Science.gov

Sample records for gas chromatographic separation

  1. Fast gas chromatographic separation of biodiesel.

    SciTech Connect

    Pauls, R. E.

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m x 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  2. Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomers

    PubMed Central

    Kania-Korwel, Izabela; Vyas, Sandhya M.; Song, Yang; Lehmler, Hans-Joachim

    2008-01-01

    Several polychlorinated biphenyls (PCBs) and their hydroxylated metabolites display axial chirality. Here we describe an enantioselective, gas chromatographic separation of methylated derivatives of hydroxylated (OH-)PCB atropisomers (MeO-PCB) using a chemically bonded β-cyclodextrin column (Chirasil-Dex). The atropisomers of several MeO-PCBs could be separated on this column with resolutions ranging from 0.42–0.87 under isothermal or temperature-programmed conditions. In addition, the enantiomeric fraction of OH-PCB 136 metabolites was determined in male and female rats treated with racemic PCB 136. The methylated derivatives of two OH-PCB 136 metabolites showed an enantiomeric enrichment in liver tissue, whereas PCB 136 itself was near racemic. PMID:18760792

  3. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  4. A Microporous Metal-Organic Framework for Gas Chromatographic Separation of Alkanes

    SciTech Connect

    Chen, Banglin; Liang, Chengdu; Yang, Jun; Contreras, Damacio; Clancy, Yvette; Lobkovsky, Emil B.; Yaghi, Omar; Dai, Sheng

    2006-01-01

    A zinc-based metal-organic framework (MOF) can be transformed reversibly from an open (a) to a dense (b) configuration. The microporous solid is the first example of a MOF that is highly selective in the gas-chromatographic separation of alkanes.

  5. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  7. Microminiature gas chromatograph

    DOEpatents

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  8. Microminiature gas chromatograph

    DOEpatents

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  9. Inlet backflushing device for the improvement of comprehensive two dimensional gas chromatographic separations.

    PubMed

    Edwards, Matthew; Górecki, Tadeusz

    2015-07-10

    Comprehensive two-dimensional gas chromatography (GC×GC) is recognised as a powerful tool for the separation of complex mixtures of volatile and semi-volatile compounds. In the analysis of challenging samples containing highly concentrated, active analytes or those with complicated matrices, it is often the case that less than ideal chromatography is produced. GC×GC chromatograms of such samples typically contain broad, tailing analyte bands. This results in difficulties with quantitation and poor utilisation of the separation space. In this study we investigated the inlet and the modulator as the potential sources of these tailing bands. A simple inlet backflushing device was developed to isolate the inlet from the primary column after the injection, and a similar setup was used to isolate the modulator from the primary column. The device allowed us to divert carrier gas flow back through the inlet at a specified time after the injection, while allowing analytes to pass through the column for separation. Analytes retained within the inlet were prevented from entering the column, and were subsequently removed via the carrier gas split line. The study revealed that the inlet plays a significant role in the development of tailing chromatographic bands, while the modulator simply modulates the already elongated band. Inlet backflushing is a cheap, simple and effective tool that can be used to improve the chromatography of problematic GC×GC analyses of samples consisting of concentrated and active analytes, those derived from natural products and containing complicated matrices. PMID:26028511

  10. Graphitic carbon nitride as high-resolution stationary phase for gas chromatographic separations.

    PubMed

    Zheng, Yunzhong; Qi, Meiling; Fu, Ruonong

    2016-07-01

    This work presents the first example of utilization of graphitic carbon nitride (g-C3N4) as stationary phase for capillary gas chromatographic (GC) separations. The statically coated g-C3N4 column showed the column efficiencies of 3760 plates/m and weak polarity. Its resolving capability and retention behaviours were investigated by using the Grob test mixture, and mixtures of diverse types of analytes, and structural and positional isomers. The results showed superior separation performance of the g-C3N4 stationary phase for some critical analytes and preferential retention for aromatic analytes. Specifically, it exhibited high-resolution capability for aromatic and aliphatic isomers such as methylnaphthalenes and dimethylnaphthalenes, phenanthrene and anthracene and alkane isomers. In addition, g-C3N4 column showed excellent thermal stability up to 280°C and good repeatability with relative standard deviation (RSD) values less than 0.09% for intra-day, below 0.23% for inter-day and in the range of 1.9-8.4% for between-column, respectively. The advantageous separation performance shows the potential of g-C3N4 and related materials as stationary phase in GC and other separation technologies. PMID:27266332

  11. Evaluation of two commercial capillary columns for the enantioselective gas chromatographic separation of organophosphorus pesticides.

    PubMed

    Fidalgo-Used, Natalia; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2006-12-15

    The separation of the enantiomers of 13 organophosphorus pesticides (OPPs) has been investigated by gas chromatography (GC) with flame ionisation detection (FID) using two different commercially available chiral columns, Chirasil-Val (l-valine-tert-butylamide) and CP-Chirasil-Dex CB (heptakis (2,3,6-tri-O-metil)-beta-cyclodextrin). Using the Chirasil-Val column no chiral resolution was obtained for the OPPs investigated under any tested experimental condition. The use of the CP-Chirasil-Dex CB stationary phase enabled good individual enantiomeric separation of two OPPs, ruelene and trichlorfon and partial separation of naled, chloretoxyphos, isophenphos and metamidophos. Also, the obtained chromatographic results showed that Chirasil-Dex could resolve enantiomers through the combination of different mechanism (e.g. formation of inclusion complexes and/or interactions outside the cyclodextrin cavity). Under optimised conditions, precision, linearity range and detection limits were evaluated for the enantiomers of ruelene and trichlorfon using CP-Chirasil-Dex CB column and electron capture detection (ECD). By using the GC-ECD method the enantiomers of these OPPs could be satisfactorily detected at very low concentration levels. The detection limits observed were 1.5ngmL(-1) and 11.5ngmL(-1) for the enantiomers of trichlorfon and ruelene, respectively. PMID:18970881

  12. Deconvolution of gas chromatographic data

    NASA Technical Reports Server (NTRS)

    Howard, S.; Rayborn, G. H.

    1980-01-01

    The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful.

  13. Protecting Gas Chromatographic Syringes

    NASA Astrophysics Data System (ADS)

    Ruekberg, Ben

    1995-12-01

    This article describes the construction of a device which protects gas chromatographic syringes. The device lessens the likelihood of syringes rolling off tables and breaking. If the syringe is dropped, the glass barrel is less apt to be struck and shattered.

  14. Calix[4]pyrroles: highly selective stationary phases for gas chromatographic separations.

    PubMed

    Fan, Jing; Wang, Zhenzhong; Li, Qian; Qi, Meiling; Shao, Shijun; Fu, Ruonong

    2014-10-01

    Calix[4]pyrroles offer a great potential as stationary phases for gas chromatography (GC) due to their unique structures and physicochemical properties. Herein we present the first report of using two calix[4]pyrroles, namely meso-tetra-cyclohexylcalix[4]pyrrole (THCP) and meso-octamethylcalix[4]pyrrole (OMCP). These stationary phases were statically coated onto capillary columns and investigated in terms of column efficiency, polarity, separation performance, thermal stability and repeatability. The columns achieved column efficiencies of 2200-3000plates/m and exhibited nonpolar nature with an average polarity of 67 for THCP and 64 for OMCP, respectively. THCP stationary phase shows high selectivity for analytes of different polarity and exhibits nice peak shapes, especially for aldehydes, alcohols and anilines that are prone to severe peak tailing in GC analysis. Interestingly, THCP stationary phase possesses superior resolving ability for aniline and benzenediol positional isomers while OMCP shows preferential selectivity for nonpolar analytes such as hexane isomers. Moreover, calix[4]pyrrole columns also have good thermal stability up to 260°C and repeatability with a relative standard deviation (RSD%) of less than 0.10% for run-to-run and less than 5.2% for column-to-column. This work demonstrates the unique separation performance of calix[4]pyrroles and their promising future as a new class of GC stationary phases. PMID:25173993

  15. Comprehensive two-dimensional gas chromatographic separations with a temperature programmed microfabricated thermal modulator.

    PubMed

    Collin, William R; Nuñovero, Nicolas; Paul, Dibyadeep; Kurabayashi, Katsuo; Zellers, Edward T

    2016-04-29

    Comprehensive two-dimensional gas chromatography (GC×GC) with a temperature-programmed microfabricated thermal modulator (μTM) is demonstrated. The 0.78 cm(2), 2-stage μTM chip with integrated heaters and a PDMS coated microchannel was placed in thermal contact with a solid-state thermoelectric cooler and mounted on top of a bench scale GC. It was fluidically coupled through heated interconnects to an upstream first-dimension ((1)D) PDMS-coated capillary column and a downstream uncoated capillary or second-dimension ((2)D) PEG-coated capillary. A mixture of n-alkanes C6-C10 was separated isothermally and the full-width-at-half-maximum (fwhm) values of the modulated peaks were assessed as a function of the computer-controlled minimum and maximum stage temperatures of μTM, Tmin and Tmax, respectively. With Tmin and Tmax fixed at -25 and 100°C, respectively, modulated peaks of C6 and C7 had fwhm values<53 ms while the modulated peaks of C10 had a fwhm value of 1.3s, due to inefficient re-mobilization. With Tmin and Tmax fixed at 0 and 210°C, respectively, the fwhm value for the modulated C10 peaks decreased to 67 ms, but C6 and C7 exhibited massive breakthrough. By programming Tmin from -25 to 0°C and Tmax from 100 to 220°C, the C6 and C7 peaks had fwhm values≤50 ms, and the fwhm for C10 peaks remained<95 ms. Using the latter conditions for the GC×GC separation of a sample of unleaded gasoline yielded resolution similar to that reported with a commercial thermal modulator. Replacing the PDMS phase in the μTM with a trigonal-tricationic room temperature ionic liquid eliminated the bleed observed with the PDMS, but also reduced the capacity for several test compounds. Regardless, the demonstrated capability to independently temperature program this low resource μTM enhances its versatility and its promise for use in bench-scale GC×GC systems. PMID:27036209

  16. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  17. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    SciTech Connect

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  18. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  19. Microminiature gas chromatographic column

    NASA Technical Reports Server (NTRS)

    Donaldson, R. W., Jr.

    1972-01-01

    Techniques commonly used for fabrication of integrated circuits are utilized to produce long capillary tubes for microminiature chromatographs. Method involves bonding of flat silicon plate to top of spirally grooved silicon chip to close groove and form capillary column.

  20. EVALUATION OF PORTABLE GAS CHROMATOGRAPHS

    EPA Science Inventory

    Limits of detection, linearity of responses, and stability of response factors and retention times for five commercially-available portable gas chromatographs (PGC) were determined during laboratory evaluation. he PGCs were also operated at the French Limited Superfund site near ...

  1. Hand-held multiple system gas chromatograph

    DOEpatents

    Yu, Conrad M.

    2001-01-01

    A multiple parallel hand-held gas chromatograph (GC) system which includes several independent GCs. Each independent GC has its own injector, separation column, detector and oven and the GCs are mounted in a light weight hand-held assembly. Each GC operates independently and simultaneously. Because of different coatings in different separation columns, different retention times for the same gas will be measured. Thus, for a GC system with multiple parallel GCs, the system can measure, in a short period, different retention times and provide a cross-reference in the determination of the measured gas and to become a two-dimensional system for direct field use.

  2. Chromatographic separation of cholesterol in foods.

    PubMed

    Fenton, M

    1992-10-30

    Based on the current literature and on experience gained in the laboratory, a simplified procedure using direct saponification (0.4 M potassium hydroxide in ethanol and heating at 60 degrees C for 1 h) is the most appropriate method for the determination of total cholesterol in foods. Extraction of the unsaponifiable matter with hexane is efficient and no extra clean-up is required before quantification. An internal standard, 5 alpha-cholestane or epicoprostanol, should be added to the sample prior to saponification and, together with reference standards, carried through the entire procedure to ensure accurate results. A significant improvement in cholesterol methodology has been achieved by decreasing the sample size and performing all the sample preparation steps in a single tube. The method has the advantages of elimination of an initial solvent extraction for total lipids and errors resulting from multiple extractions, transfers, filtration and wash steps after saponification. The resulting hexane extract, which contains a variety of sterols and fat soluble vitamins, requires an efficient capillary column for complete resolution of cholesterol from the other compounds present. The development of fused-silica capillary columns using cross-linked and bonded liquid phases has provided high thermal stability, inertness and separation efficiency and, together with automated cold on-column gas chromatographic injection systems, has resulted in reproducible cholesterol determinations in either underivatized or derivatized form. If free cholesterol and its esters need to be determined separately, they are initially extracted with other lipids with chloroform-methanol followed by their separation by column or thin-layer chromatography and subsequently analysed by gas or liquid chromatography. Although capillary gas chromatography offers superior efficiency in separation, the inherent benefits of liquid chromatography makes it a potential alternative. Isotope dilution

  3. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  4. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  5. A gas chromatograph/mass spectrometry method for determining isotopic distributions in organic compounds used in the chemical approach to stable isotope separation

    SciTech Connect

    Martinez, A.M.; Spall, W.D.; Smith, B.F.

    1990-01-01

    A variety of gas chromatograph/mass spectrometry (GC/MS) methods have been developed to resolve benzene, benzophenone, anthracene, fluorenone, and their respective stable isotope analogs from other components by gas chromatography. The ratio of stable isotope-labeled material to natural isotopic abundance compounds is determined from the mass spectra averaged across the chromatographic peak. Both total ion and selective ion chromatographic approaches were used for relative data and comparison. 9 refs., 11 tabs.

  6. Gas chromatographic separation of nitrogen, oxygen, argon, and carbon monoxide using custom-made porous polymers from high purity divinylbenzene

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Ohara, D.; Hollis, O. L.

    1984-01-01

    Existing porous polymers were surveyed for their ability to separate the subject gases. Certain products that showed more promise than others were synthesized and the existing synthetic procedures studied and modified to produce new polymers with enhanced ability to separate the subject gases. Evaluation of the porous polymers was carried out practically by gas chromatography at ambient temperature. The modified synthetic procedures were somewhat simpler than the originals. The new porous polymers made with high purity divinylbenzene enabled use of shorter columns to obtain the separations desired.

  7. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-01

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. PMID:26141277

  8. Gas chromatographic separation of stereoisomers of non-protein amino acids on modified γ-cyclodextrin stationary phase.

    PubMed

    Fox, Stefan; Strasdeit, Henry; Haasmann, Stephan; Brückner, Hans

    2015-09-11

    Stereoisomers (enantiomers and diastereoisomers) of synthetic, non-protein amino acids comprising α-, β-, and γ-amino acids, including α,α-dialkyl amino acids, were converted into the respective N-trifluoroacetyl-O-methyl esters and analyzed and resolved by gas chromatography (GC) on a commercial fused silica capillary column coated with the chiral stationary phase octakis(3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. This column is marketed under the trade name Lipodex(®) E. Chromatograms, retention times, and a chart displaying the retention times of approximately 40 stereoisomers of amino acids are presented. With few exceptions, baseline or almost baseline resolution was achieved for enantiomers and diastereoisomers. The chromatographic method presented is considered to be highly suitable for the elucidation of the stereochemistry of non-protein amino acids, for example in natural products, and for evaluating the enantiopurity of genetically non-coded amino acids used for the synthesis and design of conformationally tailored peptides. The method is applicable to extraterrestrial materials or can be used in experimental work related to abiotic syntheses or enantioselective destruction and amplification of amino acids. PMID:26278360

  9. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  10. Relationship between chromatographic resolution and amide structure of chiral 2-hydroxy acids as O-(-)-menthoxycarbonylated diastereomeric derivatives for enantiomeric separation on achiral gas chromatography.

    PubMed

    Cha, Eunju; Kim, Sohee; Lee, Kang Mi; Kim, Ho Jun; Kim, Ki Hun; Kwon, Oh-Seung; Park, Ki Duk; Lee, Jaeick

    2016-02-15

    The relationship between chromatographic resolution and amide structure of chiral 2-hydroxy acids as O-(-)-menthoxycarbonylated diastereomeric derivatives on achiral gas chromatography was investigated to elucidate the best diastereomeric conformation for enantiomeric separation of chiral 2-hydroxy acids. Thirteen chiral 2-hydroxy acids were converted into nine different diastereomeric O-(-)-menthoxycarbonylated amide derivatives using the primary, secondary and cyclic amines to achieve complete enantiomeric separation through an achiral column. Each enantiomeric pair of 2-hydroxy acids as O-(-)-menthoxycarbonylated tert-butylamide derivatives was resolved on both the DB-5 and DB-17 columns with resolution factors ranging from 1.7 to 4.8 and 1.7 to 3.4, respectively. The results revealed that the structure of the amide moiety is shown to significantly affect chromatographic resolution. In addition, O-(-)-menthoxycarbonylated tert-butylamide derivatives were shown to be the best diastereomeric conformations for enantiomeric separation of 2-hydroxy acids. When comparing with our previous O-trifluoroacetylated(-)-menthyl ester derivatization method, the present results suggested that size differences between groups attached to the chiral center and conformational rigidity can have stronger effects on resolution than the distance between chiral centers. The elution of R- and S-stereoisomers was affected by the class of amine; i.e., primary, secondary, or cyclic, regardless of the substituents on the amine group, the structure of the 2-hydroxy acid, and the polarity of the column. PMID:26800225

  11. Gas chromatographic separation of bile acid 3-glucosides and 3-glucuronides without prior deconjugation on a stainless-steel capillary column.

    PubMed

    Iida, T; Tazawa, S; Tamaru, T; Goto, J; Nambara, T

    1995-01-01

    A method for the gas chromatographic (GC) separation of the 3-glucoside and 3-glucuronide conjugates of bile acids without the necessity for a hydrolytic step is described. The bile acid glycosides were derivatized to their complete methyl ester trimethylsilyl (Me-TMS) or methyl ester dimethylethylsilyl (Me-DMES) ether derivatives, which in turn were chromatographed on an inert and thermostable stainless-steel capillary column, Ultra ALLOY-1 (HT), coated with a thin film (0.15 micron) of chemically bonded and cross-linked dimethylsiloxane. They exhibited a single peak of the theoretical shape without any accompanying peaks due to thermal decomposition, even at oven temperatures of 320-330 degrees C. Excellent GC separation of isomeric bile acid glycosides was achieved by the combined use of suitable derivatives and column. This method, which does not need the prior deconjugation of the glycosidic moiety, could be usefully applied to biosynthetic and metabolic studies of bile acids in biological materials. PMID:7881536

  12. Estimating optimal time for fast chromatographic separations.

    PubMed

    Welch, Christopher J; Regalado, Erik L

    2014-09-01

    The term t(min cc) provides a ready estimate of the shortest time that can be obtained by "column cutting" for baseline resolution of two components showing excess chromatographic resolution. While actual column cutting is impractical, the t(min cc) value is shown to be closely related to the minimum separation time obtainable by adjusting other parameters such as flow rate, mobile phase composition, and temperature, affording scientists interested in the development of fast chromatographic separations a convenient tool for estimating the minimum separation time that can be obtained by modifying a given method development screening result. Furthermore, the relationship between t(min cc) and the minimum separation time obtainable by adjusting other parameters is shown to be dependent on the speed of the screening method, with aggressive screening gradients affording t(min cc) estimates that match the actual minimum separation time, and "lazy" screening gradients affording t(min cc) values that overestimate minimum separation time. Consequently, the analysis of the relationship between t(min cc) and actual minimum separation time may be a useful tool for determining the "fitness" of method development screening methods. PMID:24995384

  13. Evaluation of portable gas chromatographs

    SciTech Connect

    Berkley, R.E.; Miller, M.; Chang, J.C.; Oliver, K.; Fortune, C.

    1993-01-01

    Limits of detection, linearity of responses, and stability of response factors and retention times for five commercially-available portable gas chromatographs (PGC) were determined during laboratory evaluation. The PGCs were also operated at the French Limited Superfund site near Houston, TX during startup of bioremediation. Concentrations of volatile organic compounds (VOC) at the site were slightly above ambient background levels. Concurrent collocated grab samples were collected periodically in canisters and analyzed by Method TO-14 using a mass-selective detector. Canister data were taken to indicate correct concentrations and were used to assess the accuracy of PGC data. Durability, reliability, and complexity of operation of PGCs were also evaluated. The principal goal of the study was to determine the best way to use each instrument as a monitor for airborne VOCs.

  14. High performance hand-held gas chromatograph

    SciTech Connect

    Yu, C.M.

    1998-04-28

    The Microtechnology Center of Lawrence Livermore National Laboratory has developed a high performance hand-held, real time detection gas chromatograph (HHGC) by Micro-Electro-Mechanical-System (MEMS) technology. The total weight of this hand-held gas chromatograph is about five lbs., with a physical size of 8{close_quotes} x 5{close_quotes} x 3{close_quotes} including carrier gas and battery. It consumes about 12 watts of electrical power with a response time on the order of one to two minutes. This HHGC has an average effective theoretical plate of about 40k. Presently, its sensitivity is limited by its thermal sensitive detector at PPM. Like a conventional G.C., this HHGC consists mainly of three major components: (1) the sample injector, (2) the column, and (3) the detector with related electronics. The present HHGC injector is a modified version of the conventional injector. Its separation column is fabricated completely on silicon wafers by means of MEMS technology. This separation column has a circular cross section with a diameter of 100 pm. The detector developed for this hand-held GC is a thermal conductivity detector fabricated on a silicon nitride window by MEMS technology. A normal Wheatstone bridge is used. The signal is fed into a PC and displayed through LabView software.

  15. Versatile gas/particle ion chromatograph.

    PubMed

    Ullah, S M Rahmat; Takeuchi, Masaki; Dasgupta, Purnendu K

    2006-02-01

    A new, compact gas/particle ion chromatograph has been developed for measuring ionic constituents in PM2.5 (particulate matter of aerodynamic diameter < or = 2.5 microm) and water-soluble ionogenic gases. The instrument has separate sampling channels for gases and particles. In one, a membrane denuder collects soluble gases for preconcentration and analysis. In the other, a cyclone removes larger particles, a membrane denuder removes soluble gases, and a continuously wetted hydrophilic filter collects particles. A single, multiport, syringe pump handles liquid transport, and one conductivity detector measures anions and ammonium for both channels. Electrodialytically generated gradient hydroxide eluent permits 20 min chromatographic runs. Gas/particle samples are each collected for 40 min, butthe sampling intervals are staggered by 20 min. Liquid samples from the gas denuder and particle collector are aspirated and preconcentrated on sequential cation and anion concentrators and transferred respectively to an ammonia transfer device and an anion separation column. The flow configuration results in an ammonium peak before anion peaks in the chromatogram. The system measures ammonia, organic acids (such as acetic, formic, and oxalic acids), HCl, HONO, SO2, HNO3, and the corresponding ions in the aerosol phase. Low ng/m3 to sub-ng/m3 limits of detection (LODs) are attained for most common gases and particulate constituents, the LODs for gaseous SO2 to NH3 range, for example, from sub parts per trillion by volume (sub-pptv) to approximately 5 pptv. PMID:16509343

  16. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    USGS Publications Warehouse

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  17. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  18. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  19. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  20. Gas chromatograph injection port protective device

    NASA Technical Reports Server (NTRS)

    Robertson, M. D.; Welz, E. A.

    1969-01-01

    To prevent samples containing foreign matter from poisoning the gas chromatographic columns, a pre-filter insertion is placed in the injection port. The packing becomes a variable reactant, for example, acids are removed by using an alkaline liquid.

  1. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  2. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  3. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    SciTech Connect

    Ying Liu

    2004-12-19

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  4. Gas chromatographic analysis of trace gas impurities in tungsten hexafluoride.

    PubMed

    Laurens, J B; de Coning, J P; Swinley, J M

    2001-03-01

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low-microg/l levels included oxygen, nitrogen, carbon dioxide, carbon monoxide, sulfur hexafluoride and hydrogen. This paper describes the use of a system utilising backflush column switching to protect the columns and detectors in the analysis of trace gas impurities in tungsten hexafluoride. Two separate channels were used for the analysis of H2, O2, N2, CO, CO2 and SF6 impurities with pulsed discharge helium ionisation detection. PMID:11269587

  5. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gas chromatograph. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.267 Gas...

  6. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gas chromatograph. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.267 Gas...

  7. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  8. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  9. Portable gas chromatograph-mass spectrometer

    SciTech Connect

    Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

    1994-12-31

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  10. Gas-liquid chromatographic determination of morphine, heroin, and cocaine.

    PubMed

    Prager, M J; Harrington, S M; Governo, T F

    1979-03-01

    Morphine, heroin, and cocaine are quantitatively determined with the same gas-liquid chromatographic system. The compounds are separated on a 6 ft X 2 mm id glass column packed with a 1:1 mixture of 5% SE-30 on 80--100 mesh Chromosorb W and 3% OV-17 on 80--100 mesh Varaport 30. The column is temperature-programmed. Flame ionization detector responses are measured with a computer-based data system. Heroin and cocaine are chromatographed directly; morphine is derivatized first. The procedure was evaluated with previously analyzed commercial and forensic samples. Accuracy and precision were 5 and 3%, respectively. PMID:447602

  11. AUTOMATED MEASUREMENTS OF INFRARED SPECTRA OF CHROMATOGRAPHICALLY SEPARATED FRACTIONS

    EPA Science Inventory

    The rapid identification of trace organic pollutants in water presents one of the more severe problems for environmental analytical chemists today. Spectroscopic identifications of chromatographically separated fractions, preferably without trapping each sample, yields more certa...

  12. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOEpatents

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  13. A nonlinear model for gas chromatograph systems

    NASA Technical Reports Server (NTRS)

    Feinberg, M. P.

    1975-01-01

    Fundamental engineering design techniques and concepts were studied for the optimization of a gas chromatograph-mass spectrometer chemical analysis system suitable for use on an unmanned, Martian roving vehicle. Previously developed mathematical models of the gas chromatograph are found to be inadequate for predicting peak heights and spreading for some experimental conditions and chemical systems. A modification to the existing equilibrium adsorption model is required; the Langmuir isotherm replaces the linear isotherm. The numerical technique of Crank-Nicolson was studied for use with the linear isotherm to determine the utility of the method. Modifications are made to the method eliminate unnecessary calculations which result in an overall reduction of the computation time of about 42 percent. The Langmuir isotherm is considered which takes into account the composition-dependent effects on the thermodynamic parameter, mRo.

  14. Development of Gas Chromatographic Mass Spectrometry.

    PubMed

    Hites, Ronald A

    2016-07-19

    Gas chromatographic mass spectrometry is now widely used for the quantitation and identification of organic compounds in almost any imaginable sample. These applications include the measurement of chlorinated dioxins in soil samples, the identification of illicit drugs in human blood, and the quantitation of accelerants in arson investigations, to name just a few. How did GC/MS get so popular? It turns out that it required parallel developments in mass spectrometry, gas chromatography, and computing and that no one person "invented" the technique. This Perspective traces this history from the 1950s until today. PMID:27384908

  15. GAS CHROMATOGRAPH-BASED SYSTEM FOR MEASURING THE METHANE FRACTION OF DIESEL ENGINE HYDROCARBON EMISSIONS

    EPA Science Inventory

    An instrument has been developed (termed the 'methane analytical system') enabling diesel methane emissions to be quatified separately from total unburned hydrocarbon emissions. The instrument employed gas chromatographic principles whereby a molecular sieve column operating isot...

  16. Economic gas chromatograph system for subambient pressure gas sampling

    NASA Technical Reports Server (NTRS)

    Mitchell, S. M.

    1970-01-01

    Gas chromatograph sampling system consists of a manifold with a gas-sample valve, a minimum-volume pressure transducer with a portable monitor, a vacuum-source valve, and a sample inlet valve. Increased accuracy of analysis is obtained by better control of sample size.

  17. Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter.

    PubMed

    Sandron, Sara; Rojas, Alfonso; Wilson, Richard; Davies, Noel W; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Kelleher, Brian P; Paull, Brett

    2015-09-01

    This review presents an overview of the separation techniques applied to the complex challenge of dissolved organic matter characterisation. The review discusses methods for isolation of dissolved organic matter from natural waters, and the range of separation techniques used to further fractionate this complex material. The review covers both liquid and gas chromatographic techniques, in their various modes, and electrophoretic based approaches. For each, the challenges that the separation and fractionation of such an immensely complex sample poses is critically reviewed. PMID:26290053

  18. Chromatographically separable rotamers of an unhindered amide

    PubMed Central

    Geffe, Mario; Andernach, Lars; Trapp, Oliver

    2014-01-01

    Summary Surprisingly stable formamide rotamers were encountered in the tetrahydroisoquinoline and morphinan series of alkaloids. We investigated the hindered rotation around the amide bond by dynamic high-performance liquid chromatography (DHPLC) and kinetic measurements of the interconversion of the rotamers which can readily be separated by HPLC as well as TLC. The experimental results of the different methods were compared to each other as well as to results obtained by DFT calculations. PMID:24778722

  19. Detection system for a gas chromatograph

    DOEpatents

    Hayes, John M.; Small, Gerald J.

    1984-01-01

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.

  20. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    ERIC Educational Resources Information Center

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  1. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    PubMed Central

    2014-01-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-μm-deep, and 60-μm-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m. PMID:24899869

  2. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    NASA Astrophysics Data System (ADS)

    Li, Yi; Du, Xiaosong; Wang, Yang; Tai, Huiling; Qiu, Dong; Lin, Qinghao; Jiang, Yadong

    2014-05-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-μm-deep, and 60-μm-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m.

  3. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  4. Gas Chromatographic Detectors for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Humphry, Donald E.; Takeuchi, Nori; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ chemical analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. Future missions to Mars', comets, or planetary moons such as Europa, will perform experiments with complex analyses. In addition, instrumentation for such missions must perform under severely restricted conditions with limited resources. To meet these analytical requirements, improved methods and highly sensitive yet smaller instruments must continually be developed with increasingly greater capabilities. We describe here efforts to achieve this objective, for past and future missions, through the development of new or the improvement of existing sensitive, miniaturized gas chromatographic detectors.

  5. FIELD COMPARISON OF PORTABLE GAS CHROMATOGRAPHS WITH METHOD TO-14

    EPA Science Inventory

    A field-deployable prototype fast gas chromatograph (FGC) and two commercially-available portable gas chromatographs (PGC) were evaluated by measuring organic vapors in ambient air at a field monitoring site in metropolitan San Juan, Puerto Rico. he data were compared with simult...

  6. Gas-Chromatographic Determination Of Water In Freon PCA

    NASA Technical Reports Server (NTRS)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  7. Rotating annular chromatograph for continuous metal separations and recovery

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. By continuously introducing the feed material to be separated at a stationary point at the top of the bed and eluent everywhere else around the annulus, elution chromatography occurs. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence, the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effect of annulus width and diameter has recently been studied using the same device with a 50.8-mm-wide annulus and another 0.6-m-long chromatograph with an 89-mm diameter and annulus widths of 6.4, 12.7, and 22.2 mm. These columns have been constructed of Plexiglas and typically operate at a gauge pressure of 175 kPa. To further study the effect of size and pressure, a new 445-mm-diam by 1-m-long column with a 31.8-mm-wide annulus has been fabricated. Its metal construction allows preparative-scale operation with a wide variety of liquids at pressures to 1.3 MPa. Three metal recovery systems have been explored: (1) separation of iron and aluminum in ammonium sulfate-sulfuric acid solutions; (2) separation of hafnium from zirconium in sulfuric acid solutions; and (3) the separation of copper, nickel, and cobalt in ammonium carbonate solutions. This last system simulates the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. It has been studied, using similar conditions, on each of the chromatographs, and the results demonstrate the effect of column dimensions on the quality and quantity of the separation. 8 figures, 1 table.

  8. Characterization of Gas Chromatographic Liquid Phases Using McReynolds Constants. An Experiment for Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Erskine, Steven R.; And Others

    1986-01-01

    Describes a laboratory experiment that is designed to aid in the understanding of the fundamental process involved in gas chromatographic separations. Introduces the Kovats retention index system for use by chemistry students to establish criteria for the optimal selection of gas chromatographic stationary phases. (TW)

  9. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers.

    PubMed

    Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti

    2016-08-19

    This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. PMID:27423773

  10. On-line gas chromatographic analysis of airborne particles

    DOEpatents

    Hering, Susanne V.; Goldstein, Allen H.

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  11. Simple gas chromatographic method for furfural analysis.

    PubMed

    Gaspar, Elvira M S M; Lopes, João F

    2009-04-01

    A new, simple, gas chromatographic method was developed for the direct analysis of 5-hydroxymethylfurfural (5-HMF), 2-furfural (2-F) and 5-methylfurfural (5-MF) in liquid and water soluble foods, using direct immersion SPME coupled to GC-FID and/or GC-TOF-MS. The fiber (DVB/CAR/PDMS) conditions were optimized: pH effect, temperature, adsorption and desorption times. The method is simple and accurate (RSD<8%), showed good recoveries (77-107%) and good limits of detection (GC-FID: 1.37 microgL(-1) for 2-F, 8.96 microgL(-1) for 5-MF, 6.52 microgL(-1) for 5-HMF; GC-TOF-MS: 0.3, 1.2 and 0.9 ngmL(-1) for 2-F, 5-MF and 5-HMF, respectively). It was applied to different commercial food matrices: honey, white, demerara, brown and yellow table sugars, and white and red balsamic vinegars. This one-step, sensitive and direct method for the analysis of furfurals will contribute to characterise and quantify their presence in the human diet. PMID:18976770

  12. Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection.

    PubMed

    VandenBoer, T C; Markovic, M Z; Petroff, A; Czar, M F; Borduas, N; Murphy, J G

    2012-08-24

    Two methods based on ion chromatography (IC) were developed for the detection of methyl and ethyl alkyl amines (methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA)) and NH(3)/NH(4)(+) in online atmospheric gas-particle and size-resolved particulate samples. The two IC methods were developed to analyze samples collected with an ambient ion monitor (AIM), an online gas-particle collection system, or with a Micro Orifice Uniform Deposit Impactor (MOUDI) for size-resolved particle samples. These methods enable selective and (semi-) quantitative detection of alkyl amines at ambient atmospheric concentrations (pptv and pgm(-3)) in samples where significant interferences can be expected from Na(+) and NH(4)(+), for example marine and rural air masses. Sample pre-concentration using a trace cation column enabled instrumental detection limits on the order of pmol (sub-ng) levels per sample, an improvement of up to 10(2) over current IC methods. Separation was achieved using a methanesulfonic acid gradient elution on Dionex CS12A and CS17 columns. The relative standard deviations in retention times during 3 weeks continuous (hourly) sampling campaigns ranged from 0.1 to 0.5% and 0.2 to 5% for the CS12A and CS17 across a wide dynamic range of atmospheric concentrations. Resolution of inorganic and organic cations is limited to 25min for online samples. Mass-dependent coelution of NH(4)(+)/MA/EA occurred on the CS12A column and DEA/TMA coeluted on both columns. Calibrations of ammonium show a non-linear response across the entire calibration range while all other analytes exhibit high linearity (R(2)=0.984-0.999), except for EA and TEA on the CS12A (R(2)=0.960 and 0.941, respectively). Both methods have high analytical accuracy for the nitrogenous bases ranging from 9.5 to 20% for NH(3) and <5-15% for the amines. Hourly observations of amines at Egbert, ON in October 2010 showed gaseous DMA and TMA+DEA at 1

  13. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. PMID:26375205

  14. Gas chromatographic characterization of vegetable oil deodorization distillate.

    PubMed

    Verleyen, T; Verhe, R; Garcia, L; Dewettinck, K; Huyghebaert, A; De Greyt, W

    2001-07-01

    Because of its complex nature, the analysis of deodorizer distillate is a challenging problem. Deodorizer distillate obtained from the deodorization process of vegetable oils consists of many components including free fatty acids, tocopherols, sterols, squalene and neutral oil. A gas chromatographic method for the analysis of deodorizer distillate without saponification of the sample is described. After a concise sample preparation including derivatization and silylation, distillate samples were injected on column at 60 degrees C followed by a gradual increase of the oven temperature towards 340 degrees C. The temperature profile of the oven was optimized in order to obtain a baseline separation of the different distillate components including free fatty acids, tocopherols, sterols, squalene and neutral oil. Good recoveries for delta-tocopherol, alpha-tocopherol, stigmasterol and cholesteryl palmitate of 97, 94.4, 95.6 and 92%, respectively were obtained. Repeatability of the described gas chromatographic method was evaluated by analyzing five replicates of a soybean distillate. Tocopherols and sterols had low relative standard deviations ranging between 1.67 and 2.25%. Squalene, mono- and diacylglycerides had higher relative standard deviations ranging between 3.33 and 4.12%. Several industrial deodorizer distillates obtained from chemical and physical refining of corn, canola, sunflower and soybean have been analyzed for their composition. PMID:11471811

  15. Gas Chromatographic Determination of Enrivonmentally Significant Pesticides.

    ERIC Educational Resources Information Center

    Rudzinski, Walter E.; Beu, Steve

    1982-01-01

    A chromatographic procedure for analyzing organophosphorus pesticides (such as PCB's, nitrosamines, and phthalate esters) in orange juice is described, including a summary of the method, instrumentation, methodology, results/discussion, and calculations. (JN)

  16. [Chromatographic separation of plasmid DNA by anion-exchange cryogel].

    PubMed

    Guo, Yantao; Shen, Shaochuan; Yun, Junxian; Yao, Kejian

    2012-08-01

    Plasmid DNA (pDNA) is used as an important vector for gene therapy, and its wide application is restricted by the purity and yield. To obtain high-purity pDNA, a chromatographic method based on anion-exchange supermacroporous cryogel was explored. The anion-exchange cryogel was prepared by grafting diethylaminoethyl-dextran to the epoxide groups of polyacrylamide-based matrix and pUC19 plasmid was used as a target to test the method. The plasmid was transferred into Escherichia coli DH5alpha, cultivated, harvested and lysed. The obtained culture was centrifuged and the supernatant was used as the plasmid feedstock, which was loaded into the anion-exchange cryogel bed for chromatographic separation. By optimizing the pH of running buffer and the elution conditions, high-purity pDNA was obtained by elution with 0.5 mol/L sodium chloride solution at pH 6.6. Compared to the traditional methods for purification of pDNA, animal source enzymes and toxic reagents were not involved in the present separation process, ensuring the safety of both the purification operations and the obtained pDNA. PMID:23185899

  17. Mathematical model for multicomponent separations on the continuous annular chromatograph

    SciTech Connect

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  18. Role of substituents in cyclodextrin derivatives for enantioselective gas chromatographic separation of chiral terpenoids in the essential oils of Mentha spicata.

    PubMed

    Pragadheesh, V S; Yadav, Anju; Chanotiya, Chandan Singh

    2015-10-01

    Enantioselective GC-FID and enantioselective GC-MS have been utilized under temperature gradient mode with differently substituted heptakis- and octakis-cyclodextrins to achieve the resolution of chiral terpenoids in the essential oil of indigenously grown cultivars of Mentha spicata. Modified cyclodextrins were derivatized in GC column for the separation of chiral terpenoids. A 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin doped into 14% cyanopropylphenyl/86%dimethylpolysiloxane (TBDE-β-CD) showed good enantioselectivity for all the studied chiral compounds excluding carvone. Carvone enantiomers were well resolved in 2,3-diacetoxy-6-tert-butyldimethylsilyl-β-cyclodextrin column (TBDA-β-CD) with enantioseparation (Es) of 1.006. A TBDE-β-CD provides maximum enantiomeric separation for β-pinene (Es 1.038), sabinene (Es 1.051), limonene (Es 1.045), isomenthone (Es 1.029) and α-terpineol (Es 1.014). Furthermore, enantiomer elution order reversal was observed for sabinene, menthone, terpinen-4-ol and menthol while changing from β- to γ-cyclodextrin phase. Carvone exhibits enantiomer elution order reversal by changing substituents i.e., methyl to acetyl at 2- & 3- position of the cyclodextrin derivative. Chiral constituents such as (+)-isomenthone, (-)-menthone, (1R,2S,5R)-(-)-menthol and (4S)-(+)-piperitone exist as a single enantiomer with >99% excess. Existence of (R)-(+)-limonene and (S)-(+)-carvone enantiomers has been proven first time in M. spicata essential oils and can be used as the marker for Indian origin. PMID:26310896

  19. Optimization of preparative chromatographic separation of multiple rare earth elements.

    PubMed

    Max-Hansen, Mark; Ojala, Frida; Kifle, Dejene; Borg, Niklas; Nilsson, Bernt

    2011-12-23

    This work presents a method to optimize multi-product chromatographic systems with multiple objective functions. The system studied is a neodymium, samarium, europium, gadolinium mixture separated in an ion exchange chromatography step. A homogeneous Langmuir Mobile Phase Modified model is calibrated to fit the experiments, and then used to perform the optimization task. For the optimization a multi-objective Differential Evolution algorithm was used, with weighting based on relative value of the components to find optimal operation points along the Pareto front. The objectives of the Pareto front are weighted productivity and weighted yield with purity as an equality constraint. A prioritizing scheme based on relative values is applied for determining the pooling order. A simple rule of thumb for pooling strategy selection is presented. The multi-objective optimization gives a Pareto front which shows the rule of thumb, as a gap in one of the objective functions. PMID:22079482

  20. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry.

    PubMed

    McIntyre, Cameron P; Sylva, Sean P; Roberts, Mark L

    2009-08-01

    A gas chromatograph-combustion (GC-C) system is described for the introduction of samples as CO(2) gas into a (14)C accelerator mass spectrometry (AMS) system with a microwave-plasma gas ion source. Samples are injected into a gas chromatograph fitted with a megabore capillary column that uses H(2) as the carrier gas. The gas stream from the outlet of the column is mixed with O(2) and Ar gas and passed through a combustion furnace where the H(2) carrier gas and separated components are quantitatively oxidized to CO(2) and H(2)O. Water vapor is removed using a heated nafion dryer. The Ar carries the CO(2) to the ion source. The system is able to separate and oxidize up to 10 microg of compound and transfer the products from 7.6 mL/min of H(2) carrier gas into 0.2-1.0 mL/min of Ar carrier gas. Chromatographic performance and isotopic fidelity satisfy the requirements of the (14)C-AMS system for natural abundance measurements. The system is a significant technical advance for GC-AMS and may be capable of providing an increase in sensitivity for other analytical systems such as an isotope-ratio-monitoring GC/MS. PMID:19572555

  1. Gas-separation process

    DOEpatents

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  2. Gas chromatographic analysis of volatiles in fluid and gas inclusions.

    PubMed

    Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed. PMID:11541990

  3. Gas chromatographic analysis of volatiles in fluid and gas inclusions

    USGS Publications Warehouse

    Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K., Jr.; Oro, J.

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed. ?? 1984.

  4. Hydrodynamic gas mixture separation

    SciTech Connect

    Stolyarov, A.A.

    1982-02-10

    The separation of gas mixtures is the basis of many chemical, petrochemical, and gas processes. Classical separation methods (absorption, adsorption, condensation, and freezing) require cumbersome and complex equipment. No adequate solution is provided by the cheapening and simplification of gas-processing apparatus and separation methods by hydration and diffusion. For example, an apparatus for extracting helium from natural gas by diffusion has a throughput of gas containing 0.45% helium of 117,000 m/sup 3//h and in the first stage has teflon membranes working at a pressure difference of 63.3x10/sup 5/ Pa of area 79,000 m/sup 2/, and the specific cost of the apparatus was 8500 dollars per m/sup 3//h of helium. Therefore, vigorous studies are being conducted on new ways of efficient separation of gas mixtures that are cheaper and simpler. Here we consider a novel method of physically essentially reversible separation of gas mixtures, which involves some features of single-phase supersonic flows.

  5. GAS CHROMATOGRAPHIC MICROMETHOD FOR TRACE DETERMINATIONS OF PHENOLS

    EPA Science Inventory

    A gas chromatographic procedure is described for the analysis of a variety of substituted phenols from water samples. The method was designed for situations when the sample size is very limited (0.5 to 1.0 ml), such as in laboratory microcosm experiments on transport and fate of ...

  6. [A gas chromatographic method for determining acetaldehyde in cadaver blood].

    PubMed

    Savich, V I; Valladares, Kh A; Gusakov, Iu A; Skachko, Z M

    1990-01-01

    Gas-chromatographic method of acetaldehyde detection in blood of subjects who died of alcoholic intoxication is suggested. Method is simple, does not require additional expenses, can be readily used in medicolegal practice and in difficult cases it may help the expert to make an objective conclusion on the cause of death. PMID:2087747

  7. Gas chromatographic column for the Viking 1975 molecular analysis experiment

    NASA Technical Reports Server (NTRS)

    Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.

    1975-01-01

    A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.

  8. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  9. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    payload based Micromissions, it is essential to implement an even broader chemical analysis and to enable a significant extension of previous isotope measurements. Such a development would enhance the presently very active study of questions of atmospheric evolution and loss and past climatic conditions. The method selected to implement this program can be based on well-established mass spectrometry techniques. Sampled gas is chemically and physically processed to separate the gas mixture into components using gas chromatograph and related enrichment techniques. This allows trace species to be identified and reveals isotopic distributions in many cases with improved precision. Samples of interest, such as organic molecules, may lie deep below the highly oxidized surface layer and the suggested program includes enhanced sampling techniques to measure volatiles preserved in solid phase material deep below the surface as well as gas from the well mixed atmosphere.

  10. Gas-separation process

    DOEpatents

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  11. Polymide gas separation membranes

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  12. The Gas Chromatograph Mass Spectrometer for the Huygens Probe

    NASA Astrophysics Data System (ADS)

    Niemann, H. B.; Atreya, S. K.; Bauer, S. J.; Biemann, K.; Block, B.; Carignan, G. R.; Donahue, T. M.; Frost, R. L.; Gautier, D.; Haberman, J. A.; Harpold, D.; Hunten, D. M.; Israel, G.; Lunine, J. I.; Mauersberger, K.; Owen, T. C.; Raulin, F.; Richards, J. E.; Way, S. H.

    2002-07-01

    The Gas Chromatograph Mass Spectrometer (GCMS) on the Huygens Probe will measure the chemical composition of Titan's atmosphere from 170 km altitude (˜1 hPa) to the surface (˜1500 hPa) and determine the isotope ratios of the major gaseous constituents. The GCMS will also analyze gas samples from the Aerosol Collector Pyrolyser (ACP) and may be able to investigate the composition (including isotope ratios) of several candidate surface materials. The GCMS is a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employs five ion sources sequentially feeding the mass analyzer. Three ion sources serve as detectors for the GC columns and two are dedicated to direct atmosphere sampling and ACP gas sampling respectively. The instrument is also equipped with a chemical scrubber cell for noble gas analysis and a sample enrichment cell for selective measurement of high boiling point carbon containing constituents. The mass range is 2 to 141 Dalton and the nominal detection threshold is at a mixing ratio of 10- 8. The data rate available from the Probe system is 885 bit/s. The weight of the instrument is 17.3 kg and the energy required for warm up and 150 minutes of operation is 110 Watt-hours.

  13. The Gas Chromatograph Mass Spectrometer for the Huygens Probe

    NASA Astrophysics Data System (ADS)

    Niemann, H. B.; Atreya, S. K.; Bauer, S. J.; Biemann, K.; Block, B.; Carignan, G. R.; Donahue, T. M.; Frost, R. L.; Gautier, D.; Haberman, J. A.; Harpold, D.; Hunten, D. M.; Israel, G.; Lunine, J. I.; Mauersberger, K.; Owen, T. C.; Raulin, F.; Richards, J. E.; Way, S. H.

    2002-07-01

    The Gas Chromatograph Mass Spectrometer (GCMS) on the Huygens Probe will measure the chemical composition of Titan's atmosphere from 170 km altitude (~1 hPa) to the surface (~1500 hPa) and determine the isotope ratios of the major gaseous constituents. The GCMS will also analyze gas samples from the Aerosol Collector Pyrolyser (ACP) and may be able to investigate the composition (including isotope ratios) of several candidate surface materials. The GCMS is a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employs five ion sources sequentially feeding the mass analyzer. Three ion sources serve as detectors for the GC columns and two are dedicated to direct atmosphere sampling and ACP gas sampling respectively. The instrument is also equipped with a chemical scrubber cell for noble gas analysis and a sample enrichment cell for selective measurement of high boiling point carbon containing constituents. The mass range is 2 to 141 Dalton and the nominal detection threshold is at a mixing ratio of 10- 8. The data rate available from the Probe system is 885 bit/s. The weight of the instrument is 17.3 kg and the energy required for warm up and 150 minutes of operation is 110 Watt-hours.

  14. Computerized gas chromatographic-mass spectrometric analysis of polycyclic aromatic hydrocarbons in environmental samples.

    PubMed

    Lao, R C; Thomas, R S; Monkman, J L

    1975-10-29

    Substantial progress has been made in the last few years in the development of a rapid method for determining polycyclic aromatic hydrocarbons (PAH) in environmental samples. The three-step method consists of (i) a preliminary separation of PAH by solvent and/or column chromatography, (ii) identification by a combination of gas chromatography with quadrupole mass spectrometry and computer, and (iii) measurement by computerized gas chromatography using internal standards. Samples of industrial effluents, coke oven emissions, coal tar and airborne particulates have been investigated. The efficiencies of different gas chromatographic columns were evaluated during these investigations. PMID:1184696

  15. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  16. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  17. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  18. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  19. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  20. Liquid/Gas Vortex Separator

    NASA Technical Reports Server (NTRS)

    Morris, B. G.

    1986-01-01

    Liquid/gas separator vents gas from tank of liquid that contains gas randomly distributed in bubbles. Centrifugal force separates liquid and gas, forcing liquid out of vortex tube through venturi tube. Gas vented through exhaust port. When liquid detected in vent tube, exhaust port closed, and liquid/gas mixture in vent tube drawn back into tank through venturi.

  1. Chromatographic separation and concentration of quercetin and (+)-catechin using mesoporous composites based on MCM-41

    NASA Astrophysics Data System (ADS)

    Karpov, S. I.; Belanova, N. A.; Korabel'nikova, E. O.; Nedosekina, I. V.; Roessner, F.; Selemenev, V. F.

    2015-05-01

    Data on chromatographic separation of quercetin and (+)-catechin-flavonoids with similar physicochemical (including sorption) properties—are presented. The highest efficiency of chromatographic process at high sorption capacity of the material with respect to quercetin and slightly lower capacity for (+)-catechin were observed when silylated composites of ordered MCM-41 type materials were used. The application of acetonitrile as a solvent increased the sorption capacity of the material and can be recommended for separation of related polyphenol substances and their determination using ordered MCM-41 modified with trimethylchlorosilane as a stationary phase in a chromatographic column.

  2. Gas chromatographic concepts for the analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Cullers, D. K.; Hall, K. W.; Krekorian, R. L.; Phillips, J. B.

    1991-01-01

    Over the last few years, new gas chromatographic (GC) concepts were developed for use on board spacecraft or any other restricted environments for determining the chemical composition of the atmosphere and surface material of various planetary bodies. Future NASA Missions include an entry probe that will be sent to Titan and various spacecraft that will land on Mars. In order to be able to properly respond to the mission science requirements and physical restrictions imposed on the instruments by these missions, GC analytical techniques are being developed. Some of these techniques include hardware and mathematical techniques that will improve GC sensitivity and increase the sampling rate of a GC descending through a planetary atmosphere. The technique of Multiplex Gas Chromatography (MGC) is an example of a technique that was studied in a simulated Titan atmosphere. In such an environment, the atmospheric pressure at instrument deployment is estimated to be a few torr. Thus, at such pressures, the small amount of sample that is acquired might not be enough to satisfy the detection requirements of the gas chromatograph. In MGC, many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data is then reduced using mathematical techniques such as cross-correlation of Fourier Transforms. Advantages realized from this technique include: improvement in detection limits of several orders of magnitude and increase in the number of analyses that can be conducted in a given period of time. Results proving the application of MGC at very low pressures emulating the same atmospheric pressures that a Titan Probe will encounter when the instruments are deployed are presented. The sample used contained hydrocarbons that are expected to be found in Titan's atmosphere. In addition, a new selective modulator was developed to monitor water under Martian atmospheric conditions. Since this modulator is selective only

  3. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  4. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P; Fulton, Donald A.

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  5. Gas-chromatographic characterization of physicochemical properties of astatine compounds

    SciTech Connect

    Norseev, Yu.V.

    1995-07-01

    The organoastatine compounds obtained were identified by gas-liquid chromatography on a specially designed gas radiochromatograph with detection of eluted compounds both by their radioactivity and by thermal conductivity. Gas-liquid chromatography is the most efficient method for separation and identification of volatile organoastatine compounds.

  6. Improved Chromatographic Separation of Sitagliptin Phosphate and Metformin Hydrochloride

    PubMed Central

    Hendy, Moataz S.

    2015-01-01

    New UPLC method was developed for determination of sitagliptin and metformin using Symmetry C18 column (100 mm × 2.1 mm, 2.2 μm) and isocratic elution (methanol 20%), pH (3.5) as a mobile phase. The ultraviolet detector was operated at 220 nm and the column temperature was 50°C. Linearity parameters were acceptable over the concentration ranges of 2-12 μgml-1 and 5-35 μgml-1 for sitagliptin and metformin, respectively. The variables were premeditated to adjust the chromatographic conditions using design of experiment. The proposed method was proved to be accurate for the quality control of the mentioned drugs in their pharmaceutical dosage form. PMID:26759536

  7. Improved Chromatographic Separation of Sitagliptin Phosphate and Metformin Hydrochloride.

    PubMed

    Hendy, Moataz S

    2015-12-01

    New UPLC method was developed for determination of sitagliptin and metformin using Symmetry C18 column (100 mm × 2.1 mm, 2.2 μm) and isocratic elution (methanol 20%), pH (3.5) as a mobile phase. The ultraviolet detector was operated at 220 nm and the column temperature was 50°C. Linearity parameters were acceptable over the concentration ranges of 2-12 μgml(-1) and 5-35 μgml(-1) for sitagliptin and metformin, respectively. The variables were premeditated to adjust the chromatographic conditions using design of experiment. The proposed method was proved to be accurate for the quality control of the mentioned drugs in their pharmaceutical dosage form. PMID:26759536

  8. A bubble-based microfluidic gas sensor for gas chromatographs.

    PubMed

    Bulbul, Ashrafuzzaman; Kim, Hanseup

    2015-01-01

    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month. PMID:25350655

  9. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  10. Gas and liquid chromatographic analyses of nimodipine calcium antagonist in blood plasma and cerebrospinal fluid.

    PubMed

    Krol, G J; Noe, A J; Yeh, S C; Raemsch, K D

    1984-01-13

    Gas (GC) and liquid chromatographic (LC) assay procedures were developed for analysis of nimodipine (1,4-dihydropyridine calcium antagonist, BAY e 9736) in blood plasma at low nanogram concentration levels. To avoid decomposition during gas chromatography, nimodipine was oxidized to nimodipine pyridine (P) analogue before it was chromatographed on the OV-17 column and quantitated using an electron-capture detector. In contrast, the LC procedure involved chromatographic separation and quantitation of the underivatized nimodipine and of the endogenous P analogue using a 3-micron Spherisorb ODS column and UV detection. The same plasma extract and three alternative internal standards were used for both assays. Taking into consideration the fact that the GC assay result includes endogenous P analogue as well as nimodipine, good correlation between GC and LC assay data was obtained. Comparison of the results observed with the two procedures confirmed the accuracy of each procedure and provided an alternative when one of the assay results was subject to patient plasma constituent interference. The LC assay was also used for analysis of the demethylated metabolites of nimodipine. To detect sub-nanogram concentrations of nimodipine in cerebrospinal fluid a combined LC-GC procedure using an LC clean-up step and a GC quantitation step was also developed. The above GC and LC procedures were used to obtain preliminary pharmacokinetic data. PMID:6707134

  11. Optical chromatographic sample separation of hydrodynamically focused mixtures

    PubMed Central

    Terray, A.; Hebert, C. G.; Hart, S. J.

    2014-01-01

    Optical chromatography relies on the balance between the opposing optical and fluid drag forces acting on a particle. A typical configuration involves a loosely focused laser directly counter to the flow of particle-laden fluid passing through a microfluidic device. This equilibrium depends on the intrinsic properties of the particle, including size, shape, and refractive index. As such, uniquely fine separations are possible using this technique. Here, we demonstrate how matching the diameter of a microfluidic flow channel to that of the focusing laser in concert with a unique microfluidic platform can be used as a method to fractionate closely related particles in a mixed sample. This microfluidic network allows for a monodisperse sample of both polystyrene and poly(methyl methacrylate) spheres to be injected, hydrodynamically focused, and completely separated. To test the limit of separation, a mixed polystyrene sample containing two particles varying in diameter by less than 0.5 μm was run in the system. The analysis of the resulting separation sets the framework for continued work to perform ultra-fine separations. PMID:25553179

  12. The gas chromatographic resolution of DL-isovaline

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Bonner, W. A.; Van Dort, M. A.

    1977-01-01

    Isovaline is of cosmological interest because it is one of the 12 non-protein amino acids which have been isolated from the Murchison meteorite, and unlike the other chiral amino acids in this meteorite, it has no alpha-hydrogen at its asymmetric center and hence cannot racemize by the customary alpha-hydrogen-dependent mechanisms which engender racemization in ordinary amino acids. Experiments were conducted in which a .01 M solution of N-TFA-DL-isovalyl-L-leucine isopropyl ester in nitromethane was injected into the capillary column of a gas chromatograph coupled to a digital electronic integrator-recorder. Efflux times and integrated peak area percents are shown next to each diastereometer peak.

  13. Prediction of gas chromatographic retention data for hydrocarbons from naphthas

    SciTech Connect

    Woloszyn, T.F.; Jurs, P.C. )

    1993-03-01

    Regression equations that model the gas chromatographic retention behavior of hydrocarbons found in complex petrochemical mixtures were developed for two different stationary phases, SE-30 and Carbowax 20M. The models had relative standard errors in the range 1--2%. This quantitative structure-retention relationship (QSRR) study focused on a relatively heterogeneous data set and resulted in the generation of several statistical models that related Kovats' retention index with descriptors that encode molecular structure. Also investigated was the addition of boiling point as a physicochemical descriptor. These models bore a significant improvement over the models containing only structural descriptors, with R values of 0.996. 27 refs., 4 figs., 8 tabs.

  14. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  15. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.

    PubMed

    Valentin, J R

    1989-03-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  16. Chromatographic purification and size separation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S.

    1998-08-01

    The efficient purification of single-wall and multi-wall carbon nanotubes (NTs) by columnar size exclusion chromatography (SEC) is reported. In this process, carbon nanospheres (polyhedra), amorphous carbon and metal particles are removed from aqueous surfactant-stabilised dispersions of NT raw material. TEM and AFM investigations revealed that more than 40-50% of the purified material consists of individual tubes. In addition, length separation of the tubes is achieved.

  17. Chromatographic size separation of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S.

    The efficient purification of single-wall carbon nanotubes (SWNTs) is reported. Carbon nanospheres, metal particles, and amorphous carbon could be successfully removed by size exclusion chromatography (SEC) applied to surfactant stabilised dispersions of SWNT raw material. In addition, length separation of the tubes was achieved. The SWNTs obtained can be adsorbed in high densities onto chemically modified substrates. As determined by AFM investigations, the purified material consists of about equal fractions of both individual SWNTS and ropes of SWNTs.

  18. Thin-Layer Chromatographic Separation of Phenols: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Kurth, Mark J.

    1986-01-01

    Background information, procedures used, and equipment needed are provided for an experiment in which a series of readily available, inexpensive, and relatively nontoxic phenols are separated using thin-layer chromatographic techniques. The experiment permits a discussion of how relative Rf values may be rationalized by considering a molecule's…

  19. A gas chromatographic air analyzer fabricated on a silicon wafer

    NASA Technical Reports Server (NTRS)

    Terry, S. C.; Jerman, J. H.; Angell, J. B.

    1979-01-01

    A miniature gas analysis system has been built based on the principles of gas chromatography (GC). The major components are fabricated in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments. The chromatography system consists of a sample injection valve and a 1.5-m-long separating capillary column, which are fabricated on a substrate silicon wafer. The output thermal conductivity detector is separately batch fabricated and integrably mounted on the substrate wafer. The theory of gas chromatography has been used to optimize the performance of the sensor so that separations of gaseous hydrocarbon mixtures are performed in less than 10 s. The system is expected to find application in the areas of portable ambient air quality monitors, implanted biological experiments, and planetary probes.

  20. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods

    PubMed Central

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2014-01-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2.2.1) heptan-2-one, 1, 7, 7-trimethyl-(1S, 4S)-; (3) Phenol, 2-methoxy-4-(1-propenyl)-; (4) Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl-; (5) Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro4, 7-dimethyl-1-1-(1-methylethyl)-, (1S-cis)-; (6) Phenol, 2-methoxy-; (7) Benzaldehyde, 3-hydroxy-4-methoxy-; (8) 11, 13-Eicosadienoic acid, methyl ester; (9) 2-Furancarboxaldehyde, 5-methyl-; (10) Maltol; (11) Phenol; (12) Hydroquinone; (13) 1H-Indene, 1-ethylideneoctahydro-7a-methyl-, (1E, 3a.alpha, 7a.beta.). Other compounds (14) 3-methyl butanal; (15) (D)-Limonene; (16) 1-methyl-4-(1-methyl ethyl) benzene; (17) Butanoic acid methyl ester; (18) 2-methyl propanal; (19) 2-butanone; (20) 2-pentanone; and (21) 2-methyl butane were also identified when P&T GC-MS was performed. Of the 21 compounds identified, 12 were validated using chemical standards. The identified compounds were found to be terpenes, derivatives of terpenes, esters, ketones, aldehydes, and phenol-derived aromatic compounds; these are the primary constituents of the essential oils of many plants and flowers. PMID:24804069

  1. The Huygens Gas Chromatograph Mass Spectrometer Investigation Of Titan

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil; Harpold, Dan; Owen, Tobias

    2015-04-01

    A decade ago, on 14 January 2005, the Huygens probe of the Cassini-Huygens mission descended through the smog filled atmosphere of Titan and landed on the surface, revealing for the first time the extraordinary nature of Saturn's largest moon. One of the six payload instruments, the gas chromatograph mass spectrometer (GCMS), was crucial for measuring the composition of the atmosphere and the surface of Titan [1,2]. Most of the GCMS findings were "firsts", including the first direct identification of molecular nitrogen as the bulk constituent of the atmosphere, first vertical profile of Titan's second most abundant volatile, methane, first determination of primordial and radiogenic argon, first quantification of a number of stable gas isotopes, and the first measurements of the make-up of Titan's surface. These data are key to understanding why Titan is so unique amongst planetary moons in possessing a massive atmosphere [3], how Titan maintains a cycle of methane complete with surface reservoirs, evaporation and condensation like the hydrological cycle on earth [3,4,5], and what is responsible for the photochemical smog on Titan that plays a central role in the very existence of an atmosphere on Titan [3]. This presentation will discuss the GCMS investigation and how it helped shape our current view of Titan. [website for downloading pdf's of relevant papers: www.umich.edu/~atreya] [1] Niemann, H. B. et al., The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe, Nature 438, 779-784, 2005. [2] Niemann, H. B. et al., The composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment, J. Geophys. Res. (Planets) 115, 12006, 2010. [3] Atreya S. K., R. D. Lorenz and J. H. Waite, Volatile origin and cycles: Nitrogen and methane, in Titan from Cassini-Huygens, R. H. Brown, J. P. Lebreton and J. Waite, (eds.), Springer Dordrecht

  2. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column.

    PubMed

    Arai, Kaori; Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-04-01

    A combination of hydrophilic interaction chromatographic (HILIC) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography (IC). Firstly, the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions. The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10). When using tartaric acid as the eluent, the HILIC columns indicated strong retentions for anions, based on ion-pair interaction. Especially, HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I(-) > NO3(-) > Br(-) > Cl(-) > H2PO4(-). However, since HILIC-10 could not separate analyte cations, a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series. The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+, NH4+, K+, Mg2+, Ca2+, H2PO4(-), Cl(-), Br(-), NO3(-) and I(-)) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6. The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections. The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 micromol/L for the cations and 0.31 - 1.2 micromol/L for the anions. This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results. PMID:22799200

  3. ToF-SIMS characterisation of diterpenoic acids after chromatographic separation

    NASA Astrophysics Data System (ADS)

    Oriňák, Andrej; Oriňáková, Renáta; Arlinghaus, Heinrich F.; Vering, Guido; Hellweg, Sebastian; Cechinel-Filho, Valdir

    2006-07-01

    Microcolumn liquid chromatography (μHPLC) coupled on-line with time of flight secondary ion mass spectrometry (ToF-SIMS) was applied for mixture of diterpenoic acids (abietic, gibberellic and kaurenoic) analysis. Chromatographic effluent, with analytes separated, was carried out directly onto different, ToF-SIMS compatible surface substrates, for further ToF-SIMS analysis. Silica gel Si 60, aluminium backplate modified Si 60, monolithic silica gel and Raman spectroscopy chromatographic thin layers were used as the deposition substrates in this experiment. By ToF-SIMS surface imaging the deposition trace picture has been obtained. Effluent deposition surface area was scanned for diterpenoic acid fragment mass values based on mass spectrometric library. Measured ToF-SIMS dataset of fragment abundance and intensities were used for preliminary fragmentation schemes construction. The lowest substrate background activity has been established for monolithic silica gel thin layer and aluminium backplate modified Si 60 thin layer. In the case of Raman spectroscopy pre-treated thin layer or conventional chromatographic thin layer Si 60, the both, high background signal intensity and impossibility to construct negative ions surface image, were observed. Diterpenoic acids studied serve the similar mass spectrum but ToF-SIMS coupled with liquid chromatographic separation brings new impact to the positive identification of analytes studied.

  4. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M.

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  5. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  6. Optimization of an improved single-column chromatographic process for the separation of enantiomers.

    PubMed

    Kazi, Monzure-Khoda; Medi, Bijan; Amanullah, Mohammad

    2012-03-30

    This work addresses optimization of an improved single-column chromatographic (ISCC) process for the separation of guaifenesin enantiomers. Conventional feed injection and fraction collection systems have been replaced with customized components facilitating simultaneous separation and online monitoring with the ultimate objective of application of an optimizing controller. Injection volume, cycle time, desorbent flow rate, feed concentration, and three cut intervals are considered as decision variables. A multi-objective optimization technique based on genetic algorithm (GA) is adopted to achieve maximum productivity and minimum desorbent requirement in the region constrained by product specifications and hardware limitations. The optimization results along with the contribution of decision variables are discussed using Pareto fronts that identify non-dominated solutions. Optimization results of a similar simulated moving bed process have also been included to facilitate comparison with a continuous chromatographic process. PMID:22364669

  7. Chromatographic separation of germanium and arsenic for the production of high purity (77)As.

    PubMed

    Gott, Matthew D; DeGraffenreid, Anthony J; Feng, Yutian; Phipps, Michael D; Wycoff, Donald E; Embree, Mary F; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S

    2016-04-01

    A simple column chromatographic method was developed to isolate (77)As (94±6% (EtOH/HCl); 74±11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched (76)Ge (98±2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a (77)As-trithiol was observed from methanol separated [(77)As]arsenate [17]. PMID:26947162

  8. Programmed automation of modulator cold jet flow for comprehensive two-dimensional gas chromatographic analysis of vacuum gas oils.

    PubMed

    Rathbun, Wayne

    2007-01-01

    A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types. PMID:18078570

  9. Ion-exchange chromatographic separation of anions on hydrated bismuth oxide impregnated papers

    SciTech Connect

    Dabral, S.K.; Muktawat, K.P.S.; Rawat, J.P.

    1988-04-01

    A comparative study of the chromatographic behavior of anions, iodide, sulfide, phosphate, arsenate, arsenite, vanadate, chromate, dichromate, thiosulfate, thiocyanate, ferricyanide and ferrocyanide on papers impregnated with hydrated bismuth oxide and untreated Whatman no.1 paper has been made by employing identical aqueous, non-aqueous and mixed solvent system. Sharp and compact spots were obtained with impregnated papers whereas the opposite applied to plain papers. Various analytically important binary and ternary separations are reported.

  10. Miniaturized gas chromatograph-Paul ion trap system: applications to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2004-01-01

    A miniature gas chromatograph (GC) and miniature Paul ion trap (PT) mass spectrometer system has been developed for identifying and quantifying chemical species present in closed environments having a complex mixture of gases.

  11. Absolutely Exponential Stability and Temperature Control for Gas Chromatograph System Under Dwell Time Switching Techniques.

    PubMed

    Sun, Xi-Ming; Wang, Xue-Fang; Tan, Ying; Wang, Xiao-Liang; Wang, Wei

    2016-06-01

    This paper provides a design strategy for temperature control of the gas chromatograph. Usually gas chromatograph is modeled by a simple first order system with a time-delay, and a proportion integration (PI) controller is widely used to regulate the output of the gas chromatograph to the desired temperature. As the characteristics of the gas chromatograph varies at the different temperature range, the single-model based PI controller cannot work well when output temperature varies from one range to another. Moreover, the presence of various disturbance will further deteriorate the performance. In order to improve the accuracy of the temperature control, multiple models are used at the different temperature ranges. With a PI controller designed for each model accordingly, a delay-dependent switching control scheme using the dwell time technique is proposed to ensure the absolute exponential stability of the closed loop. Experiment results demonstrate the effectiveness of the proposed switching technique. PMID:26316283

  12. Gas Separations using Ceramic Membranes

    SciTech Connect

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  13. Application of Sigmoidal Transformation Functions in Optimization of Micellar Liquid Chromatographic Separation of Six Quinolone Antibiotics.

    PubMed

    Hadjmohammadi, Mohammadreza; Salary, Mina

    2016-03-01

    A chemometrics approach has been used to optimize the separation of six quinolone compounds by micellar liquid chromatography (MLC). A Derringer's desirability function, a multicriteria decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of three experimental parameters on a chromatographic response function (CRF) expressed as a product of two sigmoidal desirability functions was investigated. The sigmoidal functions were used to transform the optimization criteria, resolution and analysis time into the desirability values. The factors studied were the concentration of sodium dodecyl sulfate, butanol content and pH of the mobile phase. The experiments were done according to the face-centered cube central composite design, and the calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The developed regression model showed good descriptive and predictive ability (R(2) = 0.815, F = 6.919, SE = 0.038, [Formula: see text]) and used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. The efficiency of prediction of polynomial model was confirmed by performing the experiment under the optimal conditions. PMID:26590234

  14. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  15. Gas separations using inorganic membranes

    SciTech Connect

    Egan, B.Z.; Singh, S.P.N.; Fain, D.E.; Roettger, G.E.; White, D.E.

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  16. Extraction chromatographic separation of Am(III) and Eu(III) by TPEN-immobilized gel

    SciTech Connect

    Takeshita, K.; Ogata, T.; Oaki, H.; Inaba, Y.; Mori, A.; Yaita, T.; Koyama, S.I.

    2013-07-01

    A TPEN derivative with 4 vinyl groups, N,N,N',N' -tetrakis-(4-propenyloxy-2-pyridylmethyl)ethylenediamine (TPPEN) was synthesized for the separation of trivalent minor actinides (Am(III)) and lanthanides (Eu(III)). A co-polymer gel with TPPEN and N-isopropylacrylamide (NIPA) showed a high separation factor of Am(III) over Eu(III) (SF[Am/Eu]), which was evaluated to be 26 at pH=5. Thin film of NIPA-TPPEN gel (average thickness: 2-40 nm) was immobilized on the pore surface in porous silica particles (particle diameter : 50 μm, average pore diameter : 50 and 300 nm) and a chromatographic column (diameter: 6 mm, height: 11 mm) packed with the gel-coated particles was prepared. A small amount of weakly acidic solution (pH=4) containing Am(III) and Eu(III) was supplied in the column and the elution tests of Am(III) and Eu(III) were carried out. Eu(III) was recovered separately by a weakly acidic eluent (pH=4) at 313 K and Am(III) by a highly acidic eluent (pH=2) at 298 K. These results suggest that the contentious separation of minor actinides and lanthanides is attainable by a new extraction chromatographic process with two columns adjusted to 298 K and 313 K. (authors)

  17. Microfabricated silicon gas chromatographic microchannels: fabrication and performance

    NASA Astrophysics Data System (ADS)

    Matzke, Carolyn M.; Kottenstette, Richard J.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Hudson, Mary L.; Sasaki, Darryl Y.; Manginell, Ronald P.; Wong, C. Channy

    1998-08-01

    Using both wet and plasma etching, we have fabricated micro- channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 micrometer wide, 200 to 400 micrometer deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm2 on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro-channel sidewalls, which dominate the GC physico- chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.

  18. Microfabricated silicon gas chromatographic micro-channels: fabrication and performance

    SciTech Connect

    Matzke, C.M.; Kottenstette, R.J.; Casalnuovo, S.A.; Frye-Mason, G.C.; Hudson, M.L.; Sasaki, D.Y.; Manginell, R.P.; Wong, C.C.

    1998-11-01

    Using both wet and plasma etching, we have fabricated micro-channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 {micro}m wide, 200 to 400 {micro}m deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm{sup 2} on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro- channel sidewalls, which domminate the GC physico-chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.

  19. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    PubMed

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  20. A trade off between separation, detection and sustainability in liquid chromatographic fingerprinting.

    PubMed

    Funari, Cristiano S; Carneiro, Renato L; Cavalheiro, Alberto J; Hilder, Emily F

    2014-08-01

    It is now recognized that analytical chemistry must also be a target for green principles, in particular chromatographic methods which typically use relatively large volumes of hazardous organic solvents. More generally, high performance liquid chromatography (HPLC) is employed routinely for quality control of complex mixtures in various industries. Acetonitrile and methanol are the most commonly used organic solvents in HPLC, but they generate an impact on the environment and can have a negative effect on the health of analysts. Ethanol offers an exciting alternative as a less toxic, biodegradable solvent for HPLC. In this work we demonstrate that replacement of acetonitrile with ethanol as the organic modifier for HPLC can be achieved without significantly compromising analytical performance. This general approach is demonstrated through the specific example analysis of a complex plant extract. A benchmark method employing acetonitrile for the analysis of Bidens pilosa extract was statistically optimized using the Green Chromatographic Fingerprinting Response (GCFR) which includes factors relating to separation performance and environmental parameters. Methods employing ethanol at 30 and 80°C were developed and compared with the reference method regarding their performance of separation (GCFR) as well as by a new metric, Comprehensive Metric to Compare Liquid Chromatography Methods (CM). The fingerprint with ethanol at 80°C was similar to or better than that with MeCN according to GCFR and CM. This demonstrates that temperature may be used to replace harmful solvents with greener ones in HPLC, including for solvents with significantly different physiochemical properties and without loss in separation performance. This work offers a general approach for the chromatographic analysis of complex samples without compromising green analytical chemistry principles. PMID:24952659

  1. High-resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures.

    PubMed Central

    Lee, M L; Smith, D L; Freeman, L R

    1979-01-01

    Three different strains of bacteria isolated from spoiled, uncooked chicken were grown in pure culture on Trypticase soy agar supplemented with yeast extract. The volatile organic compounds produced by each culture were concentrated on a porous polymer precolumn and analyzed by high-resolution gas chromatographic mass spectrometry. Twenty different compounds were identified. Both qualitative and quantitative differences in the chromatographic profiles from each culture were found. PMID:104660

  2. LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF TRANS-CHLORDANE, CIS-CHLORDANE, HEPTACHLOR, HEPTACHLOR EPOXIDE AND ALPHA-HEXACHLOROCYCLOHEXANE WITH APPLICATION TO SMALL-SCALE PREPARATIVE SEPARATION

    EPA Science Inventory

    Analytical high-performance liquid chromatographic separations of the individual enantiomers of five polychlorinated compounds were obtained on polysaccharide stereoselective HPLC columns. The enantiomers of the pesticides trans-chlordane, cis-chlordane and heptachlor were separa...

  3. [Development of online conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma].

    PubMed

    Huang, Zhi; Hong, Guangfeng; Gao, Mingxia; Zhang, Xiangmin

    2014-04-01

    Human plasma is one of the proteins-containing samples most difficult to characterize on account of the wide dynamic concentration range of its intact proteins. Herein, we developed a high-throughput conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma in online mode. In the system, a conventional strong-anion exchange chromatographic column was used as the first separation dimension and eight parallel conventional reversed-phase liquid chromatographic columns were integrated as the second separation dimension. The fractions from the first dimension were sequentially transferred into the corresponding reversed-phase liquid chromatographic precolumns for retention and enrichment using a 10-port electrically actuated multi-position valve. The second dimensional solvent flow was directly and identically split into 8 channels. The fractions were concurrently back-flushed from the precolumns into the 8 conventional RP columns and were separated simultaneously. An 8-channel fraction collector was refitted to collect the reversed-phase liquid chromatographic fractions for further investigation. Bicinchoninic acid (BCA) dyein solution was conveniently used for high-abundance protein location. Two separation dimensions were relatively independent parts, as well as each channel of the second dimensional array separation. Therefore, the new system could improve the separation throughput and total peak capacity. The system was successfully applied for the separation of human plasma intact proteins. The results indicated the established system is an effective method for removing high abundance proteins in plasma and in-depth research in plasma proteomics. PMID:25069321

  4. Chromatographic separation of phenylpropanol enantiomers on a quinidine carbamate-type chiral stationary phase

    SciTech Connect

    Asnin, Leonid; Guiochon, Georges A

    2005-07-01

    The retention and the separation of the enantiomers of 1-phenylpropanol (1PP), 2-phenylpropanol (2PP), and 3-chloro-1-phenylpropanol (3CPP) on silica-bonded quinidine carbamate under normal phase HPLC conditions were investigated. A relatively high selectivity of the stationary phase for 3CPP and 1PP ({alpha} {approx} 1.07-1.09) was achieved with eluents containing ethyl acetate as the polar modifier. These mobile phases were examined in detail. Based on the set of chromatographic and thermodynamic data collected, conclusions regarding the mechanism of enantioselectivity and the structure of the selector chiral center are made.

  5. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation.

    PubMed

    Wu, Ci; Liang, Yu; Yang, Kaiguang; Min, Yi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-02-01

    A novel clickable periodic mesoporous organosilica monolith with the surface area up to 1707 m(2) g(-1) was in situ synthesized in the capillary by the one-step condensation of the organobridged-bonded alkoxysilane precursor bis(triethoxysilyl)ethylene. With Si-C bonds in the skeleton, the monolith possesses excellent chemical and mechanical stability. With vinyl groups highly loaded and homogeneously distributed throughout the structure, the monolith can be readily functionalized with functional groups by effective thiol-ene "click" chemistry reaction. Herein, with "click" modification of C18, the obtained monolith was successfully applied for capillary liquid chromatographic separation of small molecules and proteins. The column efficiency could reach 148,000 N/m, higher than most reported hybrid monoliths. Moreover, intact proteins could be separated well with good reproducibility, even after the monolithic column was exposed by basic mobile phase (pH 10.0) overnight, demonstrating the great promising of such monolith for capillary chromatographic separation. PMID:26751092

  6. Phosphazene membranes for gas separations

    DOEpatents

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  7. Efficient method development strategy for challenging separation of pharmaceutical molecules using advanced chromatographic technologies.

    PubMed

    Xiao, Kang Ping; Xiong, Yuan; Liu, Fang Zhu; Rustum, Abu M

    2007-09-01

    In this paper, we describe a strategy that can be used to efficiently develop a high-performance liquid chromatography (HPLC) separation of challenging pharmaceutical molecules. This strategy involves use of advanced chromatographic technologies, such as a computer-assisted chromatographic method development tool (ChromSword) and an automated column switching system (LC Spiderling). This process significantly enhances the probability of achieving adequate separations and can be a large time saver for bench analytical scientists. In our study, the ChromSword was used for mobile phase screening and separation optimization, and the LC Spiderling was used to identify the most appropriate HPLC columns. For proof of concept, the analytes employed in this study are the structural epimers betamethylepoxide and alphamethylepoxide (also known as 16-beta methyl epoxide and 16-alpha methyl epoxide). Both of these compounds are used in the synthesis of various active pharmaceutical ingredients that are part of the steroid pharmaceutical products. While these molecules are relatively large in size and contain various polar functional groups and non-polar cyclic carbon chains, their structures differ only in the orientation of one methyl group. To our knowledge, there is no reported HPLC separation of these two molecules. A simple gradient method was quickly developed on a 5 cm YMC Hydrosphere C(18) column that separated betamethylepoxide and alphamethylepoxide in 10 min with a resolution factor of 3.0. This high resolution provided a true baseline separation even when the concentration ratio between these two epimers was 10,000:1. Although outside of the scope of this paper, stability-indicating assay and impurity profile methods for betamethylepoxide and for alphamethylepoxide have also been developed by our group based on a similar method development strategy. PMID:17628579

  8. Gas chromatograph-based system for measuring the methane fraction of diesel-engine hydrocarbon emissions

    SciTech Connect

    Hoffman, J.S.; Geyer, S.M.; Lestz, S.S.; Black, F.M.

    1987-03-01

    An instrument has been developed (termed the methane analytical system) enabling diesel methane emissions to be quatified separately from total unburned hydrocarbon emissions. The instrument employed gas-chromatographic principles whereby a molecular-sieve column operating isothermally separated methane from the nonmethane hydrocarbons. Direct on-line sampling occurred via constant-volume sample loops. The effluent was monitored with a flame ionization detector. The instrument was fully calibrated (i.e., extremely linear response over a large concentration range) for use with diesel engines as part of an on-going alternative-fuels research program. Methane emissions from a light-duty, multi-cylinder, indirect-injected diesel engine fumigated with natural gas were measured on-line using the methane analytical system. Methane emissions were found to range from as low as 250 ppm to a high of nearly 2%. The nonmethane hydrocarbon emissions were determined by subtracting the methane level from the total unburned hydrocarbon level. In the event that the federal engine certification procedures are changed to be based on nonmethane hydrocarbon emissions, a methane analytical system such as the one described here would have great utility.

  9. Green Chromatographic Separation of Coumarin and Vanillins Using Subcritical Water as the Mobile Phase.

    PubMed

    Kayan, Berkant; Akay, Sema; Yang, Yu

    2016-08-01

    Pure water was used as the eluent for separation of coumarin, vanillin and ethyl vanillin at temperatures ranging from 100 to 200°C using a homemade subcritical water chromatography (SBWC) system. Chromatographic separations were performed on five commercial columns including XTerra MS C18, XBridge C18, Zorbax RRHD Eclipse Plus, Zorbax SB-Phenyl and Zorbax SB-C18 columns. The retention time of all three solutes decreased with increasing water temperature. The shortest retention time among all acceptable separations, less than 4 min, was achieved on the Zorbax SB-C18 column at 200°C. While separations on the XTerra MS C18 column resulted in fronting peaks and a degradation peak from ethyl vanillin on the Zorbax RRHD Eclipse Plus column was observed, all three other columns yielded reasonable separations under SBWC conditions. In addition to separation of the standard test mixture, separation of coumarin contained in a skincare cream sample was also carried out using SBWC. PMID:27060112

  10. Gas chromatographic determination of the interconversion energy barrier for dialkyl 2,3-pentadienedioate enantiomers.

    PubMed

    Mydlová, J; Krupcík, J; Májek, P; Skacáni, I; Jakubík, T; Sandra, P; Armstrong, D W

    2007-05-25

    The enantiomers of dialkyl 2,3-pentadienedioate undergo interconversion during gas chromatographic separation on chiral stationary phases. In this paper the on-column apparent interconversion kinetic and thermodynamic activation data were determined for dimethyl, diethyl, propylbutyl and dibutyl 2,3-pentadienedioate enantiomers by gas chromatographic separation of the racemic mixtures on a capillary column containing a polydimethylsiloxane stationary phase coupled to 2,3-di-O-methyl-6-O-tertbutyldimethylsilyl-beta-cyclodextrin. A deconvolution method was used to determine the individual enantiomer peak areas and retention times that are needed to calculate the interconversion rate constants and the energy barriers. The apparent rate constants and interconversion energy barriers decrease slightly with an increase in the alkyl chain length of the dialkyl 2,3-pentadienedioate esters. The optimum conformation of the dialkyl 2,3-pentadienedioate molecules, their separation selectivity factors and apparent interconversion enthalpy and entropy data changes with the alkyl chain length. The dependence of the apparent interconversion energy barrier (deltaG(app)(a-->b), deltaG(app)(b-->a)) on temperature was used to determine the apparent activation enthalpy (deltaH(app)(a-->b), deltaH(app)(b-->a)) and apparent entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) (where a denotes the first and b second eluted enantiomer). The comparison of the activation enthalpy and entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) indicated that the interconversion of dialkyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series is an entropy driven process at 160 degrees C. Data obtained for dimethyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series at 120 degrees C (deltaG(app)(a-->b) = 123.3 and deltaG(app)(b-->a) = 124.4 kJ mol(-1)) corresponds (at the 95% confidence interval) with the value of deltaG(#) = 128+/-1 kJ mol(-1) found at this

  11. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin

    SciTech Connect

    Ramanujam, A.; Achuthan, P.V.; Dhami, P.S.; Gopalakrishnan, V.; Kannan, R.; Mathur, J.N.

    1995-03-01

    An extraction chromatographic procedure for the separation of {sup 147}Pm from High Active Waste solutions of Purex process has been developed. Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO) and 2-ethylhexyl-2-ethylhexylphosphonic acid (KSM-17), both sorbed separately on an inert support(chromosorb-102) have been sequentially employed for this purpose. In the CMPO column, the rare earths and the trivalent actinides are sorbed together with uranium, plutonium and traces of few other fission products. The elution of this column with 0.04 M HNO{sub 3} gives an eluate containing trivalent actinides and lanthanides. This solution, after adjusting the pH to 2.0, is used as feed for the second extraction chromatographic column based on KSM-17. All the trivalent metal ions are sorbed on the column leaving the trace impurities in the effluent. Fractional elution of the metal ions from this column is carried out with nitric acid of varying concentrations. At 0.09 M HNO{sub 3}, the pure beta emitting fraction of {sup 147}Pm has been obtained. 16 refs., 3 figs., 2 tabs.

  12. Dried calcium alginate/magnetite spheres: a new support for chromatographic separations and enzyme immobilization

    SciTech Connect

    Burns, M.A.; Kvesitadze, G.I.; Graves, D.J.

    1985-02-01

    Dried spheres made from an alginate solution containing magnetite particles have excellent potential as a support for enzyme immobilization and chromatographic applications. The beads were found to be much stronger than gels such as polyacrylamide and dextran, indicating that high flow rates and pressures could be used in column separations. The support withstood not only temperatures of up to 120/sup 0/C, but also most pH values and common solvents. While some solutions, such as phosphate buffers, dissolved the spheres, stabilization with Tyzor TE eliminated this problem. The physical properties of the beads include a glasslike density of 2.2 g/mL, excellent sphericity, low porosity, and a narrow size distribution. The magnetite present in the support allows the beads to be used for magnetic separations such as high gradient magnetic filtration. Their high degree of microroughness provides a large exposed surface area for enzyme and ligand binding. Mixed Actinomyces fradiae proteases and Aspergillus niger ..cap alpha..-amylase, two enzymes representative of classes which attack large substrates, were immobilized on the bead's surface with high activity and stability. A cyanuric dye which can be used in chromatographic applications (Cibacron Blue F3GA) was also readily coupled to the surface of this support with good yield.

  13. Gas chromatographic techniques for the analysis of hydrocarbons in low-rank coal liquefaction products. Part II. Instrumental aspects

    SciTech Connect

    Raynie, D.E.; Farnum, S.A.; Potts, Y.R.

    1984-01-01

    Two long Continuous Processing Unit (CPU) runs were carried out to: (1) study the effect of two different start-up solvents on the composition of the recycle product; and (2) thoroughly characterize any change caused by the start-up solvent during the recycle process. Capillary gas chromatography has been chosen as the major analytical tool in these line-out studies of coal liquefaction products. Initial separations of distillate oils from CPU passes were carried out by the silical gel chromatographic method previously reported. The resulting hydrocarbon fractions were combined into four groups for gas chromatographic analysis. The four groups were chromatographed against the appropriate calibration mixture. Some components of the distillate oil were identified but not quantified due to insufficient amounts of some standards. Over 300 samples also necessitated the use of up to 30 components in a calibration standard. Resulting chromatograms showed near-ideal peak shapes. Peak areas were integrated, ratioed to the internal standard and compared to the appropriate calibration curve. Components were identified by comparing retention times and were confirmed by gas chromatography/mass spectroscopy. Parameters such as threshold, peak width, and baseline construction mode were adjusted for optimum sensitivity. For valid comparisons to be made conditions were carefully reproduced. Although chromatography is not often thought of as an exact science, chromatographic systems can be optimized for a given analytical situation. In this case, we have successfully used capillary gas chromatography for the automated identification and quantification of up to 30 species in a single coal liquefaction fraction. We have quantified 87 compounds in the distillate oil. This method may also serve as the basis for analysis of other complex samples.

  14. New Method for Evaluating Irreversible Adsorption and Stationary Phase Bleed in Gas Chromatographic Capillary Columns

    SciTech Connect

    Wright, Bob W.; Wright, Cherylyn W.

    2012-10-26

    A novel method for the evaluation of gas chromatographic (GC) column inertness has been developed using a tandem GC approach. Typically column inertness is measured by analyte peak shape evaluation. In general, silica, glass, and metal surfaces are chemically reactive and can cause analyte adsorption, which typically is observed as chromatographic peak tailing. Adsorption processes produce broad, short chromatographic peaks that confound peak area determinations because a significant portion can reside in the noise. In addition, chromatographic surfaces and stationary phases can irreversibly adsorb certain analytes without obvious degradation of peak shape. The inertness measurements described in this work specifically determine the degree of irreversible adsorption behavior of specific target compounds at levels ranging from approximately 50 picograms to 1 nanogram on selected gas chromatographic columns. Chromatographic columns with 5% phenylmethylsiloxane, polyethylene glycol (wax), trifluoropropylsiloxane, and 78% cyanopropylsiloxane stationary phases were evaluated with a variety of phosphorus- and sulfur- containing compounds selected as test compounds due to their ease of adsorption and importance in trace analytical detection. In addition, the method was shown effective for characterizing column bleed.

  15. In situ sol-gel preparation of porous alumina monoliths for chromatographic separations of adenosine phosphates.

    PubMed

    Zajickova, Zuzana; Rubi, Emir; Svec, Frantisek

    2011-06-01

    A method enabling the in situ preparation of porous alumina monoliths within 100 μm i.d. fused silica capillaries has been developed. These monoliths were prepared using the sol-gel process from a mixture consisting of an inorganic aluminum salt, a porogen, an epoxide, and a solvent. We investigated the effects of varying the preparation conditions on the physical characteristics of the monoliths with respect to their potential application in chromatographic separations. The best columns were obtained from a mixture of aluminum chloride hexahydrate, N,N-dimethylformamide, water, ethanol and propylene oxide. Adenosine phosphates were then separated in the optimized column with retention increasing according to number of phosphate functionalities. PMID:21497822

  16. Novel behavior of the chromatographic separation of linear and cyclic polymers.

    PubMed

    Montenegro-Burke, J Rafael; Bennett, Jackson M; McLean, John A; Hercules, David M

    2016-01-01

    In various polymerization processes, the formation of a wide variety of chains, not only in length but also in chemical composition, broadly complicates comprehensive polymer characterization. In this communication, we compare different stationary and mobile phases for the analysis of complex polymer mixtures via size-exclusion chromatography-mass spectrometry (SEC-MS). To the best of our knowledge, we report novel chromatographic effects for the separation of linear and cyclic oligomers for polyesters (PE) and polyurethanes (PUR). A complete separation for the different structures was achieved for both polymer types with a single-solvent system (acetonitrile, ACN) and without extensive optimization. Additionally, cyclic species were found to show an inverse elution profile compared to their linear counterparts, suggesting distinct physical properties between species. PMID:26637218

  17. Improving Hydrocarbon Separation In Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Woeller, F.; Kojiro, D. R.

    1983-01-01

    Modified solica spheres enhance chromatographic separation. Commercially available silica spheres are modified by reacting them with molecules containing isocyante and isothiocyanate groups. Applications of surface derivatized spheres that result from reaction include analysis of samples prouced by atmospheric or soil probes.

  18. Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.

    PubMed

    Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J

    2015-05-15

    An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. PMID:25841610

  19. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  20. Development and evaluation of a gas chromatographic method for the determination of triazine herbicides in natural water samples

    USGS Publications Warehouse

    Steinheimer, T.R.; Brooks, M.G.

    1984-01-01

    A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0.1 ??g/L in a 1-litre sample. Three different natural water samples were used for error analysis via evaluation of recovery efficiencies and estimation of overall method precision. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0. 1 mu g/L in a 1-litre sample. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.

  1. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.

    PubMed

    Andersson, Robert; Boutonnet, Magali; Järås, Sven

    2012-07-20

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H₂ and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS₂ catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (∼C₂-C₅) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO₂, H₂O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al₂O₃) was used for analysis of the organic products on the FIDs. Light

  2. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    SciTech Connect

    Benz, N.

    1994-10-01

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  3. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.

    PubMed

    Kagan, Isabelle A; Flythe, Michael D

    2014-01-01

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. PMID:24747583

  4. Thin-layer Chromatographic (TLC) Separations and Bioassays of Plant Extracts to Identify Antimicrobial Compounds

    PubMed Central

    Kagan, Isabelle A.; Flythe, Michael D.

    2014-01-01

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. PMID:24747583

  5. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  7. Chromatographic cation exchange separation of decigram quantities of californium and other transplutonium elements

    SciTech Connect

    Benker, D.E.; Chattin, F.R.; Collins, E.D.; Knauer, J.B.; Orr, P.B.; Ross, R.G.; Wiggins, J.T.

    1981-01-01

    Decigram quantities of highly radioactive transplutonium elements are routinely partitioned at TRU by chromatographic elution from cation resin using AHIB eluents. Batch runs containing up to 200 mg of /sup 252/Cf can be made in about 5 h (2 h to load the feed and 3 h for the elution), with two high-pressure ion exchange columns, a small one for the initial loading of the feed and a large one for the elution. The separations achieved in the column are preserved by routing the column effluent through an alpha detector and using the response from the detector to select appropriate product fractions. The high-pressure ion exchange process has been reliable and relatively easy to operate; therefore it will continue to be used for partitioning transplutonium elements at TRU. 3 figures, 1 table.

  8. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    PubMed

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-01

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case. PMID:25060000

  9. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    SciTech Connect

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  10. ON-LINE MEASUREMENT OF THE INFRARED SPECTRA OF GAS CHROMATOGRAPHIC ELUENTS

    EPA Science Inventory

    Techniques for increasing the sensitivity of the interface between a gas chromatograph and a rapid-scanning Fourier transform infrared spectrometer (GC-IR) have been developed. A single-beam system, in which a triglycine sulfate (TGS) detector is used to measure the interferogram...

  11. [Molecular topology study of gas chromatographic retention indices of alkane series].

    PubMed

    Nie, Changming; Dai, Yimin; Wen, Songnian; Li, Zhonghai

    2005-01-01

    The gas chromatographic retention indices can be used to qualify some organic compounds. A new topological index based on distance matrix and branch vertex of the atoms in a molecule is proposed by defining equilibrium electronegativity of atoms in the molecule and coloring atoms in the molecular graph with equilibrium electronegativity, which appears unique to the molecular structures and has excellent structural selectivity. The multivariate linear equations of gas chromatographic retention indices are as follows: I(Squalane) = 23.97842N1 - 3.86562N2 + 0.787379N3 + 42.33061, R = 0.9922, n = 70, S = 13.70405, F = 1396.601; I(SE-30) = 23.83937N1 - 3.5687N2 + 0.939876N3 + 22.11952, R = 0.9919, n = 37, S = 11.96088, F = 668.8781; where the N1, N2 and N3 are a group of topological indices; n, R, S and F are sample number, regression coefficient, residual standard deviation and F-statistic value, respectively. The calculated results by the formulae indicate that the average relative deviations between calculated values and experimental data of gas chromatographic retention indices of alkane series on both squalane (column temperature 50 degrees C) and SE-30 (column temperature 80 degrees C) were all 1.31% and the errors were within experimental deviations. The equations can express well the change rule of the relative gas chromatographic retention indices of alkane series. PMID:15881357

  12. 1993 FIELD STUDY/DEMONSTRATION OF AUTOMATED GAS CHROMATOGRAPH IN CONNECTICUT AND OTHER LABORATORIES

    EPA Science Inventory

    The objectives of this study were to install, test and demonstrate two automated gas chromatographic (GC) systems to state and regional EPA groups. he two GC systems required no liquid cryogen for operational purposes. he Dynatherm/Hewlett Packard GC system was designed for the m...

  13. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  14. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  15. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  16. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  17. AN EVALUATION OF THE HEWLETT-PACKARD 5993B GAS CHROMATOGRAPH-MASS SPECTROMETER

    EPA Science Inventory

    This report gives the results of an evaluation of a Hewlett-Packard Model 5993B computerized gas chromatograph/mass spectrometer. The evaluation was done according to the procedures found in EPA research report number EPA-600/4-80-025, 'Performance Tests for the Evaluation of Com...

  18. Integrated vacuum absorption steam cycle gas separation

    SciTech Connect

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  19. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  20. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  1. Performance of the MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Grand, Noël; Freissinet, Caroline; Danell, Ryan; van Ameron, Friso; Arevalo, Ricardo; Brinckerhoff, William; Raulin, François; Mahaffy, Paul; Goesmann, Fred

    2015-04-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquir-ing samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis gas chromatograph (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide in-formation on elemental and molecular makeup, po-larity, chirality and isotopic patterns of analyte spe-cies. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatography-mass spec-trometry (GC-MS) mode of operation. Both instruments have been tested separately first and have been coupled in order to test the efficiency of the future MOMA GC-MS instrument. The main objective of the second step has been to test the quantitative response of both instruments while they are coupled and to characterize the combined instrument detection limit for several compounds. A final experiment has been done in order to test the feasibility of the separation and detection of a mixture contained in a soil sample introduced in the MOMA oven.

  2. Anisotropic membranes for gas separation

    DOEpatents

    Gollan, A.Z.

    1987-07-21

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.

  3. Anisotropic membranes for gas separation

    DOEpatents

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  4. Development of and fabrication of high resolution gas chromatographic capillary columns

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    Gas chromatographic columns which are used in the trace gas analyzer (TGA) for the space shuttle are coated with a polyoxyethylene lauryl ether. This stationary phase is of medium polarity and has a temperature limit of 160 C. A polymer for this application which has an improved thermal stability is investigated. The use of fused silica capillary columns with specially bonded phases as well as an introduction system (on column) was also studied.

  5. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  6. Micro-machined planar field asymmetric ion mobility spectrometer as a gas chromatographic detector

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Nazarov, E. G.; Miller, R. A.; Krylov, E. V.; Zapata, A. M.

    2002-01-01

    A planar high field asymmetric waveform ion mobility spectrometer (PFAIMS) with a micro-machined drift tube was characterized as a detector for capillary gas chromatography. The performance of the PFAIMS was compared directly to that of a flame ionization detector (FID) for the separation of a ketone mixture from butanone to decanone. Effluent from the column was continuously sampled by the detector and mobility scans could be obtained throughout the chromatographic analysis providing chemical inforrmation in mobility scans orthogonal to retention time. Limits of detection were approximately I ng for measurement of positive ions and were comparable or slightly better than those for the FID. Direct comparison of calibration curves for the FAIMS and the FID was possible over four orders of magnitude with a semi-log plot. The concentration dependence of the PFAIMS mobility scans showed the dependence between ion intensity and ion clustering, evident in other mobility spectrometers and atmospheric pressure ionization technologies. Ions were identified using mass spectrometry as the protonated monomer and the proton bound dimer of the ketones. Residence time for column effluent in the PFAIMS was calculated as approximately 1 ms and a 36% increase in extra-column broadening versus the FID occurred with the PFAIMS.

  7. Headspace gas chromatographic determination of methylene chloride in decaffeinated tea and coffee, with electrolytic conductivity detection.

    PubMed

    Page, B D; Charbonneau, C F

    1984-01-01

    A headspace gas chromatographic procedure is described for the determination of methylene chloride (MC) in decaffeinated tea and coffee. The tea or coffee sample, with added methylene bromide (MB) internal standard, is equilibrated for 1.5 h at 100 degrees C in aqueous sodium sulfate before manual headspace sampling. MC and MB are separated on a Porasil A column at 160 degrees C and detected by using a Coulson electrolytic conductivity detector. For coffee and tea samples spiked at 1.3 ppm MC, as well as commercially decaffeinated teas and coffees containing up to 8 ppm MC, coefficients of variation were 10% or less. For decaffeinated teas, problems involving sample homogeneity and loss of MC before sealing the headspace vial had to be overcome. Similar problems with decaffeinated instant and ground coffees were minimal. The headspace procedure was superior to a previously reported distillation technique. MC was readily detected at 0.05 ppm. Fourteen decaffeinated teas and 15 decaffeinated coffees were analyzed; MC was detected at levels that ranged up to 15.9 and 4.0 ppm, respectively. PMID:6469909

  8. Indirect gas chromatographic measurement of water for process streams

    SciTech Connect

    Barbour, F.A.

    1993-05-01

    This project was conducted to develop a moisture measurement method for process gas streams of fossil fuels. Objective was to from pyrolysis to measure the molar concentration of water in a gas stream without flow measurements. The method developed has been incorporated into the hydrocarbon gas analysis method currently used at Western Research Institute. A literature search of types of direct measuring moisture sensors was conducted, and a list of sensors available is given; most of them could not survive in the environment of the process streams. Indirect methods of measuring water involve changing the water via reaction to a compound that can be more readily measured. These methods react water with various reagents to form hydrogen, acetylene, and acetone. The method chose for this study uses a calcium carbide reaction column to convert the water present in the gas stream to acetylene for analysis. Relative deviation for the daily determination of water varied from 0.5 to 3.4%. The method chosen was tested for linearity over a wide range of gas stream water content. Response over 2 to 15 mole % water appears to be linear with a correlation coefficient of 0.991.

  9. A novel and effective chromatographic approach to the separation of isoflavone derivatives from Pueraria lobata.

    PubMed

    Fu, Jiang; Jing, Wenguang; Wang, Weihao; Chen, Sha; Zhang, Jun; Liu, An

    2015-01-01

    A novel and effective chromatographic approach to the separation and purification of isoflavone compounds from Pueraria lobata is described. The method is based on flash chromatography (FC), coupled to preparative high performance liquid chromatography (prep-HPLC) via a six-way valve. The FC step comprised tandem reversed phase columns, pre-packed with MCI gel (Mitsubishi Chemical Corp., Tokyo, Japan) and C18 (Fuji Silysia Chemical Ltd, Osaka, Japan) resin, respectively, and was designed to separate a crude Pueraria lobata extract into several preliminary fractions. Fractions containing the target compounds were then directly injected via the six-way valve into prep-HPLC columns, without further treatment, for final isolation and purification. Nine isoflavonoids were successfully isolated, three through an online mode and the other six through an offline mode. The purities of all compounds exceeded 95.0%, as determined by HPLC with an UV-vis photodiode array detector. The convenience, low solvent consumption, and time-saving advantages of this method offer an attractive and promising approach to the isolation of natural products. PMID:25751785

  10. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  11. Chromatographic fractionation of fullerenes containing noble gas atoms

    NASA Astrophysics Data System (ADS)

    Saunders, M.; Khong, A.; Shimshi, R.; Jiménez-Vázquez, H. A.; Cross, R. J.

    1996-01-01

    Buckminsterfullerence containing krypton atoms inside the cage was partially separated from empty fullerene via column chromatography. The krypton content of portions of the peak emerging from the column was determined by the pyrolytic release of the krypton followed by mass spectrometry. It was found that material emerging more slowly is about 30% enriched over a faster fraction.

  12. Development of gas chromatographic system for dissolved organic carbon analysis in seawater. Annual progress report

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO{sub 2}.

  13. Development of gas chromatographic system for dissolved organic carbon analysis in seawater

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO[sub 2].

  14. The Construction of a Simple Pyrolysis Gas Chromatograph.

    ERIC Educational Resources Information Center

    Hedrick, Jack L.

    1982-01-01

    Describes a simple and inexpensive pyrolysis gas chromatography (PGC) system constructed from items available in undergraduate institutions. The system is limited, accepting only liquid samples and pyrolyzing "on the fly" rather than statically and not allowing for reductive pyrolysis. Applications, experiments, and typical results are included.…

  15. Factorial-design optimization of gas chromatographic analysis of tetrabrominated to decabrominated diphenyl ethers. Application to domestic dust.

    PubMed

    Regueiro, Jorge; Llompart, Maria; Garcia-Jares, Carmen; Cela, Rafael

    2007-07-01

    Gas chromatographic analysis of polybrominated diphenyl ethers (PBDEs) has been evaluated in an attempt to achieve better control of the separation process, especially for highly substituted congeners. Use of a narrow-bore capillary column enabled adequate determination of tetra, penta, hexa, hepta, octa, nona and decaBDE congeners in only one chromatographic run while maintaining resolution power similar to that of conventional columns. A micro electron-capture detector (GC-microECD) was used. Chromatographic conditions were optimized by multifactorial experimental design, with the objective of obtaining not only high sensitivity but also good precision. In this way two different approaches to maximizing response and minimizing variability were tested, and are fully discussed. These optimum chromatographic conditions were then used to determine PBDEs extracted from domestic dust samples by microwave-assisted solvent extraction (MASE). Quantitative recovery (90-108%) was achieved for all the PBDEs and method precision (RSD < 13%) was satisfactory. Accuracy was tested by use of the standard reference material SRM 2585, and sub-ng g(-1) limits of detection were obtained for all compounds except BDE-209 (1.44 ng g(-1)). Finally, several samples of house dust were analysed by use of the proposed method and all the target PBDEs were detected in all the samples. BDE-209 was the predominant congener. Amounts varied from 58 to 1615 ng g(-1) and the average contribution to the total PBDE burden of 52%. The main congeners of the octaBDE mixture (BDE-183, BDE-197, BDE-207 and BDE-196) also made an important contribution (29%) to the total. These are the first data about the presence of these compounds in European house-dust samples. Finally, the sum of the main congeners in the pentaBDE commercial mixture (BDE-47, BDE-99, and BDE-100) contributed 14% to the total. Figure Polybrominated diphenyl ethers in House Dust. PMID:17541561

  16. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement. PMID:21347675

  17. Computer assisted optimization of liquid chromatographic separations of small molecules using mixed-mode stationary phases.

    PubMed

    Ordoñez, Edgar Y; Benito Quintana, José; Rodil, Rosario; Cela, Rafael

    2012-05-18

    Mixed-mode stationary phases are gaining adepts in liquid chromatography (LC) as more and more applications are published and new commercial columns appear in the market ought to their ability to retain and separate analytes with multiple functionalities. The increased number of adjustable variables gives these columns an enhanced value for the chromatographer, but, on the other hand, it complicates the process of developing satisfactory separations when complex samples must be analyzed. Thus, the availability of computer assisted methods development (CAMD) tools is highly desirable in this field. Therefore, the first specific tool for the CAMD of LC separations in mixed-mode columns is presented. The tool consists in two processes. The first one develops a retention model for peaks in a predefined experimental domain of pH and buffer concentration. In this domain, the retention as a function of the proportion of organic modifier is modeled using a two-stage re-calibration process departing from isocratic retention data and then, from gradient elutions. With this two-stage approach, reliability is gained. In the second process, the model is finally interpolated and used for the unattended optimization of the different possible elution modes available in these columns. This optimization process is driven by an evolutionary algorithm. The development and application of this new chemometrics tool is demonstrated by the optimization of a mixture of neutral and ionizable compounds. Hence, several different types of gradients were generated, showing a good agreement between simulated and experimental data, with retention time errors lower than 5% in most cases. On the other hand, classical CAMD tools, such as design of experiments, were unable to efficiently deal with mixed-mode optimizations, rendering errors above 30% for several compounds. PMID:22494641

  18. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Caslavka, Katelyn E.; Van Groningen, Karinne

    2014-01-01

    A multiday laboratory exercise is described that is suitable for first-year undergraduate chemistry, biochemistry, or biotechnology students. Students gain experience in performing chromatographic separations of biomolecules, in both a column and thin layer chromatography (TLC) format. Students chromatographically separate amino acids (AA) in an…

  19. Gas chromatographic determination of clopidol in chicken tissues.

    PubMed

    Ekström, L G; Kuivinen, J

    1984-01-01

    A method has been developed for the determination of clopidol residues in chicken tissues. After extraction and cleanup, clopidol is esterified in a 2-phase system to clopidol propionate, which is determined by gas chromatography. The 2-phase system includes, in addition to the clopidol dissolved in methanol, aqueous borax solution, hexane, propionic anhydride, and pyridine. Use of these reagents precludes the use of explosive or carcinogenic chemicals in the derivatization step, and the method is therefore suitable for routine laboratory analysis. Levels of 0.5 ppb clopidol in tissue can be determined. PMID:6501161

  20. Recirculating gas separator for electric submersible

    SciTech Connect

    Powers, M.L.

    1991-01-01

    This patent describes a gas separator apparatus for a submersible well pump. It comprises: a rotary gas separator means; and recirculating means for recirculating a portion of the liquid discharged from the discharge outlet back to the separating chamber so that a gas-to-liquid ratio in the separator means is substantially lower than a gas-to-liquid ratio of well fluid entering the well fluid inlet wherein the recirculating means. This patent also describes a method of pumping liquid from a well producing well fluids having a relatively high gas-to-liquid ratio. It comprises: centrifugally separating the well fluid into a liquid and a gas with a separator located downhole in the well; directing the separated liquid toward an inlet of a submersible well pump; recycling a portion of the separated liquid to the separator; and providing an effective gas-to-liquid ratio in the separator substantially lower than a gas-to-liquid ratio of the well fluid prior to separation.

  1. Gas chromatographic determination of nitrogen oxide and dioxide using a photoionization detector

    SciTech Connect

    Bulycheva, Z.Yu.; Panina, L.I.; Rudenko, B.A.

    1995-01-01

    Recently, fundamentally new possibilities of detecting NO and NO{sub 2} have been connected with the use of a photoionization detector (PID), which is based on the ionization of analyzed components under vacuum UV radiation. The extensive experimental material on the employment of PID in the gas chromatographic analysis of different samples of organic and inorganic origin is given earlier. However there is no information about the practical use of PIDs for the analysis of NO and NO{sub 2}. The results obtained by using a PID for the gas-chromatographic analysis of a mixture of NO and NO{sub 2} are presented in this work. A specific Kuprumsorb sorbent based on a macroporous sulfonated cation-exchange resin in the Cu{sup 2+} form was used.

  2. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  3. Gas chromatographic identification of Clostridium difficile and detection of cytotoxin from a modified selective medium.

    PubMed Central

    Levett, P N; Phillips, K D

    1985-01-01

    A modification of an existing selective medium for Clostridium difficile is described. Inclusion in the medium of DL nor-leucine and p-hydroxyphenylacetic acid enables identification of C difficile to be made directly from primary isolation plates by gas chromatographic detection of caproic acid and p-cresol. Plugs of agar withdrawn from the selective medium also allow the detection of cytotoxin production in vitro. PMID:3968212

  4. Portable gas chromatograph mass spectrometer for on-site chemical analyses

    DOEpatents

    Haas, Jeffrey S.; Bushman, John F.; Howard, Douglas E.; Wong, James L.; Eckels, Joel D.

    2002-01-01

    A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.

  5. Liquid/Gas Separator Handles Varying Loads

    NASA Technical Reports Server (NTRS)

    Mann, John

    1992-01-01

    Liquid/gas separator includes two independent motors, one for pumping mixture and other for drawing off extracted gas. Two materials moved at speeds best suited for them. Liquid expelled radially outward from separator rotor. Entrained gas released, flows axially through rotor, and leaves through fan at downstream end. Unit developed to separate air from urine in spacecraft wastewater-treatment system, also functions in normal gravity. Made largely of titanium to resist corrosion.

  6. Gas chromatographic determination of triclopyr in fruits and vegetables.

    PubMed

    Ting, K C; Lee, C S

    1995-01-20

    This research was comprised of two parts: quantitative analyses, and confirmatory test. In the quantitative analyses, five classes of fruits and vegetables comprising 10 individual commodities were fortified with triclopyr herbicide at 0.4 and 0.8 ppm level. Triclopyr was extracted from the matrices and derivatized separately to 2-chloroethylene ester with 2-chloroethanol-BCl3 and methyl ester with diazomethane. The esters were then quantitated by GC-ECD and GC-NPD. The GC-ECD recoveries for 2-chloroethylene ester were 100.0% and 100.7% at 0.4 ppm and 0.8 ppm fortification levels, respectively, whereas methyl ester recovery was 103.9% at 0.4 ppm fortification level. Similarly, the GC-NPD recoveries for 2-chloroethylene ester were 99.0% and 97.9% at 0.4 ppm and 0.8 ppm fortification levels respectively, whereas methyl ester recovery was 102.0% at 0.4 ppm fortification level. In the confirmatory test, the 2-chloroethylene ester was introduced into a GC-ion trap. The EI mass spectrum was then interpreted based on the criteria of molecular ion, isotopes, base ion, characteristic ions and the nitrogen rule. Compared to existing methods, this method has reduced partition solvents to nearly one-tenth. In addition, this method proved to be simple, fast, safe and accurate. PMID:7881537

  7. Gas chromatographic determination of residual solvents in lubricating oils and waxes

    SciTech Connect

    De Andrade Bruening, I.M.R.

    1983-10-01

    A direct gas-liquid chromatographic analysis of residual solvents is described, using tert-butylbenzene as an internal standard. The lube oils and waxes were prevented from contaminating the chromatographic column by injecting the samples directly into a precolumn containing a silicone stationary phase. The samples of lube oils and waxes were injected directly into the chromatographic column containing another stationary phase, 1,2,3-tris(2-cyanoethoxy)propane. (The waxy samples were dissolved in a light neutral oil). With proper operating conditions, analysis time was 7 min. The procedure has been applied in the control of a lube oil dewaxing plant; the chromatographic column showed no sign of deterioration after 1 h when the precolumn was removed. Known amounts of toluene and methylethyl ketone were added to the solvent-free lubricating oils and wax, and these mixtures were analyzed to evaluate the accuracy of the procedure. Precision and accuracy of these data are comparable to those of methods previously described. 1 figure, 1 table.

  8. Determination of calcium stearate in polyolefin samples by gas chromatographic technique after performing dispersive liquid-liquid microextraction.

    PubMed

    Ranji, Ali; Ghorbani Ravandi, Mahboobeh; Farajzadeh, Mir Ali

    2008-05-01

    In this study, a gas chromatographic method is presented for the determination of calcium stearate after its conversion to stearic acid in a polymeric matrix. A solution of hydrochloric acid in 2-propanol is used as an extracting solvent of calcium stearate and its converter to stearic acid. For stearic acid preconcentration before its injection to a separation system, a recently presented extraction method, dispersive liquid-liquid microextraction, using carbon tetrachloride as an extracting solvent is used. Finally, 1 microL of the organic phase collected at the bottom of a conical test tube after centrifuging is injected into a gas chromatograph (GC) for quantification. This method has a relatively broad linear dynamic range (50 - 2000 mg/L) with a limit of detection (LOD) of 15 mg/L for stearic acid in solution. The LOD of the proposed method in a polymeric sample using 10 mg of polymer is 60 ppm as calcium stearate. Some effective parameters, such as the time and temperature of heating, the concentration of hydrochloric acid and the volume of distilled water, were studied. PMID:18469468

  9. Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis.

    PubMed

    Nevado, J J Berzas; Martín-Doimeadios, R C Rodríguez; Krupp, E M; Bernardo, F J Guzmán; Fariñas, N Rodríguez; Moreno, M Jiménez; Wallace, D; Ropero, M J Patiño

    2011-07-15

    In this study, we evaluate advantages and disadvantages of three hyphenated techniques for mercury speciation analysis in different sample matrices using gas chromatography (GC) with mass spectrometry (GC-MS), inductively coupled plasma mass spectrometry (GC-ICP-MS) and pyrolysis atomic fluorescence (GC-pyro-AFS) detection. Aqueous ethylation with NaBEt(4) was required in all cases. All systems were validated with respect to precision, with repeatability and reproducibility <5% RSD, confirmed by the Snedecor F-test. All methods proved to be robust according to a Plackett-Burnham design for 7 factors and 15 experiments, and calculations were carried out using the procedures described by Youden and Steiner. In order to evaluate accuracy, certified reference materials (DORM-2 and DOLT-3) were analyzed after closed-vessel microwave extraction with tetramethylammonium hydroxide (TMAH). No statistically significant differences were found to the certified values (p=0.05). The suitability for water samples analysis with different organic matter and chloride contents was evaluated by recovery experiments in synthetic spiked waters. Absolute detection and quantification limits were in the range of 2-6 pg for GC-pyro-AFS, 1-4 pg for GC-MS, with 0.05-0.21 pg for GC-ICP-MS showing the best limits of detection for the three systems employed. However, all systems are sufficiently sensitive for mercury speciation in environmental samples, with GC-MS and GC-ICP-MS offering isotope analysis capabilities for the use of species-specific isotope dilution analysis, and GC-pyro-AFS being the most cost effective alternative. PMID:21641604

  10. Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy. Part II. Impact on chromatographic separations.

    PubMed

    Hubbuch, Jürgen; Linden, Thomas; Knieps, Esther; Thömmes, Jörg; Kula, Maria-Regina

    2003-12-22

    The impact of different transport mechanism on chromatographic performance was studied by confocal laser scanning microscopy (CLSM) for solutions containing bovine serum albumin (BSA) and monoclonal IgG 2a under different solid- and fluid-phase conditions. During this investigation, a clear influence of the uptake mechanism on the affinity of the respective proteins for the different adsorbents and thus separation performance of the chromatographic process could be observed. For the system SP Sepharose Fast Flow at pH 4.5 pore diffusion could be ascribed to be the dominant transport mechanism for both proteins and the adsorption profiles resembled a pattern similar to that described by the 'shrinking core' model. Under these conditions a significantly higher affinity towards the adsorbent was found for BSA when compared to IgG 2a. With changing fluid- and solid-phase conditions, however, a change of the transport mode for IgG 2a could be detected. While the exact mechanism is still unresolved it could be concluded that both occurrence and magnitude of the now governing transport mechanism depended on protein properties and interaction with the adsorbent surface. For the system SP Sepharose XL at pH 5.0 both parameters leading to the change in IgG 2a uptake were combined resulting in a clear change of the system affinity towards the IgG 2a molecule, while BSA adsorption was restricted to the most outer shell of the sorbent. PMID:14735979

  11. AUTOMATED CALIBRATION AND ANALYSIS OF VOCS WITH A CAPILLARY COLUMN GAS CHROMATOGRAPH EQUIPPED FOR REDUCED TEMPERATURE TRAPPING

    EPA Science Inventory

    Recently an automated system for monitoring volatile organics by reduced temperature (-150C) preconcentration and capillary column/gas chromatographic analysis has been assembled and evaluated. The automation has now been extended to include multipoint calibration using single st...

  12. Passive gas separator and accumulator device

    SciTech Connect

    Choe, Hwang; Fallas, T.T.

    1993-11-29

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter uses the principle that surface tension in the filter pores prevents gas bubbles from passing through; the gas collects in the interior of the filter to form larger bubbles in the center of the device. The device is suited for microgravity since the swirlers induce a centrifugal force which forces liquid from the inner region through the pores and the device outlet while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen enclosed by the filter. The screen has pores larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the filter. The device is initially filled with a gas other than that which is to be separated; this results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region with a ruptured disc which can be ruptured when the device is activated for use.

  13. Separation studies of As(III), Sb(III) and Bi(III) by reversed-phase paper chromatographic technique

    SciTech Connect

    Raman, B.; Shinde, V.M.

    1987-07-01

    Reversed-phase paper chromatographic separations of As(III), Sb(III) and Bi(III) have been carried out on Whatman No 1 filter paper impregnated with triphenylphosphine oxide as stationary phase and using organic complexing agents such as sodium acetate, sodium succinate and sodium malonate solutions as active mobile phases. Results for the separation of binary and ternary mixtures are reported and the method has been successfully applied to the separation and detection of these elements present in real samples and at ppm level concentration.

  14. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  15. Toward a microfabricated preconcentrator-focuser for a wearable micro-scale gas chromatograph.

    PubMed

    Bryant-Genevier, Jonathan; Zellers, Edward T

    2015-11-27

    This article describes work leading to a microfabricated preconcentrator-focuser (μPCF) designed for integration into a wearable microfabricated gas chromatograph (μGC) for monitoring workplace exposures to volatile organic compounds (VOCs) ranging in vapor pressure from ∼0.03 to 13kPa at concentrations near their respective Threshold Limit Values. Testing was performed on both single- and dual-cavity, etched-Si μPCF devices with Pyrex caps and integrated resistive heaters, packed with the graphitized carbons Carbopack X (C-X) and/or Carbopack B (C-B). Performance was assessed by measuring the 10% breakthrough volumes and injection bandwidths of a series of VOCs, individually and in mixtures, as a function of the VOC air concentrations, mixture complexity, sampling and desorption flow rates, adsorbent masses, temperature, and the injection split ratio. A dual-cavity device containing 1.4mg of C-X and 2.0mg of C-B was capable of selectively and quantitatively capturing a mixture of 14 VOCs at low-ppm concentrations in a few minutes from sample volumes sufficiently large to permit detection at relevant concentrations for workplace applications with the μGC detector that we ultimately plan to use. Thermal desorption at 225°C for 40s yielded ≥99% desorption of all analytes, and injected bandwidths as narrow as 0.6s facilitated efficient separation on a downstream 6-m GC column in <3min. A preconcentration factor of 620 was achieved for benzene from a sample of just 31mL. Increasing the mass of C-X to 2.3mg would be required for exhaustive capture of the more volatile target VOCs at high-ppm concentrations. PMID:26530144

  16. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  17. HPLC method development for the online-coupling of chromatographic Perilla frutescens extract separation with xanthine oxidase enzymatic assay.

    PubMed

    Kaufmann, Christine M; Grassmann, Johanna; Letzel, Thomas

    2016-05-30

    Enzyme-regulatory effects of compounds contained in complex mixtures can be unveiled by coupling a continuous-flow enzyme assay to a chromatographic separation. A temperature-elevated separation was developed and the performance was tested using Perilla frutescens plant extracts of various polarity (water, methanol, ethanol/water). Owning to the need of maintaining sufficient enzymatic activity, only low organic solvent concentrations can be added to the mobile phase. Hence, to broaden the spectrum of eluting compounds, two different organic solvents and various contents were tested. The chromatographic performance and elution was further improved by the application of a moderate temperature gradient to the column. By taking the effect of eluent composition as well as calculated logD values and molecular structure of known extract compounds into account, unknown features were tentatively assigned. The method used allowed the successful observation of an enzymatic inhibition caused by P. frutescens extract. PMID:26986639

  18. A theoretical model for the separation of glucose and fructose mixtures by using a semicontinuous chromatographic refiner

    SciTech Connect

    Lee, Kwang Nam; Lee, Won Kook )

    1992-03-01

    The separation of a glucose and fructose mixture was experimentally performed by using a semicontinuous chromatographic refiner (SCCR) packed with Ca{sup 2+} ion in the form of DOWEX 50W 12X resin. The plug flow model with velocity-dependent mass transfer resistance was resistance was presented for calculating both products and on-concentrations in the SCCR unit, and the validity of the model was experimentally confirmed.

  19. Centrifuge for separating helium from natural gas

    SciTech Connect

    Theyse, F.H.; Kelling, F.E.T.

    1980-01-08

    Ultra Centrifuge Nederland N.V.'s improved centrifuge for separating helium from natural gas comprises a hollow cylindrical rotor, designated as a separating drum, within a stationary housing. Natural gas liquids that condense under pressure in the separating drum pass through openings in the drum into the space between the drum and housing. In this space, a series of openings, or throttling restrictors, allows the liquids to expand and return to gas. The gaseous component that does not liquefy in the drum remains separate for drawing off.

  20. Mars Atmospheric Capture and Gas Separation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  1. First Results From the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso B.; Demick, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Raaen, E.; Way, S.; Atreya, S.; Carignan, G.; Bauer, S.

    2005-01-01

    The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14,2005. The GCMS was part of the instrument complement on the Probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyser (ACP) experiment by serving as detector for the pyrolization products. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employed five electron impact ion sources with available electron energies of either 70 or 25 eV. Three ion sources served as detectors for the GC columns and two were dedicated to direct atmosphere sampling and ACP gas sampling, respectively. The GCMS gas inlet was heated to prevent condensation, and served to evaporate surface constituents after impact.

  2. Application of gas chromatographic method in simultaneous measurements of helium, argon and neon concentration in groundwaters

    NASA Astrophysics Data System (ADS)

    Najman, J.; Bielewski, J.; Sliwka, I.

    2012-04-01

    Helium concentration in groundwater is a fine indicator in water dating in a range from a hundred to tens of thousands of years. Gas chromatography (GC) measurements of helium can be used as an alternative to mass spectrometry (MS) determinations of 4He for groundwater dating [1]. Argon and neon concentrations mainly serve for determining the temperature of recharge and the air excess which is needed to correct measured values of helium concentration [2] . A chromatographic measurement system of helium, argon and neon concentration in groundwater is presented [3]. Water samples are taken from groundwater with a precise procedure without contamination with air in a special stainless steel vessels of volume equal to 2900 cm3. Helium is extracted from water samples using the head-space method. After enrichment by cryotrap method helium is analyzed in the gas chromatograph equipped with the thermal conductivity detector (TCD) with detection limit of about 2.8 ng He. The helium limit of detection of presented method is 1,2·10-8 cm3STP/gH2O [4]. We are currently working on adapting the method of cryogenic enrichment of helium concentration for simultaneous measurements of the concentration of helium, argon and neon using single sample of groundwater. Neon will be measured with the thermal conductivity detector and capillary column filled with molecular sieve 5A. Argon will be analyzed also with the thermal conductivity detector and packed column filled with molecular sieve 5A. This work was supported by grant No. N N525 3488 38 from the polish National Science Centre. [1] A. Zuber, W. Ciężkowski, K. Różański (red.), Tracer methods in hydrogeological studies - a methodological guide. Wroclaw University of Technology Publishing House, Wroclaw, 2007 (in polish). [2] P. Mochalski, Chromatographic method for the determination of Ar, Ne and N2 in water, Ph.D. thesis, Institute of Nuclear Physics Polish Academy of Sciences in Krakow, 2003 (in polish). [3] A. Żurek, P

  3. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on non-polar stationary phases.

    PubMed

    Pavlovskii, Alexander A; Héberger, Károly; Zenkevich, Igor G

    2016-05-01

    Increasing the reliability of both GC and GC-MS identification requires appropriate interlaboratory reproducibility of gas chromatographic retention indices (I). Known temperature dependence, I(T), is the main source of non-reproducibility of these parameters. It can be approximated with a simple linear function I(T). However, since mid-1990s-beginning of 2000s some examples of anomalous temperature dependence, I(T), preferably for polar analytes on non-polar stationary phases were revealed independently by different authors. The effect implies the variations in the sign of the temperature coefficients β=dI/dT for selected compounds and, hence, the appearance of the I-extrema (usually, minima). The current work provides evidence that the character of the anomalous I(Т) dependences (ascending, descending, or with extrema) is strongly influenced by the amounts of analytes injected into the chromatographic column, but these anomalies appeared not to be connected directly with the mass overloading of separation systems. The physicochemical model is proposed to describe the observed anomalies of I(T) dependence. This model is based on three previously known principles of chromatography, namely: The superposition of these objectives allows understanding both the unusual temperature dependence of retention indices, and the influence of the amounts of polar analytes injected into GC column on the parameters of this dependence. PMID:27062719

  4. High performance liquid chromatographic separation of polycyclic aromatic hydrocarbons on microparticulate pyrrolidone and application to the analysis of shale oil

    SciTech Connect

    Mourey, T.H.; Siggia, S.; Uden, P.C.; Crowley, R.J.

    1980-05-01

    A chemically bonded pyrrolidone substrate is used for the high performance liquid chromatographic separation of polycyclic aromatic hydrocarbons. The cyclic amide phase interacts electronically with the polycyclic aromatic hydrocarbons in both the normal and reversed phase modes. Separation is effected according to the number of aromatic rings and the type of ring condensation. Information obtained is very different from that observed on hydrocarbon substrates, and thus these phases can be used in a complementary fashion to give a profile of polycyclic aromatics in shale oil samples. 7 figures, 1 table.

  5. Balloonborne in situ gas chromatograph for measurements in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Moore, F. L.; Elkins, J. W.; Ray, E. A.; Dutton, G. S.; Dunn, R. E.; Fahey, D. W.; McLaughlin, R. J.; Thompson, T. L.; Romashkin, P. A.; Hurst, D. F.; Wamsley, P. R.

    2003-03-01

    An in situ gas chromatograph (GC) instrument on a balloonborne package is described in detail and data from seven science deployments are presented. This instrument, the Lightweight Airborne Chromatograph Experiment (LACE), operates on the Observations of the Middle Stratosphere (OMS) in situ gondola and has taken data from the upper troposphere to near 32 km with a vertical resolution of better than 300 m. LACE chromatography has been developed to measure halon-1211, the chlorofluorocarbons (CFC-11, CFC-113, CFC-12), nitrous oxide (N2O), and sulfur hexafluoride (SF6) every 70 s and methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), hydrogen (H2), methane (CH4), and carbon monoxide (CO) every 140 s. In the introduction we present scientific motivation for choosing this suite of molecules and for the use of faster sample rates resulting in unprecedented vertical resolution from an in situ GC. Results from an intercomparison with the Airborne Chromatograph for Atmospheric Trace Species (ACATS-IV) instrument are shown to quantitatively connect this LACE data set to the complementary data set generated on board the NASA ER-2 aircraft.

  6. Capillary gas chromatographic determination of dimethachlon residues in fresh tobacco leaves and cut-tobacco*

    PubMed Central

    Liu, Hong-cheng; Li, Qi-wan; Tang, Li-bin

    2007-01-01

    Simple procedures for extraction and chromatographic determination of dimethachlon residues in fresh tobacco leaves and cut-tobacco are described. The determination was carried out by capillary gas chromatography (GC) with electron capture detection (ECD) and confirmed by GC-MS. The mean recoveries and relative standard deviation (RSD) were 93.2%~112.9% and 3.5%~6.7%, respectively at levels ranging from 0.01 to 0.1 mg/kg. The limit of determination was 0.001 mg/kg. Tobacco samples in routine check were successfully analyzed using the proposed method. PMID:17444603

  7. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Kojiro, D. R.; Carle, G. C.

    1984-01-01

    The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.

  8. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  9. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  10. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey. PMID:10794629

  11. Simulation of Ultrasonic-driven Gas Separations

    SciTech Connect

    Rector, David R.; Greenwood, Margaret S.; Ahmed, Salahuddin; Doctor, Steven R.; Posakony, Gerald J.; Stenkamp, Victoria S.

    2007-06-01

    The separation of components in a gas mixture is important for a wide range of applications. One method for achieving this separation is by passing a traveling acoustic wave through the gas mixture, which creates a flux of the lighter components away from the transducer. A series of simulation were performed to assess the effectiveness of this method for separating a binary mixture of argon and helium using the lattice kinetics method. The energy transport equation was modified to account for adiabatic expansion and compression. The species transport equation was modified to include a barodiffusion term. Simulations were performed on two different scales; detailed acoustic wave simulations to determine the net component flux as a function of local concentration, pressure, etc., and device scale simulations to predict the gas composition as a function of time inside a gas separation cylinder. The method is first validated using data from literature and then applied to mixtures of argon and helium. Results are presented and discussed.

  12. Method for improved gas-solids separation

    DOEpatents

    Kusik, Charles L.; He, Bo X.

    1990-01-01

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.

  13. Method for improved gas-solids separation

    DOEpatents

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  14. Mesoporous Carbon Membranes for Selective Gas Separations

    SciTech Connect

    2009-04-01

    This factsheet describes a study whose focus is on translating a novel class of material developed at Oak Ridge National Laboratory—selfassembled mesoporous carbon—into robust, efficient membrane systems for selective industrial gas separations.

  15. Application of Gas Chromatographic analysis to RPC detectors in the ATLAS experiment at CERN-LHC

    NASA Astrophysics Data System (ADS)

    de Asmundis, R.

    2007-06-01

    Starting from 2007 a large number (1200) Resistive Plate Chambers (RPC) detectors will be used as muon trigger detectors in the ATLAS Experiment at CERN-LHC accelerator. RPC are gaseous detector in which the quality and the stability of the gas mixture as well as the design of the gas supplying system, play a fundamental role in their functioning. RPC are foreseen to work more than ten years in the high radiation environment of ATLAS and the gas mixture acts really as a "lifeguard" for the detectors. For this reason a great attention has been devoted to the gas studies in order to optimize RPC performance, robustness and reliability in a high radiation environment. In this paper we describe the work done to decide how to supply and control in an optimal way the gas to the detectors, in order to ensure their best performance for a long time. The activity, based on Gas Chromatographic (GC) analysis, has been carried on a sample of final RPC working in radiation conditions much more intense than those foreseen for the ATLAS experiment. This has been possible using a high Gamma ray radiation facility available at CERN (GIF). The gas has been supplied using a system similar but at a reduced scale with respect to the final one and including: a recirculation circuit, a humidification module and a three stages purification subsystem.

  16. Recent development in chromatographic techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromatographic techniques play a significant role in the determination of analytes in complex matrices, separating individual sample components prior to their detection. In the analysis of contaminants and chemical residues in foods, gas chromatography (GC) and liquid chromatography (LC) are two m...

  17. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L.; Zhou, Y.; Haase, K.; Mayne, H. R.; Talbot, R.; Sive, B. C.

    2012-06-01

    A gas-chromatographic (GC) instrument was developed for measuring hydrogen cyanide (HCN) in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrichment, (2) a porous polymer PLOT column for analyte separation, (3) a flame thermionic detector (FTD) for sensitive and selective detection, and (4) a dynamic dilution system for calibration. We deployed the instrument for a ∼4 month period from January-June, 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2) in rural Durham, NH. A subset of measurements made during 3-31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10-0.75 ppbv (±5%). The estimated method detection limit (MDL) and accuracy were 0.021 ppbv and 15%, respectively. From 3-31 March 2010, ambient HCN mixing ratios ranged from 0.15-1.0 ppbv (±15%), with a mean value of 0.36 ± 0.16 ppbv (1σ). The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN) measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS), as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with carbon monoxide (CO), which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that the GC-FTD instrument is

  18. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  19. Simultaneous gas-chromatographic determination of four toxic gases generally present in combustion atmospheres. Final report

    SciTech Connect

    Endecott, B.R.; Sanders, D.C.; Chaturvedi, A.K.

    1994-09-01

    Measurement of combustion gases produced by burning aircraft cabin materials poses a continuing limitation for smoke toxicity research. Since toxic effects of gases depend on both their concentrations and duration of exposures, frequent atmosphere sampling is necessary to define the concentration-time curve. A gas chromatographic method was developed for the simultaneous analyses of carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), and hydrogen cyanide (HCN). The method utilized an MTI M200 dual-column gas chromatograph (GC) equipped with 4-m molecular sieve-5A and 8-m PoraPlot-U capillary columns and two low-volume, high-sensitivity thermal conductivity detectors. Detectability (ppm)/retention times (seconds) for the gases were: CO (100/28); H2S (50/26); SO2 (125/76); HCN (60/108). The method was effective for determining these gases in mixtures and in the combustion atmospheres generated by burning wool (CO, HCN, and H2S) and modacrylic (CO and HCN) fabrics. Common atmospheric gaseous or combustion products (oxygen, carbon dioxide, nitrogen, water vapor, and other volatiles) did not interfere with the analyses. However, filtration of the combustion atmospheres was necessary to prevent restriction of the GC sampling inlet by smoke particulates. The speed, sensitivity, and selectivity of this method make it suitable for smoke toxicity research and for evaluating performance of passenger protective breathing equipment.

  20. Toward a Micro Gas Chromatograph/Mass Spectrometer (GC/MS) System

    NASA Astrophysics Data System (ADS)

    Wiberg, D. V.; Eyre, F. B.; Orient, O.; Chutjian, A.; Garkarian, V.

    2001-01-01

    Miniature mass filters (e.g., quadrupoles, ion traps) have been the subject of several miniaturization efforts. A project is currently in progress at JPL to develop a miniaturized Gas Chromatograph/Mass Spectrometer (GC/MS) system, incorporating and/or developing miniature system components including turbomolecular pumps, scroll type roughing pump, quadrupole mass filter, gas chromatograph, precision power supply and other electronic components. The preponderance of the system elements will be fabricated using microelectromechanical systems (MEMS) techniques. The quadrupole mass filter will be fabricated using an X-ray lithography technique producing high precision, 5x5 arrays of quadrupoles with pole lengths of about 3 mm and a total volume of 27 cubic mm. The miniature scroll pump will also be fabricated using X-ray lithography producing arrays of scroll stages about 3 mm in diameter. The target detection range for the mass spectrometer is 1 to 300 atomic mass units (AMU) with are solution of 0.5 AMU. This resolution will allow isotopic characterization for geochronology, atmospheric studies and other science efforts dependant on the understanding of isotope ratios of chemical species. This paper will discuss the design approach, the current state-of-the art regarding the system components and the progress toward development of key elements. The full system is anticipated to be small enough in mass, volume and power consumption to allow in situ chemical analysis on highly miniaturized science craft for geochronology, atmospheric characterization and detection of life experiments applicable to outer planet roadmap missions.

  1. Headspace gas chromatographic method for determination of methyl bromide in food ingredients

    SciTech Connect

    DeVries, J.W.; Broge, J.M.; Schroeder, J.P.; Bowers, R.H.; Larson, P.A.; Burns, N.M.

    1985-11-01

    A headspace gas chromatographic (GC) method, which can be automated, has been developed for determination of methyl bromide. This method has been applied to wheat, flour, cocoa, and peanuts. Samples to be analyzed are placed in headspace sample vials, water is added, and the vials are sealed with Teflon-lined septa. After an appropriate equilibration time at 32 degrees C, the samples are analyzed within 10 h. A sample of the headspace is withdrawn and analyzed on a gas chromatograph equipped with an electron capture detector (ECD). Methyl bromide levels were quantitated by comparison of peak area with a standard. The standard was generated by adding a known amount of methyl bromide to a portion of the matrix being analyzed and which was known to be methyl bromide free. The detection limit of the method was 0.4 ppb. The coefficient of variation (CV) was 6.5% for wheat, 8.3% for flour, 3.3% for cocoa, and 11.6% for peanuts.

  2. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions. PMID:23084486

  3. Isotope Separation in Concurrent Gas Centrifuges

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.

    An analytical equation defining separative power of an optimized concurrent gas centrifuge is obtained for an arbitrary binary mixture of isotopes. In the case of the uranium isotopes the equation gives δU= 12.7(V/700 m/s)2(300 K/T)L, kg SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge, T is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges.

  4. Comparison of a gas chromatographic and colorimetric method for the determination of plasma paracetamol.

    PubMed

    Chambers, R E; Jones, K

    1976-07-01

    Plasma paracetamol levels have generally been determined either by gas chromatography (Stewart and Willis, 1975), which relies on complex equipment, or by spectrophotometry (Knepil, 1974), which can be time-consuming. The introduction by Glynn and Kendal (1975) of a simple colorimetric method based on the reaction of paracetamol with nitrous acid to give 2-nitro-4-acetamidophenol appears to have overcome these disadvantages, thereby providing a suitable procedure for the rapid measurement of plasma paracetamol in cases of overdose. The method was reported to be specific for paracetamol, no interference being caused either by the sulphate and glucuronide conjugates of paracetamol or by a large number of other commonly found drugs. This communication presents the results of a study in which plasma paracetamol levels determined by the colorimetric method were compared with those determined by an established gas chromatographic technique. PMID:952476

  5. Gas chromatographic determination of polysaccharide gums in foods after hydrolysis and derivatization.

    PubMed

    Lawrence, J F; Iyengar, J R

    1985-12-20

    A gas chromatographic method was evaluated for the determination of food grade gums in dairy products, salad dressings and meat sauces. The gums studied were tragacanth, karaya, ghatti, carob, guar, arabic and xanthan gum. The extraction method included removal of fat followed by starch degradation then precipitation of protein. The isolated gums were hydrolysed with trifluoroacetic acid and the resulting neutral monosaccharides converted to their aldonitrile acetate derivatives for determination by gas chromatography. Recoveries from thirteen different commodities averaged 85%. However, the recovery of guar gum from ice cream and cold pack cheese was 42 and 50%, respectively. In a comparison of enzyme hydrolysis and iodine complexation for the removal of starch the former was simpler and provided cleaner extracts than the iodine treatment. Both gave similar results. PMID:4093481

  6. Gas chromatographic determination of sulfuric acid and application to urinary sulfate.

    PubMed

    Masuoka, N; Ubuka, T; Kinuta, M; Yoshida, S; Taguchi, T

    1988-10-01

    A new gas chromatographic method for the determination of sulfate was developed. In this method, sulfate was quantitatively converted to a volatile derivative, dimethyl sulfate, by a two-step procedure. First, sulfate was converted to silver sulfate by reaction with silver oxide, and then to dimethyl sulfate by reaction with methyl iodide. The derivative was analyzed by gas chromatography. Methyl methanesulfonate was used as an internal standard. The method was applied to the determination of total urinary sulfate. Phosphate and chloride ions, which interfered with the present method, were eliminated with the use of basic magnesium carbonate and an excess of silver oxide, respectively. Recovery was over 96% when 5 to 40 mumol/ml of sulfate was added to human urine samples. PMID:3223336

  7. Detection system for a gas chromatograph. [. cap alpha. -methylnaphthalene,. beta. -methylnapthalene

    DOEpatents

    Hayes, J.M.; Small, G.J.

    1982-04-26

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam. 3 figures, 2 tables.

  8. SEPARATION OF GAS MIXTURES BY THERMOACOUSTIC WAVES

    SciTech Connect

    G.W. SWIFT; D.A. GELLER; P.S. SPOOR

    2001-06-01

    Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.

  9. Comparison of different statistical approaches to evaluate the orthogonality of chromatographic separations: application to reverse phase systems.

    PubMed

    Al Bakain, Ramia; Rivals, Isabelle; Sassiat, Patrick; Thiébaut, Didier; Hennion, Marie-Claire; Euvrard, Guillaume; Vial, Jérôme

    2011-05-20

    Selectivity of phase system is of primary concern when designing a bidimensional chromatographic system and looking for the highest degree of orthogonality between the two separations. Several statistical or geometrical criteria can potentially be used to measure the degree of orthogonality. A comparison of eight candidate criteria has been carried out in this study. Analysis of variance (ANOVA) was used to evaluate the relevance of each criterion and its ability to reveal the significance of the influence of factors like pH, stationary phase, and organic modifier. Experimentally, a set of 32 chromatographic systems was evaluated by the same generic gradient with 63 probe solutes, likely to be present in biological and/or environmental samples and covering a wide range of physico-chemical properties: acidic, basic and neutral compounds with different pKa, molecular mass and hydrophobicity (logP). Each chromatographic system was defined by the nature of the stationary phase (8 different silica or grafting chemistries), the pH of the aqueous fraction of the mobile phase (2.5 or 7.0) and the nature of the organic modifier (acetonitrile or methanol). The orthogonality of the 496 couples of chromatographic systems was evaluated and ranked using the eight different approaches: the three correlation coefficients (Pearson, Spearman and Kendall), two geometric criteria characterizing the coverage of the 2D separation space, Slonecker's information similarity and two chi-square statistics of independence between normalized retention times. In fact, there were only seven distinct criteria, since we established the analytical equivalence between the rankings with the likelihood ratio statistics and Slonecker's information similarity. Kendall's correlation coefficient appeared to be the best measure of orthogonality since, according to ANOVA, it exhibited the highest sensitivity to all experimental factors. The chi-square measures, and hence Slonecker's information similarity

  10. New chromatographic materials for the separation and concentration of uranium from environmental matrices

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Chiarizia, R.; Diamond, H.

    1991-01-01

    Extraction chromatography, in which an inert support is impregnated with an extractant solution to form a chromatographic resin, combines the specificity of extraction with the ease of operation of an ion exchange column, thereby overcoming the principal drawbacks of the two methods when used alone. Previous work in this laboratory on the design of selective extractants for use in nuclear fuel reprocessing and in nuclear waste treatment has led to the development of several new phosphorus-based neutral organic extractants. In this report, we examine the use of two of these materials as stationary phases in extraction chromatography for the isolation of uranium from environmental samples. 2 refs., 2 figs., 1 tab.

  11. Interfacing a robotic station with a gas chromatograph for the full automation of the determination of organochlorine pesticides in vegetables

    SciTech Connect

    Torres, P.; Luque de Castro, M.D.

    1996-12-31

    A fully automated method for the determination of organochlorine pesticides in vegetables is proposed. The overall system acts as an {open_quotes}analytical black box{close_quotes} because a robotic station performs the prelimninary operations, from weighing to capping the leached analytes and location in an autosampler of an automated gas chromatograph with electron capture detection. The method has been applied to the determination of lindane, heptachlor, captan, chlordane and metoxcychlor in tea, marjoram, cinnamon, pennyroyal, and mint with good results in most cases. A gas chromatograph has been interfaced to a robotic station for the determination of pesticides in vegetables. 15 refs., 4 figs., 2 tabs.

  12. Simultaneous gas chromatographic determination of four toxic gases generally present in combustion atmospheres.

    PubMed

    Endecott, B R; Sanders, D C; Chaturvedi, A K

    1996-01-01

    The measurement of combustion gases produced by burning aircraft cabin materials poses a continuing limitation for smoke toxicity research. Because toxic effects of gases depend on both their concentrations and the duration of exposure, frequent atmosphere sampling is necessary to define the gas concentration-exposure time curve. A gas chromatographic (GC) method was developed for the simultaneous analyses of carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), and hydrogen cyanide (HCN). The method used an MTI M200 dual-column gas chromatograph equipped with 4-m molecular sieve-5A and 8-m PoraPlot-U wall-coated capillary columns and two low-volume, high-sensitivity thermal conductivity detectors. Detectability (in parts per million [ppm]) and retention times (in seconds) for the gases were as follows: CO, 100 ppm, 28 s; H2S, 50 ppm, 26 s; SO2, 125 ppm, 76 s; and HCN, 60 ppm, 108 s. The method was effective for determining these gases in mixtures and in the combustion atmospheres generated by burning wool (CO, HCN, and H2S) and modacrylic fabrics (CO and HCN). Common atmospheric gaseous or combustion products (oxygen, carbon dioxide, nitrogen, water vapor, and other volatiles) did not interfere with the analyses. However, filtration of the combustion atmospheres was necessary to prevent restriction of the GC sampling inlet by smoke particulates. The speed, sensitivity, and selectivity of this method make it suitable for smoke toxicity research and for evaluating performance of passenger protective breathing equipment. Also, this method can potentially be modified to analyze these gases when they are liberated from biosamples. PMID:8735201

  13. Comparison of nano and conventional liquid chromatographic methods for the separation of (+)-catechin-ethyl-malvidin-3-glucoside diastereoisomers.

    PubMed

    Kučera, Lukáš; Fanali, Salvatore; Aturki, Zeineb; Pospíšil, Tomáš; Bednář, Petr

    2016-01-01

    Nano-liquid chromatography and conventional HPLC were used for the separation of diastereomers of (+)-catechin-ethyl-malvidin-3-glucoside. Those bridged anthocyanin dyes were obtained by reaction of (+)-catechin with malvidin-3-glucoside in the presence of acetaldehyde. Both diastereomers were isolated with semipreparative chromatography and their structures were confirmed by nuclear magnetic resonance and mass spectrometry. In-laboratory prepared capillary columns packed with fully porous particles Chromosphere C18, dp=3μm, core-shell particles Kinetex C18, dp=2.6μm (100μm i.d.) and monolithic column Chromolith CapRod (100μm i.d.) were used for the separation of (+)-catechin, malvidin-3-glucoside and both diastereomers. Chromosphere C18 stationary phase provided the best chromatographic performance. Mobile phase containing water:acetonitrile (80:20) acidified with trifluoroacetic acid (0.1%, v/v/v) was used in an isocratic elution mode with a flow rate of 360nLmin(-1). Separation of studied compounds was achieved in less than 7min under optimized conditions. The nano-liquid chromatographic method and a conventional HPLC one using the same fully porous particles (Chromosphere C18, 3μm, 100mm×4.6mm) were compared providing higher separation efficiency with the first analytical method and similar selectivity. A better peak symmetry and higher resolution of the studied diastereomers was achieved by conventional chromatography. Nevertheless, nano-liquid chromatography appeared to be useful for the separation of complex anthocyanin dyes and can be utilized for their analysis in plant and food micro-samples. The developed method was used for analysis of red wine grape pomace. PMID:26433264

  14. [Gas chromatographic method for the analysis of polychlorinated biphenyls in pine needles].

    PubMed

    Zhu, X; Zhang, X; Yao, J; Liu, Z; Lu, P

    1999-07-01

    Polychlorinated biphenyls (PCBs) are a class of 209 chemical compounds, in which 1-10 chlorine atoms are attached to a biphenyl molecule. PCBs are members of halogenated aromatic group of environmental pollutants that have been identified worldwide in diverse environmental matrices. PCBs in air, soils, sediment, water, transformer oils and other environmental matrices have been determined in the past years. In this work a method for routine analysis of PCBs in pine needles has been developed. First, extractions were carried out in Soxhlet apparatus with n-hexane as solvent. Then, a silica gel chromatographic column was applied to pretreat the pine needle samples. The reference standard used was clophen 50. The recovery was about 90%, so the feasibility and reliability were assured. After the analysis of PCBs in pine needle samples from four different regions, the distribution of PCBs in environment can be discussed and monitored. In this method, a Shimadzu GC-7A gas chromatograph equipped with a 63Ni electron capture detector was used for the analysis of PCBs. From the results, we can see the PCB pollution in different regions. So evaluation of air pollution level through foliage data is feasible. The sample preparation and analytical method mentioned in this paper is reliable and simple. PMID:12552848

  15. Separation of gas mixtures by supported complexes

    SciTech Connect

    Nelson, D.A.; Lilga, M.A.; Hallen, R.T.; Lyke, S.E.

    1986-08-01

    The goal of this program is to determine the feasibility of solvent-dissolved coordination complexes for the separation of gas mixtures under bench-scale conditions. In particular, mixtures such as low-Btu gas are examined for CO and H/sub 2/ separation. Two complexes, Pd/sub 2/(dpm)/sub 2/Br/sub 2/ and Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, were examined in a bench-scale apparatus for the separation of binary (CO-N/sub 2/ or H/sub 2/-N/sub 2/) and quinary (H/sub 2/, CO, CO/sub 2/, CH/sub 4/, and N/sub 2/) mixtures. The separation of CO-N/sub 2/ was enhanced by the presence of the palladium complex in the 1,1,2-trichloroethane (TCE) solvent, especially at high gas and low liquid rates. The five-component gas mixture separation with the palladium complex in TCE provided quite unexpected results based on physical solubility and chemical coordination. The complex retained CO, while the solvent retained CO/sub 2/, CH/sub 4/, and N/sub 2/ to varying degrees. This allowed the hydrogen content to be enhanced due to its low solubility in TCE and inertness to the complex. Thus, a one-step, hydrogen separation can be achieved from gas mixtures with compositions similar to that of oxygen-blown coal gas. A preliminary economic evaluation of hydrogen separation was made for a system based on the palladium complex. The palladium system has a separation cost of 50 to 60 cents/MSCF with an assumed capital investment of $1.60/MSCF of annual capacity charged at 30% per year. This assumes a 3 to 4 year life for the complex. Starting with a 90% hydrogen feed, PSA separation costs are in the range of 30 to 50 cents/MSCF. The ruthenium complex was not as successful for hydrogen or carbon monoxide separation due to unfavorable kinetics. The palladium complex was found to strip hydrogen gas from H/sub 2/S. The complex could be regenerated with mild oxidants which removed the sulfur as SO/sub 2/. 24 refs., 26 figs., 10 tabs.

  16. Capillary gas chromatography of amino acids, including asparagine and glutamine: sensitive gas chromatographic-mass spectrometric and selected ion monitoring gas chromatographic-mass spectrometric detection of the N,O(S)-tert.-butyldimethylsilyl derivatives.

    PubMed

    Chaves Das Neves, H J; Vasconcelos, A M

    1987-04-17

    Amino acids and the amino acid amides glutamine and asparagine can be simultaneously derivatized to the corresponding N,O(S)-tert.-butyldimethylsilyl derivatives in a one-step reaction with N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide in acetonitrile. The solution is used directly for gas chromatography (GC). Losses due to evaporation steps are avoided. Except for the more basic amino acids, derivatization occurs at room temperature. Lysine, arginine and histidine require additional heating at 150 degrees C for 2.5 h in order to complete derivatization. The derivatization has high reproducibility. The response factors relative to norvaline or cycloleucine lie between 0.40 and 1.30. Arginine is the most difficult amino acid to derivatize. The size of the tert.-butyldimethylsilyl (TBDMS) group prevents multiple silylation of the nitrogen atoms. Only a single peak is observed for each compound. Twenty-seven amino acid (and glutamine and asparagine) derivatives were simultaneously chromatographed and well separated in a single run on a 25 m X 0.20 mm I.D. glass capillary column coated with OV-1. The TBDMS derivatives possess very characteristic EI mass spectra at 70 eV, with intense diagnostic ions. This makes them very appropriate for GC-mass spectrometric (MS) work and selected ion monitoring GC-MS at the picomole level. The detection limit for arginine as the TBDMS derivative is less than 0.3 ng. The usefulness of the method is illustrated by the detection of amino acids in a peptide hydrolysate obtained from 1 microgram of bovin insulin B-chain. PMID:3597576

  17. Direct gas chromatographic determination of the two isomeric insecticides, aldicarb and butocarboxime and their toxic metabolites: application to residue analysis in crops and leaves.

    PubMed

    Aharonson, N; Muszkat, L

    1985-02-01

    A gas-chromatographic method is described for determination of residues of butocarboxime (Drawin), its structural isomer aldicarb (Temik), and their toxic sulfoxide and sulfone metabolites. These compounds were determined intact, by gas chromatography employing a thermionic specific detector (TSD). Breakdown of these relatively thermally unstable compounds was avoided by lowering the inlet temperature to 150 degrees C, by keeping column temperature as low as possible, and by using a low-load liquid phase (2% of OV-17 on Gas-Chrom Q). These compounds were determined in enriched extracts of samples of tomatoes and apples and also in the leaves of citrus and cotton. The method is suitable for the separation, differentiation and determination of the two isomers and their metabolites at an enrichment level of 0.1 micrograms/g of fresh weight. The results were confirmed by gas chromatography--chemical-ionization mass-spectrometry. PMID:3984517

  18. Crosslinked Polybenzimidazole Membrane For Gas Separation

    DOEpatents

    Jorgensen, Betty S.; Young, Jennifer S.; Espinoza, Brent F.

    2005-09-20

    A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by layering a solution of polybenzimidazole (PBI) and a,a'dibromo-p-xylene onto a porous support and evaporating solvent. A supported membrane of cross-linked poly-2,2'-(m-phenylene)-5,5'-bibenzimidazole unexpectedly exhibits an enhanced gas permeability compared to the non-cross linked analog at temperatures over 265° C.

  19. Derivatization and gas chromatographic-mass spectrometric detection of anabolic steroid residues isolated from edible muscle tissues.

    PubMed

    Daeseleire, E; De Guesquière, A; Van Peteghem, C

    1991-01-01

    A method was developed for the detection of anabolic steroid residues in edible muscle tissues. After enzymic digestion of the tissue and purification on disposable C18 solid-phase extraction columns, the extract was injected onto a C18 reversed-phase high-performance liquid chromatographic column. Three fractions or windows were collected, each containing specific analytes. After evaporation to dryness, the residues were subjected to a derivatization procedure which yielded suitable derivatives. After gas chromatographic-mass spectrometric analysis, both gas chromatographic retention data and mass spectral data were used for the detection and identification of nortestosterone, testosterone, estradiol, ethinylestradiol, trenbolone, methyltestosterone, chlormadinone acetate, medroxyprogesterone acetate and megestrol acetate. PMID:2026730

  20. Advances in Gas Chromatographic Methods for the Identification of Biomarkers in Cancer

    PubMed Central

    Kouremenos, Konstantinos A.; Johansson, Mikael; Marriott, Philip J.

    2012-01-01

    Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify biomarkers in different forms of cancer has become increasingly popular over the last decade, mainly due to new instruments and improved bioinformatics. However, despite some progress, the identification of biomarkers has shown to be a difficult task with few new biomarkers (excluding recent genetic markers) being considered for introduction to clinical analysis. This review describes recent advances in gas chromatographic methods for the identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and treatment, a background to metabolic changes in tumors, an overview of current GC methods, and collectively presents the scope and outlook of GC methods in oncology. PMID:23074381

  1. Gas chromatographic-mass spectrometric analysis and subsequent quality improvement of plastic infusion packaging materials.

    PubMed

    Fekete, Z; Rófusz, T; Angyal, V; Szabó-Révész, P; Aigner, Z

    2014-08-01

    Although the opalescence of sterile transparent plastic materials utilized for the packaging of parenteral infusion drugs is a serious quality problem, most suppliers do not report the exact compositions of such polymers, and no literature data are available. Similarly, no information is available as concerns the potential incompatibility of the inner bag and the overpouch. Our gas chromatographic-mass spectrometric study revealed that the cause of the opalescence is the presence of a low-molecular-weight slip additive, 13-docosenamide (erucamide), which is transferred into the primary infusion bag from the overpouch during the heat-sterilization process. Autoclaving trials confirmed the analytical results. In view of these findings, a new slip additive-free overpouch has been produced as secondary packaging material, which does not give rise to opalescence. PMID:24863371

  2. Rapid gas-liquid chromatographic method for determination of sulfathiazole in swine feed.

    PubMed

    Munns, R K; Roybal, J E

    1983-03-01

    A gas-liquid chromatographic (GLC) method for determining residues of sulfathiazole (STZ) in swine feed has been developed. Feed is extracted first with acetone and then with ammonia-acetone. STZ is isolated from other feed extractives on a Sephadex LH-20 column with methanol-toluene. The sulfa residues are methylated with diazomethane, and the eluate is evaporated to dryness. A solution containing an internal standard of methyl sulfasymazine is used to dilute the sample before injection onto an OV-25 GLC column. The precision of the method was determined by assaying 10 sets of feed spiked at 0.5, 1, 2, and 5 ppm STZ. The mean recoveries and coefficients of variation were 90.2 (5.90), 89.5 (4.67), 87.4 (5.62), and 87.7% (4.29), respectively. The critical steps of the method, including the stability of STZ, were also determined. PMID:6853414

  3. Rapid gas-liquid chromatographic method for determination of sulfamethazine in swine feed.

    PubMed

    Munns, R K; Roybal, J E

    1982-09-01

    A gas-liquid chromatographic method is described for the quantitative determination of trace amounts of sulfamethazine in swine feed. Sulfamethazine is extracted in ammoniated acetone and isolated from other extractants on a Sephadex LH-20 column. The eluate is methylated with diazomethane and evaporated to dryness. The residue is dissolved in a solvent containing an internal standard of methyl sulfasymazine before being injected onto an OV-25 GLC column. An estimation of precision was established by assaying 10 sets of swine feed fortified with 0.5, 1,2, and 5 ppm SMZ. Mean recoveries were 96.0, 94.3, 93.5, and 94.0%, respectively, with an average coefficient of variation of 3.07%. The critical steps and ruggedness of the method were also determined. PMID:7130074

  4. [Gas chromatographic determination of formic acid in urine as carbon monoxide (author's transl)].

    PubMed

    Angerer, J

    1976-02-01

    A gas chromatographic method for determining formic acid in human urine is described. The analytical reliability of this method fullfills the criteria of statistical quality control. The rate of recovery is 101.2 to 105.7% the variability coefficients lie between 2.9 and 7.2%. The selectivity of this method is demonstrated by analysing a group of components normally occuring in urine which did not interfere with the determination of formic acid. The detection limit of about 4.3 mumol/1 formic acid in urine permits the determination of the concentration of formic acid in the urine of normal persons. The concentrations of formic acid in the urine of a group of normal persons lies between 0 and 2.79 mmol/1. The average concentration was 0.39 +/- 0.60 mmol/1. PMID:1249528

  5. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data.

    PubMed

    Seisonen, Sirli; Vene, Kristel; Koppel, Kadri

    2016-11-01

    A lot of research has been conducted in correlating the sensory properties of food with different analytical measurements in recent years. Various statistical methods have been used in order to get the most reliable results and to create prediction models with high statistical performance. The current review summarises the latest practices in the field of correlating attributes from sensory analysis with volatile data obtained by gas chromatographic analysis. The review includes the origin of the data, different pre-processing and variable selection methods and finally statistical methods of analysis and validation. Partial least squares regression analysis appears as the most commonly used statistical method in the area. The main shortcomings were identified in the steps of pre-processing, variable selection and also validation of models that have not gained enough attention. As the association between volatiles and sensory perception is often nonlinear, future studies should test the application of different nonlinear techniques. PMID:27211679

  6. Detection of discoloration in diesel fuel based on gas chromatographic fingerprints.

    PubMed

    Krakowska, Barbara; Stanimirova, Ivana; Orzel, Joanna; Daszykowski, Michal; Grabowski, Ireneusz; Zaleszczyk, Grzegorz; Sznajder, Miroslaw

    2015-02-01

    In the countries of the European Community, diesel fuel samples are spiked with Solvent Yellow 124 and either Solvent Red 19 or Solvent Red 164. Their presence at a given concentration indicates the specific tax rate and determines the usage of fuel. The removal of these so-called excise duty components, which is known as fuel "laundering", is an illegal action that causes a substantial loss in a government's budget. The aim of our study was to prove that genuine diesel fuel samples and their counterfeit variants (obtained from a simulated sorption process) can be differentiated by using their gas chromatographic fingerprints that are registered with a flame ionization detector. To achieve this aim, a discriminant partial least squares analysis, PLS-DA, for the genuine and counterfeit oil fingerprints after a baseline correction and the alignment of peaks was constructed and validated. Uninformative variables elimination (UVE), variable importance in projection (VIP), and selectivity ratio (SR), which were coupled with a bootstrap procedure, were adapted in PLS-DA in order to limit the possibility of model overfitting. Several major chemical components within the regions that are relevant to the discriminant problem were suggested as being the most influential. We also found that the bootstrap variants of UVE-PLS-DA and SR-PLS-DA have excellent predictive abilities for a limited number of gas chromatographic features, 14 and 16, respectively. This conclusion was also supported by the unitary values that were obtained for the area under the receiver operating curve (AUC) independently for the model and test sets. PMID:25407430

  7. Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 359 first sols

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Navarro-Gonzalez, Rafael; Mahaffy, Paul; Buch, Arnaud; Goutail, Jean Pierre; Cabane, Michel; Glavin, Daniel; Correia, Jean-Jacques; Coll, Patrice; Freissinet, Caroline; Meftah, Mustapha; Coscia, David; Teinturier, Samuel; Brunner, Anna; Bonnet, Jean-Yves; Millan, Maeva; Pascalin

    Amongst the SAM suite of instruments, SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of windblown dust and sand collected at the Rocknest site, while the second site analyzed was a basin called “Yellowknife Bay” where two holes were drilled (John Klein & Cumberland) and analysis showed these sites to be a fluvio-lacustrine sediment.. For their analysis, these samples were subjected to a pyrolysis at temperatures reaching about 850°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of a thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10mol). His channel is thus complementary to the mass spectrometer detection for quantification of such species, as this last instrument does not have linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC is representative of those obtained during calibrations of the instrument in laboratory, and also that results are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions (middle of the 70’s). Moreover, the complementarity of GC towards MS is also shown, both by allowing the

  8. Chromatographic cation exchange separation of decigram quantities of californium and other transplutonium elements

    SciTech Connect

    Benker, D.E.; Chattin, F.R.; Collins, E.D.; Knauer, J.B.; Orr, P.B.; Ross, R.G.; Wiggins, J.T.

    1980-01-01

    Decigram quantities of highly radioactive transplutonium elements are routinely partitioned at TRU by chromatographic elution from cation resin using AHIB eluent. By using two high-pressure ion exchange columns, a small one for the initial loading of the feed and a large one for the elution, batch runs containing up to 200 mg of /sup 252/Cf can be made in about 5 hours (2 hours to load the feed and 3 hours for the elution). The number of effluent product fractions and the amount of actinides that must be collected in intermediate fractions are minimized by monitoring response from a flow-through alpha-detector. This process has been reliable and relatively easy to operate, and will continue to be used for partitioning transplutonium elements at TRU.

  9. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  10. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  11. Development of a harmonised method for the profiling of amphetamines: III. Development of the gas chromatographic method.

    PubMed

    Andersson, Kjell; Jalava, Kaisa; Lock, Eric; Finnon, Yvonne; Huizer, Henk; Kaa, Elisabet; Lopes, Alvaro; Poortman-van der Meer, Anneke; Cole, Michael D; Dahlén, Johan; Sippola, Erkki

    2007-06-14

    This study focused on gas chromatographic analysis of target compounds found in illicit amphetamine synthesised by the Leuckart reaction, reductive amination of benzyl methyl ketone, and the nitrostyrene route. The analytical method was investigated and optimised with respect to introduction of amphetamine samples into the gas chromatograph and separation and detection of the target substances. Sample introduction using split and splitless injection was tested at different injector temperatures, and their ability to transfer the target compounds to the GC column was evaluated using cold on column injection as a reference. Taking the results from both techniques into consideration a temperature of 250 degrees C was considered to be the best compromise. The most efficient separation was achieved with a DB-35MS capillary column (35% diphenyl 65% dimethyl silicone; 30 m x 0.25 mm, d(f) 0.25 microm) and an oven temperature program that started at 90 degrees C (1 min) and was increased by 8 degrees C/min to 300 degrees C (10 min). Reproducibility, repeatability, linearity, and limits of determination for the flame ionisation detector (FID), nitrogen phosphorous detector (NPD), and mass spectrometry (MS) in scan mode and selected ion monitoring (SIM) mode were evaluated. In addition, selectivity was studied applying FID and MS in both scan and SIM mode. It was found that reproducibility, repeatability, and limits of determination were similar for FID, NPD, and MS in scan mode. Moreover, the linearity was better when applying FID or NPD whereas the selectivity was better when utilising the MS. Finally, the introduction of target compounds to the GC column when applying injection volumes of 0.2 microl, 1 microl, 2 microl, and 4 microl with splitless injection respectively 1 microl with split injection (split ratio, 1:40) were compared. It was demonstrated that splitless injections of 1 microl, 2 microl, and 4 microl could be employed in the developed method, while split

  12. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N.

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  13. Metering Gas Strut for Separating Rocket Stages

    NASA Technical Reports Server (NTRS)

    Floyd, Brian

    2010-01-01

    A proposed gas strut system would separate a liquid-fueled second rocket stage from a solid-fueled first stage using an array of pre-charged struts. The strut would be a piston-and-cylinder mechanism containing a compressed gas. Adiabatic expansion of the gas would drive the extension of the strut. The strut is designed to produce a force-versus-time profile, chosen to prevent agitation of the liquid fuel, in which the force would increase from an initial low value to a peak value, then decay toward the end of the stroke. The strut would include a piston chamber and a storage chamber. The piston chamber would initially contain gas at a low pressure to provide the initial low separation force. The storage chamber would contain gas at a higher pressure. The piston would include a longitudinal metering rod containing an array of small holes, sized to restrict the flow gas between the chambers, that would initially not be exposed to the interior of the piston chamber. During subsequent expansion, the piston motion would open more of the metering holes between the storage and piston chambers, thereby increasing the flow of gas into the piston chamber to produce the desired buildup of force.

  14. Synthesis of a further improved porous polymer for the separation of nitrogen, oxygen, argon, and carbon monoxide by gas chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.

    1986-01-01

    A further improvement has been made in the synthesis of an N-type porous polymer for the separation of permanent gases. Changing the ratios of reactants and diluting the Hi-DVB with styrene led to a porous polymer gas chromatographic packing which is superior to commercial products and to the author's own previously reported custom-made polymer.

  15. EVALUATION OF PHOTOVAC 10S50 PORTABLE PHOTOIONIZATION GAS CHROMATOGRAPH FOR ANALYSIS OF TOXIC ORGANIC POLLUTANTS IN AMBIENT AIR

    EPA Science Inventory

    The objective of the study was to evaluate the Photovac 10S50 portable photoionization gas chromatograph as a monitor for fourteen selected toxic organic vapors in ambient air. These included benzene, toluene, bromo- and chloro-benzene, o-xylene, and nine halo-methanes, ethanes, ...

  16. GAS CHROMATOGRAPHIC DETERMINATION OF AVIATION GASOLINE AND JP-4 JET FUEL IN SUBSURFACE CORE SAMPLES (JOURNAL VERSION)

    EPA Science Inventory

    A new gas chromatographic procedure for quantifying levels of aviation gasoline (avgas) and JP-4 jet fuel contamination in soils is described. The fuel is extracted from a small quantity of soil or subsurface material, typically about 6 g, using 3 mL of methylene chloride. The ex...

  17. EVALUATION OF THE BASIC GC/MS (GAS CHROMATOGRAPHIC/MASS SPECTROMETRIC) COMPUTER ANALYSIS TECHNIQUE FOR POLLUTANT ANALYSIS

    EPA Science Inventory

    The basic gas chromatographic/mass spectrometric/computer technique for the analysis of vapor-phase organic compounds collected on a solid sorbent was evaluated. Emphasis was placed on the assessment of performance and improvement in techniques in the following areas: (1) wide-bo...

  18. Oral intake of a toluene-containing thinner. Effects and headspace gas chromatographic analytical diagnosis.

    PubMed

    Zahlsen, K; Rygnestad, T; Nilsen, O G

    1985-01-01

    After an accidental oral intake of a paint thinner, the constituents were identified in stomach content using headspace gas chromatography. The composition indicated ingestion of a commonly used thinner containing 60-70% toluene, 20-25% n-butylacetate and 10-15% of ethanol. A toluene concentration of 22.0 mg/kg was measured in serum in contrast to n-butylacetate which was not detected. Ethanol concentration was 1.85 g/kg, most of this was due to ethanol ingestion before the intake of thinner. The half life of toluene in serum was 8.5 h initially, which increased to 14 h after 19 h. An effect on liver function was demonstrated by increased activity of serum transaminases. Compared with the upper normal limits ASAT and ALAT were increased by 6 and 2.5 times, respectively. For both parameters the highest activity was seen 40 hours after admission and normal levels were achieved after 7 days. It is concluded that toluene is readily absorbed by ingestion of toluene-containing thinners, and that the function of the human liver is transiently affected. For screening purposes gas chromatography proved to be a useful method for the analytical diagnosis in cases of organic solvent intoxication. The use of the headspace technique further improved the speed of analysis and eliminated contamination of the gas chromatographic system. PMID:3868371

  19. Nanoporous chalcogenides for adsorption and gas separation.

    PubMed

    Ori, Guido; Massobrio, Carlo; Pradel, Annie; Ribes, Michel; Coasne, Benoit

    2016-05-21

    The adsorption and gas separation properties of amorphous porous chalcogenides such as GeS2 are investigated using statistical mechanics molecular simulation. Using a realistic molecular model of such amorphous adsorbents, we show that they can be used efficiently to separate different gases relevant to environmental and energy applications (H2, CO2, CH4, N2). In addition to shedding light on the microscopic adsorption mechanisms, we show that coadsorption in this novel class of porous materials can be described using the ideal adsorbed solution theory (IAST). Such a simple thermodynamic model, which allows avoiding complex coadsorption measurements, describes the adsorption of mixture from pure component adsorption isotherms. Our results, which are found to be in good agreement with available experimental data, paves the way for the design of gas separation membranes using the large family of porous chalcogenides. PMID:27126718

  20. New reagents for enhanced liquid chromatographic separation and charging of intact protein ions for electrospray ionization mass spectrometry.

    PubMed

    Valeja, Santosh G; Tipton, Jeremiah D; Emmett, Mark R; Marshall, Alan G

    2010-09-01

    Electrospray ionization produces multiply charged ions, thereby lowering the mass-to-charge ratio for peptides and small proteins to a range readily accessed by quadrupole ion trap, orbitrap, and ion cyclotron resonance (ICR) mass analyzers (m/z = 400-2000). For Fourier transform mass analyzers (orbitrap and ICR), higher charge also improves signal-to-noise ratio, mass resolution, and mass accuracy. Addition of m-nitrobenzyl alcohol (m-NBA) or sulfolane has previously been shown to increase the charge states of proteins. Moreover, polar aprotic dimethylformamide (DMF) improves chromatographic separation of proteolytic peptides for mass analysis of solution-phase protein hydrogen/deuterium exchange for improved (78-96%) sequence coverage. Here, we show that addition of each of the various modifiers (DMF, thiodiglycol, dimethylacetamide, dimethylsulfoxide, and N-methylpyrrolidone) can significantly increase the charge states of proteins up to 78 kDa. Moreover, incorporation of the same modifiers into reversed-phase liquid chromatography solvents improves sensitivity, charging, and chromatographic resolution for intact proteins. PMID:20704305

  1. [Contamination mechanism and regeneration strategies of chromatographic resin in separation process for expression product from mammary gland bioreactor].

    PubMed

    Sun, Xiyan; Zhang, Yan; Li, Yan; Luo, Jian; Qin, Peiyong; Su, Zhiguo

    2011-11-01

    This study focused on the contamination mechanism and regeneration strategies of sulfopropyl ion exchange resin (SP Sepharose FF) during the separation of recombinant human lactoferrin from transgenic bovine milk. We analyzed primary constituents' contents in chromatorgraphic material and fractions. The results showed that the lipid in milk can clog the column or adhere to the resin through hydrophobic interaction, leading to an increase in column pressure. Some casein molecules were found to adsorb onto the resin through electrostatic interaction, therefore the adsorption capacity was decreased. There was no direct interaction between lactose and the resin in the chromatorgraphic process. Increased continuous chromatographic cycles and prolonged time interval between protein purification and column regeneration could enhance the undesirable interaction between the contaminants and resin, thus lowering the regeneration efficiency. NaOH was found to be effective in the removal of lipid and casein molecules from the column. Furthermore, normal microstructure and chromatographic performance of the ion exchanger was recovered after this cleaning procedure. PMID:22393720

  2. Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, H.; Atreya, S.; Demick-Montelara, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Owen, T.; Raaen, E.; Way, S.

    2006-01-01

    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of m/z from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, methane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the

  3. Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso; Atreya, S.; Demick-Monelara, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Owen, T.; Raaen, E.; Way, S.

    2006-01-01

    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of mlz from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, ethane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the

  4. Measurements of organic molecular markers in California using comprehensive 2-Dimensional Gas Chromatograph High-Resolution Time-of-Flight Mass Spectrometry (GCxGC-HRTOF-MS)

    NASA Astrophysics Data System (ADS)

    Chan, A. W.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Schilling, K. A.; Craven, J. S.; Metcalf, A. R.; Hersey, S. P.; Rubitschun, C. L.; Lin, Y. H.; Offenberg, J. H.; Surratt, J. D.; Seinfeld, J.; Hering, S. V.; Goldstein, A. H.

    2011-12-01

    Understanding the sources and transformation processes of organic aerosol requires detailed speciation of organic compounds. Molecular markers specific to individual sources help determine the contribution of each source to organic aerosol emissions. In previous work using one-dimensional gas-chromatograph mass spectrometry (GC/MS), less than 10-20% of the organic fraction has been identified, with a large contribution of unresolved complex mixture (UCM). Two-dimensional gas-chromatograph is a novel technique which provides excellent resolution to separate compounds buried in this complex mixture. In addition to a volatility-based chromatographic separation, compounds are further separated on a second column based on their polarities. Here we report measurements of more than 200 resolved compounds observed on filters collected during CalNex 2010 in Bakersfield and Pasadena, and during a large biomass burning event in the Los Angeles area (Station Fire). High volume filter samples are thermally desorbed in a Gerstel Thermal Desorption System (TDS2) and preconcentrated on a cooled inlet (CIS). The compounds are then analyzed by comprehensive 2-dimensional GC using a Zoex modulator, followed by high-resolution mass spectrometry (Tofwerks). Compound identification is carried out by comparison of retention times with known standards, mass spectral library match, and identification of molecular fragments by exact mass. A wide range of compounds are observed: n-alkanes, polyaromatic hydrocarbons, and oxygenated compounds such as acids, esters and ketones. While levoglucosan was observed in organic aerosol produced during the Station Fire, many other compounds revealed by two-dimensional GC (such as resin acids, lignin pyrolysis products) show elevated signals, suggesting that other molecular markers can provide additional information about aerosol formation processes during biomass burning events.

  5. Block copolymer ion gels for gas separation

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyan; Lodge, Timothy

    2012-02-01

    Carbon dioxide removal from light gases (eg. N2, CH4, and H2) is a very important technology for industrial applications such as natural gas sweetening, CO2 capture from coal-fire power plant exhausts and hydrogen production. Current CO2 separation method uses amine-absorption, which is energy-intensive and requires frequent maintenance. Membrane separation is a cost-effective solution to this problem, especially in small-scale applications. Ionic liquids have recently received increasing interest in this area because of their selective solubility for CO2 and non-volatility. However, ionic liquid itself lacks the persistent structure and mechanical integrity to withstand the high pressure for gas separation. Here, we report the development and gas separation performances of physically crosslinked ion gels based on self-assembly of ABA-triblock copolymers in ionic liquids. Three different types of polymers was used to achieve gelation in ionic liquids. Specifically, a triblock copolymer ion gel with a polymerized ionic liquid mid-block shows performances higher than the upper bound of well-known ``Robeson Plot'' for CO2/N2.

  6. Establishing high temperature gas chromatographic profiles of non-polar metabolites for quality assessment of African traditional herbal medicinal products.

    PubMed

    Bony, Nicaise F; Libong, Danielle; Solgadi, Audrey; Bleton, Jean; Champy, Pierre; Malan, Anglade K; Chaminade, Pierre

    2014-01-01

    The quality assessment of African traditional herbal medicinal products is a difficult challenge since they are complex mixtures of several herbal drug or herbal drug preparations. The plant source is also often unknown and/or highly variable. Plant metabolites chromatographic profiling is therefore an important tool for quality control of such herbal products. The objective of this work is to propose a protocol for sample preparation and gas chromatographic profiling of non-polar metabolites for quality control of African traditional herbal medicinal products. The methodology is based on the chemometric assessment of chromatographic profiles of non-polar metabolites issued from several batches of leaves of Combretum micranthum and Mitracarpus scaber by high temperature gas chromatography coupled to mass spectrometry, performed on extracts obtained in refluxed dichloromethane, after removal of chlorophyll pigments. The method using high temperature gas chromatography after dichloromethane extraction allows detection of most non-polar bioactive and non-bioactive metabolites already identified in leaves of both species. Chemometric data analysis using Principal Component Analysis and Partial Least Squares after Orthogonal Signal Correction applied to chromatographic profiles of leaves of Combretum micranthum and Mitracarpus scaber showed slight batch to batch differences, and allowed clear differentiation of the two herbal extracts. PMID:24211706

  7. Gas chromatographic and mass spectrometric analysis of polychlorinated biphenyls in human placenta and cord blood

    SciTech Connect

    Ando, M.; Saito, H.; Wakisaka, I.

    1986-10-01

    Gas chromatographic and mass spectrometric analyses of polychlorinated biphenyls (PCBs) in placenta, maternal blood, cord blood, and milk were carried out. Trichlorobiphenyl, tetrachlorobiphenyl, pentachlorobiphenyls, and hexachlorobiphenyls were identified by the mass chromatogram and the mass spectra. Some minor peaks of PCBs were identified by gas chromatography. The relationship between the PCB concentration in placenta and that in milk is different in each PCB congener. The higher the chlorine content of the PCB congener, the more significant the correlation. No significant but a low negative correlation exists between the concentration of some PCB congeners in the placenta and that in cord blood. On the other hand, a significant linear correlation exists between the concentration of hexachlorobenzene in the placenta and that in cord blood. The transplacental transport of each PCB congener varied depending upon its chemical nature. Trichlorobiphenyl and tetrachlorobiphenyl were more transferable than hexachlorobiphenyls. The results show that the placenta and cord blood are useful human samples to analyze the body burden of environmental pollutants and to estimate their transfer from mother to fetus.

  8. Evaluation of an automatic gas chromatographic system for the identification of bacterial infective agents

    PubMed Central

    Arcelloni, C.; Griffini, A.; Paroni, R.; Bonini, P. A.

    1989-01-01

    The potential clinical application of gas chromatography to microbial identifcation was evaluated. A completely automated system, the MIS (Microbial Identification System; Hewlett- Packard) can analyse and identify pure strains by comparison of their cellular fatty acids patterns (C9-C20) with the reference parameters stored in a library. Three hundred and sixty-seven strains were tested, comparing the gas chromatographic results with those obtained by the traditional microbiological methods in the bacteriology laboratory of our Institute. A standardized extractive procedure was followed to obtain the fatty acid methyl esters (FAMEs), but some modifications to the recommended procedure were introduced in the bacterial growth procedures: colonies harvested not only from the recommended growth media but also from selective media routinely used in the bacteriology laboratory were successfully examined. These modifications did not influence the results but improved the ease for the user; good agreement with the comparison method was observed as far as identifications of genus and species are concerned for 238 cases. The major advantages of this computerized system are a reduction in the time required to obtain the final results, the elimination of human errors by using the autosampler and a better inter-laboratory comparability of results owing to a higher degree of objectivity. On the other hand, the limited throughput of MIS (only 40 samples in 24 h) prevents its use in a large routine laboratory; this technology is appropriate in emergency cases, in taxonomic studies and as a confirmatory method. PMID:18924676

  9. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  10. A Simple, Inexpensive, High Pressure Liquid Chromatographic Method for Separating Cytokinins in Plant Extracts

    PubMed Central

    Thomas, Tudor H.; Carroll, James E.; Isenberg, Francis M. R.; Pendergrass, Ann; Howell, Lydia

    1975-01-01

    Separation of a mixture of the main cytokinins occurring naturally in plant tissues was achieved by high pressure liquid chromatography using insoluble polyvinylpyrrolidone as the solid support. The separation of each cytokinin was first assessed over a range of salt and l-butanol concentrations and pH using a mixture of borate buffer and l-butanol as the mobile phase to determine the conditions necessary for optimum resolution. A discrete separation of zeatin, N-6-(Δ-2-isopentenyl)adenine, their related ribonucleosides, and kinetin was achieved using a simple isocratic elution with 0.025 m borate buffer at pH 6.8 and 4% (v/v) l-butanol. A number of cytokinin-active compounds were detected in cabbage extracts by the Amaranthus betacyanin bioassay using this separation technique. PMID:16659314

  11. A general static-headspace gas chromatographic method for determination of residual benzene in oral liquid pharmaceutical products.

    PubMed

    Liu, Hui; Tang, Qinglin; Markovich, Robert J; Rustum, Abu M

    2011-01-25

    Sodium benzoate is used in oral liquid pharmaceutical products for its anti-microbial properties. The benzoate salts present in liquid pharmaceutical products can potentially generate residual levels of free benzene during manufacturing of the drug product and or during the shelf-life of the product under its storage conditions. To ensure the safety and quality of the pharmaceutical products (containing benzoate in the formulation), a selective and sensitive analytical method is required to monitor residual benzene in oral liquid pharmaceutical products. In this paper, we report the development and validation of a general static-headspace gas chromatographic (SH-GC) method to determine residual benzene in oral liquid pharmaceutical products. The liquid pharmaceutical drug product sample is dissolved in dimethylsulfoxide (DMSO) in a GC headspace vial. A DB-624 capillary column (30 m x 0.32 mm I.D. and 1.8 μm film thickness) was used under isothermal conditions with a flame ionization detection (FID). The benzene peak was well separated from all other volatile compounds that are present in the formulation of a number of liquid drug products. This method was successfully validated using a representative oral liquid pharmaceutical drug product. The limit of detection of the method for benzene is 0.5 ppm which met the 2 ppm limit of current ICH guideline for residual benzene in pharmaceutical products. PMID:20926217

  12. Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples.

    PubMed

    Mazur, W; Fotsis, T; Wähälä, K; Ojala, S; Salakka, A; Adlercreutz, H

    1996-01-15

    We present a method for the quantitative determination of the phytoestrogens formononetin, biochanin A, daidzein, genistein, and coumestrol and simultaneously the lignans secoisolariciresinol (SECO) and matairesinol in plant-derived foods. These compounds are measured by isotope dilution gas chromatography-mass spectrometry in the selected ion monitoring mode (ID/GC/MS/SIM) using synthesized deuterated internal standards for the correction of losses during the procedure. A three-step hydrolysis--a rehydration with distilled H2O, followed by enzymatic and acid hydrolysis--has been applied in order to convert the diphenolic glycosides into their respective aglycones. Purification and separation are carried out in two ion-exchange chromatographic steps followed by derivatization and GC-MS. The within-assay imprecision values vary 3.1-9.6% and the between-assay imprecision 7.0-21.2%. The mean recovery of authentic standards processed through the whole procedure varied from 95.5 to 105.5%. Values for some different food samples are presented. The simultaneous determination of the biologically most interesting phytoestrogens and lignans in foods has not been carried out previously and the method will be useful for screening of important foods in populations with different risk of cancer and coronary heart disease, and for metabolic studies. PMID:8789715

  13. Centrifuge for separating helium from natural gas

    SciTech Connect

    Kelling, F.E.; Theyse, F.H.

    1980-01-08

    A centrifuge is claimed for the separation of gaseous mixtures with a rotor inside a housing, comprising a hollow, cylindrical or nearly cylindrical rotorpart also called a separating drum, in which drum a gaseous component may condense as a liquid. This liquid is admitted thereafter through openings in the drum to the space between drum and housing. In this space are formed a sequence of narrow openings, so called restrictors in which the liquid is brought to expansion, returning to gas form. These restrictors act also as bearings for the drum. The gaseous component that does not liquefy in the drum is drawn off.

  14. Column chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution.

    PubMed

    Musashi, Masaaki; Oi, Takao; Matsuo, Motoyuki; Nomura, Masao

    2008-08-01

    Boron isotopic fractionation factor (S) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25 degrees C, using 0.1 mM boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at the atmospheric pressure at 25 degrees C with the boron concentration of 10mM, but were larger than the values under the same condition with much higher concentration of 100 and 501 mM. Calculations based on the theory of isotope distribution between two phases estimated that 21% (5 MPa) and 47% (17 MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)(3)-form, instead of in the four-coordinated B(OH)(4)-form, at high pressures even with a very diluted boric acid solution. We discussed the present results by introducing (1) hydration and (2) a partial molar volume difference between isotopic molecules. Borate may have been partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Instead, it may be possible that the difference in the isotopic partial molar volume difference between B(OH)(3) and B(OH)(4)(-) caused the S value to decrease with increasing pressure. PMID:18585727

  15. DETERMINATION OF PESTICIDES IN COMPOSITE DIETARY SAMPLES BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY IN THE SELECTED ION MONITORING MODE USING A TEMPERATURE PROGRAMMABLE LARGE VOLUME INJECTOR WITH PRE-SEPARATION COLUMN

    EPA Science Inventory

    Use of a temperature-programmable pre-separation column in the gas chromatographic injection port permits determination of a wide range of semi-volatile pesticides including organochlorines, organophosphates, triazines, and anilines in fatty composite dietary samples while reduci...

  16. Feasibility of the preparation of silica monoliths for gas chromatography: fast separation of light hydrocarbons.

    PubMed

    Azzouz, Imadeddine; Essoussi, Anouar; Fleury, Joachim; Haudebourg, Raphael; Thiebaut, Didier; Vial, Jerome

    2015-02-27

    The preparation conditions of silica monoliths for gas chromatography were investigated. Silica-based monolithic capillary columns based on sol-gel process were tested in the course of high-speed gas chromatographic separations of light hydrocarbons mixture (C1-C4). The impact of modifying the amount of porogen and/or catalyst on the monolith properties were studied. At the best precursor/catalyst/porogen ratio evaluated, a column efficiency of about 6500 theoretical plates per meter was reached with a very good resolution (4.3) for very light compounds (C1-C2). The test mixture was baseline separated on a 70cm column. To our knowledge for the first time a silica-based monolithic capillary column was able to separate light hydrocarbons from methane to n-butane at room temperature with a back pressure in the range of gas chromatography facilities (under 4.1bar). PMID:25622518

  17. Chromatographic separation of selenium and arsenic: A potential (72)Se/(72)As generator.

    PubMed

    Wycoff, Donald E; Gott, Matthew D; DeGraffenreid, Anthony J; Morrow, Ryan P; Sisay, Nebiat; Embree, Mary F; Ballard, Beau; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S

    2014-05-01

    An anion exchange method was developed to separate selenium and arsenic for potential utility in a (72)Se/(72)As generator. The separation of the daughter (72)As from the (72)Se parent is based on the relative acid-base behavior of the two oxo-anions in their highest oxidation states. At pH 1.5, selenate is retained on strongly basic anion exchange resin as HSeO4(-) and SeO4(2-), while neutral arsenic acid, H3AsO4, is eluted. PMID:24679827

  18. Chromatographic Separation of Selenium and Arsenic: A Potential 72Se/72As Generator

    PubMed Central

    Wycoff, Donald E.; Gott, Matthew D.; DeGraffenreid, Anthony J.; Morrow, Ryan P.; Sisay, Nebiat; Embree, Mary F.; Ballard, Beau; Fassbender, Michael E.; Cutler, Cathy S.; Ketring, Alan R.; Jurisson, Silvia S.

    2014-01-01

    Summary An anion exchange method was developed to separate selenium and arsenic for potential utility in a 72Se/72As generator. The separation of the daughter 72As from the 72Se parent is based on the relative acid-base behavior of the two oxo-anions in their highest oxidation states. At pH 1.5, selenate is retained on strongly basic anion exchange resin as HSeO4− and SeO42−, while neutral arsenic acid, H3AsO4, is eluted. PMID:24679827

  19. 34 GHz EPR FTIR spectra of chromatographically separated Boscan asphaltene fractions

    SciTech Connect

    Malhotra, V.M. ); Buckmaster, H.A. )

    1989-03-01

    The authors report on their re-examination of the 34 GHz and Fourier transform infrared (FTIR) measurements on three fractions of Boxcan asphaltene separated by the gel permeation chromatography (GPC) technique. The authors attempted to determine various types of vanadium coordination in GPC fractions by their partial combustion and subsequent EPR AND FTIR measurements.

  20. IMPROVED THIN-LAYER CHROMATOGRAPHIC SEPARATION OF 32P-POSTLABELING DNA ADDUCTS

    EPA Science Inventory

    DNA adducts represent the putative initiating event in the chemical process. 2P-Postlabeling is one of several assayswhich have been developed for the sensitive detection of DNA adducts. n integral part of the 32p-postlabeling assay is the separation of adducted nucleotides by mu...

  1. A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng.

    PubMed

    Lelu, Jimmy K; Liu, Qi; Alolga, Raphael N; Fan, Yong; Xiao, Wei-Lie; Qi, Lian-Wen; Li, Ping

    2016-06-01

    The root and rhizome of Panax notoginseng (PNG) are used as folk medicine. Recent studies have reported PNG to possess immunomodulatory, cardioprotective, hepatoprotective, anti-diabetic and anticancer activities among a host of other pharmacological effects. The main active constituents responsible for these pharmacological effects are saponins. It has also been proven that the chemical constituents of steamed PNG differs from the raw form. Traditional methods of separating individual components in crude extracts are usually tedious, almost irreproducible and time-consuming. In this study, an automated multi-step preparative separation system, known as Sepbox afforded a quick, reproducible and fast separation of saponins from PNG. With Sepbox, a total of 11 saponins of high purity were obtained in a short period of time. The separated compounds were identified as notoginsenosides R1, T5, ginsenosides Rb1, Rg1, Rg2, Rh1, Rh4, Rd, 20 (S) -Rg3 and a mixture of ginsenosides Rk1 and Rg5. PMID:27107214

  2. Four-port gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  3. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  4. Gas chromatographic determination of trace amounts of vinyl chloride and dichloroethenes in landfill-gas.

    PubMed

    Wittsiepe, J; Selenka, F; Jackwerth, E

    1996-03-01

    A method for the determination of vinyl chloride (VC) and dichloroethenes (DCE) in gas samples is presented. The analytes are preconcentrated from a gas-volume of up to 20 l on an adsorption tube filled with 1.0 g of a carbon molecular sieve at a flow rate of 80 l/h and are subsequently desorbed with carbon disulfide. Vinyl bromide is added as internal standard to the extract. The analytes are determined as their 1,2-dibromo-derivatives by capillary gas chromatography with electron capture detection. The detection limits have been found to be 82 ng/m(3) = 32 ppt (VC), 190 ng/m(3) = 48 ppt (1,1-DCE) and 96 ng/m(3) = 24 ppt (cis-/trans-1,2-DCE). The method has been used for the quantification of the anaerobic microbial degradation of tetra- (PCE) and trichloroethene (TCE) to dichloroethenes and vinyl chloride in landfill sites. The substances have been analyzed in landfill-gas as well as in gaseous emissions from the landfill surface. The mean emission rates of tetrachloroethene, trichloroethene and vinyl chloride from the landfill surface into the ambient air are about 0.5 microg/(m(2) x h). PMID:15048415

  5. Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti

    2007-01-01

    For nearly 3.5 years, the Volatile Organic Analyzer (VOA) has routinely analyzed the International Space Station (ISS) atmosphere for a target list of approximately 20 volatile organic compounds (VOCs). Additionally, an early prototype of the VOA collected data aboard submarines in two separate trials. Comparison of the data collected on ISS and submarines showed a surprising similarity in the atmospheres of the two environments. Furthermore, in both cases it was demonstrated that the VOA data can detect hardware issues unrelated to crew health. Finally, it was also clear in both operations that the VOA s size and resource consumption were major disadvantages that would restrict its use in the future. The VOA showed the value of measuring VOCs in closed environments, but it had to be shrunk if it was to be considered for future operations in these environments that are characterized by cramped spaces and limited resources. The Sionex Microanalyzer is a fraction of the VOA s size and this instrument seems capable of maintaining or improving upon the analytical performance of the VOA. The two design improvements that led to a smaller, less complex instrument are the Microanalyzer s use of recirculated air as the gas chromatograph s carrier gas and a micromachined detector. Although the VOA s ion mobility spectrometer and the Microanalyzer s differential mobility spectrometer (DMS) are related detector technologies, the DMS was more amenable to micromachining. This paper will present data from the initial assessment of the Microanalyzer. The instrument was challenged with mixtures that simulated the VOCs typically detected in closed-environment atmospheres.

  6. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Huang, Ying-Xue; Huang, Ting-Jyun; Chen, Yong-Shen; Wang, Chieh-Heng; Wang, Jia-Lin

    2016-09-01

    This study presents a novel application based on the Deans-switch cutting technique to characterize the thermal-desorption (TD) properties for gas chromatographic (GC) analysis of ambient volatile organic compounds (VOCs). Flash-heating of the sorbent bed at high temperatures to desorb trapped VOCs to GC may easily produce severe asymmetric or tailing GC peaks affecting resolution and sensitivity if care is not taken to optimize the TD conditions. The TD peak without GC separation was first examined for the quality of the TD peak by analyzing a standard gas mixture from C2 to C12 at ppb level. The Deans switch was later applied in two different stages. First, it was used to cut the trailing tail of the TD peak, which, although significantly improved the GC peak symmetry, led to more loss of the higher boiling compounds than the low boiling ones, thus suggesting compound discrimination. Subsequently, the Deans switch was used to dissect the TD peak into six 30s slices in series, and an uneven distribution in composition between the slices were found. A progressive decrease in low boiling compounds and increase in higher boiling ones across the slices indicated severe inhomogeneity in the TD profile. This finding provided a clear evidence to answer the discrimination problem found with the tail cutting approach to improve peak symmetry. Through the use of the innovated slicing method based on the Deans-switch cutting technique, optimization of TD injection for highly resolved, symmetric and non-discriminated GC peaks can now be more quantitatively assessed and guided. PMID:27492597

  7. Ion-exchange chromatographic separation of einsteinium from irradiated californium targets

    SciTech Connect

    Elesin, A.A.; Nikolaev, V.M.; Shalimov, V.V.; Popov, Yu.S.; Kovantsev, V.N.; Tselishchev, I.V.; Filimonov, V.T.; Mishenev, V.B.; Yadovin, A.A.; Golosovskii, L.S.; Chetverikov, A.P.

    1987-07-01

    Einsteinium was obtained by preparing two experimental californium targets and subjecting them to neutron irradiation in a high-flux reactor. The einsteinium was separated from the bombarded targets on a column packed with KU-2U sulfonated cation-exchange resin (20-50 ..mu..m) and eluted at room temperature with an ammonium ..cap alpha..-hydroxyisobutyrate solution. Three successive separation cycles removed californium to produce einsteinium in 68% yield with a decontamination factor of 5.3 x 10/sup 6/. About 20% of the einsteinium was used up by analysis and 11% remained in intermediate fractions. The method developed yielded pure einsteinium with little fission products present. The contribution of the fission products to the total einsteinium gamma-irradiation dose rate was no greater than 81%, due primarily to the radioisotope terbium-160.

  8. Liquid-chromatographic separation and on-line bioluminescence detection of creatine kinase isoenzymes

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1980-01-01

    Isoenzymes of creatine kinase were separated by anion-exchange chromatography, with use of an elution gradient containing lithium acetate (0.1 to 0.6 mol/L). A stream splitter was used to divert a 5% side stream of column effluent, which was subsequently mixed with the reagents necessary for bioluminescence assay of the separated isoenzymes. The use of the stream splitter greatly decreased the rate of consumption of reagent and, when combined with a peristaltic pumping system, permitted independent control of the side-stream flow rate. Thus both the residence interval in a delay coil in which the ATP reaction product is formed and the bioluminescence emission was monitored in a flow-through fluorometer without use of an external light source or filters. Separation and detection of the isoenzymes of creatine kinase were rapid, sensitive, and highly selective. The incremental decrease of bioluminescence response owing to inhibition by the ions in the eluent was less than 31% across the entire gradient.

  9. Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Coho, William K.; Weiland, Karen J.; VanZandt, David M.

    1998-01-01

    A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

  10. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  11. Gas-chromatographic determination of 1,3-butadiene trimers in the atmosphere

    SciTech Connect

    Drugov, Yu.S.; Murav`eva, G.V.; Shlyakhov, A.F.

    1992-02-10

    In the catalytic polymerization of 1,3-butadiene during the manufacture of SKD-1 rubber (with titanium and aluminum compounds as catalysts) the toxic oligomers (1,3-butadiene trimers) t,t,t-1, 5,9-cyclododecatriene (I), t,t,c-1, 5,9-cyclododecatriene (II), n-2,4,6,10-dodecatetraene (III), n-1,3,6,10-dodecatertraine (IV), and others end up in the atmosphere and the manufacture of cyclododecane. In the content of the oligomers in the air used for drying the rubber was determined by passing it through active carbon and desorbing the trapped substances with water vapor. However, aspects of the concentration of the microimpurities during their determination in the atmosphere were not considered. The aim of the present work was to develop a gas-chromatographic procedure for the determination of small amounts of compounds in the atmosphere. The tentative safe level amounts to 0.008 mg/m{sup 3} for (I) and 0.01 mg/m{sup 3} for (II, III). In air these oligomers are present in the form of vapor and aerosols. 7 refs., 3 figs., 4 tabs.

  12. Gas chromatographic mass analysis and further pharmacological actions of Cymbopogon proximus essential oil.

    PubMed

    Al-Taweel, A M; Fawzy, G A; Perveen, S; El Tahir, K E H

    2013-09-01

    The present study reports Gas chromatographic mass analysis (GC-MS) as well as important biological activities of Cymbopogon proximus essential oil. The chemical composition of the essential oil of Cymbopogon proximus was investigated by GC-MS. Furthermore, the effects of Cymbopogon proximus essential oil on the cardiac parasympathetic ganglia in rats, the intra-tracheal pressure in guinea-pigs and on carrageenan-induced inflammation in the rats paw, were studied. The GC-MS study led to the identification of 22 components with Piperitone representing (73.81%), Elemol (9.32%), alpha-Eudesmol (5.21%) and alpha-Terpineol (3.01%) of the oils composition. The percentage protective effect of the oil on the vagus-induced bradycardia in rats was 90.1±3.1%, which represents a significant protection. As for the effect of Cymbopogon oil on bronchoconstrictors-induced increase in intra-tracheal pressure in guinea-pigs, the oil antagonized the actions of 5-HT and histamine by 80±3.7 and 93±8.3%, respectively. Pharmacological investigations using Cymbopogon oil revealed its inherent ability to possess a bronchodilator activity mediated via blockade of both histamine and serotonin receptors. It possessed a significant ganglionic blocking action and a limited anti-inflammatory activity that seemed to involve blockade of histamine and serotonin receptors in the rats' paws. PMID:23780497

  13. Cross-column prediction of gas-chromatographic retention indices of saturated esters.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-15

    We combine computational molecular descriptors and variables related with the gas-chromatographic stationary phase into a comprehensive model able to predict the retention of solutes in external columns. To explore the quality of various approaches based on alternative column descriptors, we analyse the Kováts retention indices (RIs) of 90 saturated esters collected with seven columns of different polarity (SE-30, OV-7, DC-710, OV-25, XE-60, OV-225 and Silar-5CP). Cross-column retention prediction is evaluated on an internal validation set consisting of data of 40 selected esters collected with each of the seven columns, sequentially excluded from calibration. The molecular descriptors are identified by a genetic algorithm variable selection method applied to a large set of non-empirical structural quantities aimed at finding the best multi-linear quantitative structure-retention relationship (QSRR) for the column OV-25 having intermediate polarity. To describe the columns, we consider the sum of the first five McReynolds phase constants and, alternatively, the coefficients of the corresponding QSRRs. Moreover, the mean RI value for the subset of esters used in QSRR calibration or RIs of a few selected compounds are used as column descriptors. For each combination of solute and column descriptors, the retention model is generated both by multi-linear regression and artificial neural network regression. PMID:24939086

  14. Rapid and sensitive gas-chromatographic determination of caffeine in blood plasma, saliva, and xanthine beverages.

    PubMed

    Teeuwen, H W; Elbers, E L; van Rossum, J M

    1991-02-01

    A gas chromatographic procedure is reported for the determination of caffeine in plasma, saliva, and xanthine beverages. Using a 75 cm column packed with OV-17, nitrogen-sensitive detection, and 1 ml samples, a suitable limit of analysis (coefficient of variation (CV) = 10.2%) of 50 ng/ml was obtained in plasma. Within-day CVs at caffeine concentrations of 0.1-0.5-2.0-7.5-15.0 micrograms/ml in plasma were 7.7-5.6-4.8-3.8-3.4%, respectively. The limit of detection, defined as the injected quantity of caffeine giving rise to a signal to noise ratio of 2, is 40 pg, corresponding to a plasma concentration of 1 ng/ml. The procedure involves addition of the internal standard 7-pentyl theophylline and alkaline extraction of the sample with dichloromethane. The method described rivals any gaschromatographic assay published so far in rapidness and accuracy. Plasma and saliva caffeine concentrations were determined in a healthy male volunteer after swallowing 400 ml of coffee. The calculated pharmacokinetic parameters, assuming complete absorption of caffeine from the G.I. tract, agree well with previously published values. PMID:1875916

  15. The gas-liquid chromatograph and the electron capture detection in equine drug testing.

    PubMed Central

    Blake, J. W.; Tobin, T.

    1976-01-01

    Three gas-liquid chromatographic (G.L.C.) procedures discussed have been designed around the four "esses" of detection tests--speed, sensitivity, simplicity, and specificity. These techniques are admirably applicable to the very low plasma drug levels encountered in blood testing under pre-race conditions. The methods are equally applicable to post-race testing procedures, where both blood and urine samples are tested. Drugs can only rarely be detected by the electron capture detector (E.C.D.) without a prior derivatization step, which conveys to the drug(s) high electron affinity. Because of broad applicability, two derivatizing agents, heptafluorobutyric (HFBA) and pentafluorpropionic (PFPA) anhydrides are employed. The three techniques, allowing broad coverage of various drug classes are: 1) direct derivatization of drugs to form strongly electron capturing amides and esters. 2) reductive fragmentation of drugs with lithium aluminum hydride to form alcohols, with conversion to ester derivatives. 3) oxidative fragmentation of drugs with potassium dichromate to form derivatizable groups, followed by direct derivatization. PMID:1000157

  16. Accelerated solvent extraction for gas chromatographic analysis of nicotine and cotinine in meconium samples.

    PubMed

    Sant'anna, Simone Gomes; Oliveira, Carolina Dizioli Rodrigues; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

    2012-01-01

    Adverse effects associated with smoking during pregnancy are well documented. Although self-report surveys on drug consumption during pregnancy have been improved with new interviewing techniques, underreporting is still a concern. Therefore, a series of biological markers and specimens to diagnose fetal exposure to tobacco have been studied. In the present study, an analytical method was developed to detect nicotine and cotinine (the main nicotine metabolite) in meconium samples. Accelerated solvent extraction (ASE) followed by solid-phase extraction (SPE) were used as sample preparation techniques. The analytes were detected by gas-chromatography with nitrogen-phosphorus detection. The limits of detection were 3.0 and 30 ng/g for cotinine and nicotine, respectively. The method showed good linearity (r(2) > 0.98) in the concentration range studied (LOQ-500 ng/g). The intraday precision, given by the RSD of the method, was less than 15% for cotinine and nicotine. The method proved to be fast, practical, and sensitive. Smaller volumes of organic solvents are necessary compared to other chromatographic methods published in the scientific literature. This is the first report in which ASE was used as sample preparation technique in methods to detect xenobiotics in meconium. PMID:22290748

  17. Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data.

    PubMed

    Vestner, Jochen; de Revel, Gilles; Krieger-Weber, Sibylle; Rauhut, Doris; du Toit, Maret; de Villiers, André

    2016-03-10

    In contrast to targeted analysis of volatile compounds, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. Although several non-targeted approaches have been developed, there's still a demand for automated data processing tools, especially for complex multi-way data such as chromatographic data obtained from multichannel detectors. This work was therefore aimed at developing a data processing procedure for gas chromatography mass spectrometry (GC-MS) data obtained from non-targeted analysis of volatile compounds. The developed approach uses basic matrix manipulation of segmented GC-MS chromatograms and PARAFAC multi-way modelling. The approach takes retention time shifts and peak shape deformations between samples into account and can be done with the freely available N-way toolbox for MATLAB. A demonstration of the new fingerprinting approach is presented using an artificial GC-MS data set and an experimental full-scan GC-MS data set obtained for a set of experimental wines. PMID:26893085

  18. Gas storage and separation by electric field swing adsorption

    DOEpatents

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  19. Insights into chromatographic separation using core-shell metal-organic frameworks: Size exclusion and polarity effects.

    PubMed

    Qin, Weiwei; Silvestre, Martin E; Kirschhöfer, Frank; Brenner-Weiss, Gerald; Franzreb, Matthias

    2015-09-11

    Porous metal-organic frameworks (MOFs) [Cu3(BTC)2(H2O)3]n (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) were synthesized as homogeneous shell onto carboxyl functionalized magnetic microparticles through a liquid phase epitaxy (LPE) process. The as-synthesized core-shell HKUST-1 magnetic microparticles composites were characterized by XRD and SEM, and used as stationary phase in high performance liquid chromatography (HPLC). The effects of the unique properties of MOFs onto the chromatographic performance are demonstrated by the experiments. First, remarkable separation of pyridine and bipyridine is achieved, although both molecules show a strong interaction between the Cu-ions in HKUST-1 and the nitrogen atoms in their heterocyles. The difference can be explained due to size exclusion of bipyridine from the well defined pore structure of crystalline HKUST-1. Second, the enormous variety of possible interactions of sample molecules with the metal ions and linkers within MOFs allows for specifically tailored solid phases for challenging separation tasks. For example, baseline separation of three chloroaniline (CLA) isomers tested can be achieved without the need for gradient elution modes. Along with the experimental HPLC runs, in-depth modelling with a recently developed chromatography modelling software (ChromX) was applied and proofs the software to be a powerful tool for exploring the separation potential of thin MOF films. The pore diffusivity of pyridine and CLA isomers within HKUST-1 are found to be around 2.3×10(-15)m(2)s(-1). While the affinity of HKUST-1 to the tested molecules strongly differs, the maximum capacities are in the same range, with 0.37molL(-1) for pyridine and 0.23molL(-1) for CLA isomers, corresponding to 4.0 and 2.5 molecules per MOF unit cell, respectively. PMID:26277028

  20. Prototype of the gas chromatograph - mass spectrometer to investigate volatile species in the lunar soil for the Luna-Glob and Luna-Resurs missions.

    NASA Astrophysics Data System (ADS)

    Hofer, L.; Lasi, D.; Tulej, M.; Wurz, P.; Cabane, M.; Cosica, D.; Gerasimov, M.; Rodinov, D.

    2013-09-01

    In preparation for the Russian Luna-Glob and Luna-Resurs missions we combined our compact time-offlight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Combined measurements with both instruments were successfully performed with the laboratory prototype of the mass spectrometer and a flight-like gas chromatograph. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 106 within 1s, the TOF-MS system is a valuable extension of the GC analysis. The combined GC-MS complex is able to detect concentrations of volatile species in the sample of about 2·10^-9 by mass.

  1. Capillary gas chromatographic assay of residual methenamine hippurate in equipment cleaning validation swabs.

    PubMed

    Mirza, T; George, R C; Bodenmiller, J R; Belanich, S A

    1998-02-01

    A capillary gas chromatographic method is described for the determination of methenamine hippurate residue in swabs collected from manufacturing equipment surfaces. Any residual methenamine hippurate remaining on process equipment after cleaning is removed by swabbing with one wet polyester Absorbond swab (4" x 4") pre-moistened with water followed by a dry Absorbond swab. The residual methenamine hippurate is chromatographed on a 30 x 0.32 mm (i.d.) Supelcowax-10 capillary column of 0.25-micron film thickness. The amount of residual methenamine hippurate is determined by comparing the ratio of methenamine hippurate peak area response to that of p-cresol (internal standard) obtained for the sample to a linear calibration curve obtained for a series of standard solutions. The method is demonstrated to be sufficiently linear, accurate, precise, sensitive and rugged for the determination of low levels of methenamine hippurate on equipment surfaces. Using this method, the mean recovery of methenamine hippurate from spiked Absorbond swab samples contained in high density polyethylene bottles was 105.2%, with a relative standard deviation (RSD) of +/- 7.1% (n = 25). The mean recoveries of methenamine hippurate from spiked test plates for '180 Grit' Stainless Steel, Teflon and WARCO White (neoprene and PVC) gasket material were 77.2, 96.1 and 50.6%, with RSDs of +/- 9.4 (n = 25), +/- 4.3 (n = 25) and +/- 36% (n = 20), respectively. Recovery correction factors have been incorporated into the method. The method was successfully applied to the assay of actual equipment cleaning validation swab samples. Stability studies demonstrate that methenamine hippurate is not very stable on the equipment surfaces or in the swabs. It is recommended that the surfaces be swabbed immediately after cleaning and the swabs analyzed within 24 h after sample collection. The results demonstrate that in order to fully validate the cleaning procedures, it is not only necessary to investigate the

  2. Tunable composite membranes for gas separations

    SciTech Connect

    Ferraris, J.P.; Balkus, K.J. Jr.; Musselman, I.H.

    1999-05-01

    The use of membrane technology for gas separations offers significant thermodynamic and economic advantages over distillation processes. Target separations of importance to the coal and energy fields include N{sub 2}/O{sub 2}, H{sub 2}S/syngas and CO{sub 2}/CH{sub 4}. Current strategies for improving these separations are largely directed towards processable polymers with thin (< 500 {angstrom}) skins. Unfortunately most polymeric materials that provide commercially viable permeation rates exhibit poor selectivities and vice versa and there are inherent limitations in gas permeability/permselectivity for pure polymers. The strategy relies on modification of composite membranes, preferably in situ, to enhance the permselectivity while maintaining acceptable permeabilities. The composites consist of electroactive polymers (which can be switched from rubbery to glassy), filled with selective absorbents (zeolites) which are impregnated with metals or catalysts to effect facilitated transport. The project is multifaceted and involves the efforts of a polymer synthesis group, a microporous materials group, a microscopy group and a permeability measurements group, all working in concert. This final report summarizes the results of the efforts on the project.

  3. Gas separation by adsorption in carbon nanohorns

    NASA Astrophysics Data System (ADS)

    Nekhai, Anton; Gatica, Silvina

    Gas separation by adsorption can be accomplished by three basic physical mechanisms: equilibria, kinetics, and steric effects. Equilibrium mechanisms rely on the strength of attraction between gas molecules and their substrate. For example, CO2 possesses the strongest, attractive interactions with its substrate. As a result, the equilibrium mechanism presents the most plausible strategy to separate carbon dioxide from mixtures. The specification of a sound adsorbent is the key for separation by adsorption. In this paper we investigate carbon nanohrons for selectivity of carbon dioxide over methane. Carbon Nanohorns resemble short, wide, highly defected single-wall nanotubes that end in conical tips (``horns''). In contrast to regular nanotubes that assemble into parallel bundles, nanohorns form spherical aggregates with the nanohorns arranged along radial directions. Using the simulation technique Grand Canonical Monte Carlo (GCMC) we obtained the adsorption isotherms of CH4 and CO2 in a 2D array of carbon nanohorns. We estimated the selectivity based on the IAST approximation. We also study the adsorption of argon and neon and compare with experimental results. We acknowledge support from the Partnership for Reduced Dimension Materials (PRDM), NSF Grant No. DMR1205608.

  4. Discovery of active components in herbs using chromatographic separation coupled with online bioassay.

    PubMed

    De-Qiang, Li; Zhao, Jing; Wu, Dong; Shao-Ping, Li

    2016-05-15

    Discovery of bioactive compounds from complex mixtures is a challenge. In past decades, several strategies were developed and implemented for rapid and effective screening and characterization of bioactive components in complex matrices. This review mainly focused on the online strategies, which integrated the separation science, mass spectrometry, and bioactivity screening in a single platform, allowing simultaneous screening and characterization of active compounds from complex matrices, especially from the herbs. The online screening methodologies, including pre-column affinity-based screening and post-column bioassay, were discussed and their applied examples were also presented to illustrate the strengths and limitations of these approaches. PMID:26896311

  5. Gas chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine

    SciTech Connect

    Francis, P.L.; Leone, A.M.; Young, I.M.; Stovell, P.; Silman, R.E.

    1987-04-01

    Circulating melatonin is hydroxylated to 6-hydroxymelatonin and excreted in urine as the sulfate and glucuronide conjugates. We extracted these two compounds from urine by using octadecylsilane-bonded silica cartridges to eliminate most of the urea and electrolytes, and silica cartridges to separate the sulfate and glucuronide conjugates. After hydrolyzing the separated conjugates enzymically, we determined the free hydroxymelatonin by gas chromatography-mass spectrometry. Though recoveries were low and variable, we were able to quantify the analyte in the original sample by adding deuterated sulfate and glucuronide conjugates to the urines before extraction.

  6. An experimental design approach to optimization of the liquid chromatographic separation conditions for the determination of metformin and glibenclamide in pharmaceutical formulation.

    PubMed

    Demiralay, Ebru Çubuk

    2012-06-01

    An optimization methodology is introduced for investigating the retention behavior and the separation factor of metformin, gliclazide (I.S.) and glibenclamide. This investigation has been focused on studying the influence of pH value of the mobile phase, concentration of acetonitrile and column temperature, which affect a complete separation of the chromatographic peaks of these compounds. The significant factors were optimized using full factorial design. Retention factor and separation factor were chosen as dependent variable. Optimum RP-LC chromatographic conditions for the separation of metformin, glibenclamide and gliclazide were obtained using X Terra column (150 mm × 4.6 mm I.D., 5 µm). The results show that the percentage of acetonitrile are the most important to investigate and sspH of the mobile phase and column temperature do not significantly affect the experimental results. The procedure was validated for linearity, accuracy, precision and recovery. Quantitation was accomplished using internal standard method. PMID:24061246

  7. Hyperthin Organic Membranes for Gas Separations

    NASA Astrophysics Data System (ADS)

    Wang, Minghui

    Gas separation is practically important in many aspects, e.g., clean energy production and global warming prevention. Compared to other separation technologies like cryogenic distillation and pressure swing adsorption, membrane separation is considered to be more energy efficient. For practical purposes, the ultimate goal is to construct membranes producing high flux and high gas permeation selectivity at the same time. Based on the inverse relationship between flux and membrane thickness, it is clear that fabricating highly selective membranes as thin as possible could increase the flux through the membrane without sacrificing selectivity. But it has proven to be challenging to manufacture selective membranes in the hyperthin (< 100nm) region. [Note: 100 nm is the typical dense layer thickness of commercial membranes to separation gases.] In this dissertation, the focus is on the development of hyperthin selective membranes that were supported by poly(1-trimethylsilyl-1-propyne) (PTMSP), using Langmuir-Blodgett (LB) and Layer-by-Layer (LbL) deposition methods. A "gluing" strategy has been successfully introduced into LB films by our laboratory recently, in which LB monolayers are ionically crosslinked with polyelectrolytes. This success stimulated the pursuance of LB films with improved gas separation properties by: (i) examining calix[n]arene-based surfactants with different sizes (ii) using polymeric surfactants as LB forming materials, and (iii) optimizing the condition of the subphase containing polyelectrolytes. Both a strong polyelectrolyte poly(4-styrene sulfonate) (PSS) and a weak polyelectrolyte poly(acrylic acid) (PAA) were used to create glued LB bilayers. The gas permeation through PSS or PAA-glued LB bilayers made of calix[n]arenes was found to be dominated by solution-diffusion rather than molecular-sieving mechanism. The porous nature of calix[n]arene-based surfactants also turned out to be unnecessary for constructing LB films with high gas

  8. Rapid preparation and characterization of methacrylate-based monoliths for chromatographic and electrophoretic separation.

    PubMed

    Fan, Li-Qun; Zhang, Yu-Ping; Gong, Wen-Jun; Qu, Ling-Bo; Lee, Kwang-Pill

    2010-01-01

    Butyl-methacrylate-based porous monoliths were rapidly prepared in the fused-silica capillary with a 10-cm stripe of polyimide removed from its exterior. The photopolymerization could be carried out in 150 s using ethylene glycol dimethacrylate as a cross-linking agent; 1-propanol, 1,4-butanediol, and water as tri-porogenic solvents; and Irgacure 1800 as a photo-initiator. The effect of different morphologies on the efficiency and retention properties was investigated using pressure-assisted CEC (p-CEC), CEC, and low pressure-assisted liquid chromatography modes (LPLC). Baseline separation of the model analytes was respectively achieved including thiourea, toluene, naphthalene, and biphenyl with the lowest theoretical height up to 8.0 microm for thiourea in the mode of p-CEC. Furthermore, the influence of the tri-porogenic solvents on the morphology of methacrylate-based monoliths was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. PMID:20515536

  9. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2009-07-21

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  10. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  11. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples.

    PubMed

    Carr, R H; Bustin, R; Gibson, E K

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen. PMID:11542122

  12. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    NASA Technical Reports Server (NTRS)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  13. Centrifugal Liquid/Gas Separator With Phase Detectors

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1994-01-01

    Centrifugal liquid/gas separator that includes phase (liquid or gas) detectors helps ensure exclusiveness of each phase at its assigned outlet. Acoustic sensors in centrifugal liquid/gas separator measure speeds of sound in nominally pure liquid and nominally pure gas at liquid and gas outlets respectively. When speed of sound is that of pure liquid or gas, valve opens to let liquid or gas flow out.

  14. Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil.

    PubMed

    Druart, Coline; Delhomme, Olivier; de Vaufleury, Annette; Ntcho, Evodie; Millet, Maurice

    2011-02-01

    Analysing herbicides in soil is a complex issue that needs validation and optimization of existing methods. An extraction and analysis method was developed to assess concentrations of glyphosate, glufosinate and aminomethylphophonic acid (AMPA) in field soil samples. After testing extractions by accelerated solvent extraction and ultrasonic extraction, agitation was selected with the best recoveries. Water was preferred as solvent extraction because it resulted in a cleaner chromatogram with fewer impurities than was the case with alkaline solvents. Analysis was performed by FMOC pre-column derivatization followed by high-performance liquid chromatography (HPLC) on a 300 mm C(18) column which permitted enhanced separation and sensitivity than a 250 mm C(18) column and increased resistance than the NH(2) column for soil samples. This extraction and analysis method allowing a minimum of steps before the injection in the HPLC with fluorescence detection is efficient and sensitive for a clay-loamy soil with detection limits of 103 μg kg(-1) for glyphosate, 15 μg kg(-1) for glufosinate and 16 μg kg(-1) for AMPA in soil samples. PMID:21153586

  15. Gas-chromatographic analysis of Mars soil samples at Rocknest site with the SAM instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Cabane, Michel; Coll, Patrice; Szopa, Cyril; Coscia, David; Buch, Aranaud; Teinturier, Samuel; Navarro-gonzalez, Rafael; Gaboriaud, Alain; Mahaffy, Paul; MSL science Team

    2013-04-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site. For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument for the analysis of Rocknest soil first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification of the major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM

  16. Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 180 first sols

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Cabane, M.; Coll, P.; Coscia, D.; Buch, A.; Teinturier, S.; Navarro-Gonzalez, R.; Goutail, J.-P.; Montaron, C.; Rigal, J.-B.; Poinsignon, P.; Guerrini, V.; Clerc, M.-S.; Meftah, M.; Soldani, L.; Mettetal, F.; Jerôme, M.; Philippon, C.; Galic, A.; Sablairolles, J.; Triqueneaux, S.; Chazot, D.; Toffolo, B.; Rakoto, F. Y.; Gaboriaud, A.; Mahaffy, P.

    2013-09-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site, when the second site analyzed was a basin called "Yellowkive Bay". For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification ofthe major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of

  17. Evaluation of sample preparation and chromatographic separation for the parallel determination of taurine and edaravone in rat tissues using HILIC-MS/MS.

    PubMed

    Li, Yin-jie; Li, Zheng; Zheng, Xiao-xiao; Wu, Xiao-wen; Wang, Shi-rui; Guo, Hao; Yu, Yan-yan; Guo, Meng-zhe; Yan, Dong-zhi; Tang, Dao-quan

    2015-05-01

    The quantitative analysis of taurine and edaravone in biological sample is critical in pharmaceutical studies. Although each of them can be individually analyzed by different approaches, concurrent quantification is still a highly challenging task with respect to their great polarity variation and the complex composition of tissue sample. In the present study, to simultaneously determine taurine and edaravone in rat tissue, the sample preparation and chromatographic separation conditions were evaluated and discussed in detail. As for the sample preparation, four kinds of solvent and the volume ratio of the optimal solvent to biological sample were both tested and evaluated based on the chromatographic profile, extraction recovery, and matrix effect (ME). The chromatographic separation was performed in a reverse phase (RP) and two hydrophilic interaction liquid chromatography (HILIC) modes, and the corresponding separation efficiencies were assessed using chromatographic parameters like half-width (W 1/2 ), tailing factor (f t), theoretical plates number (N), and ME. Furthermore, adopted composition of two mobile phase systems and the concentrations of the additives in the optimum buffer system were also investigated on an Atlantis HILIC silica column according to the resultant chromatographic profiles and peak areas of the analytes. The optimal results were obtained when the biological samples were deproteined by 4-fold volume of methanol/acetonitrile (1:3, v/v) and separated on a HILIC column with a gradient elution of acetonitrile/water containing 0.2 % formic acid and 10 mM ammonium formate. The proposed approach was validated and successfully applied to the parallel determination of the tissue distribution of edaravone and taurine in rat tissues. PMID:25855151

  18. Development of liquid chromatographic enantiomer separation methods and validation for the estimation of (R)-enantiomer in eslicarbazepine acetate.

    PubMed

    Mone, Mahesh Kumar; Chandrasekhar, K B

    2011-01-01

    Chiral separation method development was carried out for eslicarbazepine acetate and its (R)-enantiomer on diverse chiral stationary phases. Better chiral selectivity was observed on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized column (Chiralpak IC-3). Under polar organic mode (POM), with 100% acetonitrile as mobile phase and 0.5 ml/min flow, a resolution close to three was achieved. With normal phase (NP) mobile phase consisting dichloromethane:ethanol (90:10, v/v) and 1.0 ml/min flow, a resolution close to six was achieved. Detection was done by UV at 220 and 240 nm respectively. Both the methods were found to be robust and were validated with respect to robustness, precision, linearity, limit of detection, limit of quantification and accuracy. The proposed methods are suitable for the accurate estimation of (R)-enantiomer in bulk drug samples up to 0.1% when a 1mg/ml analyte test solution is chromatographed. PMID:20832962

  19. Efficient optimization of ultra-high- performance supercritical fluid chromatographic separation of Rosa sericea by response surface methodology.

    PubMed

    Li, Jin-Rong; Li, Min; Xia, Bing; Ding, Li-Sheng; Xu, Hong-Xi; Zhou, Yan

    2013-07-01

    An approach for rapid optimization of ultra-high-performance supercritical fluid chromatographic (UHPSFC) gradient by response surface methodology was developed for fast separation of complex crude extracts of the leaves of Rosa sericea. The optimization was performed with Box-Behnken designs and the multicriteria response variables were described using Derringer's desirability. Based on factorial design experiments, five factors were selected for Box-Behnken designs to optimize the UHPSFC conditions, which led to 46 experiments being performed within 8 h. An evaporative light-scattering detector (ELSD) was used, and quantitative analysis of main components in R. sericea samples was employed to evaluate the statistical significance of the parameters on UHPSFC-ELSD analytes response. The results indicated that the optimized UHPSFC-ELSD method is very sensitive with LODs and LOQs below 1.19 and 4.55 μg/mL, respectively. The overall intra- and interday variations were less than 3.91 and 6.41%, respectively. The recovery of the method ranged from 95.66 to 104.22%, with RSD < 5.91%. This newly developed UHPSFC-ELSD method was demonstrated to be fast and sensitive in analyzing complex herbal extracts of Traditional Chinese Medicines. PMID:23625629

  20. Measurement of Ethanol in Gaseous Breath Using a Miniature Gas Chromatograph

    PubMed Central

    Morey, Timothy E.; Booth, Matthew M.; Prather, Robert A.; Nixon, Sara J.; Boissoneault, Jeff; Melker, Richard J.; Goldberger, Bruce A.; Wohltjen, Hank; Dennis, Donn M.

    2011-01-01

    We designed and built a novel, miniature gas chromatograph (mGC) to use exhaled breath to estimate blood ethanol concentrations that may offer GC quality sensitivity and specificity, but with portability, reduced size, and decreased cost. We hypothesized that the mGC would accurately estimate the serum ethanol concentration using exhaled breath. Human subjects (n = 8) were dosed with ethanol employing the Widmark criteria, targeting a blood concentration of 0.08 g/dL. Serum and breath samples were collected concurrently over an hour. Ethanol concentrations in serum were measured using a CLIA-approved laboratory. Ethanol concentrations in conventional breath were assayed using a calibrated mGC or Intoxilyzer 400PA. Data were analyzed using Bland-Altman analysis using serum concentrations as a “gold standard”. For the mGC, the regression line (correlation coefficient), bias, and 95% limits of agreement were y = 1.013x − 0.009 (r = 0.91), −0.008 g/dL, and −0.031 to 0.016 g/dL, respectively, for 30 specimens. For the Intoxilyzer 400PA, the regression line (correlation coefficient), bias, and 95% limits of agreement were y = 0.599x + 0.008 (r = 0.86), −0.024 g/dL, and −0.049 to 0.002 g/dL, respectively, for 71 specimens with a large magnitude effect. We concluded that the mGC, using exhaled breath, performed well to estimate the serum ethanol concentrations. PMID:21439148

  1. Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) Experiment: First Results

    NASA Technical Reports Server (NTRS)

    Niemann, H.; Demick, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Raaen, E.; Way, S.; Atreya, S.; Carignan, G.; Bauer, S.

    2005-01-01

    The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14, 2005. The GCMS was part of the instrument complement on the probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyzer (ACP) experiment by serving as detector for the pyrolization products. The GCMS collected data from an altitude of 146 km to ground impact for a time interval of 2hours and 37minutes. The Probe and the GCMS survived the ground impact and collected data for 1hour and 9 minutes on the surface in the near surface environment until signal loss by the orbiter. The major constituents of the lower atmosphere were found to be N2 and CH4. The methane-mixing ratio was found to increase below the turbopause, about 35 km altitude, monotonically toward the surface to levels near saturation. After surface impact a steep increase of the mixing ratio was observed suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. Other constituents were found to be in very low concentrations, below ppm levels. The presence of Argon 40 was confirmed. The results for the other noble gases are still being evaluated. Other hydrocarbons and nitriles were also observed and quantitative evaluation is in progress. Preliminary ratios for the major carbon and nitrogen isotopes were computed from methane and molecular nitrogen measurements. The instrument collected 5634 mass spectra during descent and 2692 spectra on the ground over a range of m/z from 2 to 141. Eight gas chromatograph samples were taken during the descent and two on the ground.

  2. The Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe: First Results

    NASA Technical Reports Server (NTRS)

    Niemann, H.; Demick, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Raaen, E.; Way, S.; Atreya, S.; Carignan, G.; Bauer, S.

    2005-01-01

    The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14, 2005. The GCMS was part of the instrument complement on the Probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyzer (ACP) experiment by serving as detector for the pyrolization products. The GCMS collected data from an altitude of 146 km to ground impact for a time interval of 2 hours and 37 minutes. The Probe and the GCMS survived the ground impact and collected data for 1 hour and 9 minutes on the surface in the near surface environment until signal loss by the orbiter. The instrument collected 5634 mass spectra during descent and 2692 spectra on the ground over a range of m/z from 2 to 141. Eight gas chromatograph samples were taken during the descent and two on the ground. This is a report on work in progress. The major constituents of the lower atmosphere were found to be N2 and CH4. The methane-mixing ratio was found to increase below the turbopause, about 35 km altitude, monotonically toward the surface to levels near saturation. After surface impact a steep increase of the mixing ratio was observed suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. Other constituents were found to be in very low concentrations, below ppm levels. The presence of Argon 40 was confirmed. The results for the other noble gases are still being evaluated. Other hydrocarbons and nitriles were also observed and quantitative evaluation is in progress. Preliminary ratios for the major carbon and nitrogen isotopes were computed from methane and molecular nitrogen measurements.

  3. Statistical modelling of measurement errors in gas chromatographic analyses of blood alcohol content.

    PubMed

    Moroni, Rossana; Blomstedt, Paul; Wilhelm, Lars; Reinikainen, Tapani; Sippola, Erkki; Corander, Jukka

    2010-10-10

    Headspace gas chromatographic measurements of ethanol content in blood specimens from suspect drunk drivers are routinely carried out in forensic laboratories. In the widely established standard statistical framework, measurement errors in such data are represented by Gaussian distributions for the population of blood specimens at any given level of ethanol content. It is known that the variance of measurement errors increases as a function of the level of ethanol content and the standard statistical approach addresses this issue by replacing the unknown population variances by estimates derived from large sample using a linear regression model. Appropriate statistical analysis of the systematic and random components in the measurement errors is necessary in order to guarantee legally sound security corrections reported to the police authority. Here we address this issue by developing a novel statistical approach that takes into account any potential non-linearity in the relationship between the level of ethanol content and the variability of measurement errors. Our method is based on standard non-parametric kernel techniques for density estimation using a large database of laboratory measurements for blood specimens. Furthermore, we address also the issue of systematic errors in the measurement process by a statistical model that incorporates the sign of the error term in the security correction calculations. Analysis of a set of certified reference materials (CRMs) blood samples demonstrates the importance of explicitly handling the direction of the systematic errors in establishing the statistical uncertainty about the true level of ethanol content. Use of our statistical framework to aid quality control in the laboratory is also discussed. PMID:20494532

  4. Fast chromatographic separation for the quantitation of the main flavone dyes in Reseda luteola (weld).

    PubMed

    Villela, Alexandre; van der Klift, Elbert J C; Mattheussens, Eric S G M; Derksen, Goverdina C H; Zuilhof, Han; van Beek, Teris A

    2011-11-25

    In the past decades, there has been a renewed interest in the use of natural dye plants for textile dyeing, e.g. Reseda luteola (weld). Its main yellow dye constituents are the flavones luteolin-7,3'-O-diglucoside, luteolin-7-O-glucoside and luteolin. The aim of this work was to develop a simple validated industrially usable quantitative method to assess the flavone content of R. luteola samples. The flavones were overnight extracted from the dried and ground aerial parts of the plant at room temperature via maceration with methanol-water 8:2. Afterwards, they were quantified through internal standardisation against chrysin by RP-HPLC-UV at 345 nm. The efficiency of the one-step extraction was 95%. The limits of detection (LOD) and quantitation (LOQ) were ≤ 1 ng and ≤ 3 ng, respectively, providing ample sensitivity for the purpose. The precision expressed as relative standard deviation of the entire method was <6.5% for the combined content of luteolin-7,3'-O-diglucoside, luteolin-7-O-glucoside and luteolin. The average absolute recovery (accuracy) at three spiking levels was 102% (range: 98-107%) and the relative recovery ranged from 99 to 102%. The separation was initially carried out on a traditional 250 mm × 4.6 mm 5 μm HPLC column (80 min run time, 35.9 mL MeOH). It was then speeded up by the use of a 50 mm × 3.0mm 1.8 μm UHPLC column (5 min run time, 1.4 mL MeCN), while still using a conventional HPLC system. Whereas, the retention times on the UHPLC column were relatively less reproducible, cross-validation showed that the quantitation of luteolin-7,3'-O-diglucoside, luteolin-7-O-glucoside and luteolin was not statistically significantly different, with comparable precision. The method using the UHPLC column is more sensitive. The analytical method described meets the demand for a very small manpower input per sample and uses standard laboratory equipment. Usage of short UHPLC columns opens up interesting possibilities for modernising HPLC

  5. Chromatographic sample collection from two-phase (gas+liquid) flows.

    PubMed

    Bruno, Thomas J; Windom, Bret C

    2011-12-01

    A particularly challenging sample presentation in analytical chemistry is a flowing stream that consists of both a gas and liquid phase, combined with the common situation in which a reliable analysis is needed for both phases, separately. In these cases, the vapor and liquid must be physically separated (without change to either), before the individual phases can be collected and analyzed. It is not possible to analyze two-phase flows otherwise. Although the two phases are at equilibrium, it is imperative that no liquid contaminate the vapor, and no vapor be entrained in the liquid at a given temperature and pressure. In this paper, we describe a simple on-line device that can individually separate and collect the vapor and liquid phases of a two-phase flow. The apparatus, which we call P(2)SC, uses an adaptation of the branch point separator, with vapor collection done downstream in a metal bellows. The liquid collection is done in a length of Teflon tube. The separated vapor and liquid phases are then easily transferred into any desired analytical instrument with a syringe, although any sample introduction method, such as a valve, could be used as well. We discuss the application of this device with a stream of thermally stressed rocket kerosene. PMID:22036084

  6. Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinquan; Liu, Jinglei; Yi, Yong; Liu, Yonglin; Li, Xiang; Su, Yaqin; Lin, Ping

    2007-01-01

    A method for the determination of trace of 14 rare earth elements (REEs) as impurities in high purity samarium oxide (Sm2O3) using inductively coupled plasma mass spectrometry (ICP-MS) was described. Analytes, such as La, Ce, Pr, Nd, Eu, Gd, Tb, Lu and Y were measured without Sm matrix separation because of no interference problems occurring that could affect the analysis of these elements. On the other hand, analytes, such as Dy, Ho, Er, Tm and Yb were carried out after Sm matrix being eliminated completely by means of 2-ethylhexyl hydrogen-ethylhexy phosphonate (EHEHP) extraction chromatographic separation. The inherent problem associated with matrix-induced suppression was effectively compensated with spiking In as internal standard element and the mass spectra isobaric interferences of atomic and molecular ions arose from Sm matrix had been overcome after the removal of Sm matrix. The limits of quantitations (LOQ) for 14 REEs impurities were from 0.01 to 0.07 [mu]g g-1 together with the recoveries of spiking sample of 14 REEs were found to be in the range of 85-110% and the proposed method precision was less than 5%. A synthetic standard Sm2O3 sample with well-known 14 REEs concentrations was prepared and analysed in order to prove the accuracy and precision of the proposed method together with another high purity Sm2O3 was also measured using ICP-MS. The methodology had been found to be suitable for the determination of trace of 14 REEs in 99.999-99.9999% high purity Sm2O3.

  7. QbD-oriented development and validation of a bioanalytical method for nevirapine with enhanced liquid-liquid extraction and chromatographic separation.

    PubMed

    Beg, Sarwar; Chaudhary, Vandna; Sharma, Gajanand; Garg, Babita; Panda, Sagar Suman; Singh, Bhupinder

    2016-06-01

    The present studies describe the systematic quality by design (QbD)-oriented development and validation of a simple, rapid, sensitive and cost-effective reversed-phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box-Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid-liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26352459

  8. Multidimensional gas chromatographic determination of paraffins, olefins and aromatics in naphthas.

    PubMed

    Lo Coco, Filippo; Gasparini, Gianni; Lanuzza, Francesco; Stani, Gianluca; Adami, Gianpiero

    2006-01-01

    In order to cope with the increasing demand for gasoline and the need to reduce environmental impact for sustainable development, refineries have installed refining technology by introducing cracking, reforming, isomerization and alkylation. The standard EN 228: 2004 outlines the specification that gasoline, deriving from the blend of several fractions, must have for use in modem piston engines. Naphtha is one of the products from distilling crude oil that can be used as starting material in the reforming process whose derivatives, which are a fraction of gasoline, depend on the composition of the naphtha. Knowledge of the naphtha composition thus enables to provide the final composition of the products of reforming, the efficiency of the plant and also provides information about the crude oil used. In this paper some naphtha samples were analysed by multidimensional gas chromatography. This technique allows in a single analysis a good separation of the hydrocarbon types and within each hydrocarbon type a good carbon number separation. PMID:17172208

  9. Immobilized fluid membranes for gas separation

    DOEpatents

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  10. TUNABLE COMPOSITE MEMBRANES FOR GAS SEPARATIONS

    SciTech Connect

    J.P. Ferraris; K.J. Balkus, Jr.; I.H. Musselman

    1999-01-01

    Poly 2-(3-thienyl)ethylacetate (PAET) was synthesized and solution cast as thin films to form dense membranes. These membranes are mechanically robust and are redox active, holding out promise as gas separation materials. The permeability properties of PAET membranes were evaluated for N{sub 2} (0.048 {+-} 0.008 Barrers), O{sub 2} (0.24 {+-} 0.02 Barrers), CH{sub 4} (0.081 {+-} 0.005 Barrers), and CO{sub 2} (1.4 {+-} 0.1 Barrers). The corresponding selectivity values ({alpha}) were: O{sub 2}/N{sub 2} = 5.1, CO{sub 2}/N{sub 2} = 29, and CO{sub 2}/CH{sub 4} = 18.

  11. Gas separation with glass membranes. Final report

    SciTech Connect

    Roberts, D.L.; Abraham, L.C.; Blum, Y.; Way, J.D.

    1992-05-01

    The Department of Energy (DOE) is seeking to develop high temperature, high pressure inorganic membrane technology to perform a variety of gas separation processes to improve the efficiency and economics of advanced power generation systems such as direct coal-fueled turbines (DCFT) and the integrated gasification combined cycle process (IGCC). The temperatures encountered in these power generation systems are far above the temperature range for organic membrane materials. Inorganic materials such as ceramics are therefore the most likely membrane materials for use at high temperatures. This project focussed on silica glass fiber membranes made by PPG Industries (Pittsburgh, PA). The goals were both experimental and theoretical. The first objective was to develop a rational theory for the performance of these membranes. With existing theories as a starting point, a new theory was devised to explain the unusual ``molecular sieving`` behavior exhibited by these glass membranes. An apparatus was then devised for making permeation performance measurements at conditions of interest to DOE (temperatures to 2000{degrees}F; pressures to 1000 psia). With this apparatus, gas mixtures could be made typical of coal combustion or coal gasification processes, these gases could be passed into a membrane test cell, and the separation performance determined. Data were obtained for H{sub 2}/CO,N{sub 2}/CO{sub 2}, 0{sub 2}/N{sub 2}, and NH{sub 3}/N{sub 2} mixtures and for a variety of pure component gases (He, H{sub 2}, CO{sub 2}, N{sub 2}, CO, NH{sub 3}). The most challenging part of the project turned out to be the sealing of the membrane at high temperatures and pressures. The report concludes with an overview of the practical potential of these membranes and of inorganic membranes in general of DOE and other applications.

  12. Gas-liquid separator and method of operation

    DOEpatents

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  13. A rapid gas chromatographic injection-port derivatization method for the tandem mass spectrometric determination of patulin and 5-hydroxymethylfurfural in fruit juices.

    PubMed

    Marsol-Vall, Alexis; Balcells, Mercè; Eras, Jordi; Canela-Garayoa, Ramon

    2016-07-01

    A novel method consisting of injection-port derivatization coupled to gas chromatography-tandem mass spectrometry is described. The method allows the rapid assessment of 5-hydroxymethylfurfural (HMF) and patulin content in apple and pear derivatives. The chromatographic separation of the compounds was achieved in a short chromatographic run (12.2min) suitable for routine controls of these compounds in the fruit juice industry. The optimal conditions for the injection-port derivatization were at 270°C, 0.5min purge-off, and a 1:2 sample:derivatization reagent ratio (v/v). These conditions represent an important saving in terms of derivatization reagent consumption and sample preparation time. Quality parameters were assessed for the target compounds, giving LOD of 0.7 and 1.6μg/kg and LOQ of 2 and 5μg/kg for patulin and HMF, respectively. These values are below the maximum patulin concentration in food products intended for infants and young children. Repeatability (%RSD n=5) was below 12% for both compounds. In addition, the method linearity ranged between 25 and 1000μg/kg and between 5 and 192μg/kg for HMF and patulin, respectively. Finally, the method was applied to study HMF and patulin content in various fruit juice samples. PMID:27240947

  14. Improved high performance liquid chromatographic separation of anthocyanin compounds from grapes using a novel mixed-mode ion-exchange reversed-phase column.

    PubMed

    McCallum, Jason L; Yang, Raymond; Young, J Christopher; Strommer, Judith N; Tsao, Rong

    2007-04-27

    A novel mixed mode HPLC method using a column combining both ion-exchange and reversed-phase separation mechanisms has been developed to facilitate analysis of anthocyanins in grapes. Chromatographic performance and subsequent analysis of anthocyanidin diglucosides and acylated compounds are significantly improved using the new column, compared to those associated with conventional C18 reversed-phase methods. The mixed mode column produces a distinctive eluting pattern for the different anthocyanin subgroups, avoiding overlaps found with C18 columns. The enhanced chromatographic resolution provides nearly complete separation of 37 anthocyanin types, and permits detection of delphinidin 3-O-(6''-O-caffeoyl) beta-D-glucoside for the first time in extracts of skins from Concord grapes. PMID:17382950

  15. Speciated organic composition of atmospheric aerosols: Development and application of a Thermal desorption Aerosol Gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Williams, Brent James

    This dissertation describes the invention and first applications of an in-situ instrument, Ṯhermal desorption A&barbelow;erosol G&barbelow;as chromatograph (TAG), capable of automated hourly measurements of speciated organic compounds in atmospheric aerosols. Atmospheric particles alter the Earth's radiation balance and hydrological cycle and are detrimental to human health. There are hundreds to thousands of different compounds present in the carbonaceous component of atmospheric particles. These organic marker compounds offer information on atmospheric aerosol sources, formation processes, and transformation processes. TAG is the first instrument to achieve automated in-situ hourly measurements, improving upon traditional 12--24 hour filter-based methods and making it possible to analyze changes in organic aerosol speciation over timescales ranging from hours to seasons. Reported here are results from TAG development and laboratory-based testing, as well as new findings from two separate field campaigns. The first field study took place in Nova Scotia as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). Hourly TAG measurements were used to define several aerosol sources, including aged anthropogenics from the US, oxidized biogenic aerosol from Maine/Canada, local oxidized biogenics, local anthropogenic contributions to primary organic aerosol (POA), and a potential marine or dairy source. The second field deployment was in southern California during the Study of Organic Aerosol at Riverside (SOAR). Particle sources included several types of oxidized secondary organic aerosol (SOA), vehicle emissions, food cooking, biomass burning, and primary and secondary biogenics. SOA-associated aerosol dominated POA-associated aerosol in both locations, with SOA comprising an approximate 90% (60%) of the total organic aerosol mass in Nova Scotia (Riverside, CA), and in Riverside, summertime afternoon SOA

  16. On-line gas chromatographic studies of rutherfordium (Element 104), hahnium (Element 105), and homologs

    SciTech Connect

    Kadkhodayan, B.

    1993-05-01

    Gas-phase isothermal chromatogaphy is a method by which volatile compounds of different chemical elements can be separated according to their volatilities. The technique, coupled with theoretical modeling of the processes occurring in the chromatogaphy column, provides accurate determination of thermodynamic properties (e.g., adsorption enthalpies) for compounds of elements, such as the transactinides, which can only be produced on an atom-at-a-time basis. In addition, the chemical selectivity of the isothermal chromatogaphy technique provides the decontamination from interfering activities necessary for the determination of the nuclear decay properties of isotopes of the transactinide elements. Volatility measurements were performed on chloride species of Rf and its group 4 homologs, Zr and Hf, as well as Ha and its group 5 homologs, Nb and Ta. Adsorption enthalpies were calculated for all species using a Monte Carlo code simulation based on a microscopic model for gas thermochromatography in open columns with laminar flow of the carrier gas. Preliminary results are presented for Zr- and Nb-bromides.

  17. Continuous countercurrent chromatographic separator for the purification of sugars from biomass hydrolyzate. Final project report, July 1, 1996--September 30, 1997

    SciTech Connect

    Wooley, R J

    1997-12-01

    Production of pure sugars is required to enable production of fuels and chemicals from biomass feedstocks. Hydrolysis of cellulose and hemicellulose (principal constituents of biomass) produces sugars that can be utilized in various fermentation process to produce valuable chemicals. Unfortunately, the hydrolysis process also liberates chemicals from the biomass that can be toxic to the fermenting organisms. The two primary toxic components of biomass hydrolyzate are sulfuric acid (catalyst used in the hydrolysis) and acetic acid (a component of the feed biomass). In the standard batch chromatographic separation of these three components, sugar elutes in the middle. Batch chromatographic separations are not practical on a commercial scale, because of excess dilution and high capital costs. Because sugar is the {open_quotes}center product,{close_quotes} a continuous separation would require two costly binary separators. However, a single, slightly larger separator, configured to produce three products, would be more economical. This FIRST project develops a cost-effective method for purifying biomass hydrolyzate into fermentable sugars using a single continuous countercurrent separator to separate this ternary mixture.

  18. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (Rs<1.0) and low efficiency (800-16,300plates/m), addition of a small amount of HKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. PMID:25145567

  19. Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures.

    PubMed

    Moskovets, Eugene V; Ivanov, Alexander R

    2016-06-01

    This work demonstrates that the chromatographic separation performed at highly stabilized elevated temperature results in significant improvements in sensitivity, quantitative accuracy, chromatographic resolution, and run-to-run reproducibility of nanoLC-MS analysis of complex peptides mixtures. A newly developed platform was shown to provide conditions for accurate temperature stabilization and temperature homogeneity when performing nanoLC-ESI MS analysis. We quantitatively assessed and compared the recovery of peptides and small proteins from nanoLC columns at room and elevated temperatures. We found that analyses performed at highly stabilized elevated temperatures led to improved detection sensitivity, reproducibility, and chromatographic resolution in reversed-phase LC separation of unmodified peptides (both hydrophilic and hydrophobic), post-translationally modified peptides (O-phosphorylated), and small intact proteins. The analytical benefits of elevated temperatures for qualitative and quantitative proteomic LC-MS profiling were demonstrated using mixtures of synthetic peptides, tryptic digests of mixtures of model proteins, and digested total lysates of isolated rat kidney mitochondria. The effect of elevated temperature on the ion suppression was also demonstrated. Graphical Abstract A fragment of overlaid LC retention time-m/z planar views demonstrates the improved separation performance in the analysis of a complex peptide mixture at elevated temperature. Retention time-m/z 2D peptide features detected at 60 °C (magenta) were matched and aligned with features detected at room temperature (green). PMID:26898204

  20. High-resolution hydrodynamic chromatographic separation of large DNA using narrow, bare open capillaries: a rapid and economical alternative technology to pulsed-field gel electrophoresis?

    PubMed

    Liu, Lei; Veerappan, Vijaykumar; Pu, Qiaosheng; Cheng, Chang; Wang, Xiayan; Lu, Liping; Allen, Randy D; Guo, Guangsheng

    2014-01-01

    A high-resolution, rapid, and economical hydrodynamic chromatographic (HDC) method for large DNA separations in free solution was developed using narrow (5 μm diameter), bare open capillaries. Size-based separation was achieved in a chromatographic format with larger DNA molecules being eluting faster than smaller ones. Lambda DNA Mono Cut Mix was baseline-separated with the percentage resolutions generally less than 9.0% for all DNA fragments (1.5 to 48.5 kbp) tested in this work. High efficiencies were achieved for large DNA from this chromatographic technique, and the number of theoretical plates reached 3.6 × 10(5) plates for the longest (48.5 kbp) and 3.7 × 10(5) plates for the shortest (1.5 kbp) fragments. HDC parameters and performances were also discussed. The method was further applied for fractionating large DNA fragments from real-world samples (SacII digested Arabidopsis plant bacterial artificial chromosome (BAC) DNA and PmeI digested Rice BAC DNA) to demonstrate its feasibility for BAC DNA finger printing. Rapid separation of PmeI digested Rice BAC DNA covering from 0.44 to 119.041 kbp was achieved in less than 26 min. All DNA fragments of these samples were baseline separated in narrow bare open capillaries, while the smallest fragment (0.44 kbp) was missing in pulsed-field gel electrophoresis (PFGE) separation mode. It is demonstrated that narrow bare open capillary chromatography can realize a rapid separation for a wide size range of DNA mixtures that contain both small and large DNA fragments in a single run. PMID:24274685

  1. Gas chromatographic/mass spectrometric analyses of unknown analytical response in imported Fava beans: 4-chloro-6-methoxyindole.

    PubMed

    Petzinger, G; Barry, T L; Roach, J A; Musser, S M; Sphon, J

    1995-01-01

    A halogenated unidentified analytical response (UAR) was encountered in a number of imported Fava bean samples during the Food and Drug Administration's routine pesticide-monitoring program. Gas chromatographic/mass spectrometric (GC/MS) analyses identified the halogenated component as 4-chloro-6-methoxyindole, a naturally occurring promutagen in Fava beans that has been linked to incidents of gastric cancer. Data from electron impact, positive and negative chemical ionization, collision-induced dissociation, and deuteration studies of this compound are presented, along with GC retention time data. PMID:7756907

  2. Preliminary results of investigations into the use of artificial neural networks for discriminating gas chromatograph mass spectra of remote samples

    NASA Technical Reports Server (NTRS)

    Geller, Harold A.; Norris, Eugene; Warnock, Archibald, III

    1991-01-01

    Neural networks trained using mass spectra data from the National Institute of Standards and Technology (NIST) are studied. The investigations also included sample data from the gas chromatograph mass spectrometer (GCMS) instrument aboard the Viking Lander, obtained from the National Space Science Data Center. The work performed to data and the preliminary results from the training and testing of neural networks are described. These preliminary results are presented for the purpose of determining the viability of applying artificial neural networks in discriminating mass spectra samples from remote instrumentation such as the Mars Rover Sample Return Mission and the Cassini Probe.

  3. Solid-state voltammetry and polymer electrolyte plasticization as a basis for an electrochemical gas chromatographic detector

    SciTech Connect

    Parcher, J.F.; Barbour, C.J.; Murray, R.W. )

    1989-03-15

    A new type of electrochemical gas chromatographic (ECGC) detector is described. The detector consists of a film of polymer electrolyte, PEO{sub 16}/LiCF{sub 3}SO{sub 3}, coating a microelectrode-based electrochemical cell and in contact with the effluent stream of a gas chromatograph. The PEO{sub 16}/LiCF{sub 3}SO{sub 3} polymer acts as an ionically conducting but physically rigid medium. Currents passed at the microelectrode/polymer interface depend on reactions of electroactive solutes dissolved in and diffusing through the polymer phase. These currents respond to the presence of sample components in the gas phase through their sorption into, and plasticization of, the PEO polymer phase. The polymer plasticization results in larger diffusion coefficients for the electroactive solutes and, consequently, larger microelectrode currents. Several forms of electrochemical potential control are examined as are the effects of chosen electroactive probe, probe concentration, polymer film thickness, and gaseous sample concentration and sorption. Faster detector responses are obtained with thin PEO{sub 16}/LiCF{sub 3}SO{sub 3} films and faster diffusing electroactive probes. The detector responds linearly to small quantities of sample but exponentially to large sample concentrations. The detector is unusual in that it is most sensitive to later-eluting components of a sample mixture; this effect results from the connection between the degree of sample component sorption or partition into the polymer electrolyte and the resulting degree of polymer plasticization and transport rate enhancement.

  4. Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.

  5. Gas-liquid chromatographic determination of kepone in field-collected avian tissues and eggs

    USGS Publications Warehouse

    Stafford, C.J.; Reichel, W.L.; Swineford, D.M.; Prouty, R.M.; Gay, M.L.

    1978-01-01

    A procedure is described for determining Kepone (decachlorooctahydro-1,3,4-metheno-2H-cyclobuta [cd] pentalene-2-one) residues in avian egg, liver, and tissue. Samples were extracted with benzene-isopropanol, and the extract was cleaned up with fuming H2SO4-concentrated H2SO4. Kepone was separated from organochlorine pesticides and polychlorinated biphenyls on a Florisil column and analyzed by electron capture gas-liquid chromatography (GLC). The average recovery from spiked tissues was 86%. The analyses performed on 14 bald eagle carcasses and livers, 3 bald eagle eggs, and 14 osprey eggs show measurable levels which indicate that Kepone accumulates in the tissues of fish-eating birds. Residues were confirmed by GLC-mass spectrometry.

  6. Separation of gas mixtures by supported complexes

    SciTech Connect

    Nelson, D.A.; Lilga, M.A.

    1986-12-01

    A system was investigated that catalyzes the dehydrogenation of alcohols and the hydrogenation of ketones. Such a catalyst, if used in a membrane containing an alcohol solvent, might be of use in selective H/sub 2/ separation from gas mixtures. The dehydrogenation of cyclohexanol and 2-octanol were studied using a RhCl/sub 3//SnCl/sub 2//LiCl catalyst system. These alcohols are dehydrogenated at rates that are initially rapid, but which gradually slow to a stop. The decrease in rate of H/sub 2/ evolution is a result of the establishment of an equilibrium between the alcohol and the liberated hydrogen and ketone. At 150/sup 0/C, cyclohexanol has the fastest rate of dehydrogenation. Several dehydrogenation/hydrogenation cycles have been carried out using this alcohol over a period of one week without serious catalyst deactivation or side reactions. Initial tests of the catalyst dissolved in cyclohexanol within two membranes were inconclusive. An anion exchange membrane was not suitably wetted by the catalyst solution and Celgard/sup TM/, which was wetted, could not be kept wet at 150/sup 0/C under flow conditions in the membrane cell. 9 refs., 3 figs., 1 tab.

  7. [Development of an automatic vacuum liquid chromatographic device and its application in the separation of the components from Schisandra chinensis (Turz) Baill].

    PubMed

    Zhu, Jingbo; Liu, Baoyue; Shan, Shibo; Ding, Yanl; Kou, Zinong; Xiao, Wei

    2015-08-01

    In order to meet the needs of efficient purification of products from natural resources, this paper developed an automatic vacuum liquid chromatographic device (AUTO-VLC) and applied it to the component separation of petroleum ether extracts of Schisandra chinensis (Turcz) Baill. The device was comprised of a solvent system, a 10-position distribution valve, a 3-position changes valve, dynamic axis compress chromatographic columns with three diameters, and a 10-position fraction valve. The programmable logic controller (PLC) S7- 200 was adopted to realize the automatic control and monitoring of the mobile phase changing, column selection, separation time setting and fraction collection. The separation results showed that six fractions (S1-S6) of different chemical components from 100 g Schisandra chinensis (Turcz) Baill. petroleum ether phase were obtained by the AUTO-VLC with 150 mm diameter dynamic axis compress chromatographic column. A new method used for the VLC separation parameters screened by using multiple development TLC was developed and confirmed. The initial mobile phase of AUTO-VLC was selected by taking Rf of all the target compounds ranging from 0 to 0.45 for fist development on the TLC; gradient elution ratio was selected according to k value (the slope of the linear function of Rf value and development times on the TLC) and the resolution of target compounds; elution times (n) were calculated by the formula n ≈ ΔRf/k. A total of four compounds with the purity more than 85% and 13 other components were separated from S5 under the selected conditions for only 17 h. Therefore, the development of the automatic VLC and its method are significant to the automatic and systematic separation of traditional Chinese medicines. PMID:26749864

  8. Refined separation of combined Fe–Hf from rock matrices for isotope analyses using AG-MP-1M and Ln-Spec chromatographic extraction resins

    PubMed Central

    Cheng, Ting; Nebel, Oliver; Sossi, Paolo A.; Chen, Fukun

    2014-01-01

    A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied method using Eichrom LN-Spec resin. Our combined method includes:•Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.•Direct loading of the matrix onto the resin that is used for Hf purification.•Collection of a Fe-free Hf fraction. PMID:26150946

  9. A validated method for gas chromatographic analysis of gamma-aminobutyric acid in tall fescue herbage.

    PubMed

    Kagan, Isabelle A; Coe, Brenda L; Smith, Lori L; Huo, Cheng-Jun; Dougherty, Charles T; Strickland, James R

    2008-07-23

    Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in animals that is also found in plants and has been associated with plant responses to stress. A simple and relatively rapid method of GABA separation and quantification was developed from a commercially available kit for serum amino acids (Phenomenex EZ:faast) and validated for tall fescue (Festuca arundinacea). Extraction in ethanol/water (80:20, v/v) at ambient temperature yielded detectable amounts of GABA. Clean separation from other amino acids in 28 min was achieved by gas chromatography (GC) with flame ionization detection (FID), using a 30 m, 5% phenyl/95% dimethylpolysiloxane column. The identity of the putative GABA peak was confirmed by GC with mass spectrometric (MS) detection. The relatively small effects of the sample matrix on GABA measurement were verified by demonstrating slope parallelism of GABA curves prepared in the presence and absence of fescue extracts. Limits of quantification and detection were 2.00 and 1.00 nmol/100 microL, respectively. Method recoveries at two different spike levels were 96.4 and 94.2%, with coefficients of variation of 7.3 and 7.2%, respectively. PMID:18558696

  10. Capillary column gas chromatographic determination of dicamba in water, including mass spectrometric confirmation.

    PubMed

    Jimenez, N C; Atallah, Y H; Bade, T R

    1989-01-01

    A sensitive method is described for determining dicamba at low micrograms/L levels in ground waters by capillary column gas chromatography with electron-capture detection (GC-EC); compound identity is confirmed by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring. Dicamba residue is hydrolyzed in KOH to form the potassium salt. The sample is then extracted with ethyl ether which is discarded. The aqueous phase is acidified to pH less than 1 and extracted twice with ethyl ether. The combined ethyl ether extracts are concentrated, and the residue is methylated using diazomethane to form the corresponding dicamba ester. The derivatized sample is cleaned up on a deactivated silica gel column. The methylated dicamba is separated on an SE-30 capillary column and quantitated by electron-capture or mass spectrometric detection. Average recoveries (X +/- SD) for ground water samples fortified with 0.40 microgram/L of dicamba are 86 +/- 5% by GC-EC and 97 +/- 7% by GC-MS detections. The EDL (estimated detection limit) for this method is 0.1 microgram dicamba/L water (ppb). PMID:2808247

  11. Optimisation of a gas chromatographic method for trace gaseous impurities in nitrogen trifluoride by column sequence reversal.

    PubMed

    de Coning, Johannes Petrus; Swinley, John McNeil

    2008-02-01

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low mg/L levels included dioxygen (O2), dinitrogen (N2), carbon dioxide (CO2), carbon monoxide (CO), sulfur hexafluoride (SF6), methane (CH4) and nitrous oxide (N2O). Carbon tetrafluoride (CF4) is also present in the product at levels of 20-400mg/L and had to be analysed as well. This paper compares the use of a custom-built dual-channel gas chromatograph utilising single column back flush switching on one channel for the determination of O2, N2, CH4 and CO with column sequence reversal on a second channel for the determination of CO2, N2O, SF6 and CF4 to a similar system using a combination of dual-column back flush and heart-cut configurations. Pulsed discharge helium ionisation detectors were used on both channels in both configurations. PMID:18155712

  12. Gas chromatographic simulated distillation-mass spectrometry for the determination of the boiling point distributions of crude oils

    PubMed

    Roussis; Fitzgerald

    2000-04-01

    The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils. PMID:10763233

  13. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.

    PubMed

    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas

    2014-07-01

    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a μGC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100μm×100μm has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100μm diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the μGC column in temperature programmed mode. The demonstrated μGC column along with the high temperature fixture offers one more solution toward potentially realizing a portable μGC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with μGC columns using epoxy based interconnect technology. PMID:24866564

  14. Evaluation of poly(90% biscyanopropyl/10% cyanopropylphenyl siloxane) capillary columns for the gas chromatographic quantification of trans fatty acids in non-hydrogenated vegetable oils.

    PubMed

    Delmonte, Pierluigi

    2016-08-19

    Current gas chromatographic (GC) methods for the analysis of fatty acids (FA) were optimized primarily for the quantification of the trans 18:1 FAs (18:1 tFAs) produced during the partial hydrogenation of fats and oils. Recent regulatory action regarding the application of partial hydrogenation in the processing of edible fats and oils may reshape the FA composition of these products. The higher content in 18:3 tFAs compared to 18:1 tFAs of most refined non-hydrogenated vegetable oils (RNHVO), and the challenge in their quantification applying current methods, suggest the need for new methodologies. This manuscript describes a simple GC method for the analysis of FAs in RNHVOs utilizing a 100m (0.25mm I.D.) capillary column coated with poly(90% biscyanopropyl/10% cyanopropylphenyl siloxane) (90% BCS). The optimization of the chromatographic conditions and the detection of co-eluting compounds were carried out by applying comprehensive two dimensional gas chromatography with online reduction (GC-OR×GC). Results showed that 90% BCS capillary columns operated at the elution temperature of 162°C provide the separation of the 18:1, 18:2 and 18:3 tFAs, contained in RNHVOs, from other components. A minor constituent of Canola oil, 16:3n-3, partially co-eluted with trans-18:1 FAMEs. This simple GC method showed the ability to measure trans-fat in RNHVOs at the level of 0.5g/100g, providing comparable quantitative results to the more complex GC×GC methodology. PMID:27470095

  15. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  16. A gas chromatograph system for semi-continuous greenhouse gas measurements at Puy de Dôme station, Central France

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Schmidt, M.; Ramonet, M.; Bonne, J.-L.; Colomb, A.; Kazan, V.; Laj, P.; Pichon, J.-M.

    2015-03-01

    Three years of greenhouse gases measurements, obtained using a gas chromatograph (GC) system located at the Puy de Dôme station at 1465 m a.s.l. in Central France are presented. The GC system was installed in 2010 at Puy de Dôme and was designed for automatic and accurate semi-continuous measurements of atmospheric carbon dioxide, methane, nitrous oxide and sulfur hexafluoride mole fractions. We present in detail the instrumental set up and the calibration strategy, which together allow the GC to reach repeatabilities of 0.1 μmol mol-1, 1.2, 0.3 nmol mol-1 and 0.06 pmol mol-1 for CO2, CH4, N2O and SF6, respectively. Comparisons of the atmospheric time series with those obtained using other instruments shown that the GC system meets the World Meteorological Organization recommendations. The analysis of the three-year atmospheric time series revealed how the planetary boundary layer height drives the mole fractions observed at a mountain site such as Puy de Dôme where air masses alternate between the planetary boundary layer and the free troposphere. Accurate long-lived greenhouse gases measurements collocated with 222Rn measurements as an atmospheric tracer, allowed us to determine the CO2, CH4 and N2O emissions in the catchment area of the station. The derived CO2 surface flux revealed a clear seasonal cycle with net uptake by plant assimilation in the spring and net emission caused by the biosphere and burning of fossil fuel during the remainder of the year. We calculated a mean annual CO2 flux of 1150 t(CO2) km-2. The derived CH4 and N2O emissions in the station catchment area were 5.6 t(CH4) km-2 yr-1 and 1.5 t(N2O) km-2 yr-1, respectively. Our derived annual CH4 flux is in agreement with the national French inventory, whereas our derived N2O flux is five times larger than the same inventory.

  17. Tunable Composite Membranes for Gas Separations.

    SciTech Connect

    Ferraris, J.P.; Balkus, K.J. Jr.; Musselman, I.H.

    1997-07-01

    Solution cast membranes of poly(3-dodecylthiophene) (PDDT) were studied for the room temperature separation of N{sub 2}, 0{sub 2}, and C0{sub 2} procedure for fabricating reproducible, smooth, uniformly thick (-35-pm), defect-free membranes was established. Permeability values were measured for as-cast PDDT membranes (PO{sub 2} = 9.4, PN{sub 2} = 20.2, PCO{sub 2} = 88. 2 Barrers) and selectivity values were calculated (XO{sub 2}/N{sub 2} = 2.2, XC0{sub 2}/N{sub 2} = 9.4). Chemically induced doping (-23%) with SbCI5 resulte in a decrease in permeability (PN{sub 2} = 3.5, P0{sub 2} =10.5, PCO{sub 2} = 48.5 Barrers) and a corresponding increase in permselectivity (X 0{sub 2}/N{sub 2} = 0, (xCO{sub 2}/N{sub 2} =14.0)). Membrane undoping with hydrazine partially reversed these trends (PN{sub 2} = 5.4, P0{sub 2} = 15.1, PCO{sub 2} = 62.9 Barrers), (XO{sub 2}/N{sub 2} = 2.8), (XCO{sub 2}/N{sub 2} =I 1. 6). The chemical composition cast, doped, and undoped PDDT membranes were determined using elemental analysis and energy dispersive x-ray spectrometry. Membrane microstructure was investigated by optical microscopy, TappingModeTM atomic force microscopy and scanning electron microscopy. The composition and microscopy results were correlated with changes in gas-transport properties. Two papers were presented at the Meeting of the North American Membranes Society, (June 2-4,1997, Baltimore, MD).

  18. Solid phase micro extraction - A new technique coupled with gas chromatograph for chloroethene analysis from aqueous samples

    SciTech Connect

    Xu, N.; Sewell, G.W.

    1996-10-01

    Once the chloroethenes (tetrachloroethene and trichloroethene) contamination occurs in the subsurface environment, they tend to retain and form a Pollution plum in the aquifer because of their recalcitrance to aerobic oxidation. Currently, the most promising bioremediation method for chlorinated compounds is through anaerobic reductive biotransformation, in which each chlorine is replaced by a hydrogen. To study the biodegradation process, it is essential to monitor tetrachloroethene and its degradation daughter products frequently. An analytical method has been modified for chloroethene analysis by gas chromatography. Solid Phase Micro Extraction technique has been used to extract aqueous sample onto a fiber and then to desorb the sample directly into a gas chromatograph injection port. The total run time is less than 17 minutes.

  19. Research on the separation properties of empty-column gas chromatography (EC-GC) and conditions for simulated distillation (SIMDIS).

    PubMed

    Boczkaj, Grzegorz; Kamiński, Marian

    2013-10-01

    Previous studies have revealed it is possible to separate a high-boiling mixture by gas chromatography in empty fused-silica capillary tubing rather than in columns coated with stationary phase. Chromatographic separation occurs solely on the basis of the different boiling points of the substances separated. The high similarity of such separations to those in classic distillation seems advantageous when gas chromatography is used for simulated distillation. This paper presents results from further research on the separation properties of empty fused silica tubing. The efficiency of this chromatographic system has been examined. The usefulness of such conditions has been studied for simulated distillation, i.e. to determine the boiling-point distribution of complex mixtures, mainly petroleum fractions and products, on the basis of their retention relative to reference substances. The results obtained by use of empty-column gas chromatography (EC-GC) and by use of classical simulated distillation columns have been compared for solutes of different polarity. Studies revealed boiling points determined by EC-GC were more accurate than those obtained by the standard method of simulated distillation. PMID:23925798

  20. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    PubMed

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied. PMID:15933854

  1. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  2. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  3. Oil/gas separator for installation at burning wells

    SciTech Connect

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.

    1991-12-31

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  4. Classification of gasoline by octane number and light gas condensate fractions by origin with using dielectric or gas-chromatographic data and chemometrics tools.

    PubMed

    Rudnev, Vasiliy A; Boichenko, Alexander P; Karnozhytskiy, Pavel V

    2011-05-15

    The approach for classification of gasoline by octane number and light gas condensate fractions by origin with using dielectric permeability data has been proposed and compared with classification of same samples on the basis of gas-chromatographic data. The precision of dielectric permeability measurements was investigated by using ANOVA. The relative standard deviation of dielectric permeability was in the range from 0.3 to 0.5% for the range of dielectric permeability from 1.8 to 4.4. The application of exploratory chemometrics tools (cluster analysis and principal component analysis) allow to explicitly differentiate the gasoline and light gas condensate fractions into groups of samples related to specific octane number or origin. The neural networks allow to perfectly classifying the gasoline and light gas condensate fractions. PMID:21482310

  5. Evaluation of gas chromatographic methods for the determination of trans fat.

    PubMed

    Delmonte, Pierluigi; Rader, Jeanne I

    2007-09-01

    Consumption of trans fat has been associated with increased risk of coronary heart disease. For nutrition labeling purposes, the US Food and Drug Administration (FDA) defines trans fat as the sum of all the fatty acids with at least one nonconjugated double bond in the trans configuration. The FDA regulation states that label declarations of trans fat are not required for products that contain less than 0.5 g of trans fat per serving if no claims are made about fat, fatty acids or cholesterol. While attenuated total reflection Fourier-transformed infrared spectroscopy (ATR-FT-IR) provides reproducible measurements for samples containing more than 5% trans fat, methods based on gas chromatography (GC) are needed to measure lower trans fat levels. Trans fat quantitation by GC has recently been updated by considering more fatty acids, focusing more attention on fatty acids present in low amounts, and by using 100-m high-polarity capillary columns for optimal separation. The consistently high interlaboratory relative standard deviations (RSD, e.g., 21% at 1% trans fatty acids (TFA), 60% at 0.17% TFA), and intralaboratory RSD values (e.g., 10% at 1% TFA, 16% at 0.17% TFA) for trans fat at 1% or less of total fat reported in the collaborative study data for American Oil Chemists Society Official Method Ce 1h-05 suggest the need to carefully define the parameters associated with GC analysis of fatty acids. PMID:17572885

  6. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating

    SciTech Connect

    Eglinton, T.I.; Aluwihare, L.I.; McNichol, A.P.; Bauer, J.E.; Druffel, E.R.M.

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated pereparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for {sup 14}C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the {sup 14}C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that {Delta}{sup 14}C values generally agreed well ({+-}10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (<5% for {delta}{sup 13}C), provided the entire peak was collected during PCGC. Trapping of partially coeluting peaks did cause errors, and these results highlight the importance of conducting stable carbon isotopic measurements of each trapped compound in concert with AMS for reliable radiocarbon measurements. 29 refs., 9 figs., 2 tabs.

  7. Separation of gas mixtures by centrifugation

    NASA Technical Reports Server (NTRS)

    Park, C.; Love, W. L.

    1972-01-01

    Magnetohydrodynamic (MHD) centrifuge utilizing electric currents and magnetic fields produces a magnetic force which develops supersonic rotational velocities in gas mixtures. Device is superior to ordinary centrifuges because rotation of gas mixture is produced by MHD force rather than mechanical means.

  8. Evaluation of the retention pattern on ionic liquid columns for gas chromatographic analyses of fatty acid methyl esters.

    PubMed

    Lin, Chen-Chen; Wasta, Ziar; Mjøs, Svein A

    2014-07-11

    Fatty acid methyl esters from marine sources were analyzed by gas chromatography-mass spectrometry on three ionic liquid columns, SLB-IL61, SLB-IL82 and SLB-IL100 (Supelco). Retention indices (equivalent chain lengths) are reported for more than 100 compounds and the overlap patterns are evaluated from these data. The influence of chromatographic conditions on the retention indices of unsaturated fatty acid methyl esters is also evaluated. Compared to typical alternative phases the retention patterns on all three columns are highly dependent on the conditions. The SLB-IL61 phase had overlaps between nutritionally important fatty acids that could not be resolved by changing the chromatographic conditions. This column is therefore regarded as unsuitable for clinical and nutritional studies of the fatty acid composition, but similar overlaps may be avoided on IL82 and IL100. On all three columns double bonds close to the carboxyl group in the analytes contribute with limited retention, which makes it challenging to predict the retention of polyunsaturated fatty acid methyl esters. PMID:24873965

  9. Determination of methylmercury and inorganic mercury by coupling short-column ion chromatographic separation, on-line photocatalyst-assisted vapor generation, and inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Kuan-ju; Hsu, I-hsiang; Sun, Yuh-chang

    2009-12-18

    We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg(2+) and MeHg(+) species. The separation of Hg(2+) and MeHg(+) was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl(2)-based VG techniques for the vaporization of MeHg(+) was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg(2+) and MeHg(+) were also improved to 25- and 7-fold, respectively. With the use of our established HPLC-UV/nano-TiO(2)-ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits--0.1 and 0.03 ng/mL for Hg(2+) and MeHg(+), respectively. A series of validation experiments--analysis of the NIST 2672a Standard Urine Reference Material and other urine samples--confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg(2+) and MeHg(+) species in real samples. PMID:19913233

  10. High-Throughput Analysis of Methylmalonic Acid in Serum, Plasma, and Urine by LC-MS/MS. Method for Analyzing Isomers Without Chromatographic Separation.

    PubMed

    Kushnir, Mark M; Nelson, Gordon J; Frank, Elizabeth L; Rockwood, Alan L

    2016-01-01

    Measurement of methylmalonic acid (MMA) plays an important role in the diagnosis of vitamin B12 deficiency. Vitamin B12 is an essential cofactor for the enzymatic carbon rearrangement of methylmalonyl-CoA (MMA-CoA) to succinyl-CoA (SA-CoA), and the lack of vitamin B12 leads to elevated concentrations of MMA. Presence of succinic acid (SA) complicates the analysis because mass spectra of MMA and SA are indistinguishable, when analyzed in negative ion mode and the peaks are difficult to resolve chromatographically. We developed a method for the selective analysis of MMA that exploits the significant difference in fragmentation patterns of di-butyl derivatives of the isomers MMA and SA in a tandem mass spectrometer when analyzed in positive ion mode. Tandem mass spectra of di-butyl derivatives of MMA and SA are very distinct; this allows selective analysis of MMA in the presence of SA. The instrumental analysis is performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive ion mode, which is, in combination with selective extraction of acidic compounds, is highly selective for organic acids with multiple carboxyl groups (dicarboxylic, tricarboxylic, etc.). In this method organic acids with a single carboxyl group are virtually undetectable in the mass spectrometer; the only organic acid, other than MMA, that is detected by this method is its isomer, SA. Quantitative measurement of MMA in this method is performed using a deconvolution algorithm, which mathematically resolves the signal corresponding to MMA and does not require chromatographic resolution of the MMA and SA peaks. Because of its high selectivity, the method utilizes isocratic chromatographic separation; reconditioning and re-equilibration of the chromatographic column between injections is unnecessary. The above features of the method allow high-throughput analysis of MMA with analysis cycle time of 1 min. PMID:26602128

  11. Modified normal-phase ion-pair chromatographic methods for the facile separation and purification of imidazolium-based ionic compounds

    SciTech Connect

    Urban, ND; Schenkel, MR; Robertson, LA; Noble, RD; Gin, DL

    2012-07-04

    lmidazolium- and oligo(imidazolium)-based ionic organic compounds are important in the design of room-temperature ionic liquid materials; however, the chromatographic analysis and separation of such compounds are often difficult. A convenient and inexpensive method for effective thin-layer chromatography (TLC) analysis and column chromatography separation of imidazolium-based ionic compounds is presented. Normal-phase ion-pair TLC is used to effectively analyze homologous mixtures of these ionic compounds. Subsequent separation of the mixtures is performed using ion-pair flash chromatography on normal-phase silica gel, yielding high levels of recovery. This method also results in a complete exchange of the counter anion on the imidazolium compounds to the anion of the ion-pair reagent. (C) 2012 Elsevier Ltd. All rights reserved.

  12. Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment.

    PubMed

    van Leeuwen, S P J; de Boer, J

    2008-04-01

    Environmental chemists have been challenged for over 30 years to analyse complex mixtures of halogenated organic pollutants like polychlorinated biphenyls (PCBs), polychlorinated alkanes (PCAs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and polychlorinated furans (PCDD/Fs). Gas chromatography (GC) often proved to be the method of choice because of its high resolution. The recent developments in the field of comprehensive two-dimensional GC (GCxGC) show that this technique can provide much more information than conventional (single-column) GC. Large volume injection (e.g. by programmed temperature vaporiser, or on-column injection) can be employed for the injection of tens of microliters of sample extract, in that way substantially improving the detection limits. Electron-capture detection (ECD) is a sensitive detection method but unambiguous identification is not possible and misidentification easily occurs. Mass spectrometric (MS) detection substantially improves the identification and the better the resolution (as with MS/MS, time-of-flight (TOF) MS and high-resolution (HR)MS), the lower the chances of misidentification are. Unfortunately, this comes only with substantially higher investments and maintenance costs. Co-extracted lipids, sulphur and other interferences can disturb the GC separation and detection leading to unreliable results. Extraction, and more so, sample clean-up and fractionation, are crucial steps prior to the GC analysis of these pollutants. Recent developments in sample extraction and clean-up show that selective pressurised liquid extraction (PLE) is an effective and efficient extraction and clean-up technique that enables processing of multiple samples in less than 1h. Quality assurance tools such as interlaboratory studies and reference materials are very well established for PCDD/Fs and PCBs but the improvement of that infrastructure is needed for brominated flame retardants, PCAs and toxaphene. PMID

  13. Gas chromatographic determination of microamounts of glycols and their esters in aqueous medium using adsorption on activated charcoal

    SciTech Connect

    Begunov, G.A.; Titovskaya, V.N.; Galenko, A.V.

    1987-11-10

    Rapid growth of production of glycols and their derivatives, especially methyl and ethyl esters, and wide use of these substances in various branches of the national economy (1) inevitably necessitate analytical monitoring of their content in waste waters and various water bodies. The authors studied the scope of gas-chromatographic determination of microamounts of glycols and their esters in aqueous media at the sanitary standards level (10/sup -5/%) using activated charcoal for their adsorption concentration from aqueous solutions, desorption from the charcoal by ethanol, and evaporationconcentration of the alcoholic solutions. The quantitative concentration characteristics were studied with reference to ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethyleneglycol, tripropylene glycol, tetraethylene glycol, ethylcellosolve, ethyl carbitol, and monoethyl ester of triethylene glycol.

  14. A bond graph model for the sample extraction/injection system of a microsized gas chromatographic instrument

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Wang, Wanjun; Murphy, Michael C.; Overton, Edward

    1996-09-01

    A bond graph model of the sample extraction/injection system of a prototype portable gas chromatographic instrument has been developed. In addition to performing the same functions as current portable gas chromatographs (GCs), the new generation of GC instruments is designed to perform extraction of analytes from liquid and solid samples. The prototype instrument achieves these improvements by taking of advantage of microfabrication technologies and microprocessor control in the design. A novel sample extraction/injection module is essential to the improved performance of the portable instrument, which will include microfabricated components such as inlets, interface chips, fluid channels, control valves, optimal heater/sensor combinations, and multiport connectors. In order to achieve the desired analytical performance, all of the major components are heated to 250 °C during different stages of a sample analysis. Predicting the performance of the system in this operating regime requires the modeling and analysis of system behavior in two interacting energy domains, fluid and thermal. This article represents the first effort to understand the dynamic behavior of the thermofluid aspect of micro-GC instruments and one of the first attempts to apply the widely-used bond graph technique to modeling and analysis of microsized thermofluid systems. Simulation results using the bond graph model closely match available experimental data, with differences typically less than 10%. This demonstrates that fluid dynamic theory for macroscale systems, and the bond graph method based on it, can be readily applied to microscale systems with these dimensions. The bond graph method can be a useful computer-aided design tool for the development of a new generation of truly integrated micro-GC instruments and sensors fabricated with micromachining technology.

  15. Gas separation applications to METC-supported technologies

    SciTech Connect

    Poku, J.A.; Plunkett, J.E.

    1989-12-01

    The objectives of this study were to catalog both hot and cold gas separation technologies, to identify the status and the developers of each, and to identify how these separation processes might be applied to METC-supported technologies for removal of trace contaminants, or purification of gases used in or generated by coal processing. Discussions on gas separation process names, typical feeds, process developers, and operating conditions are provided in the following sections of this report, as well as descriptions of how these gas cleanup techniques would be used in developmental coal conversion technologies. 82 refs., 22 figs., 14 tabs.

  16. Integration of gas chromatographs into the Federal Highway Administration/Environmental Protection Agency near road MSAT study in Las Vegas, NV

    EPA Science Inventory

    This paper documents the technical evaluation of a semi-continuous gas chromatograph (GC) for the measurement of benzene and 1,33butadiene in the near road environment. This paper will also consider the some of the non-technical implications associated with the operation of a GC ...

  17. Construction of a cryogen-free thermal desorption gas chromatographic system with off-the-shelf components for monitoring ambient volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Liao, Wei-Cheng; Wang, Pei-Chieh; Fan, Gang-Jei; Hsiao, Chien-Cheng; Chuang, Ming-Tung; Chang, Chih-Chung; Lin, Neng-Huei; Wang, Jia-Lin

    2016-04-01

    An automated gas chromatographic system aimed at performing unattended measurements of ambient volatile organic compounds was configured and tested. By exploiting various off-the-shelf components, the thermal desorption unit was easily assembled and can be connected with any existing commercial gas chromatograph in the laboratory to minimize cost. The performance of the complete thermal desorption gas chromatographic system was assessed by analyzing a standard mixture containing 56 target nonmethane hydrocarbons from C2 -C12 at sub-ppb levels. Particular attention was given to the enrichment efficiency of the C2 compounds, such as ethane (b.p. = -88.6°C) and ethylene (b.p. = -104.2°C), due to their extremely high volatilities. Quality assurance was performed in terms of the linearity, precision and limits of detection of the target compounds. To further validate the system, field measurements of target compounds in ambient air were compared with those of a commercial total hydrocarbon analyzer and a carbon monoxide analyzer. Highly coherent results from the three instruments were observed during a two-month period of synchronized measurements. Moreover, the phenomenon of opposite diurnal variations between the biogenic isoprene and anthropogenic species was exploited to help support the field applicability of the thermal desorption gas chromatographic method. PMID:26924196

  18. Evaluation of a gas chromatograph with a novel surface acoustic wave detector (SAW GC) for screening of volatile organic compounds in Hanford waste tank samples

    SciTech Connect

    Lockrem, L.L.

    1998-01-12

    A novel instrument, a gas chromatograph with a Surface Acoustic Wave Detector (SAW GC), was evaluated for the screening of organic compounds in Hanford tank headspace vapors. Calibration data were developed for the most common organic compounds, and the accuracy and precision were measured with a certified standard. The instrument was tested with headspace samples collected from seven Hanford waste tanks.

  19. Development and validation of a reversed-phase liquid chromatographic method for separation and simultaneous determination of COX-2 inhibitors in pharmaceuticals and its application to biological fluids.

    PubMed

    Rao, R Nageswara; Meena, S; Nagaraju, D; Rao, A Raghu Ram

    2005-06-01

    An isocratic reversed-phase high-performance liquid chromatographic method has been developed for separation and simultaneous determination of COX-2 inhibitors, viz., celecoxib, rofecoxib, valdecoxib, nimesulide and nabumetone, using 4-chloro-2-nitroaniline as internal standard. Good chromatographic separation was achieved using a reversed-phase Inertsil C(18) column with mobile phase consisting of methanol and 0.05% aqueous glacial acetic acid (68:32 v/v) using photodiode array (PDA) detector at 230 nm. It was validated with respect to accuracy, precision, linearity, limit of detection and quantification. The linearity range was found to be 1.0--20 microg/mL and the percentage recoveries were between 97.55 and 100.14. The method is suitable not only for the estimation of active ingredients in pharmaceutical dosage forms but also in vitro estimations in human plasma. It is simple, rapid, selective and capable of detecting and determining COX-2 inhibitors with a detection limit of 0.127--1.040 microg/mL simultaneously. PMID:15627281

  20. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  1. Optimization by experimental design and artificial neural networks of the ion-interaction reversed-phase liquid chromatographic separation of twenty cosmetic preservatives.

    PubMed

    Marengo, E; Gianotti, V; Angioi, S; Gennaro, M C

    2004-03-12

    Particular attention are recently receiving antimicrobial agents added as preservatives in hygiene and cosmetics commercial products, since some of them are suspected to be harmful to the human health. The preservatives used belong to different classes of chemical species and are generally used in their mixtures. Multi-component methods able to simultaneously determinate species with different chemical structure are therefore highly required in quality control analysis. This paper presents an ion interaction RP-HPLC method for the simultaneous separation of the 20 typical antimicrobial agents most used in cosmetics and hygiene products, that are: benzoic acid, salicylic acid, 4-hydroxybenzoic acid, methyl-, ethyl-, propyl-, butyl-, benzyl-benzoate, methyl-, ethyl-, propyl-, butyl-, benzyl-paraben, o-phenyl-phenol, 4-chloro-m-cresol, triclocarban, dehydroacetic acid, bronopol, sodium pyrithione and chlorhexidine. For the development of the method and the optimization of the chromatographic conditions, an experimental design was planned and models were built by the use of artificial neural network to correlate the retention time of each analyte to the variables and their interactions. The neuronal models developed showed good predictive ability and were used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. PMID:15032350

  2. Determination of organic compounds from wood combustion aerosol nanoparticles by different gas chromatographic systems and by aerosol mass spectrometry.

    PubMed

    Laitinen, Totti; Martín, Sara Herrero; Parshintsev, Jevgeni; Hyötyläinen, Tuulia; Hartonen, Kari; Riekkola, Marja-Liisa; Kulmala, Markku; Pavón, José Luis Pérez

    2010-01-01

    Organic compounds in atmospheric nanoparticles have an effect on human health and the climate. The determination of these particles is challenged by the difficulty of sampling, the complexity of sample composition, and the trace-level concentrations of the compounds. Meeting the challenge requires the development of sophisticated sampling systems for size-resolved particles and the optimization of sensitive, accurate and simple analytical techniques and methods. A new sampling system is proposed where particles are charged with a bipolar charger and size-segregated with a differential mobility analyzer. This system was successfully used to sample particles from wood pyrolysis with particle sizes 30-100nm. Particles were analyzed by four techniques: comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry, gas chromatography-time-of-flight mass spectrometry, gas chromatography-quadrupole mass spectrometry, and aerosol mass spectrometry (aerosol MS). In the chromatographic techniques, particles were collected on a filter and analyzed off-line after sample preparation, whereas in the aerosol MS, particle analysis was performed directly from the particle source. Target compounds of the samples were polyaromatic hydrocarbons and n-alkanes. The analytical techniques were compared and their advantages and disadvantages were evaluated. The sampling system operated well and target compounds were identified in low concentrations. PMID:19945113

  3. Evaluation of the application of some gas chromatographic methods for the determination of properties of synthetic fuels

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1978-01-01

    The purpose of the investigation was to evaluate the applicability, to some synthetic fuels, of some gas chromatographic methods now under development for use with petroleum based fuels. Thirty-two jet and diesel fuel samples which were prepared from oil shale and coal syncrudes were examined. The boiling range distribution of each was determined by gas chromatography, and from that data distillation properties were calculated. The calculated results gave sufficient agreement with the measured values that the equations could be useable in their present form. Bulk fuel properties were calculated for the 16 JP-5 and Diesel No. 2 type fuels. The results show that the equations would not give useable results. Capillary column gas chromatography was used to determine the n-alkane content of the eight JP-5 type samples and the results related to the observed freezing points. The results show that the concentrations of the long straight chain molecules in the fuels exert influence on the freezing point but are not the complete controlling factor.

  4. Evaluation of the application of some gas chromatographic methods for the determination of properties of synthetic fuels

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1979-01-01

    The purpose of the investigation was to evaluate the applicability, to some synthetic fuels, of some gas chromatographic methods now under development for use with petroleum based fuels. Thirty-two jet and diesel fuel samples which were prepared from oil shale and coal syncrudes were examined. The boiling range distribution of each was determined by gas chromatography, and from that data distillation properties were calculated. The calculated results gave sufficient agreement with the measured values that the equations could be useable in their present form. Bulk fuel properties were calculated for the sixteen JP-5 and Diesel No. 2 type fuels. The results show that the equations would not give useable results. Capillary column gas chromatography was used to determine the n-alkane content of the eight JP-5 type samples and the results related to the observed freezing points. The results show that the concentrations of the long straight chain molecules in the fuels exert influence on the freezing point but are not the complete controlling factor.

  5. A water extraction, static headspace sampling, gas chromatographic method to determine MTBE in heating oil and diesel fuel.

    PubMed

    Cummins, T M; Robbins, G A; Henebry, B J; Goad, C R; Gilbert, E J; Miller, M E; Stuart, J D

    2001-03-15

    A method was developed to determine the fuel/water partition coefficient (KMTBE) of methyl tert-butyl ether (MTBE) and then used to determine low parts per million concentrations of MTBE in samples of heating oil and diesel fuel. A special capillary column designed for the separation of MTBE and to prevent coelution and a gas chromatograph equipped with a photoionization detector (PID) were used. MTBE was partitioned from fuel samples into water during an equilibration step. The water samples were then analyzed for MTBE using static headspace sampling followed by GC/PID. A mathematical relationship was derived that allowed a KMTBE value to be calculated by utilizing the fuel/water volume ratios and the corresponding PID signal. KMTBE values were found to range linearly from 3.8 to 10.9 over a temperature range of 5-40 degrees C. This analysis method gave a MDL of 0.7 ppm MTBE in the fuel and a relative average accuracy of +/-15% by comparison with an independent laboratory using purge and trap GC/ MS analysis. MTBE was found in home heating oil in residential tanks and in diesel fuel at service stations throughout the state of Connecticut. The levels of MTBE were found to vary significantly with time. Heating oil and diesel fuel from terminals were also found to contain MTBE. This research suggests thatthe reported widespread contamination of groundwater with MTBE may also be due to heating oil and diesel fuel releases to the environment. used extensively for the past 20 years as a gasoline additive (up to 15 wt %) to reduce automobile carbon monoxide and hydrocarbon emissions. The fact that MTBE is highly soluble in water (approximately 5 wt %) (3) and chemically inert when compared to other fuel constituents causes it to be often detected at high concentrations in groundwater in the vicinity of gasoline spills. The EPA has reported that low levels of MTBE in drinking water (above 40 microg/L) may cause unpleasant taste and odors and has designated MTBE as a

  6. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecework alignment algorithm.

    SciTech Connect

    Pierce, Karisa M.; Wright, Bob W.; Synovec, Robert E.

    2007-02-02

    First, simulated chromatographic separations with declining retention time precision were used to study the performance of the piecewise retention time alignment algorithm and to demonstrate an unsupervised parameter optimization method. The average correlation coefficient between the first chromatogram and every other chromatogram in the data set was used to optimize the alignment parameters. This correlation method does not require a training set, so it is unsupervised and automated. This frees the user from needing to provide class information and makes the alignment algorithm more generally applicable to classifying completely unknown data sets. For a data set of simulated chromatograms where the average chromatographic peak was shifted past two neighboring peaks between runs, the average correlation coefficient of the raw data was 0.46 ± 0.25. After automated, optimized piecewise alignment, the average correlation coefficient was 0.93 ± 0.02. Additionally, a relative shift metric and principal component analysis (PCA) were used to independently quantify and categorize the alignment performance, respectively. The relative shift metric was defined as four times the standard deviation of a given peak’s retention time in all of the chromatograms, divided by the peak-width-at-base. The raw simulated data sets that were studied contained peaks with average relative shifts ranging between 0.3 and 3.0. Second, a “real” data set of gasoline separations was gathered using three different GC methods to induce severe retention time shifting. In these gasoline separations, retention time precision improved ~8 fold following alignment. Finally, piecewise alignment and the unsupervised correlation optimization method were applied to severely shifted GC separations of reformate distillation fractions. The effect of piecewise alignment on peak heights and peak areas is also reported. Piecewise alignment either did not change the peak height, or caused it to slightly

  7. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  8. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  9. Dynamics of effusive and diffusive gas separation on pillared graphene.

    PubMed

    Wesołowski, Radosław P; Terzyk, Artur P

    2016-06-22

    Pillared graphene structures, from a practical viewpoint, are very interesting novel carbon materials. Combining the properties of graphene and nanotubes, such as durability, chemical purity and a controlled structure, they were proven to be effective membranes for noble gas separation processes. Here, we examine their possible use for other, more commercially useful gas mixture separation, i.e. air and coal gas. The mechanism of air gas transport through the pillar channels is studied, and the prospective application of 2-D pillared membranes in effusion-like processes provided. The separative abilities of hybrid systems consisting of membranes with different channel diameters in relation to coal gas are proven to be promising. PMID:27297664

  10. Aging and analytical performances evolution of a gas chromatographic system at Mars

    NASA Astrophysics Data System (ADS)

    Bonnet, J.-Y.; Szopa, C.; Millan, M.; Coscia, D.; Cabane, M.; Belmahdi, I.; Buch, A.; Dequaire, T.; Coll, P.; Teinturier, S.; Mahaffy, P.

    2015-10-01

    Health data from the gas chromatography (GC) module onboard the SAM instrument [1] will be presented to assess the analytical performances evolution of a GC device in Martian environment through 3 years.

  11. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  12. COMPONENT LOSS DURING EVAPORATION-RECONSTITUTION OF ORGANIC ENVIRONMENTAL SAMPLES FOR GAS CHROMATOGRAPHIC ANALYSIS

    EPA Science Inventory

    Standard and sample solutions stored in borosilicate sample vials were allowed to evaporate to dryness at room temperature. The solutions were analyzed by gas chromatography-flame ionization detection before evaporation and after reconstitution to the original volume to determine...

  13. Electron capture gas chromatographic detection of acethylmethylcarbinol produced by neisseria gonorrhoeae.

    PubMed

    Morse, C D; Brooks, J B; Kellogg, D S

    1976-01-01

    Acetylmethylcarbinol (acetoin) production by Neisseria gonorrhoeae and other Neisseria species was established by gas-liquid chromatography and by mass spectrometric data. Sixty-nine isolates of Neisseria were tested by incubating them in a chemically defined fluid medium. The medium was extracted with organic solvents and derivatized with heptafluorobutryic anhydride for gas chromatography and mass spectrometry. Cultures of 58 of the same strains were tested with the conventional Voges-Proskauer reagents, and results were compared with those of gas-liquid chromatography. When glucose was used as an energy source, N. gonorrhoeae, some N. meningitidis, and N. lactamica produced enough acetoin in 16 h to be detectable by either method, whereas other Neisseria species produce amounts detectable only by gas chromatography. The conventional acetylmethylcarbinol test with the chemically defined medium and maltose as an energy source might be used to develop methods that would differentiate certain members of the genus, including the pathogenic species. PMID:815266

  14. Functionalized inorganic membranes for gas separation

    DOEpatents

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Molaison, Jennifer Lynn; Schick, Louis Andrew ,; Ramaswamy, Vidya

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  15. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecewise alignment algorithm.

    PubMed

    Pierce, Karisa M; Wright, Bob W; Synovec, Robert E

    2007-02-01

    Simulated chromatographic separations were used to study the performance of piecewise retention time alignment and to demonstrate automated unsupervised (without a training set) parameter optimization. The average correlation coefficient between the target chromatogram and all remaining chromatograms in the data set was used to optimize the alignment parameters. This approach frees the user from providing class information and makes the alignment algorithm applicable to classifying completely unknown data sets. The average peak in the raw simulated data set was shifted up to two peak-widths-at-base (average relative shift=2.0) and after alignment the average relative shift was improved to 0.3. Piecewise alignment was applied to severely shifted GC separations of gasolines and reformate distillation fraction samples. The average relative shifts in the raw gasolines and reformates data were 4.7 and 1.5, respectively, but after alignment improved to 0.5 and 0.4, respectively. The effect of piecewise alignment on peak heights and peak areas is also reported. The average relative difference in peak height was -0.20%. The average absolute relative difference in area was 0.15%. PMID:17174960

  16. Evaluation and application of a mixed-mode chromatographic stationary phase in two-dimensional liquid chromatography for the separation of traditional Chinese medicine.

    PubMed

    Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao

    2016-06-01

    In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. PMID:27159545

  17. Capillary gas chromatographic determination of putrescine and cadaverine in serum of cancer patients using trifluoroacetylacetone as derivatizing reagent.

    PubMed

    Khuhawar, M Y; Memon, A A; Jaipal, P D; Bhanger, M I

    1999-02-19

    Trifluoroacetylacetone (FAA) derivatives of 1,4-diaminobutane (putrescine) (Pu) and 1,5-diaminopentane (cadaverine) (CA) were prepared and characterized by elemental microanalysis, IR, and mass spectrometry. Diamine derivatives were eluted from capillary gas chromatographic (CGC) column BP1 (12 m x 0.22 mm I.D.) or BP5 (50 m x 0.22 mm) with layer thickness 0.25 microm, using nitrogen as a carrier gas and flame ionization detection (FID). A solvent extraction procedure was developed for the extraction of Pu and CA from aqueous solution with a linear calibration range 0-20 microg/0.2 ml of extract with a detection limit of 0.5-0.6 ng/injection. The method was applied for the determination of Pu and CA in the serum of five cancer patients before and after radiotherapy. The serum of two healthy persons was also analyzed for Pu and CA contents. Pu and CA concentrations were found within the range 1.16-3.96 microg/ml and 0.88-1.46 microg/ml in cancer patients as compared to 0.11-0.16 microg/ml and 0.06-0.075 microg/ml respectively in healthy persons with a coefficient of variation (CV) within 0.62-5.47%. Pu and CA concentrations decreased on radiotherapy in cancer patients, but were much higher than in healthy persons. PMID:10080628

  18. On-line gas chromatographic analysis of Fischer-Tropsch synthesis products formed in a supercritical reaction medium

    SciTech Connect

    Snavely, K.; Subramaniam, B.

    1997-10-01

    C{sub 1}-C{sub 30} products from Fischer-Tropsch synthesis, conducted in a supercritical n-hexane medium over an Fe catalyst in a fixed-bed reactor, are analyzed using on-line gas chromatography. A Hewlett-Packard 5890 Series II gas chromatograph (GC) is modified to minimize the effects of condensation of the on-line sample in the transfer lines. The GC is configured with a Supelco Petrocol DH capillary column connected to a flame ionization detector (FID) and two 1.83 m {times} 3.18 mm stainless steel columns placed in series, packed with 80/100 mesh HayeSep D, connected to a thermal conductivity detector (TCD). It is shown that pressure and temperature affect the elution order of oxygenates relative to hydrocarbons in the nonpolar capillary column. This phenomenon is exploited for obtaining improved resolution; several distinct methods produce similar elution orders. Ar, added to the syngas feed, is used to calculate syngas conversion. All compounds eluting before hexane (C{sub 1}-C{sub 5}, other than 2-methylpropene/1-butene and propanal/propanone) and nearly all the major peaks eluting after hexane are resolved in the capillary column. H{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, and H{sub 2}O are resolved in the packed columns. The method provides excellent quantitative measurement of component mole fractions that are within the range of calibration.

  19. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  20. Gas chromatographic analysis of guanidino compounds in sera and urine of uremic patients using glyoxal and ethyl chloroformate as derivatizing reagents.

    PubMed

    Majidano, Subhan Ali; Khuhawar, Muhammad Yar

    2013-01-01

    Gas chromatographic (GC) method has been developed for the determination of the guanidino compounds: guanidine (G), methylguanidine (MG), guanidinoacetic acid (GAA), guanidinopropionic acid (GPA), guanidinobutyric acid (GBA) and guanidinosuccinic acid (GSA) was carried out after precolumn derivatization with glyoxal and ethyl chloroformate from the column HP-5 (30 m × 0.32 mm i.d.) at 90°C for 3 min, followed by a heating rate 25°C/min up to 260°C with a nitrogen flow rate of 2 ml/min. Detection was by FID. The linear calibrations were obtained within 0.1-20.0 μmol/L, with limits of detection (LODs) within 0.014-0.024 μmol/L. The separation and derivatization was repeatable (n = 6) with relative standard deviations (RSD) within 0.8-1.9% in retention time and 0.5-1.8% in peak height/peak area. A number of additives and amino acids did not affect the determination. The method was applied for the determination of guanidino compounds from the serum and urine of 9 healthy volunteers and 8 uremic patients and the amounts found were in the range 0.08-0.48 and below the limit of detection (LOD) - 345 μmol/L and 1.82 - 13.88 and 0.77 - 432.0 μmol/L with RSDs within 4.2%, respectively. PMID:23400288

  1. Limits of detections for the determination of mono- and dicarboxylic acids using gas and liquid chromatographic methods coupled with mass spectrometry

    PubMed Central

    Št’ávová, Jana; Beránek, Josef; Nelson, Eric P.; Diep, Bonnie A.; Kubátová, Alena

    2011-01-01

    The chromatographic separation and instrumental limits of detection (LODs) were obtained for a broad range of C1-C18 monocarboxylic (MCAs) and C2-C14 dicarboxylic acids (DCAs) employing either chemical derivatization followed by gas chromatography-mass spectrometry and flame ionization detection (GC-MS/FID) or direct analysis with liquid chromatography high resolution MS and tandem MS (LC-MS). Suitability, efficiency and stability of reaction products for several derivatization agents used for esterification (BF3/butanol), and trimethysilylation, including trimethylsilyl-N-N-dimethylcarbamate (TMSDMC) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) were evaluated. The lowest limits of detection for the majority of compounds below 10 pg (with the exception of acetic acid) were obtained for derivatization with BF3/butanol followed by GC-MS in the total ion current (TIC) mode. Further improvements were achieved when applying either selected ion monitoring (SIM), which decreased the LODs to 1–4 pg or a combination of SIM and TIC (SITI) (2–5 pg). GC-FID provided LODs comparable to those obtained by GC-MS TIC. Both trimethylsilylation (followed by GC-MS) and direct LC-MS/MS analysis yielded LODs of 5– 40 pg for most of the acids. For volatile acids the LODs were higher, e.g., 25 and 590 ng for TMSDMC and BSTFA derivatized formic acid, respectively whereas the LC-MS methods did not allow for the analysis of formic acid at all. PMID:21185238

  2. GC/MS Gas Separator Operates At Lower Temperatures

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  3. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  4. Chromatographic enrichment and subsequent separation of nickel and vanadyl porphyrins from natural seeps and molecular characterization by positive electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Putman, Jonathan C; Rowland, Steven M; Corilo, Yuri E; McKenna, Amy M

    2014-11-01

    We report a novel chromatographic method to enrich and separate nickel and vanadyl porphyrins from a natural seep sample and combine molecular level characterization by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vanadyl and nickel porphyrin model compound elution from primary secondary amine (PSA) stationary phase combined with UV-vis spectroscopy confirms enrichment and subsequent fractionation of nickel and vanadyl porphyrins into polarity-based subfractions. A more than 100-fold increase in signal-to-noise ratio for nickel porphyrins enables unequivocal elemental composition assignment confirmed by isotopic fine structure for all isotopes >1% relative abundance, and the first mass spectral identification of (61)Ni porphyrin isotopologues derived from natural seeps. Oxygen-containing vanadyl porphyrins and sulfur-containing vanadyl porphyrins are isolated in the same fraction simultaneously from the same sample. We provide the first chromatographic evidence of carboxylic acid functionalities peripheral to the porphyrin core, in agreement with previous studies. PMID:25286139

  5. Separation of carrier-free {sup 90}Y from high level waste by extraction chromatographic technique using 2-ethylhexyl-2-ethylhexyl phosphonic acid (KSM-17)

    SciTech Connect

    Achuthan, P.V.; Dhami, P.S.; Kannan, R.; Gopalakrishnan, V.; Ramanujam, A.

    2000-01-01

    An extraction chromatographic technique has been developed for the separation of carrier-free {sup 90}Y from the {sup 90}Sr present in the high level waste (HLW) of the Purex process. When a Purex HLW solution in 2--3 M HNO{sub 3} is passed through a CMPO-Chromosorb-102 (CAC) column, all the trivalent, tetravalent, and hexavalent ions are sorbed. The effluent from this experiment, after adjusting the pH to 2 with NaOH, was passed through a 2-ethylhexyl-2-ethylhexyl phosphonic acid (KSM-17)-Chromosorb-102 (KSMC) extraction chromatographic column where only {sup 90}Y was sorbed. All the other ions ({sup 90}Sr, {sup 137}Cs, {sup 125}Sb, {sup 106}Ru, {sup 106}Rh, etc.) were washed off with dilute HNO{sub 3} (pH 2), and carrier-free {sup 90}Y was eluted with 0.5 M HNO{sub 3}. This technique can yield {sup 90}Y in mCi levels in pure form for medical applications. The {sup 90}Sr can be used repeatedly after allowing for {sup 90}Y buildup.

  6. Ammonia Analysis by Gas Chromatograph/Infrared Detector (GC/IRD)

    NASA Technical Reports Server (NTRS)

    Scott, Joseph P.; Whitfield, Steve W.

    2003-01-01

    Methods are being developed at Marshall Space Flight Center's Toxicity Lab on a CG/IRD System that will be used to detect ammonia in low part per million (ppm) levels. These methods will allow analysis of gas samples by syringe injections. The GC is equipped with a unique cryogenic-cooled inlet system that will enable our lab to make large injections of a gas sample. Although the initial focus of the work will be analysis of ammonia, this instrument could identify other compounds on a molecular level. If proper methods can be developed, the IRD could work as a powerful addition to our offgassing capabilities.

  7. Development and evaluation of gas and liquid chromatographic methods for the analysis of fatty amines.

    PubMed

    Breitbach, Zachary S; Weatherly, Choyce A; Woods, Ross M; Xu, Chengdong; Vale, Glenda; Berthod, Alain; Armstrong, Daniel W

    2014-03-01

    In contrast to the plethora of publications on the separation of fatty acids, analogous studies involving fatty amines are scarce. A recently introduced ionic-liquid-based capillary column for GC was used to separate trifluoroacetylated fatty amines focusing on the analysis of a commercial sample. Using the ionic liquid column (isothermal mode at 200 °C) it was possible to separate linear primary fatty amines from C12 to C22 chain length in less 25 min with MS identification. The log of the amine retention factors are linearly related to the alkyl chain length with a methylene selectivity of 0.117 kcal/mol for the saturated amines and 0.128 kcal/mol for the mono-unsaturated amines. The sp2 selectivity for unsaturated fatty amines also could be calculated as 0.107 kcal/mol for the ionic liquid column. The commercial sample was quantified by GC with flame ionization detection (FID). An LC method also was developed with a reversed phase gradient separation using acetonitrile/formate buffer mobile phases and ESI-MS detection. Native amines could be detected and identified by their single ion monitoring chromatograms even when partial coelution was observed. The analysis of the commercial sample returned results coherent with those obtained by GC-FID and with the manufacturer's data. PMID:24415651

  8. A validated method for gas chromatographic analysis of gamma-aminobutyric acid in tall fescue herbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter in animals that is also found in plants and has been associated with plant responses to stress. A simple and relatively rapid method of GABA separation and quantification was developed from a commercially available kit for serum amino...

  9. LIQUID AND GAS CHROMATOGRAPHIC ANALYSIS OF DIETHYL PHTHALATE IN WATER AND SEDIMENT

    EPA Science Inventory

    Diethyl phthalate was determined in water and sediment by high performance liquid chromatography (HPLC) and in water by gas-liquid chromatography with electron capture detection (GLC-ECD). Water samples were extracted with hexane, using a high-speed homogenizer-ultrasonic apparat...

  10. Gas Chromatographic Verification of a Mathematical Model: Product Distribution Following Methanolysis Reactions.

    ERIC Educational Resources Information Center

    Lam, R. B.; And Others

    1983-01-01

    Investigated application of binomial statistics to equilibrium distribution of ester systems by employing gas chromatography to verify the mathematical model used. Discusses model development and experimental techniques, indicating the model enables a straightforward extension to symmetrical polyfunctional esters and presents a mathematical basis…

  11. Synthesis and characterization of novel stationary phases for small scale liquid chromatographic separations of proteins and nanoparticles

    NASA Astrophysics Data System (ADS)

    Hutanu, Daniela

    The emerging field of nanotechnology strictly requires the micro-scaling of the available separation technology and the design of novel devices for separations of molecules of interest. The separation of proteins and nanoparticles is challenging due to their relatively large size, non-specific adherence to surfaces and instability in many solvents. This dissertation presents the synthesis and characterization of novel stationary phases for use in separations of proteins or nanoparticles in both capillary and microchip formats. In order to separate blood proteins with high specificity, a DNA aptamer selected for alpha-thrombin was employed as an affinity component of the stationary phases. Silica surfaces and organic monoliths were modified with the aptamer via an azlactone linkage and have demonstrated highly efficient separations of thrombin from a mixture in the microscale. The high efficiency of the protein separation (HETP = 276 mum, RS = 1.7) is comparable with macroscale results using antibodies as the affinity factor. Novel hybrid inorganic-organic polysilsesquioxane stationary phases were synthesized by way of surfactant templated polymerization of bridged alcoxy-silyl ethane monomers, in presence of sodium hydroxide. The novel materials were successful in size exclusion separation of polystyrene standards with molecular diameters of 0.3-2.4 nm. A hybrid inorganic-organic polysilsesquioxane sorbent also proved useful for small scale separations of triphenyl phosphine protected gold nanoparticles, based on a sorptive mechanism instead of a size exclusion mechanism. Polysilsesquioxanes were easily synthesized in-situ inside fused silica capillary columns and PMMA microchip channels in order to facilitate integration with a micro-reactor. The novel stationary phases proved efficient for separation of proteins and nanoparticles in the micro-scale format and can further be utilized for online purification and separation of these difficult compounds.

  12. TUNABLE COMPOSITE MEMBRANES FOR GAS SEPARATIONS

    SciTech Connect

    J.P. Ferraris; K.J. Balkus, Jr.; I.H. Musselman

    1998-07-01

    Smooth, dense, uniformly thick membranes were solution cast from poly(3-octylthiophene) (POT) and their permeability properties were investigated for N{sub 2}, O{sub 2}, CH{sub 4}, and CO{sub 2} (P{sub N{sub 2}} = 5.8 {+-} 0.4, P{sub O{sub 2}} = 15.6 {+-} 0.8, P{sub CH{sub 4}} = 17.8 {+-} 1.4, P{sub CO{sub 2}} = 63.6 {+-} 2.2 Barrers), and selectivity properties were calculated ({alpha}{sub O{sub 2}/N{sub 2}} = 2.7 {+-} 0.2, {alpha}{sub CO{sub 2}/N{sub 2}} = 11.2 {+-} 0.8, {alpha}{sub CO{sub 2}/CH{sub 4}} = 3.6 {+-} 0.2). NaY/POT composite membranes (20, 30, and 40% w/w zeolite) were prepared by stirring the polymer into a zeolitic suspension. Facilitated transport of gases (N{sub 2}, O{sub 2}, CH{sub 4}, and CO{sub 2}) was observed for each of the zeolite loadings, the magnitude of which depended on the chemical nature of the gas and polymer/zeolite-penetrant interaction. Maximum facilitation was observed for 40% NaY/POT composite membranes (Facilitation ratio of N{sub 2} = 0.38 {+-} 0.03, O{sub 2} = 0.56 {+-} 0.02, CH{sub 4} = 0.13 {+-} 0.01, CO{sub 2} = 0.71 {+-} 0.02). An increase in the selectivity of gases was also observed for all zeolite loadings.

  13. An affinity-based strategy for the design of selective displacers for the chromatographic separation of proteins.

    PubMed

    Vutukuru, Srinavya; Kate, Sandesh D; McCallum, Scott A; Morrison, Christopher J; Cramer, Steven M; Kane, Ravi S

    2008-06-01

    We describe an affinity-based strategy for designing selective protein displacers for the chromatographic purification of proteins. To design a displacer that is selective for a target protein, we attached a component with affinity for the target protein to a resin-binding component; we then tested the ability of such displacers to selectively retain the target protein on a resin relative to another protein having a similar retention time. In particular, we synthesized displacers based on biotin, which selectively retained avidin as compared to aprotinin on SP Sepharose high performance resin. In addition, we have extended this approach to develop an affinity-peptide-based displacer that discriminates between lysozyme and cytochrome c. Here, a selective displacer was designed from a lysozyme-binding peptide that had been identified and optimized previously using phage-display technology. Our results suggest a general strategy for designing highly selective affinity-based displacers by identifying molecules (e.g., peptides) that bind to a protein of interest and using an appropriate linker to attach these molecules to a moiety that binds to the stationary phase. PMID:18512879

  14. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  15. Determination of partition coefficients of refrigerants by gas liquid chromatographic headspace analysis.

    PubMed

    Abraham, Michael H; Gil-Lostes, Javier; Corr, Stuart; Acree, William E

    2012-11-23

    Gas-water partition coefficients, K(w), and gas-solvent partition coefficients, K(s), have been determined for chlorodifluoromethane and for 1,1,1,3,3,3-hexafluoropropane by headspace analysis, using a very simple experimental procedure. These partition coefficients then yield water-solvent partition coefficients, P(s). Where comparisons can be made there is excellent agreement with literature values for K(w) and P(s). The obtained values of K(s) and P(s) can be used to obtain physicochemical properties, or descriptors, for the refrigerants. Combination of these descriptors with previous equations we have developed enables partition coefficients to be obtained for a host of systems. PMID:23089519

  16. [Gas-liquid chromatographic determination of etofenamate/ Determination, method and use in biological material (author's transl)].

    PubMed

    Dell, H D; Fiedler, J; Jacobi, H; Kolle, J

    1981-01-01

    Etofenamate in biological specimen can be determined by gas-liquid chromatography with etofenamate benzyl ether as internal standard. Determination in urine is done directly after extraction and concentration, whereas plasma and homogenates from organs have to be prepurified by thin-layer chromatography. Unchanged etofenamate is found in small amounts in human urine (0--4, 6--6, 6--8 h p. appl.). Inflamed rat paws after local application contain up to 75 microgram etofenamate/g in comparison to only 2 microgram flufenamic acid/g tissue. Both compounds are also found in non-inflamed paws, contents being only 3--4% as compared to the inflamed tissue. Elimination of etofenamate from the inflamed area occurs with a half-life of approx. 8.5 h. These results from gas-liquid chromatography correspond to results from t.l.c./fluorescence measurements. PMID:6971109

  17. Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation.

    PubMed

    Prasad, Kamalesh; Das, Arun Kumar; Oza, Mihir Deepak; Brahmbhatt, Harshad; Siddhanta, Arup Kumar; Meena, Ramavatar; Eswaran, Karuppanan; Rajyaguru, Mahesh Rameshchandra; Ghosh, Pushpito Kumar

    2010-04-28

    The sap expelled from the fresh harvest of Kappaphycus alvarezii , a red seaweed growing in tropical waters, has been reported to be a potent foliar spray. Tandem mass spectrometry of various organic extracts of the sap confirmed the presence of the plant growth regulators (PGRs) indole 3-acetic acid, gibberellin GA(3), kinetin, and zeatin. These PGRs were quantified in fresh state and after 1 year of storage by ESI-MS without recourse to chromatographic separation. Quantification was validated against HPLC data. The results may be useful in correlating with the efficacy of the sap. The methodology was extended to two other seaweeds. The method developed is convenient and precise and may find application in other agricultural formulations containing these growth hormones. PMID:20355716

  18. Process for separating hydrocarbon gas constituents utilizing a fractionator

    SciTech Connect

    Aghili, H.K.

    1987-10-06

    A process is described for separating the constituents of a gas stream comprising: (a) lowering the temperature of the gas stream; (b) supplying the lower temperature gas stream to a high pressure separator; (c) lowering the pressure of the predominantly vapor stream; (d) supplying the lower pressure vapor stream to an upper region of a demethanizer column; (e) lowering the pressure of the predominantly fluid stream; (f) supplying the lower pressure fluid stream to the demethanizer column at an elevation below the vapor stream; (g) removing cold vapor residue gas from an upper region of the demethanizer column; (h) passing the vapor residue gas through at least one heat exchanger to raise the temperature of the vapor residue gas; (i) compressing the vapor residue gas for delivery elsewhere; (j) removing a cold demethanized product from a lower region of the demethanizer column; (k) supplying at least a portion of the demethanized product to a fractionator wherein the fractionator operates as a distillation column; (l) separating the demethanized product into an ethane overhead product and a deethanized bottom product; (m) removing a generally liquid deethanized product from a lower region of the fractionator; (n) drawing off a portion of the deethanized product; (o) lowering the temperature of the drawn off product; and, (p) supplying the lower temperature deethanized product to the top of the demethanizer column.

  19. A small, portable gas chromatograph-quadrupole mass spectrometer for on-site analysis

    SciTech Connect

    Andresen, B.; Coutts, G.; Alcaraz, A.; Bushman, J.; Cornish, J.

    1994-04-01

    Gas chromatography-mass spectrometry (GC-MS) is the analytical tool of choice for the exact identification of unknown organic chemicals in environmental samples. Capillary gas chromatography, combined with the specific identification capabilities of mass spectrometry, allows the rapid and complete characterization of individual compounds in complex mixtures. As the technology has developed, many manufacturers have offered bench-top MS systems that provide a variety of analytical capabilities. Many instruments have been promoted as ``detectors for gas chromatography.`` More recently, manufacturers have offered integrated packages that can be transported to the field to provide analytical capabilities previously available only in the laboratory. The demonstrated field utility of these field-transportable units has triggered an interest in smaller, lighter weight, and more portable instruments. However, the current weight (>100 lb), large size, and laboratory-based power consumption requirements of these units is viewed as a liability by some potential field instrument users. Over the past several years, the interest in field-deployable instruments has resulted in research and development into smaller GC-MS systems designed with limited applications. While the development of these instruments is certainly worthwhile, a reliable and robust GC-MS instrument that clearly addresses the field-deployable needs for all environmental sampling and analysis would have considerable utility. We have developed portable instruments with analytical performance characteristics similar to those obtained with bench-top instruments. The current instrument, developed at LLNL and described here, was originally designed for use by on-site inspection teams supporting the Chemical Weapons Convention (CWC). The portability and expanded capabilities of this integrated instrument now make it a useful tool for environmental monitoring and on-site analysis studies.

  20. Gas-liquid chromatographic determination of 3-trifluoromethyl-4-nitrophenol in natural waters.

    PubMed

    Coburn, J A; Chau, A S

    1976-07-01

    A procedure for the analysis of 3-trifluoromethyl-4-nitrophenol (TFM) in natural waters is described. The lampricide is extracted from acidified water samples on the macroreticular resin XAD-7 and eluted from the column with ethyl ether. The ether extract is dried, concentrated, and partitioned with potassium carbonate. TFM is acetylated in the aqueous alkaline solution and the acetate derivative is extracted into benzene for analysis by electron capture gas-liquid chromatography. Recoveries of TFM from natural waters exceeded 90% and as little as 0.01 mug TFM can be quantitated in a 1 L sample. PMID:939751

  1. Gas chromatographic determination of sorbitol, mannitol, and xylitol in chewing gum and sorbitol in mints.

    PubMed

    Daniels, D H; Warner, C R; Fazio, T

    1982-05-01

    A method has been developed for determination of sorbitol, mannitol, and xylitol in chewing gum and sorbitol in mints. Chewing gum is partitioned between methylene chloride and water; the mint is simply dissolved in water. The aqueous extract is dried and the residue is derivatized with pyridine-acetic anhydride to form the corresponding peracetates. The derivatives are quantitated by gas chromatography using a 9 ft x 2 mm column packed with 10% Silar 10C on Chromosorb W/AW. Average recoveries of these sugar alcohols ranged from 96 to 102%. PMID:6807952

  2. Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes

    NASA Astrophysics Data System (ADS)

    Terborg, Lydia; Weber, Sascha; Passerini, Stefano; Winter, Martin; Karst, Uwe; Nowak, Sascha

    2014-01-01

    In this work, novel methods based on gas chromatography (GC) for the investigation of common organic carbonate-based electrolyte systems are presented, which are used in lithium ion batteries. The methods were developed for flame ionization detection (FID), mass spectrometric detection (MS). Further, headspace (HS) sampling for the investigation of solid samples like electrodes is reported. Limits of detection are reported for FID. Finally, the developed methods were applied to the electrolyte system of commercially available lithium ion batteries as well as on in-house assembled cells.

  3. Gas-liquid chromatographic determination of 3-trifluoromethyl-4-nitrophenol residues in fish

    USGS Publications Warehouse

    Allen, J.L.; Sills, J.B.

    1974-01-01

    A procedure for the determination of 3-mftuormethyl-4-nitrophenol (TFM) in fish tissues is described. Homogenized tissues are extracted with hexane-ethyl ether; the extract is cleaned up by partitioning the TFM from the extracting solvent into O.IN NaOB, acidifying the aqueous solution, and partitioning again with hexaneethyl ether. The TFM is methylated with diazomethane and analyzed by gas-liquid chromatography, using electron capture detection. Recoveries ranged from 75 to 1000/., from fish muscles that were spiked with 0.01-2.00 JA#g TFM/g.

  4. Gas chromatographic-mass spectrometric determination of ethyl carbamate in alcoholic beverages.

    PubMed

    Lau, B P; Weber, D; Page, B D

    1987-07-31

    A sensitive and specific method based on gas chromatography-mass spectrometry for the quantitative determination of ethyl carbamate in table wines, fortified wines (such as ports and sherries), distilled spirits, brandies and liqueurs has been developed. Three characteristic ions from ethyl carbamate [m/z 89 (molecular ion), 74 and 62] were monitored in the selected-ion monitoring (SIM) mode. The lowest detection limit (based on the response on the m/z 62 ion) was estimated to be 0.5 ng/g (ppb). Additional confirmation techniques, including high-resolution SIM, and methane or isobutane chemical ionization are described. PMID:3654867

  5. Fast gas chromatographic residue analysis in animal feed using split injection and atmospheric pressure chemical ionisation tandem mass spectrometry.

    PubMed

    Tienstra, M; Portolés, T; Hernández, F; Mol, J G J

    2015-11-27

    Significant speed improvement for instrumental runtime would make GC–MS much more attractive for determination of pesticides and contaminants and as complementary technique to LC–MS. This was the trigger to develop a fast method (time between injections less than 10 min) for the determination of pesticides and PCBs that are not (or less) amenable to LC–MS. A key factor in achieving shorter analysis time was the use of split injection (1:10) which allowed the use of a much higher initial GC oven temperature. A shorter column (15 m), higher temperature ramp, and higher carrier gas flow rate (6 mL/min) further contributed to analysis-time reduction. Chromatographic resolution was slightly compromised but still well fit-for-purpose. Due to the high sensitivity of the technique used (GC–APCI-triple quadrupole MS/MS), quantification and identification were still possible down to the 10 μg/kg level, which was demonstrated by successful validation of the method for complex feed matrices according to EU guidelines. Other advantages of the method included a better compatibility of acetonitrile extracts (e.g. QuEChERS) with GC, and a reduced transfer of co-extractants into the GC column and mass spectrometer. PMID:26601712

  6. Integration and Ruggedization of a Commercially Available Gas Chromatograph and Mass Spectrometer (GCMS) for the Resource Prospector Mission (RPM)

    NASA Technical Reports Server (NTRS)

    Loftin, Kathleen; Griffin, Timothy; Captain, Janine

    2013-01-01

    The Resource Prospector is a mission to prospect for lunar volatiles (primarily water) at one of the two lunar poles, as well as demonstrate In-Situ Resource Utilization (ISRU) on the Moon. The Resource Prospector consists of a lander, a rover, and a rover-borne scientific payload. The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload, will be able to (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The gas chromatograph mass spectrometer (GCMS) is the primary instrument in the RESOLVE instrumentation suite responsible for identification and quantification of the volatiles evolved from the lunar regolith. Specifically, this instrument must have: a low mass, a low power consumption, be able to perform fast analyses of samples ranging from less than one to greater than ninety nine percent water by mass, be autonomously controlled by the payload's software and avionics platform, and be able to operate in the harsh lunar environment. The RPM's short mission duration is the primary driver of the requirement for a very fast analysis time currently base lined at less than 2 minutes per sample. This presentation will discuss the requirements levied upon the GCMS design, lessons learned from a preliminary field demonstration deployment, the current design, and the path forward.

  7. Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Fahey, D. W.; Gilligan, J. M.; Dutton, G. S.; Baring, T. J.; Volk, C. M.; Dunn, R. E.; Myers, R. C.; Montzka, S. A.; Wamsley, P. R.; Hayden, A. H.; Butler, J. H.; Thompson, T. M.; Swanson, T. H.; Dlugokencky, E. J.; Novelli, P. C.; Hurst, D. F.; Lobert, J. M.; Ciciora, S. J.; McLaughlin, R. J.; Thompson, T. L.; Winkler, R. H.; Fraser, P. J.; Steele, L. P.; Lucarelli, M. P.

    A new instrument, the Airborne Chromatograph for Atmospheric Trace Species IV (ACATS-IV), for measuring long-lived species in the upper troposphere and lower stratosphere is described. Using an advanced approach to gas chromatography and electron capture detection, the instrument can detect low levels of CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2F-CClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), nitrous oxide (N2O), sulfur hexafluoride (SF6), Halon-1211 (CBrClF2), hydrogen (H2), and methane (CH4) acquired in ambient samples every 180 or 360 s. The instrument operates fully-automated onboard the NASA ER-2 high-altitude aircraft on flights lasting up to 8 hours or more in duration. Recent measurements include 24 successful flights covering a broad latitude range (70°S-61°N) during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign in 1994.

  8. Determination of thymol in human plasma by automated headspace solid-phase microextraction-gas chromatographic analysis.

    PubMed

    Kohlert, Claudia; Abel, Gudrun; Schmid, Eleonora; Veit, Markus

    2002-02-01

    A reliable and sensitive method was developed for determination of thymol in human plasma by automated headspace solid-phase microextraction (SPME). After enzymatic cleavage of thymol sulfate thymol was extracted by a 65 microm polydimethylsiloxane-divinylbenzene crimped fiber (Supelco) after addition of sodium chloride and phosphoric acid (85%). Desorption of the fiber was performed in the injection port of a gas chromatograph at 220 degrees C (HP 5890; 50 m x 0.2 mm I.D., 0.2 microm HP Innowax capillary column; flame ionization detection). Fibers were used repeatedly up to 40 analysis. The recovery was 5% after 35 min of extraction. The calibration curve was linear in the range of 8.1-203.5 ng ml(-1) with a limit of quantitation (LOQ) of 8.1 ng ml(-1). The within-day and between-day precision and accuracy were < or = 20% at the LOQ and <15% at higher concentrations according to international guidelines for validation of bioanalytical methods. After administration of a thymol-containing herbal extract only thymol sulfate, no free thymol, could be detected in human plasma, thus analysis of thymol was after enzymatic cleavage of thymol sulfate. It is concluded that the newly developed automated method can be used in clinical trials on bioavailability and pharmacokinetics of thymol-containing herbal medicinal products. PMID:11863281

  9. Development of a gas chromatographic test for the quantitation of the biomarker 2-butoxyacetic acid in urine samples.

    PubMed

    B'Hymer, C

    2007-08-01

    An accurate and precise method is developed and evaluated for the detection and quantitation of 2-butoxyacetic acid (2-BAA), a metabolite and biomarker for human exposure to 2-butoxyethanol. The solvent 2-butoxyethanol (2-BE) is extensively used in various industrial and domestic applications, and it is a health concern owing to its toxicity. Sample preparation consists of liquid-liquid extraction (LLE) of urine, then esterification of 2-BAA to produce the ethyl ester analog. The gas chromatographic conditions utilize a dimethyl polysiloxane phase (HP-1) capillary column and a mass spectrometer (MS) for detection of the analyte. Validation of this method includes a recovery study using fortified urine samples, which demonstrated good accuracy and precision; recovery varied between 100% and 102% of theory, with relative standard deviations of replicate samples at 2.8% and less. The detection limit of this method ranges from 0.005 to 0.015 microg/mL equivalent level of 2-BAA in urine. PMID:17725869

  10. Microwave-assisted phase-transfer catalysis for the rapid one-pot methylation and gas chromatographic determination of phenolics.

    PubMed

    Fiamegos, Yiannis C; Karatapanis, Andreas; Stalikas, Constantine D

    2010-01-29

    Microwave-assisted phase-transfer catalysis (PTC) is reported for the first time, for the one-step extraction-derivatization-preconcentration and gas chromatographic determination of twenty phenols and ten phenolic acids. The well established phase-transfer catalytic methylation is largely accelerated when heating is replaced with the "greener" microwave irradiation. The overall procedure was thoroughly optimized and the analytes were determined by GC/MS. The method presented adequate analytical characteristics being more sensitive in analyzing phenols than phenolic acids. The limits of detection without any additional preconcentration steps (e.g. solvent evaporation) were adequate and ranged from 0.4 to 15.8ng/mL while limits of quantitation were between 1.2 and 33.3ng/mL. The method was applied to the determination of phenols, in spiked environmental samples and phenolic acids in aqueous infusions of commercially available pharmaceutical dry plants. The recoveries of fortified composite lake water samples and Mentha spicata aqueous infusions ranged from 89.3% to 117.3% for phenols and 93.3% to 115.2% for phenolic acids. PMID:20022019

  11. Gas-chromatographic measurements of atmospheric CF2Cl2, CFCl3 and N2O in Antarctica

    NASA Technical Reports Server (NTRS)

    Hirota, H.; Makino, Y.; Chubachi, S.; Muramatsu, H.; Shiobara, M.

    1985-01-01

    Stratospheric ozone is produced photochemically and destroyed by reactions with such minor constituents as O, NOx, HOx, and ClOx. Chlorofluoromethanes (CF2Cl2 and CFCl3) and dinitrogen oxide (NwO) are considered as major sources of the stratospheric ClOx and NOx, respectively. It is well known that CF2Cl2 and CFCl3 are released only by man's activities, and are being accumulated in the troposphere. In order to assess the influence of these compounds on the natural ozone balance these gases have been measured over Japan since 1978. Measurements of Antarctic air samples are also indispensable to understanding the global distributions of these gases, because most CF2Cl2 and CFCl3 have been released in the Northern Hemisphere. Antarctic air samples were obtained by the 23rd, 24th and 25th Japanese Antarctic Research Expeditions, and analyzed by a gas-chromatographic method using an electron capture detector. Three experimental results were obtained: (1) latitudinal distribution of these gases from Tokyo to Syowa Station (69.0 deg S, 39.6 deg E), (2) time trends at Syowa Station, and (3) vertical distributions over Syowa Station. Results are reported.

  12. Development of automated online gel permeation chromatography-gas chromatograph mass spectrometry for measuring multiresidual pesticides in agricultural products.

    PubMed

    Liu, Li-Bin; Hashi, Yuki; Qin, Ya-Ping; Zhou, Hai-Xia; Lin, Jin-Ming

    2007-01-01

    An automated online gel permeation chromatography-gas chromatograph mass spectrometer (GPC-GC/MS) was developed for the rapid determination of residual pesticides in agricultural products. Pesticides were extracted from homogenized food samples with acetonitrile and decontaminated via the matrix solid-phase dispersion (MSPD) technique, using a primary secondary amine as sorbent prior to GPC-GC/MS analysis. A slightly modified preparation method and automated GPC step proved useful in minimizing matrix interference. To evaluate the performance of the system, 97 target pesticides were spiked at a concentration of 0.1mg/kg into a range of food types, including potato, cabbage, carrot, apple, orange, cucumber, and rice. A low flow rate of 0.1 mL/min in GPC resulted in a 40-fold reduction in solvent consumption compared with conventional GPC column applications. The combination of MSPD technique and GPC-GC/MS for the analysis of the 97 pesticides can be accomplished within 90 min. Most pesticides were recovered in the range of 70-120%, with relative standard deviation generally less than 10%. The results demonstrate that the method can be successfully applied with acceptable recoveries to a broad range of target pesticides within a diverse range of food types. PMID:16931180

  13. Advanced Sorbents as a Versatile Platform for Gas Separation

    SciTech Connect

    Neil Stephenson

    2003-09-30

    The program objective was to develop materials and processes for industrial gas separations to reduce energy use and enable waste reduction. The approach chosen combined novel oxygen selective adsorbents and pressure swing adsorption (PSA) processes. Preliminary materials development and process simulation results indicated that oxygen selective adsorbents could provide a versatile platform for industrial gas separations. If fully successful, this new technology offered the potential for reducing the cost of producing nitrogen/oxygen co-products, high purity nitrogen, argon, and possibly oxygen. The potential energy savings for the gas separations are appreciable, but the end users are the main beneficiaries. Lowering the cost of industrial gases expands their use in applications that can employ them for reducing energy consumption and emissions.

  14. Preparation of monodispersed vinylpyridine-divinylbenzene porous copolymer resins and their application to high-performance liquid chromatographic separation of aromatic amines.

    PubMed

    Kitahara, Kei-Ichi; Okuya, Shuji; Yoshihama, Isao; Hanada, Takako; Nagashima, Kunio; Arai, Sadao

    2009-10-30

    For the separation of aromatic amines, two types of monodispersed porous polymer resins were prepared by the copolymerization of 2-vinylpyridine and 4-vinylpyridine with divinylbenzene in the presence of template silica gel particles (particle size 5 microm), followed by dissolution of the template silica gel in an alkaline solution. The transmission electron micrographs and the scanning electron micrograph revealed that these templated polymer resins have a spherical morphology with a good monodispersity and porous structure. Using these monodispersed polymer resins, the high-performance liquid chromatographic separation of aromatic amines in the mobile phases of pHs 2.0, 2.9, 4.1, 7.2 and 11.7 were carried out. The 2-vinylpyridine-divinylbenzene copolymer resins showed slightly stronger retentions for aromatic amines than the 4-vinylpyridine-divinylbenzene copolymer resins. Under acidic conditions (around pH 2.0), aniline and the toluidines showed no retention on these copolymer resins due to the repulsion between the cationic forms of these amines and pyridinium cations in the stationary phase, whereas less basic aromatic amines or non-basic acetanilide showed slight retentions. Above pH 4.1, the separation of aromatic amines with these polymer resins showed a typical reversed-phase mode separation. Therefore, the separation patterns of aromatic amines are effectively tunable by changing the pH value of the mobile phases. A good separation of eight aromatic amines was achieved at pH 2.9 using the 2-vinylpyridine-divinylbenzene copolymer resins. PMID:19442983

  15. Improved Gas Chromatographic Determination of Guanidino Compounds Using Isovaleroylacetone and Ethyl Chloroformate as Derivatizing Reagents.

    PubMed

    Zounr, Rizwan Ali; Khuhawar, Mumammad Yar; Jahangir, Taj Muhammad; Alamgir, Malik

    2016-01-01

    An improved GC method in terms of sensitivity and decrease in the analysis time has been developed for the analysis of eight guanidino compounds: guanidine (G), methylguanidine (MG), creatinine (CTN), guanidinoacetic acid (GAA), guanidinobutyric acid (GBA), guanidinopropionic acid (GPA), argenine (Arg), and guanidinosuccinic acid (GSA), using isovaleroylacetone (IVA) and ethyl chloroformate (ECF) as derivatizing reagents. The separation was obtained from column HP-5 (30 m × 0.32 mm i.d.) with film thickness of 0.25 μm within 11 min. The linear calibrations were obtained with 0.5 to 50 μg/mL with coefficient of determination (R(2)) within 0.9969 - 0.9998. Limits of detections (LODs) were within 5 - 140 ng/mL. The derivatization, separation and determination was repeatable (n = 6) with relative standard deviation (RSD) within 1.2 - 3.1%. The guanidino compounds were determined in deproteinized serum of healthy volunteers and uremic patients within below LOD to 8.8 μg/mL and below LOD to 43.99 μg/mL with RSD within 1.4 - 3.6%. The recovery of guanidino compounds calculated by standard addition from serum was within 96.1 - 98.9%, with RSD 1.4 - 3.6%. PMID:26860556

  16. Gas chromatographic determination of guanidino compounds in uremic patients using glyoxal as derivatizing reagent.

    PubMed

    Majidano, S A; Khuhawar, M Y

    2012-05-01

    The guanidino compounds guanidine, methylguanidine, guanidinoacetic acid, guanidinopropionic acid, guanidinobutyric acid and guanidinosuccinic acid were eluted and separated after pre-column derivatization with glyoxal from an HP-5 column (30 m × 0.32 mm i.d.) with film thickness 0.25 µm at an initial column temperature of 100 °C for 2 min, with ramping of 20°C/min up to 250 °C and a nitrogen flow rate of 3 mL/min. Detection was by flame ionization detection. Linear calibrations were observed within 0.1-20.0 µmol/L, with limit of detection within 0.024-0.034 µmol/L for each compound. The separation was repeatable with relative standard deviation (RSD) (n = 6) within 1.2-1.8 and 1.1-1.6% in terms of retention time and peak height/peak area, respectively. The method was applied for the determination of the guanidino compounds from serum of uremic patients (n = 7) and healthy volunteers (n = 8), and amounts were observed within 1.33-11.71 and 0.07-0.39 µmol/L with RSD 1.1-3.5 and 1.1-3.0%, respectively. The results were further supported by the standard addition method. PMID:22392369

  17. MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance

    NASA Astrophysics Data System (ADS)

    Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.

    2015-10-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.

  18. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2005-01-01

    Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.

  19. Separation of anthracene from crude anthracene using gas antisolvent recrystallization

    SciTech Connect

    Yuchung Liou; Chiehming Chang )

    1992-08-01

    Pure anthracene is mostly used for conversion to anthraquinone, an intermediate for the synthesis of very powerful vat dyestuffs. A coal tar distillate, crude anthracene, which contains 30% anthracene, 25% phenanthrene, 15% carbazole, and other impurities, was used as the model mixture. In this study, 90% by weight purity anthracene was obtained using gas antisolvent (GAS) recrystallization. The GAS process induces the separation of solids by introducing an antisolvent, carbon dioxide (or the supercritical fluid), into acetone which was used as the liquid solvent. The dissolution of the compressed gas into the solute-laden solution selectively lowers the solubilities of solid solutes and salts them out. The results showed that high purity anthracene was obtained at a high feed concentration and high pressure conditions. The separation factor of anthracene versus phenanthrene is close to 30.07.

  20. Molecular recognition principles and stationary-phase characteristics of topoisomer-selective chemoaffinity materials for chromatographic separation of circular plasmid DNA topoisomers.

    PubMed

    Mahut, Marek; Lindner, Wolfgang; Lämmerhofer, Michael

    2012-01-18

    We recently discovered the molecular recognition capability of a quinine carbamate ligand attached to silica as a powerful chemoaffinity material for the chromatographic separation of circular plasmid topoisomers of different linking numbers. In this paper we develop structure-selectivity relationship studies to figure out the essential structural features for topoisomer recognition. By varying different moieties of the original cinchonan-derived selector, it was shown that intercalation by the quinoline moiety of the ligand as assumed initially as the working hypothesis is not an essential feature for topoisomer recognition during chromatography. We found that the key elements for topoisomer selectivity are the presence of a rigid weak anion-exchange site and a H-donor site separated from each other in a defined distance by a 4-atom spacer. Additionally, incorporation of the weak anion-exchange site into a cyclic ring structure provides greater rigidity of the ligand molecule and turned out to be advantageous, if not mandatory, for (close to) baseline separation. PMID:22191385

  1. Chromatographic comparison of atenolol separation in reaction media on cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase using ultra fast liquid chromatography.

    PubMed

    Agustian, Joni; Kamaruddin, Azlina Harun; Aboul-Enein, Hassan Y

    2012-05-01

    Because chiral liquid chromatography (LC) could become a powerful tool to estimate racemic atenolol quantity, excellent enantiomeric separation should be produced during data acquisition for satisfactory observation of atenolol concentrations throughout the racemic resolution processes. Selection of chiral LC column and analytical protocol that fulfill demands of the ultra fast LC analysis is essential. This article describes the characteristics of atenolol chromatographic separation that resulted from different resolution media and analytical protocols with the use of a Chiralcel® OD column. The chromatograms showed quite different characteristics of the separation process. The single enantiomer and racemic atenolol could be recognized by the Chiralcel® OD column in less than 20 min. Symmetrical peaks were obtained; however, several protocols produced peaks with wide bases and slanted baselines. Observations showed that efficient enantioresolution of racemic atenolol was obtained at slow mobile phase flow rate, decreased concentration of amine-type modifier but increased alcohol content in mobile phase and highest ultraviolet detection wavelength were required. The optimal ultra fast LC protocol enables to reduce and eliminate the peaks of either the atenolol solvent or the buffers and provided the highest peak intensities of both atenolol enantiomers. PMID:22517322

  2. Porous liquids: A promising class of media for gas separation

    DOE PAGESBeta

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  3. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  4. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-12-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  5. Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

    NASA Astrophysics Data System (ADS)

    Hansen, T.; Gardeler, B.; Matthiessen, B.

    2013-10-01

    Total dissolved inorganic carbon (CT) is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250-2400 μmol kg-1) compared to natural open ocean seawater (~1950-2200 μmol kg-1). The requirement of total sample amounts between 0.1-1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures) or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg-1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

  6. Rapid gas chromatographic method for the determination of famoxadone, trifloxystrobin and fenhexamid residues in tomato, grape and wine samples.

    PubMed

    Likas, D T; Tsiropoulos, N G; Miliadis, G E

    2007-05-25

    Trifloxystrobin, fenhexamid and famoxadone belong to the generation of fungicides acting against a broad spectrum of fungi and widely used in Integrated Pest Management strategies in different agricultural crops but mainly in viticulture. In the present work, a gas chromatographic (GC) method for their determination was developed and validated on tomato, grape and wine matrices. The method was based on a simple one step liquid-liquid microextraction with cyclohexane/dichloromethane (9+1, v/v) and determination of fungicides by gas chromatography with nitrogen phosphorous (NP-) and electron capture (EC-) detection, and ion trap mass spectrometry (ITMS) for confirmation. The method was validated by recovery experiments, assessment of matrix effect and calculation of the associated uncertainty. Recoveries for GC-NPD and GC-ECD were found in the range of 81-102% with RSD <12%, while matrix-matched calibration solutions were imposed for quantification. LOQs ranged from 0.005 to 0.05 mg/kg and 0.01 to 0.10 mg/kg for the GC-ECD and GC-NPD, respectively, depending on the sensitivity of each compound with trifloxystrobin being the most sensitive. The expanded uncertainty, calculated for a sample concentration of 0.10 mg/kg, ranged from 4.8 to 13% for the GC-ECD and from 5.4 to 29% for the GC-NPD. The concentration levels for famoxadone residues found in tomato and grape samples from field experiments were clearly below the EU established MRL values, thus causing no problems in terms of food safety. PMID:16950327

  7. Validation of a QuEChERS-based gas chromatographic method for analysis of pesticide residues in Cassia angustifolia (senna).

    PubMed

    Tripathy, Vandana; Saha, Ajoy; Patel, Dilipkumar J; Basak, B B; Shah, Paresh G; Kumar, Jitendra

    2016-08-01

    A simple multi-residue method based on modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was established for the determination of 17 organochlorine (OC), 15 organophosphorous (OP) and 7 synthetic pyrethroid (SP) pesticides in an economically important medicinal plant of India, Senna (Cassia angustifolia), by gas chromatography coupled to electron capture and flame thermionic detectors (GC/ECD/FTD) and confirmation of residues was done on gas chromatograph coupled with mass spectrometry (GC-MS). The developed method was validated by testing the following parameters: linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect, accuracy-precision and measurement uncertainty; the validation study clearly demonstrated the suitability of the method for its intended application. All pesticides showed good linearity in the range 0.01-1.0 μg mL(-1) for OCs and OPs and 0.05-2.5 μg mL(-1) for SPs with correlation coefficients higher than 0.98. The method gave good recoveries for most of the pesticides (70-120%) with intra-day and inter-day precision < 20% in most of the cases. The limits of detection varied from 0.003 to 0.03 mg kg(-1), and the LOQs were determined as 0.01-0.049 mg kg(-1). The expanded uncertainties were <30%, which was distinctively less than a maximum default value of ±50%. The proposed method was successfully applied to determine pesticide residues in 12 commercial market samples obtained from different locations in India. PMID:27153296

  8. Matrix solid phase dispersion (MSPD) extraction and gas chromatographic screening of nine chlorinated pesticides in beef fat.

    PubMed

    Long, A R; Soliman, M M; Barker, S A

    1991-01-01

    A multiresidue technique is presented for the extraction and quantitative gas chromatographic screening of 9 insecticides (lindane, heptachlor, aldrin, heptachlor epoxide, p,p'-DDE, dieldrin, endrin, p,p'-TDE, and p,p'-DDT) as residues in beef fat. Beef fat was fortified by adding the 9 insecticides, plus dibutyl chlorendate as internal standard, to 0.5 g portions of beef fat and blending with 2 g C18 (octadecylsilyl)-derivatized silica. The C18/fat matrix blend was fashioned into a column by adding the blend to a 10 mL syringe barrel containing 2 g activated Florisil. The insecticides were then eluted from the column with 8 mL acetonitrile, and a 2 microL portion of the acetonitrile eluate was then directly analyzed by gas chromatography with electron capture detection. Unfortified blank controls were treated similarly. The acetonitrile eluate contained all of the pesticide analytes (31.25-500 ng/g) and was free of interfering co-extractants. Correlation coefficients for the 9 extracted pesticide standard curves (linear regression analysis, n = 5) ranged from 0.9969 (+/- 0.0021) to 0.9999 (+/- 0.0001). Average relative percentage recoveries (85 +/- 3.4% to 102 +/- 5.0%, n = 25 for each insecticide), inter-assay variability (6.0 +/- 1.0% to 14.0 +/- 6.7%, n = 25 for each insecticide), and intra-assay variability (2.5-5.1% n = 5 for each insecticide) indicated that the methodology is acceptable for the extraction, determination, and screening of these residues in beef fat. PMID:1874694

  9. Sulfolane-Cross-Polybenzimidazole Membrane For Gas Separation

    DOEpatents

    Young, Jennifer S.; Long, Gregory S.; Espinoza, Brent F.

    2006-02-14

    A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by reacting polybenzimidazole (PBI) with the sulfone-containing crosslinking agent 3,4-dichloro-tetrahydro-thiophene-1,1-dioxide. The cross-linked reaction product exhibits enhanced gas permeability to hydrogen, carbon dioxide, nitrogen, and methane as compared to the unmodified analog, without significant loss of selectivity, at temperatures from about 20 degrees Celsius to about 400 degrees Celsius.

  10. Gas chromatographic analysis of petroleum associated condensate oil with simultaneous determination of some characteristic physical parameters.

    PubMed

    Moustafa, N E

    2008-01-01

    A method is developed for the analysis of associated condensate by capillary gas chromatography (GC) with simultaneous determination of its major physical characteristic parameters. The method aims at the qualitative and quantitative determination of C(2)-C(36) alkanes, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, ethylbenzene, xylenes, and 1,2,4-trimethylbenzene. This composition is according to the petroleum companies demand. The method is used for the simultaneous determination of the condensate average molecular weight, density, carbon-to-hydrogen ratio, and boiling range. The data obtained by the method has a good agreement with those obtained by other methods. The literature methods cited later used a simulated distillation method to obtain the hydrocarbon distribution spectrum of the given condensate sample. The obtained results revealed that the GC capillary method used is most rapid and accurate for achieving the demanded analytical report. PMID:18492346

  11. Automated gas chromatographic method for the determination of ethanol in canned salmon.

    PubMed

    McLachlan, D G; Wheeler, P D; Sims, G G

    1999-01-01

    A method has been developed for the determination of ethanol in canned salmon using automated headspace sampling in conjunction with analysis by gas chromatography. The thermal process for the commercial sterilization of canned salmon is shown to provide an effective extraction of the ethanol so that the fluid removed from the can may be used as the analytical sample with minimal preparation prior to analysis. Ethanol content is measured directly, without the need for an internal standard, by either GC/MS or GC/FID. The headspace autoanalyzer allows for a rapid determination of ethanol with greater reproducibility than could be obtained with manual injection systems. The GC/MS technique can also provide an advantage in that simultaneous single ion monitoring of the two major ethanol ions provides additional protection from interferences. To assess the applicability of this technique to other substrates, Atlantic sea scallop meats were also successfully analyzed by this technique. PMID:10563875

  12. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  13. Features of a truxene-based stationary phase in capillary gas chromatography for separation of some challenging isomers.

    PubMed

    Lv, Qing; Feng, Shuai; Jing, Lingmin; Zhang, Qing; Qi, Meiling; Wang, Jinliang; Bai, Hua; Fu, Ruonong

    2016-07-01

    Herein we report the first example of exploring truxene-based derivatives for gas chromatographic (GC) separations. The fabricated thiophene-functionalized truxene (TFT) column exhibited weak polarity and efficiencies as high as 4000plates/m for 0.250mm i.d. columns. TFT column showed preferential retention for halogenated and alkyl benzene analytes, and especially, high resolving capability for the xylene isomers, di- and trichlorobiphenyls (di-CB and tri-CB) isomers. Interestingly, its unique retentions for the latter analytes were found to be closely related with their dihedral angles and the locations of chlorine atoms. This finding on the retention trend has not been reported in GC separations, which may provide a new perspective in elucidating retention behaviours for specific analytes. Moreover, TFT column exhibited high thermal stability up to 320°C and excellent repeatability. This work demonstrates the promising future of truxene derivatives in the separation science. PMID:27264743

  14. Determination of Milk Fat Adulteration with Vegetable Oils and Animal Fats by Gas Chromatographic Analysis.

    PubMed

    Kim, Jin-Man; Kim, Ha-Jung; Park, Jung-Min

    2015-09-01

    This study assessed the potential application of gas chromatography (GC) in detecting milk fat (MF) adulteration with vegetable oils and animal fats and of characterizing samples by fat source. One hundred percent pure MF was adulterated with different vegetable oils and animal fats at various concentrations (0%, 10%, 30%, 50%, 70%, and 90%). GC was used to obtain the fatty acid (FA) profiles, triacylglycerol (TG) contents, and cholesterol contents. The pure MF and the adulterated MF samples were discriminated based on the total concentrations of saturated FAs and on the 2 major FAs (oleic acid [C18:1n9c] and linoleic acid [C18:2n6c], TGs [C52 and C54], and cholesterol contents using statistical analysis to compared difference. These bio-markers enabled the detection of as low as 10% adulteration of non-MF into 100% pure MF. The study demonstrated the high potential of GC to rapidly detect MF adulteration with vegetable and animal fats, and discriminate among commercial butter and milk products according to the fat source. These data can be potentially useful in detecting foreign fats in these butter products. Furthermore, it is important to consider that several individual samples should be analyzed before coming to a conclusion about MF authenticity. PMID:26265530

  15. Gas-liquid chromatographic determination of nifursol in frozen turkey tissues to ten parts per billion.

    PubMed

    Frahm, L J; George, G M; McDonnell, J P

    1975-07-01

    Nifursol (3,5-dinitrosalicylic acid (5-nitrofurfurylidene) hydrazide) is extracted into ethyl acetate from 10 g tissue in the presence of sodium sulfate. Tissue interferences are removed from the tissue extract by washing with petroleum ether after the extract has been transferred into an aqueous solution by evaporation of ethyl acetate. The drug is hydrolyzed under acid conditions to form 5-nitro-2-furaldehyde (5NF). After partition of 5NF from the aqueous phase into benzene the extract is further cleaned up on a Florisil column. The 5NF is eluted from the Florisil column with benzeneethyl acetate. Electron capture gas-liquid chromatography of a 10 mul injection of the concentrated column eluate is the determinative step. Quantitation is accomplished by comparison of the peak height of the sample to the peak height of the standard which is carried through the method simultaneously. Studies of method performance on turkey muscle, liver, kidney, and skin tissues fortified to contain 10 ppb nifursol show a recovery range of 87.4-95.0% and a coefficent of variation range of 5.7-11.2%. PMID:1150608

  16. Gas-liquid chromatographic determination of total cholesterol in multicomponent foods.

    PubMed

    Punwar, J K

    1975-07-01

    A method is described for the determination of total cholesterol in multicomponent foods and also other products such as nonfat dry milk, dried whole egg solids, and certain candy bars. The lipid is extracted from the sample by a mixed solvent and saponified. The unsaponifiable fraction which contains the cholesterol and other sterols is extracted with benzene. An aliquot is evaporated to dryness and the residue is dissolved in dimethylformamide. The sterols are derivatized to form trimethylsilyl (TMS) ethers. The TMS-cholesterol derivative is quantitatively determined by gas-liquid chromatography, using 5alpha-cholestane as an internal standard. Nine laboratories participated in a collaborative study of the determination of total cholesterol in deviled ham sandwich spread, vegetable beef stew, corned beef hash, frozen chicken pot pie, pizza pepperoni, fish sticks, breaded shrimp, chocolate-covered candy bars, dried whole egg solids, and nonfat dry milk and the results are reported here. The coefficient of variation ranged from 5.64 to 23.2%, with an average coefficient of variation of 14.8%. PMID:1173811

  17. Gas chromatographic and electron spin resonance investigations of gamma-irradiated frog legs

    NASA Astrophysics Data System (ADS)

    Morehouse, Kim M.; Ku, Yuoh; Albrecht, Heidi L.; George C., Yang

    Several very sensitive techniques to measure radiation-induced products in frog legs were investigated. Presented here are results from the use of electron spin resonance (ESR) spectroscopy and capillary gas chromatography (GC) to measure radiolysis products in γ-irradiated frog legs. When bone is irradiated, a characteristic ESR signal develops and is easily measured. The intensity of the ESR signal is dose-dependent and stable for several months at room temperature. When triglycerides or fatty acids are irradiated, some of the major stable products formed are hydrocarbons with one less carbon than the precursor fatty acids. These hydrocarbons are formed as the result of the loss of CO 2 during various free radical reactions. A capillary GC procedure was developed to monitor the formation of these hydrocarbons in γ-irradiated frog legs. Since frog legs contain large amounts of palmitic, stearic, oleic, and linoleic acids, the formation of the hydrocarbons (pentadecane, heptadecane, 8-heptadecene, and 6,9-heptadecadiene, respectively) from the decarboxylation of these fatty acids was monitored. The yields of these hydrocarbons were found to be linear with applied dose. A sample from a lot of imported frog legs that were believed to have been treated with ionizing radiation was also analyzed. The ESR technique, in conjunction with the GC data on the hydrocarbons, appears to be a useful approach for identifying and monitoring frog legs that have been treated with ionizing radiation.

  18. Characterization of Atypical Off-Flavor Compounds in Natural Cork Stoppers by Multidimensional Gas Chromatographic Techniques.

    PubMed

    Slabizki, Petra; Fischer, Claus; Legrum, Charlotte; Schmarr, Hans-Georg

    2015-09-01

    Natural cork stoppers with sensory deviations other than the typical cork taint were subgrouped according to their sensory descriptions and compared with unaffected control cork stoppers. The assessment of purge and trap extracts obtained from corresponding cork soaks was performed by heart-cut multidimensional gas chromatography-olfactometry (MDGC-O). The identification of compounds responsible for atypical cork taint detected in MDGC-O was further supported with additional multidimensional GC analysis in combination with mass spectrometric detection. Geosmin and 2-methylisoborneol were mainly found in cork stoppers described as moldy and cellarlike; 3-isopropyl-2-methoxypyrazine and 3-isobutyl-2-methoxypyrazine were found in cork stoppers described with green attributes. Across all cork subgroups, the impact compound for typical cork taint, 2,4,6-trichloroanisole (TCA), was present and is therefore a good marker for cork taint in general. Another potent aroma compound, 3,5-dimethyl-2-methoxypyrazine (MDMP), was also detected in each subgroup, obviously playing an important role with regard to the atypical cork taint. Sensory deviations possibly affecting the wine could be generated by MDMP and its presence should thus be monitored in routine quality control. PMID:26257078

  19. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  20. Derivative Quotient Spectrophotometry and an Eco-Friendly Micellar Chromatographic Approach with Time-Programmed UV-Detection for the Separation of Two Fluoroquinolones and Phenazopyridine.

    PubMed

    Tolba, Manar M; Salim, Mohamed M

    2016-05-01

    In this study, two analytical approaches were exploited for the resolution of binary mixtures of ciprofloxacin HCl (CIP) or norfloxacin (NOR) and phenazopyridine HCl (PHZ). In the first approach, the amplitudes of the first derivative of the ratio spectra were measured at 267 or 287 nm for CIP and at 268 or 291 nm for NOR. PHZ could be directly determined in the presence of CIP or NOR at 405 nm. The calibration graphs were rectilinear over the ranges of 1.0-16.0 µg/mL for CIP or NOR and 1.0-10.0 µg/mL for PHZ. In the second approach, an accurate, reliable and environmentally nontoxic micellar liquid chromatographic (MLC) method was developed. A good chromatographic separation was achieved using a 150 mm × 4.6 mm i.d., 5 µm particle size Spherisorb ODS-2 column. Eco-friendly mobile phase containing 0.12 M sodium dodecyl sulphate, 0.3% triethylamine and 6%n-butanol in 0.02 M orthophosphoric acid of pH 3.0 was pumped at a flow rate of 1 mL/min. Time programmed UV-detection was applied to allow sensitive determination of the studied drugs. The analytes were eluted without interferences in <10 min. Methocarbamol was used as an internal standard. The MLC method was found to be rectilinear over the concentration range of 0.5-20.0 μg/mL for CIP, NOR or PHZ. These optimized and validated methods were successfully applied for the simultaneous analysis of the studied drugs in their synthetic mixtures and co-formulated tablets. Moreover, the second method was further extended to the determination of these drugs in human urine with direct injection and without any pretreatment. PMID:26867555

  1. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies.

    PubMed

    Carvalho, Ana P; Malcata, F Xavier

    2005-06-29

    Assays for fatty acid composition in biological materials are commonly carried out by gas chromatography, after conversion of the lipid material into the corresponding methyl esters (FAME) via suitable derivatization reactions. Quantitative derivatization depends on the type of catalyst and processing conditions employed, as well as the solubility of said sample in the reaction medium. Most literature pertinent to derivatization has focused on differential comparison between alternative methods; although useful to find out the best method for a particular sample, additional studies on factors that may affect each step of FAME preparation are urged. In this work, the influence of various parameters in each step of derivatization reactions was studied, using both cod liver oil and microalgal biomass as model systems. The accuracies of said methodologies were tested via comparison with the AOCS standard method, whereas their reproducibility was assessed by analysis of variance of (replicated) data. Alkaline catalysts generated lower levels of long-chain unsaturated FAME than acidic ones. Among these, acetyl chloride and BF(3) were statistically equivalent to each other. The standard method, which involves alkaline treatment of samples before acidic methylation with BF(3), provided equivalent results when compared with acidic methylation with BF(3) alone. Polarity of the reaction medium was found to be of the utmost importance in the process: intermediate values of polarity [e.g., obtained by a 1:1 (v/v) mixture of methanol with diethyl ether or toluene] provided amounts of extracted polyunsaturated fatty acids statistically higher than those obtained via the standard method. PMID:15969474

  2. A Practical Methodology to Measure Unbiased Gas Chromatographic Retention Factor vs. Temperature Relationships

    PubMed Central

    Peng, Baijie; Kuo, Mei-Yi; Yang, Panhia; Hewitt, Joshua T.; Boswell, Paul G.

    2014-01-01

    Compound identification continues to be a major challenge. Gas chromatography-mass spectrometry (GC-MS) is a primary tool used for this purpose, but the GC retention information it provides is underutilized because existing retention databases are experimentally restrictive and unreliable. A methodology called “retention projection” has the potential to overcome these limitations, but it requires the retention factor (k) vs. T relationship of a compound to calculate its retention time. Direct methods of measuring k vs. T relationships from a series of isothermal runs are tedious and time-consuming. Instead, a series of temperature programs can be used to quickly measure the k vs. T relationships, but they are generally not as accurate when measured this way because they are strongly biased by non-ideal behavior of the GC system in each of the runs. In this work, we overcome that problem by using the retention times of 25 n-alkanes to back-calculate the effective temperature profile and hold-up time vs. T profiles produced in each of six temperature programs. When the profiles were measured this way and taken into account, the k vs. T relationships measured from each of two different GC-MS instruments were nearly as accurate as the ones measured isothermally, showing less than 2-fold more error. Furthermore, temperature-programmed retention times calculated in five other labs from the new k vs. T relationships had the same distribution of error as when they were calculated from k vs. T relationships measured isothermally. Free software was developed to make the methodology easy to use. The new methodology potentially provides a relatively fast and easy way to measure unbiased k vs. T relationships. PMID:25496658

  3. Liquid chromatographic separation of pregabalin and its possible impurities with fluorescence detection after postcolumn derivatization with o-phtaldialdehyde.

    PubMed

    Dousa, Michal; Gibala, Petr; Lemr, K

    2010-11-01

    A rapid procedure based on direct extraction and RP-HPLC separation of pregabalin and its possible impurities with fluorescence detection has been developed. The separation conditions and parameters of derivatization reaction for postcolumn derivatization of pregabalin with o-phtaldialdehyde/2-mercaptoethanol were studied. Purospher STAR RP-8e column with isocratic elution was employed. Fluorescence detection was performed at excitation and emission wavelength of 345 nm and 450 nm, respectively. The proposed method has an advantage of a simple sample pre-treatment and a quick and very sensitive HPLC method. The applicability of developed method was successfully verified during analysis of commercial samples of tablets of Lyrica (Pfizer, USA). PMID:20435423

  4. Evaluation of mixed-mode chromatographic resins for separating IgG from serum albumin containing feedstock.

    PubMed

    Wang, Rong-Zhu; Lin, Dong-Qiang; Tong, Hong-Fei; Lu, Hui-Li; Yao, Shan-Jing

    2013-10-01

    Mixed-mode chromatography has been focused as a cost-effective new technique for antibody purification. In this study, four mixed-mode resins with N-benzyl-N-methyl ethanol amine, 2-benzamido-4-mercaptobutanoic acide, 4-mercapto-ethyl-pyridine and phenylpropylamine as the ligands were tested and the multi-functional interactions between ligand and protein were discussed. Immunoglobulin G (IgG), bovine serum albumin (BSA) and the binary mixture of BSA and IgG were used as the model feedstock to compare the separation behaviors by pH gradient elution. The comparison analysis showed mixed-mode resin with N-benzyl-N-methyl ethanol amine as the ligand had the best ability to separate IgG and BSA. The results indicated that for four resins tested ionic interaction might play the dominant role in the separation of IgG and BSA while the hydrophobic interactions and hydrogen bonding have some subsidiary effects. The pH stepwise elution and sample loading were optimized to improve the IgG purification from serum albumin containing feedstock. High purity (92.3%) and high recovery (95.6%) of IgG were obtained. The results indicated that mixed-mode chromatography would be a potential option for antibody purification with the control of loading and elution conditions. PMID:23973532

  5. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    PubMed

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods. PMID:22268355

  6. Evaluation of a Gas Chromatograph-Differential Mobility Spectrometer for Potential Water Monitoring on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2015-01-01

    Environmental monitoring for manned spaceflight has long depended on archival sampling, which was sufficient for short missions. However, the longer mission durations aboard the International Space Station (ISS) have shown that enhanced, real-time monitoring capabilities are necessary in order to protect both the crewmembers and the spacecraft systems. Over the past several years, a number of real-time environmental monitors have been deployed on the ISS. Currently, volatile organic compounds (VOCs) in the station air are monitored by the Air Quality Monitor (AQM), a small, lightweight gas chromatograph-differential mobility spectrometer. For water monitoring, real-time monitors are used for total organic carbon (TOC) and biocide analysis. No information on the actual makeup of the TOC is provided presently, however. An improvement to the current state of environmental monitoring could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for VOCs in air samples, this instrument provides a logical starting point to evaluate the feasibility of this approach. The major hurdle for this effort lies in the liberation of the target analytes from the water matrix. In this presentation, we will discuss our recent studies, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target VOCs at the concentrations at which they are routinely detected in archival water samples from the ISS. We will compare the results of these studies with those obtained from the instrumentation routinely used to analyze archival water samples.

  7. Performance characteristics of an automated gas chromatograph-ion trap mass spectrometer system used for the 1995 Southern Oxidants Study field investigation in Nashville, Tennessee

    NASA Astrophysics Data System (ADS)

    Daughtrey, E. Hunter; Adams, Jeffrey R.; Oliver, Karen D.; Kronmiller, Keith G.; McClenny, William A.

    1998-09-01

    A trailer-deployed automated gas chromatograph-mass spectrometer (autoGC-MS) system capable of making continuous hourly measurements was used to determine volatile organic compounds (VOCs) in ambient air at New Hendersonville, Tennessee, and Research Triangle Park, North Carolina, in 1995. The system configuration, including the autoGC-MS, trailer and transfer line, siting, and sampling plan and schedule, is described. The autoGC-MS system employs a pair of matched sorbent traps to allow simultaneous sampling and desorption. Desorption is followed by Stirling engine cryofocusing and subsequent GC separation and mass spectral identification and quantification. Quality control measurements described include evaluating precision and accuracy of replicate analyses of independently supplied audit and round-robin canisters and determining the completeness of the data sets taken in Tennessee. Data quality objectives for precision (±10%) and accuracy (±20%) of 10- to 20-ppbv audit canisters and a completeness of >75% data capture were met. Quality assurance measures used in reviewing the data set include retention time stability, calibration checks, frequency distribution checks, and checks of the mass spectra. Special procedures and tests were used to minimize sorbent trap artifacts, to verify the quality of a standard prepared in our laboratory, and to prove the integrity of the insulated, heated transfer line. A rigorous determination of total system blank concentration levels using humidified scientific air spiked with ozone allowed estimation of method detection limits, ranging from 0.01 to 1.0 ppb C, for most of the 100 target compounds, which were a composite list of the target compounds for the Photochemical Assessment Monitoring Station network, those for Environmental Protection Agency method TO-14, and selected oxygenated VOCs.

  8. Comparing different gas chromatographic methods for the quantification of bisphenol A (BPA) trace levels in paper and cardboard products from the market.

    PubMed

    Jurek, A; Leitner, E

    2015-01-01

    Bisphenol A (BPA; 4,4'-(propane-2,2-diyl)diphenol), a suspected endocrine disruptor with weak estrogenic activity, is used in a variety of consumer products, including paper and cardboard products used as food contact materials. The present study compared four different gas chromatographic methods for the analysis of BPA in paper and cardboard food packages. Eighteen different food packages were extracted and BPA was determined using two different derivatisation reactions--trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) and halide alkylation with pentafluorobenzoyl chloride (PFBOCl)--and four different separation and detection techniques. The BSTFA derivatives were quantified with (1) GC-MS in single-ion monitoring (SIM) mode with electron ionisation (EI-GC-MS) and (2) GC-MS/MS in multiple reaction monitoring (MRM) mode using electron ionisation (EI-GC-MS/MS); while the PFBOCl derivatives were quantified with (3) GC-MS using electron ionisation (EI-GC-MS) as well as (4) GC-MS with negative chemical ionisation (NCI-GC-MS). All developed methods showed good linearity (R(2) > 0.9938), precision (CV < 4.5% for reproducibility; CV < 2.2% for repeatability) and sensitivity, with limits of detection (LODs) between 0.02 µg kg(-1) for the pentafluorobenzoyl derivatives measured with the NCI-GC-MS method and 6 µg kg(-1) for the pentafluorobenzoyl derivatives determined with EI-GC-MS. Levels of BPA in the samples were in agreement for all methods, ranging from values below the limit of quantitation (LOQ) to 11.9 mg kg(-1) paper. In a last step, the maximum potential migration into food products was calculated for all tested paper and cardboard samples, assuming a 'worst case' scenario of 100% migration. PMID:26029846

  9. Two high performance liquid chromatographic methods for the determination of alpha-tocopherol in serum compared to isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Kock, R; Seitz, S; Delvoux, B; Greiling, H

    1997-05-01

    Two high performance liquid chromatographic methods (HPLC) with isocratic reversed-phase separation are presented for the determination of alpha-tocopherol (vitamin E) in serum. In the first method alpha-tocopherol acetate is used as internal standard, detection of absorbance is performed at 284 nm. In the second method tocol is used as internal standard, detection of fluorescence is performed with an excitation wavelength of 292 nm and emission wavelength of 325 nm. Both methods require a liquid-liquid extraction as sample preparation. The results of both HPLC methods have been tested by method comparison for n = 25 serum samples versus an isotope dilution-gas chromatography-mass spectrometry (ID-GC-MS) method using alpha-tocopherol-d6 as internal standard. The imprecision within-run was lower than 2.5% for the UV method and lower than 1% for the fluorescence method for both standards and serum pools. The between-run imprecision, obtained for serum pools, was below 5% for the UV method and not higher than 1.5% for the fluorescence method and not higher 1.8% for the ID-GC-MS. Recovery experiments performed by spiking pool sera with alpha-tocopherol showed recoveries between 98.5% and 100.6% for all methods studied. The result of the method comparison was a coefficient of correlation of r = 0.998 for the HPLC method with fluorescence detection to the ID-GC-MS reference method and a coefficient of correlation of r = 0.981 for the HPLC method with UV detection to the ID-GC-MS reference method. Both methods presented are useful for the analysis of alpha-tocopherol in patient samples. If detection of fluorescence is used, imprecision and inaccuracy of the HPLC method are comparable to the ID-GC-MS chosen as reference method. PMID:9189742

  10. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates.

    PubMed

    Ghanem, Ashraf; Ahmed, Marwa; Ishii, Hideaki; Ikegami, Tohru

    2015-01-01

    The enantioselectivity of immobilized β-cyclodextrin phenyl carbamate-based silica monolithic capillary columns was compared to our previously described polymer counterpart. 2,3,6-Tris(phenylcarbamoyl)-β-cyclodextrin-6-methacrylate was used as a functional monomer for the preparation of β-cyclodextrin (β-CD)-based silica and polymer monoliths. The silica monoliths were prepared via the sol-gel technique in fused silica capillary followed by modification of the bare silica monoliths with an anchor group prior to polymerization with β-CD methacrylate using either 2,2'-azobis(isobutyronitrile) or benzoylperoxide as radical initiators. On the other hand, the polymer monoliths were prepared via the copolymerization of β-CD methacrylate and ethylene glycol dimethacrylate in different ratios in situ in fused silica capillary. The prepared silica/polymer monoliths were investigated for the chiral separation of different classes of pharmaceuticals namely; α- and β-blockers, anti-inflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs and antiarrhythmic drugs. Baseline separation was achieved for alprenolol, bufuralol, carbuterol, cizolertine, desmethylcizolertine, eticlopride, ifosfamide, 1-indanol, propranolol, tebuconazole, tertatolol and o-methoxymandelic acid under reversed phase conditions using mobile phase composed of methanol and water. The silica-based monoliths showed a comparative enantioselectivity to the polymer monoliths. PMID:25476312

  11. Rule-based expert system for evaluating the quality of long-term, in-situ, gas chromatographic measurements of atmospheric methane. Technical memo

    SciTech Connect

    Masarie, K.A.; Steele, L.P.; Lang, P.M.

    1991-11-01

    Methane is an important trace constituent of the earth's atmosphere because it is active both chemically and radiatively. The absorption of infrared radiation by atmospheric methane, and the rapid increase in the global atmospheric burden of methane over the past century combine to raise concerns that continued increases may contribute to global warming and climate change within the next century. The use of a rule-based expert system to assess the integrity of in situ gas chromatographic methane measurements made at the NOAA/CMDL Point Barrow, Alaska and Mauna Loa, Hawaii observatories is presented. The expert system flags ambient samples analyzed during chromatograph system instability and excludes them from further scientific analysis. The development and implementation of the expert system are described in detail. A comparison between data sets flagged by a human expert and by the expert system shows that the expert system can successfully reproduce the efforts of a human when evaluating gas chromatograph system stability. Advantages and limitations of the use of an expert system for the task are also discussed.

  12. E.S.R. of spin-trapped radicals in gamma-irradiated polycrystalline amino acids. Chromatographic separation of radicals.

    PubMed

    Makino, K; Riesz, P

    1982-06-01

    The free radicals produced by gamma-radiolysis of polycrystalline amino acids (L-valine, L-leucine, L-isoleucine and L-proline) at room temperature in the absence of air were investigated by spin trapping with 2-methyl-2-nitrosopropane (MNP). The spin adducts produced by dissolving the irradiated solids in aqueous MNP solutions were separated by high-performance liquid chromatography and then identified by e.s.r. Deamination (ring-opening reaction for L-proline) was observed for all amino acid. For L-valine and L-leucine, H-abstraction from the tertiary carbon in the side chains occurred. For isoleucine, H-abstractions from the alpha-carbon of the amino acid and from a non-terminal carbon in the side chain were found. PMID:6288602

  13. Computational investigation of thermal gas separation for CO2 capture.

    SciTech Connect

    Gallis, Michail A.; Bryan, Charles R.; Brady, Patrick Vane; Torczynski, John Robert; Brooks, Carlton, F.

    2009-09-01

    This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

  14. Ammonia-Activated Mesoporous Carbon Membranes for Gas Separations

    SciTech Connect

    Mahurin, Shannon Mark; Lee, Jeseung; Wang, Xiqing; Dai, Sheng

    2011-01-01

    Porous carbon membranes, which generally show improved chemical and thermal stability compared to polymer membranes, have been used in gas separations for many years. In this work, we show that the post-synthesis ammonia treatment of porous carbon at elevated temperature can improve the permeance and selectivity of these membranes for the separation of carbon dioxide and hydrocarbons from permanent gases. Hierarchically structured porous carbon membranes were exposed to ammonia gas at temperatures ranging from 850 C to 950 C for up to 10 min and the N{sub 2}, CO{sub 2}, and C{sub 3}H{sub 6} permeances were measured for these different membranes. Higher treatment temperatures and longer exposure times resulted in higher gas permeance values. In addition, CO{sub 2}/N{sub 2} and C{sub 3}H{sub 6}/N{sub 2} selectivities increased by a factor of 2 as the treatment temperature and time increased up to a temperature and time of 900 C, 10 min. Higher temperatures showed increased permeance but decreased selectivity indicating excess pore activation. Nitrogen adsorption measurements show that the ammonia treatment increased the porosity of the membrane while elemental analysis revealed the presence of nitrogen-containing surface functionalities in the treated carbon membranes. Thus, ammonia treatment at high temperature provides a controlled method to introduce both added microporosity and surface functionality to enhance gas separations performance of porous carbon membranes.

  15. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  16. A preliminary report on the derivatization-gas chromatographic determination of nalidixic acid and 3,7-dicarboxynalidixic acid in urine.

    PubMed

    Wu, S M; Chen, S H; Wu, H L

    1989-11-01

    A preliminary study on the gas chromatographic analysis of urine spiked with nalidixic acid and 3,7-dicarboxynalidixic acid is described. The method is based on the transfer of an ion-pair of NA or CNA with tetradecyldimethylbenzylammonium chloride (benzalkonium chloride) from alkaline aqueous solution into methyl isobutyl ketone (MIBK), the organic phase, where these salts are derivatized with pentafluorobenzyl bromide. The derivatives formed by this process are chromatographed on an analytical column packed with 1.5% OV-101 and detected with a flame-ionization detector. Several parameters affecting the transfer and/or derivatization of NA or CNA were investigated. These parameters include the phase transfer catalyst employed, the organic solvent used, the concentration of the acid and base added, the amount of derivatizing agent required, and reaction time and temperature. PMID:2634117

  17. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform.

    PubMed

    Tousi, Fateme; Bones, Jonathan; Hancock, William S; Hincapie, Marina

    2013-09-01

    MS analysis of sialylated glycans is challenging due to their low ionization efficiency in positive ion mode as well as the possibility of in-source fragmentation. Chemical derivatization strategies have been developed to address this issue focused on removal of the labile acidic proton prior to MS analysis. Highly sialylated negatively charged glycans also exhibit high retention and unsatisfactory separation efficiency when analyzed by hydrophilic interaction liquid chromatography (HILIC) due to their high polarity. Here, we combined linkage specific derivatization of sialic acids by reaction with the condensation reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) in methanol with nanoscale liquid chromatographic separation prior to accurate mass Orbitrap MS analysis. Coupling DMT-MM charge neutralization of sialic acids with nano-HILIC-Orbitrap-MS not only allows for linkage specific characterization of sialylated glycans directly from the precursor mass but also improves the preceding HILIC separation by increasing the hydrophobicity and altering the selectivity of the oligosaccharide analytes. We focused on the trisialylated N-glycan fraction from haptoglobin and human plasma, enriched using weak anion exchange chromatography, as this trisialylated fraction has been linked with cancer associated changes in the serum N-glycome. The developed methodology was applied to investigate whether structural alterations in this oligosaccharide pool, enriched from the sera of pathological stage and sex matched patients bearing lung, breast, ovarian, pancreatic, or gastric cancer, demonstrate any degree of cancer specificity or whether changes in expression levels are purely cancer associated. The results of this pilot study indicate limited degrees of cancer specificity, particularly for pancreatic cancer, based on alterations in the relative abundance of specific trisialylated isomers. PMID:23901877

  18. Dynamic Absorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-07-01

    Modeling and simulations will aid in the future design of U.S. advanced reprocessing plants for the recovery and recycle of actinides in used nuclear fuel. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, a rate based, dynamic absorption model is being developed in gPROMS software. Inputs include liquid and gas stream constituents, column properties, liquid and gas phase reactions, number of stages, and inlet conditions. It simulates multiple component absorption with countercurrent flow and accounts for absorption by mass transfer and chemical reaction. The assumption of each stage being a discrete well-mixed entity was made. Therefore, the model is solved stagewise. The simulation outputs component concentrations in both phases as a function of time from which the rate of absorption is determined. Temperature of both phases is output as a function of time also. The model will be used able to be used as a standalone model in addition to in series with other off-gas separation unit operations. The current model is being generated based on NOx absorption; however, a future goal is to develop a CO2 specific model. The model will have the capability to be modified for additional absorption systems. The off-gas models, both adsorption and absorption, will be made available via the server or web for evaluation by customers.

  19. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  20. Supercritical fluid carbon dioxide extraction and liquid chromatographic separation with electrochemical detection of methylmercury from biological samples

    USGS Publications Warehouse

    Simon, N.S.

    1997-01-01

    Using the coupled methods presented in this paper, methylmercury can be accurately and rapidly extracted from biological samples by modified supercritical fluid carbon dioxide and quantitated using liquid chromatography with reductive electrochemical detection. Supercritical fluid carbon dioxide modified with methanol effectively extracts underivatized methylmercury from certified reference materials Dorm-1 (dogfish muscle) and Dolt-2 (dogfish liver). Calcium chloride and water, with a ratio of 5:2 (by weight), provide the acid environment required for extracting methylmercury from sample matrices. Methylmercury chloride is separated from other organomercury chloride compounds using HPLC. The acidic eluent, containing 0.06 mol L-1 NaCl, insures the presence of methylmercury chloride and facilitates the reduction of mercury on a glassy carbon electrode. If dual glassy carbon electrodes are used, a positive peak is observed at -0.65 to -0.70 V and a negative peak is observed at -0.90V with the organomercury compounds that were tested. The practical detection limit for methylmercury is 5 X 10-8 mol L-1 (1 X 10-12 tool injected) when a 20 ??L injection loop is used.