay may serve as a reproducible tool to track alterations in chondrocyte phenotype during their extended propagation in culture.

  12. Experimental verification of the steric-entropic mode of retention in centrifugal field-flow fractionation using illite clay plates.

    PubMed

    Tadjiki, Soheyl; Beckett, Ronald

    2018-02-23

    The commonly used theory to describe the normal Brownian mode of field-flow fractionation (FFF) assumes the particles to be point masses and hence the shape is ignored. Beckett and Giddings extended this theory to include the effect of thin rods and discs being forced very close to the accumulation wall. By including the decrease in the entropy this causes, they derived new expressions for the retention of such nonspherical particles in FFF. The steric-entropic theory predicts that when the sample cloud thickness is less than the major dimension of the rods or discs then particles elute earlier than predicted by the Brownian mode theory. This leads to an underestimation of the buoyant mass and equivalent spherical diameter calculated from FFF data. In this paper we report for the first time experimental data for the retention of thin illite particles in centrifugal FFF that agrees well with these steric-entropic predictions. Not only do the size distributions calculated using the Brownian mode theory shift to lower size when the field is increased but the shift in the retention ratio of the peak maxima of the FFF fractograms could be predicted fairly accurately by the steric-entropic equations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The Design Fabrication Installation & Evaluation of the Balance Probe Monitor for Large Centrifuges at a National Laboratory Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Jonathan Michael

    Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of themore » centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.« less

  14. DEMONSTRATION BULLETIN: THE PLASMA CENTRIFUGAL FURNACE RETECH, INC.

    EPA Science Inventory

    The plasma centrifugal furnace is a thermal technology which uses the heat generated from a plasma torch to decontaminate metal and organic contaminated waste. This is accomplished by melting metal-bearing solids and, in the process, thermally destroying organic contaminants. The...

  15. Centrifuge in space fluid flow visualization experiment

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  16. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  17. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

  18. Sample of CFD optimization of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.

  19. Calculations of the Acceleration of Centrifugal Loading on Adherent Cells

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu

    2017-07-01

    Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.

  20. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection.

    PubMed

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-11-04

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 10⁶ copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics.

  1. Theory versus experiment for the rotordynamic coefficients of labyrinth gas seals. II - A comparison to experiment

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1987-01-01

    An experimental test facility is used to measure the leakage and rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. The test results are presented along with the theoretically predicted values for the two seal configurations at three different radial clearances and shaft speeds to 16,000 cpm. The test results show that the theory accurately predicts the cross-coupled stiffness for both seal configurations and shows improvement in the prediction of the direct damping for the teeth-on-rotor seal. The theory fails to predict a decrease in the direct damping coefficient for an increase in the radial clearance for the teeth-on-stator seal.

  2. On the inverse problem of blade design for centrifugal pumps and fans

    NASA Astrophysics Data System (ADS)

    Kruyt, N. P.; Westra, R. W.

    2014-06-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated.

  3. Change in the chemical composition of infalling gas forming a disk around a protostar.

    PubMed

    Sakai, Nami; Sakai, Takeshi; Hirota, Tomoya; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Kahane, Claudine; Bottinelli, Sandrine; Caux, Emmanuel; Demyk, Karine; Vastel, Charlotte; Coutens, Audrey; Taquet, Vianney; Ohashi, Nagayoshi; Takakuwa, Shigehisa; Yen, Hsi-Wei; Aikawa, Yuri; Yamamoto, Satoshi

    2014-03-06

    IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.

  4. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  5. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.

    PubMed

    Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils

    2015-07-07

    Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4.

  6. Comparative Recoveries of Naegleria fowleri Amoebae from Seeded River Water by Filtration and Centrifugation

    PubMed Central

    Pernin, P.; Pélandakis, M.; Rouby, Y.; Faure, A.; Siclet, F.

    1998-01-01

    Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult. PMID:9501435

  7. A modified Lorentz theory as a test theory of special relativity

    NASA Technical Reports Server (NTRS)

    Chang, T.; Torr, D. G.; Gagnon, D. R.

    1988-01-01

    Attention has been given recently to a modified Lorentz theory (MLT) that is based on the generalized Galilean transformation. Some explicit formulas within the framework of MLT, dealing with the one-way velocity of light, slow-clock transport, and the Doppler effect are derived. A number of typical experiments are analyzed on this basis. Results indicate that the empirical equivalence between MLT and special relativity is still maintained to second order terms. The results of previous works that predict that the MLT might be distinguished from special relativity at the third order by Doppler centrifuge tests capable of a fractional frequency detection threshold of 10 to the -15th are confirmed.

  8. Axial forces in centrifugal compressor couplings

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  9. Advancing haemostasis automation--successful implementation of robotic centrifugation and sample processing in a tertiary service hospital.

    PubMed

    Sédille-Mostafaie, Nazanin; Engler, Hanna; Lutz, Susanne; Korte, Wolfgang

    2013-06-01

    Laboratories today face increasing pressure to automate operations due to increasing workloads and the need to reduce expenditure. Few studies to date have focussed on the laboratory automation of preanalytical coagulation specimen processing. In the present study, we examined whether a clinical chemistry automation protocol meets the preanalytical requirements for the analyses of coagulation. During the implementation of laboratory automation, we began to operate a pre- and postanalytical automation system. The preanalytical unit processes blood specimens for chemistry, immunology and coagulation by automated specimen processing. As the production of platelet-poor plasma is highly dependent on optimal centrifugation, we examined specimen handling under different centrifugation conditions in order to produce optimal platelet deficient plasma specimens. To this end, manually processed models centrifuged at 1500 g for 5 and 20 min were compared to an automated centrifugation model at 3000 g for 7 min. For analytical assays that are performed frequently enough to be targets for full automation, Passing-Bablok regression analysis showed close agreement between different centrifugation methods, with a correlation coefficient between 0.98 and 0.99 and a bias between -5% and +6%. For seldom performed assays that do not mandate full automation, the Passing-Bablok regression analysis showed acceptable to poor agreement between different centrifugation methods. A full automation solution is suitable and can be recommended for frequent haemostasis testing.

  10. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  11. A new blood pump for cardiopulmonary bypass: the HiFlow centrifugal pump.

    PubMed

    Göbel, C; Eilers, R; Reul, H; Schwindke, P; Jörger, M; Rau, G

    1997-07-01

    Centrifugal blood pumps are considered to be generally superior to the traditionally used roller pumps in cardiopulmonary bypass. In our institute a new lightweight centrifugal sealless blood pump with a unique spherical thrust bearing and with a magnetic coupling was developed, the HiFlow. The small design makes the pump suitable for applications in complex devices or close to a patient. Hemolysis tests were carried out in which the BioMedicus pump BP-80 and a roller pump were used as reference. The centrifugal pump HiFlow showed the least blood trauma within the group of investigated pumps. In summary, the HiFlow pump concept with its low priming volume and limited contact surfaces shows great potential for clinical applications in cardiopulmonary bypass. Also, the possibility of using the pump as a short-term assist device with an option of a pulsatile driving mode was demonstrated.

  12. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  13. Semicircular canal contribution to the perception of roll tilt during gondola centrifugation.

    PubMed

    Tribukait, Arne; Eiken, Ola

    2005-10-01

    Spatial disorientation is an important problem in aviation. The mechanisms behind the sensation of roll tilt during coordinated turns are not well known. The present study aimed at elucidating what kind of semicircular canal information might cause tilts of the subjective horizontal during gondola centrifugation. The subjective visual horizontal (SVH) was measured by means of an adjustable visual line in darkness. Subjects (n = 8) underwent four centrifuge runs (2 G, 5 min), sitting in different positions, i.e., heading forwards, backwards, centripetally, and centrifugally. The roll position of the gondola (60 degrees at 2 G) was controlled so that the subject was always upright with respect to the resultant gravitoinertial force vector. Thus, the semicircular-canal stimulus components in yaw, pitch, and roll were varied to some extent independently of each other. For the forward position the SVH was substantially tilted in a direction compensatory with respect to the inclination of the gondola. For the backward position there was also a tendency to a compensatory SVH tilt. In all subjects the magnitude of tilt was larger for the forward position than for the backward. The group means were +20.9 +/- 8.4 degrees and -6.9 +/- 10.5 degrees (positive sign designates a clockwise deviation of the SVH), p < 0.001, n = 8. There were no significant SVH tilts for the centripetal (+6.4 +/- 10.7 degrees) and centrifugal (+2.1 +/- 4.8 degrees) positions. The effects of deceleration of the centrifuge were very small for all positions. These findings suggest that the substantial SVH tilt after acceleration heading forwards is not directly related to any single component of semicircular canal stimulation but depends on the ability of the brain to expediently process complex stimulus patterns.

  14. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  15. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing

    PubMed Central

    Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta

    2010-01-01

    The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P < 0.01). A clear separation between true events and background noise was only achieved using higher centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at −80°C decreased microparticle levels at days 28, 42, and 56 (P < 0.05 for all comparisons with fresh samples). We believe that staining with Annexin V is necessary to distinguish true events from cell debris or precipitates. Buffers should be filtered and fresh samples should be analyzed, or storage periods will have to be standardized. Higher centrifugation speeds should be used to minimize contamination by smaller size platelets. PMID:21191433

  16. Design of a piezoelectric shaker for centrifuge testing

    NASA Technical Reports Server (NTRS)

    Canclini, J. G.; Henderson, J. M.

    1979-01-01

    The design of a prototype piezoelectric shaker and its development to date is described. Although certain design problems remain to be solved, the piezoelectric system shows promise for adaptation to a larger payload system, such as the proposed geotechnical centrifuge at the Ames Research Center.

  17. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minxi; Liu, Junyu; Lu, Shiyun

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two modelsmore » produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.« less

  18. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  19. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  20. Geotechnical centrifuge use at University of Cambridge Geotechnical Centre, August-September 1991

    NASA Astrophysics Data System (ADS)

    Gilbert, Paul A.

    1992-01-01

    A geotechnical centrifuge applies elevated acceleration to small-scale soil models to simulate body forces and stress levels characteristic of full-size soil structures. Since the constitutive behavior of soil is stress level development, the centrifuge offers considerable advantage in studying soil structures using models. Several experiments were observed and described in relative detail, including experiments in soil dynamics and liquefaction study, an experiment investigation leaning towers on soft foundations, and an experiment investigating migration of hot pollutants through soils.

  1. Evaluation of amides and centrifugation temperature in boar semen cryopreservation.

    PubMed

    Bianchi, I; Calderam, K; Maschio, E F; Madeira, E M; da Rosa Ulguim, R; Corcini, C D; Bongalhardo, D C; Corrêa, E K; Lucia, T; Deschamps, J C; Corrêa, M N

    2008-03-15

    Two experiments were conducted to evaluate the use of amides as cryoprotectants and two centrifugation temperatures (15 or 24 degrees C) in boar semen cryopreservation protocols. Semen was diluted in BTS, cooled centrifuged, added to cooling extenders, followed by the addition of various cryoprotectants. In experiment 1, mean (+/-S.E.M.) sperm motility for 5% dimethylformamide (DMF; 50.6+/-1.9%) and 5% dimethylacetamide (DMA; 53.8+/-1.7%) were superior (P<0.05) to 5% methylformamide (MF; 43.2+/-2.4%) and 3% glycerol (GLY; 38.1+/-2.3%), with no significant difference between MF and GLY. Sperm membrane integrity was higher (P<0.05) for DMA than for MF or GLY (50.9+/-1.9, 43.3+/-2.5, and 34.5+/-2.8%, respectively). Sperm membrane integrity was higher in DMF (47.9+/-2.1%) than in glycerol (34.5+/-2.8%, P<0.05), but was similar to other treatments (P>0.05). In experiment 2, we tested MF, DMF, and DMA at 3, 5, and 7%. Sperm motility and membrane integrity were higher for 5% DMA (53.8+/-1.7 and 50.9+/-1.9%) and 5% DMF (50.6+/-1.9 and 47.9+/-2.1%), in comparison with 7% DMF and all MF concentrations (P<0.05). For sperm motility and membrane integrity, 5% DMA exceeded (P<0.05) 3% DM, with greater membrane integrity than 3% DMF (P<0.05). In both experiments, sperm motility and membrane integrity were superior at 15 degrees C versus 24 degrees C (P<0.05), with no interaction between centrifugation temperature and treatments (P>0.05). In conclusion, boar semen was successfully cryopreserved by replacement of glycerol with amides (especially 5% DMA) and centrifugation at 15 degrees C, with benefits for post-thaw sperm motility and membrane integrity.

  2. Developments in a centrifugal compressor surge control -- a technology assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Henderson, J.F.

    1994-04-01

    There are a number of surge control schemes in current use for centrifugal compressors employed in natural gas transmission systems. Basically, these schemes consist of a set of detection devices that either anticipate surge or detect it at its inception, and a set of control devices that act to prevent surge from occurring. A patent search was conducted in an attempt to assess the level and direction of technology development over the last 20 years and to define the focus for future R D activities. In addition, the paper presents the current state of technology in three areas: surge control,more » surge detection, and surge suppression. Patent data obtained from on-line databases showed that most of the emphasis has been on surge control rather than on detection and control and that the current trend in surge control will likely continue toward incremental improvement of a basic or conventional surge control strategy. Various surge suppression techniques can be grouped in two categories: (1) those that are focused on better compressor interior design, and (2) others that attempt to suppress surge by external and operational means.« less

  3. Unsteady Newton-Busemann flow theory. I - Airfoils

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1981-01-01

    Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.

  4. Piezothermal effect in a spinning gas

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2016-10-01

    A spinning gas, heated adiabatically through axial compression, is known to exhibit a rotation-dependent heat capacity. However, as equilibrium is approached, an effect is identified here wherein the temperature does not grow homogeneously in the radial direction, but develops a temperature differential with the hottest region on axis, at the maximum of the centrifugal potential energy. This phenomenon, which we call a piezothermal effect, is shown to grow bilinearly with the compression rate and the amplitude of the potential. Numerical simulations confirm a simple model of this effect, which can be generalized to other forms of potential energy and methods of heating.

  5. Computational prediction of hemolysis in a centrifugal ventricular assist device.

    PubMed

    Pinotti, M; Rosa, E S

    1995-03-01

    This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.

  6. Comparison of gradual and rapid onset runs in a short-arm centrifugation

    NASA Astrophysics Data System (ADS)

    Miyamoto, A.; Saga, K.; Kinoue, T.; Nakazato, T.; Hirayanagi, K.; Yajima, K.; Hayashi, S.; Matsumoto, S.

    A gradual onset run (GOR) in a short-arm centrifugation was performed on ten healthy students. The centrifuge had a 1.8 m radius, and the subjects sat on a chair in a cabin. The Gz force increased to 2.2 Gz at 0.1 °/sec 2 for 32 min. and the same Gz-level was maintained for 20 min. Three out of ten subjects completed the whole protocol; the load on the others was terminated because of symptoms or increased heart rate. There were few symptoms such as vertigo, that was a common problem with a rapid onset run (ROR) in former experiments, due to the short-arm centrifugation. The changes of the flicker test after the load were much less in the GOR protocol than in the ROR protocol, even in the terminated group. GOR seemed preferable to ROR in preventing vertigo even though it took longer to reach the necessary G load.

  7. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...

  8. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...

  9. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... Meeting Standards § 63.5810 What are my options for meeting the standards for open molding and centrifugal...) through (d) of this section to meet the standards for open molding or centrifugal casting operations in...

  10. The Effect of Age in the Alteration in Fluid Balance of Rats in Response to Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    2000-01-01

    With an increase in gravity load induced by centrifugation or upon return to Earth following spaceflight, there is a period of adjustment in fluid balance in rats. With centrifugation there is a reduced fluid intake with maintenance of the rate of urine excretion. Following spaceflight there is an increase in urine output and maintenance of fluid intake. The initial period of acclimation to hypergravity is associated with a net loss of fluids. In the present study in response to centrifugation at 2.0 G this period of acclimation is present in mature rats for a longer period of time, about 24 hours. Following this initial response a period of over compensation has previously been reported. In the present study this was not observed. The net effect of these alterations in water intake and output in response to centrifugation for 14 days was slight increase in the percent total body water, with effective compensation seen in both young and mature rats. Older rats have been shown to have a reduced relative thirst and compensatory renal function in response to hypohydration, hyperosmolality and pharmacological stimuli. Responsiveness to these stimuli are delayed and/or attenuated in older animals. Similar findings were noted in the present study in the initial response to centrifugation. The older animal had a delayed return of fluid intake to control levels. The delay of one day did not appear to effect long-term fluid homeostasis, as there was difference in the response of percent total body water at the end of 14 days of centrifugation with both age groups having a slight but significant increase. This increase has been attributed to the increase in lean body mass induced by centrifugation.

  11. Core temperature of tailless rats exposed to centrifugation

    NASA Technical Reports Server (NTRS)

    Monson, C. B.; Oyama, J.

    1984-01-01

    The role of the tail in the altered thermoregulation of rats during acute exposure to hypergravity was investigated, using groups of rats of two ages: 55 days (young) and 138 days (old). Rectal and foot temperature changes were measured in intact and tailless rats subjected to 1 h centrifugation of 2.8 G, with preceding (1 h) and following (1-3 h) 1 G periods. At 22 C, the loss of body heat from the tail per se does not measurably contribute to the hypothermia induced by hypergravity. However, the heat loss from the feet was greater in the tailless rats than in the intact rats from the young group of animals, although there was no significant difference between the tailless and intact rats in the old animal group. It is concluded that the inhibition of heat production is a significant factor in the hypothermia of centrifuged tailless rats, as it has been previously shown to be in the intact animals.

  12. Separation Control in a Centrifugal Bend Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Arthur, Michael; Corke, Thomas

    2011-11-01

    An experiment and CFD simulation are presented to examine the use of plasma actuators to control flow separation in a 2-D channel with a 135° inside-bend that is intended to represent a centrifugal bend in a gas turbine engine. The design inlet conditions are P = 330 psia., T =1100° F, and M = 0 . 24 . For these conditions, the flow separates on the inside radius of the bend. A CFD simulation was used to determine the location of the flow separation, and the conditions (location and voltage) of a plasma actuator that was needed to keep the flow attached. The plasma actuator body force model used in the simulation was updated to include the effect of high-pressure operation. An experiment was used to validate the simulation and to further investigate the effect of inlet pressure and Mach number on the flow separation control. This involved a transient high-pressure blow-down facility. The flow field is documented using an array of static pressure taps in the channel outside-radius side wall, and a rake of total pressure probes at the exit of the bend. The results as well as the pressure effect on the plasma actuators are presented.

  13. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1988-01-01

    A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

  14. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  15. Compact type-I coil planet centrifuge for counter-current chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979

  16. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  17. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    PubMed

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  19. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGES

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; ...

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO 2 and CH 4 are similar, although CO 2 binding is generally stronger by ~4 to 5 kJ mol –1. Furthermore, the differential between the adsorption of CO 2 and CH 4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH 4/CO 2 flow separation and gas-selective sensors.« less

  20. Numerical investigation & comparison of a tandem-bladed turbocharger centrifugal compressor stage with conventional design

    NASA Astrophysics Data System (ADS)

    Danish, Syed Noman; Qureshi, Shafiq Rehman; EL-Leathy, Abdelrahman; Khan, Salah Ud-Din; Umer, Usama; Ma, Chaochen

    2014-12-01

    Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor. Stage characteristics are explored for various tip clearance levels, axial spacings and circumferential clockings. Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle, meridional gas passage and camber distributions in order to have a true comparison with conventional design. Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance. Linear-equation models for correlating stage characteristics with tip clearance are proposed. Comparing two designs, it is clearly evident that the conventional design shows better performance at moderate flow rates. However; near choke flow, tandem design gives better results primarily because of the increase in throat area. Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.