Sample records for gas chromatography-electron impact

  1. Interlaboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF\\/MS) based plant metabolomics

    Microsoft Academic Search

    J. William Allwood; Alexander Erban; Sjaak de Koning; Warwick B. Dunn; Alexander Luedemann; Arjen Lommen; Lorraine Kay; Ralf Löscher; Joachim Kopka; Royston Goodacre

    2009-01-01

    The application of gas chromatography–mass spectrometry (GC–MS) to the ‘global’ analysis of metabolites in complex samples\\u000a (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining\\u000a and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project’s (METAbolomics\\u000a for Plants Health and OutReach: http:\\/\\/www.meta-phor.eu\\/) priorities towards robust technology

  2. Gas chromatography–electron capture detection determination of Dacthal and its diacid metabolite in soil after ultrasound-assisted extraction and in situ focused microwave-assisted derivatization

    Microsoft Academic Search

    A. Caballo-López; M. D. Luque de Castro

    2006-01-01

    A quantitative method for the determination of Dacthal and its di-acid metabolite in soil has been developed by coupling ultrasound-assisted\\u000a extraction and microwave-assisted derivatization of the analytes prior to gas chromatography–electron capture detection for\\u000a individual separation and measurement. The main factors affecting both extraction efficiency and derivatization were optimized\\u000a by experimental design methodology. The proposed approach allows extraction of these

  3. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  4. PARTICLE BEAM LIQUID CHROMATOGRAPHY-ELECTRON IMPACT MASS SPECTROMETRY OF DYES

    EPA Science Inventory

    A liquid chromatograph was interfaced with a triple quadrupole mass spectrometer by means of a particle beam-type interface. he system was used for the analysis and characterization by electron impact mass spectra of a series of commercial dyes. he pure dyes were separated from t...

  5. Determination of chlorobenzenes in water samples by solid-phase disk extraction and gas chromatography-electron capture detection.

    PubMed

    Hu, Hongmei; Guo, Yuanming; Sun, Xiumei; Chen, Xuechang; Zhang, Xiaoning; Liu, Qin; Xu, Chunxiu

    2014-01-01

    A simple, rapid, sensitive and high throughput method is described, based on solid-phase disk extraction (SPDE) and gas chromatography-electron capture detection, for the determination of chlorobenzens (CBs) in water samples. The proposed SPDE sample pretreatment method was initially optimized and the optimum experimental conditions were found to be as follows: 500 mL water sample (pH 2.5) extracted and enriched by an Empore 3-stn C18 (octadecyl) SPE disk at flow rate of 5 to 50 mL/min, eluted by 5 mL of acetone and 3 × 5 mL of methylene dichloride. The linearity of the method ranged from 0.02 to 0.4 µg/L for dichlorobenzene isomers, 0.0022-0.044 µg/L for trichlorobenzene isomers, 0.005-0.01 µg/L for tetrachlorobenzene isomers and 0.00025 to 0.005 µg/L for pentachlorobenzenes and hexachlorobenzenes, with correlation coefficients ranging between 0.9991 and 0.9999. The limits of detection were in the low ng/L level, ranging between 0.05 and 4 ng/L. The recoveries of spiked CBs with the external calibration method at different concentration levels in deionized/distilled water, tap water and sea water samples were 99-115, 91-106% and 96-110%, respectively, and with relative standard deviations of 4.5-7.6, 4.2-6.8 and 3.6-6.6% (n = 5), respectively. It is concluded that this method can successfully be applied for the determination of CBs in deionized/distilled water, tap water and sea water samples. PMID:23645828

  6. Comparison and analysis of organochlorine pesticides and hexabromobiphenyls in environmental samples by gas chromatography-electron capture detector and gas chromatography-mass spectrometry.

    PubMed

    Liu, Yu; Fu, Xiaofang; Tao, Shu; Liu, Liang; Li, Wei; Meng, Bingjun

    2015-02-01

    Two analytical methods, gas chromatography-electron capture detector (GC-ECD) and gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS), were evaluated and compared for the measurement of persistent organic pollutants, specifically for 26 organochlorine pesticides and two hexabromobiphenyls, in atmospheric particulate matter and soil samples. The hypothesis tested was that the coelution of non-target compounds may lead to false positives when analyzed by GC-ECD, and that the overestimation associated with these false positives can be eliminated using GC-NCI-MS. The study showed that both methods had satisfactory linearity and reproducibility for the target compounds. Although the sensitivities of GC-ECD for most of the compounds investigated were higher than those observed with the GC-NCI-MS method, the matrices interference was obvious with GC-ECD. There was indeed an apparently high false-positive rate or overestimate when GC-ECD was used for environmental samples, implying that the GC-ECD method has been used with care and that GC-NCI-MS is generally superior for the analysis of trace amounts of these compounds in environmental samples. Based on these results, the sample extraction and cleanup procedures of the GC-NCI-MS method were optimized for achieving acceptable recoveries and less matrices interference. PMID:24872522

  7. Determination of pentachlorophenol residue in meat and fish by gas chromatography-electron capture detection and gas chromatography-mass spectrometry with accelerated solvent extraction.

    PubMed

    Zhao, Dongmei

    2014-01-01

    A novel analytical method, using gas chromatography-electron capture detection (GC-ECD) and GC-mass spectrometry detection (MS), was developed for the qualitative and quantitative measurement of pentachlorophenol in meat and fish. The analyte was extracted by methanol-2% trichloroacetic acid (3/1, v/v) with accelerated solvent extraction (ASE). The eluted fraction was evaporated and derivatized with acetic anhydride-pyridine (1/1, v/v) for GC-ECD analysis and GC-MS confirmation. The parameters for extraction pressure, temperature and cycle of ASE, cleanup, derivatization and analysis procedure were optimized. The averaged decision limits and detection capability of the method were in the ranges of 0.25-0.41 and 0.49-1.01 µg/kg in the muscle and liver of swine and bovine and in the muscle of carp and finless eel, respectively. Spiked recoveries from levels of 0.5-2.0 µg/kg were found to be more than 71.1%, with relative standard deviation less than 14.7% in GC-ECD and GC-MS. This rapid and reliable method can be used for the characterization and quantification of residues of pentachlorophenol in animal and fish tissues. PMID:23690067

  8. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples. PMID:25310709

  9. Group-selective enrichment and determination of pyrethroid insecticides in aquaculture seawater via molecularly imprinted solid phase extraction coupled with gas chromatography-electron capture detection.

    PubMed

    Shi, Xizhi; Liu, Jinghua; Sun, Aili; Li, Dexiang; Chen, Jiong

    2012-03-01

    Two types of molecularly imprinted polymers (MIPs) for the simultaneous determination of six pyrethroid insecticides have been developed using deltamethrin (D-MIPs) and cypermethrin (C-MIPs) as template molecules. A comparison of the performance of D-MIPs, C-MIPs, and the corresponding non-imprinted polymers (NIPs) were conducted. Stronger group-selective interactions between the C-MIPs and the six pyrethroid insecticides were achieved. The MISPE method based on the C-MIPs displayed higher extraction recoveries (86.4-96.0%) with RSD values ranging from 2.4 to 7.8% for the six pyrethroid insecticides in aquaculture seawater. After the C-MIP cartridge procedure, the limits of detection and quantification for fenvalerate, deltamethrin, cypermethrin, cyfluthrin, and bifenthrin were in the 16.6-37.0 and 55.3-109.1 ng L?¹ ranges, respectively, and 0.68 and 2.26 ?g L?¹ for phenothrin, respectively. The proposed MISPE method coupled with gas chromatography-electron capture detection was successfully used for the determination of the six pyrethroid insecticides in aquaculture seawater. PMID:22265776

  10. [Analysis of organochlorine pesticides and pyrethroid pesticides in vegetables by gas chromatography-electron capture detection coupled with solid-phase extraction using multiwalled carbon nanotubes as adsorbent].

    PubMed

    Zhao, Haixiang; Jia, Yanxia; Ding, Mingyu; Sun, Dajiang; Zhao, Mengbin

    2011-05-01

    A multi-residue analytical method based on solid-phase extraction (SPE) with multiwalled carbon nanotubes (MWCNTs) as adsorbent was developed. The determination of 6 organochlorine pesticides and 7 pyrethroid pesticides in vegetables (including cucumber, cherry tomato, cabbage, lettuce, purple cabbage, leek, shallot and onion) was carried out by gas chromatography-electron capture detection (GC-ECD). The GC-ECD method used two columns (HP-50 and HP-1) and two ECD detectors. The HP-50 column was used for the analysis and the HP-1 column for validation. The clean-up conditions were optimized. The analytes were extracted by acetonitrile, and the extract was cleaned up by the MWCNTs SPE cartridge. The extract was re-dissolved by hexane, eluted with acetone-hexane (7:3, v/v) from the columns. The recoveries were over 70% for the 11 pesticides in the 13 pesticides. The results indicated that the MWCNTs SPE cartridge was efficient for 8 vegetable samples, because it reduced the contamination of the coloring materials to GC-ECD. The experimental results showed the MWCNTs SPE cartridge can adsorb the coloring materials and the eluant was nearly colorless. PMID:21847981

  11. Evaluation of BDE-47 hydroxylation metabolic pathways based on a strong electron-withdrawing pentafluorobenzoyl derivatization gas chromatography/electron capture negative ionization quadrupole mass spectrometry.

    PubMed

    Zhai, Chao; Peng, Shunv; Yang, Limin; Wang, Qiuquan

    2014-07-15

    Understanding the metabolic pathways of polybrominated diphenyl ethers (PBDEs) is a key issue in the evaluation of their cytotoxicity after they enter the biota. In order to obtain more information concerning the metabolic pathways of PBDEs, we developed a strong electron-withdrawing pentafluorobenzoyl (PFBoyl) derivatization capillary gas chromatography/electron capture negative ionization quadrupole mass spectrometry (GC/ECNI-qMS). PFBoyl esterification greatly improves separation of the metabolites of PBDEs such as hydroxylated PBDEs (OH-PBDEs) and bromophenols (BPs) metabolites in rat liver microsomes (RLMs). On the other hand, the strong electron-withdrawing property of PFBoyl derivatized on OH-PBDEs and/or BPs makes cleavage of the ester bond on ECNI easier resulting in higher abundance of the structure-informative characteristic fragment ions at a high m/z region, which facilitate the identification of OH-PBDEs metabolites. Subsequent quantification can be performed by monitoring not only 79Br- (or 81Br-) but also their characteristic fragment ions, achieving more accurate isotope dilution quantification using GC/ECNI-qMS. These merits allow us to identify totally 12 metabolites of BDE-47, a typical example of PBDEs, in the RLMs in vitro incubation systems. In addition to the already known metabolites of BDE-47, one dihydroxylated 3,6-di-OH-BDE-47 and one dihydroxylated 3,5-di-OH-tetrabrominated dioxin were found. Moreover, the second hydroxylation took place on the same bromophenyl ring, where the first hydroxyl group was located, and was further confirmed via the identification of the dihydroxylated 2',6'-di-OH-BDE-28 of an asymmetric 2'-OH-BDE-28. This methodological development and its subsequent findings of the metabolic pathways of BDE-47 provided experimental evidence for understanding its dioxin-like behavior and endocrine disrupting risk. PMID:24925108

  12. Determination of pyrethroid metabolites in human urine using liquid phase microextraction coupled in-syringe derivatization followed by gas chromatography/electron capture detection.

    PubMed

    Lin, Chiu-Hwa; Yan, Cheing-Tong; Kumar, Ponnusamy Vinoth; Li, Hong-Ping; Jen, Jen-Fon

    2011-08-01

    Metabolites of synthetic pyrethroids such as cis-3-(2,2-dibromovinyl)-2,2-di-methylcyclo-propane-1-carboxylic acid, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid), 3-phenoxybenzoic acid (3-PBA), and 4-fluoro-3-PBA are biomarkers for exposure to phenothrin, tetramethrin, cyfluthrin, cypermethrin, deltamethrin, and permethrin. In this study, the pyrethroid metabolites in workers' urine samples were monitored for the first time with a novel sample pretreatment process combining hollow fiber liquid phase microextraction (HF-LPME) and in-syringe derivatization (ISD) followed by gas chromatography-electron capture detector (GC-ECD) analysis. A micro-syringe pre-filled with derivatizing agents and syringe needle connected to an extracting solvent impregnated hollow fiber segment was used as the LPME probe. Pyrethroid metabolites were extracted and enriched simultaneously from urine samples by HF-LPME sampling and acid hydrolysis at 70 °C for 10 min. After sampling, the ISD was performed by mixing the extracting solution and derivatizing agents through plunger movements, followed by GC-ECD analysis. Parameters influencing the HF-LPME efficiency and ISD were investigated and optimized. Under optimum conditions, the method provided enrichment factors of 69.8-154.6, repeatability from 5.0 to 12% (n = 5), and good linearity (R(2) = 0.9980-0.9998) for interested analytes spiked in urine samples. The method detection limits ranged from 1.6 to 17 ng/mL. A comparison was performed between the proposed method and conventional methods. The proposed method was applied to analyze pyrethroid metabolites in the urine samples collected from workers of pesticide formulation plants. The results suggested that the proposed HF-LPME coupled ISD method was a rapid, simple, efficient, and eco-friendly technique in the biomonitoring of metabolites of pyrethroids in workers' urine. PMID:21667061

  13. Optimized cleanup method for the determination of short chain polychlorinated n-alkanes in sediments by high resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry.

    PubMed

    Gao, Yuan; Zhang, Haijun; Chen, Jiping; Zhang, Qing; Tian, Yuzeng; Qi, Peipei; Yu, Zhengkun

    2011-10-10

    The performances of three adsorbents, i.e. silica gel, neutral and basic alumina, in the separation of short chain polychlorinated n-alkanes (sPCAs) from potential interfering substances such as polychlorinated biphenyls (PCBs) and organochlorine pesticides were evaluated. To increase the cleanup efficiency, a two-step cleanup method using silica gel column and subsequent basic alumina column was developed. All the PCB and organochlorine pesticides could be removed by this cleanup method. The very satisfying cleanup efficiency of sPCAs has been achieved and the recovery in the cleanup method reached 92.7%. The method detection limit (MDL) for sPCAs in sediments was determined to be 14 ng g(-1). Relative standard deviation (R.S.D.) of 5.3% was obtained for the mass fraction of sPCAs by analyzing four replicates of a spiked sediment sample. High resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry (HRGC/ECNI-LRMS) was used for sPCAs quantification by monitoring [M-HCl](-) ions. When applied to the sediment samples from the mouth of the Daliao River, the optimized cleanup method in conjunction with HRGC/ECNI-LRMS allowed for highly selective identifications for sPCAs. The sPCAs levels in sediment samples are reported to range from 53.6 ng g(-1) to 289.3 ng g(-1). C(10)- and C(11)-PCAs are the dominant residue in most of investigated sediment samples. PMID:21889633

  14. Homogeneous liquid–liquid extraction combined with gas chromatography–electron capture detector for the determination of three pesticide residues in soils

    Microsoft Academic Search

    Xuedong Wang; Xinna Zhao; Xiujuan Liu; Yanyan Li; Lingyan Fu; Jia Hu; Changjiang Huang

    2008-01-01

    In this study, a new method was developed for analyzing malathion, cypermethrin and lambda-cyhalothrin from soil samples by using homogeneous liquid–liquid extraction (HLLE) and gas chromatography with electron capture detector (GC–ECD). Acetone was used as extraction solvent for the extraction of target pesticides from soil samples. When the extraction process was finished, the target analytes in the extraction solvent were

  15. Use of green coating (cork) in solid-phase microextraction for the determination of organochlorine pesticides in water by gas chromatography-electron capture detection.

    PubMed

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2015-03-01

    A novel method for the determination of organochlorine pesticides in water samples with extraction using cork fiber and analysis by gas chromatography with electron capture detector was developed. Also, the procedure to extract these pesticides with DVB/Car/PDMS fiber was optimized. The optimization of the variables involved in the extraction of organochlorine pesticides using the aforementioned fibers was carried out by multivariate design. The optimum extraction conditions were sample temperature 75 °C, extraction time 60 min and sodium chloride concentration 10% for the cork fiber and sample temperature 50 °C and extraction time 60 min (without salt) for the DVB/Car/PDMS fiber. The quantification limits for the two fibers varied between 1.0 and 10.0 ng L(-1). The linear correlation coefficients were >0.98 for both fibers. The method applied with the use of the cork fiber provided recovery values between 60.3 and 112.7 and RSD?25.5 (n=3). The extraction efficiency values for the cork and DVB/Car/PDMS fibers were similar. The results show that cork is a promising alternative as a coating for SPME. PMID:25618687

  16. Ultrasonic enhancement of leaching and in situ derivatization of haloacetic acids in vegetable foods prior to gas chromatography-electron capture detection.

    PubMed

    Alvarez Sánchez, B; Priego Capote, F; Luque de Castro, M D

    2008-08-01

    A continuous ultrasound-assisted approach to enhance the extraction of nine haloacetic acids (HAAs) from vegetables with in situ derivatization to methyl esters for their gas chromatography (GC) analysis is presented. The optimization of simultaneous extraction (using acidic methanol as extractant) and derivatization enabled the completion of both steps in 15 min. Ultrasound assistance has proved to enhance both linked steps, which results in a considerable shortening of the overall analysis time (i.e. 552.1 and 552.2 EPA methods for analysis of these compounds in drinking water require 1 and 2 h, respectively, only for derivatization). After sample preparation, the esterified HAAs were isolated by liquid-liquid extraction with n-hexane and analysed by GC-electron capture detection. The proposed method is an interesting alternative to present methods for the determination of HAAs in vegetable foods. This is an area unjustifiably forgotten by reference laboratory organisms as proved by the absence of official methods for analysis of the target compounds in these samples. The proposed method can be applied to the analysis of HAAs in any solid sample after optimization of the main variables involved in the extraction-derivatization step. PMID:18586256

  17. Dispersive liquid-liquid microextraction for the determination of organochlorine pesticides residues in honey by gas chromatography-electron capture and ion trap mass spectrometric detection.

    PubMed

    Zacharis, Constantinos K; Rotsias, Ilias; Zachariadis, Petros G; Zotos, Anastasios

    2012-10-01

    A simple dispersive liquid-liquid microextraction (DLLME) protocol for the determination of 15 organochlorine pesticides residues in honey is proposed. The selected pesticides were separated using gas chromatography and detected by electron capture (ECD) or ion trap mass spectrometry (GC-IT/MS). Several parameters affecting the extraction efficiency namely type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time and centrifugation speed were systematically investigated. The final DLLME protocol involved the addition of 750 ?L acetonitrile (disperser) and 50 ?L chloroform (extraction solvent) into a 5 mL aqueous honey solution followed by centrifugation. The sedimented organic phase (chloroform) were analysed directly by GC-IT/MS or evaporated and reconstituted in acetonitrile prior to the GC-ECD analysis. The analytical performance of the GC-ECD and GC-IT/MS methods was compared and discussed. Under the selected experimental conditions, the enrichment factors varied between of 36 and 114. The limits of detection (LOD) were in the range of 0.02-0.15 ?g L(-1) (0.4-3 ng g(-1)) for GC-ECD and 0.01-0.2 ?g L(-1) (0.2-4 ng g(-1)) for GC-IT/MS which is adequate to verify compliance of products to legal tolerances. The proposed method was applied to the analysis of the selected organochlorine pesticides residues in various honey samples obtained from Greek region. Mean recoveries were ranged from 75% to 119% while the precision was better than 20% in both methodologies. PMID:25005997

  18. Homogeneous liquid-liquid extraction combined with gas chromatography-electron capture detector for the determination of three pesticide residues in soils.

    PubMed

    Wang, Xuedong; Zhao, Xinna; Liu, Xiujuan; Li, Yanyan; Fu, Lingyan; Hu, Jia; Huang, Changjiang

    2008-07-14

    In this study, a new method was developed for analyzing malathion, cypermethrin and lambda-cyhalothrin from soil samples by using homogeneous liquid-liquid extraction (HLLE) and gas chromatography with electron capture detector (GC-ECD). Acetone was used as extraction solvent for the extraction of target pesticides from soil samples. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the acetone extract to carbon tetrachloride, using HLLE. Under the optimum conditions, linearity was obtained in the range of 0.05-40 microg kg(-1) for malathion, 0.04-10 microg kg(-1) for lambda-cyhalothrin and 0.05-50 microg kg(-1) for cypermethrin, respectively. Coefficients of correlation (r(2)) ranged from 0.9993 to 0.9998. The repeatability was carried out by spiking soil samples at concentration levels of 2.5 microg kg(-1) for lambda-cyhalothrin, and 10 microg kg(-1) for malathion and cypermethrin, respectively. The relative standard deviations (RSDs) varied between 2.3 and 9.6% (n=3). The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, varied between 0.01 and 0.04 microg kg(-1). The relative recoveries of three pesticides from soil A1, A2 and A3 at spiking levels of 2.5, 5 and 10 microg kg(-1) were in the range of 82.20-91.60%, 88.90-110.5% and 77.10-98.50%, respectively. In conclusion, the proposed method can be successfully applied for the determination of target pesticide residues in real soil samples. PMID:18558137

  19. Quantification of multi-residue levels in peach juices, pulps and peels using dispersive liquid-liquid microextraction based on floating organic droplet coupled with gas chromatography-electron capture detection.

    PubMed

    Matsadiq, Guzalnur; Hu, Hai-Li; Ren, Hai-Bo; Zhou, Yi-Wen; Liu, Lu; Cheng, Jing

    2011-07-15

    In this paper, polychlorinated biphenyl (PCB), organochlorine pesticide (OCP) and pyrethroid pesticides in peach was investigated by comparing their residual level in peach juice, pulps and peels using dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) combined with gas chromatography-electron capture detection (GC-ECD). Extraction conditions such as the type of extractant, volume of extractant and dispersant, salt effect and extraction time were optimized. For juice samples, the linearity of the method was obtained in the range of 10-2000 ng L(-1),with determination coefficients>0.99. The limits of detection (LOD) of the method were ranged between 2.8 and 18.5 ng L(-1). For pulp and peel samples, the developed method is linear over the range assayed, 1-20 ?g kg(-1),with coefficients also >0.99. The relative recoveries of compounds analyzed from juice, pulp and peel samples were in the range of 73-106% with a relative standard deviation between 2.6 and 11.8%. The proposed method was applied to the simultaneous analysis of residues in real peach juice, pulp and peel samples. As a result, there were no target analytes found in peach juices and pulps while 3.3 ?g kg(-1) cyhalothrin and 3.5 ?g kg(-1) fenvalerate were found in peels. The experiment results revealed that the pyrethroid residues just deposited on the peels of the fruits, but did not move into pulps and juices. PMID:21703950

  20. FUEL GAS ENVIRONMENTAL IMPACT

    EPA Science Inventory

    The report gives results of continued investigation and further definition of the potential environmental and economic benefits of integrated coal gasification/gas cleanup/combined gas and steam cycle power plants. Reported refinements in plant operating characteristics lower hea...

  1. Suitability of magnetic particle immunoassay for the analysis of PBDEs in Hawaiian freshwater fish and crabs in comparison with gas chromatography/electron capture detection-ion trap mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gas chromatograph/electron capture detector-ion trap mass spectrometer (GC/ECD-ITMS) was used for the determination of polybrominated diphenyl ethers (PBDEs) in freshwater fish and crabs. The samples were also analyzed with an enzyme-linked immunosorbent assay (ELISA). GC/ECD-ITMS results showed...

  2. A validated gas chromatographic–electron impact ionization mass spectrometric method for methamphetamine, methylenedioxymethamphetamine (MDMA), and metabolites in mouse plasma and brain

    PubMed Central

    Scheidweiler, Karl B.; Barnes, Allan J.; Huestis, Marilyn A.

    2008-01-01

    A method was developed and fully validated for simultaneous quantification of methamphetamine (MAMP), amphetamine, hydroxy-methamphetamine, methylenedioxymethamphetamine (MDMA, ecstasy), methylenedioxyamphetamine, 3-hydroxy-4-methoxy-methamphetamine, and 3-hydroxy-4-methoxy-amphetamine in 100 ?L mouse plasma and 7.5 mg brain. Solid phase extraction and gas chromatography–electron impact ionization mass spectrometry in selected-ion monitoring mode achieved plasma linear ranges of 10–20 to 20,000 ng/mL and 0.1–0.2 to 200 ng/mg in brain. Recoveries were greater than 91%, bias 92.3–110.4%, and imprecision less than 5.3% coefficient of variation. This method was used for measuring MAMP and MDMA and metabolites in plasma and brain during mouse neurotoxicity studies. PMID:19026602

  3. Craters on silicon surfaces created by gas cluster ion impacts

    Microsoft Academic Search

    L. P. Allen; Z. Insepov; D. B. Fenner; C. Santeufemio; W. Brooks; K. S. Jones; I. Yamada

    2002-01-01

    Atomic force microscopy (AFM) and high-resolution transmission electron microscope (HRTEM) cross section imaging of individual gas cluster ion impact craters on Si(100) and Si(111) substrate surfaces is examined. The comparison between 3 and 24 kV cluster impacts from Ar and O2 gas sources is shown. Results for low fluence (1010 ions\\/cm2) 24 kV Ar individual cluster impacts onto a Si(100)

  4. Impacts of gas drilling on human and animal health.

    PubMed

    Bamberger, Michelle; Oswald, Robert E

    2012-01-01

    Environmental concerns surrounding drilling for gas are intense due to expansion of shale gas drilling operations. Controversy surrounding the impact of drilling on air and water quality has pitted industry and lease-holders against individuals and groups concerned with environmental protection and public health. Because animals often are exposed continually to air, soil, and groundwater and have more frequent reproductive cycles, animals can be used as sentinels to monitor impacts to human health. This study involved interviews with animal owners who live near gas drilling operations. The findings illustrate which aspects of the drilling process may lead to health problems and suggest modifications that would lessen but not eliminate impacts. Complete evidence regarding health impacts of gas drilling cannot be obtained due to incomplete testing and disclosure of chemicals, and nondisclosure agreements. Without rigorous scientific studies, the gas drilling boom sweeping the world will remain an uncontrolled health experiment on an enormous scale. PMID:22446060

  5. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-10-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  6. IMPACT OF AMMONIA UTILIZATION BY NOX FLUE GAS TREATMENT PROCESSES

    EPA Science Inventory

    The report gives results of a study of the impact of ammonia (NH3) utilization by NOx flue gas treatment (FGT) processes. The most technolologically advanced FGT system for the highly efficient (about 90%) removal of NOx from power plang stack gas is selective catalytic reduction...

  7. Assessment of matrix effects in gas chromatography electron capture pesticide-residue analysis

    Microsoft Academic Search

    M. E. Hernández Torres; F. J. Egea González; L. Cuadros-Rodríguez; E. Almansa López; J. L. Martínez Vidal

    2003-01-01

    Summary  The analysis of pesticide residues in vegetable samples leads in most cases to different results when solvent or matrix-matched\\u000a calibration is used for quantitation. Matrix effects in GC-ECD analysis of pesticides in vegetable samples have been assessed\\u000a by comparing calibration curves prepared in solvent and in blank matrix extracts. Eight different vegetables have been considered\\u000a among the most common commodities

  8. Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind

    E-print Network

    Boyer, Elizabeth W.

    Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind #12;1 Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind November 15, 2010 Author.....................................................................................................................3 Marcellus Shale Natural Gas

  9. The Impact of Recent Gas Market Developments on Long-Term Projections for Global Gas Supply

    Microsoft Academic Search

    Stefan Lochner; Jan Richter

    2010-01-01

    Production from unconventional resources, increases in upstream development costs and sluggish demand growth have significantly\\u000a impacted the global natural gas market in the recent past; and will likely continue to do so during the next decade. Taking\\u000a these developments into account, we provide a projection of global natural gas supply until 2030 applying the MAGELAN world\\u000a gas model by the

  10. RADIOLOGICAL IMPACT ASSESSMENT ON BEHALF OF OIL\\/GAS INDUSTRY

    Microsoft Academic Search

    Elena Botezatu; C. Grecea

    Aim: to assess the radiological impact of oil and gas industry on the environment and population. Material and Methods: Since 1999 we made environmental monitoring of radioactivity in the surrounding of six oil fields in Bac?u and Br?ila districts. The ground and surface water samples originating from oil areas and the formation water samples arising from oil wells, water injection

  11. ORIGINAL PAPER Impacts of ocean acidification on respiratory gas exchange

    E-print Network

    Grosell, Martin

    ORIGINAL PAPER Impacts of ocean acidification on respiratory gas exchange and acid­base balance that ocean acidification has on the CaCO3 saturation state. Shell Communicated by I.D. Hume. A. J. Esbaugh; Orr et al. 2005). Consequently, the effects of ocean acidification on these organisms have been

  12. Evaluating the income and employment impacts of gas cooling technologies

    SciTech Connect

    Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

    1995-03-01

    The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

  13. NBER WORKING PAPER SERIES THE HOUSING MARKET IMPACTS OF SHALE GAS DEVELOPMENT

    E-print Network

    Habib, Ayman

    NBER WORKING PAPER SERIES THE HOUSING MARKET IMPACTS OF SHALE GAS DEVELOPMENT Lucija Muehlenbachs © notice, is given to the source. #12;The Housing Market Impacts of Shale Gas Development Lucija to control for confounding factors, we recover hedonic estimates of property value impacts from shale gas

  14. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  15. Impact of an artificial surfactant release on airsea gas fluxes during Deep Ocean Gas Exchange Experiment II

    E-print Network

    Ho, David

    Impact of an artificial surfactant release on airsea gas fluxes during Deep Ocean Gas Exchange released surfactant (oleyl alcohol) on gas transfer velocities (kw) in the open ocean. Exchange rates were to be influenced by the surfactant. These exhibited suppression from 5% to 55% at intermediate wind speeds (U10

  16. Impact Studies Using a One Stage Light Gas Gun

    E-print Network

    Jorge Carmona; Mike Cook; Jimmy Schmoke; Katie Harper; Jerry Reay; Lorin Matthews; Truell Hyde

    2004-01-29

    The Center for Astrophysics,Space Physics, and Engineering Research (CASPER) has completed construction and calibration of a Light Gas Gun (LGG), which is used for low velocity impact studies. At geosynchronous orbit, space debris can impact commercial satellites at velocities of 500 m/s [1] reducing their useful lifetime. Additionally, there is an ever-increasing population of abandoned nonoperational satellites and related debris in these orbits [2]. Therefore, it is important to clearly understand the physics behind how such collisions can cause structural damage. This is most easily determined by measuring the damage incurred on representative material exposed to test collisions in the laboratory. Data collected in this manner will not only help illuminate the shock physics involved but can also aid in providing methods for designing advanced shielding for satellites.

  17. Impact damage on shielded gas-filled vessels

    NASA Astrophysics Data System (ADS)

    Schäfer, F.; Schneider, E.; Lambert, M.

    2001-10-01

    This paper gives a summary of the findings from impacts on shielded gas-filled cylindrical aluminium alloy (A12219 T851) and titanium alloy (Ti6A14V) pressure vessels that were performed at the Ernst-Mach-Institute in the frame of an ESA contract. The effect of impacts on shielded vessels with projectiles that have a kinetic energy close to the ballistic limit of the combined system of shield and vessel's front wall was investigated. The shields were single Al-bumper plates, unreinforced MLI and MLI reinforced with 2 layers of Betacloth. The threshold diameters that cause leakage from the vessel's front wall were determined experimentally as a function of shield material and shield spacing. For Al-shielded Al- and Ti-vessels, a safety design factor to avoid leakage is presented based on existing Whipple shield equations.

  18. Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling

    E-print Network

    Manning, Sturt

    Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular testing in order to more specifically document potential impacts of Marcellus Shale gas development

  19. Molecular ion fragmentation and its effects on mass isotopomer abundances of fatty acid methyl esters ionized by electron impact

    Microsoft Academic Search

    Clifton K. Fagerquist; Richard A. Neese; Marc K. Hellerstein

    1999-01-01

    We have analyzed the isotopomer abundance ratios of an equimolar mixture of nine fatty acid methyl esters (decanoate, undecanoate,\\u000a laurate, tridecanoate, myristate, pentadecanoate, palmitate, heptadecanoate, and stearate) by selected-ion monitoring gas\\u000a chromatography\\/electron impact\\/mass spectrometry (GC\\/EI\\/MS). The abundance of the second lowest m\\/z isotopomer ($${I_{{M_1}}}$$) increased disproportionately compared with the abundance of the lowest m\\/z isotopomer ($${I_{{M_0}}}$$) as a function of:

  20. Ozone impacts of natural gas development in the Haynesville Shale.

    PubMed

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020. PMID:21086985

  1. Atmospheric Impacts of Marcellus Shale Gas Activities in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Lipsky, E. M.; Saleh, R.; Donahue, N. M.; Robinson, A. L.

    2012-12-01

    Pittsburgh and the surrounding regions of southwestern Pennsylvania are subject to intensive natural gas exploration, drilling, and extraction associated with the Marcellus Shale formation. Gas extraction from the shale formation uses techniques of horizontal drilling followed by hydraulic fracturing. There are significant concerns about air pollutant emissions from the development and production of shale gas, especially methane emissions. We have deployed a mobile monitoring unit to investigate the atmospheric impacts of Marcellus Shale gas activities. The mobile sampling platform is a van with an on-board generator, a high-resolution GPS unit, cameras, and instrumentation for measuring methane, criteria gases (SO2, NOx, CO, O3), PM size distributions (scanning mobility particle sizer), black carbon mass (multi-angle absorption photometer), particle-bound polycyclic aromatic hydrocarbons, volatile organic compounds (gas chromatograph with flame ionization detection), and meteorological data. A major advantage of the mobile sampling unit over traditional, stationary monitors is that it allows us to rapidly visit a variety of sites. Sampling at multiple sites allows us to characterize the spatial variability of pollutant concentrations related to Marcellus activity, particularly methane. Data collected from the mobile sampling unit are combined with GIS techniques and dispersion models to map pollutants related to Marcellus Shale operations. The Marcellus Shale gas activities are a major and variable source of methane. The background methane concentration in Pittsburgh is 2.1 +/- 0.2 ppm. However, two southwestern Pennsylvania counties with the highest density of Marcellus Shale wells, Washington and Greene Counties, have many areas of elevated methane concentration. Approximately 11% of the sampled sites in Washington County and nearly 50% of the sampled sites in Greene County have elevated (>2.3 ppm) methane concentrations, compared to 1.5% of sites with elevated methane in counties with minimal Marcellus activity (Allegheny and Butler counties). Methane concentrations in areas with large numbers of active well sites can reach as high as 20 ppm (~10 times background), and are highly spatially variable. Areas with elevated methane concentrations also exhibited higher ratios of 13CH4/12CH4, consistent with a thermogenic source of the excess methane.

  2. Review of oil and gas exploitation impacts on grizzly bears

    SciTech Connect

    Schallenberger, A.

    1980-01-01

    It is concluded that available information indicates that impacts of oil and gas exploitation should be considered primarily detrimental for grizzly bears in northwestern Montana. Research has shown that grizzlies tend to react strongly to aircraft, especially helicopters. Marked animals previously captured by aircraft show the greatest reaction. Helicopter disturbance may cause den abandonment. Biologists suggest that road development has contributed to a decline in numbers of bears by accelerating habitat loss and increasing hunting and poaching pressure. Use of river valleys for transportation corridors, campsites, and other activities magnifies the effect of human presence by concentrating it in some of the most vulnerable and essential grizzly habitat. Bear-human conflicts may increase as a result of secondary development such as recreation, logging, livestock grazing, and construction of subdivisions.

  3. The greenhouse impact of unconventional gas for electricity generation

    Microsoft Academic Search

    Nathan Hultman; Dylan Rebois; Michael Scholten; Christopher Ramig

    2011-01-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally,

  4. Craters on silicon surfaces created by gas cluster ion impacts L. P. Allena)

    E-print Network

    Florida, University of

    Craters on silicon surfaces created by gas cluster ion impacts L. P. Allena) Epion Corporation, 37 HRTEM cross section imaging of individual gas cluster ion impact craters on Si 100 and Si 111 substrate 111 surfaces. On a Si 100 , craters are nearly triangular in cross section, with the facets directed

  5. The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling

    E-print Network

    Wang, Z. Jane

    The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases detail within the context of shale gas drilling activities in New York, as well as their uses

  6. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    PubMed

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-08-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource. PMID:24588259

  7. Dispersive liquid-liquid microextraction followed by gas chromatography-electron capture detection for determination of polychlorinated biphenyls in fish.

    PubMed

    Hu, Jia; Li, Yanyan; Zhang, Wei; Wang, Huili; Huang, Changjiang; Zhang, Minghua; Wang, Xuedong

    2009-06-01

    A new method of dispersive liquid-liquid microextraction (DLLME) combined with GC-electron capture detection (GC-ECD) was proposed for the extraction and determination of four polychlorinated biphenyls (PCBs) congeners in fish samples. Acetone was used as extraction solvent for the extraction of PCBs from fish samples. The target analytes in the acetone solvent were rapidly transferred to chlorobenzene, which was used as extraction solvent in DLLME procedures. Under the optimum conditions, linearity was obtained in the concentration range from 1.25 to 1250 microg/kg for PCB 52, and 0.25 to 250 microg/kg for PCB 101, 138 and 153. Coefficients of correlation (r2) ranged from 0.9993 to 0.9999. The repeatability was tested by spiking fish samples at 10 microg/kg PCBs, and RSD% (n = 8) varied between 2.2 and 8.4%. The LODs were between 0.12 and 0.35 microg/kg. The enrichment factors of PCBs were from 87 to 123. The relative recoveries of the four PCB congeners for the perch, pomfret and yellow-fin tuna at spiking levels of 10, 20 and 50 microg/kg were in the range of 81.20-100.6%, 85.00-102.7% and 87.80-108.4%, respectively. The results demonstrated that DLLME combined with GC-ECD was a simple, rapid, and efficient technique for the extraction and determination of PCBs in fish samples. PMID:19548213

  8. The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2

    SciTech Connect

    Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

    1994-12-01

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign} and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W).

  9. The Economic Impact of Shale Gas Production in the U.S

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    Energy is important to our daily lives. A price change of one energy type may influence our consumption choices, commodities prices and industry production. For the United States, shale gas is becoming a promising source of natural gas because of the rapid increase in its reserve and production capacity. Shale gas production is projected to be a large proportion of U.S. gas production, as predicted by Energy Information Administration (EIA). However, besides knowing the big picture, more details are needed before characterizing shale gas as a "game changer." It is interesting to address questions like to what extent the production of shale gas could affect other industries' production, stabilize commodities' prices, and what are the impacts on factor payments, capital returns, labor payments and household consumption. In this study, I use a CGE model to measure the impact on industry and the change in social welfare associated with shale gas production.

  10. THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES

    EPA Science Inventory

    Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...

  11. Identification of dynamic force coefficients of a labyrinth and gas damper seal using impact load excitations

    E-print Network

    Ransom, David Lawrence

    1997-01-01

    Experiments to identify stiffness and damping force coefficients of a two bladed teeth-on-stator labyrinth seal and a gas damper seal, both of diverging clearance, are presented. Calibrated impact guns excite a housing holding the test seal...

  12. Impacts of winter storms on air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqing; Perrie, Will; Vagle, Svein

    2006-07-01

    The objective of this study is to investigate air-sea gas exchange during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on sea state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the flux rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.

  13. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl?) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl? concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl? concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  14. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  15. The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells

    E-print Network

    Dickins, Mark Ian

    2008-10-10

    THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS...

  16. Impact of hydrogen injection in natural gas infrastructures

    Microsoft Academic Search

    Guillermo Hernández-Rodríguez; Luc Pibouleau; Catherine Azzaro-Pantel; Serge Domenech

    2011-01-01

    This article presents the framework of a mathematical formulation for modelling and evaluating natural gas (NG) pipeline networks under hydrogen injection. The model development is based on gas transport through pipelines and compressors which compensate for the pressure drops by implying mainly the mass and energy balances on the basic elements of the network. The model was initially implemented for

  17. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  18. Impact of tillage and fertilizer application method on gas emissions in a corn cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. This study was conducted to determine the impact of fertilizer sources, land management practices, and fertilizer placement methods on greenhouse gas emissions. A new prototype i...

  19. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania

    E-print Network

    Jackson, Robert B.

    Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local waters, and stream sediments associated with a treatment facility site in western Pennsylvania

  20. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  1. Project 35013 Species-and Site-specific Impacts of Gas Supersaturation on Aquatic Animals

    E-print Network

    Project 35013 Species- and Site-specific Impacts of Gas Supersaturation on Aquatic Animals Sponsor that allowing TDGS > 110% is detrimental to some aquatic animals, such as Pacific lamprey, which the FWP lists the impacts of water management decisions on several aquatic animals, we will determine whether or not levels

  2. Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas

    Microsoft Academic Search

    Ravi Bhardwaj; Xihua Chen; Radisav D. Vidic; Barry Lefer; Jochen Stutz; Jack Dibb; Robert Griffin; William Brune; Maxwell Shauck; Martin Buhr; Philip Lupo; Elaine Symanski; John Richards; Todd Brozell; Charles Rea; Geoff Boraston; John Hayden; Alberto Escrig; Eliseo Monfort; Irina Celades; Xavier Querol; Fulvio Amato; María Minguillon; Philip Hopke; Naresh Kumar; Veronica Nixon; Kaushik Sinha; Xiaosen Jiang; Sarah Ziegenhorn; Thomas Peters; Xianghui Nie; Guo Huang; Yongping Li; Yung-Chen Yao; Jiun-Horng Tsai; Hui-Fen Ye; Hung-Lung Chiang; Ami Zota; Robert Willis; Rebecca Jim; Gary Norris; James Shine; Rachelle Duvall; Laurel Schaider; John Spengler; Hai Zhang; Raymond Hoff; Jill Engel-Cox; Junming Wang; April Hiscox; David Miller; Thomas Meyer; Ted Sammis

    2009-01-01

    The impact of different fly ash samples on mercury speciation in simulated flue gas at 140 °C was evaluated in this study. Experiments were conducted in a fixed bed reactor to determine the impact of fly ash morphological characteristics and chemical composition on mercury up-take and oxidation. No homogeneous mercury oxidation was observed at 140 °C. Mercury uptake tests with

  3. 2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel

    E-print Network

    Kammen, Daniel M.

    2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy of fossil-fuel energy systems. These scenarios are analysed for various environmental and health impacts from fossil fuels and other energy sources reported by IEA []. In all of these countries except Kenya

  4. Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts

    EPA Science Inventory

    Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...

  5. The impacts of technology on global unconventional gas supply

    E-print Network

    Yanty, Evi

    2009-06-02

    , tight sands, and shales. Whereas these resources are abundant, they have largely been overlooked and understudied, especially outside of North America. New technologies, including those needed to unlock unconventional gas (UCG) resources, have been...

  6. Impact of shale gas development on regional water quality.

    PubMed

    Vidic, R D; Brantley, S L; Vandenbossche, J M; Yoxtheimer, D; Abad, J D

    2013-05-17

    Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks, however, especially those related to regional water quality, such as gas migration, contaminant transport through induced and natural fractures, wastewater discharge, and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future. PMID:23687049

  7. The impact of feedback on cosmological gas accretion

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Springel, Volker; Sijacki, Debora; Torrey, Paul; Hernquist, Lars

    2015-03-01

    We investigate how the way galaxies acquire their gas across cosmic time in cosmological hydrodynamic simulations is modified by a comprehensive physical model for baryonic feedback processes. To do so, we compare two simulations - with and without feedback - both evolved with the moving mesh code AREPO. The feedback runs implement the full physics model of the Illustris simulation project, including star formation driven galactic winds and energetic feedback from supermassive black holes. We explore: (a) the accretion rate of material contributing to the net growth of galaxies and originating directly from the intergalactic medium, finding that feedback strongly suppresses the raw, as well as the net, inflow of this `smooth mode' gas at all redshifts, regardless of the temperature history of newly acquired gas. (b) At the virial radius the temperature and radial flux of inflowing gas is largely unaffected at z = 2. However, the spherical covering fraction of inflowing gas at 0.25 rvir decreases substantially, from more than 80 per cent to less than 50 per cent, while the rates of both inflow and outflow increase, indicative of recycling across this boundary. (c) The fractional contribution of smooth accretion to the total accretion rate is lower in the simulation with feedback, by roughly a factor of 2 across all redshifts. Moreover, the smooth component of gas with a cold temperature history, is entirely suppressed in the feedback run at z < 1. (d) The amount of time taken by gas to cross from the virial radius to the galaxy - the `halo transit time' - increases in the presence of feedback by a factor of ?2-3, and is notably independent of halo mass. We discuss the possible implications of this invariance for theoretical models of hot halo gas cooling.

  8. Comparing the ecological impacts of wind and oil & gas development: a landscape scale assessment.

    PubMed

    Jones, Nathan F; Pejchar, Liba

    2013-01-01

    Energy production in the United States is in transition as the demand for clean and domestic power increases. Wind energy offers the benefit of reduced emissions, yet, like oil and natural gas, it also contributes to energy sprawl. We used a diverse set of indicators to quantify the ecological impacts of oil, natural gas, and wind energy development in Colorado and Wyoming. Aerial imagery was supplemented with empirical data to estimate habitat loss, fragmentation, potential for wildlife mortality, susceptibility to invasion, biomass carbon lost, and water resources. To quantify these impacts we digitized the land-use footprint within 375 plots, stratified by energy type. We quantified the change in impacts per unit area and per unit energy produced, compared wind energy to oil and gas, and compared landscapes with and without energy development. We found substantial differences in impacts between energy types for most indicators, although the magnitude and direction of the differences varied. Oil and gas generally resulted in greater impacts per unit area but fewer impacts per unit energy compared with wind. Biologically important and policy-relevant outcomes of this study include: 1) regardless of energy type, underlying land-use matters and development in already disturbed areas resulted in fewer total impacts; 2) the number and source of potential mortality varied between energy types, however, the lack of robust mortality data limits our ability to use this information to estimate and mitigate impacts; and 3) per unit energy produced, oil and gas extraction was less impactful on an annual basis but is likely to have a much larger cumulative footprint than wind energy over time. This rapid evaluation of landscape-scale energy development impacts could be replicated in other regions, and our specific findings can help meet the challenge of balancing land conservation with society's demand for energy. PMID:24312296

  9. Comparing the Ecological Impacts of Wind and Oil & Gas Development: A Landscape Scale Assessment

    PubMed Central

    Jones, Nathan F.; Pejchar, Liba

    2013-01-01

    Energy production in the United States is in transition as the demand for clean and domestic power increases. Wind energy offers the benefit of reduced emissions, yet, like oil and natural gas, it also contributes to energy sprawl. We used a diverse set of indicators to quantify the ecological impacts of oil, natural gas, and wind energy development in Colorado and Wyoming. Aerial imagery was supplemented with empirical data to estimate habitat loss, fragmentation, potential for wildlife mortality, susceptibility to invasion, biomass carbon lost, and water resources. To quantify these impacts we digitized the land-use footprint within 375 plots, stratified by energy type. We quantified the change in impacts per unit area and per unit energy produced, compared wind energy to oil and gas, and compared landscapes with and without energy development. We found substantial differences in impacts between energy types for most indicators, although the magnitude and direction of the differences varied. Oil and gas generally resulted in greater impacts per unit area but fewer impacts per unit energy compared with wind. Biologically important and policy-relevant outcomes of this study include: 1) regardless of energy type, underlying land-use matters and development in already disturbed areas resulted in fewer total impacts; 2) the number and source of potential mortality varied between energy types, however, the lack of robust mortality data limits our ability to use this information to estimate and mitigate impacts; and 3) per unit energy produced, oil and gas extraction was less impactful on an annual basis but is likely to have a much larger cumulative footprint than wind energy over time. This rapid evaluation of landscape-scale energy development impacts could be replicated in other regions, and our specific findings can help meet the challenge of balancing land conservation with society’s demand for energy. PMID:24312296

  10. 75 FR 67997 - Notice of Correction to Notice of Intent To Prepare an Environmental Impact Statement for the Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...Environmental Impact Statement for the Gas Hills Uranium Project, Fremont and Natrona Counties...Environmental Impact Statement for the Gas Hills Uranium Project, Fremont and Natrona Counties...legal land description for the Gas Hills Uranium Project location is as follows:...

  11. Limited impact on decadal-scale climate change from increased use of natural gas.

    PubMed

    McJeon, Haewon; Edmonds, Jae; Bauer, Nico; Clarke, Leon; Fisher, Brian; Flannery, Brian P; Hilaire, Jérôme; Krey, Volker; Marangoni, Giacomo; Mi, Raymond; Riahi, Keywan; Rogner, Holger; Tavoni, Massimo

    2014-10-23

    The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy. PMID:25317557

  12. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    SciTech Connect

    Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

    2009-12-09

    An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

  13. Impact of Recent Discoveries on Petroleum and Natural Gas Exploration: Emphasis on India

    E-print Network

    J. Marvin Herndon

    2010-03-31

    Two discoveries have greatly impacted understanding relevant to the origination and emplacement of petroleum and natural gas deposits. One discovery, pertaining to hydrocarbon formation from methane broadens significantly potential regions where abiotic petroleum and natural gas deposits might be found. The other, discovery of the physical impossibility of Earth-mantle convection, restricts the range and domain of geodynamic behavior, and leads to new insights on the formation of petroleum and natural gas deposits. This article highlights the impact and implications of those discoveries, especially as they relate to petroleum and natural gas exploration in India and throughout the world. From the reasoning developed here, the generality of the considerations involved, the understanding developed with respect to the East African Rift System, and the experience garnered from the larger and older Siberian Traps, the prognosis and potential for the region beneath the Deccan Traps of India to eventually become a major source of petroleum and natural gas seems quite favorable.

  14. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  15. Wellbeing impacts of city policies for reducing greenhouse gas emissions.

    PubMed

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-12-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what 'wellbeing' is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  16. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Australian Commonwealth and State Governments. Finally, parallels (and differences) between the expansion of the industry in Australia with that in the United States and Europe will be drawn.

  17. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-12-01

    In our discussion of the use of global warming potential (GWP) values in the Howarth et al (2011) paper, our text implies that the GISS group's 2009 and 2010 papers (Shindell et al 2009 and Unger et al 2010) were contradictory. Such an interpretation does not reflect the conclusions of those papers and was not our intention. First, the 2009 and 2010 papers address GWP and radiative forcing, respectively. Our intentions in that paragraph were (a) to illustrate the possible ways that the GWP and radiative forcing discussions in the scientific community were misapplied to lifecycle analysis of greenhouse gas emissions from unconventional gas extraction, and (b) to underscore that the reasonable questions about GWP raised by Shindell et al (2009) are a justification for retaining a broader, rather than narrower, range of GWP possibilities for this calculation. References Howarth R W, Santoro R and Ingraffea A 2011 Methane and the greenhouse-gas footprint of natural gas from shale formations Clim. Change Lett. 106 679-90 Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N and Bauer S E 2009 Improved attribution of climate forcing to emissions Science 326 716-8 Unger N, Bond T C, Wang J S, Koch D M, Menon S, Shindell D T and Bauer S E 2010 Attribution of climate forcing to economic sectors Proc. Natl Acad. Sci. 107 3382-7

  18. The impact of ice layers on gas transport through firn

    NASA Astrophysics Data System (ADS)

    Keegan, K.; Albert, M. R.; Baker, I.

    2014-02-01

    Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present which may alter transport dynamics in ways that may reduce the accuracy of climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. Both ice layers were somewhat permeable. However, only the shallower ice layer was significantly less permeable than the surrounding firn and is therefore likely to retard gas transport. Large closed bubbles were found in one ice layer, which would contain older atmospheric samples than expected. Theses bubbles are likely to significantly bias age estimates. Conversely, the permeability and thickness of ice layers at NEEM suggest that they will not significantly bias the expected firn air concentration profiles at the present spatial resolution at which these data are collected. Therefore, ice layers do not need to be accounted for in gas transport models at NEEM. However, the microstructure of these ice layers indicates that larger melting events could significantly bias ice core records.

  19. Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale

    E-print Network

    Mohaghegh, Shahab

    Continuous, low-permeability, fractured, organic-rich gas shale units are widespread and are possible, organic-rich rocks that are both the source and trap for natural gas (primarily methane). In shale gas1 Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process

  20. 75 FR 54384 - Notice of Intent To Prepare an Environmental Impact Statement for the Gas Hills Uranium Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...Environmental Impact Statement for the Gas Hills Uranium Project, Fremont and Natrona Counties...proposed Gas Hills in situ recovery (ISR) Uranium Project (the Project), Fremont County...Natrona County, Wyoming. The project is a uranium exploration and development...

  1. Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One potential abatement strategy to increasing atmospheric levels of carbon dioxide (CO2) is to sequester atmospheric CO2 captured through photosynthesis in biomass and pyrolysed into a more stable form of carbon called biochar. We evaluated the impacts of 16 different biochars from different pyroly...

  2. HYDROGEN PRODUCTION BY NATURAL GAS STEAM REFORMING ENVIRONMENTAL IMPACT ASSESSMENT

    Microsoft Academic Search

    J. Cintra da Silva

    The concern with sustainable development has been taking to a constant improvement in the tools for environmental management. Life cycle assessment (LCA) is a systematic analytical method that helps identify and evaluate the environmental impacts of process, product or activity processes. In order to quantify the emissions, resource consumption, and energy use, material and energy balances are performed in a

  3. Impact of Recent Discoveries on Petroleum and Natural Gas Exploration: Emphasis on India

    E-print Network

    Herndon, J Marvin

    2010-01-01

    Two discoveries have greatly impacted understanding relevant to the origination and emplacement of petroleum and natural gas deposits. One discovery, pertaining to hydrocarbon formation from methane broadens significantly potential regions where abiotic petroleum and natural gas deposits might be found. The other, discovery of the physical impossibility of Earth-mantle convection, restricts the range and domain of geodynamic behavior, and leads to new insights on the formation of petroleum and natural gas deposits. This article highlights the impact and implications of those discoveries, especially as they relate to petroleum and natural gas exploration in India and throughout the world. From the reasoning developed here, the generality of the considerations involved, the understanding developed with respect to the East African Rift System, and the experience garnered from the larger and older Siberian Traps, the prognosis and potential for the region beneath the Deccan Traps of India to eventually become a m...

  4. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ?1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard compliance in downwind cities. A health risk assessment showed no increase in cancer or chronic non-cancer risk at locations near natural gas wells in Pennsylvania, but the contribution of natural gas emissions to total risk was 3-6 times higher near wells. These results will assist policy makers, natural gas producers, and citizen stakeholders in crafting effective policies to control VOC emissions from natural gas production activities.

  5. Impact of leaf physiology on gas exchange in a Japanese evergreen broad-leaved forest

    Microsoft Academic Search

    Yoshiko Kosugi; Satoru Takanashi; Naoko Matsuo; Katsunori Tanaka; Hiroki Tanaka

    2006-01-01

    We used a multi-layer model to analyse the impact of leaf physiology on the diurnal, seasonal, and inter-annual fluctuations in gas exchange in a warm-temperate evergreen broad-leaved forest in Japan. The influences of physiological parameters at the single leaf scale on the canopy scale gas exchange were investigated, including normalised dark respiration rate, Rnleaf25, normalised maximum carboxylation rate, Vcmax25, and

  6. Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

    PubMed Central

    Copeland, Holly E.; Doherty, Kevin E.; Naugle, David E.; Pocewicz, Amy; Kiesecker, Joseph M.

    2009-01-01

    Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation. PMID:19826472

  7. Molecular dynamics simulation of gas clusters impact on solid targets

    SciTech Connect

    Insepov, Z. [Kazakh National Technical Univ., Almaty (Kazakhstan)

    1994-12-31

    The interaction of a cluster of Ar{sub n} (n=87-300) on a gold and silicon substrate was simulated by use of ordinary and Langevin Molecular Dynamics. The cluster was prepared by cutting out of a spherical f.c.c. block of Dynamics. The Buckingham potential was used for an interaction between the argon atoms. The excitation of the argon atoms due to high temperature and/or high pressure inside the cluster have been taken into account by use of a Monte-Carlo procedure. The N-body potential proposed by Rosato for gold and Axilrod-Teller 3-body potential for silicon was used, which describes well equilibrium properties of bulk material. The substrate was modeled using a b.c.c. lattice (for gold) and diamond (for silicon) of about 30000 atoms. These atoms were separated into three regions, depending on how near they are the impact zone. The atoms of central impact zone are being described by NM. The next zone consists of several semi-spherical layers of a thermal bath, for which the LMD was used. All the other atoms represent the movable (in radial direction) or rigid framework. The kinetic energy of the clusters is varied from 10 to 100 eV/atom. It has been shown that the impact of energetic Ar cluster with the kinetic energy of 100 eV/atom on a gold target sputters not only single atoms but also small gold clusters in the 10 atoms range. Lateral sputtering of gold target material has been predicted. Preliminary results for argon clusters implantation into the silicon (111) shows that this process seems to be quite small due to the very weak bond energy between argon and silicon atoms.

  8. Impact of compressed natural gas fueled buses on street pavements

    SciTech Connect

    Yang, D.; Harrison, R.

    1995-07-01

    Capital Metro, the Ausin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of alternative bus fuels - which includes pavement and environmental impacts.

  9. Gas desorption and up-scaling errors in CBM groundwater impact simulations

    NASA Astrophysics Data System (ADS)

    Herckenrath, D.; Doherty, J.

    2013-12-01

    Coalbed Methane (CBM) is a major energy resource in Australia. Production of CBM requires the extraction of large amounts of groundwater to enable gas desorption from the coalbeds. As CBM raises concerns regarding its impact on adjacent aquifer systems, groundwater models are often required for groundwater impact assessment. Questions arise about the suitability of traditional groundwater flow simulators for CBM groundwater impact quantification as 1) the gas phase is not simulated and 2) up-scaled properties are used that might not reflect coalbed properties appropriately. First, this study aims to quantify the errors incurred by neglecting gas desorption by comparing a CBM reservoir simulator (Eclipse) with an equivalent groundwater flow model (MODFLOW-USG) for a single 1m coal seam. Simulations show the groundwater model significantly overestimates drawdowns during the CBM production stage, as the desorbed gas volume is not accounted for, which impacts storage and the relative permeability of water that are assumed to be constant in the groundwater model. To improve the match between the groundwater model and CBM reservoir simulations, MODFLOW-USG was configured to implement a relationship that was obtained using a pseudo steady-state relationship between drawdown and desaturation derived from Eclipse simulations. A second set of simulations for a sequence of coalbeds was performed to quantify the impact of up-scaling on predicting drawdowns and to validate whether relative permeability curves in the CBM reservoir simulator still have integrity in an up-scaled context. These simulations will help understand how physically representative different up-scaled models are, what errors could be made when regional groundwater modelling is undertaken in a CBM environment and ultimately help decide whether a groundwater flow simulator can be used for CBM groundwater impact assessments. Key words: Coalbed Methane, Up-scaling, Reservoir model, Groundwater model, Dual-phase flow, Gas desorption, MODFLOW, Eclipse

  10. Plasma jet's shielding gas impact on bacterial inactivation.

    PubMed

    Jablonowski, Helena; Hänsch, Mareike A Ch; Dünnbier, Mario; Wende, Kristian; Hammer, Malte U; Weltmann, Klaus-Dieter; Reuter, Stephan; Woedtke, Thomas von

    2015-01-01

    One of the most desired aims in plasma medicine is to inactivate prokaryotic cells and leave eukaryotic cells unharmed or even stimulate proliferation to promote wound healing. The method of choice is to precisely control the plasma component composition. Here the authors investigate the inactivation of bacteria (Escherichia coli) by a plasma jet treatment. The reactive species composition created by the plasma in liquids is tuned by the use of a shielding gas device to achieve a reactive nitrogen species dominated condition or a reactive oxygen species dominated condition. A strong correlation between composition of the reactive components and the inactivation of the bacteria is observed. The authors compare the results to earlier investigations on eukaryotic cells and show that it is possible to find a plasma composition where bacterial inactivation is strongest and adverse effects on eukaryotic cells are minimized. PMID:25832438

  11. Generation of laser-pulse-field harmonics in a gas upon impact ionisation of atoms

    Microsoft Academic Search

    M V Kuzelev; A A Rukhadze

    2007-01-01

    The generation of harmonics of a high-power-laser-pulse field in a gas during impact ionisation of atoms by oscillating electrons is studied theoretically. Fields are considered under conditions when the oscillation energy of electrons in the radiation field, remaining nonrelativistic, considerably exceeds the ionisation potential of an atom. In addition, the radiation field was assumed weak compared to the atomic field

  12. Corn stover removal impacts on soil greenhouse gas emissions in irrigated continuous corn systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting corn stover for livestock feed or for cellulosic biofuel production may impact the greenhouse gas (GHG) mitigation potential of high-yield irrigated corn. Soil emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured over the 2011 growing season at two irri...

  13. Impact of subsurface applying poultry litter on greenhouse gas emissions in a permanent pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about impact that subsurface application of poultry litter (PL) has on the greenhouse gas emission. Thus, a study was conducted in a bermudagrass pasture to evaluate subsurface application of PL in soil using two different row spacings. Treatments consisted of subsurface banding PL a...

  14. Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs

    E-print Network

    Zapata Arango, Jose? Francisco

    2002-01-01

    and on the quantification of their impact on reservoir fluid flow and well performance. We selected three relative permeability models to compare the results obtained in the modeling of relative permeabilities for a published North Sea gas condensate reservoir. The models...

  15. Beyond the ?Double Dividend?: Modelling the impacts of deep cuts in Australian greenhouse gas emissions

    Microsoft Academic Search

    Steve Hatfield-Dodds; Philip D. Adams

    2007-01-01

    Australian economic modelling of policy options to reduce greenhouse gas emissions has to date given little attention to (i) crafting policy scenarios that use emissions revenues to target significant existing tax distortions, (ii) quantifying the effects of policy on the price and affordability of energy products, and (iii) communicating policy impacts on living standards relative to current levels, as well

  16. Impact of high-energy tails on granular gas properties Thorsten Pschel,1

    E-print Network

    decays for large velocities as f exp -const v . That is, its high-energy tail is overpopulated the overpopulated tail and analyze its impact on granular gas properties, in particular on the cooling coefficient moment of the collision integral; see, e.g., 7 . The overpopulation of the tail is a rather general

  17. TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range

    E-print Network

    Brown, Sally

    TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid waste

  18. Field ionization kinetic and electron impact studies of gas phase transition states - The cyclic bromonium ion

    NASA Technical Reports Server (NTRS)

    Green, M. M.; Giguere, R. J.; Falick, A. M.; Aberth, W.; Burlingame, A. L.

    1978-01-01

    Cis- and trans-isomers of 4-t-butylcyclohexyl bromide were studied to determine the mechanism of cyclic bromonium ion formation. The field ionization kinetic and electron impact data indicate that the formation of the cyclic structure occurs simultaneously with loss of the neutral fragment. The data also show that little or no gas-phase cis-trans isomerization occurs.

  19. EVALUATION OF VAPOR EQUILIBRATION AND IMPACT OF PURGE VOLUME ON SOIL-GAS SAMPLING RESULTS

    EPA Science Inventory

    Sequential sampling was utilized at the Raymark Superfund site to evaluate attainment of vapor equilibration and the impact of purge volume on soil-gas sample results. A simple mass-balance equation indicates that removal of three to five internal volumes of a sample system shou...

  20. CARS, GAS, AND POLLUTION POLICIES Distributional and Efficiency Impacts of Gasoline Taxes

    E-print Network

    Boyer, Edmond

    CARS, GAS, AND POLLUTION POLICIES Distributional and Efficiency Impacts of Gasoline Taxes, reduc- ing automobile-related gasoline consumption has become a major U.S. public policy issue. Recently, many analysts have called for new or more stringent policies to discourage gasoline consumption

  1. IMPACT OF NOX SELECTIVE CATALYTIC REDUCTION PROCESSES ON FLUE GAS CLEANING SYSTEMS

    EPA Science Inventory

    The report gives results of a study of the impact of the ammonia leaving a nitrogen oxide (NOx) selective catalytic reduction (SCR) process on downstream flue gas cleaning processes. (NOx emissions from electric utility boilers may be reduced 80-90% by the application of pollutio...

  2. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

  3. Impact of Natural Gas Price Decontrol on Gas Supply, Demand and Prices

    E-print Network

    Schlesinger, B.

    1982-01-01

    .G.A.), as well as studies by the U.S. Department of Energy and other groups, concur in the important finding that natural gas will be able to compete with alternate fuels in the energy marketplace after decontrol, as long as indefinite price escalators and other...

  4. The use of health impact assessment for a community undergoing natural gas development.

    PubMed

    Witter, Roxana Z; McKenzie, Lisa; Stinson, Kaylan E; Scott, Kenneth; Newman, Lee S; Adgate, John

    2013-06-01

    The development of natural gas wells is rapidly increasing, yet little is known about associated exposures and potential public health consequences. We used health impact assessment (HIA) to provide decision-makers with information to promote public health at a time of rapid decision making for natural gas development. We have reported that natural gas development may expose local residents to air and water contamination, industrial noise and traffic, and community changes. We have provided more than 90 recommendations for preventing or decreasing health impacts associated with these exposures. We also have reflected on the lessons learned from conducting an HIA in a politically charged environment. Finally, we have demonstrated that despite the challenges, HIA can successfully enhance public health policymaking. PMID:23597363

  5. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers

    PubMed Central

    Katayama, Taiki; Yoshioka, Hideyoshi; Muramoto, Yoshiyuki; Usami, Jun; Fujiwara, Kazuhiro; Yoshida, Satoshi; Kamagata, Yoichi; Sakata, Susumu

    2015-01-01

    The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates. PMID:25105906

  6. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers.

    PubMed

    Katayama, Taiki; Yoshioka, Hideyoshi; Muramoto, Yoshiyuki; Usami, Jun; Fujiwara, Kazuhiro; Yoshida, Satoshi; Kamagata, Yoichi; Sakata, Susumu

    2015-02-01

    The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates. PMID:25105906

  7. Evaluation of ecological impacts of synthetic natural gas from wood used in current heating and car systems

    Microsoft Academic Search

    Remo Felder; Roberto Dones

    2007-01-01

    A promising option to substitute fossil energy carriers by renewables is the production of synthetic natural gas (SNG) from wood, as this results in a flexible energy carrier usable via existing infrastructure in gas boilers or passenger cars. The comprehensive life cycle-based ecological impact of SNG is investigated and compared with standard fuels delivering the same service (natural gas, fuel

  8. 76 FR 35009 - Draft Oil and Gas Management Plan/Environmental Impact Statement for Big South Fork National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...5130-0400-NZM] Draft Oil and Gas Management Plan...River and Recreation Area and Obed Wild and...of a Draft Oil and Gas Management Plan...River and Recreation Area and Obed Wild and...provide protection for areas where park resources...impacts from oil and gas development....

  9. 77 FR 42761 - Final Environmental Impact Statement for the Oil and Gas Management Plan at Big South Fork...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ...Statement for the Oil and Gas Management Plan at...River and Recreation Area and Obed Wild and...Special Management Areas.'' This alternative...non-federal oil and gas operations (Title...provide protection for areas where park resources...impacts from oil and gas development....

  10. Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays

    E-print Network

    Alvarez, Pedro J.

    Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging understanding of the unique regional issues that shale gas development poses. This manuscript highlights the variation in regional water issues associated with shale gas development in the U.S. and the approaches

  11. Investigating links between shale gas development and health impacts through a community survey project in Pennsylvania.

    PubMed

    Steinzor, Nadia; Subra, Wilma; Sumi, Lisa

    2013-01-01

    Across the United States, the race for new energy sources is picking up speed and reaching more places, with natural gas in the lead. While the toxic and polluting qualities of substances used and produced in shale gas development and the general health effects of exposure are well established, scientific evidence of causal links has been limited, creating an urgent need to understand health impacts. Self-reported survey research documenting the symptoms experienced by people living in proximity to gas facilities, coupled with environmental testing, can elucidate plausible links that warrant both response and further investigation. This method, recently applied to the gas development areas of Pennsylvania, indicates the need for a range of policy and research efforts to safeguard public health. PMID:23552648

  12. Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: avocado fruit as example.

    PubMed

    Hurtado-Fernández, Elena; Pacchiarotta, Tiziana; Longueira-Suárez, Enrique; Mayboroda, Oleg A; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2013-10-25

    Although GC-APCI-MS was developed more than 40 years ago this coupling is still far from being a routine technique. One of the reasons explaining the limited use of GC-APCI so far is the lack of spectral database which facilitates the identification of the compounds under study. The first application of a very recently developed GC-APCI database to identify as many compounds as possible in a complex matrix such as avocado fruit is presented here. The results achieved by using this database has been checked against those obtained using traditional GC-EI-MS and a comparison of the MS signals observed in both ionization sources has been carried out. 100 compounds belonging to different chemical families were identified in the matrix under study. Considering the results of this study, the wide range of application (in terms of polarity and size of analytes) and the robustness of APCI as interface, the high quality of TOF spectra, and our library as a publicly available resource, GC-APCI-TOF MS is definitively a valuable addition to the "metabolomics toolbox". PMID:24054422

  13. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the southwest and northeast portions of the study area indicating multiple emission sources. We also present comparisons of VOC fingerprints observed in the Marcellus Shale to our previous observations of natural gas emissions from the Denver-Julesburg Basin in northeast Colorado to identify tracers for these different natural gas sources.

  14. The impact of natural gas imports on air pollutant emissions in Mexico

    SciTech Connect

    Bustani, A.; Cobas, E. [Center for Environmental Quality, Monterrey (Mexico)

    1993-12-31

    This paper analyzes the impact that natural gas imports could have on fuel emissions in northern Mexico. The authors discuss the problem created in the 1980s when a shift from natural gas to residual oil in industrial processes increased emissions of air pollutants significantly. The benefits of substituting leaded for unleaded gasoline in the 1990s are discussed also. In July 1992 the Mexican government announced for the first time since oil nationalization that private companies in Mexico are allowed to directly import natural gas. The transportation of natural gas, however, remains reserved only for Pemex, the national oil company. This opens the possibility of reducing the burning of high-sulfur residual oil in both the industrial and the energy production sectors in Mexico, particularly in the northern region where only 6.7% of the of the country`s natural gas is produced. Natural gas imports have also opened the possibility of using compressed natural gas (CNG) in vehicles in northern Mexico. 15 refs., 13 figs., 3 tabs.

  15. Integrated Assessment of Greenhouse Gas Stabilization Concentrations, Emission Pathways, and Impact Threshold Values for Control of Global Warming

    Microsoft Academic Search

    Kiyoshi TAKAHASHI

    To mitigate the dangerous impacts of global warming to the greatest extent possible, various green- house gas stabilization scenarios have been proposed. Integrated studies are proceeding on emission pathways and the costs of achieving climate stabilization, as well as on the impact risks of global warm- ing. This paper summarizes the existing knowledge on temperature rise, mitigation measures and impact

  16. Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well

    PubMed Central

    2013-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input–output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20?000 m3 (with a range from 6700 to 33?000 m3) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300–3000 kg N-eq eutrophication potential, 900–23?000 kg 2,4D-eq freshwater ecotoxicity potential, 0–370 kg benzene-eq carcinogenic potential, and 2800–71?000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is treated to surface discharge standards by desalination, $59?000–270?000 per well would be required. The life cycle study results indicate that when gas end use is not considered hydraulic fracturing is the largest contributor to the life cycle water impacts of a Marcellus shale gas well. PMID:24380628

  17. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    PubMed

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-02-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is treated to surface discharge standards by desalination, $59,000-270,000 per well would be required. The life cycle study results indicate that when gas end use is not considered hydraulic fracturing is the largest contributor to the life cycle water impacts of a Marcellus shale gas well. PMID:24380628

  18. The economic impact of shale gas development on state and local economies: benefits, costs, and uncertainties.

    PubMed

    Barth, Jannette M

    2013-01-01

    It is often assumed that natural gas exploration and development in the Marcellus Shale will bring great economic prosperity to state and local economies. Policymakers need accurate economic information on which to base decisions regarding permitting and regulation of shale gas extraction. This paper provides a summary review of research findings on the economic impacts of extractive industries, with an emphasis on peer-reviewed studies. The conclusions from the studies are varied and imply that further research, on a case-by-case basis, is necessary before definitive conclusions can be made regarding both short- and long-term implications for state and local economies. PMID:23552649

  19. Gas-Mediated Impact Dynamics in Fine-Grained Granular Materials

    E-print Network

    John R. Royer; Eric I. Corwin; Peter J. Eng; Heinrich M. Jaeger

    2007-07-17

    Non-cohesive granular media exhibit complex responses to sudden impact that often differ from those of ordinary solids and liquids. We investigate how this response is mediated by the presence of interstitial gas between the grains. Using high-speed x-ray radiography we track the motion of a steel sphere through the interior of a bed of fine, loose granular material. We find a crossover from nearly incompressible, fluid-like behavior at atmospheric pressure to a highly compressible, dissipative response once most of the gas is evacuated. We discuss these results in light of recent proposals for the drag force in granular media.

  20. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.

    PubMed

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ? 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes. PMID:24455163

  1. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting

    PubMed Central

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ? 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes. PMID:24455163

  2. Putting downward pressure on natural gas prices: The impact of renewable energy and energy efficiency

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matthew

    2004-05-20

    Increased deployment of renewable energy (RE) and energy efficiency (EE) is expected to reduce natural gas demand and in turn place downward pressure on gas prices. A number of recent modeling studies include an evaluation of this effect. Based on data compiled from those studies summarized in this paper, each 1% reduction in national natural gas demand appears likely to lead to a long-term average wellhead gas price reduction of 0.75% to 2.5%, with some studies predicting even more sizable reductions. Reductions in wellhead prices will reduce wholesale and retail electricity rates, and will also reduce residential, commercial, and industrial gas bills. We further find that many of these studies appear to represent the potential impact of RE and EE on natural gas prices within the bounds of current knowledge, but that current knowledge of how to estimate this effect is extremely limited. While more research is therefore needed, existing studies suggest that it is not unreasonable to expect that any increase in consumer electricity costs attributable to RE and/or EE deployment may be substantially offset by the corresponding reduction in delivered natural gas prices. This effect represents a wealth transfer (from natural gas producers to consumers) rather than a net gain in social welfare, and is therefore not a standard motivation for policy intervention on economic grounds. Reducing gas prices and thereby redistributing wealth may still be of importance in policy circles, however, and may be viewed in those circles as a positive ancillary effect of RE and EE deployment.

  3. Generation of laser-pulse-field harmonics in a gas upon impact ionisation of atoms

    SciTech Connect

    Kuzelev, M V; Rukhadze, A A [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2007-10-31

    The generation of harmonics of a high-power-laser-pulse field in a gas during impact ionisation of atoms by oscillating electrons is studied theoretically. Fields are considered under conditions when the oscillation energy of electrons in the radiation field, remaining nonrelativistic, considerably exceeds the ionisation potential of an atom. In addition, the radiation field was assumed weak compared to the atomic field (E{sub a} = 5.1x10{sup 9} V cm{sup -1}), which allowed us to neglect the field ionisation of atoms, taking into account only the impact ionisation of atoms by oscillating electrons. Under such conditions, along with the elastic scattering of electrons, the inelastic scattering of oscillating electrons accompanied by ionisation of gas atoms can make a significant contribution to a nonlinear current induced in the plasma. (special issue devoted to the 25th anniversary of the a.m. prokhorov general physics institute)

  4. Experimental study on the impact of temperature on the dissipation process of supersaturated total dissolved gas.

    PubMed

    Shen, Xia; Liu, Shengyun; Li, Ran; Ou, Yangming

    2014-09-01

    Water temperature not only affects the solubility of gas in water but can also be an important factor in the dissipation process of supersaturated total dissolved gas (TDG). The quantitative relationship between the dissipation process and temperature has not been previously described. This relationship affects the accurate evaluation of the dissipation process and the subsequent biological effects. This article experimentally investigates the impact of temperature on supersaturated TDG dissipation in static and turbulent conditions. The results show that the supersaturated TDG dissipation coefficient increases with the temperature and turbulence intensity. The quantitative relationship was verified by straight flume experiments. This study enhances our understanding of the dissipation of supersaturated TDG. Furthermore, it provides a scientific foundation for the accurate prediction of the dissipation process of supersaturated TDG in the downstream area and the negative impacts of high dam projects on aquatic ecosystems. PMID:25193837

  5. Impact of radial migration on stellar and gas radial metallicity distribution

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Kawata, Daisuke; Cropper, Mark

    2015-03-01

    Radial migration is defined as the change in guiding centre radius of stars and gas caused by gains or losses of angular momentum that result from gravitational interaction with non-axisymmetric structure. This has been shown to have significant impact on the metallicity distribution in galactic discs, and therefore affects the interpretation of Galactic archaeology. We use a simulation of a Milky Way-sized galaxy to examine the effect of radial migration on the star and gas radial metallicity distribution. We find that both the star and gas component show significant radial migration. The stellar radial metallicity gradient remains almost unchanged but the radial metallicity distribution of the stars is broadened to produce a greater dispersion at all radii. However, the metallicity dispersion of the gas remains narrow. We find that the main drivers of the gas metallicity distribution evolution are metal enrichment and mixing: more efficient metal enrichment in the inner region maintains a negative slope in the radial metallicity distribution, and the metal mixing ensures the tight relationship of the gas metallicity with the radius. The metallicity distribution function reproduces the trend in the age-metallicity relation found from observations for stars younger than 1.0 Gyr in the Milky Way.

  6. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  7. The impact of faulting on the stability conditions of gas hydrates in Lake Baikal sediments

    NASA Astrophysics Data System (ADS)

    Golmshtok, A. Ya.

    2014-07-01

    The phase transition problem of methane hydrate in porous sediments is solved. Based on the obtained solution, the impact of faulting on the stability conditions of gas hydrates is investigated by the numerical modeling of the filtration and thermal regimes in the sedimentary cover of the Central Basin of Lake Baikal within the segment of the anomalous behavior of the bottom simulating reflector (BSR). It is assumed that such behavior is caused by the tectonic action. The calculations testify to the plausibility of the proposed model of formation of the anomalous area with total decomposition of the contained hydrates. It is shown that dissociation of gas hydrates in sediments due to faulting and the subsequent uplift of the products of these transformations along the incipient channel toward the bottom of the lake can result in the extensive accumulation of gas hydrates on this surface. It is also shown that if the total amount of the free gas, which left the hydrate dissociation zone, reached the level of the lake surface at normal pressure and temperature, its volume could be equivalent to the resources of a medium-size gas field. The results of numerical modeling the violation of the gas-hydrate stability conditions in Lake Baikal sediments can also be valid for the other regions with hydrate-bearing sediments if the case specific conditions and regional tectonic activity are taken into account.

  8. Mortality and Greenhouse Gas Impacts of Biomass and Petroleum Energy Futures in Africa

    Microsoft Academic Search

    Robert Bailis; Majid Ezzati; Daniel M. Kammen

    2005-01-01

    We analyzed the mortality impacts and greenhouse gas (GHG) emissions produced by household energy use in Africa. Under a business-as-usual (BAU) scenario, household indoor air pollution will cause an estimated 9.8 million premature deaths by the year 2030. Gradual and rapid transitions to charcoal would delay 1.0 million and 2.8 million deaths, respectively; similar transitions to petroleum fuels would delay

  9. Impact of exploratory offshore drilling on benthic communities in the Minerva gas field, Port Campbell, Australia

    Microsoft Academic Search

    D. R. Currie; Leanne R. Isaacs

    2005-01-01

    Changes to benthic infauna caused by exploratory gas drilling operations in the Minerva field were examined experimentally using a BACI (before, after, control, impact) design. Analysis of 72×0.1 m2 Smith–McIntyre grab samples obtained from one pre-drilling and three post-drilling periods yielded a diverse fauna consisting of 196 invertebrate species and 5035 individuals. Changes to benthic community structure were assessed using

  10. Regional Impacts of Oil and Gas Development on Ozone Formation in the Western United States

    Microsoft Academic Search

    Marco A. Rodriguez; Michael G. Barna; Tom Moore; Warren White; Krystyna Trzepla-Nabaglo; Paul Wakabayashi; Charles McDade; Ann Dillner; Hege Indresand; William Malm; Gavin McMeeking; Sonia Kreidenweis; Ezra Levin; Christian Carrico; Derek Day; Jeffrey Collett; Taehyoung Lee; Amy Sullivan; Suresh Raja; Marc Pitchford; Richard Poirot; Bret Schichtel; Patricia Brewer; Mark Green; Shobha Kondragunta; Pubu Ciren; Chuanyu Xu; Delbert Eatough; Robert Farber

    2009-01-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, “one-atmosphere” Eulerian photochemical dispersion model that

  11. Impact assessment of offshore sulfur-mining subsidence on oil and gas infrastructure

    SciTech Connect

    Hunt, J.L. Jr.

    1988-01-01

    Since the Frasch process was discovered in the early 20th century and used in mining sulfur from salt dome cap rocks in coastal Louisiana and Texas, varying degrees of subsidence have been observed. Review of both historic and recent aerial photographs over certain mine sites situated in marshy coastal areas reveals substantial subsidence. Since production began in 1960 at the grand Isle Sulphur Mine located in state waters about 7 mi offshore of Grand Isle, Louisiana, approximately 70 ft of subsidence has occurred. The production platforms at the mine had to be raised or relocated due to the subsidence. No adverse impacts to existing offshore oil and gas pipelines and platforms resulting from subsidence associated with sulfur mining have been documented to date. Many of the salt domes nominated for inclusion in a sulfur and salt lease sale in federal waters offshore Louisiana, proposed for 1988, have a well-developed oil and gas infrastructure; thus the potential for subsidence-related impact does exist. Therefore, an analysis of the potential impacts to oil and gas infrastructure resulting from subsidence was done as part of the environmental assessment for the proposed lease sale.

  12. User-Friendly Tool to Calculate Economic Impacts from Coal, Natural Gas, and Wind: The Expanded Jobs and Economic Development Impact Model (JEDI II); Preprint

    SciTech Connect

    Tegen, S.; Goldberg, M.; Milligan, M.

    2006-06-01

    In this paper we examine the impacts of building new coal, gas, or wind plants in three states: Colorado, Michigan, and Virginia. Our findings indicate that local/state economic impacts are directly related to the availability and utilization of local industries and services to build and operate the power plant. For gas and coal plants, the economic benefit depends significantly on whether the fuel is obtained from within the state, out of state, or some combination. We also find that the taxes generated by power plants can have a significant impact on local economies via increased expenditures on public goods.

  13. EMBRYO IMPACTS AND GAS GIANT MERGERS. I. DICHOTOMY OF JUPITER AND SATURN's CORE MASS

    SciTech Connect

    Li Shulin [Department of Astronomy, Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing (China); Agnor, C.B. [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London (United Kingdom); Lin, D. N. C. [Department of Astronomy and Astrophysics, University of California Santa Cruz (United States)

    2010-09-10

    Interior to the gaseous envelopes of Saturn, Uranus, and Neptune, there are high-density cores with masses larger than 10 Earth masses. According to the conventional sequential accretion hypothesis, such massive cores are needed for the onset of efficient accretion of their gaseous envelopes. However, Jupiter's gaseous envelope is more massive and its core may be less massive than those of Saturn. In order to account for this structural diversity and the super-solar metallicity in the envelope of Jupiter and Saturn, we investigate the possibility that they may have either merged with other gas giants or consumed several Earth-mass protoplanetary embryos during or after the rapid accretion of their envelope. In general, impinging sub-Earth-mass planetesimals disintegrate in gas giants' envelopes, deposit heavy elements well outside the cores, and locally suppress the convection. Consequently, their fragments sediment to promote the growth of cores. Through a series of numerical simulations, we show that it is possible for colliding super-Earth-mass embryos to reach the cores of gas giants. Direct parabolic collisions also lead to the coalescence of gas giants and merging of their cores. In these cases, the energy released from the impact leads to vigorous convective motion throughout the envelope and the erosion of the cores. This dichotomy contributes to the observed dispersion in the internal structure and atmospheric composition between Jupiter and Saturn and other gas giant planets and elsewhere.

  14. Spatial Air Quality Impacts of Increased Natural Gas Development and Use in Texas

    NASA Astrophysics Data System (ADS)

    Allen, D.; Pacsi, A. P.

    2013-12-01

    Compared to coal-fired power plants on a per MWh basis, natural-gas electricity generators in the grid of the Electricity Reliability Council of Texas (ERCOT) emit substantially less nitrogen oxides (NOx) and sulfur dioxide (SO2), which are precursors for the formation of ozone (O3) and fine particulate matter (PM2.5). In addition, several life-cycle assessments have concluded that the development and use of shale gas resources will likely lead to air quality benefits, despite emissions associated with natural gas production, due to changes in fuel utilization in the electricity generation sector. The formation of ozone and PM2.5 is non-linear, however, and depends on spatial and temporal patterns associated with the precursor emissions. This study used Texas as a case-study for the changes in regional ozone and PM2.5 concentrations associated with natural gas production and use in electricity generation in the state. Texas makes a compelling case study since it was among the first states with large-scale shale gas production with horizontal drilling and hydraulic fracturing technologies, since it has a self-contained electric grid (ERCOT), and since it includes several regions which do not currently meet Federal standards for ozone. This study utilized an optimal power flow model for electricity generation in ERCOT, coupled with a regional photochemical model to estimate the ozone and PM2.5 impacts of changes to natural gas production and use in the state. The utilization of natural gas is highly dependent on the relative price of natural gas compared to coal. Thus, the amount of natural gas consumed in power generation in ERCOT was estimated for a range of prices from 1.89-7.74, which have occurred in Texas since 2006. Sensitivity scenarios in which natural gas production emissions in the Barnett Shale were raised or lowered depending on demand for the fuel in the electricity generation sector were also examined. Overall results indicate that regional ozone and fine PM2.5 concentrations are reduced as the price of natural gas decreased in Texas. The air quality impacts were predominantly driven by changes in the electricity generation sector rather than in the fuel-supply chain. The areas in which the largest changes in ozone and fine PM were modeled were regions with several coal-fired power plants, which were dispatched less frequently in our model as the price of natural gas decreased. Ozone decreases were largest in magnitude in the afternoon hours during times which were relevant for the daily maximum 8-hour ozone concentration, on which the Federal ozone standard is based. Despite localized increases in NOx and volatile organic compound (VOC) emissions associated with the natural gas production in the Barnett Shale, ozone concentrations were modeled to decrease in the region with decreasing natural gas prices.

  15. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary steps toward this challenging quantification. We calculate the added consumption of meat and corn-based sweeteners that can be readily attributable to subsidies. We conclude by using traditional, non-controversial conversion factors to express these enhancements in terms of tons of CO2-equivalent.

  16. Gas and dust Morphological Results from Narrowband Imaging of Deep Impact's Target Comet 9P\\/Tempel 1

    Microsoft Academic Search

    L. M. Woodney; K. L. Barnes; N. F. Baugh; D. G. Schleicher

    2005-01-01

    We present narrowband imaging results of Deep Impact target Comet 9P\\/Tempel 1. An on-going observational campaign from Lowell Observatory was begun in March to characterize the gas and dust morphology as a function of viewing geometry and season, and to investigate the newly released dust and gas as a function of time following the impact of the DI projectile. Prior

  17. Impacts of natural gas mining on regional methane levels in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Lembeck-Edens, A. M.; Fuentes, J. D.; Martins, D. K.; Grannas, A. M.

    2013-12-01

    Increased natural gas exploration has been hypothesized to be a strong source of atmospheric methane, leading to enhanced regional methane levels. Fugitive methane emissions can result from leaky natural gas wells and pipelines. Pennsylvania is experiencing rapid natural gas well development and operation. In the Pennsylvania Marcellus Shale region, the density of natural gas wells is increasing. Therefore, a field study took place during 8 June to 6 August 2013 to investigate the magnitude of fugitive methane emissions near well sites and along established pipelines, as well as the spatial distribution of methane throughout Pennsylvania. The necessary instruments were mounted on a mobile platform (six-passenger van) to make transects running from southwestern to northeastern Pennsylvania where the highest density of wells is already established. Methane and carbon dioxide mixing ratios and their respective 13C isotopes were detected using a cavity ring-down spectrometer while the van was moving along pipelines or near natural gas well sites. Air sampling was done in areas away from natural well sites to establish the baseline of methane levels in the rural atmosphere. Also, air sampling took place around barns to distinguish the contribution of cattle to the atmospheric loading of methane. In the rural atmosphere, away from natural gas wells, methane levels remained around (baseline) 1.75 parts per millions (ppm). Methane levels in areas impacted by natural gas wells were higher than the baseline. Along pipelines, methane levels ranged from baseline levels of 1.75 ppm to 5.00 ppm. Near wells, plumes of methane-enriched air reached as high as 15.30 ppm. Although leaks from wells have been noted in previous studies, this investigation suggested that wells intermittently leaked methane. The main conclusion from the present study is that fugitive emissions from natural gas wells and pipelines contribute to enhancing the regional methane levels during daytime conditions, up to an average mixing ratio of 1.95 ppm. Along with ancillary data, we will present and discuss the implications of the results in the context of greenhouse effect forcing and regional air quality impacts.

  18. HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-

    E-print Network

    : Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat overstated. Key words: Centrocercus urophasianus, human­wildlife conflicts, lek counts, oil and gas, sage-grouse (Centrocercus urophasianus) lek attendance and population dynamics are well-documented (Walker et al. 2007

  19. PZT networks for impact studies using a one stage light gas gun

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, J.; Cook, M.; Schmoke, J.; Harper, K.; Reay, J.; Matthews, L.; Hyde, T. W.

    Orbital debris has become such a large problem that computer models, space debris tracking devices, and debris shielding processes have become a vital part of the preparation for the launch of any space mission. In order to fully understand the physics behind the damage that space debris may cause, it is necessary to reproduce such an environment in the lab. The Center for Astrophysics, Space Physics and Engineering Research (CASPER) has completed construction and calibration of a Light Gas Gun (LGG) which is used for low velocity impact studies. The LGG was used to perform impact tests on stainless steel and aluminum disk plates, since these materials are often used in the construction of man-made structures in space. Piezoelectric lead zirconate titanate (PZT) crystals were employed to measure the momentum delivered to the plate upon impact. Multiple PZT networks were attached to the plates in order to determine the location of individual impacts. This paper will show the results of this testing on both stainless steel and aluminum disks and explain the numerical process determining the locations of the impacts.

  20. The Impact of Measurement Noise in GPA Diagnostic Analysis of a Gas Turbine Engine

    NASA Astrophysics Data System (ADS)

    Ntantis, Efstratios L.; Li, Y. G.

    2013-12-01

    The performance diagnostic analysis of a gas turbine is accomplished by estimating a set of internal engine health parameters from available sensor measurements. No physical measuring instruments however can ever completely eliminate the presence of measurement uncertainties. Sensor measurements are often distorted by noise and bias leading to inaccurate estimation results. This paper explores the impact of measurement noise on Gas Turbine GPA analysis. The analysis is demonstrated with a test case where gas turbine performance simulation and diagnostics code TURBOMATCH is used to build a performance model of a model engine similar to Rolls-Royce Trent 500 turbofan engine, and carry out the diagnostic analysis with the presence of different levels of measurement noise. Conclusively, to improve the reliability of the diagnostic results, a statistical analysis of the data scattering caused by sensor uncertainties is made. The diagnostic tool used to deal with the statistical analysis of measurement noise impact is a model-based method utilizing a non-linear GPA.

  1. Ozone Air Quality Impacts of Shale Gas Development in South Texas Urban Areas

    NASA Astrophysics Data System (ADS)

    Chang, C.; Liao, K.

    2013-12-01

    Recent technological advances, mainly horizontal drilling and hydraulic fracturing, and continued drilling in shale, have increased domestic production of oil and gas in the United State (U.S.). However, shale gas developments could also affect the environment and human health, particularly in areas where oil and gas developments are new activities. This study is focused on the impacts of shale gas developing activities on summertime ozone air quality in South Texas urban areas since many of them are already ozone nonattainment areas. We use an integrated approach to investigate the ozone air quality impact of the shale gas development in South Texas urban areas. They are: (1) satellite measurement of precursors, (2) observations of ground-level ozone concentrations, and (3) air mass trajectory modeling. Nitrogen dioxide (NO2) is an important precursor to ozone formation, and summertime average tropospheric nitrogen dioxide (NO2) column densities measured by the National Aeronautics and Space Administration's Ozone Monitoring Instrument increased in the South Texas shale area (i.e., the Eagle Ford Shale area) in 2011 and 2012 as compared to 2008-2010. The U.S. Environmental Protection Agency's ground-level observations showed summertime average and peak ozone (i.e., the 4th highest daily maximum 8-hour average ozone) concentrations slightly increased from 2010 to 2012 in Austin and San Antonio. However, the frequencies of peak ozone concentrations above the 75ppb ozone standard have been significantly increasing since 2011 in Austin and San Antonio. It is expected to increase the possibilities of violating the ozone National Ambient Air Quality Standard (NAAQS) for South Texas urban areas in the future. The results of trajectory modeling showed air masses transported from the southeastern Texas could reach Austin and San Antonio and confirmed that emissions from the Eagle Ford Shale area could affect ozone air quality in South Texas urban areas in 2011 and 2012. Overall, emissions associated with shale gas activities in South Texas have been affecting ozone air quality in neighboring urban areas. Developing effective control strategies for reducing emissions from shale gas activities and improving ozone air quality is an important issue in Texas and other states in the U.S..Changes in percentage of summertime 4th highest ozone daily maximum as comparing to previous year

  2. Impact of Natural Gas Extraction on PAH Levels in Ambient Air.

    PubMed

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A

    2015-04-21

    Natural gas extraction, often referred to as "fracking," has increased rapidly in the U.S. in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. PAH levels were highest when samplers were closest to active wells. Additionally, PAH levels closest to natural gas activity were an order of magnitude higher than levels previously reported in rural areas. Sourcing ratios indicate that PAHs were predominantly petrogenic, suggesting that elevated PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. Closest to active wells, the risk estimated for maximum residential exposure was 2.9 in 10?000, which is above the U.S. EPA's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest. This work suggests that natural gas extraction may be contributing significantly to PAHs in air, at levels that are relevant to human health. PMID:25810398

  3. Impact of gas bremsstrahlung on synchrotron radiation beamline shielding at the Advanced Photon Source

    SciTech Connect

    Ipe, N.E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Fasso, A. [European Organization for Nuclear Research, Geneva (Switzerland)

    1994-01-01

    The Advanced Photon Source (APS) currently under construction at Argonne National Laboratory will be one of the world`s brightest synchrotron radiation facilities. The storage ring, capable of storing currents up to 300 mA at 7.0 GeV and 200 mA at 7.5 GeV, will produce very intense and energetic synchrotron radiation (E{sub c} = 24 keV for bending magnets and E{sub c} = 37.4 keV for wigglers, where E{sub c} is the critical energy). The synchrotron radiation (SR) beam lines consisting of experimental enclosures and transport lines will have to be shielded against synchrotron radiation and gas bremsstrahlung scattered from beam line components. For insertion devices placed in the straight sections (length = 15 m), the gas bremsstrahlung produced by the interaction of the primary stored beam with residual gas molecules or ions in the storage ring vacuum chamber dominates the SR beam line shielding. The impact of gas bremsstrahlung on the SR beam line shielding is discussed in this paper.

  4. Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration

    E-print Network

    Martyn J. Fogg; Richard P. Nelson

    2005-07-07

    We present the results of N--body simulations which examine the effect that gas giant planet migration has on the formation of terrestrial planets. The models incorporate a 0.5 Jupiter mass planet undergoing type II migration through an inner protoplanet--planetesimal disk, with gas drag included. Each model is initiated with the inner disk being at successively increased levels of maturity, so that it is undergoing either oligarchic or giant impact style growth as the gas giant migrates. In all cases, a large fraction of the disk mass survives the passage of the giant, either by accreting into massive terrestrial planets shepherded inward of the giant, or by being scattered into external orbits. Shepherding is favored in younger disks where there is strong dynamical friction from planetesimals and gas drag is more influential, whereas scattering dominates in more mature disks where dissipation is weaker. In each scenario, sufficient mass is scattered outward to provide for the eventual accretion of a set of terrestrial planets in external orbits, including within the system's habitable zone. An interesting result is the generation of massive, short period, terrestrial planets from compacted material pushed ahead of the giant. These planets are reminiscent of the short period Neptune mass planets discovered recently, suggesting that such `hot Neptunes' could form locally as a by-product of giant planet migration.

  5. Flowing gas in mass spectrometer: method for characterization and impact on ion processing.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-10-21

    Mass spectrometers are complex instrumentation systems where ions are transferred though different pressure regions and mass-analyzed under high vacuum. In this work, we have investigated the impact of the gas flows that exit almost universally in all pressure regions. We developed a method that incorporates the dynamic gas field with the electric field in the simulation of ion trajectories. The scope of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems at atmospheric pressure interfaces. With experimental validation, the trapping of the externally injected ions in a linear ion trap at low pressure was also studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and the study of ion energetics. PMID:25121805

  6. Regional impacts of oil and gas development on ozone formation in the western United States.

    PubMed

    Rodriguez, Marco A; Barna, Michael G; Moore, Tom

    2009-09-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico. PMID:19785277

  7. Evaluating natural gas development impacts on stream ecosystems in an Upper Colorado River watershed

    NASA Astrophysics Data System (ADS)

    Holloway, J. M.; Bern, C.; Schmidt, T. S.; McDougal, R. R.; Clark, M. L.; Stricker, C. A.; Wolf, R. E.

    2011-12-01

    Oil and gas development in the western United States is increasingly placing at odds the management of two critical natural resources: fossil fuels and water. Muddy Creek, part of the Upper Colorado River watershed, is a semi-arid catchment in a sagebrush steppe ecosystem. Muddy Creek flows throughout the year and includes both perennial and ephemeral tributaries. Primary land use includes livestock grazing, oil and gas development, and recreational activities. A multi-discipline study has been initiated to determine potential impacts of the projected increase of coal bed natural gas development. Hundreds of permits for drilling co-produced waters have been issued, but low energy prices have slowed development. A watershed assessment was conducted in 2010 to determine areas within the watershed that are more susceptible to mobilization of trace elements that occur in soils forming on marine shales. Soil, stream sediment, and water samples were collected and analyzed for major elements and a suite of trace elements, with arsenic and selenium identified as potential elements of concern. A study of benthic and riparian invertebrates is being conducted to evaluate the uptake of these elements into the food web at targeted locations in the Muddy Creek watershed. Continued work will address sources of salinity to Muddy Creek, and ultimately to the Upper Colorado River. Impacts from energy development can include mobilization of naturally occurring sulfate salts through soil disturbance. Formation waters currently discharged to the surface from two failed wells within the watershed will be evaluated for their contribution to salinity, as well as dissolved organic carbon, nitrogen species, and trace elements, to the Upper Colorado River. Upon completion, this study will provide a baseline that can assist in land-use management decisions as oil and gas extraction expands in the Upper Colorado River watershed.

  8. Impact of pressure and gas type on adhesion formation and biomaterial integration in laparoscopy

    Microsoft Academic Search

    R. Rosch; M. Binnebösel; C. D. Klink; J. Otto; K. Junge; U. P. Neumann

    Background  Laparoscopic mesh repair of inguinal and incisional hernias has been widely adopted. Nevertheless, knowledge about the impact\\u000a of pneumoperitoneum on mesh integration is rare. The present study investigates pressure and gas-dependent effects of pneumoperitoneum\\u000a on adhesion formation and biomaterial integration in a standardized animal model.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Laparoscopic intraperitoneal onlay mesh implantation (IPOM) was performed in 32 female chinchilla rabbits using CO2

  9. Groundwater impacts associated with landfill gas migration at municipal solid waste landfill sites

    SciTech Connect

    Clister, W.; Janechek, A.; Hibbs, S.

    1998-07-01

    Many older municipal solid waste (MSW) landfills are unlined and subsequently have become a source of local groundwater contamination. However, the adverse impact on the groundwater quality at such sites is not necessarily limited to that caused by leachate contamination of the underlying aquifer but also may include the effects of landfill gas (LFG) migration. Absorption of certain LFG components, particularly volatile organic compounds (VOCs), may occur at offsite locations when a LFG excursion front migrates into adjacent soils. When LFG management systems are installed at such sites, this problem is often eliminated.

  10. Regional variation in water-related impacts of shale gas development and implications for emerging international plays.

    PubMed

    Mauter, Meagan S; Alvarez, Pedro J J; Burton, Allen; Cafaro, Diego C; Chen, Wei; Gregory, Kelvin B; Jiang, Guibin; Li, Qilin; Pittock, Jamie; Reible, Danny; Schnoor, Jerald L

    2014-08-01

    The unconventional fossil fuel industry is expected to expand dramatically in coming decades as conventional reserves wane. Minimizing the environmental impacts of this energy transition requires a contextualized understanding of the unique regional issues that shale gas development poses. This manuscript highlights the variation in regional water issues associated with shale gas development in the U.S. and the approaches of various states in mitigating these impacts. The manuscript also explores opportunities for emerging international shale plays to leverage the diverse experiences of U.S. states in formulating development strategies that minimize water-related impacts within their environmental, cultural, and political ecosystem. PMID:24684515

  11. A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.

    1999-01-01

    A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.

  12. Impact of fly ash composition on mercury speciation in simulated flue gas.

    PubMed

    Bhardwaj, Ravi; Chen, Xihua; Vidic, Radisav D

    2009-11-01

    The impact of different fly ash samples on mercury speciation in simulated flue gas at 140 degrees C was evaluated in this study. Experiments were conducted in a fixed bed reactor to determine the impact of fly ash morphological characteristics and chemical composition on mercury uptake and oxidation. No homogeneous mercury oxidation was observed at 140 degrees C. Mercury uptake tests with different fly ash samples revealed that loss on ignition (LOI), surface area, and particle size all had positive effects on mercury oxidation and adsorption (i.e., as the above parameters increased, mercury adsorption and oxidation also increased). Experiments with pure inorganic components showed that alumina (A12O3), silica (SiO2), calcium oxide (CaO), magnesium oxide (MgO), and titania (TiO2) do not promote mercury oxidation or adsorption. Ferric oxide (Fe2O3) and unburned carbon, on the other hand, showed significant mercury oxidation and capture. PMID:19947114

  13. Advanced diagnostics for impact-flash spectroscopy on light-gas guns.

    SciTech Connect

    Breiland, William George; Reinhart, William Dodd; Miller, Paul Albert; Brown, Justin L.; Thornhill, Tom Finley, III (,; ); Mangan, Michael A.; Shaner, Eric Arthur; Chhabildas, Lalit Chandra; Grine, Albert D.; Wanke, Michael Clement; Alexander, C. Scott

    2007-03-01

    This study is best characterized as new technology development for implementing new sensors to investigate the optical characteristics of a rapidly expanding debris cloud resulting from hypervelocity impact regimes of 7 to 11 km/s. Our gas guns constitute a unique test bed that match operational conditions relevant to hypervelocity impact encountered in space engagements. We have demonstrated the use of (1) terahertz sensors, (2) silicon diodes for visible regimes, (3) germanium and InGaAs sensors for the near infrared regimes, and (4) the Sandia lightning detectors which are similar to the silicon diodes described in 2. The combination and complementary use of all these techniques has the strong potential of ''thermally'' characterizing the time dependent behavior of the radiating debris cloud. Complementary spectroscopic measurements provide temperature estimates of the impact generated debris by fitting its spectrum to a blackbody radiation function. This debris is time-dependent as its transport/expansion behavior is changing with time. The rapid expansion behavior of the debris cools the cloud rapidly, changing its thermal/temperature characteristics with time. A variety of sensors that span over a wide spectrum, varying from visible regime to THz frequencies, now gives us the potential to cover the impact over a broader temporal regime starting from high pressures (Mbar) high-temperatures (eV) to low pressures (mbar) low temperatures (less than room temperature) as the debris expands and cools.

  14. Numerical simulations of interacting gas-rich barred galaxies. Vertical impact of small companions

    E-print Network

    I. Berentzen; E. Athanassoula; C. H. Heller; K. J. Fricke

    2003-01-15

    We investigate the dynamical effects of an interaction between an initially barred galaxy and a small spherical companion using an N-body/SPH algorithm. In the models described here the small companion passes through the disc of the larger galaxy near-perpendicular to its plane. The impact positions and times are varied with respect to the phase of the bar and the dynamical evolution of the disc. The interactions produce expanding ring structures, offset bars, spokes,and other asymmetries in the stars and gas. These characteristic signatures of the interaction are present in the disc for about 1 Gyr. We find that in some cases it is possible to destroy the bar while keeping the disc structure. In general the central impacts cause larger damage to the bar and the disc than the peripheral ones. The interaction tends to accelerate the transition from a strongly barred galaxy to a weakly or non-barred galaxy. The final disc morphology is determined more by the impact position relative to the bar rather than the impact time.

  15. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  16. Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines

    SciTech Connect

    Sulfredge, Charles David [ORNL

    2007-07-01

    The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} < -50 F or 228 K) can extend for a mile or more upstream from the rupture point within 30 s of a break. These conditions are colder than the temperature range specifications for many valve lubricants. The length of the low-temperature zone due to this cooling effect is also essentially independent of the system shut-off valve spacing or the distance between the break and a compressor station. (6) Having more redundant shut-off valves available would reduce the probability that pipe cooling effects could interfere with isolating the broken area following a pipeline rupture accident.

  17. Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon

    E-print Network

    Boyer, Elizabeth W.

    generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

  18. Application of flue gas desulfurization gypsum and its impact on wheat grain and soil chemistry.

    PubMed

    DeSutter, T M; Cihacek, L J; Rahman, S

    2014-01-01

    The 11 major electricity-generating coal combustion stations in the northern Great Plains have the potential to produce almost 1 million Mg of flue gas desulfurization gypsum (FGDG) annually, which is a very attractive fertilizer (Ca and S) and amendment for sodic and acid soils. The potential environmental impacts of applying FGDG to soils in this region have not been fully investigated. The objectives of this research were to determine the influence of FGDG on soil chemical characteristics and to determine the impact that FGDG has on hard red spring wheat ( L.) yields and element analysis of the grain. Flue gas desulfurization gypsum and commercial gypsum were applied at rates of 0, 2.24, 11.2, and 22.4 Mg ha to two soils in southwestern North Dakota in the spring of 2007. Soil and grain chemistries were monitored for two growing seasons. Wheat grain yields and elemental analysis of the grain were generally not affected by the gypsum treatments, indicating that the gypsum products did not negatively affect plant productivity. In addition, soil elemental analysis was similar across the treatments at both sites in both years. The results from this study indicate that its application to soil at rates used for sodic soil remediation (Mg ha) did not negatively affect the chemistries of either the soils or the wheat evaluated in this study compared with a commercial gypsum product or control soils. PMID:25602564

  19. The impact of 'Cash for Clunkers' on greenhouse gas emissions: a life cycle perspective

    NASA Astrophysics Data System (ADS)

    Lenski, Shoshannah M.; Keoleian, Gregory A.; Bolon, Kevin M.

    2010-10-01

    One of the goals of the US Consumer Assistance to Recycle and Save (CARS) Act of 2009, more commonly known as 'Cash for Clunkers', was to improve the US vehicle fleet fuel efficiency. Previous studies of the program's environmental impact have focused mainly on the effect of improved fuel economy, and the resulting reductions in fuel use and emissions during the vehicle use phase. We propose and apply a method for analyzing the net effect of CARS on greenhouse gas emissions from a full vehicle life cycle perspective, including the impact of premature production and retirement of vehicles. We find that CARS had a one-time effect of preventing 4.4 million metric tons of CO2-equivalent emissions, about 0.4% of US annual light-duty vehicle emissions. Of these, 3.7 million metric tons are avoided during the period of the expected remaining life of the inefficient 'clunkers'. 1.5 million metric tons are avoided as consumers purchase vehicles that are more efficient than their next replacement vehicle would otherwise have been. An additional 0.8 million metric tons are emitted as a result of premature manufacturing and disposal of vehicles. These results are sensitive to the remaining lifetime of the 'clunkers' and to the fuel economy of new vehicles in the absence of CARS, suggesting important considerations for policymakers deliberating on the use of accelerated vehicle retirement programs as a part of the greenhouse gas emissions policy.

  20. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  1. Growth potential in gas plant ethane production and the impact on propane import trends

    SciTech Connect

    Lippe, D.L. [Petro Worldwide, Inc., Houston, TX (United States)

    1996-12-31

    In varying degrees in most ethylene plants, ethane and propane are used interchangeably as feedstocks. During the next five years, several new ethylene plants will be built in the Gulf Coast area. Most of these plants will be based on LPG feedstocks and will have some flexibility to operate with ethane and propane feedstocks. The completion of new ethylene plants will increase feedstock demand for ethane by 65--90 Mbpd by 1998 and by an additional 50--80 Mbpd by 2000. Thus, the availability of ethane will have a significant impact on Gulf Coast waterborne propane import requirements. Sustained growth in the gas processing industry`s ethane recovery capability will effectively minimize waterborne propane import requirements for the next five to ten years. Petral Worldwide`s approach to feedstock supply analysis highlights investment opportunities in domestic supply sources. Projects of these types will also limit a growth dependence on NGL feedstock supplies from politically unstable supply sources in North Africa and the Middle East. This paper examines the potential for growth in the gas processing industry`s ethane recovery capability and the impact on Gulf Coast feedstock markets.

  2. Impact of Variations on 1-D Flow in Gas Turbine Engines via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Ngo, Khiem Viet; Tumer, Irem

    2004-01-01

    The unsteady compressible inviscid flow is characterized by the conservations of mass, momentum, and energy; or simply the Euler equations. In this paper, a study of the subsonic one-dimensional Euler equations with local preconditioning is presented using a modal analysis approach. Specifically, this study investigates the behavior of airflow in a gas turbine engine using the specified conditions at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine, to determine the impact of variations in pressure, velocity, temperature, and density at low Mach numbers. Two main questions motivate this research: 1) Is there any aerodynamic problem with the existing gas turbine engines that could impact aircraft performance? 2) If yes, what aspect of a gas turbine engine could be improved via design to alleviate that impact and to optimize aircraft performance? This paper presents an initial attempt to model the flow behavior in terms of their eigenfrequencies subject to the assumption of the uncertainty or variation (perturbation). The flow behavior is explored using simulation outputs from a customer-deck model obtained from Pratt & Whitney. Variations of the main variables (i.e., pressure, temperature, velocity, density) about their mean states at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine are modeled. Flow behavior is analyzed for the high-pressure compressor and combustion chamber utilizing the conditions on their left and right boundaries. In the same fashion, similar analyses are carried out for the high-pressure and low-pressure turbines. In each case, the eigenfrequencies that are obtained for different boundary conditions are examined closely based on their probabilistic distributions, a result of a Monte Carlo 10,000 sample simulation. Furthermore, the characteristic waves and wave response are analyzed and contrasted among different cases, with and without preconditioners. The results reveal the existence of flow instabilities due to the combined effect of variations and excessive pressures in the case of the combustion chamber and high-pressure turbine. Finally, a discussion is presented on potential impacts of the instabilities and what can be improved via design to alleviate them for a better aircraft performance.

  3. Mobile Measurements of Leaks Associated with Oil and Gas Development and the Impact on Air Quality

    NASA Astrophysics Data System (ADS)

    Herndon, Scott; DeCarlo, Peter; Yacovitch, Tara; Goetz, Douglass; Floerchinger, Cody; Roscioli, Joseph; Shorter, Joanne; Kolb, Charles

    2014-05-01

    In the United States, horizontal drilling and hydraulic fracturing technologies have enabled a rapid increase in the production rate of oil and natural gas. Frequently, the shale sources are located near large urban centers (such as Dallas/Fort Worth, TX) and smaller communities. The transient drilling activity as well as the long-term installation of wells, processing and transmission facilities have the potential to affect associated emissions to the atmosphere of methane, volatile organic compounds, NOx, particulates and other species. Using a mobile laboratory, measurements have been conducted in several active shale play production areas and at specific facilities. The regions include the Barnett shale in Dallas/Fort Worth, the Denver Julesberg Shale near Denver, and the southwest and north-central regions of the Marcellus shale near Pittsburg and Mansfield, respectively. Results of the quantification of the specific natural gas leak rate from specific facilities will be presented and discussed. Also, differences in the emissions profile from the various regions will be highlighted. The intra-regional contrasts will also be presented such as those observed in the Barnett shale in the ethane to methane ratio, demonstrating its use as an "isotope-like" signature of the source. Regional scale measurements of the observed levels of air pollutants downwind and upwind of the shale play sectors will be shown. The data from the Marcellus region will put into context on how further development of the gas resources impacts air quality in a region upwind of the highly urbanized east coast corridor.

  4. Predictions of the Impacts of Future Marcellus Shale Natural Gas Development on Regional Ozone

    NASA Astrophysics Data System (ADS)

    Roy, A.; Adams, P. J.; Robinson, A. L.

    2012-12-01

    Recent discovery of shale gas reserves, combined with advances in drilling and fracturing technology, are leading to extensive development of natural gas in the Marcellus Shale formation which underlies parts of Pennsylvania, West Virginia, Ohio and New York. To assess the impacts of this development on regional air quality, we have constructed a VOC, NOx and PM2.5 emissions inventory for the development and production of gas from the Marcellus formation. In 2020, we estimate that Marcellus activities will contribute about 12% to both regional NOx and VOC emissions. These numbers were obtained as a best estimate (mean) from a distribution obtained through several Monte Carlo runs. We speciated these emissions for use in a 3-D chemical transport model (PMCAMx) to simulate their effects on regional ozone. The projected Marcellus emissions for 2020 were added to a 2007 base inventory developed from the NEI. We have performed multiple simulations to investigate the effects of Marcellus development on regional air quality. The model predicts significant ozone changes in the Marcellus region with a uniform increase of few ppb across a wide region of the Northeast. Sensitivity studies are being performed to investigate the effects of emissions controls and sensitivity to VOC and NOx emissions.

  5. Air Quality Impacts of Greenhouse Gas Mitigation Technologies in the Power Generation and Transportation Sectors

    NASA Astrophysics Data System (ADS)

    Mac Kinnon, Michael

    Future efforts to mitigate the harmful impacts of climate change will include transitions to alternative technologies and fuels targeting reductions in greenhouse gas (GHG) emissions. Currently, economic sectors of greatest concern include transportation and power generation, which combined contribute over half of total U.S. GHG emissions. In addition to GHGs, displacement of conventional energy strategies will impact the emissions of various pollutant species with human health and environmental risks due to common generation processes and sources. In order to fully investigate the air quality (AQ) impacts of deploying various GHG mitigation technologies and fuels in coming decades, spatially and temporally resolved pollutant emissions fields are developed and utilized as input for simulations of atmospheric chemistry and transport via an advanced AQ model. Three areas of the U.S. are chosen for regional analyses in the year 2055. In order to characterize the evolution of regional energy sector emission drivers from current levels, a Base Case is developed that is representative of progression in the absence of aggressive GHG mitigation efforts. To facilitate comparison, alternative scenarios are developed to explore the effects of shifts in technologies, fuels, or behavior with the potential to mitigate GHG emissions. Scenarios are represented by generated spatially and temporally resolved emission fields and evaluated for impacts on primary and secondary air pollutant concentrations. Significant variation in energy profiles, demands, and constraints (e.g., regulatory statutes) between study domains yields significant differences in regional impacts. The magnitude of AQ improvements depends on baseline emission levels and spatial and temporal emission patterns. In addition, the current focus on reducing emissions from the targeted sectors increases the importance of emissions from other areas and sectors.

  6. Environmental health impacts of unconventional natural gas development: a review of the current strength of evidence.

    PubMed

    Werner, Angela K; Vink, Sue; Watt, Kerrianne; Jagals, Paul

    2015-02-01

    Rapid global expansion of unconventional natural gas development (UNGD) raises environmental health concerns. Many studies present information on these concerns, yet the strength of epidemiological evidence remains tenuous. This paper is a review of the strength of evidence in scientific reporting of environmental hazards from UNGD activities associated with adverse human health outcomes. Studies were drawn from peer-reviewed and grey literature following a systematic search. Five databases were searched for studies published from January 1995 through March 2014 using key search terms relevant to environmental health. Studies were screened, ranked and then reviewed according to the strength of the evidence presented on adverse environmental health outcomes associated with UNGD. The initial searches yielded >1000 studies, but this was reduced to 109 relevant studies after the ranking process. Only seven studies were considered highly relevant based on strength of evidence. Articles spanned several relevant topics, but most focussed on impacts on typical environmental media, such as water and air, with much of the health impacts inferred rather than evidenced. Additionally, the majority of studies focussed on short-term, rather than long-term, health impacts, which is expected considering the timeframe of UNGD; therefore, very few studies examined health outcomes with longer latencies such as cancer or developmental outcomes. Current scientific evidence for UNGD that demonstrates associations between adverse health outcomes directly with environmental health hazards resulting from UNGD activities generally lacks methodological rigour. Importantly, however, there is also no evidence to rule out such health impacts. While the current evidence in the scientific research reporting leaves questions unanswered about the actual environmental health impacts, public health concerns remain intense. This is a clear gap in the scientific knowledge that requires urgent attention. PMID:25461113

  7. NO2 GAS SENSING STUDIES : IMPACT OF GEOMETRICAL AND PHYSICAL CHARACTERISTICS OF OHMIC CONTACTS ON n-InP EPITAXIAL SENSITIVE

    E-print Network

    Paris-Sud XI, Université de

    steps on electrical and metrological parameters of NO2 gas sensors. The NO2 gas sensors are based of the devices. The impact on the gas sensors in response to NO2 is also discussed. Keywords gas sensor, In for environmental protection. In recent years, the concentration of NOx gases (NO and NO2) in atmosphere has

  8. Technical, economic, and environmental impact study of converting Uzbekistan transportation fleets to natural gas operation. Export trade information

    SciTech Connect

    NONE

    1997-04-30

    This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops; (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.

  9. Impact Resistance of Lightweight Hybrid Structures for Gas Turbine Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The ballistic impact resistance of hybrid composite sandwich structures was evaluated with the ultimate goal of developing new materials or structures for potential gas turbine engine fan containment applications. The sandwich structures investigated consisted of GLARE-5 laminates as face sheets with lightweight cellular metallic materials such as honeycomb, foam, and lattice block as a core material. The impact resistance of these hybrid sandwich structures was compared to GLARE-5 laminates and 2024-T3 Al sheet, which were tested as a function of areal weight (material thickness). The GLARE-5 laminates exhibited comparable impact properties to that of 2024-T3 Al at low areal weights, even though there were significant differences in the static tensile properties of these materials. The GLARE-5, however, did have a greater ballistic limit than straight aluminum sheet at higher areal weights. Furthermore, there is up to a 25% advantage in ballistic limit for the GLARE-5/foam sandwich structures compared to straight 2024-T3 Al. But no advantage in ballistic limit was observed between any of the hybrid sandwich structures and thicker versions of GLARE-5. Recommendations for future work are provided, based on these preliminary data.

  10. Air Impacts of Unconventional Natural Gas Development: A Barnett Shale Case Study

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Zielinska, B.; Campbell, D.; Fujita, E.

    2013-12-01

    Many atmospheric pollutants have been linked to the lifecycle of unconventional natural gas. Attributing air emissions to particular segments of the natural gas life cycle can be difficult. Further, describing individual and community exposure to air pollutants is complex since contaminants can vary spatially and temporally, based on proximity to point sources, magnitude, transport and dispersion of emissions. Here we will present data from the Barnett Shale formation near Dallas/Fort Worth, TX with the goal of providing a better understanding of the extent to which population exposure to air toxics is associated with emissions from natural gas production operations in this region. The Barnett Shale formation covers nearly 13000 km2 and is located west of Dallas/Fort Worth, TX. This formation contains natural gas, natural gas condensate, and light oil. Samples were collected in April-May 2010 in two phases with the purpose of Phase 1 being to characterize emissions from major gas production facilities in the area, while Phase 2 involved more intensive monitoring of two residential areas identified in Phase 1. One of the residential areas was downwind of a gas well and two condensate tanks and the other area was close to a compressor station. Phase 1 sampling involved our mobile monitoring system, which includes real-time estimates of volatile organic compounds (VOC), using a portable photoionization detector monitor; continuous NO, PM2.5 mass, and a GasFindIR camera. Phase 1 also included 1-hr integrated canister VOC samples and carbonyl compound samples, using DNPH impregnated Sep-Pac Si cartridges. These samples were analyzed by GC/MS and high performance liquid chromatography with a photodiode array detector. Phase 2 sampling included 7-day integrated passive samples for NOx, NO2 and SO2 using Ogawa passive samplers, and BTEX (benzene, toluene, ethylbenzene, and xylenes), 1,3-butadiene, and carbonyl compounds (formaldehyde, acetaldehyde, and acrolein) using Radiello samplers. In addition, weekly PM2.5 samples were collected on Teflon and quartz filters that were analyzed for mass and elements (Teflon filters), for organic and elemental carbon (OC and EC) by thermal/optical reflectance (TOR) method and for polycyclic aromatic hydrocarbons (PAH) using a gas chromatography/mass spectrometry (GC/MS) technique (quartz filters).VOC emissions from condensate tanks were largely low molecular weight hydrocarbons, however these tanks were enhancing local benzene concentrations mostly through malfunctioning valves. PAH concentrations were low (in pg m-3 range) but the average PAH concentration profiles (higher fraction of methylated PAHs) indicated an influence of compressor engine exhausts and increased diesel transportation traffic. These measurements, however, only represent a small 'snap-shot' of the overall emissions picture from this area. For instance during this one month study, the compressor station was predominantly downwind of the community and this may not be the case in other times of the year. Long-term study of these systems, especially in areas that have yet to experience this type of exploration, but will in the future, is needed to truly evaluate the air impacts of unconventional natural gas development.

  11. Ionic liquid-mediated molecularly imprinted solid-phase extraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol in vegetables.

    PubMed

    Yan, Hongyuan; Sun, Ning; Han, Yehong; Yang, Chen; Wang, Mingyu; Wu, Ruijun

    2013-09-13

    New ionic liquid-mediated molecularly imprinted polymers (IL-MIPs) were prepared by precipitation polymerization using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM(+)PF6(-)) as the auxiliary solvent, ?-chloro-DDT as the dummy template, and they were successfully applied as the sorbents of solid-phase extraction (SPE) for rapid screening of dicofol from cabbage, tomato, and carrot samples. The IL-MIPs were characterized by FTIR, FE-SEM, static adsorption and chromatographic evaluation, and the results revealed that the IL-MIPs had higher adsorption capacity and selectivity to dicofol in aqueous solution than that of ionic liquid-mediated non-imprinted polymers (IL-NIPs) and non-imprinted polymers (NIPs). Under the optimized conditions, the IL-MIPs-SPE-GC method offered good linearity (0.4-40.0ngg(-1), r(2)=0.9995) and the average recoveries of dicofol at three spiked levels were in a range of 84.6-104.1% (n=3) with RSD?7.6%. The proposed method obviously improved the selectivity and purification effect, and eliminated the effect of template leakage on dicofol quantitative analysis. PMID:23932224

  12. Gas chromatography-electron ionization mass spectrometry and liquid chromatography-electrospray tandem mass spectrometry for determination of impurities in the anti-cancer drug isophosphoramide mustard

    NASA Astrophysics Data System (ADS)

    Cole, Richard B.; Chou, Chau-Wen; Boué, Stephen M.; Leblanc, Blaise W.; Rodgers, Andrew H.; Struck, Robert F.; Morgan, Lee Roy

    2004-02-01

    Isophosphoramide mustard (IPM) is known to have substantial anti-cancer activities in various animal models. Liquid chromatography-electrospray mass spectrometry (LC-ES-MS) and LC-ES-MS/MS methodologies have been developed and applied to the analysis of synthesized preparations of IPM. Our studies reveal that the principal impurity in IPM is N-(2-chloroethyl)-N'-ethylphosphorodiamidic acid (MC-IPM) formed by dehydrochlorination of IPM with subsequent hydrogenation during synthesis. This impurity is present at levels in the range of 2-5% depending upon synthesis conditions. In addition, a second IPM derivative has been characterized by LC-ES-MS/MS and has been shown to be the product of a reaction of IPM with the dilute perchloric acid mobile phase used for liquid chromatography separations. The LC-ES-MS/MS method has been successfully employed to detect IPM spiked into a blood plasma sample. This work establishes that LC-ES-MS/MS is a viable tool for the detailed characterization of IPM and related products.

  13. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    PubMed

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution. PMID:22916444

  14. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with compost production and application can exceed life cycle emissions, potentially leading to a net reduction in GHG emissions of over 20 Mg CO2e per hectare of treated land. If similar results could be obtained in only 5% of California's 2,550,000 ha of rangeland, compost amendment application could offset the annual emissions of the California agriculture and forestry industries (> 28.25 million Mg CO2e, California Air Resources Board, 2008). Our findings indicate that application of compost amendments to grasslands may be an effective, beneficial, and relatively inexpensive strategy to contribute to climate change mitigation.

  15. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    E-print Network

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

  16. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    PubMed

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar, cameras, acoustic recordings, and telemetry, hold promise for continuous monitoring. Recommendations are provided for a rigorous and comprehensive monitoring approach within an adaptive management framework. PMID:25261750

  17. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  18. ASSESSMENT OF THE IMPACT OF TOA PARTITIONING ON DWPF MELTER OFF-GAS FLAMMABILITY

    SciTech Connect

    Daniel, G.

    2013-06-18

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar? L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  19. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    PubMed

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE. PMID:12269661

  20. Impact of Salinity on the Air-Water Partition Coefficient of Gas Tracers

    SciTech Connect

    Zhong, Lirong; Pope, Gary A.; Evans, John C.; Cameron, Richard J.

    2005-09-01

    The use of a gas partitioning interwell tracer test (PITT) has been proposed as a standard approach to the measurement of field-scale vadose zone water saturation fractions. The accuracy of the saturation measurement is largely dependent on the determination of the air-water partitioning coefficient, K, of the tracers; however, in practice, K is also strongly influenced by the physical and chemical properties of the water. In this study, column tests were conducted to investigate the impact of salinity on tracer partitioning coefficients for two promising gas phase candidate tracers, dibromomethane and dimethylether. Sodium thiosulfate was used as a salinity surrogate. The dynamic K values of the two partitioning tracers were measured for sodium thiosulfate concentrations between 0% and 36% by weight. Methane was used as the non-partitioning tracer for all experiments. K values were found to decrease significantly with increasing sodium thiosulfate concentration. Similar correlations between K values and sodium thiosulfate concentration were found for both of the partitioning tracers tested.

  1. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Astrophysics Data System (ADS)

    Jones, J. A.

    1983-06-01

    In the Space Telecope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  2. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  3. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. PMID:21735543

  4. Sulfur Isotopes in Gas-rich Impact-Melt Glasses in Shergottites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Hoppe, P.; Sutton, S. R.; Nyquist, Laurence E.; Huth, J.

    2010-01-01

    Large impact melt glasses in some shergottites contain huge amounts of Martian atmospheric gases and they are known as gas-rich impact-melt (GRIM) glasses. By studying the neutron-induced isotopic deficits and excesses in Sm-149 and Sm-150 isotopes resulting from Sm-149 (n,gamma) 150Sm reaction and 80Kr excesses produced by Br-79 (n,gamma) Kr-80 reaction in the GRIM glasses using mass-spectrometric techniques, it was shown that these glasses in shergottites EET79001 and Shergotty contain regolith materials irradiated by a thermal neutron fluence of approx.10(exp 15) n/sq cm near Martian surface. Also, it was shown that these glasses contain varying amounts of sulfates and sulfides based on the release patterns of SO2 (sulfate) and H2S (sulfide) using stepwise-heating mass-spectrometric techniques. Furthermore, EMPA and FE-SEM studies in basaltic-shergottite GRIM glasses EET79001, LithB (,507& ,69), Shergotty (DBS I &II), Zagami (,992 & ,994) showed positive correlation between FeO and "SO3" (sulfide + sulfate), whereas those belonging to olivine-phyric shergottites EET79001, LithA (,506, & ,77) showed positive correlation between CaO/Al2O3 and "SO3".

  5. Status of Alaskan gas reserves and their potential impact on the US and Canada

    Microsoft Academic Search

    Simasko

    1980-01-01

    The American Gas Association estimates that proved reserves of gas in the US at year end, 1979, were 194.9 TCF. As of January 1, 1979, the Alaska Oil and Gas Conservation Commission estimates that there are at least 33.7 TCF of proven recoverable gas reserves in the state of Alaska. Slightly less than 85% of the proven gas reserves in

  6. Potential of Best Practice to Reduce Impacts from Oil and Gas Projects in the Amazon

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Powers, Bill

    2013-01-01

    The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation. PMID:23650541

  7. Potential of best practice to reduce impacts from oil and gas projects in the Amazon.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Powers, Bill

    2013-01-01

    The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation. PMID:23650541

  8. Impacts of High-Pressure Diecasting Process Parameters on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gunasegaram, D. R.; Tharumarajah, A.

    2009-08-01

    The impacts of some high-pressure diecasting (HPDC) process parameters on greenhouse gas (GHG) emissions are quantified using life cycle analysis (LCA) for both aluminum and magnesium alloys. The study was conducted according to ISO 14040 standards and was based on an automotive component made on cold-chamber HPDC machines operating in typical mass production environments. The aluminum alloy foundry was located in Australia; the magnesium alloy foundry was located in the United States. In both cases, emissions were found to reduce with an increasing HPDC process yield. However, yield variations had only a modest impact on GHG emissions in the aluminum alloy HPDC, due to the excellent in-plant recycling of the alloy and the relatively low emissions from primary aluminum production compared with primary magnesium production. In contrast, for the magnesium alloy, significant reductions in emissions were recorded as the yield increased. This outcome was attributed to the considerable savings achieved in raw material quantities sourced from high-emitting primary production and the use of lower amounts of SF6, a GHG with a very high global warming potential (GWP). These results were found to hold irrespective of changes to the ratio between the primary and secondary alloys in the raw material mix, although the magnitude of the impact was reduced considerably with reductions in the primary alloy component. In the case of the magnesium alloy HPDC, decreases in quality assurance (QA) rejects and cycle times were also found to contribute toward reduced emissions, although their influences were an order of magnitude lower than that of the yield improvements.

  9. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production. PMID:25562933

  10. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies.

    PubMed

    Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A

    2014-10-01

    The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 ?g/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs. PMID:25203743

  11. A Framework to Predict the Impacts of Shale Gas Infrastructures on the Forest Fragmentation of an Agroforest Region

    NASA Astrophysics Data System (ADS)

    Racicot, Alexandre; Babin-Roussel, Véronique; Dauphinais, Jean-François; Joly, Jean-Sébastien; Noël, Pascal; Lavoie, Claude

    2014-05-01

    We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13-21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.

  12. A framework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region.

    PubMed

    Racicot, Alexandre; Babin-Roussel, Véronique; Dauphinais, Jean-François; Joly, Jean-Sébastien; Noël, Pascal; Lavoie, Claude

    2014-05-01

    We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13-21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions. PMID:24554146

  13. Hurricane Andrew's impact on natural gas and oil facilities on the outer continental shelf (interim report as of November 1993)

    Microsoft Academic Search

    Daniels

    1994-01-01

    The interim report reviews Hurricane Andrew's impact on Federal Outer Continental Shelf (OCS) natural gas and oil drilling and production facilities. The report provides background on Hurricane Andrew's progression, discusses how OCS operators responded to the storm, summarizes the types of damage to offshore facilies caused by Hurricane Andrew, and discusses Minerals Management Service's continuing damage assessment and repair efforts.

  14. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the eagle ford shale.

    PubMed

    Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T

    2015-03-17

    The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis. PMID:25723953

  15. The impacts of nitrous oxide gas on sleep quality during alcohol withdrawal

    PubMed Central

    2011-01-01

    Background Poor quality of sleep among alcoholics and persons undergoing alcohol withdrawal has been described as a possible cause of alcohol relapse. It has been suggested earlier that nitrous oxide gas has a significant effect on the signs of alcohol withdrawal syndrome (AWS) and thus might be expected to reduce sleep disturbance during withdrawal. The aim of the present study was to investigate sleep quality during alcohol withdrawal, to evaluate the correlation between sleep quality and the severity of AWS and alcohol craving, and to determine if nitrous oxide treatment does counteract withdrawal's effects on the quality of sleep. Voluntary patients (n = 105) admitted to the A-Clinic detoxification center with AWS were included in the study. The AWS patients were randomly assigned to one of the following 45-minute gas treatments: (1) nitrous oxide/oxygen; (2) normal air/O2; and (3) medical (normal) air. The study was single-blind by design. Sleep quality was assessed after these treatments during the inpatient period; sleep time, sleep efficiency and the fragmentation of sleep were recorded by wrist-worn actigraphs. Severity of AWS was evaluated by the Clinical Institute Withdrawal Assessment of Alcohol Scale (CIWA-Ar) and that of alcohol dependence and craving by the Obsessive Compulsive Drinking Scale [OCDS] and the Severity of Alcohol Dependence Data (SADD) questionnaire. Results The fragmentation index and the time awake while in bed were both much above the reference values for the Finnish population. These values reflect the restless and disturbed night sleep of the subjects. The only statistically significant effects between the treatment groups were found in the correlations of CIWA-Ar (severity of AWS) scores, OCDS-scores (alcohol craving) and coffee consumption, all of which were positively associated with movement time and negatively with total sleep time and sleep efficiency. The sleep quality of patients treated with nitrous oxide gas did not differ from the sleep quality of those treated with normal air. Conclusions The severity of AWS and coffee consumption had the most significant negative impact on sleep quality. According to our results, nitrous oxide gas does not differ from placebo in its effect on sleep quality during alcohol withdrawal. PMID:21470436

  16. Modeling of Future-Year Emissions Control Scenarios for the Lower Fraser Valley: Impacts of Natural Gas and Propane Vehicle Technologies

    Microsoft Academic Search

    M. Hedley; W. Jiang; R. McLaren; D. L. Singleton

    1998-01-01

    The MC2-CALGRID photochemical modeling system is used to simulate the impact of two fuel substitution scenarios on ozone levels for a future year in the Lower Fraser Valley of British Columbia, Canada. The relative impacts of selected natural gas and propane vehicle technologies are compared for the year 2005. The chosen natural gas technology imposes large reductions in nonmethane hydrocarbon

  17. Greenhouse Gas and Particulate Emissions and Impacts from Cooking Technologies in Africa

    NASA Astrophysics Data System (ADS)

    Kammen, D. M.; Bailis, R.; Kituyi, E.; Ezzati, M.

    2003-12-01

    In much of Africa, the largest fraction of energy consumption occurs within the residential sector and is derived primarily from woodfuels burned in simple stoves with poor combustion characteristics. Many of the products of incomplete combustion (PICs) are damaging to human health, particularly when they are concentrated in poorly ventilated indoor environments. Incomplete combustion also has potentially harmful impacts on the climate. Prevalent PICs include methane, a potent greenhouse gas (GHG) that is among the pollutants subject to controls under the Kyoto Protocol as well as carbon monoxide (CO), non-methane hydrocarbons (NMHCs) and particulate matter (PM), which can all have an effect on climate, but are not subject to controls under Kyoto. In addition, when woodfuels are used at a rate that reduces standing stocks of trees over the medium or long term, the CO2 released by combustion also has an impact. The choice of stove and fuel technology can have a significant impact on the emission of GHGs as well as on human exposure to health damaging pollutants. In this paper we analyze the emissions of different household energy technologies on a life-cycle basis. We use emission factors to estimate the emissions associated with production, distribution and end-use of common household fuels and assess the likely impacts of these emissions on public health and the global environment. We focus largely on charcoal, a popular fuel in many sub-Saharan African countries. Charcoal is produced by heating wood in the absence of sufficient air for complete combustion to occur. This process removes moisture and most of the volatile compounds. The compounds driven off in the process consist of condensable tars as well as many gaseous hydrocarbons, including ~40 g CH4 per kg of charcoal produced. Combining upstream and end-use emissions, every meal cooked with charcoal has 2-10 times the global warming effect of cooking the same meal with firewood and 5-12 times the effect of cooking the same meal with LPG or kerosene. When charcoal is produced in large quantities, as it is in Africa, the net warming effect can exceed the impact from the "modern energy sector" (transportation and industry) by 50-100 percent, even if charcoal is produced on a sustainable cycle so that all of the wood harvested for charcoal production is allowed to regenerate. However, while charcoal may be worse than firewood with respect to greenhouse gas emissions, it is an improvement with respect to exposure to health damaging pollutants, particularly particulate matter (PM). Levels of PM in households using charcoal are over 90 percent lower than households using open wood fires (316 -(159) mg/m3 for households using charcoal in a common improved stove compared to 3764 (360) mg/m3) for households using wood in open fires: mean (standard error)). These differences in exposure are consistent with 30 and 50 percent reductions in the incidence of acute respiratory infection (ARI) in adults and children under 5 respectively. Reconciling the costs and benefits of different household energy technologies creates a difficult policy challenge, particularly with the severe budgetary and resource constraints that household consumers and government agencies face in sub-Saharan Africa.

  18. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach

    SciTech Connect

    Amy Childers

    2011-03-30

    Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

  19. Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage

    SciTech Connect

    Livingston, Olga V.; Cort, Katherine A.

    2011-03-03

    This analysis examines the relationship between energy demand and residential building attributes, demographic characteristics, and behavioral variables using the U.S. Department of Energy’s Residential Energy Consumption Survey 2005 microdata. This study investigates the applicability of the smooth backfitting estimator to statistical analysis of residential energy consumption via nonparametric regression. The methodology utilized in the study extends nonparametric additive regression via local linear smooth backfitting to categorical variables. The conventional methods used for analyzing residential energy consumption are econometric modeling and engineering simulations. This study suggests an econometric approach that can be utilized in combination with simulation results. A common weakness of previously used econometric models is a very high likelihood that any suggested parametric relationships will be misspecified. Nonparametric modeling does not have this drawback. Its flexibility allows for uncovering more complex relationships between energy use and the explanatory variables than can possibly be achieved by parametric models. Traditionally, building simulation models overestimated the effects of energy efficiency measures when compared to actual "as-built" observed savings. While focusing on technical efficiency, they do not account for behavioral or market effects. The magnitude of behavioral or market effects may have a substantial influence on the final energy savings resulting from implementation of various energy conservation measures and programs. Moreover, variability in behavioral aspects and user characteristics appears to have a significant impact on total energy consumption. Inaccurate estimates of energy consumption and potential savings also impact investment decisions. The existing modeling literature, whether it relies on parametric specifications or engineering simulation, does not accommodate inclusion of a behavioral component. This study attempts to bridge that gap by analyzing behavioral data and investigate the applicability of additive nonparametric regression to this task. This study evaluates the impact of 31 regressors on residential natural gas usage. The regressors include weather, economic variables, demographic and behavioral characteristics, and building attributes related to energy use. In general, most of the regression results were in line with previous engineering and economic studies in this area. There were, however, some counterintuitive results, particularly with regard to thermostat controls and behaviors. There are a number of possible reasons for these counterintuitive results including the inability to control for regional climate variability due to the data sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the fact that not all relevant behavioral variables were included in the data set, so we were not able to control for them in the study. The results of this analysis could be used as an in-sample prediction for approximating energy demand of a residential building whose characteristics are described by the regressors in this analysis, but a certain combination of their particular values does not exist in the real world. In addition, this study has potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of this study contain information on how natural gas consumption might change once a particular characteristic or attribute is altered. Finally, the results of this study can help establish a relationship between natural gas consumption and changes in behavior of occupants.

  20. The Spatial and Temporal Consumptive Water Use Impacts of Rapid Shale Gas Development and Use in Texas

    NASA Astrophysics Data System (ADS)

    Pacsi, A. P.; Allen, D.

    2013-12-01

    Over the past several years, the development of shale gas resources has proceeded rapidly in many areas of the United States, and this shale gas development requires the use of millions of gallons of water, per well, for hydraulic fracturing. Recent life cycle assessments of natural gas from shale formations have calculated the potential for water use reduction when water use is integrated along the entire natural gas supply chain, if the shale gas is used in natural-gas power plants to displace coal-fired electricity generation. Actual grid operation, however, is more complicated and would require both that sufficient unused natural gas generation capacity exists for the displacement of coal-fired power generation and that the natural gas price is low enough that the switching is financially feasible. In addition, water savings, which would occur mainly from a reduction in the cooling water demand at coal-fired power plants, may occur in different regions and at different times than water used in natural gas production. Thus, consumptive water impacts may be spatial and temporally disparate, which is not a consideration in current life-cycle literature. The development of shale gas resources in Texas in August 2008 through December 2009 was chosen as a case study for characterizing this phenomenon since Texas accounted for two-thirds of the shale gas produced in the United States during this period and since the price of natural gas for electricity generation dropped significantly over the episode. Changes to the Texas self-contained electric grid (ERCOT) for a scenario with actual natural gas production and prices was estimated using a constrained grid model, rather than assuming that natural gas generation would displace coal-fired power plant usage. The actual development scenario was compared to an alternative development scenario in which natural gas prices remained elevated throughout the episode. Upstream changes in water consumption from lignite (coal) mining and natural gas production in Texas were also estimated, and water consumption was aggregated by river basin for spatial resolution. Temporal results indicated that the development of shale gas resources during the episode led to a net reduction in consumptive water use in Texas but that a lag time existed before the water use in natural gas production regions was offset by changes in the electricity generation and lignite mining sectors. The water impact on specific river basins in production regions was varied. Some river basins had sufficient changes in coal-fired power plant generation to offset increased water use in shale gas production and for cooling at natural-gas fired power plants, while others did not. Thus, some areas have likely experienced increased water use due to shale gas production despite overall reductions in life-cycle consumptive water use in the state. The largest consumptive water use increase for a river basin, however, was less than 1% of its total water consumption.

  1. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  2. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii

    SciTech Connect

    Sutton, A.J.; Elias, T. [Minerals Management Service, Menlo Park, CA (United States); Navarrete, R. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

    1994-12-31

    Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambient air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.

  3. Quantitative fluid inclusion gas analysis of airburst, nuclear, impact and fulgurite glasses.

    SciTech Connect

    Parnell, John (University of Aberdeen, Aberdeen, UK); Newsom, Horton E. (University of New Mexico, Albuquerque, NM); Blamey, Nigel J. F. (New Mexico Tech, Socorro, NM); Boslough, Mark Bruce Elrick

    2010-10-01

    We present quantitative fluid inclusion gas analysis on a suite of violently-formed glasses. We used the incremental crush mass spectrometry method (Norman & Blamey, 2001) to analyze eight pieces of Libyan Desert Glass (LDG). As potential analogues we also analyzed trinitite, three impact crater glasses, and three fulgurites. The 'clear' LDG has the lowest CO{sub 2} content and O{sub 2}/Ar ratios are two orders of magnitude lower than atmospheric. The 'foamy' glass samples have heterogeneous CO{sub 2} contents and O{sub 2}/Ar ratios. N{sub 2}/Ar ratios are similar to atmospheric (83.6). H{sub 2} and He are elevated but it is difficult to confirm whether they are of terrestrial or meteoritic origin. Combustion cannot account for oxygen depletion that matches the amount of CO{sub 2} produced. An alternative mechanism is required that removes oxygen without producing CO{sub 2}. Trinitite has exceedingly high CO{sub 2} which we attribute to carbonate breakdown of the caliche at ground zero. The O{sub 2}/Ar ratio for trinitite is lower than atmospheric but higher than all LDG samples. N{sub 2}/Ar ratios closely match atmospheric. Samples from Lonar, Henbury and Aouelloul impact craters have atmospheric N{sub 2}/Ar ratios. O{sub 2}/Ar ratios at Lonar and Henbury are 9.5 to 9.9 whereas the O{sub 2}/Ar ratio is 0.1 for the Aouelloul sample. In most fulgurites the N{sub 2}/Ar ratio is higher than atmospheric, possibly due to interference from CO. Oxygen ranges from 1.3 to 19.3%. Gas signatures of LDG inclusions neither match those from the craters, trinitite nor fulgurites. It is difficult to explain both the observed depletion of oxygen in the LDG and a CO{sub 2} level that is lower than it would be if the CO{sub 2} were simply a product of hydrocarbon combustion in air. One possible mechanism for oxygen depletion is that as air turbulently mixed with a hot jet of vaporized asteroid from an airburst and expanded, the atmospheric oxygen reacted with the metal vapor to form metal oxides that condensed. This observation is compatible with the model of Boslough & Crawford (2008) who suggest that an airburst incinerates organic materials over a large area, melting surface materials that then quench to form glass. Bubbles would contain a mixture of pre-existing atmosphere with combustion products from organic material and products of the reaction between vaporized cosmic materials (including metals) and terrestrial surface and atmosphere.

  4. Electron Impact Excitation of Metastable Rare-Gas Atoms with Applications to Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Jung, Ryan O.

    Electron-impact excitation of metastable rare-gas atoms is important for both understanding fundamental collision processes as well as for applications to gaseous discharges and plasmas. The electronic structure of the rare-gases provides a vast array of excited levels and excitation processes to study. In this work, over 38 individual cross sections for excitation out of the metastable levels in three rare-gases (Ar, Kr, and Xe) are measured via the optical method. For these experiments, a hollow cathode discharge provides a robust source of metastable atoms, which are excited by a well characterized mono-energetic electron beam (2-10 eV). The resulting electron impact excitation cross sections demonstrate a wide range of magnitudes and a variety of excitation function shapes, which are interpreted in relation to the angular momentum coupling of the initial and final energy levels. From this systematic study of the rare-gases, a few general patterns have emerged, which are valuable for estimating cross sections for which no experimental data is available. Electron excitation of metastable atoms plays an important role in low-temperature plasmas. In particular, our cross section results indicate that certain excited levels are populated more readily by excitation from metastable levels than by excitation from the ground state. Thus the optical emissions from such excited levels provide a sensitive test of the low energy region of the electron energy distribution function (eedf) within a plasma. To explore this aspect, optical emission spectra generated by Ne plasmas were experimentally measured in an inductively coupled plasma source (ICP) under a variety of experimental conditions and also calculated using a simple optical emission model. This emission model combines our experimentally measured excitation cross sections with experimentally measured number densities of excited species within the ICP, and yields an estimate of the eedf in the plasma, which is then compared to the eedf measured by an electrical probe.

  5. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario). PMID:19943683

  6. Characterization of VOCs Across Pennsylvania: Assessing Emissions from Rural, Forested, Agricultural and Natural Gas Drilling-Impacted Areas

    NASA Astrophysics Data System (ADS)

    Grannas, A. M.; Fuentes, J. D.; Ramos-Garcés, F.; Wang, D. K.; Martins, D. K.

    2012-12-01

    Volatile organic compounds (VOCs) of both biogenic and anthropogenic origin are important to troposphere chemistry, particularly the formation of photochemical smog and secondary organic aerosol. There is concern that increased natural gas exploration may lead to increased emissions of certain VOCs during well development and due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, a variety of VOCs were measured using canister sampling from a mobile measurement platform. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and gas well-impacted sites. As expected, biogenic VOCs and isoprene oxidation products were enhanced in forested regions, while anthropogenic non-methane hydrocarbons were enhanced in urban areas. BTEX (benzene, toluene, ethylbenzene and xylenes) was enhanced in urban areas, but the concentrations of BTEX measured near developing and existing natural gas sites were similar to rural and forested sites. Halogenated hydrocarbons and Freon compounds were consistent at all site locations. We will discuss the specific concentrations and signatures of these compounds and assess the potential impact of agricultural activities and gas well development on the observed VOC concentrations and variability.

  7. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi.

    PubMed

    Reynolds, Conor C O; Kandlikar, Milind

    2008-08-15

    Between 2001 and 2003, public transport vehicles in New Delhi were required to switch their fuel to natural gas in an attemptto reduce their air pollution impacts. This study examines the climatic impacts of New Delhi's fuel switching policy, and outlines implications for such efforts in rapidly industrializing countries. Natural gas is mostly composed of methane, an important greenhouse gas. Emitted aerosols (black carbon, particulate organic carbon, and sulfate) also cause radiative forcing. We find that methane and black carbon emissions are critical contributors to the change in carbon dioxide equivalent [CO2(e)] emissions. In New Delhi, the switch to natural gas results in a 30% increase in CO2(e) when the impact of aerosols is not considered. However, when aerosol emissions are taken into account in our model, the net effect of the switch is estimated to be a 10% reduction in CO2(e), and there may be as much as a 30% reduction in CO2(e). There is significant potential for emissions reductions through the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism for such fuel switching projects. PMID:18767636

  8. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    SciTech Connect

    Tegen, S.

    2006-05-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  9. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint

    SciTech Connect

    Tegen, S.

    2005-08-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  10. Using biodiversity methods to assess the impacts of oil and gas development in tropical rain forests

    SciTech Connect

    Reagan, D.P.; Silva del Poso, X. [Woodward-Clyde Consultants, Denver, CO (United States)]|[Sociedad Entomologica Ecuatoriana, Quito (Ecuador)

    1995-06-01

    Oil and gas development in tropical rain forests has attracted international attention because of the potentially adverse effects on the forest ecosystems. Biodiversity is a topic of particular concern, but is difficult to assess for small areas of disturbance. In July 1992 we used light traps to compare insect diversity at canopy and ground level as a means of detecting the impacts of an exploratory well site and related facilities within mature Amazonian rain forest in the Oriente Province of Ecuador. Replicate samples were collected at the well site, in a nearby area of agricultural development, and in a reference site within mature forest. Species richness was determined, and diversity indices were calculated for each set of samples. Results indicated that changes in diversity could be detected in the canopy and at ground level at the well site, but that the reduction in diversity was small. Biological diversity was substantially reduced in the area of agricultural development. Limitations and possible applications of this approach are discussed.

  11. Modeling impacts of farming management practices on greenhouse gas emissions in the oasis region of China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sun, G. J.; Zhang, F.; Qi, J.; Zhao, C. Y.

    2011-08-01

    Agricultural ecosystems are major sources of greenhouse gas (GHG) emissions, specifically nitrous oxide (N2O) and carbon dioxide (CO2). An important method of investigating GHG emissions in agricultural ecosystems is model simulation. Field measurements quantifying N2O and CO2 fluxes were taken in a summer maize ecosystem in Zhangye City, Gansu Province, in northwestern China in 2010. Observed N2O and CO2 fluxes were used for validating flux predictions by a DeNitrification-DeComposition (DNDC) model. Then sensitivity tests on the validated DNDC model were carried out on three variables: climatic factors, soil properties and agricultural management. Results indicated that: (1) the factors that N2O emissions were sensitive to included nitrogen fertilizer application rate, manure amendment and residue return rate; (2) CO2 emission increased with increasing manure amendment, residue return rate and initial soil organic carbon (SOC); and (3) net global warming potential (GWP) increased with increasing N fertilizer application rate and decreased with manure amendment, residue return rate and precipitation increase. Simulation of the long-term impact on SOC, N2O and net GWP emissions over 100 yr of management led to the conclusion that increasing residue return rate is a more efficient method of mitigating GHG emission than increasing fertilizer N application rate in the study area.

  12. Modeling impacts of farming management practices on greenhouse gas emissions in the oasis region of China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sun, G. J.; Zhang, F.; Qi, J.; Feng, Z. D.; Zhao, C. Y.

    2011-03-01

    Agricultural ecosystems are major sources of greenhouse gas (GHG) emissions, specifically nitrous oxide (N2O) and carbon dioxide (CO2). An important method of researching GHG emissions in agricultural ecosystems is model simulation. Field measurements quantifying N2O and CO2 fluxes were taken in a summer maize ecosystem in Zhangye City, Gansu Province, in northwestern China in 2010. Observed N2O and CO2 fluxes were used for validating flux predictions by a DeNitrification-DeComposition (DNDC) model. Then the validated DNDC model was used for sensitivity tests on three variables under consideration: climatic factors, soil properties, and agricultural management. Results indicate that: (1) the factors that N2O emissions are most sensitive to nitrogen fertilizer application rate, manure amendment and residue return rate; (2) CO2 emission increases with increasing manure amendment, residue return rate and initial soil organic carbon (SOC); and (3) net global warming potential (GWP) increases with increasing N fertilizer application rate and decreases as manure amendment, residue return rate and precipitation increase. Simulation of the long-term impact on SOC, N2O and net GWP emissions over 100 yr of management led to the conclusion that increasing residue return rate is a more efficient method of mitigating GHG emission than increasing fertilizer N application rate in the study area.

  13. Impact of policy on greenhouse gas emissions and economics of biodiesel production.

    PubMed

    Olivetti, Elsa; Gül?en, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph

    2014-07-01

    As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions. PMID:24828402

  14. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    NASA Astrophysics Data System (ADS)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent years has the potential to influence greenhouse gas exchange across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in sea ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower sea ice extent on Arctic greenhouse gas exchange. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C.: High risk of permafrost thaw, Nature, 480(7375), 32-33, 2011. Screen, J. A., Deser, C. and

  15. 78 FR 62012 - Transcontinental Gas Pipeline Company; Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-11

    ...to deliver natural gas from Transco's existing...compression at its existing Compressor Station 195 in York...three existing natural gas-fired reciprocating engines and appurtenant...compression at its existing Compressor Station 205 in...

  16. Putting downward pressure on natural gas prices: The impact of renewable energy and energy efficiency

    Microsoft Academic Search

    Ryan Wiser; Mark Bolinger; Matthew St. Clair

    2004-01-01

    Increased deployment of renewable energy (RE) and energy efficiency (EE) is expected to reduce natural gas demand and in turn place downward pressure on gas prices. A number of recent modeling studies include an evaluation of this effect. Based on data compiled from those studies summarized in this paper, each 1% reduction in national natural gas demand appears likely to

  17. The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands.

    PubMed

    Mander, Ülo; Maddison, Martin; Soosaar, Kaido; Teemusk, Alar; Kanal, Arno; Uri, Veiko; Truu, Jaak

    2015-02-01

    Floods control greenhouse gas (GHG) emissions in floodplains; however, there is a lack of data on the impact of short-term events on emissions. We studied the short-term effect of changing groundwater (GW) depth on the emission of (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in two riparian grey alder (Alnus incana) stands of different age in Kambja, southern Estonia, using the opaque static chamber (five replicates in each site) and gas chromatography methods. The average carbon and total nitrogen content in the soil of the old alder (OA) stand was significantly higher than in the young alder (YA) stand. In both stands, one part was chosen for water table manipulation (Manip) and another remained unchanged with a stable and deeper GW table. Groundwater table manipulation (flooding) significantly increases CH4 emission (average: YA-Dry 468, YA-Manip 8,374, OA-Dry 468, OA-Manip 4,187 ?g C m(-2) h(-1)) and decreases both CO2 (average: OA-Dry 138, OA-Manip 80 mg C m(-2) h(-1)) and N2O emissions (average: OA-Dry 23.1, OA-Manip 11.8 ?g N m(-2) h(-1)) in OA sites. There was no significant difference in CO2 and CH4 emissions between the OA and YA sites, whereas in OA sites with higher N concentration in the soil, the N2O emission was significantly higher than at the YA sites. The relative CO2 and CH4 emissions (the soil C stock-related share of gaseous losses) were higher in manipulated plots showing the highest values in the YA-Manip plot (0.03 and 0.0030 % C day(-1), respectively). The soil N stock-related N2O emission was very low achieving 0.000019 % N day(-1) in the OA-Dry plot. Methane emission shows a negative correlation with GW, whereas the 20 cm depth is a significant limit below which most of the produced CH4 is oxidized. In terms of CO2 and N2O, the deeper GW table significantly increases emission. In riparian zones of headwater streams, the short-term floods (e.g. those driven by extreme climate events) may significantly enhance methane emission whereas the long-term lowering of the groundwater table is a more important initiator of N2O fluxes from riparian gley soils than flood pulses. PMID:25124475

  18. Hurricane Andrew's impact on natural gas and oil facilities on the outer continental shelf (interim report as of November 1993)

    SciTech Connect

    Daniels, G.R.

    1994-01-01

    The interim report reviews Hurricane Andrew's impact on Federal Outer Continental Shelf (OCS) natural gas and oil drilling and production facilities. The report provides background on Hurricane Andrew's progression, discusses how OCS operators responded to the storm, summarizes the types of damage to offshore facilies caused by Hurricane Andrew, and discusses Minerals Management Service's continuing damage assessment and repair efforts. The summaries of damage estimates are presented in tables in Appendix 1. A glossary of report terminology is provided in Appendix 2.

  19. Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts

    Microsoft Academic Search

    Hong Huo; Michael Wang; Xiliang Zhang; Kebin He; Huiming Gong; Kejun Jiang; Yuefu Jin; Yaodong Shi; Xin Yu

    2012-01-01

    We project the well-to-wheels (WTW) and tank-to-wheels (TTW) fossil-energy use, petroleum use, and greenhouse gas (GHG) emissions of the road-transport sector in China up to year 2050 and evaluate the effects of various potential policy options with the fuel economy and environmental impacts (FEEI) model (http:\\/\\/www.feeimodel.org\\/). The policies evaluated include (1) vehicle fuel-consumption improvements, (2) dieselization, (3) vehicle electrification, and

  20. Gas and Dust Imaging of the Inner Coma of 9P\\/Tempel 1 Before and After Impact

    Microsoft Academic Search

    Lucy-Ann A. McFadden; C. J. Crockett; D. D. Wellnitz; L. M. Feaga; M. F. A'Hearn; T. L. Farnham; O. Groussin; J. Y. Li; J. M. Sunshine; A. Delamere; K. P. Klaasen; C. M. Lisse; M. J. Belton

    2006-01-01

    The instrument platform on the Deep Impact spacecraft carried a medium resolution imager with a total of 9 filters. Five were designed for study of coma gases OH (309 nm), CN (387nm) and C2 (514nm) with two near-by continuum filters at 345 nm and 526 nm. The inner coma is characterized with respect to gas and dust and compared with

  1. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    NASA Astrophysics Data System (ADS)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs from the ICP use them to calculate the GHG emissions from the ICP. Energy outputs (as refined liquid fuel) range from 1.2 to 1.6 times the total primary energy inputs. Well-to-tank greenhouse gas emissions range from 30.6 to 37.1 gCeq./MJ of final fuel delivered, 21 to 47% larger than those from conventionally produced petroleum-based fuels.

  2. Impact of exploratory offshore drilling on benthic communities in the Minerva gas field, Port Campbell, Australia.

    PubMed

    Currie, D R; Isaacs, Leanne R

    2005-04-01

    Changes to benthic infauna caused by exploratory gas drilling operations in the Minerva field were examined experimentally using a BACI (before, after, control, impact) design. Analysis of 72 x 0.1 m2 Smith-McIntyre grab samples obtained from one pre-drilling and three post-drilling periods yielded a diverse fauna consisting of 196 invertebrate species and 5035 individuals. Changes to benthic community structure were assessed using ANOVA and nonmetric multidimensional scaling (MDS). The abundances of two common species (Apseudes sp. 1 and Prionospio coorilla) decreased significantly at the well-head site immediately after drilling. The size of these reductions in abundance ranged between 71% and 88%, and persisted for less than 4 months after drilling. A third common species (Katlysia sp. 1) increased in abundance 200 m east of the well-head following drilling. Most species occurred at densities too low to be analysed individually and so were pooled at higher taxonomic levels. Changes in the abundance of species aggregated by phylum varied, but significant declines in the most abundant phyla (Crustaceans and Polychaetes) of 45-73% were observed at all sites within a 100 m radius of the well-head following drilling. In most cases these changes became undetectable four months after drilling following species recruitments. MDS ordinations confirm that drilling related changes to benthic community structure are most pronounced at stations located closest to the well-head. Additionally, the ordinations indicate that modified communities persist at the well-head for more than 11 months following exploratory drilling. PMID:15465131

  3. Socioeconomic impacts of natural gas curtailments: a study of the textile industry in the southeastern United States. Final report

    SciTech Connect

    Jennings, D.M.

    1980-01-01

    A study was undertaken to identify the effects of fuel curtailments in the textile industry in North and South Carolina. Regional economic and social structures were affected with natural gas curtailments in 1976 and 1977. This document presents results of the effects of production shutdown resulting from the curtailments. Chapter II presents background information on the pipelines that service the region. Chapters III and IV describe the affected communities and the observed increase in government expenditures to counteract the impacts. Chapter V contains a complete list of textile plants in the study area that had to either work under abbreviated schedules or close entirely during the winter of 1976-1977. Attention was given to economic impacts at the industrial level that may have been attributable to the curtailment. Chapter VI covers these topics. In some instances, textile mills have relocated their plant facilities because they could not be guaranteed continuous fuel service at their original site. These data are the main concern of Chapter VII. Chapter VIII concentrates on social impacts; many facilities which provide services essential to human needs were subjected to gas curtailments so that the critical energy supplies could be diverted to industry. Chapter VIII also discusses an interesting geographic separation between social and economic impacts.

  4. Shale gas, wind and water: assessing the potential cumulative impacts of energy development on ecosystem services within the Marcellus play.

    PubMed

    Evans, Jeffrey S; Kiesecker, Joseph M

    2014-01-01

    Global demand for energy has increased by more than 50 percent in the last half-century, and a similar increase is projected by 2030. This demand will increasingly be met with alternative and unconventional energy sources. Development of these resources causes disturbances that strongly impact terrestrial and freshwater ecosystems. The Marcellus Shale gas play covers more than 160,934 km(2) in an area that provides drinking water for over 22 million people in several of the largest metropolitan areas in the United States (e.g. New York City, Washington DC, Philadelphia & Pittsburgh). Here we created probability surfaces representing development potential of wind and shale gas for portions of six states in the Central Appalachians. We used these predictions and published projections to model future energy build-out scenarios to quantify future potential impacts on surface drinking water. Our analysis predicts up to 106,004 new wells and 10,798 new wind turbines resulting up to 535,023 ha of impervious surface (3% of the study area) and upwards of 447,134 ha of impacted forest (2% of the study area). In light of this new energy future, mitigating the impacts of energy development will be one of the major challenges in the coming decades. PMID:24586599

  5. Shale Gas, Wind and Water: Assessing the Potential Cumulative Impacts of Energy Development on Ecosystem Services within the Marcellus Play

    PubMed Central

    Evans, Jeffrey S.; Kiesecker, Joseph M.

    2014-01-01

    Global demand for energy has increased by more than 50 percent in the last half-century, and a similar increase is projected by 2030. This demand will increasingly be met with alternative and unconventional energy sources. Development of these resources causes disturbances that strongly impact terrestrial and freshwater ecosystems. The Marcellus Shale gas play covers more than 160,934 km2 in an area that provides drinking water for over 22 million people in several of the largest metropolitan areas in the United States (e.g. New York City, Washington DC, Philadelphia & Pittsburgh). Here we created probability surfaces representing development potential of wind and shale gas for portions of six states in the Central Appalachians. We used these predictions and published projections to model future energy build-out scenarios to quantify future potential impacts on surface drinking water. Our analysis predicts up to 106,004 new wells and 10,798 new wind turbines resulting up to 535,023 ha of impervious surface (3% of the study area) and upwards of 447,134 ha of impacted forest (2% of the study area). In light of this new energy future, mitigating the impacts of energy development will be one of the major challenges in the coming decades. PMID:24586599

  6. The potential impact of renewable energy deployment on natural gas prices in New England

    Microsoft Academic Search

    Ryan Wiser; Mark Bolinger

    2004-01-01

    Concerns about the price and supply of natural gas have deepened in recent years both nationally and in New England. Renewable energy (RE) technologies can directly hedge natural gas price risk by reducing the need to purchase variable-price natural gas-fired electricity generation, and replacing that generation with fixed-price renewable electricity supply. In addition to its direct contribution to price stability,

  7. Regional air quality impacts of increased natural gas production and use in Texas.

    PubMed

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-01

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 ?g/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered. PMID:23441728

  8. A Study of the Impact of Variations on Aerodynamic Flow in Gas Turbine Engines via Monte-Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Ngo, Khiem Viet; Tumer, Irem Y.

    2003-01-01

    The unsteady compressible inviscid flow is characterized by the conservations of mass, momentum, and energy; or simply the Euler equations. In this paper, a study of the subsonic one-dimensional Euler equations with local preconditioning is presented with a modal analysis approach. Specifically, this study investigates the behavior of airflow in a gas turbine engine using the specified conditions at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine, under the impact of variations in pressure, velocity, temperature, and density at low Mach numbers. Two main questions that motivate this research are: 1) Is there any aerodynamic problem with the existing gas turbine engines that could impact aircraft performance? 2) If yes, what aspect of a gas turbine engine could be improved via design to alleviate that impact and to optimize aircraft performance. This paper presents an initial attempt to the flow behavior in terms (perturbation) using simulation outputs from a customer-deck model obtained from Pratt&Whitney, (i.e., pressure, temperature, velocity, density) about their mean states at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine. Flow behavior is analyzed for the high pressure compressor and combustion chamber employing the conditions on their left and right boundaries. In the same fashion, similar analyses are carried out for the high and low-pressure turbines. In each case, the eigenfrequencies that are obtained for different boundary conditions are examined closely based on their probabilistic distributions, a result of a Monte Carlo 10,000-sample simulation. Furthermore, the characteristic waves and eave response are analyzed and contrasted among different cases, with and without preconditioners. The results reveal the existence of flow instabilities due to the combined effect of variations and excessive pressures; which are clearly the case in the combustion chamber and high-pressure turbine. Finally a discussion is presented on potential impacts of the instabilities and what can be improved via design to alleviate them for a better aircraft performance.

  9. Impact

    NASA Technical Reports Server (NTRS)

    Snyder, R. G.

    1973-01-01

    Impact, emergency escape and crash survival protection are studied. Accleration, the G system of units, data interpretation, and human tolerance limits are summarized, along with physiological and biochemical response to impact. Biomechanical factors of impact are also cited.

  10. Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range

    SciTech Connect

    Tonse, S. R.; Singer, B. C.

    2011-07-01

    As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

  11. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    Microsoft Academic Search

    D. R. Blake; F. S. Rowland

    1995-01-01

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined

  12. Cropping System Impacts on Greenhouse Gas Emissions in the Cool, Humid Northeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating global greenhouse gas (GHG) emissions from agriculture requires regional measurements of different production systems. A long-term potato cropping systems experiment in Maine was designed to contribute to the USDA-ARS national project entitled Greenhouse Gas Reduction through Agricultural...

  13. Impact of oil and gas infrastructure development in La Manga Canyon, NM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    La Manga Canyon is a small watershed (~20km2) in the San Juan Basin that has historically been developed for natural gas and recently for coal bed methane. Since gas production began in the 1940s, an extensive network of dirt roads have transected the watershed, providing access to well sites. There...

  14. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  15. Possibility of Production of Amino Acids by Impact Reaction Using a Light-Gas Gun as a Simulation of Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Okochi, Kazuki; Mieno, Tetsu; Kondo, Kazuhiko; Hasegawa, Sunao; Kurosawa, Kosuke

    2015-03-01

    In order to investigate impact production of carbonaceous products by asteroids on Titan and other satellites and planets, simulation experiments were carried out using a 2-stage light gas gun. A small polycarbonate or metal bullet with about 6.5 km/s was injected into a pressurized target chamber filled with 1 atm of nitrogen gas, to collide with a ice + iron target or an iron target or a ice + hexane + iron target. After the impact, black soot including fine particles was deposited on the chamber wall. The soot was carefully collected and analyzed by High Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Laser Desorption Time-of-Flight Mass Spectrometry (LD-ToF-MS). As a result of the HPLC analysis, about 0.04-8 pmol of glycine, and a lesser amount of alanine were found in the samples when the ice + hexane + iron target was used. In case of the ice + iron target and the iron target, less amino acids were produced. The identification of the amino acids was also supported by FTIR and LD-ToF-MS analysis.

  16. Status of Alaskan gas reserves and their potential impact on the US and Canada

    SciTech Connect

    Simasko, D.

    1980-01-01

    The American Gas Association estimates that proved reserves of gas in the US at year end, 1979, were 194.9 TCF. As of January 1, 1979, the Alaska Oil and Gas Conservation Commission estimates that there are at least 33.7 TCF of proven recoverable gas reserves in the state of Alaska. Slightly less than 85% of the proven gas reserves in Alaska are contained within the Prudhoe Bay field. Reserves contained in the Kavik and Kemik fields also are located on the Artic Slope of Alaska. The reserves from these fields are undetermined since sufficient base data has not been adequately developed due to lack of immediate market. However, reliable sources indicate that the volume of reserves available from these 2 fields could be large enough that nearly 90% of the presently proven reserves of gas in the state are located in the Arctic Slope basin. The remainder of the proven gas reserves are located in the Cook Inlet basin in south-central Alaska.

  17. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ?60 mW m and ?70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  18. The impact of the Sarbanes Oxley Act on auditing fees: An empirical study of the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Ezelle, Ralph Wayne, Jr.

    2011-12-01

    This study examines auditing of energy firms prior and post Sarbanes Oxley Act of 2002. The research explores factors impacting the asset adjusted audit fee of oil and gas companies and specifically examines the effect of the Sarbanes Oxley Act. This research analyzes multiple year audit fees of the firms engaged in the oil and gas industry. Pooled samples were created to improve statistical power with sample sizes sufficient to test for medium and large effect size. The Sarbanes Oxley Act significantly increases a firm's asset adjusted audit fees. Additional findings are that part of the variance in audit fees was attributable to the market value of the enterprise, the number of subsidiaries, the receivables and inventory, debt ratio, non-profitability, and receipt of a going concern report.

  19. Bering Sea summary report: Outer Continental Shelf oil and gas activities in the Bering Sea and their onshore impacts

    SciTech Connect

    Deis, J.; Pierson, R.; Kurz, F.

    1983-09-01

    Two federal offshore oil-and-gas lease sales have been held in the Bering Sea Subregion. Lease Sale 57, Norton Basin, was held on March 15, 1983. Lease Sale 70, St. George Basin, was held on April 12, 1983. The sale offered 479 tracts, of which 97 received bids. The Department of the Interior has indicated that it will accept 96 of the 97 high bids; however, to date, leases have not been awarded. The Department of the Interior was enjoined from issuing leases by the US District Court of Alaska because of possible impacts from postlease preliminary seismic activities on gray and right whales. In accordance with the Court's ruling, leases cannot be issued until the completion of a supplemental environmental impact statement, which is anticipated to occur in November 1983. Six lease offerings in the Bering Sea Subregion are scheduled through 1987. Six deep stratigraphic test wells are the only wells drilled to date in the Bering Sea Subregion. To date, oil companies have not submitted exploration plans for the Norton Basin Planning Area. Exploration in Norton Basin could begin in the summer of 1984, at the earliest. Exploration plans cannot be submitted for the St. George Basin Planning Area until the leases are awarded. At this time, various onshore areas are being considered as possible support bases for offshore oil-and-gas exploration. At this stage, before exploratory drilling has occurred and in the absence of a commercial discovery, plans for transporting petroleum from the Bering Sea to markets in the United States are unclear. The current estimates of risked resources for lands leased in Lease Sale 57, Norton Basin, are 33 million barrels of oil and 110 billion cubic feet of gas. Lease Sale 70, St. George Basin, estimates of risked resources for leased lands are 27 million barrels of oil and 310 billion cubic feet of gas. 55 references, 10 figures, 3 tables.

  20. The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality

    E-print Network

    Baker, Justin Scott

    2012-10-19

    This dissertation explores the combined effects of biofuel mandates and terrestrial greenhouse gas GHG mitigation incentives on land use, management intensity, commodity markets, welfare, and the full costs of GHG abatement through conceptual...

  1. Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact

    E-print Network

    to petrophysical models for shale gas reservoirs based on sensitivity analysis of key variables 7 5 2 NE/M007235 of Leicester Embedding a petrophysical vocabulary and petrophysical concepts within the petroleum geoscience

  2. The Economic Impacts of the Pennsylvania Marcellus Shale Natural Gas Play: An Update

    E-print Network

    Timothy J. Considine, Ph.D.; Robert Watson, Ph.D.; Seth Blumsack Ph. D

    2010-01-01

    The authors of this study acknowledge that the Marcellus Shale Gas Coalition provided the funding for this study. Disclaimer This report was prepared as an account of work sponsored by the Marcellus Shale

  3. 78 FR 19444 - Pawnee National Grassland, Colorado; Oil and Gas Leasing Analysis Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ...single well pad rather than just one, as was most common in the past. The improvements in horizontal drilling and hydraulic fracturing technologies to improve the ability to access and recover oil and gas located deep underground from horizons...

  4. The Impact of Water Regulation on the Availability of Shale Gas Resources for Production

    NASA Astrophysics Data System (ADS)

    Victor, D. G.

    2011-12-01

    Visions for a large increase in North American production of natural gas from shale are based heavily on the sharp rise in the estimated available resource. Those estimates are prepared by looking at the underlying geology as well as the cost and availability of technologies for extracting gas. We add to that equation the potential current and future regulation of water injection (subsurface) and runoff (surface). Using the political science theory of "veto points" we show that US water legislation is organized in ways that allow for large numbers of political forces to block (or make costly) access to gas resources. By our estimate, 26% of the shale gas resource will be unavailable-a fraction that could rise if there are strong contagion effects as jurisdictions that have traditionally had industry-friendly regulatory systems apply much stricter rules. This work has potentially large implications for visions of the new natural gas revolution and the price of North American (and potentially world) natural gas.

  5. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  6. Structural determination of nerve agent markers using gas chromatography mass spectrometry after derivatization with 3-pyridyldiazomethane.

    PubMed

    Nyholm, Jenny Rattfelt; Gustafsson, Tomas; Östin, Anders

    2013-07-01

    Nerve agents are a class of organophosphorous chemicals that are prohibited under the Chemical Weapons Convention. Their degradation products, phosphonic acids, are analyzed as markers of nerve agent contamination and use. Because the phosphonic acids are non-volatile and very polar, their identification by GC-MS requires a derivatization step prior to analysis. Standard derivatization methods for gas-chromatography electron-impact mass-spectrometry analysis give very similar spectra for many alkyl phosphonic acid isomers, which complicates the identification process. We present a new reagent, 3-pyridyldiazomethane, for preparing picolinyl ester derivatives of alkyl methylphosphonic acids facilitating the determination of their structure by enhancing predictable fragmentation of the O-alkyl chain. This fragmentation is directed by the nitrogen nucleus of the pyridyl moiety that abstracts hydrogen from the O-alkyl chain, inducing radical cleavage of the carbon-carbon bonds and thereby causing extensive fragmentation that can be used for detailed structure elucidation of the O-alkyl moiety. The separability of related isomers was tested by comparing the spectra of the picolinyl esters formed from twelve hexyl methylphosphonic acid isomers. Spectral library matches and principal component analysis showed that the picolinyl esters were more effectively separated than the corresponding trimethylsilyl derivatives used in the standard operating procedures. The suggested method will improve the unambiguous structural determination process for phosphonic acids. PMID:23832937

  7. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  8. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    PubMed

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction. PMID:25095400

  9. Impact of chlorine dioxide gas sterilization on nosocomial organism viability in a hospital room.

    PubMed

    Lowe, John J; Gibbs, Shawn G; Iwen, Peter C; Smith, Philip W; Hewlett, Angela L

    2013-06-01

    To evaluate the ability of ClO2 to decontaminate pathogens known to cause healthcare-associated infections in a hospital room strains of Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, and Staphylococcus aureus were spot placed in duplicate pairs at 10 sites throughout a hospital room and then exposed to ClO2 gas. Organisms were collected and evaluated for reduction in colony forming units following gas exposure. Six sterilization cycles with varied gas concentrations, exposure limits, and relative humidity levels were conducted. Reductions in viable organisms achieved ranged from 7 to 10-log reductions. Two sterilization cycles failed to produce complete inactivation of organisms placed in a bathroom with the door closed. Reductions of organisms in the bathroom ranged from 6-log to 10-log reductions. Gas leakage between hospital floors did not occur; however, some minor gas leakage from the door of hospital room was measured which was subsequently sealed to prevent further leakage. Novel technologies for disinfection of hospital rooms require validation and safety testing in clinical environments. Gaseous ClO2 is effective for sterilizing environmental contamination in a hospital room. Concentrations of ClO2 up to 385 ppm were safely maintained in a hospital room with enhanced environmental controls. PMID:23792697

  10. Impact of Chlorine Dioxide Gas Sterilization on Nosocomial Organism Viability in a Hospital Room

    PubMed Central

    Lowe, John J.; Gibbs, Shawn G.; Iwen, Peter C.; Smith, Philip W.; Hewlett, Angela L.

    2013-01-01

    To evaluate the ability of ClO2 to decontaminate pathogens known to cause healthcare-associated infections in a hospital room strains of Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, and Staphylococcus aureus were spot placed in duplicate pairs at 10 sites throughout a hospital room and then exposed to ClO2 gas. Organisms were collected and evaluated for reduction in colony forming units following gas exposure. Six sterilization cycles with varied gas concentrations, exposure limits, and relative humidity levels were conducted. Reductions in viable organisms achieved ranged from 7 to 10-log reductions. Two sterilization cycles failed to produce complete inactivation of organisms placed in a bathroom with the door closed. Reductions of organisms in the bathroom ranged from 6-log to 10-log reductions. Gas leakage between hospital floors did not occur; however, some minor gas leakage from the door of hospital room was measured which was subsequently sealed to prevent further leakage. Novel technologies for disinfection of hospital rooms require validation and safety testing in clinical environments. Gaseous ClO2 is effective for sterilizing environmental contamination in a hospital room. Concentrations of ClO2 up to 385 ppm were safely maintained in a hospital room with enhanced environmental controls. PMID:23792697

  11. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    EPA Science Inventory

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  12. Spectrophotometry of the Dust and Gas of Tempel 1 Based on Results of the Deep Impact Mission

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.

    2005-08-01

    On July 4, 2005 NASA's discovery mission Deep Impact (hereafter DI) will send a 375 kg impactor into the nucleus of comet 9P/Tempel 1 at 10.2 km/s relative velocity in order to produce a crater that will reveal sub-surface layers of the nucleus. Any changes in the observed properties of the comet will be attributable to the removal of a section of evolved, insolated surface and the exposure of the relatively fresh sub-surface interior of the nucleus. The Deep Impact instrument payload includes two CCD cameras with broad-band filters covering the optical spectrum, allowing for sensitive measurement of dust in the comet's coma, and a number of narrow-band filters for studying the spatial distribution of several gas species. DI also carries the first 1-5 um spectrometer to flyby a comet since the VEGA mission to Halley in 1986. This 1-dimensional spectrograph will allow detection and mapping of molecular gas emission lines from the coma in unprecedented detail. Here we discuss the pre-encounter state of understanding of the 9P/Tempel 1 coma, and our initial results on the coma from the DI-comet encounter, including optical spectrophotometry, scanning spectra, and selected supporting 0.4' 35 um ground and space-based remote observations.

  13. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions.

    PubMed

    Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed

    2012-10-01

    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number. PMID:22913288

  14. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research

    NASA Astrophysics Data System (ADS)

    Lexow, B.; Wickert, M.; Thoma, K.; Sch?Fer, F.; Poelchau, M. H.; Kenkmann, T.

    2013-01-01

    The extra-large light-gas gun (XLLGG) at the Fraunhofer Ernst-Mach-Institut (EMI, Efringen-Kirchen, Germany) is a two-stage light-gas gun that can accelerate projectile masses of up to 100 g up to velocities of 6 km s-1. The accelerator's set-up allows various combinations of pump and launch tubes for applications in different fields of hypervelocity impact research. In the framework of the MEMIN (Multidisciplinary Experimental and Modeling Impact Research Network) program, the XLLGG is used for mesoscale cratering experiments with projectiles made of steel and of iron meteorites, and targets consisting of sandstone and other rocks. The craters produced with this equipment reach a diameter of up to 40 cm, a size unique in laboratory cratering research. With the implementation of neural networks, the acceleration process is being optimized, currently yielding peak velocities of 7.8 km s-1 for a 100 g projectile. Here, we summarize technical aspects of the XLLGG.

  15. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. PMID:25087186

  16. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect

    Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  17. Impact of anti-tacking agents on properties of gas-entrapped membrane and effervescent floating tablets.

    PubMed

    Kriangkrai, Worawut; Puttipipatkhachorn, Satit; Sriamornsak, Pornsak; Pongjanyakul, Thaned; Sungthongjeen, Srisagul

    2014-12-01

    Tackiness caused by the gas-entrapped membrane (Eudragit(®)RL 30D) was usually observed during storage of the effervescent floating tablets, leading to failure in floatation and sustained release. In this work, common anti-tacking agents (glyceryl monostearate (GMS) and talc) were used to solve this tackiness problem. The impact of anti-tacking agent on the properties of free films and corresponding floating tablets was investigated. GMS was more effective than talc in reducing tackiness of the film. Addition and increasing amount of anti-tacking agents lowered the film mechanical strength, but the coating films were still strong and flexible enough to resist the generated gas pressure inside the floating tablet. Wettability and water vapor permeability of the film decreased with increasing level of anti-tacking agents as a result of their hydrophobicity. No interaction between anti-tacking agents and polymer was observed as confirmed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry studies. Increasing amount of anti-tacking agents decreased time to float and tended to retard drug release of the floating tablets. Floating properties and drug release were also influenced by type of anti-tacking agents. The obtained floating tablets still possessed good floating properties and controlled drug release even though anti-tacking agent had some effects. The results demonstrated that the tackiness problem of the floating tablets could be solved by incorporating anti-tacking agent into the gas-entrapped membrane. PMID:24927669

  18. Impact of marcellus shale natural gas development in southwest pennsylvania on volatile organic compound emissions and regional air quality.

    PubMed

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-01

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts. PMID:25594231

  19. Air toxics regulations and their potential impact on the natural gas industry. Topical report, June 1991-October 1992

    SciTech Connect

    Fillo, J.P.; Harkov, R.; Koraido, S.M.; Olsakovsky, A.C.

    1992-10-01

    The objective of this effort was to perform an assessment of the potential impacts of air toxics regulations on the natural gas industry. Natural gas industry operations were reviewed to identify potential sources of air toxics emissions and representative compounds that may be emitted, as one basis for the evaluation. Legislation that regulate air toxics exist at the federal and state levels. The federal review addressed primarily the Clean Air Act (CAA), specifically the air toxics provisions under Title III of the 1990 CAA Amendments. Other relevant federal regulations were reviewed, including OSHA, TSCA, CERCLA, SARA Title III, and RCRA. Regulations for three bellweather states (i.e., Texas, New Jersey, California) were reviewed to assess relevant state air toxics regulations. Natural gas operations have the potential to emit air toxics, including benzene, toluene, ethylbenzene, and xylene (BTEX) emissions from glycol dehydration vents, products of incomplete combustion from compressor engines, fugitive emissions from facility equipment, and secondary emissions from storage and waste treatment facilities.

  20. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  1. Environmental Protection Versus Energy Supply Security - The Shale Gas Case and Its Impact on Ecosystem Services

    Microsoft Academic Search

    Leonie Reins

    2012-01-01

    The complexity, interrelation and competition between environmental protection and energy supply security is an emerging problem. Often, State environmental protection concerns and standards are outweighed by a competing interest, such as ensuring energy supply security. This paper discusses the benefits and risks of an ecosystem service approach in connection with shale gas extraction in the United States and the European

  2. Cropping System Management Impacts on Greenhouse Gas Emissions in the Cool, Humid Northeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating global greenhouse gas (GHG) emissions requires regional measurements be made within different production systems. A long-term potato cropping system experiment established in 2004 in Presque Isle, ME, on a sandy loam soil was designed to contribute to three of the following scenarios rel...

  3. Impact of Time to First Rainfall Event on Greenhouse Gas Emissions Following Manure Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of inorganic fertilizers and manures are known to result in the release of greenhouse gases to the atmosphere, and rainfall events can also increase greenhouse gas emissions from soils. However, little is known about the temporal relationship between fertilizer application and rainfall on greenh...

  4. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  5. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect

    Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  6. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs

    Microsoft Academic Search

    Daniel J. K. Ross; R. Marc Bustin

    2007-01-01

    Determination of the adsorbed reservoir capacity of gas shales by adsorption analyses as done routinely by mass balance maybe in significant error if the effects of pore-size dependent void volume (porosity) is not considered. It is shown here that with increasing pressure, helium, which is invariably used to measure void volume, can access pores that are not available for adsorption

  7. Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency

    E-print Network

    Platvoet, E.

    2011-01-01

    -05-05 Proceedings of the 2011 Industrial Energy Technology Conference New Orleans, Louisiana, May 17-19, 2011 REFERENCES (1) ? Gas Turbine Integration in Ethylene Plants - J.V. Albano, T. Fukushima, E.F. Olszewski Presented at Achema 91, International...

  8. Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency

    E-print Network

    Mody, Pritesh (Pritesh Chetan)

    2010-01-01

    This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

  9. Environmental impact and regulatory concerns for the protection of a freshwater aquifer impacted by a gas well blowout in northwest Louisiana

    SciTech Connect

    Schramm, W.H.; McKenzie, D.T.; Kline, M.S. [Louisiana Dept. of Environmental Quality, Baton Rouge, LA (United States)

    1996-09-01

    The Louisiana Department of Environmental Quality, Ground Water Protection Division (GWPD) is responsible for oversight of the investigation and remediation of unpermitted releases to the waters of the State. In March, 1994, a Sligo Field gas well blowout caused artificial artesian conditions in the shallow Wilcox aquifer resulting in flowing water wells near the drilling location. The eruption of sand and formation water created a crater around an old abandoned well south of the active rig and a collapse crater north of the rig. The company, in cooperation with the GWPD, began an investigation of the environmental impacts of the blowout. An electric log run in a stratigraphic boring and newly installed monitor wells were used to determine the sand/shale distribution and to assess the extent of contamination in the aquifer. Monitor wells and nearby water supply wells were sampled for BETX. Only the wells nearest to the blowout showed constituents above regulatory limits. The well, positioned between the blowout and residential wells, showed no BETX. This paper will present the continued investigation and remedial activities planned for this site. They include additional wells or borings to delineate the horizontal area impacted by the blowout and evaluation of pump and treat methods to establish hydrologic control of the Wilcox Aquifer in the immediate area. Periodic testing of the residential and monitor wells will ensure that appropriate efforts are made to protect the local residents.

  10. Simultaneous determination of beta2-agonists in human urine by fast-gas chromatography/mass spectrometry: method validation and clinical application.

    PubMed

    Di Corcia, Daniele; Morra, Veronica; Pazzi, Marco; Vincenti, Marco

    2010-04-01

    A fast screening protocol was developed and validated for the simultaneous determination of 15 beta(2)-agonists in human urine (bambuterol, cimbuterol, clenbuterol, fenoterol, formoterol, isoproterenol, mapenterol, metaproterenol, procaterol, ractopamine, ritodrine, salbutamol, salmeterol, terbutaline, tulobuterol). The overall sample processing includes deconjugation with enzyme hydrolysis, liquid-liquid extraction, followed by derivatization of the extract and detection of beta(2)-agonists trimethylsilyl-derivatives by fast-gas chromatography/electron impact-mass spectrometry (fast-GC/EI-MS). Sample extraction and derivatization were optimized with the purpose of improving recoveries and reaction yields for a variety of analytes with different structures simultaneously, while keeping the procedure simple and reliable. Validation parameters were determined for each analyte under investigation, including selectivity, linearity, intra- and inter-assay precision, extraction recoveries and signal to noise ratio (S/N) at the lowest calibration level. Fast-GC/MS sequences, based on the use of short columns, high carrier-gas velocity and fast temperature ramping, allow considerable reduction of the analysis time (7 min), while maintaining adequate chromatographic resolution. The overall GC cycle time was less than 9 min, allowing a processing rate of 6 samples/h. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. The method was successfully tested on real samples arising from clinical treatments. Copyright (c) 2009 John Wiley & Sons, Ltd. PMID:19642085

  11. Cluster-surface impact dissociation of halogen molecules in large inert gas clusters

    NASA Astrophysics Data System (ADS)

    Schek, Israel; Jortner, Joshua; Raz, Tamar; Levine, R. D.

    1996-07-01

    Molecular dynamics simulations of the dissociation of I 2 embedded in large Ar n ( n = 319, 553) clusters, which impact at high velocities (? = 7-15 km s -1 1 ) on Pt surfaces, result in information on heterogeneous and homogeneous dissociation mechanisms. A broad distribution of dissociation lifetimes is exhibited, which can be attributed to prompt and retarded heterogeneous dissociation and to prompt, retarded and outbound homogeneous dissociation events. The propagation of a microshock wave within a large cluster can be interrogated by the homogeneous dissociation of a chemical probe, with the velocity of the propagation of the dissociation front being close to the cluster impact velocity.

  12. Popular Epidemiology and "Fracking": Citizens' Concerns Regarding the Economic, Environmental, Health and Social Impacts of Unconventional Natural Gas Drilling Operations.

    PubMed

    Powers, Martha; Saberi, Poune; Pepino, Richard; Strupp, Emily; Bugos, Eva; Cannuscio, Carolyn C

    2014-11-13

    Pennsylvania sits atop the Marcellus Shale, a reservoir of natural gas that was untapped until the 2004 introduction of unconventional natural gas drilling operations (UNGDO) in the state. Colloquially known as fracking, UNGDO is a controversial process that employs large volumes of water to fracture the shale and capture gas; it has become a multi-billion dollar industry in Pennsylvania. We analyzed letters to the editor of the most widely circulated local newspaper in the most heavily drilled county in Pennsylvania (Bradford County) in order to characterize residents' concerns and their involvement in popular epidemiology-the process by which citizens investigate risks associated with a perceived environmental threat. We reviewed 215 letters to the editor that referenced natural gas operations and were published by The Daily Review between January 1, 2008 and June 8, 2013. We used NVivo 10 to code and analyze letters and identify major themes. Nvivo is qualitative data analysis software ( http://www.qsrinternational.com/products_nvivo.aspx ) that allows researchers to code and analyze "unstructured" data, including text files of any type (e.g., interview transcripts, news articles, letters, archival materials) as well as photographs and videos. Nvivo can be used to classify, sort, query, comment on, and share data across a research group. Letters demonstrated citizen engagement in beginning and intermediate stages of lay epidemiology, as well as discord and stress regarding four main issues: socio-economic impacts, perceived threats to water, population growth and implications, and changes to the rural landscape. Residents called for stronger scientific evidence and a balance of economic development and health and environmental protections. Citizens' distress regarding UNGDO appeared to be exacerbated by a dearth of information to guide economic growth and health, environmental, and social concerns. This analysis proposes locally informed questions to guide future surveillance and research. PMID:25392053

  13. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect

    Gokhan Alptekin

    2012-09-30

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H{sub 2}S, NH{sub 3}, HCN, AsH{sub 3}, PH{sub 3}, HCl, NaCl, KCl, AS{sub 3}, NH{sub 4}NO{sub 3}, NH{sub 4}OH, KNO{sub 3}, HBr, HF, and HNO{sub 3}) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts; ferrochrome-based high-temperature WGS catalyst (HT-WGS, Shiftmax 120�, Süd-Chemie), low-temperature Cu/ZnO-based WGS catalyst (LT-WGS, Shiftmax 230�, Süd-Chemie), and iron- and cobalt-based Fischer-Trospch synthesis catalysts (Fe-FT & Co-FT, UK-CAER). In this project, TDA Research, Inc. collaborated with a team at the University of Kentucky Center for Applied Energy Research (UK-CAER) led by Dr. Burt Davis. We first conducted a detailed thermodynamic analysis. The three primary mechanisms whereby the contaminants may deactivate the catalyst are condensation, deposition, and reaction. AsH{sub 3}, PH{sub 3}, H{sub 2}S, HCl, NH{sub 3} and HCN were found to have a major impact on the Fe-FT catalyst by producing reaction products, while NaCl, KCl and PH{sub 3} produce trace amounts of deposition products. The impact of the contaminants on the activity, selectivity, and deactivation rates (lifetime) of the catalysts was determined in bench-scale tests. Most of the contaminants appeared to adsorb onto (or react with) the HT- and LT-WGS catalysts were they were co-fed with the syngas: � 4.5 ppmv AsH{sub 3} or 1 ppmv PH{sub 3} in the syngas impacted the selectivity and CO conversion of both catalysts; � H{sub 2}S slowly degraded both WGS catalysts; - A binary mixture of H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv) impacted the activity of the LT-WGS catalyst, but not the HT-WGS catalyst � Moderate levels of NH{sub 3} (100 ppmv) or HCN (10 ppmv) had no impact � NaCl or KCl had essentially no effect on the HT-WGS catalyst, but the activity of the LT-WGS catalyst decreased very slowly Long-term experiments on the Co-FT catalyst at 260 and 270 °C showed that all of the contaminants impacted it to some extent with the exception of NaCl and HF. Irrespective of its source (e.g., NH{sub 3}, KNO{sub 3}, or HNO{sub 3}), ammonia suppressed the activity of the Co-FT catalyst to a moderate degree. There was essentially no impact the Fe-FT catalyst when up to 100 ppmw halide compounds (NaCl and KCl), or up to 40 ppmw alkali bicarbonates (NaHCO{sub 3} and KHCO{sub 3}). After testing, BET analysis showed that the surface areas, and pore volumes and diameters of both WGS catalysts decreased during both single and binary H2S and NH3 tests, which was attributed to sintering and pore filling by the impurities. The HT-WGS catalyst was evaluated with XRD after testing in syngas that contained 1 ppmv PH{sub 3}, or 2 ppmv H{sub 2}S, or both H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv). The peaks became sharper during testing, which was indicative of crystal growth and sintering, but no new phases were detected. After LT-WGS tests (3-33 ppmv NH{sub 3} and/or 0-88 ppmv H{sub 2}S) there were a few new phases that appeared, including sulfides. The fresh Fe-FT catalyst was nanocrystalline and amorphous. ICP-AA spectroscopy and other methods (e.g., chromatography) were used to analyze for

  14. Modeling the impact of municipal solid waste recycling on greenhouse gas emissions in Ohio, USA

    Microsoft Academic Search

    Matthew Franchetti; Prabhu Kilaru

    Climate change is a serious worldwide concern and the emission of greenhouse gases (GHG) significantly intensifies the issue. Numerous studies have been conducted concerning GHG emissions related to energy and fuel consumption, but few have been conducted related to the impact of increased recycling levels on GHG emissions for a single facility. Several readily available GHG calculators are available for

  15. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    EPA Science Inventory

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  16. Cluster-surface impact dissociation of halogen molecules in large inert gas clusters

    Microsoft Academic Search

    Israel Schek; Joshua Jortner; Tamar Raz; R. D. Levine

    1996-01-01

    Molecular dynamics simulations of the dissociation of I2 embedded in large Arn (n = 319, 553) clusters, which impact at high velocities (? = 7–15 km s?1 1 ) on Pt surfaces, result in information on heterogeneous and homogeneous dissociation mechanisms. A broad distribution of dissociation lifetimes is exhibited, which can be attributed to prompt and retarded heterogeneous dissociation and

  17. Impact of biochar on manure carbon stabilization and greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies indicate that biochar additions sometimes increase soil respiration and carbon dioxide emissions, which could partially offset carbon (C) credits associated with soil biochar applications. Little is known, however, about the impact of biochar on the mineralization of manure in soil ...

  18. Manure management and temperature impacts on gas concentrations in monoslope cattle facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Roofed and confined cattle feeding facilities are increasingly popular in the Northern Great Plains, but little is known about the impact this housing system and associated manure management methods have on the air quality inside and outside the barn. The objective of this study was to determine ga...

  19. Impacts of oil and gas development on the recreation and tourism off the Florida straits

    SciTech Connect

    Bell, F.

    1991-05-01

    The study was undertaken for the purpose of addressing potential problems of OCS activities on tourism and recreation in Monroe County, Florida. The strategic objective of the study was to develop a model to simulate the effects of various OCS activities on tourism visitation, expenditures, and regional gross economic impacts.

  20. Impact of increasing atmospheric CO2 on crop gas exchange under different tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing atmospheric CO2 concentration may impact production agriculture. In the fall of 1997, a study was initiated to examine the response of different tillage systems to changing atmospheric CO2 level. The study used a split-plot design (three replications) with two tillage systems (conventiona...

  1. A review on transport of coal seam gas and its impact on coalbed methane recovery

    Microsoft Academic Search

    Geoff G. X. Wang; Xiaodong Zhang; Xiaorong Wei; Xuehai Fu; Bo Jiang; Yong Qin

    2011-01-01

    This paper presents a summary review on mass transport of coal seam gas (CSG) in coal associated with the coalbed methane\\u000a (CBM) and CO2 geo-sequestration enhanced CBM (CO2-ECBM) recovery and current research advances in order to provide general knowledge and fundamental understanding of the CBM\\/ECBM\\u000a processes for improved CBM recovery. It will discuss the major aspects of theory and technology

  2. Evolving shale gas management: water resource risks, impacts, and lessons learned.

    PubMed

    Rahm, Brian G; Riha, Susan J

    2014-05-01

    Unconventional shale gas development promises to significantly alter energy portfolios and economies around the world. It also poses a variety of environmental risks, particularly with respect to the management of water resources. We review current scientific understanding of risks associated with the following: water withdrawals for hydraulic fracturing; wastewater treatment, discharge and disposal; methane and fluid migration in the subsurface; and spills and erosion at the surface. Some of these risks are relatively unique to shale gas development, while others are variations of risks that we already face from a variety of industries and activities. All of these risks depend largely on the pace and scale of development that occurs within a particular region. We focus on the United States, where the shale gas boom has been on-going for several years, paying particular attention to the Marcellus Shale, where a majority of peer-reviewed study has taken place. Governments, regulatory agencies, industry, and other stakeholders are challenged with responding to these risks, and we discuss policies and practices that have been adopted or considered by these various groups. Adaptive Management, a structured framework for addressing complex environmental issues, is discussed as a way to reduce polarization of important discussions on risk, and to more formally engage science in policy-making, along with other economic, social and value considerations. Data suggests that some risks can be substantially reduced through policy and best practice, but also that significant uncertainty persists regarding other risks. We suggest that monitoring and data collection related to water resource risks be established as part of planning for shale gas development before activity begins, and that resources are allocated to provide for appropriate oversight at various levels of governance. PMID:24664241

  3. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy

    SciTech Connect

    Kumagai, Motoki [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); School of Health Sciences, Niigata University, Niigata (Japan); Hara, Ryusuke [Hospital, National Institute of Radiological Sciences, Chiba (Japan); Mori, Shinichiro [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)], E-mail: shinshin@nirs.go.jp; Yanagi, Takeshi [Hospital, National Institute of Radiological Sciences, Chiba (Japan); Asakura, Hiroshi [Accelerator Engineering Corporation, Chiba (Japan); Kishimoto, Riwa; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi [Hospital, National Institute of Radiological Sciences, Chiba (Japan)

    2009-03-15

    Purpose: To assess carbon ion beam dose variation due to bowel gas movement in pancreatic radiotherapy. Methods and Materials: Ten pancreatic cancer inpatients were subject to diagnostic contrast-enhanced dynamic helical CT examination under breath-holding conditions, which included multiple-phase dynamic CT with arterial, venous, and delayed phases. The arterial-venous phase and arterial-delayed phase intervals were 35 and 145 s, respectively. A compensating bolus was designed to cover the target obtained at the arterial phase. Carbon ion dose distribution was calculated by applying the bolus to the CT data sets at the other two phases. Results: Dose conformation to the clinical target volume was degraded by beam overshoot/undershoot due to bowel gas movement. The D95 for clinical target volume was degraded from 98.2% (range, 98.0-99.1%) of the prescribed dose to 94.7% (range, 88.0-99.0%) at 145 s. Excessive dosing to normal tissues varied among tissues and was, for example, 12.2 GyE/13.1 GyE (0 s/145 s) for the cord and 38.8 GyE/39.8 GyE (0 s/145 s) for the duodenum. The magnitude of beam overshoot/undershoot was particularly exacerbated from the anterior and left directions. Conclusions: Bowel gas movement causes dosimetric variation to the target during treatment for radiotherapy. The effect of bowel gas movement varies with beam angle, with greatest influence on the anterior-posterior and left-right beams.

  4. Impact origin of the Avak structure, Arctic Alaska, and genesis of the Barrow gas fields

    SciTech Connect

    Kirschner, C.E. (Geological Survey, Union, WA (United States)); Grantz, A.; Mullen, M.W. (Geological Survey, Menlo Park, CA (United States))

    1992-05-01

    Geophysical and subsurface geologic data suggest that the Avak structure, which underlies the Arctic Coastal Plain 12 km southeast of Barrow, Alaska, is a hypervelocity meteorite or comet impact structure. The structure is a roughly circular area of uplifted, chaotically deformed Upper Triassic to Lower Cretaceous sedimentary rocks 8 km in diameter that is bounded by a ring of anastomosing, inwardly dipping, listric normal faults 12 km in diameter. A zone of gently outward-dipping sedimentary country rocks forms a discontinuous ring of rim anticlines within the peripheral ring of normal faults. Beyond these anticlines, the sedimentary rocks are almost flat-lying. Data concerning the age of the Avak structure are not definitive. If submarine landslide deposits in the upper part of the Aptian and Albian Torok Formation, in the subsurface 200 km to the east, were triggered by the Avak event, then the Avak meteorite struck a submerged marine shelf about 100 [plus minus] 5 Ma. However, the impact features found at Avak characterize the distal zones of meteorite impact structures. Fused rocks, plastic deformation, and shock-metamorphic minerals found in more proximal zones of impact structures are apparently missing. These observations, and the lack of Avak ejecta in cuttings and cores from the Torok Formation and Nanushuk Group in surrounding test wells, indicate that the impact event postdated these beds. In this case, the Avak meteorite struck a Late Cretaceous or Tertiary marine shelf or coastal plain between the Cenomanian (ca. 95 Ma), and deposition of the basal beds of the overlying late Pliocene and Quaternary Gubik Formation (ca. 3 Ma).

  5. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania.

    PubMed

    Warner, Nathaniel R; Christie, Cidney A; Jackson, Robert B; Vengosh, Avner

    2013-10-15

    The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal. PMID:24087919

  6. Impact of different plants on the gas profile of a landfill cover.

    PubMed

    Reichenauer, Thomas G; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H

    2011-05-01

    Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa+grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa+grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content. PMID:20888746

  7. Evaluating 2012 Ozone Impacts of Natural Gas Development in the Haynesville Shale with an Updated Emission Inventory

    NASA Astrophysics Data System (ADS)

    Kemball-Cook, S. R.; Bar-Ilan, A.; Yarwood, G.

    2013-12-01

    The Haynesville Shale, located approximately 10,000-13,000 feet beneath Northeast Texas and Northwest Louisiana contains very large recoverable reserves of natural gas. Development of the Haynesville began in 2008, and since then, more than 3,000 wells have been drilled. The development of natural gas resources in the Haynesville is economically important, but also generates emissions of ozone precursors in a region with several ozone monitors that are close to or exceeding the 2008 National Ambient Air Quality Standard. During 2009, we developed an emission inventory of ozone precursors for projected future Haynesville Shale development from 2009 through 2020. Photochemical modeling with the 2012 emission inventory showed significant ozone impacts within Northeast Texas and Northwest Louisiana as a result of Haynesville emissions, with projected 8-hour ozone design value increases up to 5 ppb at area monitors. The original emission inventory was assembled during spring 2009, early in the development of the Haynesville when available data were limited. Since then, development in the Haynesville has continued, and additional data are now available and were used to refine the development projections and emission inventory through the year 2020. The updated 2012 emission inventory is now based on actual data rather than projections made in 2009. The number of drilling rigs operating in 2012 was lower than projected, but the well count was higher due intensive drilling activity in 2010-2011 that exceeded projections. The updated emission inventory draws on more Haynesville-specific data than the previous inventory. Energy producers currently active in the Haynesville were surveyed and provided information that included well drilling times, equipment used for well construction, production equipment present at typical Haynesville wells, and produced gas composition analyses. Producers provided information on the amount of truck traffic associated with transport of materials, equipment, and personnel to and from wells and the types and activity of non-road equipment operating at well sites. Well production data for 2009 through 2012 from Texas and Louisiana state regulatory agencies was used to update the well decline curve used to project formation-wide gas production. The updated emission inventory was used to quantify 2012 ozone impacts from the Haynesville with the CAMx photochemical grid model. The ozone contribution from truck traffic was determined. We evaluated the effect of the Haynesville on ozone design values in Northeast Texas and Northwest Louisiana as well as on regional ozone. The model projections for ozone were compared to recent trends in observed ozone.

  8. Validated semiquantitative\\/quantitative screening of 51 drugs in whole blood as silylated derivatives by gas chromatography-selected ion monitoring mass spectrometry and gas chromatography electron capture detection

    Microsoft Academic Search

    Teemu Gunnar; Sirpa Mykkänen; Kari Ariniemi; Pirjo Lillsunde

    2004-01-01

    A comprehensively validated procedure is presented for simultaneous semiquantitative\\/quantitative screening of 51 drugs of abuse or drugs potentially hazardous for traffic safety in serum, plasma or whole blood. Benzodiazepines (12), cannabinoids (3), opioids (8), cocaine, antidepressants (13), antipsychotics (5) and antiepileptics (2) as well as zolpidem, zaleplon, zopiclone, meprobamate, carisoprodol, tizanidine and orphenadrine and internal standard flurazepam, were isolated by

  9. Chemical effects of low energy electron impact on hydrocarbons in the gas phase. I. Neopentane. [''Simulated'' radiolysis of neopentane; 3. 5-15. 0 eV electrons

    Microsoft Academic Search

    R. Derai; P. Nectoux; J. Danon

    1976-01-01

    The chemical effects induced by impact of low energy electrons of gaseous neopentane were investigated. An original set-up for the irradiation of a flowing gas at low pressure (10⁻²Torr) with 3.5--15.0 eV electrons was used. Electron beam energy definition and current intensity were +- 0.6 eV and 7--15 ..mu..A, respectively. Analysis of the products was performed by gas chromatography. The

  10. Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

    Microsoft Academic Search

    Holly E. Copeland; Kevin E. Doherty; David E. Naugle; Amy Pocewicz; Joseph M. Kiesecker; Adina Maya Merenlender

    2009-01-01

    BackgroundMany studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence.Methodology\\/Principal FindingsWe propose a systematic way to forecast patterns of future energy development and calculate impacts to species

  11. The impact of emissions standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  12. Use of the Edmonds-Reilly Model to model energy-sector impacts of greenhouse gas emissions control strategies

    SciTech Connect

    Barns, D.W.; Edmonds, J.A.; Reilly, J.M.

    1992-01-01

    The purpose of this paper is to document the results of our application of the Edmonds-Reilly Model (ERM) using several scenarios provided in connection with the 1991 Energy Modeling Forum (EMF). The purpose of this session of the forum is to compare the efforts of several modeling teams using common assumptions to examine the energy sector impacts of strategies to control greenhouse gas emissions. Because the output of this exercise is data-rich, most of this exposition is in graphical form with the narrative serving mainly as a roadmap for moving from one highlight to the next. The following sessions briefly describe the model and some of the special modifications made for this effort. The case-by-case discussion is contained in Section IV, followed by a summary of the potential pitfalls involved in attempting to assess the cost of emissions reduction from the model data.

  13. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  14. Cooking a `Sausage': the impact of merger shocks in cluster gas and galaxy evolution

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Sobral, David; Harwood, Jeremy; Van Weeren, Reinout J.; Rumsey, Clare; Intema, Huib; Röttgering, Huub; Brüggen, Marcus; Saunders, Richard; Hardcastle, Martin; Hoeft, Matthias

    2015-01-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to important astrophysical phenomena such as the segregation of dark and luminous matter and the formation of cluster-wide traveling shocks and also drive galaxy evolution. The observable effects of shock waves can be seen at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. Despite the great interest in relics, candidates with simple geometry, undisturbed morphology and high surface brightness are scarce. The `Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We use a unique combination of facilities (INT, WHT, Keck, Subaru, CFHT, GMRT, WSRT, AMI) to obtain the first cluster-wide, multi-wavelength, multi-method analysis aimed at giving a complete picture of a merging cluster with relics. Using the radio data, we derive shock properties and the magnetic field structure for the relic. Using spectral modeling, we test acceleration and electron energy-loss mechanisms and resolve the discrepancy between the Mach number calculated from the radio and X-rays. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area and line-of-sight mixing are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the `Sausage' relic. The radio analysis is complemented by H? mapping of the cluster volume, aimed at providing the first direct test as to whether the shock drives or prohibits star formation. We find numerous H? emitting galaxies in close proximity to the radio relic which are extremely massive, metal-rich, mostly star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction between the merger, the shock wave and gas is a fundamental driver in the evolution of cluster galaxies from gas rich spirals to gas-poor ellipticals.

  15. Impact of elevated CO(2) and O(3) on gas exchange parameters and epidermal characteristics in potato (Solanum tuberosum L.).

    PubMed

    Lawson, Tracy; Craigon, Jim; Black, Colin R; Colls, Jeremy J; Landon, Geoff; Weyers, Jonathan D B

    2002-04-01

    Potato plants (Solanum tuberosum L. cv. Bintje) were grown in open-top chambers (OTCs) under three CO(2) levels (ambient and 24 h d(-1) seasonal mean concentrations of 550 and 680 micromol mol(-1)) and two O(3) levels (ambient and a seasonal mean 8 h d(-1) concentration of 50 nmol mol(-1)). The objectives were to determine the effects of season-long exposure to these key climate change gases on gas exchange, leaf thickness and epidermal characteristics. The experimental design also provided an ideal opportunity to examine within-leaf variation in epidermal characteristics at the whole-leaf level. Stomatal and epidermal cell density and stomatal index were measured at specific locations on the youngest fully expanded leaf (centre of lamina, mid-way between tip and base) and representative whole leaves from each treatment. Effects on leaf conductance, assimilation rate and instantaneous transpiration efficiency were determined by infrared gas analysis, while anatomical characteristics were examined using a combination of leaf impressions and thin sections. Exposure to elevated CO(2) or O(3) generally increased leaf thickness, leaf area, stomatal density, and assimilation rate, but reduced leaf conductance. The irregular stomatal distribution within leaves resulted from a combination of uneven differentiation and expansion of the epidermal cells. The results are discussed with reference to sampling protocols and the need to account for within-leaf variation when examining the impact of climate change or other environmental factors on epidermal characteristics. PMID:11886894

  16. Cellulosic ethanol from municipal solid waste: a case study of the economic, energy, and greenhouse gas impacts in California.

    PubMed

    Chester, Mikhail; Martin, Elliot

    2009-07-15

    As cellulosic ethanol technologies advance, states could use the organic content of municipal solid waste as a transportation fuel feedstock and simultaneously reduce externalities associated with waste disposal. We examine the major processes required to support a lignocellulosic (employing enzymatic hydrolysis) municipal solid waste-to-ethanol infrastructure computing cost, energy, and greenhouse gas effects for California. The infrastructure is compared against the Business As Usual case where the state continues to import most of its ethanol needs from the Midwest. Assuming between 60% and 90% practical yields for ethanol production, California could produce between 1.0 and 1.5 billion gallons per year of ethanol from 55% of the 40 million metric tonnes of waste currently sent to landfills annually. The classification of organic wastes and ethanol plant operation represent almost the entire system cost (between $3.5 and $4.5 billion annually) while distribution has negligible cost effects and savings from avoided landfilling is small. Fossil energy consumption from Business As Usual decreases between 82 and 130 PJ largely due to foregone gasoline consumption. The net greenhouse gas impacts are ultimately dependent on how well landfills control their emissions of decomposing organics. Based on the current landfill mix in the state, the cellulosic infrastructure would experience a slight gain in greenhouse gas emissions. However, net emissions can rise if organics diversion releases carbon that would otherwise be flared and sequestered. Emissions would be avoided if landfills are not capable of effectively controlling emissions during periods of active waste decay. There is currently considerable uncertainty surrounding the recovery efficiency of landfill emissions controls. In either case, burying lignin appears to be better than burning lignin because of its decay properties, energy and carbon content We estimate the breakeven price for lignocellulosic ethanol between $2.90 and $3.47/gal (mu = $3.13/gal). PMID:19708339

  17. Low temperature impact toughness of the main gas pipeline steel after long-term degradation

    NASA Astrophysics Data System (ADS)

    Maruschak, Pavlo O.; Danyliuk, Iryna M.; Bishchak, Roman T.; Vuherer, Tomaž

    2014-12-01

    The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.

  18. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA’s requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).

  19. European greenhouse gas fluxes from land use: the impact of expanding the use of dedicated bioenergy crops.

    NASA Astrophysics Data System (ADS)

    Hastings, Astley; Böttcher, Hannes; Clifton-Brown, John; Fuchs, Richard; Hillier, Jon; Jones, Ed; Obersteiner, Michael; Pogson, Mark; Richards, Mark; Smith, Pete

    2013-04-01

    Bioenergy derived from vegetation cycles carbon to and from the atmosphere using the chemical energy fixed by the plants by photosynthesis using solar energy. However bioenergy is not carbon neutral as energy is used and greenhouse gasses (GHG) are emitted in the process of growing bioenergy feeedstocks and processing them into a usable fuel, whether it is biomass or liquid fuel such as biodiesel or bioethanol. Using bio instead of fossil fuels replaces greenhouse gas emissions from coal, oil and gas by those of the biofuel. To estimate the impact on European greenhouse gas fluxes of expanding the use of bioenergy, it is necessary to quantify the difference between the GHG emissions associated with producing and using the biofuel and the fossil fuel it replaces, and to take into account any emissions associated with the change from the original land use to that of growing the bioenergy feedstock. This involves estimating any displacement of food, fibre and timber production to other geographical areas. Here we report on a study of the GHG emissions from the potential increasing use of a variety of biofuels produced from feedstocks grown in the EU countries. The GHG emissions of the historical land use of EU27 have been modelled using ECOSSE on a 1 km grid to estimate the impact the agriculture intensification and land use change of the last 50 years and the associated crop yield gains. The excess land made available from the yield gains is considered to be available for use for bioenergy, and the yields of potential bioenergy feedstocks are estimated from EUROSTAT data or modelled using the bioenergy crop growth model MISCANFOR. These yields are used to calculate the energy used and GHG emissions associated with the use of the resulting biofuel using a life cycle analysis, and to estimate the organic matter input into the soil. The ECOSSE model is then used to estimate the soil carbon change and GHG emissions associated with the land use change to growing the bioenergy feedstock. This data has been used to quantify the net change in GHG emissions and the quantity of energy produced. We conclude that home grown bioenergy will be a modest contributor to both GHG emission reduction and energy demand.

  20. The impact of oxygen on the morphology of gas-phase prepared Au nanoparticles

    SciTech Connect

    Pohl, D.; Surrey, A.; Schultz, L. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); TU Dresden, Institute of Condensed Matter Physics, D-01062 Dresden (Germany); Rellinghaus, B. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2012-12-24

    We present an easy procedure for the synthesis of single crystalline gold nanoparticles with a mean diameter of 4 nm using a DC-sputtering in an argon-oxygen gas mixture. Morphology population statistics have been determined to quantify the influence of oxygen. It is found that the particles undergo a structural transition from predominantly icosahedral to single crystalline particles with increasing amount of oxygen. Aberration-corrected high-resolution transmission electron microscopy investigation proves that likewise prepared single crystalline nanoparticles are defect and oxygen free. In contrast, the icosahedral particles prepared with pure argon show the presence of edge dislocations pointing to an energetic disfavoring already at these relatively small particle sizes. This morphology control of clean and uncovered Au nanoparticles provides a high application potential, e.g., for studying the influence of the particle morphology on plasmonic and catalytic properties.

  1. Atmospheric Impacts of Emissions from Oil and Gas Development in the Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Boylan, P. J.; Hueber, J.; Van Dam, B. A.; Mauldin, L.; Parrish, D. D.

    2012-12-01

    In the Uintah Basin in northeast Utah, USA, surface ozone levels during winter months have approached and on occasion exceeded the US National Ambient Air Quality Standard (NAAQS). Emissions from the extensive oil and gas exploration in this region are suspected to be the cause of these ozone episodes; however emission rates and photochemical processes are uncertain. During February 2012 continuous surface measurements and vertical profiling from a tethered balloon platform at the Horsepool site yielded high resolution boundary layer profile data on ozone and ozone precursor compounds, i.e. nitrogen oxides and volatile organic compounds as well as methane. Findings from this study were: 1. Surface ozone during the study period, which had no snow cover, did not exceed the NAAQS. 2. Nitrogen oxides varied from 1-50 ppbv pointing towards significant emission sources, likely from oil and gas operations. 3. Methane concentrations were elevated, reaching up to ~10 times its Northern Hemisphere (NH) atmospheric background. 3. Light non-methane hydrocarbons (NMHC) constituted the main fraction of volatile organic compounds. NMHC concentrations were highly elevated, exceeding levels seen in urban areas. 4. Ozone, methane, NOx and VOC showed distinct diurnal cycles, with large concentration increases seen at night, except for ozone, which showed the opposite behavior. 5. During nighttime concentrations of NOx, NMHC, and methane built up near the surface to levels that were much higher than their daytime concentrations. 6. Comparing NMHC to methane concentrations indicates a mass flux ratio of ~30% for total VOC/methane emissions for the Uintah Basin.

  2. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment

    SciTech Connect

    Zreda-Gostynska, G.; Kyle, P.R. [Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico (United States)] [Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico (United States); Finnegan, D. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Prestbo, K.M. [Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico (United States)] [Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico (United States)

    1997-07-01

    Emission rates of SO{sub 2}, HCl, and HF from the active volcano Mount Erebus, Antarctica, increased between 1986 and 1991; SO{sub 2} from 7.7 to 25.9Ggyr{sup {minus}1}, HCl from 6.9 to 13.3Ggyr{sup {minus}1} and HF from 4.0 to 6.0Ggyr{sup {minus}1}. The emission rates of halogens from Mount Erebus are high relative to SO{sub 2} emissions and are accompanied by relatively high emissions of trace gases and aerosols (Na, K, As, Zn, In, As, Se, and Au). Many elements (S, Cl, and metals) found in the Erebus plume are common impurities in Antarctic snow. Using a model which assumes a homogeneous distribution of the volcanic gas plume over Antarctica, we suggest that Erebus could be a source of the impurities. We calculate that Erebus could potentially contribute between 4 and 14ngg{sup {minus}1} snow of Cl at the south pole, and between 11 and 36ngg{sup {minus}1} snow of Cl at Dome C. Excess Cl (Cl in excess of that derived from marine NaCl aerosols) recorded in snow and firn cores from south pole and Dome C could be mainly derived from Erebus. Similarly, our predicted concentrations of Erebus-derived Cu, Zn, Cd, V, As, and Au in Antarctic snow are close to those reported. Trace element and Pb isotope compositions of Erebus aerosols are similar to those collected in remote regions of Antarctica. The volcanic gas plume emitted from Erebus appears to make a significant contribution to the Antarctic atmosphere and can be detected in the snow deposited over a wide area of the continent.{copyright} 1997 American Geophysical Union

  3. DESIGNING AND CONDUCTING WORKSHOPS: LESSONS FROM A TWO-YEAR PROJECT (ONSHORE IMPACTS OF OUTER CONTINENTAL SHELF OIL AND GAS DEVELOPMENT: A TRAINING PROJECT)

    EPA Science Inventory

    The report describes the process of developing and conducting two series of workshops on 'Onshore Impact of Outer Continental Shelf Oil and Gas Development'. The purpose of this report is to evaluate the workshops from the standpoint of their objectives, content, teaching methods...

  4. 76 FR 82275 - Notice of Availability of a Draft Environmental Impact Statement for Effects of Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ...of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries...of Oil and Gas Activities in the Arctic Ocean.'' Publication of this notice...gas exploration activities in the Arctic Ocean pursuant to the Marine Mammal...

  5. 77 FR 68814 - Notice of Availability of the Draft Environmental Impact Statement for the Gas Hills In Situ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...lfo/gashills.html. Email: Gas_Hills_Uranium_EIS_WY@blm...Street, Lander, WY 82520; email: Gas_Hills_Uranium_EIS_WY...Casper, Wyoming. The boundary of the Gas Hills Project Area (GHPA) encompasses...

  6. Impact of seasonal temperature and pressure changes on methane gas production, dissolution, and transport in unfractured sediments

    Microsoft Academic Search

    J. M. Mogollón; A. W. Dale; I. L'Heureux; P. Regnier

    2011-01-01

    Bottom water temperature seasonality is reflected in the sediment free gas depthFree methane gas may dissolve and fuel anaerobic methane oxidationThe free gas depth can be used as a proxi for anaerobic methane oxidation rates

  7. Electron-impact ionization and dissociative ionization of sulfur in the gas phase

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Markush, P. P.; Shpenik, O. B.; Mykyta, M. I.

    2014-07-01

    We describe the methods and the results of investigation of the yield of positive ions formed as a result of electron-impact ionization of sulfur. The ionization energy for the basic molecule and the energies corresponding to the emergence of fragment ions are obtained from the ionization efficiency curves. The dynamics of formation of molecular sulfur ions in the temperature range 320-700 K is investigated. The energy dependences of efficiency S n of the ion formation for n = 1-6 are analyzed, and their appearance energies are determined. The total cross section of sulfur ionization by a monochromatic electron beam is also investigated. Using the linear approximation method, we marked out features on the ionization function curve, which correspond to the ionization and excitation energies for multiply charged ions. The total cross section of the formation of negative sulfur ions is measured in the energy range 0-9 eV.

  8. The Impacts of Changes in Snowfall on Soil Greenhouse Gas Emissions Using an Automated Chamber System

    NASA Astrophysics Data System (ADS)

    Ruan, L.; Kahmark, K.; Robertson, G.

    2012-12-01

    Snow cover has decreased in many regions of the northern hemisphere and is projected to decrease further in most. The reduced snow cover may enhance soil freezing and increase the depth of frost. The frequency of freeze-thaw cycles is likely to increase due to the reduction of snowpack thickness. Freeze and thaw cycles can strongly affect soil C and N dynamics. The pulses of N2O and CO2 emissions from soil after thawing have been reported in various studies. However, most studies were based on the controlled laboratory conditions or low resolution static chamber methods in situ. Near-continuous automated chambers provide the temporal resolution needed for capturing short-lived pulses of greenhouse gases after intermittent melting events. We investigated the winter and spring response of soil greenhouse gas emissions (CO2, CH4 and N2O) to changes of snow depth using an automated chamber system. This study was established in 2010 at the Kellogg Biological Station (KBS) in southwest Michigan. The plot was no till rotational (corn-soybean-wheat) cropland, most recently in corn. The experiment was a completely randomized design (CRD) with three levels of snow depth: ambient, double, and no snow. Each level had four replicates. Twelve automated chambers were randomly assigned to treatments and greenhouse gas fluxes measured 4 times per day in each plot. There were more freeze-thaw cycles in the no snow treatment than in the ambient and double snow treatments. Soil temperature at 5 cm depth was more variable in the no snow treatment than in the ambient and double snow treatments. CH4 fluxes were uniformly low with no significant difference across three treatments. CO2 showed expected seasonal changes with the highest emission in spring and lowest emissions through the winter. N2O peaks were higher in spring due to freeze thaw effects and cumulative N2O fluxes were substantially higher in the no snow treatment than in the ambient and double snow treatments.

  9. Water Resource Impacts During Unconventional Shale Gas Development: The Pennsylvania Experience

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Yoxtheimer, D.; Arjmand, S.; Grieve, P.; Vidic, R.; Abad, J. D.; Simon, C. A.; Pollak, J.

    2013-12-01

    The number of unconventional Marcellus shale wells in PA has increased from 8 in 2005 to more than 6000 today. This rapid development has been accompanied by environmental issues. We analyze publicly available data describing this Pennsylvania experience (data from www.shalenetwork.org and PA Department of Environmental Protection, i.e., PA DEP). After removing permitting and reporting violations, the average percent of wells/year with at least one notice of violation (NOV) from PA DEP is 35 %. Most violations are minor. An analysis of NOVs reported for wells drilled before 2013 revealed a rate of casing, cement, or well construction issues of 3.4%. Sixteen wells were given notices specifically related to migration of methane. A similarly low percent of wells were contaminated by brine components. Such contamination could derive from spills, subsurface migration of flowback water or shallow natural brines, or contamination by drill cuttings. Most cases of contamination of drinking water supplies with methane or brine components were reported in the previously glaciated part of the state. Before 2011, flowback and production water was often discharged legally into streams after minimal treatment, possibly increasing dissolved Br concentrations in some rivers. The rate of large spills or releases of gas-related industrial wastes in the state peaked in 2009 but little evidence of spills has been found in publicly available surface water chemistry data. The most likely indicators of spillage or subsurface release of flowback or production waters are the dissolved ions Na, Ca, and Cl. However, the data coverage for any given analyte is generally spatially and temporally sparse. Publicly available water quality data for before and after spills into Larrys Creek and Bobs Creek document the difficulties of detecting such events. An observation from the Pennsylvania experience is that the large number of people who have complained about their water supply (~1000 letters investigated by state regulators) and the media attention during the fast start in PA may have led to better management practices. Maintaining online databases of observations could similarly drive shale-gas practice to become even more environmentally protective.

  10. Wastewater treatment process impact on energy savings and greenhouse gas emissions.

    PubMed

    Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D

    2015-01-01

    The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO2e/PE. The highest values of CO2 emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions. PMID:25633956

  11. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants.

    PubMed

    Bani Shahabadi, M; Yerushalmi, L; Haghighat, F

    2009-06-01

    The overall on-site and off-site greenhouse gas emissions by wastewater treatment plants (WWTPs) of food processing industry were estimated by using an elaborate mathematical model. Three different types of treatment processes including aerobic, anaerobic and hybrid anaerobic/aerobic processes were examined in this study. The overall on-site emissions were 1952, 1992, and 2435 kg CO2e/d while the off-site emissions were 1313, 4631, and 5205 kg CO2e/d for the aerobic, anaerobic and hybrid treatment systems, respectively, when treating a wastewater at 2000 kg BOD/d. The on-site biological processes made the highest contribution to GHG emissions in the aerobic treatment system while the highest emissions in anaerobic and hybrid treatment systems were obtained by off-site GHG emissions, mainly due to on-site material usage. Biogas recovery and reuse as fuel cover the total energy needs of the treatment plants for aeration, heating and electricity for all three types of operations, and considerably reduce GHG emissions by 512, 673, and 988 kg CO2e/d from a total of 3265, 6625, and 7640 kg CO2e/d for aerobic, anaerobic, and hybrid treatment systems, respectively. Considering the off-site GHG emissions, aerobic treatment is the least GHG producing type of treatment contrary to what has been reported in the literature. PMID:19375775

  12. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Hutley, L. B.; Evans, B. J.; Beringer, J.; Cook, G. D.; Maier, S. M.; Razon, E.

    2013-12-01

    North Australian tropical savanna accounts for 12% of the world’s total savanna land cover. Accordingly, understanding processes that govern carbon, water and energy exchange within this biome is critical to global carbon and water budgeting. Climate and disturbances drive ecosystem carbon dynamics. Savanna ecosystems of the coastal and sub-coastal of north Australia experience a unique combination of climatic extremes and are in a state of near constant disturbance from fire events (1 in 3 years), storms resulting in windthrow (1 in 5-10 years) and mega-cyclones (1 in 500-1000 years). Critically, these disturbances occur over large areas creating a spatial and temporal mosaic of carbon sources and sinks. We quantify the impact on gross primary productivity (GPP) and fire occurrence from a tropical mega-cyclone, tropical Cyclone Monica (TC Monica), which affected 10?400 km2 of savanna across north Australia, resulting in the mortality and severe structural damage to ˜140 million trees. We estimate a net carbon equivalent emission of 43 Tg of CO2-e using the moderate resolution imaging spectroradiometer (MODIS) GPP (MOD17A2) to quantify spatial and temporal patterns pre- and post-TC Monica. GPP was suppressed for four years after the event, equivalent to a loss of GPP of 0.5 Tg C over this period. On-ground fuel loads were estimated to potentially release 51.2 Mt CO2-e, equivalent to ˜10% of Australia’s accountable greenhouse gas emissions. We present a simple carbon balance to examine the relative importance of frequency versus impact for a number of key disturbance processes such as fire, termite consumption and intense but infrequent mega-cyclones. Our estimates suggested that fire and termite consumption had a larger impact on Net Biome Productivity than infrequent mega-cyclones. We demonstrate the importance of understanding how climate variability and disturbance impacts savanna dynamics in the context of the increasing interest in using savanna landscapes for enhanced carbon sinks in emission offset schemes.

  13. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    PubMed

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. PMID:22796016

  14. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism - a gas-phase ab initio study.

    PubMed

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-01-28

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ?100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter-molecular non-covalent interactions. PMID:25566585

  15. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    NASA Astrophysics Data System (ADS)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based strategies for maximizing GHG mitigation potential of biofuel feedstocks.

  16. Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results

    SciTech Connect

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

  17. Long-range transport and its impact on trace gas variability at selected GAW stations

    NASA Astrophysics Data System (ADS)

    Henne, S.; Brunner, D.; Klausen, J.; Buchmann, B.

    2009-04-01

    To improve our understanding of the impact and the time-scales of atmospheric pollution transport and to understand the mixing ratios of non- or weakly reactive gases observed within monitoring programmes such as the Global Atmosphere Watch (GAW) programme global scale atmospheric transport models provide valuable and requisite information. Atmospheric transport described in a Lagrangian framework, contrary to the Eulerian approach, does not suffer from numerical diffusion. In addition, information on transport times of newly released emissions is easily accessible in the Lagragian concept. Therefore, Lagrangian models are the ideal tool to answer the questions raised above. To this end the Lagrangian particle dispersion model FLEXPART (Version 8.0) was extended and set up on the global domain with 3 million particles that are permanently transported based on ECMWF wind fields. All particles carry 9 different counters that indicate times since certain atmospheric regions were left: 1 counter for each of the 6 WMO regions keeping track of atmospheric boundary layer contact, 2 counters for inter-hemispheric transport, and 1 counter for stratosphere-troposphere exchange. Thirteen different species are represented with each particle: 1 atmospheric air tracer, 6 carbon monoxide (CO) and 6 methane (CH4) tracers according to emissions from the 6 WMO regions. Gridded emissions are taken up by particles passing through the atmospheric boundary layer of each grid cell and are based on constant EDGAR3.2FT2000 (anthropogenic) and 8-daily GFED (v2) (biomass-burning) emission inventories. Degradation of CO and CH4 (and also CO production from CH4 degradation) is considered by temperature and pressure dependent reaction with hydroxyl radicals (OH). Monthly OH fields are taken from HTAP. Global monthly mean fields for each species, each clock and 11 age-classes are produced by the model and offer detailed insight into the time-scales of transport and the contributions from different source regions. Furthermore, receptor concentrations (daily temporal resolution) are produced for selected GAW sites and allow for model inter-comparison and interpretation of observations. In this contribution we present details on the model concept and first results obtained for an iterative spin-up run for the year 2001.

  18. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta.

    PubMed

    Esbaugh, Andrew J; Heuer, Rachael; Grosell, Martin

    2012-10-01

    The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 ?atm by 2100, and over 1,900 ?atm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 ?atm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 ?atm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-?atm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 ?atm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 ?atm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 ?atm exposures, but eliminated the respiratory impacts of 1,000 ?atm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2). PMID:22581071

  19. Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania

    SciTech Connect

    Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

    2011-01-01

    Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

  20. Gas-phase reactive nitrogen near Grand Teton National Park: Impacts of transport, anthropogenic emissions, and biomass burning

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Levin, E. J. T.; Benedict, K. B.; Sullivan, A. P.; Schurman, M. I.; Gebhart, K. A.; Day, D. E.; Carrico, C. M.; Malm, W. C.; Schichtel, B. A.; Collett, J. L.; Kreidenweis, S. M.

    2014-06-01

    Excess inputs of reactive nitrogen can adversely affect terrestrial and aquatic ecosystems, particularly in sensitive ecosystems found at high elevations. Grand Teton National Park is home to such sensitive natural areas and is in proximity to potentially large reactive nitrogen sources. The Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) was conducted in spring-summer 2011, with the aim of better understanding sources of reactive nitrogen influencing the region, spatial and temporal variability of reactive nitrogen in the atmosphere, and current levels of nitrogen deposition. Overall, NOy was determined to be the most abundant class of ambient gas phase reactive nitrogen compounds, and ammonia was determined to be the most abundant individual nitrogen species. NOx, NOy and NH3 concentrations all showed a diel cycle, with maximum concentrations during the day and minimum concentrations at night. This pattern appeared to be driven, in part, by mountain-valley circulation as well as long range transport, which brought air to the site from anthropogenic sources in the Snake River Valley and northern Utah. In addition to the nitrogen sources noted above, we found elevated concentrations of all measured nitrogen species during periods impacted by biomass burning.

  1. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  2. Sulfur and Iron Speciation in Gas-rich Impact-melt Glasses from Basaltic Shergottites Determined by Microxanes

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.

    2008-01-01

    Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Mossbauer studies on rocks at Meridian and Gusev, whereas MgSO4 is deduced from MgO - SO3 correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum and alunogen/ S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/ sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. To understand the implications of these observations for the formation of the Gas-rich Impact-melt (GRIM) glasses, we determined the oxidation state of Fe in the GRIM glasses using Fe K micro-XANES techniques.

  3. Arctic summary report. Outer Continenetal Shelf and onshore oil and gas activities and impacts in the Arctic: a summary report, October 1981

    SciTech Connect

    Jackson, J.B.; Golden, B.F.; Stadnychenko, A.; Kolasinski, S.

    1981-10-01

    Designed to satisfy the needs of state and local government officials concerned about oil and gas prospecting in the U.S. Arctic region, this U.S. Geological Survey report provides a comprehensive summary of the lease sales and drilling activity that have taken place in the area since exploration began in the 1970s. The survey includes a description of the Arctic's geologic setting, the magnitude and timing of the region's development, potential oil and gas transportation strategies being implemented and considered, and the existing and proposed associated facilities and their potential impact on the area's environment and population.

  4. 77 FR 2513 - Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ...Statement for Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries Service (NMFS...DEIS) for the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on several written requests received...

  5. 78 FR 21347 - Supplemental Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...Statement for Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries Service (NMFS...DEIS) for the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on a written request received by...

  6. 78 FR 41949 - Notice of Intent To Prepare an Environmental Impact Statement for the Lower Gas Hills...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ...public concern. The Project area is located in central Wyoming...Lander, Wyoming, in the Gas Hills Mining District of...Wyoming. The Project area encompasses approximately...have been active in the Gas Hills area since the early...

  7. Multiresidue method for the simultaneous determination of four groups of pesticides in ground and drinking waters, using solid-phase microextraction–gas chromatography with electron-capture and thermionic specific detection

    Microsoft Academic Search

    C Gonçalves; M. F Alpendurada

    2002-01-01

    A common sample preparation procedure capable of efficiently concentrating various groups of pesticides, taking advantage of universal detectors like the mass spectrometer or combined techniques of group selective detectors like gas chromatography–electron capture detection (ECD)\\/thermionic specific detection (TSD), is desirable in environmental analysis. Six solid-phase microextraction fibres available for analysis of semi-volatiles (7, 30 and 100 ?m poly(dimethylsiloxane) (PDMS), 85

  8. 78 FR 65698 - Notice of Availability of the Final Environmental Impact Statement for the Gas Hills In Situ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...Statement for the Gas Hills In Situ Recovery Uranium Project, Fremont and Natrona Counties...the Gas Hills In Situ Recovery (ISR) Uranium Project and by this notice is announcing...Decision (ROD). DATES: The Gas Hills ISR Uranium Project Final EIS will be available...

  9. Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania.

    PubMed

    Grant, Christopher J; Weimer, Alexander B; Marks, Nicole K; Perow, Elliott S; Oster, Jacob M; Brubaker, Kristen M; Trexler, Ryan V; Solomon, Caroline M; Lamendella, Regina

    2015-04-16

    Mercury (Hg) is a persistent element in the environment that has the ability to bioaccumulate and biomagnify up the food chain with potentially harmful effects on ecosystems and human health. Twenty-four streams remotely located in forested watersheds in northwestern PA containing naturally reproducing Salvelinus fontinalis (brook trout), were targeted to gain a better understanding of how Marcellus shale natural gas exploration may be impacting water quality, aquatic biodiversity, and Hg bioaccumulation in aquatic ecosystems. During the summer of 2012, stream water, stream bed sediments, aquatic mosses, macroinvertebrates, crayfish, brook trout, and microbial samples were collected. All streams either had experienced hydraulic fracturing (fracked, n = 14) or not yet experienced hydraulic fracturing (non-fracked, n = 10) within their watersheds at the time of sampling. Analysis of watershed characteristics (GIS) for fracked vs non-fracked sites showed no significant differences (P > 0.05), justifying comparisons between groups. Results showed significantly higher dissolved total mercury (FTHg) in stream water (P = 0.007), lower pH (P = 0.033), and higher dissolved organic matter (P = 0.001) at fracked sites. Total mercury (THg) concentrations in crayfish (P = 0.01), macroinvertebrates (P = 0.089), and predatory macroinvertebrates (P = 0.039) were observed to be higher for fracked sites. A number of positive correlations between amount of well pads within a watershed and THg in crayfish (r = 0.76, P < 0.001), THg in predatory macroinvertebrates (r = 0.71, P < 0.001), and THg in brook trout (r = 0.52, P < 0.01) were observed. Stream-water microbial communities within the Deltaproteobacteria also shared a positive correlation with FTHg and to the number of well pads, while stream pH (r = -0.71, P < 0.001), fish biodiversity (r = -0.60, P = 0.02), and macroinvertebrate taxa richness (r = -0.60, P = 0.01) were negatively correlated with the number of well pads within a watershed. Further investigation is needed to better elucidate relationships and pathways of observed differences in stream water chemistry, biodiversity, and Hg bioaccumulation, however, initial findings suggest Marcellus shale natural gas exploration is having an effect on aquatic ecosystems. PMID:25734824

  10. Environmental impacts of absorption-based CO 2 capture unit for post-combustion treatment of flue gas from coal-fired power plant

    Microsoft Academic Search

    Bhurisa Thitakamol; Amornvadee Veawab; Adisorn Aroonwilas

    2007-01-01

    This study assesses potential environmental impacts of the absorption-based carbon dioxide (CO2) capture unit that is integrated to coal-fired power plant for post-combustion treatment of flue gas. The assessment was performed by identifying potential pollutants and their sources as well as amounts of emissions from the CO2 capture unit and also by reviewing toxicology, potential implications to human health and

  11. Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part I: Effect of Partial Fuel Vaporization on Spray Combustion

    Microsoft Academic Search

    Amsini Sadiki; W. Ahmadi; Mouldi Chrigui; J. Janicka

    \\u000a This work aims at investigating the impact of the interaction between evaporation process and combustion on spray combustion\\u000a characteristics in gas turbine combustion chambers. It is subdivided into two parts. The first part studies how the evaporation\\u000a process affects the behavior of partially pre-vaporized spray combustion. The second part attempts to answer the question\\u000a how the fuel evaporation process behaves

  12. Arctic summary report. Outer Continental Shelf and onshore oil and gas activities and impacts in the Arctic: a summary report, October 1981. Arctic summary report

    SciTech Connect

    Jackson, J.B.; Golden, B.F.; Stadnychenko, A.; Kolasinski, S.

    1981-01-01

    This summary report begins with a chapter describing the Arctic subregion. Sections of this chapter discuss the geology of the area, including the most recent OCS oil and gas resource and reserve estimates, climate, sand and gravel, the biological environment, the people, and current land use. The magnitude and timing of oil and gas activity are discussed in chapter 2. The third chapter presents information on oil and gas transportation strategies. Chapter 4 describes the nearshore and onshore facilities and impacts that are occurring and/or probably will occur as a result of current and projected lease sales. Appendixes provide further detail, and a glossary presents definitions of geologic, industry-specific, and other special terms used in the report. OCS resource and reserve estimates presented in the summary report reflect the most recent Federal Government information.

  13. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os, NO3, NO2, and HO2 are predicted to have noticeable impacts on anthropogenic aerosol forcing over industrialized areas, leading to 0-2 W m(sup -2) more anthropogenic aerosol cooling in present-day and 2-8 W m(sup -2) more cooling in year 2100 in these areas as compared with forcings calculated in the absence of heterogeneous reactions. Sea salt uptake of SO2 reduces the magnitude of TOA aerosol cooling by 0.5-1 W m(sup -2) over the oceans around 60 N in the present-day and year 2100 scenarios. Near dust sources, mineral dust uptake of SO2 and HNO3 leads to less anthropogenic aerosol cooling by 0.5-1 W m(sup -2) in the present day and 1-2 W m(sup -2) in year 2100.

  14. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31?000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits. PMID:25825338

  15. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W. R.; Macdonald, A. M.; Valsaraj, K. T.; Herckes, P.

    2012-12-01

    Cloud and fog droplets efficiently scavenge and process water-soluble compounds and thus modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~10 mg C L-1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g. photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g. dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds in a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ?2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase comprises 1-~40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidized and thus more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7×103 M atm-1 to 7×104 M atm-1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dialdehydes (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is <10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects on the oxidation capacity of the atmosphere.

  16. Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks.

    PubMed

    Bunch, A G; Perry, C S; Abraham, L; Wikoff, D S; Tachovsky, J A; Hixon, J G; Urban, J D; Harris, M A; Haws, L C

    2014-01-15

    Shale gas exploration and production (E&P) has experienced substantial growth across the U.S. over the last decade. The Barnett Shale, in north-central Texas, contains one of the largest, most active onshore gas fields in North America, stretching across 5000 square miles and having an estimated 15,870 producing wells as of 2011. Given that these operations may occur in relatively close proximity to populated/urban areas, concerns have been expressed about potential impacts on human health. In response to these concerns, the Texas Commission on Environmental Quality established an extensive air monitoring network in the region. This network provides a unique data set for evaluating the potential impact of shale gas E&P activities on human health. As such, the objective of this study was to evaluate community-wide exposures to volatile organic compounds (VOCs) in the Barnett Shale region. In this current study, more than 4.6 million data points (representing data from seven monitors at six locations, up to 105 VOCs/monitor, and periods of record dating back to 2000) were evaluated. Measured air concentrations were compared to federal and state health-based air comparison values (HBACVs) to assess potential acute and chronic health effects. None of the measured VOC concentrations exceeded applicable acute HBACVs. Only one chemical (1,2-dibromoethane) exceeded its applicable chronic HBACV, but it is not known to be associated with shale gas production activities. Annual average concentrations were also evaluated in deterministic and probabilistic risk assessments and all risks/hazards were below levels of concern. The analyses demonstrate that, for the extensive number of VOCs measured, shale gas production activities have not resulted in community-wide exposures to those VOCs at levels that would pose a health concern. With the high density of active wells in this region, these findings may be useful for understanding potential health risks in other shale play regions. PMID:24076504

  17. Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas

    E-print Network

    Kammen, Daniel M.

    greenhouse gas analysis of sugarcane ethanol Anand R Gopal1,4,6 and Daniel M Kammen1,2,3,5 1 Energy supplying country for the production of sugarcane ethanol; fresh mill-pressed cane juice from a Brazilian this in regulation. Keywords: LCA, biofuels, sugarcane ethanol, greenhouse gas emissions, GREET 6 Corresponding

  18. REDUCING THE IMPACTS OF TRANSPORTATION ON GLOBAL WARMING: SUMMARY OF NEW YORK GREENHOUSE GAS TASK FORCE RECOMMENDATIONS

    Microsoft Academic Search

    Steven Winkelman; Greg Dierkers

    2003-01-01

    Global climate change is fundamentally caused by fossil fuel combustion. The transportation sector generates more than one-third of greenhouse gas (GHG) emissions in New York and represents the fastest-growing source of GHG emissions in the state. A summary of the recommendations of the New York Greenhouse Gas Task Force for reducing GHG emissions from the transportation sector is provided. Using

  19. The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas

    E-print Network

    Victoria, University of

    The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse of the author. #12;ii Supervisory Committee The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical

  20. The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland

    NASA Astrophysics Data System (ADS)

    Keegan, K.; Albert, M. R.; Baker, I.

    2014-10-01

    Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present, which can alter transport dynamics and therefore reduce the accuracy of reconstructed climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. These ice layers were found to have permeability values of 3.0 and 4.0 × 10-10 m2, and are therefore not impermeable layers. However, the shallower ice layer was found to be significantly less permeable than the surrounding firn, and can therefore retard gas transport. Large closed bubbles were found in the deeper ice layer, which will have an altered gas composition than that expected because they were closed near the surface after the water phase was present. The bubbles in this layer represent 12% of the expected closed porosity of this firn layer after the firn-ice transition depth is reached, and will therefore bias the future ice core gas record. The permeability and thickness of the ice layers at the North Greenland Eemian Ice Drilling (NEEM) site suggest that they do not disrupt the firn-air concentration profiles and that they do not need to be accounted for in gas transport models at NEEM.

  1. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  2. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W. R.; Macdonald, A. M.; Valsaraj, K. T.; Herckes, P.

    2013-05-01

    Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~ 10 mgC L-1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ? 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase of clouds or fogs, respectively, comprises 2-~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7 × 103 M atm-1 to 7 × 104 M atm-1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are used to contrast two scenarios, i.e., an anthropogenically vs. a more biogenically impacted one as being representative for Davis and Whistler, respectively. Since the simplicity of the box model prevents a fully quantitative prediction of the observed aldehyde concentrations, we rather use the model results to compare trends in aldehyde partitioning and ratios. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels significantly by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dicarbonyl compounds (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is < 10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~ 1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects in the oxidation capacity of the atmosphere.

  3. [Health and environmental licensing: a methodological proposal for assessment of the impact of the oil and gas industry].

    PubMed

    Barbosa, Eduardo Macedo; Barata, Matha Macedo de Lima; Hacon, Sandra de Souza

    2012-02-01

    Bearing in mind the importance of the impacts of the oil industry on human health, this article seeks to present a methodological proposal for analysis of these aspects in environmental impact assessment studies, based on the established legal parameters and a validated matrix for the hydroelectric sector. The lack of health considerations in the environmental impact assessment was detected in most of the 21 oil production enterprises analyzed, that were licensed in the period from January 1, 2004 through October 30, 2009. The health matrix proved to be an appropriate methodological approach to analyze these aspects in the environmental licensing process, guiding decisions and interventions in socio-environmental management. PMID:22267026

  4. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Pereira, J. M.; Revilock, D. M.

    2004-01-01

    Under the Federal Aviation Administration's Airworthiness Assurance Center of Excellence and the Aircraft Catastrophic Failure Prevention Program, National Aeronautics and Space Administration Glenn Research Center collaborated with Arizona State University, Honeywell Engines, Systems and Services, and SRI International to develop improved computational models for designing fabric-based engine containment systems. In the study described in this report, ballistic impact tests were conducted on layered dry fabric rings to provide impact response data for calibrating and verifying the improved numerical models. This report provides data on projectile velocity, impact and residual energy, and fabric deformation for a number of different test conditions.

  5. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect

    Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  6. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect

    Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  7. Impacts of individual fish movement patterns on estimates of mortality due to dissolved gas supersaturation in the Columbia River Basin.

    SciTech Connect

    Scheibe, Timothy D.; Richmond, Marshall C.; Fidler, Larry E.

    2002-12-31

    Spatial and temporal distributions of dissolved gases in the Columbia and Snake rivers vary due to many factors including river channel and dam geometries, operational decisions, and natural variations in flow rates. As a result, the dissolved gas exposure histories experienced by migrating juvenile salmonids can vary significantly among individual fish. A discrete, particle-based model of individual fish movements and dissolved gas exposure history has been developed and applied to examine the effects of such variability on estimates of fish mortality. The model, called the Fish Individual-based Numerical Simulator or FINS, is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories are then input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. This model framework provides a critical linkage between hydrodynamic models of the river system and models of biological effects. FINS model parameters were estimated and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. The model was then used to simulate exposure histories under selected operational scenarios. We compare mortality rates estimated using the FINS model approach (incorporating individual behavior and spatial and temporal variability) to those estimated using average exposure times and levels as is done in traditional lumped-parameter model approaches.

  8. 77 FR 47052 - El Paso Natural Gas Company; Notice of Intent To Prepare an Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ...right-of-way after construction; Impacts on threatened and endangered species (including the masked bobwhite quail, Pima pineapple cactus, and Chiricahua leopard frog) and other sensitive species (including the cactus ferruginous pygmy owl); and...

  9. Semiempirical model of impact interaction of a disperse impurity particle with a surface in a gas suspension flow

    SciTech Connect

    Tsirkunov, Yu.M.; Panfilov, S.V.; Klychnikov, M.B. [Baltic State Technical Univ., St. Petersburg (Russian Federation)

    1995-06-01

    A mathematical model describing the dynamics of impact of a spherical particle on a solid surface is proposed and investigated. In closing the model, use is made of the experimental mean statistical values off the coefficients of restitution of the components of the velocity vector of the center of mass of the particle normal and tangential to the surface. The model permits a physically correct description of particle rotation upon impact and determination of its angular rotational velocity.

  10. The impact of plasma-wall interaction on the gas mixing efficiency in electron cyclotron resonance ion source

    SciTech Connect

    Schachter, L.; Dobrescu, S. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Stiebing, K. E. [Institut fuer Kernphysik der J. W. Goethe-Universitaet, Frankfurt/Main (Germany)

    2012-02-15

    It is generally accepted that different effects are necessary to explain the gas mixing method of increasing the output of highly charged ions from an ECRIS. The two most important effects are the mass effect and the dilution effect. Their relative weights have not been determined experimentally yet, but it is generally assumed that the mass effect is dominant in standard ECRIS installations with stainless steel plasma chambers. In order to gain more insight into the physics of the gas mixing effect and in particular on the relevance of the dilution process, we have carried out a study where we have investigated the role of the plasma-wall interaction on the gas mixing effect. In this contribution, we shall discuss Charge state distributions spectra, measured at the Frankfurt ECRIS using different working gases, pure argon, a mixture of argon and oxygen, and argon mixed with neon.

  11. Fundamental insights on impact of non-condensible gas evolution from coating pyrolysis and intentional injection on molten-aluminum water explosion onset during direct-chill casting

    SciTech Connect

    Taleyarkhan, R.P.; Kim, S.H. [Oak Ridge National Lab., TN (United States); Gulec, K. [Oak Ridge Associated Universities, TN (United States)

    1998-05-01

    Explosive interactions between molten aluminum and water are being studied with a focus on fundamentals to determine what causes robust-enough triggers for explosion onset, to determine the extent of protection provided from various coatings and to develop a fundamentally-based simple, cost-effective novel methodology for prevention. The workscope includes experimentation and mathematical modeling of the interactions between molten metals and water at various different coated and uncoated surfaces. Phenomenological issues related to surface wettability, gas generation from coatings, charring of coatings, inertial constraint, melt temperature, water temperature, external shocks are being investigated systematically to gage their relative impact on the triggerability of surface-assisted steam explosions. The steam explosion triggering studies (SETS) facility was designed and constructed as a rapid-turnaround, cost-effective, and safe means to address these phenomenological issues. Data from SETS tests have indicated that, non-condensible gas (NCG) generation during paint pyrolysis plays a predominant role in explosion prevention. This paper describes results of studies on impact of deliberate NCG injection on explosion prevention, via molten melt drops free-falling into water, as well as from tests using the SETS facility for studying entrapment induced explosive boiling. SETS is also being used to obtain information on time-varying and integral amounts of NCGs generated from various paints. Relevant data are presented. Results of investigations, taken together provide compelling evidence on the positive role NCGs play on explosion prevention.

  12. An integrated approach for the evaluation of technological hazard impacts on air quality: the case of the Val d'Agri oil/gas plant

    NASA Astrophysics Data System (ADS)

    Calvello, M.; Esposito, F.; Trippetta, S.

    2014-04-01

    The Val d'Agri area (southern Italy) hosts the biggest on-shore European reservoir and the largest oil/gas pre-treatment plant, named Centro Olio Val d'Agri (COVA), located in a rural/anthropized context. Several hazards are associated to this plant. These are mainly represented by possible impacts of the COVA atmospheric emissions on the local air quality and human health. This work uses a novel approach based on the integration of air quality measurements from the regional monitoring network, additional experimental measurements (i.e., sub-micrometric particulate matter - PM1 and Black Carbon - BC) and advanced statistical analyses to provide a preliminary evaluation of the Val d'Agri air quality state and give some indications of specific areas potentially affected by COVA hazards. Results show that the COVA plant emissions exert an impact especially on the air quality of the area closest to it. In this area several pollutants specifically related to the COVA combustion processes (i.e., nitrogen oxides, benzene and toluene) show the highest concentration values and significant correlations. The proposed approach represents a first step in the assessment of the risks associated to oil/gas exploration and pre-treatment activities and a starting point for the development of effective and exportable air quality monitoring strategies.

  13. An integrated approach for the evaluation of technological hazard impacts on air quality: the case of the Val d'Agri oil/gas plant

    NASA Astrophysics Data System (ADS)

    Calvello, M.; Esposito, F.; Trippetta, S.

    2014-08-01

    The Val d'Agri area (southern Italy) hosts one of the biggest onshore European reservoir and the largest oil/gas pre-treatment plant, named Centro Olio Val d'Agri (COVA), located in a rural/anthropized context. Several hazards are associated with this plant. These are mainly represented by possible impacts of the COVA atmospheric emissions on the local air quality and human health. This work uses a novel approach based on the integration of air quality measurements from the regional monitoring network, additional experimental measurements (i.e. sub-micrometre particulate matter (PM1) and black carbon (BC)) and advanced statistical analyses to provide a preliminary evaluation of the Val d'Agri air quality state and give some indication of specific areas potentially affected by COVA hazards. Results show that the COVA plant emissions have a particular impact on the air quality of the area closest to it. In this area several pollutants specifically related to the COVA combustion processes (i.e. nitrogen oxides, benzene and toluene) show the highest concentration values and significant correlations. The proposed approach represents a first step in the assessment of the risks associated with oil/gas exploration and pre-treatment activities and a starting point for the development of effective and exportable air quality monitoring strategies.

  14. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    EIA Publications

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  15. OT1_mbradfor_1: The Impact of Quasars on their Host Galaxies: Gas Conditions and Star Formation in the Central Kiloparsec

    NASA Astrophysics Data System (ADS)

    Bradford, M.

    2010-07-01

    We propose to study the impact of powerful quasars on the star-forming gas in their host galaxies' central kiloparsec with a 44-hour program using the PACS and SPIRE spectrometers. We are targeting four intrinsically luminous and gravitationally-lensed AGN systems in the z~2-4 era which show evidence of obscured star formation in their hosts. We will measure the five bright far-IR fine-structure transitions: [SiII] 35, [OI] 63, [OIII] 52 & 88, and [CII] 158 which are the dominant interstellar gas coolants in galaxies. We will combine the Herschel line fluxes with Z-Spec measurements of the peak of the CO spectrum to provide a complete census of the atomic and molecular gas mass and cooling in the central kpc of these systems. Our datasets will allow us to perform two key experiments: 1) What heats the gas in the central kpc? When compared with one another and the dust continuum, the line measurements distinguish between UV-photon heating in photo-dissociation regions (PDRs) and bulk heating due to X-rays and/or cosmic rays. Relative to the PDRs, the bulk heating sources are very efficient at heating the gas and produce strong line-to-continuum ratios as well as an enhanced [SiII] / [CII] ratio. If X-rays or cosmic rays are really an important heating source, we will see unusually strong [SiII] and [OI] in these systems. 2) Is the stellar mass function biased toward high masses in these systems? It has been proposed that bulk heating mechanisms are likely to impact the stellar IMF, boosting the characteristic mass by as much as an order of magnitude relative to the Galaxy. Our measurements of the [OIII] transitions, when compared with the far-IR continuum or [CII] which trace total star formation provide a measure of the fraction of very massive stars in the stellar IMF. Similarly, comparison of the [OIII intensities and lower-ionization species (including upper limits) probe the stellar effective temperature through comparison with nebular models.

  16. Impact of alternative n fertilizer sources on cotton yield and greenhouse gas emissions in a coastal plain soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of alternative fertilizer sources have increased in recent years. This is partially attributed to the belief that the new enhanced-efficiency N fertilizer sources can potentially increase crop yield, while at the same time decreasing greenhouse gas emissions. Thus, a field stud...

  17. 75 FR 6175 - Notice of Intent to Prepare an Environmental Impact Statement on the Effects of Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ...Statement on the Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries Service (NMFS...activities in state and Federal waters in the U.S. Arctic Ocean in the Beaufort and Chukchi Seas. Finally, the...

  18. The Impact of Reducing Greenhouse Gas Emissions in Crop Agriculture: A Spatial and Production-Level Analysis

    Microsoft Academic Search

    Lawton Lanier Nalley; Michael P. Popp; Corey Fortin

    2011-01-01

    With the Waxman-Markey Bill passing the House and the administration’s push to reduce carbon emissions, the likelihood of the implementation of some form of a carbon emissions policy is increasing. This study estimates the greenhouse gas (GHG) emissions of the six largest row crops produced in Arkansas using 57 different production practices predominantly used and documented by the University of

  19. Differential Treatment of Pregnancy in Employment: The Impact of "General Electric Co. v. Gilbert" and "Nashville Gas Co. v. Satty."

    ERIC Educational Resources Information Center

    Taylor, Ellen T.

    1978-01-01

    After discussing the facts and reasoning of the two cases (General Electric Co. vs Gilbert and Nashville Gas Co. vs Satty), the author argues that the decisions are largely the product of pregnancy stereotypes and that the Court's reasoning is flawed and should not be applied outside the context of pregnancy. Journal availability: see EA 511 481.…

  20. Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction.

    PubMed

    Chen, Zezhi; Gong, Huijuan; Zhang, Mengqun; Wu, Weili; Liu, Yu; Feng, Jin

    2011-05-01

    Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term. PMID:21232931

  1. MOF-74 building unit has a direct impact on toxic gas adsorption T. Grant Glover a,n

    E-print Network

    Yaghi, Omar M.

    , and a physically adsorbed compound, octane. Although a large number of toxic industrial chemicals exist-bed breakthrough testing in both dry and humid conditions. Octane breakthrough tests were performed to determine). The number of studies that have examined dynamic gas separations using MOFs is limited (Britt, et al., 2008

  2. Impacts of prior land use and increased corn acreage on life cycle assessment of net greenhouse gas flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increased demand for corn ethanol, farmers are expected to plant the largest corn acreage in the United States since 1944. One of the main reasons for producing corn ethanol is the reduced greenhouse gas (GHG) emissions compared with gasoline. However, quantifying the offset of GHG emission...

  3. Impact of gas/particle partitioning of semivolatile organic compounds on source apportionment with positive matrix factorization.

    PubMed

    Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C

    2014-08-19

    To quantify and minimize the influence of gas/particle (G/P) partitioning on receptor-based source apportionment using particle-phase semivolatile organic compound (SVOC) data, positive matrix factorization (PMF) coupled with a bootstrap technique was applied to three data sets mainly composed of "measured-total" (measured particle- + gas-phase), "particle-only" (measured particle-phase) and "predicted-total" (measured particle-phase + predicted gas-phase) SVOCs to apportion carbonaceous aerosols. Particle- (PM2.5) and gas-phase SVOCs were collected using quartz fiber filters followed by PUF/XAD-4/PUF adsorbents and measured using gas chromatography-mass spectrometry (GC-MS). Concentrations of gas-phase SVOCs were also predicted from their particle-phase concentrations using absorptive partitioning theory. Five factors were resolved for each data set, and the factor profiles were generally consistent across the three PMF solutions. Using a previous source apportionment study at the same receptor site, those five factors were linked to summertime biogenic emissions (odd n-alkane factor), unburned fossil fuels (light SVOC factor), road dust and/or cooking (n-alkane factor), motor vehicle emissions (PAH factor), and lubricating oil combustion (sterane factor). The "measured-total" solution was least influenced by G/P partitioning and used as reference. Two out of the five factors (odd n-alkane and PAH factors) exhibited consistent contributions for "particle-only" vs "measured-total" and "predicted-total" vs "measured-total" solutions. Factor contributions of light SVOC and n-alkane factors were more consistent for "predicted-total" vs "measured-total" than "particle-only" vs "measured-total" solutions. The remaining factor (sterane factor) underestimated the contribution by around 50% from both "particle-only" and "predicted-total" solutions. The results of this study confirm that when measured gas-phase SVOCs are not available, "predicted-total" SVOCs should be used to decrease the influence of G/P partitioning on receptor-based source apportionment. PMID:25083820

  4. Impact of Reduced Tillage and Cover Cropping on the Greenhouse Gas Budget of a Maize/Soybean Rotation Ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the impact of an alternative management scenario (reduced tillage and cover cropping) on ecosystem respiration and N2O and CH4 exchange in a maize (Zea mays L)/soybean (Glycine max L.) rotation agroecosystem in north-central Minnesota. The control treatmen...

  5. Impact of Oxidation Catalysts on Exhaust NO2\\/NOx Ratio from Lean-Burn Natural Gas Engines

    Microsoft Academic Search

    Daniel B. Olsen; Morgan Kohls; Gregg Arney; Krzysztof Pikon´; Krzysztof Gaska; Lingjuan Wang; Edgar Oviedo-Rondon; John Small; Zifei Liu; Brian Sheldon; Gerald Havenstein; C. Williams; Di Tian; Daniel Cohan; Sergey Napelenok; Michelle Bergin; Yongtao Hu; Michael Chang; Armistead Russell; Ye Xu; Guohe Huang; Xiaosheng Qin; Kuo-Pin Yu; Grace Lee; Guo-Hao Huang; Prabhakar Sharma; Tjalfe Poulsen; William Vizuete; Leiran Biton; Harvey Jeffries; Evan Couzo; Yi-Chi Chien; Chenju Liang; Shou-Heng Liu; Shu-Hua Yang; Maciej Kryza; Malgorzata Werner; Marek Blas; Anthony Dore; Mieczyslaw Sobik; Kaushlendra Singh; L. Risse; K. C. Das; John Worley; Sidney Thompson; Bryan Comer; James Corbett; J. Hawker; Karl Korfmacher; Earl Lee; Chris Prokop; James Winebrake

    2010-01-01

    Oxides of nitrogen (NOx) emitted from internal combustion engines are composed primarily of nitric oxide (NO) and nitrogen dioxide (NO2). Exhaust from most combustion sources contains NOx composed primarily of NO. There are two important scenarios specific to lean-burn natural gas engines in which the NO2\\/NOx ratio can be significant: (1) when the engine is operated at ultralean conditions and

  6. Formation of anion fragments from gas-phase glycine by low energy (0-15 eV) electron impact

    Microsoft Academic Search

    Sascha Gohlke; Andrzej Rosa; Eugen Illenberger; Frank Bruning; Michael A. Huels

    2002-01-01

    We have measured the formation of anion fragments in gas phase glycine (H2NCH2)COOH via dissociative electron attachment (DEA) reactions in the 0-15 eV electron energy range, using a monochromatic electron beam and mass spectrometric detection of the negative ions. By far the most intense product observed is the closed shell glycine anion (H2NCH2)COO- which appears from a low-energy resonance with

  7. LARGE-SCALE SHOCK-IONIZED AND PHOTOIONIZED GAS IN M83: THE IMPACT OF STAR FORMATION

    SciTech Connect

    Hong, Sungryong; Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dopita, Michael A. [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Whitmore, Bradley C.; Bond, Howard E. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Carollo, Marcella [Department of Physics, ETH-Zurich, Zurich 8093 (Switzerland); Disney, Michael J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Frogel, Jay A. [Association of Universities for Research in Astronomy, Washington, DC 20005 (United States); Hall, Donald [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, Jon A. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Kimble, Randy A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCarthy, Patrick J. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101-1292 (United States); O'Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Paresce, Francesco [Istituto di Astrofisica Spaziale e Fisica Cosmica, INAF, Via Gobetti 101, 40129 Bologna (Italy); Saha, Abhijit [National Optical Astronomy Observatories, Tucson, AZ 85726-6732 (United States); Silk, Joseph I. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Trauger, John T. [NASA-Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Walker, Alistair R., E-mail: wpb@pha.jhu.edu [Cerro Tololo Inter-American Observatory, La Serena (Chile)

    2011-04-10

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 A)/H{beta} versus [S II](6716 A+6731 A)/H{alpha}, with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.''2 x 0.''2) basis and compare it with several photo- and shock-ionization models. We select four regions from the center to the outer spiral arm and compare them in the diagnostic diagram. For the photoionized gas, we observe a gradual increase of the log ([O III]/H{beta}) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super-solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photoionized from the shock-ionized component of the gas. We find that the shock-ionized H{alpha} emission ranges from {approx}2% to about 15%-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is a horizontal distribution around log ([O III]/H{beta}) {approx} 0. This feature is well fit by a shock-ionization model with 2.0 Z{sub sun} metallicity and shock velocities in the range of 250-350 km s{sup -1}. A low-velocity shock component, <200 km s{sup -1}, is also detected and is spatially located at the boundary between the outer ring and the spiral arm. The low-velocity shock component can be due to (1) supernova remnants located nearby, (2) dynamical interaction between the outer ring and the spiral arm, and (3) abnormal line ratios from extreme local dust extinction. The current data do not enable us to distinguish among those three possible interpretations. Our main conclusion is that, even at the HST resolution, the shocked gas represents a small fraction of the total ionized gas emission at less than 33% of the total. However, it accounts for virtually all of the mechanical energy produced by the central starburst in M83.

  8. Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOFMS).

    PubMed

    Eyres, Graham; Dufour, Jean-Pierre; Hallifax, Gabrielle; Sotheeswaran, Subramaniam; Marriott, Philip J

    2005-06-01

    The essential oil of coriander leaves (Coriandrum sativum) and wild coriander leaves (Eryngium foetidum) grown in Fiji was obtained by steam distillation. The aroma profiles were characterised using gas chromatography-olfactometry (GCO) and CharmAnalysis. The character-impact odorants were identified using comprehensive two-dimensional gas chromatography (GC x GC) combined with time-of-flight mass spectrometry (TOFMS). During GCO analysis, the co-elution of E-2-alkenals and E-2-alken-1-ols resulted in the perception of 'odour-clusters'. The most important odorants in C. sativum were found to be Z-2-decenal, a co-eluting odour-cluster (E-2-dodecenal, E-2-dodecen-1-ol, and 1-dodecanol), beta-ionone, eugenol, and E-2-decenal. E-2-decen-1-ol was the most abundant compound in C. sativum (26.0% TIC) but only contributed 0.39% of the total odour activity. The most abundant compound in E. foetidum was E-2-dodecenal (63.5% TIC), which also contributed the most odour activity (52.9%). Other important odorants were either eugenol or a trimethylbenzaldehyde isomer, beta-ionone, Z-4-dodecenal, dodecanal, and E-2-tetradecenal. GC x GC-TOFMS allowed the identification of 42 and 20 compounds not previously reported in the literature for C. sativum and E. foetidum, respectively. In particular, beta-ionone was determined to be an important odorant in both samples but could not be identified with GC-qMS. PMID:16013833

  9. Strengthening of oxidation resistant materials for gas turbine applications. [treatment of silicon ceramics for increased flexural strength and impact resistance

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.

    1974-01-01

    Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.

  10. Impact of the BEA zeolite morphology on isobutane adsorption followed by Reversed-Flow Inverse Gas Chromatography.

    PubMed

    Batalha, N; Soualah, A; Pinard, L; Pouilloux, Y; Lemos, F; Belin, T

    2012-10-19

    The mass transfer phenomena of isobutane (i-C4) were investigated at 343K on three protonic BEA zeolites. Defined by their crystallites sizes and degrees of aggregation, these samples were characterized by Reversed-Flow Inverse Gas Chromatography (RF-GC). This simple technique, used in conjunction with numerical computation, allowed the determination of physicochemical quantities like local monolayer capacities, probability density functions and diffusion coefficients in a time-resolved way. This study enabled to conclude that the effective diffusion coefficient was affected by the size of the zeolite agglomerate whereas the surface diffusion depended on the zeolite crystallite size. PMID:22964049

  11. Potential impacts of electric power production utilizing natural gas, renewables and carbon capture and sequestration on US Freshwater resources.

    PubMed

    Tidwell, Vincent C; Malczynski, Leonard A; Kobos, Peter H; Klise, Geoffrey T; Shuster, Erik

    2013-08-01

    Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm(3)/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm(3)/d of water savings. PMID:23789965

  12. Effect of placements (horizontal with vertical) on gas-solid flow and particle impact erosion in gate valve

    NASA Astrophysics Data System (ADS)

    Lin, Zhe; Zhu, Linhang; Cui, Baoling; Li, Yi; Ruan, Xiaodong

    2014-12-01

    Gate valve has various placements in the practical usages. Due to the effect of gravity, particle trajectories and erosions are distinct between placements. Thus in this study, gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method. The structure of a gate valve and a simplified structure are investigated. The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow. The results show that for all investigated open degrees and Stokes numbers (St), there are little difference of gas flow properties and flow coefficients between two placements. It is also found that the trajectories of particles for two placements are mostly identical when St « 1, making the erosion independent of placement. With the increase of St, the distinction of trajectories between placements becomes more obvious, leading to an increasing difference of the erosion distributions. Besides, the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250?m.

  13. The impact of economic activity in Asturias on greenhouse gas emissions: consequences for environmental policy within the Kyoto Protocol framework.

    PubMed

    Argüelles, Margarita; Benavides, Carmen; Junquera, Beatriz

    2006-11-01

    Climate change is one of the major worldwide environmental concerns. It is especially the case in many developed countries, where the greenhouse gas emissions responsible for this change are mainly concentrated. For the first time, the Kyoto Protocol includes an international agreement for the reduction of the net emissions of these gases. To fulfil this agreement measures designed to reduce or limit current emissions have to be brought into force. Consequently, fears have arisen about possible consequences on competitiveness and future development of manufacturing activities and the need for support mechanisms for the affected sectors is obvious. In this paper, we carry out a study of the emissions of gases responsible for climate change in Asturias (Spain), a region with an important economic presence of sectors with intensive emissions of CO(2), the chief greenhouse gas. To be precise, in the first place, the volumes of direct emissions of the said gases in 1995 were calculated, showing that the sectors most affected by the Kyoto Protocol in Asturias are iron and steel and electricity production. Secondly, input-output analysis was applied to determine the direct and indirect emissions and the direct, indirect and induced emissions of the different production sectors, respectively. The results derived from the direct and indirect emissions analysis and their comparison with the results of the former allow us to reach some conclusions and environmental policy implications. PMID:16556480

  14. DAYCENT Model Projections of Land Use Change Impacts on N Gas Emissions in the Central US (Invited)

    NASA Astrophysics Data System (ADS)

    Del Grosso, S.; Parton, W. J.; Ogle, S. M.

    2009-12-01

    Nitrogen additions to cropped soils from fertilizers and symbiotic N fixation are an important source of N2O, NOx, and NH3 emissions. As the need for biofuel feedstock increases, pasture, prairie, and other lands are being converted to biofuel cropping systems. We used the DAYCENT biogeochemical model to quantify emission patterns of N gas related aerosol precursors under current land use and land use changes. DAYCENT is the daily time step version of the CENTURY model and simulates plant growth, soil organic matter decomposition, and the microbial processes that result in N gas emissions. Land use change scenarios considered include conversion of current cropland, pasture, CRP, and abandoned crop land to different biofuel cropping systems under conventional and improved management scenarios. Model results suggest that conversion of cropland to corn ethanol cropping would result in a small increase in emissions but use of improved fertilizers would mitigate this increase. Conversion of pasture, CRP, and abandoned crop land to corn ethanol cropping results in substantial increases in emissions that would only be partially mitigated by using improved fertilizers. However, converting these non-cropped lands to cellulosic biofuel cropping systems, such as switchgrass and miscanthus, would result in a more modest increase in emissions. Converting land already used for cropping to cellulosic biofuel crops would likely result in a decrease in emissions. We conclude that previous land use interacts with current land management strategies to control emissions.

  15. Impact of Dynamic Loading on the Implant-abutment Interface Using a Gas-enhanced Permeation Test In Vitro

    PubMed Central

    Al-Jadaa, Anas; Attin, Thomas; Peltomäki, Timo; Heumann, Christian; Schmidlin, Patrick Roger

    2015-01-01

    Purpose : To assess implant leakage under static conditions as well as during and after dynamic loading. Materials and methods : Implants (Astra Tech (A), Biomet 3i (B) and Nobel Biocare (C)) were evaluated for leakage (n=8/group). Testing to assess the gas pressure change over time (hPa/min) and infiltrated fluid volume, was performed in a Gas Enhanced Permeation Test (GEPT) to qualify embedding. Implant apexes were then drilled, abutments were mounted and resin build-ups were fabricated. GEPT was reassessed. Samples were afterward mounted in a computer-controlled masticator while tested to bacterial leakage, they were daily observed for turbidity. Samples were then reassessed using GEPT. Dunnett's and Fisher's exact tests were utilized to compare implant and to analyze bacterial leakage. Results : Significant differences in GEPT values were shown after loading (p=0.034). Leakage resistance was best for B when compared to C (p=0.023). Samples with higher GEPT values demonstrated earlier bacterial leakage, occurring after 1 or 2 days (A=4, B=0, C=6) and showing favorability for implant system B (p=0.009). Conclusion : Implants leaking under static conditions had increased potential for bacterial leakage under dynamic conditions. As strongly correlating to sophisticated analytical methods, GEPT is a promising technique for assessing the overall implant system leakage resistance. PMID:25870719

  16. CO2 injectivity in saline aquifers: The impact of non-Darcy flow, phase miscibility, and gas compressibility

    NASA Astrophysics Data System (ADS)

    Mijic, Ana; LaForce, Tara C.; Muggeridge, Ann H.

    2014-05-01

    A key aspect of CO2 storage is the injection rate into the subsurface, which is limited by the pressure at which formation starts to fracture. Hence, it is vital to assess all of the relevant processes that may contribute to the pressure increase in the aquifer during CO2 injection. Building on an existing analytical solution for immiscible and spatially varying non-Darcy flow, this paper presents a mathematical model that accounts for combined effects of non-Darcy flow, phase miscibility, and gas compressibility in radial two-phase displacements. Results show that in low-permeability formations when CO2 is injected at high rates, non-Darcy simulations forecast better displacement efficiency compared to flow under Darcy conditions. This will have a positive effect on the formation CO2 storage capacity. This, however, comes at the cost of increased well pressures. More favorable estimations of the pressure buildup are obtained when CO2 compressibility is taken into account because reservoir pressures are reduced due to the change in the gas phase properties. Also, non-Darcy flow results in a significant reduction in halite precipitation in the near-well region, with a positive effect on CO2 injectivity. In the examples shown, non-Darcy flow conditions may lead to significantly different pressure and saturation distributions in the near-well region, with potentially important implications for CO2 injectivity.

  17. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    PubMed

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-01

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane. PMID:22913312

  18. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    SciTech Connect

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  19. Natural gas sampling

    Microsoft Academic Search

    N. P. Prokopovich; D. C. Magleby

    1981-01-01

    Two simple, inexpensive devices for sampling natural gas from small and noncommercial deposits are described. One device is intended for sampling of minute gas seepage from the bottom of shallow basins such as ponds or marshes where the gas might have an environmental impact. A shallow, inverted large metal funnel with a small hole in the side is placed on

  20. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Revilock, D. M.; Pereira, J. M.

    2009-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.

  1. The impact of gas-surface reactions on mass spectrometric measurements of atomic nitrogen. [determination of atmosphere ion sources

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Mauersberger, K.

    1979-01-01

    The paper presents a simplified model of the ion source chemistry, explains several details of the data reduction method used in obtaining atomic-nitrogen (N) densities from OSS data, and discusses implications of gas-surface reactions for the design of future satellite-borne mass spectrometers. Because of various surface reactions, N appears in three different forms in the ion source, as N, NO, and NO2. Considering the rather small spin modulation of NO and NO2 in the semi-open ionization chamber used in the OSS instrument, it is not surprising that these reaction products have not been previously identified in closed source instruments as a measure of the presence of atomic nitrogen. Warmup and/or outgassing of the ion source are shown to drastically reduce the NO2 concentration, thereby making possible reliable measurement of ambient N densities.

  2. A Model Study of the Impact of Source Gas Changes on the Stratosphere for 1850-2100

    NASA Technical Reports Server (NTRS)

    Fleming, E. L.; Jackman, C. H.; Stolarski, R. S.; Douglass, A. R.

    2011-01-01

    The long term stratospheric impacts due to emissions of CO2, CH4, N2O, and ozone depleting substances (ODSs) are investigated using an updated version of the Goddard two-dimensional (2D) model. Perturbation simulations with the ODSs, CO2, CH4, and N2O varied individually are performed to isolate the relative roles of these gases in driving stratospheric changes over the 1850-2100 time period. We also show comparisons with observations and the God- 40 dard Earth Observing System chemistry-climate model simulations for the time period 1970-2100 to illustrate that the 2D model captures the basic processes responsible for longterm stratospheric change. The 2D simulations indicate that prior to 1940, the 45 ozone increases due to CO2 and CH4 loading outpace the ozone losses due to increasing N2O and carbon tetrachloride (CCl4) emissions, so that ozone reaches a broad maximum during the 1920s-1930s. This preceeds the significant ozone depletion during approx. 1960-2050 driven by the ODS loading. During the latter half of the 21st century as ODS emissions diminish, CO2, N2O, and CH4 loading will all have significant impacts on global total ozone based on the IPCC AIB (medium) scenario, with CO2 having the largest individual effect. Sensitivity tests illustrate that due to the strong chemical interaction between methane and chlorine, the CH4 impact on total ozone becomes significantly more positive with larger ODS loading. The model simulations also show that changes in stratospheric temperature, Brewer-Dobson circulation (BDC), and age of air during 1850-2100 are controlled mainly by the CO2 and ODS loading. The simulated acceleration of the BDC causes the age of air to decrease by approx. 1 year from 1860-2100. The corresponding photochemical lifetimes of N2O, CFCl3, CF2Cl2, and CCl4 decrease by 11-13% during 1960-2100 due to the acceleration of the BDC, with much smaller lifetime changes 4%) caused by changes in the photochemical loss rates.

  3. SPECIAL ISSUE DEVOTED TO THE 25th ANNIVERSARY OF THE A.M. PROKHOROV GENERAL PHYSICS INSTITUTE: Generation of laser-pulse-field harmonics in a gas upon impact ionisation of atoms

    Microsoft Academic Search

    M. V. Kuzelev; A. A. Rukhadze

    2007-01-01

    The generation of harmonics of a high-power-laser-pulse field in a gas during impact ionisation of atoms by oscillating electrons is studied theoretically. Fields are considered under conditions when the oscillation energy of electrons in the radiation field, remaining nonrelativistic, considerably exceeds the ionisation potential of an atom. In addition, the radiation field was assumed weak compared to the atomic field

  4. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.

    PubMed

    Lu, Haiyang; Chen, Guanglong; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2010-01-14

    We present an experimental investigation of the dependence of the production of large methane clusters on the cluster source conditions. The clusters were produced at room temperature through supersonic expansion of methane gas at the backing pressures P(0) ranging from 10 to 84 bar using five conical nozzles of different geometries. The cluster size was characterized by Rayleigh scattering measurements and calibrated with Coulomb explosion of the clusters at P(0) = 44 bar subjected to an ultraintense laser pulse. A quantitative evaluation of the performance of the conical nozzles against the nozzle geometry and the backing pressure was made by introducing a parameter delta. Differ from the idealized case where the performance of the conical nozzle can be described by the equivalent sonic nozzle of diameter d(eq), in the present work, the "effective equivalent sonic-nozzle diameter" of the conical nozzle defined by d(eq)* = deltad(eq) is introduced. delta represents the deviation of the performance in cluster formation of the conical nozzles from that predicted on the basis of the concept of the equivalent diameter d(eq) = d/tan alpha, with d being the throat diameter, and alpha the half-opening angle of the conical nozzle. Experimental results show that the cluster growth process will be restricted when the gas backing pressure P(0) is higher and/or d/tan alpha of the conical nozzle becomes larger, resulting in smaller delta. From the experimental data, delta can be expressed by an empirical relation delta = A/[P(0)(B)(d/tan alpha)(1.36)], where A = 8.4 and B = 0.26 for 24 bar

  5. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT

    SciTech Connect

    Zamecnik, J.; Choi, A.

    2009-03-25

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

  6. Impact of oxidation catalysts on exhaust NO2/NOx ratio from lean-burn natural gas engines.

    PubMed

    Olsen, Daniel B; Kohls, Morgan; Arney, Gregg

    2010-07-01

    Oxides of nitrogen (NOx) emitted from internal combustion engines are composed primarily of nitric oxide (NO) and nitrogen dioxide (NO2). Exhaust from most combustion sources contains NOx composed primarily of NO. There are two important scenarios specific to lean-burn natural gas engines in which the NO2/NOx ratio can be significant: (1) when the engine is operated at ultralean conditions and (2) when an oxidation catalyst is used. Large NO2/NOx ratios may result in additional uncertainty in NOx emissions measurements because the most common technique (chemiluminescence) was developed for low NO2/NOx ratios. In this work, scenarios are explored in which the NO2/NOx ratio can be large. Additionally, three NOx measurement approaches are compared for exhaust with various NO2/NOx ratios. The three measurement approaches are chemiluminescence, chemical cell, and Fourier-transform infrared spectroscopy. A portable analyzer with chemical cell technology was found to be the most accurate for measuring exhaust NOx with large NO2/NOx ratios. PMID:20681434

  7. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania

    PubMed Central

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA? sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  8. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    PubMed

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%. PMID:23075406

  9. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania.

    PubMed

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J; Wright, Justin R; Rosenberger, Abigail; McClure, Erin E; Grube, Alyssa M; Peterson, Mark P; Keddache, Mehdi; Mason, Olivia U; Hazen, Terry C; Grant, Christopher J; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  10. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    SciTech Connect

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

  11. Impact of wildfire emissions on trace gas and aerosol concentration measured at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia

    NASA Astrophysics Data System (ADS)

    Panov, A.; Chi, X.; Winderlich, J.; Birmili, W.; Lavri?, J. V.; Andreae, M. O.

    2012-04-01

    Boreal wildfires are large sources of reactive trace gases and aerosols to the atmosphere, accounting for 20% of carbon emissions from global biomass burning. Siberian wildfires are a major extratropical source of carbon monoxide (CO), as well as a significant source of black carbon, smoke aerosols, and other climate-relevant atmospheric gas/particle species. Smoke particles released by Siberian wildfires could be tracked thousands of kilometers downwind in the entire Northern Hemisphere, perturbing regional to global radiation budgets by influencing light scattering and cloud microphysical processes. The boreal regions of the Northern Hemisphere are expected to experience the largest temperature increases, which will likely increase the severity and frequency of fires. Consequently, long-term continuous trace gas and aerosol measurements in central Siberia are vital for assessing the atmospheric impact of Siberian boreal fires on regional to global air quality and climate. Since 2006, the Zotino Tall Tower Facility (ZOTTO; www.zottoproject.org), a unique international research platform for large-scale climatic observations, is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). A 300 m-tall tower allows regular probing of the mixed part of the boundary layer, which is only moderately influenced by diurnal variations of local surface fluxes and thus, in comparison with surface layer, representative for a larger region. Our investigation of the wildfires' impact on surface air composition in Central Siberia is based on four years of CO/CO2/CH4 and aerosol particle mass data measured at 300 m a.g.l.. Episodes of atmospheric transport from wildfires upwind of the measurements site are identified based on ensembles of HYSPLIT backward trajectories and MODIS active fire products. The emission factors are calculated using the Carbon Mass Balance method. In an effort to simplify combustion to its most fundamental principles, the combustion efficiency (CE) is used to represent the completeness of combustion. The following general notion is applied: if the CE exceeds 90 %, a fire is typically in the flaming phase, whereas if CE is less than 85 % combustion is in the smoldering phase. Most fires can be considered as being in a "mixed" phase. Ideally, the emission ratios can be obtained by dividing the excess concentrations of trace gas species measured in a fire plume (e.g. CO, CO2) by the excess concentration of a measured reference gas from the data set. Ground-based CO and CO2 measurements in plumes from relatively distant fires can usually not be used to extract CO/CO2 emission ratios due to the uncertain contributions of biogenic CO2 from respiration to the plume air. We present our attempt to extract CO/CO2 relationships related to sources from statistical analysis of our data set. The burnt biomass load is taken from the Global Land Cover 2000 project and validated by our in situ data set. Finally, episodes of emissions from the wildfires identified at the given location and time are calculated with a simple bottom-up approach using the equation of Seiler and Crutzen.

  12. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  13. Gas Pressure

    NSDL National Science Digital Library

    Pomplun, Steve

    This radio broadcast discusses the boom in natural gas drilling in the Rocky Mountain region and is possible impacts on the environment. A resource advocate points out the issue of well density, which can range from four wells per square mile to sixteen, 32, or more, and results in fragmentation of habitat as well as an ugly industrial appearance. The clip is 2 minutes in length and is available in MP3 format.

  14. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J.

    2013-12-01

    Increasing numbers of studies have suggested that a comprehensive assessment of the impacts of cropping practices on greenhouse gas (GHG) emissions per unit yield (yield-scaled), rather than by land area (area-scaled), is needed to inform trade-off decisions to increase yields and reduce GHG emissions. We conducted a meta-analysis to quantify impacts of rice varieties on the global warming potential (GWP) of GHG emissions at the yield scale in China. The results showed that significantly higher yield-scaled GWP occurred with indica rice varieties (1101.72 kg CO2 equiv. Mg-1) compared to japonica rice varieties (711.38 kg CO2 equiv. Mg-1). Lower yield-scaled GHG emissions occurred within 120-130 days of growth duration after transplanting (GDAT; 613.66 kg CO2 equiv. Mg-1), followed by 90-100 days of GDAT (749.72 kg CO2 equiv. Mg-1), 100-110 days of GDAT (794.29 kg CO2 equiv. Mg-1), and 70-80 days of GDAT (800.85 kg CO2 equiv. Mg-1). The greatest reduction, 41%, occurred at a rate of 150-200 kg N ha-1 relative to the non-fertilized control. Consequently, appropriate cultivar choice and pairs was of vital importance in the rice cropping system. A further life cycle assessment of GHG emissions among rice varieties at the yield scale is urgently needed to develop win-win policies for rice production to achieve higher yield with lower emissions.

  15. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J.

    2014-07-01

    Increasing numbers of studies have suggested that a comprehensive assessment of the impacts of cropping practices on greenhouse gas (GHG) emissions per unit yield (yield-scaled), rather than by land area (area-scaled), is needed to inform trade-off decisions to increase yields and reduce GHG emissions. We conducted a meta-analysis to quantify impacts of rice varieties on the global warming potential (GWP) of GHG emissions at the yield scale in China. Our results showed that significantly higher yield-scaled GWP occurred with indica rice varieties (1101.72 kg CO2 equiv. Mg-1) than japonica rice varieties (711.38 kg CO2 equiv. Mg-1). Lower yield-scaled GHG emissions occurred within 120-130 days of growth duration after transplanting (GDAT; 613.66 kg CO2 equiv. Mg-1), followed by 90-100 days of GDAT (749.72 kg CO2 equiv. Mg-1, 100-110 days of GDAT (794.29 kg CO2 equiv. Mg-1), and 70-80 days of GDAT (800.85 kg CO2 equiv. Mg-1). The fertilizer rate of 150-200 kg N ha-1 resulted in the lowest yield-scaled GWP. Consequently, appropriate cultivar choice and pairs were of vital importance in the rice cropping system. A further life cycle assessment of GHG emissions among rice varieties at the yield scale is urgently needed to develop win-win policies for rice production to achieve higher yield with lower emissions.

  16. Impact of flue gas desulfurization-calcium sulfite and gypsum on soil microbial activity and wheat growth

    SciTech Connect

    Lee, Y.B.; Bigham, J.M.; Dick, W.A.; Kim, P.J. [RDA, Suwon (Republic of Korea). National Institute for Agricultural Science and Technology

    2008-08-15

    We conducted greenhouse tests to evaluate the effects of FGD-CaSO{sub 3} applied at rates of 0, 2.2, 4.4, and 8.8 Mg ha(-1) on wheat growth, soil enzyme activities, and the chemical properties of two soils with differing pH (4.0 vs. 6.2). A gypsum treatment applied at the rate of 2.2 Mg ha{sup -1} was used as a positive control. Exchangeable Ca{sup 2+} and water-extractable Ca{sup 2+} and SO{sub 4}{sup 2-} increased significantly with increasing FGD-CaSO{sub 3} application. SO{sub 4}{sup 2-} increased in both soils, indicating rapid oxidation of SO{sub 3}{sup 2-} to SO{sub 4}{sup 2-} when neither water nor oxygen was limiting. No changes in soil pH were measured. Applications of 2.2, 4.4, or 8.8 Mg CaSO{sub 3} ha{sup -1} to the pH 6.2 soil produced no effect on wheat growth or the uptake of N, P, Ca{sup 2+}, and Mg{sup 2+}. The uptake of SO{sub 4}{sup 2-} -S increased, whereas K uptake decreased. No significant differences in the activities of urease, {beta}-glucosidase, alkaline phosphatase, or arylsulfatase were observed relative to a control. In the acid soil, an application of 2.2 Mg ha{sup -1} FGD-CaSO{sub 3} increased wheat root growth and dry matter yield compared with an untreated control. The uptake of N, P, Ca{sup 2+}, and K{sup +} also increased presumably because of enhanced root development resulting from decreases in exchangeable Al{sup 3+} and increases in soluble Ca{sup 2+}. Wheat growth and alkaline phosphatase and arylsulfatase activities were significantly inhibited by addition of 8.8 Mg ha{sup -1} of FGD-CaSO{sub 3} compared with the untreated control or the same soil receiving 2.2 Mg ha{sup -1} gypsum. We conclude that surface applications of FGD-CaSO{sub 3} may be as effective as gypsum for inhibiting soil crusting, improving water infiltration, and promoting the movement of Ca{sup 2+} into acid subsoils. Moreover, application rates of equal to or less than 4.4 Mg ha-1 should have no negative impact on soil microbial activities or plant growth.

  17. Offshore oil & gas markets heating up: Gulf of Mexico rising from `Dead Sea` image; healthy Gulf, North Sea markets combine for big impact

    SciTech Connect

    Simmons, M.R.

    1995-09-01

    Only three years ago, Gulf of Mexico drilling activity was so moribund that it was termed the Dead Sea. But the market has changed so there is now effectively 100 percent utilization in several important categories of offshore rigs, and almost every type of offshore rig is now getting higher use and better rates. What makes these changes so profound is that few industry participants saw this tightness developing, and almost no one predicted that it would occur so soon. Even the largest offshore contractors were pleasantly surprised as they watched their key drilling markets tighten so uickly after many years of vast oversupply. Today, while neither the Gulf of Mexico nor the North Sea could be described as booming, they are not falling apart either. The combination of both markets merely being normal at the same time has made a big impact on the worldwide supply and demand for offshore drilling. The need for steady and increasing offshore oil and gas production has never been so high. The technology now in place is allowing the development of offshore areas deemed almost impossible less than a decade ago. Also, the vast excess supply of offshore equipment is gone for many forms of drilling, and the need for steadily higher dayrates is real and will merely increase over time.

  18. Assessing economic impacts to coastal recreation and tourism from oil and gas development in the Oregon and Washington Outer Continental Shelf. Inventory and evaluation of Washington and Oregon coastal recreation resources

    SciTech Connect

    Ellis, G.M.; Johnson, N.S.; Chapman, D.

    1991-05-01

    The purpose of the three-part study was to assist Materials Management Service (MMS) planners in evaluation of the anticipated social impact of proposed oil and gas development on the environment. The purpose of the report is primarily to analyze the econometric models of the Dornbusch study. The authors examine, in detail, key aspects of the gravity, consumer surplus, and economic effects (input-output) models. The purpose is two-fold. First, the authors evaluate the performance of the model in satisfying the objective for which it was developed: analyzing economic impacts of OCS oil and gas development in California. Second, the authors evaluate the applicability of the modeling approach employed in the Dornbusch study for analyzing potential OCS development impacts in Washington and Oregon. At the end of the report, the authors offer suggestions for any future study of economic impacts of OCS development in Washington and Oregon. The recommendations concern future data gathering procedures and alternative modeling approaches for measuring economic impacts.

  19. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    PubMed

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range. PMID:17900147

  20. Examining the impacts of ethanol (E85) versus gasoline photochemical production of smog in a fog using near-explicit gas- and aqueous-chemistry mechanisms

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, Diana L.; Jacobson, Mark Z.

    2012-12-01

    This study investigates the air quality impacts of using a high-blend ethanol fuel (E85) instead of gasoline in vehicles in an urban setting when a morning fog is present under summer and winter conditions. The model couples the near-explicit gas-phase Master Chemical Mechanism (MCM v. 3.1) with the extensive aqueous-phase Chemical Aqueous Phase Radical Mechanism (CAPRAM 3.0i) in SMVGEAR II, a fast and accurate ordinary differential equation solver. Summer and winter scenarios are investigated during a two day period in the South Coast Air Basin (SCAB) with all gasoline vehicles replaced by flex-fuel vehicles running on E85 in 2020. We find that E85 slightly increases ozone compared with gasoline in the presence or absence of a fog under summer conditions but increases ozone significantly relative to gasoline during winter conditions, although winter ozone is always lower than summer ozone. A new finding here is that a fog during summer may increase ozone after the fog disappears, due to chemistry alone. Temperatures were high enough in the summer to increase peroxy radical (RO2) production with the morning fog, which led to the higher ozone after fog dissipation. A fog on a winter day decreases ozone after the fog. Within a fog, ozone is always lower than if no fog occurs. The sensitivity of the results to fog parameters like droplet size, liquid water content, fog duration and photolysis are investigated and discussed. The results support previous work suggesting that E85 and gasoline both enhance pollution with E85 enhancing pollution significantly more at low temperatures. Thus, neither E85 nor gasoline is a ‘clean-burning’ fuel.

  1. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections

    NASA Astrophysics Data System (ADS)

    Portmann, Felix T.; Döll, Petra; Eisner, Stephanie; Flörke, Martina

    2013-06-01

    Reduction of greenhouse gas (GHG) emissions to minimize climate change requires very significant societal effort. To motivate this effort, it is important to clarify the benefits of avoided emissions. To this end, we analysed the impact of four emissions scenarios on future renewable groundwater resources, which range from 1600 GtCO2 during the 21st century (RCP2.6) to 7300 GtCO2 (RCP8.5). Climate modelling uncertainty was taken into account by applying the bias-corrected output of a small ensemble of five CMIP5 global climate models (GCM) as provided by the ISI-MIP effort to the global hydrological model WaterGAP. Despite significant climate model uncertainty, the benefits of avoided emissions with respect to renewable groundwater resources (i.e. groundwater recharge (GWR)) are obvious. The percentage of projected global population (SSP2 population scenario) suffering from a significant decrease of GWR of more than 10% by the 2080s as compared to 1971-2000 decreases from 38% (GCM range 27-50%) for RCP8.5 to 24% (11-39%) for RCP2.6. The population fraction that is spared from any significant GWR change would increase from 29% to 47% if emissions were restricted to RCP2.6. Increases of GWR are more likely to occur in areas with below average population density, while GWR decreases of more than 30% affect especially (semi)arid regions, across all GCMs. Considering change of renewable groundwater resources as a function of mean global temperature (GMT) rise, the land area that is affected by GWR decreases of more than 30% and 70% increases linearly with global warming from 0 to 3?° C. For each degree of GMT rise, an additional 4% of the global land area (except Greenland and Antarctica) is affected by a GWR decrease of more than 30%, and an additional 1% is affected by a decrease of more than 70%.

  2. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the Eastern Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Q. Y.; Worden, R. H.; Jin, Z. J.; Liu, W. H.; Li, J.; Gao, B.; Zhang, D. W.; Hu, A. P.; Yang, C.

    2013-01-01

    The Palaeozoic and lowermost Mesozoic marine carbonate reservoirs of the Sichuan Basin in China contain variably sour and very dry gas. The source of the gas in the Carboniferous, Permian and Lower Triassic reservoirs is not known for certain and it has proved difficult to discriminate and differentiate the effects of thermal cracking- and TSR-related processes for these gases. Sixty-three gas samples were collected and analysed for their composition and carbon stable isotope values. The gases are all typically very dry (alkane gases being >97.5% methane), with low (<1%) nitrogen and highly variable H2S and CO2. Carboniferous gas is negligibly sour while the Lower Triassic gas tends to be most sour. The elevated H2S (up to 62%) is due to thermochemical sulphate reduction with the most sour Triassic and Permian reservoirs being deeper than 4800 m. The non-TSR affected Carboniferous gas is a secondary gas that was derived from the cracking of sapropelic kerogen-derived oil and primary gas and is highly mature. Carboniferous (and non-sour Triassic and Permian) gas has unusual carbon isotopes with methane and propane being isotopically heavier than ethane (a reversal of typical low- to moderate-maturity patterns). The gas in the non-sour Triassic and Permian reservoirs has the same geochemical and isotopic characteristics (and therefore the same source) as the Carboniferous gas. TSR in the deepest Triassic reservoirs altered the gas composition reaching 100% dryness in the deepest, most sour reservoirs showing that ethane and propane react faster than methane during TSR. Ethane evolves to heavier carbon isotope values than methane during TSR leading to removal of the reversed alkane gas isotope trend found in the Carboniferous and non-sour Triassic and Permian reservoirs. However, methane was directly involved in TSR as shown by the progressive increase in its carbon isotope ratio as gas souring proceeded. CO2 increased in concentration as gas souring proceeded, but typical CO2 carbon isotope ratios in sour gases remained about -4‰ V-PDB showing that it was not solely derived from the oxidation of alkanes. Instead CO2 may partly result from reaction of sour gas with carbonate reservoir minerals, such as Fe-rich dolomite or calcite, resulting in pyrite growth as well as CO2-generation.

  3. Degradation of gas turbine performance in natural gas service

    Microsoft Academic Search

    Rainer Kurz; Klaus Brun

    2009-01-01

    The paper covers in detail degradation mechanisms and the impact of component degradation on overall gas turbine performance, in particular for two shaft engines as they are used as drivers for compressors in the natural gas service. The impact of component interaction plays a crucial role in the understanding of degradation effects. This is key in understanding and using other

  4. 3-D agricultural air quality modeling: Impacts of NH3/H2S gas-phase reactions and bi-directional exchange of NH3

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Yang

    2014-12-01

    Accurately simulating the transport and fate of reduced nitrogen (NHx = ammonia (NH3) + ammonium (NH4+))- and sulfur-containing compounds emitted from agricultural activities represents a major challenge in agricultural air quality modeling. In this study, the Community Multiscale Air Quality (CMAQ) modeling system is further developed and improved by implementing 22 ammonia (NH3)/hydrogen sulfide (H2S) related gas-phase reactions and adjusting a few key parameters (e.g., emission potential) for bi-directional exchange of NH3 fluxes. Several simulations are conducted over the eastern U.S. domain at a 12-km horizontal resolution for January and July 2002 to examine the impacts of those improved treatments on air quality. The 5th generation mesoscale model (MM5) and CMAQ predict an overall satisfactory and consistent performance with previous modeling studies, especially for 2-m temperature, 2-m relative humidity, ozone (O3), and fine particulate matter (PM2.5). High model biases exist for precipitation in July and also dry/wet depositions. The updated model treatments contribute to O3, NHx, and PM2.5 by up to 0.4 ppb, 1.0 ?g m-3, and 1.0 ?g m-3 in January, respectively, and reduce O3 by up to 0.8 ppb and contribute to NHx and PM2.5 by up to 1.2 and 1.1 ?g m-3 in July, respectively. The spatial distributions of O3 in both months and sulfur dioxide (SO2) in January are mainly affected by inline dry deposition velocity calculation. The spatial distributions of SO2 and sulfate (SO42-) in July are affected by both inline dry deposition velocity and NH3/H2S reactions. The variation trends of NH3, NHx, ammonium nitrate (NH4NO3), PM2.5 and total nitrogen (TN) are predominated by bi-directional exchange of NH3 fluxes. Uncertainties of NH3 emission potentials and empirical constants used in the bi-directional exchange scheme may significantly affect the concentrations of NHx and PM2.5, indicating that a more accurate and explicit treatment for those parameters should be considered in the future work.

  5. A study of the impact of oil and gas development on the Dene First Nations of the Sahtu (Great Bear Lake) Region of the Canadian Northwest Territories (NWT)

    Microsoft Academic Search

    Leo Paul Dana; Robert Brent Anderson; Aldene Meis-Mason

    2009-01-01

    Purpose – Beneath Canada's Northwest Territories lies a potential of 30 trillion cubic feet of natural gas. Will a $16 billion gas-pipeline bring prosperity or gloom? Will this bring employment opportunities for local people or will more qualified people be brought in from southern communities? The purpose of this paper is to give an account of what Dene residents of

  6. Impact of Gas-Phase Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions: Mechanism Implementation and Comparative Evaluation

    EPA Science Inventory

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...

  7. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air. In an open hole, the VOC readings seem to be strongly dependent on the degree of diffusion and advection of soil gas VOCs into the open hole from the surrounding soil, a process that may vary with soil and wind conditions. Making measurements with the sealed hole does take some additional time (4-7 minutes after the hole is augered) compared to the open-hole technique (1-2 minutes). We used the rigid-plastic tube technique to survey for soil gas VOCs across the entire site, less than ? acre. Condensate has impacted at least 0.28 acres. The impacted area may extend northwest of the surveyed area.

  8. Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells

    NASA Astrophysics Data System (ADS)

    Winter, J.; Tresp, H.; Hammer, M. U.; Iseni, S.; Kupsch, S.; Schmidt-Bleker, A.; Wende, K.; Dünnbier, M.; Masur, K.; Weltmann, K.-D.; Reuter, S.

    2014-07-01

    The pathway of the biologically active molecule hydrogen peroxide (H2O2) from the plasma generation in the gas phase by an atmospheric pressure argon plasma jet, to its transition into the liquid phase and finally to its inhibiting effect on human skin cells is investigated for different feed gas humidity settings. Gas phase diagnostics like Fourier transformed infrared spectroscopy and laser induced fluorescence spectroscopy on hydroxyl radicals (·OH) are combined with liquid analytics such as chemical assays and electron paramagnetic resonance spectroscopy. Furthermore, the viability of human skin cells is measured by Alamar Blue® assay. By comparing the gas phase results with chemical simulations in the far field, H2O2 generation and destruction processes are clearly identified. The net production rate of H2O2 in the gas phase is almost identical to the H2O2 net production rate in the liquid phase. Moreover, by mimicking the H2O2 generation of the plasma jet with the help of an H2O2 bubbler it is concluded that the solubility of gas phase H2O2 plays a major role in generating hydrogen peroxide in the liquid. Furthermore, it is shown that H2O2 concentration correlates remarkably well with the cell viability. Other species in the liquid like ·OH or superoxide anion radical (O_{2}^{\\cdot -} ) do not vary significantly with feed gas humidity.

  9. Assessment of non-economic impacts to coastal recreation and tourism from oil and gas development: A review of selected literature and example-methodology. Inventory and evaluation of Washington and Oregon coastal recreation resources

    SciTech Connect

    Kruger, L.E.; Johnson, D.R.; Lee, R.G.

    1991-05-01

    The purpose of the study three-part was to assist Minerals Management Service (MMS) planners in evaluation of the anticipated social impact of proposed oil and gas development on the environment. The Pacific Northwest coastal areas of Washington and Oregon, widely known for their natural beauty, provide a variety of recreational opportunities for both local residents and visitors. In fact, tourism is one of the leading industries in the two states and is an important source of revenue for the economies of many coastal communities. Thus, the Department of Interior, Minerals Management Service (MMS), in anticipation of the proposed Lease Sale 132, funded the research project with the aim of adding to the existing knowledge of Oregon and Washington coastal recreation resources that might be affected by proposed oil and gas development activities.

  10. Unconventional gas systems analysis

    SciTech Connect

    Zammerilli, A.M.; Duda, J.R.; Layne, A.W.

    1992-09-01

    Gas systems analysis at the Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry from resource to utilization. The board-based analysis identifies market needs that are required to maintain and expand the competitive position of natural gas in the overall energy supply by providing ``market pull`` options. METC systems analyses continually explore the impact of cost-lowering alternatives, which lead to the development of production and economic strategies to improve and promote the utilization of natural gas. Results of systems analyses identify socioeconomic, environmental, and regulatory barrier issues, providing a strategic base for guiding and improving future gas research, development, and demonstration initiative. Some recent analyses have focused on METC`s directional well projects, targeting unconventional formations throughout the United States. Specifically, cost supply relationships and risk assessments are being developed for low-permeability gas formations underlying the Maverick, Greater Green River, Piceance, and Appalachian Basins.

  11. Unconventional gas systems analysis

    SciTech Connect

    Zammerilli, A.M.; Duda, J.R.; Layne, A.W.

    1992-01-01

    Gas systems analysis at the Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry from resource to utilization. The board-based analysis identifies market needs that are required to maintain and expand the competitive position of natural gas in the overall energy supply by providing market pull'' options. METC systems analyses continually explore the impact of cost-lowering alternatives, which lead to the development of production and economic strategies to improve and promote the utilization of natural gas. Results of systems analyses identify socioeconomic, environmental, and regulatory barrier issues, providing a strategic base for guiding and improving future gas research, development, and demonstration initiative. Some recent analyses have focused on METC's directional well projects, targeting unconventional formations throughout the United States. Specifically, cost supply relationships and risk assessments are being developed for low-permeability gas formations underlying the Maverick, Greater Green River, Piceance, and Appalachian Basins.

  12. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    NASA Astrophysics Data System (ADS)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium incubation approach. With cumulative field emissions of 2.9±0.8 kg N2O-N ha-1 and 3.9±0.4 kg N2O-N ha-1 after trail hose application and injection, respectively, our results showed no clear application effect. NH3-N losses were higher for trail hose application (7.2 kg NH3-N ha-1) compared to injection (5.2 kg NH3-N ha-1). The calculated N budgets showed negative values (accumulative deficit) up to -6 kg N ha-1 and -32 kg N ha-1 for trail hose application and injection, respectively. But differences between treatments were not significant. Overall N budgets were more influenced by plant N uptake (91-96%) than by gaseous N losses (4-9%). However, results from the laboratory incubation indicate that N2 may also be a potentially important pathway of N loss, contributing to 34% of total gaseous N loss, corresponding to 5 kg N2-N ha-1 yr-1.

  13. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    NASA Astrophysics Data System (ADS)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most important factor governing the soot reactivity. In the third phase of this research, diesel soot was generated under 0 and 20% EGR using a four-cylinder, four-stroke, turbocharged common rail direct injection (DI) DDC diesel engine. The objective of this work was to examine the relevance of the single cylinder engine and flame studies to practical engine operation. The key engine parameters such as load, speed, and injection timing were kept constant to isolate the EGR effect on soot properties from any other engine effects. The thermokinetic analyses of the flame soot and engine soot showed a significant increase in soot oxidation rate as a result of the CO2 or EGR inclusion into the combustion process. The activation energy of soot oxidation was found to be independent of soot origin or formation history. The increase in soot oxidation rate is attributed solely to the increase in soot active sites, which are presented implicitly in the pre-exponential factor (A) of the oxidation rate equation. This latter statement was confirmed by measuring the initial active site area (ASA i) of all soot samples considered in this study. As expected, higher oxidation rates are associated with higher ASAi. The chemical properties of the soot were investigated to determine their effects upon soot reactivity. The results showed that the H/C and O/C ratios were not modified by CO2 or EGR addition. Therefore, these ratios are not reactivity parameters and their effects upon soot reactivity were ruled out. In distinct contrast, the physical properties of the soot were modified by the addition of CO2 or EGR. The interlayer spacing (d002) between the aromatic sheets increased, the crystallite width (La) decreased and the crystallite height (Lc) decreased as a consequence of CO 2 or EGR addition. The modified physical properties of the soot are responsible for the increased rate of soot oxidation. In order to examine the soot oxidation behavior in the DPF, the soot samples produced from the DDC engine under 0 and 20% EGR were partially oxidized in a thermogravimetric analyzer (TGA) to s

  14. Outer Continental Shelf oil and gas information program: outer continental shelf oil and gas activities in the Gulf of Mexico and their onshore impacts. A summary report, September 1980

    Microsoft Academic Search

    K. J. Havran; K. M. Collins

    1980-01-01

    The Gulf of Mexico Outer Continental Shelf (OCS) is an important oil- and gas- producing region with a long history. Its volume of production is greater than that of any other offshore region in the world. Most of the known hydrocarbon deposits in the area are situated off the coasts of Texas and Louisiana, where geologic structures associated with salt

  15. The impact of contaminated biomass for the formation of emission in the combustion process of producer gas in the cogeneration unit

    NASA Astrophysics Data System (ADS)

    Ko?anová, Slávka; Luká?, Ladislav; Széplaky, Dávid; Lazi?, Ladislav

    2014-08-01

    The paper presents the measurement result to the equipment designed for utilization contaminated biomass with segregated waste. Presented technology gasification of segregated waste together with biomass shows the optimization process of converting solid fuel to gas and its energy utilization in the cogeneration unit.

  16. Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol

    E-print Network

    Kammen, Daniel M.

    greenhouse gas analysis of sugarcane ethanol This article has been downloaded from IOPscience. Please scroll of sugarcane ethanol Anand R Gopal1,4 and Daniel M Kammen1,2,3 1 Energy and Resources Group, University just one feedstock from one supplying country for the production of sugarcane ethanol: fresh mill

  17. On-line minimization of running costs, greenhouse gas emissions and the impact of distributed generation using microgrids on the electrical system

    Microsoft Academic Search

    E. Alvarez; A. C. Lopez; J. Go?mez-Aleixandre; N. de Abajo

    2009-01-01

    Distributed generation systems composed of non-renewable and renewable power sources is one of the best approaches for reducing greenhouse gas emissions. Nevertheless, uncontrolled integration of power sources in the distribution system may have negative effects on efficiency and working parameters. Global optimization of distributed generation in the system is not available, but microgrids arrangements make it possible to the design

  18. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    Microsoft Academic Search

    Khalid O. Al-Qurashi

    2007-01-01

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an

  19. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive ( Olea europaea L.) cultivars

    Microsoft Academic Search

    Mokhtar Guerfel; Olfa Baccouri; Dalenda Boujnah; Wided Chaïbi; Mokhtar Zarrouk

    2009-01-01

    Leaf structural adaptations for the reduction of water loss were examined in two olive (Olea europaea L.) cultivars (Chemlali and Chétoui) growing under water stress conditions. Leaf measurements included leaf tissue thickness, stomatal density, trichome density, specific leaf area, leaf density, water relations, and gas exchange. We found considerable genotypic differences between the two cultivars. Chemlali exhibited more tolerance to

  20. Gulf of Mexico summary report. Outer Continental Shelf oil and gas activities in the Gulf of Mexico and their onshore impacts

    Microsoft Academic Search

    C. W. Lynch; R. W. Rudolph

    1984-01-01

    The Gulf of Mexico continues to be the most developed Continental Shelf region in the US and the world. Statistics for the Gulf show that in 1983 the region accounted for 93.7% and 92.1% of domestic Federal offshore oil and gas production, respectively. While shallow water areas of the Continental Shelf of the Gulf have been responsible for most of

  1. Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal

    E-print Network

    Boyer, Edmond

    : examples of French iron and coal Lorraine basins C. Lagny, R. Salmon, Z. Pokryszka and S. Lafortune (INERIS of mine shafts located in the iron Lorraine basin, in the Lorraine and in North-East coal basins are quite in mine workings but gas entrance and exit are allowed. Coal shafts are secured and can be equipped

  2. LANDFILL GAS EMISSIONS FROM LANDFILLS IN SANTIAGO DE CHILE - STRATEGIES TO REDUCE IMPACT ON LOCAL ENVIRONMENT AS WELL AS ON GLOBAL CLIMATE

    Microsoft Academic Search

    J. Vogdt

    Treatment of MSW in Santiago de Chile is limited mostly to final disposal at landfills, without any previous biological or thermal treatment, nor any recovery of biomass. Due to the decomposition of the organic fraction of MSW leachate is produced, as well as landfill gas, which contributes to global warming, local air pollution, odour and nuisance and increases the risk

  3. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas. PMID:22107036

  4. Environmental impacts of the expected increase in sea transportation, with a particular focus on oil and gas scenarios for Norway and northwest Russia

    Microsoft Academic Search

    Stig B. Dalsøren; Øyvind Endresen; Ivar S. A. Isaksen; Gjermund Gravir; Eirik Sørgaûrd

    2007-01-01

    We have complemented existing global sea transportation emission inventories with new regional emission data sets and scenarios for ship traffic and coastal activity in 2015. Emission inventories for 2000 and 2015 are used in a global Chemical Transport Model (CTM) to quantify environmental atmospheric impacts with particular focus on the Arctic region. Although we assume that ship emissions continue to

  5. Aroma-impact compounds in dried spice as a quality index using solid phase microextraction with olfactometry and comprehensive two-dimensional gas chromatography.

    PubMed

    Maikhunthod, Bussayarat; Marriott, Philip J

    2013-12-15

    A systematic experimental procedure is used to identify the aroma-impact compounds, leading to a shelf quality index based on head space solid-phase microextraction. Dried (ground) fennel seeds, having shelf life of 6 months (0.5Y) and 5 years (5Y), were used as a spice model for assessment of comparative aroma quality. Aroma-impact odorants were analysed by GC-olfactometry (GC-O) in parallel with comprehensive two-dimensional GC-flame ionisation detection (GC×GC-FID) using a polar/non-polar phase combination for the GC×GC column set. Tentative identification of aroma-impact odorants involved correlating data from the GC-O/FID system with GC×GC-time-of-flight mass spectrometry analysis by means of retention indices. Major compounds responsible for aroma perception were limonene, 1,8-cineole, terpinen-4-ol, estragole and trans-anethole, and showed an average decrease of 30-50% NIF from 0.5Y to 5Y. Monoterpenes which represent 'freshness', e.g. ?-pinene and ?-myrcene, exhibited identifiable aroma-impact only for the 0.5Y product. Sesquiterpenes and sesquiterpene oxides are suggested as an aging index, being present in increased amounts in 5Y. p-Anisaldehyde odour intensity for both samples remained the same (aroma perception sweet creamy, floral odour and Chinese seasoning powder). PMID:23993622

  6. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  7. Assessing the impact of forest fragmentation due to natural gas development on wild turkey nesting success in Van Buren County, Arkansas

    NASA Astrophysics Data System (ADS)

    Casey, James Kendall

    Natural gas exploration and production has caused large scale changes to portions of the Arkansas landscape. Well pad site construction, access roads, and pipelines utilized to extract and transport natural gas have fragmented forested areas. The forest fragmentation resulting from these rapid changes could be contributing to the documented decline in nesting success of the wild turkey (Meleagris gallopavo). This study quantified temporal changes in forest fragmentation in terms of the number of forest patches, mean forest patch area, and forest edge length. The correlation between these fragmentation variables and nesting success data was explored to test the hypotheses of this study that 1) the number of forest patches is negatively correlated to nesting success, that 2) forest patch size is positively correlated to nesting success, and that 3) forest edge habitat length is negatively correlated to nesting success. There were 838 wells added within Van Buren County during the years 2000 through 2009. These wells resulted in a total forest loss of about 1.5% area from the initial inventory of forest in 2000. Pearson product moment correlation (PPMC) values ranging from -0.19 to 0.17 suggests relationships exist between poults per hen and forest fragmentation due to natural gas development. These PPMC values and their respective directions confirm the hypothesis. However, their p-values were all greater than 0.5 which suggests the correlations may not be statistically significant. A stronger regression model, giving adjusted R squared value of 0.766, was constructed which takes into account annual precipitation, previous year's wild turkey harvest, along with the number of conifer forest patches. This study concludes that the low wild turkey nesting success may not be directly influenced by forests lost due to natural gas development within the study area Van Buren County Arkansas.

  8. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    EIA Publications

    2009-01-01

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  9. Impact of improved technology on potential reserves of tight gas in East Texas and Northwestern Louisiana. Final topical report, October 1, 1989-September 30, 1990

    SciTech Connect

    Haas, M.R.

    1990-12-01

    The East Texas/Northwestern Louisiana area has been one of the most active tight gas plays over the past decade. Advances in formation evaluation and stimulation technologies offer the prospect of increased reserves at reduced costs from remaining tight gas resource. The purpose of the study was to estimate the remaining potential production from the low permeability portions of the Cotton Valley and Travis Peak Formations, the largest tight gas formations in the area. For a 14,000 square mile study area that straddles the Texas/Louisiana border and the Sabine Uplift, a remaining estimated 2.8 Tcf is technically recoverable from the Cotton Valley Sand and 1.2 Tcf from the Upper Travis Peak. These estimates were based on a regional geologic appraisal of currently producing reservoirs. Typical wells were analyzed and used as the basis to extrapolate expected future production from the remaining undeveloped areas of these reservoirs. The analysis incorporated potential improvements in formation evaluation and stimulation technologies and current costing and industry financial parameters to estimate potential reserves at alternative wellhead prices. Reservoir data and analysis results can be used to identify which geological and technical parameters are most important to efficient recovery of East Texas tight sands. Three case studies are also presented of improved technologies in the study area over the past decade. The studies indicate that technology improvements have been made in the design and implementation of new stimulation technologies, as well as in formation evaluation and reservoir management.

  10. Natural Gas Exports from Iran

    EIA Publications

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  11. Gas gangrene

    MedlinePLUS

    Tissue infection - Clostridial; Gangrene - gas; Myonecrosis; Clostridial infection of tissues ... Gas gangrene is most often caused by a bacterium called Clostridium perfringens. It also can be caused ...

  12. Deep Impact's target Comet 9P\\/Tempel 1 at multiple apparitions: Seasonal and secular variations in gas and dust production

    Microsoft Academic Search

    David G. Schleicher

    2007-01-01

    We present results from multi-apparition narrowband photometry of Deep Impact target Comet 9P\\/Tempel 1. In support of the mission, we obtained data during monthly observing runs between March and September 2005, and these are combined with and compared to observations obtained during the 1983 and 1994 apparitions. A strong seasonal effect is seen, with peak production rates occurring 4–8 weeks

  13. Deep Impact's target Comet 9P\\/Tempel 1 at multiple apparitions: Seasonal and secular variations in gas and dust production

    Microsoft Academic Search

    David G. Schleicher

    2007-01-01

    We present results from multi-apparition narrowband photometry of Deep Impact target Comet 9P\\/Tempel 1. In support of the mission, we obtained data during monthly observing runs between March and September 2005, and these are combined with and compared to observations obtained during the 1983 and 1994 apparitions. A strong seasonal effect is seen, with peak production rates occurring 4 8

  14. The impact of plug-in vehicles on greenhouse gas and criteria pollutants emissions in an urban air shed using a spatially and temporally resolved dispatch model

    Microsoft Academic Search

    Ghazal Razeghi; Tim Brown; G. Scott Samuelsen

    2011-01-01

    With the introduction of plug-in vehicles (PEVs) into the light-duty vehicle fleet, the tail-pipe emissions of GHGs and criteria pollutants will be partly transferred to electricity generating units. To study the impact of PEVs on well-to-wheels emissions, the U.S. Western electrical grid serving the South Coast Air Basin (SoCAB) of California is modeled with both spatial and temporal resolution at

  15. Reactive mass transfer at gas–liquid interfaces: impact of micro-scale fluid dynamics on yield and selectivity of liquid-phase cyclohexane oxidation

    Microsoft Academic Search

    Johannes G. Khinast; Athanas A. Koynov; Tiberiu M. Leib

    2003-01-01

    The impact of single-bubble wake dynamics on the reaction-enhanced mass transfer and on the yield and selectivity of the cyclohexane oxidation reaction was studied using a two-dimensional CFD-reaction model that was developed by our group. Temperature and the concentrations of the (desired) intermediate and (undesired) final products of this autocatalytic reaction were the parameters of this study. Two bubble types

  16. 75 FR 63504 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ...Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY...impact of natural gas development; (2...incorporate deferral areas of varying size along...the proposed sale area. Sale 193 was held...impact of natural gas development;...

  17. Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol

    NASA Astrophysics Data System (ADS)

    Gopal, Anand R.; Kammen, Daniel M.

    2009-10-01

    Many biofuel standards, including California's recently adopted low carbon fuel standard, consider just one feedstock from one supplying country for the production of sugarcane ethanol: fresh mill-pressed cane juice from a Brazilian factory. While cane juice is the dominant feedstock for ethanol in most Brazilian factories, a large number of producers in Indonesia, India, and the Caribbean, and a significant number in Brazil, manufacture most of their ethanol from molasses, a low value co-product of raw sugar. Several producers in these countries have the capacity to export ethanol to California, but the GREET (from: greenhouse gas, regulated emissions and energy use in transportation) model, which is the LCA (lifecycle assessment) model of choice for most biofuel regulators including California, does not currently include this production pathway. We develop a modification to GREET to account for this pathway. We use the upstream and process lifecycle results from the existing GREET model for Brazilian ethanol to derive lifecycle greenhouse gas emissions for ethanol manufactured from any combination of molasses and fresh cane juice. We find that ethanol manufactured with only molasses as a feedstock with all other processes and inputs identical to those of the average Brazilian mill has a lifecycle GHG (greenhouse gas) rating of 15.1 gCO2- eq MJ-1, which is significantly lower than the current California-GREET assigned rating of 26.6 gCO2- eq MJ-1. Our model can be applied at any level of granulation from the individual factory to an industry-wide average. We examine some ways in which current sugarcane producers could inaccurately claim this molasses credit. We discuss methods for addressing this in regulation.

  18. Formation of negative ions from gas phase halo-uracils by low-energy (0–18 eV) electron impact

    Microsoft Academic Search

    Hassan Abdoul-Carime; Michael A. Huels; Eugen Illenberger; Léon Sanche

    2003-01-01

    We report on low-energy electron-induced processes on gas phase halo-uracils (5-XU, X=F, Cl, Br, and I). The dominant dissociative electron attachment (DEA) channel is formation of X?+Uyl (uracil-yl radical) via a pronounced feature near 0eV at estimated absolute cross-sections of 3×10?14cm?2 (Cl?), 4×10?14cm?2 (Br?), and 9×10?14cm?2 (I?). At that energy the complementary channel, with respect to the negative charge, namely

  19. The carbon kinetic isotope effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable carbon isotope ratios of alkenes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Anderson, R. S.; Rudolph, J.; Huang, L.; Ernst, D.

    2003-07-01

    The kinetic isotope effects (KIEs) for several ozone-alkene reactions in the gas phase were studied in a 30 L PTFE reaction chamber. The time dependence of the stable carbon isotope ratios and the concentrations were determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The following average KIE values were obtained: 18.9 +/- 2.8 (ethene), 9.5 +/- 2.5 (propene), 8.7 +/- 1 (1-butene), 8.1 +/- 0.4 (E-2-butene), 7.9 +/- 0.4 (1,3-butadiene), 6.7 +/- 0.9 (1-pentene), 7.3 +/- 0.2 (Z-2-pentene), 6.7 +/- 0.7 (cyclopentene), 6.1 +/- 1 (isoprene), 5.0 +/- 0.7 (1-hexene), 5.6 +/- 0.5 (cyclohexene), and 4.3 +/- 0.7 (1-heptene). These data are the first of their kind to be reported in the literature. The ozone-alkene KIE values show a systematic inverse dependence from alkene carbon number. Based on the observed KIEs, the contribution of ozone-alkene reactions to the isotopic fractionation of alkenes in the atmosphere can be estimated. On average this contribution is generally small compared to the impact of reaction with OH radicals. However, when OH-concentrations are very low, e.g. during nighttime and at high latitudes in winter, the contribution of the ozone reaction dominates and under these conditions the ozone-alkene reaction will have a clearly visible impact on the stable carbon isotope ratio of atmospheric alkenes.

  20. Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas

    E-print Network

    Gokhale, Bhushan

    2007-04-25

    apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated...

  1. Natural gas

    NSDL National Science Digital Library

    N/A N/A (None; )

    2003-07-27

    Natural gas is used as a means of power in households. Natural gas has no natural odor, so an odor is added to the gas. This is useful because gas leaks can be detected better and it also reduces the risk of accidents in homes.

  2. CF3+ fragmentation by electron impact ionization of perfluoro-propyl-vinyl-ethers, C5F10O, in gas phase

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    The gas phase fragmentations of perfluoro-propyl-vinyl ether (PPVE, C5F10O) are studied experimentally. Dominant fragmentations of PPVE are found to be the result of a dissociative ionization reaction, i.e., CF3+ via direct bond cleavage, and C2F3O? and C3F7O? via electron attachment. Regardless of the appearance energy of around 14.5 eV for the dissociative ionization of CF3+, the observed ion efficiency for the CF3+ ion was extremely large the order of 10?20 cm?2, compared with only 10?21 cm?2 for the other channels. PPVE characteristically generated CF3+ as the largest abundant ion are advantageous for use of feedstock gases in plasma etching processes.

  3. Natural Gas and the Transformation of the U.S. Energy Sector: A Program Studying Multi-sector Opportunities and Impacts

    SciTech Connect

    Gossett, S.

    2013-01-01

    In recognition of the major transitions occurring within the U.S. energy economy, the Joint Institute for Strategic Energy Analysis (JISEA) and Stanford University's Precourt Institute for Energy (PIE) engaged energy system stakeholders from government, industry, academia, and the environmental community in a discussion about the priority issues for a program of rigorous research relating to natural gas. Held December 10-11, 2012 on the Golden, CO campus of the National Renewable Energy Laboratory, the workshop provided invited experts opportunity to describe the state of current knowledge in defined topic areas, and to suggest analytic priorities for that topic area. Following discussion, all stakeholders then contributed potential research questions for each topic, and then determined priorities through an interactive voting process. This record of proceedings focuses on the outcomes of the discussion.

  4. Impact of physical pre-treatment of source-sorted organic fraction of municipal solid waste on greenhouse-gas emissions and the economy in a Swedish anaerobic digestion system.

    PubMed

    Carlsson, My; Holmström, David; Bohn, Irene; Bisaillon, Mattias; Morgan-Sagastume, Fernando; Lagerkvist, Anders

    2015-04-01

    Several methods for physical pre-treatments of source sorted organic fraction of municipal solid waste (SSOFMSW) before for anaerobic digestion (AD) are available, with the common feature that they generate a homogeneous slurry for AD and a dry refuse fraction for incineration. The selection of efficient methods relies on improved understanding of how the pre-treatment impacts on the separation and on the slurry's AD. The aim of this study was to evaluate the impact of the performance of physical pre-treatment of SSOFMSW on greenhouse-gas (GHG) emissions and on the economy of an AD system including a biogas plant with supplementary systems for heat and power production in Sweden. Based on the performance of selected Swedish facilities, as well as chemical analyses and BMP tests of slurry and refuse, the computer-based evaluation tool ORWARE was improved as to accurately describe mass flows through the physical pre-treatment and anaerobic degradation. The environmental and economic performance of the evaluated system was influenced by the TS concentration in the slurry, as well as the distribution of incoming solids between slurry and refuse. The focus to improve the efficiency of these systems should primarily be directed towards minimising the water addition in the pre-treatment provided that this slurry can still be efficiently digested. Second, the amount of refuse should be minimised, while keeping a good quality of the slurry. Electricity use/generation has high impact on GHG emissions and the results of the study are sensitive to assumptions of marginal electricity and of electricity use in the pre-treatment. PMID:25661691

  5. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  6. 76 FR 30937 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...AGENCY [ER-FRL-8997-2] Environmental Impacts Statements; Notice...nepa/. Weekly Receipt of Environmental Impact Statements Filed 05...Information, Analyzing the Environmental Impact of Natural Gas Development...USFS, OR, Mt. Ashland Ski Area Expansion, To...

  7. Structural determination of zinc dithiophosphates in lubricating oils by gas chromatography-mass spectrometry with electron impact and electron-capture negative ion chemical ionization.

    PubMed

    Becchi, M; Perret, F; Carraze, B; Beziau, J F; Michel, J P

    2001-01-01

    Pentafluorobenzyl ester derivatives were used to identify zinc dialkyldithiophosphates and diaryldithiophosphates antiwear engine oil additives by GC-electron impact ionization (EI) MS and GC-electron-capture negative ion chemical ionization (ECNCI) MS analysis. GC-EI-MS of the dialkyldithiophosphate-pentafluorobenzyl derivatives afforded characteristic fragment ions corresponding to the cleavage of one and two alkyl radicals. In most cases, information was only obtained on one alkyl chain. Additional and complete information was obtained with retention time indices using synthetic derivatives and with GC-ECNCI-MS analysis. ECNCI afforded characteristic dithiophosphate anions which allowed the determination of the total number of carbon atoms in the alkyl radicals. The diastereoisomer mixtures of 2-hydroxy-sec.-alkyl radicals were completely separated on GC analysis. PMID:11206788

  8. Environmental Impact of a Tritium Extraction System Small Pipe Break by the Atmospheric Modelling of Elemental Tritium Gas transport with Flexpart

    NASA Astrophysics Data System (ADS)

    Castro, Paloma; Ardao, Jose; Velarde, Marta; Xiberta, Jorge; Sedano, Luis

    2014-05-01

    In the case of a little Tritium-Extraction-System (TES) pipe break (with critical failure of a fuelling line), the tritium source term has not yet been determined in the frame of European Test Blanket Systems, as Design Basis Accident (DBA) but it is expected to be in the order of a few grams. In this critical scenario acute modeling of environmental tritium transport forms (HT and HTO) for the assessment of fusion facilities dosimetric impact appears as of major interest. This paper considers different term releases of tritium-forms to the atmosphere from ITER which has experienced a frequent failure of a fueling line, due the little TES pipe break affecting a Helium-Cooled-Lithium-Lead Test-Blanket-Module. In case of 24.3 g of tritium were released from the broken fuelling-line directly into the gallery found only 0.5 g was released to the environment, assuming a little rupture in the TES piping located in the Port Cell. In this paper we assume a hypothetical daily release of one gram of tritium in HT and HTO forms. The daily failure is taken just in order to evaluate different meteorological scenarios or weather conditions. The FLEXPART working model simulates the tritium forms dispersion and environmental impact out of the complex ITER-tokamak (and its safeguards) of selected environmental patterns both inland and in-sea using ECMWF/FLEXPART model. We explore specific values of this ratio at different levels. We examine the influence of meteorological conditions of the tritium behavior during 48 hours after the release. For this purpose we have FLEXPART version 9.2 numerical weather model which is useful to follow real-time releases of tritium at low levels of the boundary layer to provide an approximation of tritium cloud behavior ranging from 3 to 48 hours.

  9. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.

    PubMed

    Zhang, Tieyuan; Gregory, Kelvin; Hammack, Richard W; Vidic, Radisav D

    2014-04-15

    Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far exceed regulatory limits for disposal in municipal sanitary landfills and require careful monitoring of allowed source term loading (ASTL) for technically enhanced naturally occurring materials (TENORM) in these landfills. Several alternatives for sustainable management of TENORM are discussed. PMID:24670034

  10. MANUFACTURING NIST Impact Verification Program

    E-print Network

    such as oil and gas pipelines, heavy trucks, mining equipment, power plants and wind turbines. Credit such as Caterpillar and Westinghouse Nuclear. Approach Charpy impact is a high strain rate test that measures energy

  11. Anaesthesia Gas Supply: Gas Cylinders

    PubMed Central

    Srivastava, Uma

    2013-01-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883

  12. Anaesthesia gas supply: gas cylinders.

    PubMed

    Srivastava, Uma

    2013-09-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883

  13. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel.

    PubMed

    Zilberbrand, M; Rosenthal, E; Shachnai, E

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO2 and O2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca(2+)-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban development has caused drastic changes in the gas content in the unsaturated zone and in groundwater. Carbon dioxide was intensively generated by nitrification-denitrification processes, by hydration of urea, to a lesser degree by oxidation of organic matter, and probably by anoxic biodegradation of organics. Between 1934 and 1948, concentrations of CO2 in unsaturated sediment air rose from 3.2% to 7.6%. In the unsaturated zone, oxygen consumption for oxidation of ammonium and organic matter lowered O2 concentrations in sediment air to unusually low values of 3.9-12.9%. Nitrification in the urban unsaturated zone could thus serve as a pump, sucking in atmospheric oxygen at a rate of about 0.3-0.5 g m-2 day-1. The extreme concentrations of CO2 and O2 in unsaturated sediments have been preserved due to production and consumption of gas under conditions of diminishing areas open to the atmosphere, uncovered by buildings and by roads. PMID:11523324

  14. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    NASA Astrophysics Data System (ADS)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban development has caused drastic changes in the gas content in the unsaturated zone and in groundwater. Carbon dioxide was intensively generated by nitrification-denitrification processes, by hydration of urea, to a lesser degree by oxidation of organic matter, and probably by anoxic biodegradation of organics. Between 1934 and 1948, concentrations of CO 2 in unsaturated sediment air rose from 3.2% to 7.6%. In the unsaturated zone, oxygen consumption for oxidation of ammonium and organic matter lowered O 2 concentrations in sediment air to unusually low values of 3.9-12.9%. Nitrification in the urban unsaturated zone could thus serve as a pump, sucking in atmospheric oxygen at a rate of about 0.3-0.5 g m -2 day -1. The extreme concentrations of CO 2 and O 2 in unsaturated sediments have been preserved due to production and consumption of gas under conditions of diminishing areas open to the atmosphere, uncovered by buildings and by roads.

  15. Gas separating

    DOEpatents

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  16. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  17. Impact of a reduced red and processed meat dietary pattern on disease risks and greenhouse gas emissions in the UK: a modelling study

    PubMed Central

    Smith, James N; Powles, John W

    2012-01-01

    Objectives Consumption of red and processed meat (RPM) is a leading contributor to greenhouse gas (GHG) emissions, and high intakes of these foods increase the risks of several leading chronic diseases. The aim of this study was to use newly derived estimates of habitual meat intakes in UK adults to assess potential co-benefits to health and the environment from reduced RPM consumption. Design Modelling study using dietary intake data from the National Diet and Nutrition Survey of British Adults. Setting British general population. Methods Respondents were divided into fifths by energy-adjusted RPM intakes, with vegetarians constituting a sixth stratum. GHG emitted in supplying the diets of each stratum was estimated using data from life-cycle analyses. A feasible counterfactual UK population was specified, in which the proportion of vegetarians measured in the survey population doubled, and the remainder adopted the dietary pattern of the lowest fifth of RPM consumers. Outcome measures Reductions in risks of coronary heart disease, diabetes and colorectal cancer, and GHG emissions, under the counterfactual. Results Habitual RPM intakes were 2.5 times higher in the top compared with the bottom fifth of consumers. Under the counterfactual, statistically significant reductions in population aggregate risks ranged from 3.2% (95% CI 1.9 to 4.7) for diabetes in women to 12.2% (6.4 to 18.0) for colorectal cancer in men, with those moving from the highest to lowest consumption levels gaining about twice these averages. The expected reduction in GHG emissions was 0.45 tonnes CO2 equivalent/person/year, about 3% of the current total, giving a reduction across the UK population of 27.8 million tonnes/year. Conclusions Reduced consumption of RPM would bring multiple benefits to health and environment. PMID:22964113

  18. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  19. The impacts of land-use change from grassland to bioenergy Short Rotation Coppice (SRC) Willow on the crop and ecosystem greenhouse gas balance

    NASA Astrophysics Data System (ADS)

    Harris, Zoe M.; Alberti, Giorgio; Dondini, Marta; Smith, Pete; Taylor, Gail

    2014-05-01

    The aim of this research is to better understand the greenhouse gas balance of land-use transition to bioenergy cropping systems in a UK context. Given limited land availability, addressing the food-energy-water nexus remains a challenge, and it is imperative that bioenergy crops are sited appropriately and that competition with food crops is minimized. Here we present the results of a years' worth of soil and GHG data for a conversion from ex-set aside grassland to short rotation coppice (SRC) willow for bioenergy on a commercial scale. Initial results indicate that willow was a net sink for CO2 in comparison to grassland which was a net source of CO2. This provides evidence that the GHG balance of transitions to SRC bioenergy crops will potentially result in increased soil carbon. The empirical findings from this study have been combined with modelled estimates for the site to both test and validate the ECOSSE model. Initial comparisons show that the model is able to accurately predict the respiration occurring at the field site, suggesting that it is a valuable approach for up-scaling from point sites such as this to wider geographical areas and for considering future climate scenarios. The modelling output will also provide a user-friendly tool for land owners which will determine the GHG and soil carbon effects of changing land to bioenergy for UK. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This work was also jointly funded by the Carbo Biocrop Project.

  20. Situated lifestyles: II. The impacts of urban density, housing type and motorization on the greenhouse gas emissions of the middle-income consumers in Finland

    NASA Astrophysics Data System (ADS)

    Heinonen, Jukka; Jalas, Mikko; Juntunen, Jouni K.; Ala-Mantila, Sanna; Junnila, Seppo

    2013-09-01

    The relationship between urban form and greenhouse gas (GHG) emissions has been studied extensively during the last two decades. The prevailing paradigm arising from these studies is that a dense or compact urban form would best enable low-carbon living. However, the vast majority of these studies have actually concentrated on transportation and/or housing energy, whereas a growing number of studies argue that the GHG implications of other consumption should be taken into account and the relationships evaluated. With this two-part study of four different area types in Finland we illustrate the importance of including all the consumption activities into the GHG assessment. Furthermore, we add to the discussion the idea that consumption choices, or lifestyles, and the resulting GHGs are not just a product of the values of individuals but actually tied to the form of the surrounding urbanization: that is, lifestyles are situated. In part I (Heinonen et al 2013 Environ. Res. Lett. 8 025003) we looked into this situation in Finland, showing how the residents of the most urbanized areas bring about the highest GHG emissions due to their higher consumption volumes and the economies-of-scale advantages in the less urbanized areas. In part II here, we concentrate only on the middle-income segment and look for differences in the lifestyles when the budget constraints are equal. Here we also add the variables housing type and motorization into the assessment. The same time-use and private expenditure data as in part I and the same GHG assessment method are used here to maintain high transparency and comparability between the two parts. The results of the study imply that larger family sizes and economies-of-scale effects in the less dense areas offset the advantages of more dense living when the emissions are assessed on per capita basis. Also, at equal income levels the carbon footprints vary surprisingly little due to complementary effects of the majority of low-carbon lifestyle choices. Motorization was still found to increase the emissions, but a similar pattern regarding housing type was not found.

  1. Environmental impact report (draft)

    SciTech Connect

    Not Available

    1980-05-01

    The three projects as proposed by Pacific Gas and Electric Company and the environmental analysis of the projects are discussed. Sections on the natural and social environments of the proposed projects and their surrounding areas consist of descriptions of the setting, discussions of the adverse and beneficial consequences of the project, and potential mitigation measures to reduce the effects of adverse impacts. The Environmental Impact Report includes discussions of unavoidable adverse effects, irreversible changes, long-term and cumulative impacts, growth-inducing effects, and feasible alternatives to the project. (MHR)

  2. Natural gas sampling

    SciTech Connect

    Prokopovich, N.P.; Magleby, D.C.

    1981-06-01

    Two simple, inexpensive devices for sampling natural gas from small and noncommercial deposits are described. One device is intended for sampling of minute gas seepage from the bottom of shallow basins such as ponds or marshes where the gas might have an environmental impact. A shallow, inverted large metal funnel with a small hole in the side is placed on the bottom sediments in the basin. A rod pushed through the hole in the funnel liberates gas which after being trapped by the funnel is diverted through a tube attached to the funnel outlet into a sampling bottle. The second device intended for sampling gas seepage encountered in cased and uncased holes consists of an open-topped cylindrical steel container with a small nipple in its bottom. Threads on the nipple facilitate attachment of the sampler to a closed topped segment of a casing. During sampling, the cylindrical container is filled almost to the top with water, and a rigid tube attached to the upper portion of the nipple inside the cylindrical container conducts gas into a common glass sample bottle. (BLM)

  3. Gas Laws

    NSDL National Science Digital Library

    The Concord Consortium

    2011-12-11

    In this activity, students study gas laws at a molecular level. They vary the volume of a container at constant temperature to see how pressure changes (Boyle's Law), change the temperature of a container at constant pressure to see how the volume changes with temperature (Charles’s Law), and experiment with heating a gas in a closed container to discover how pressure changes with temperature (Gay Lussac's Law). They also discover the relationship between the number of gas molecules and gas volume (Avogadro's Law). Finally, students use their knowledge of gas laws to model a heated soda can collapsing as it is plunged into ice water.

  4. Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: the impact of Kola air pollution to new particle formation and potential CCN

    NASA Astrophysics Data System (ADS)

    Kyrö, Ella-Maria; Väänänen, Riikka; Kerminen, Veli-Matti; Virkkula, Aki; Asmi, Ari; Nieminen, Tuomo; Dal Maso, Miikka; Petäjä, Tuukka; Keronen, Petri; Aalto, Pasi; Riipinen, Ilona; Lehtipalo, Katrianne; Hari, Pertti; Kulmala, Markku

    2014-05-01

    Sulphur and primary emissions have been decreasing largely all over Europe, resulting in improved air quality and decreased direct radiation forcing by aerosols. The smelter industry in Kola Peninsula is one of largest sources of anthropogenic SO2 within the Arctic domain and since late 1990s the sulphur emissions have been decreasing rapidly (Paatero et al., 2008; Prank et al., 2010). New particle formation (NPF) is tightly linked with the oxidizing product of SO2, namely sulphuric acid (H2SO4), since it is known to be the key component in atmospheric nucleation (Sipilä et al., 2010). Thus, decreasing sulphur pollution may lead to less NPF. However, low values of condensation sink (CS), which is determined by the amount of pre-existing particles, favours NPF. We used 14 years (1998-2011) of aerosol number size distribution and trace gas data from SMEAR I station in Eastern Lapland, Finland, to investigate these relationships between SO2, NPF and CS. The station is a clean background station with occasional sulphur pollution episodes when the air masses arrive over Kola Peninsula. We found that while SO2 decreased by 11.3 % / year, the number of clear NPF event days was also decreasing by 9.9 % / year. At the same time, CS was decreasing also (-8.0 % / year) leading to formation of more particles per single NPF event (J3 increased by 29.7 % / year in 2006-2011) but the low vapour concentrations of H2SO4 (proxy decreased by 6.2 % / year) did not allow them to grow into climatically relevant sizes. Over the time, concentrations of potential CCN (cloud condensing nuclei) were also decreasing with more moderate pace, -4.0 % / year. The events started on average earlier after sunrise when the SO2 concentration during the start of the event was higher and NPF occurred more frequently in air masses which were travelling over Kola. Despite the total decrease in sulphur pollution originating from Kola there is currently no evidence of cleaning of the emissions, rather the decrease is a result of socio-economic changes in the area. It is very likely that in areas with low background aerosol concentrations but close to large sources of anthropogenic sulphur emissions the trends in NPF depend on the overall human activity, general cleaning of the emissions and changes in natural biogenic emissions. This should be taken into account when estimating e.g. the effect of Arctic shipping routes to the future climate. Paatero, J., et al. (2008). Effects of Kola air pollution on the environment in the Western part of the Kola peninsula and Finnish Lapland - Final report. Finnish Meteorological Institute Reports, 6, 1-26. Prank, M., M. et al. (2010). A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling. Atmos. Chem. Phys., 10, 10849-10865. Sipilä, M., et al. (2010). The role of sulfuric acid in atmospheric nucleation. Science, 327, 1243-1246.

  5. Gas cluster ion beam processing

    Microsoft Academic Search

    I. Yamada; J. Matsuo; N. Toyoda; T. Aoki; E. Jones; Z. Insepov

    1997-01-01

    Unique characteristics of gas cluster ion beam processing are reviewed. Cluster ion beams consisting of a few hundreds to thousands of atoms have been generated from various kinds of gas materials. Multi-collisions during the impact of accelerated cluster ions upon the substrate surfaces produce fundamentally low energy bombarding effects in a range of a few eV to hundreds of eV

  6. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  7. Gas Model

    NSDL National Science Digital Library

    The Exploratorium

    2013-01-30

    This highly visual model demonstrates the atomic theory of matter which states that a gas is made up of tiny particles of atoms that are in constant motion, smashing into each other. Balls, representing molecules, move within a cage container to simulate this phenomenon. A hair dryer provides the heat to simulate the heating and cooling of gas: the faster the balls are moving, the hotter the gas. Learners observe how the balls move at a slower rate at lower "temperatures."

  8. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  9. Hypervelocity impact phenomena

    SciTech Connect

    Chhabildas, L.C.

    1995-07-01

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences-orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided in this paper.

  10. A Numerical Study of Microscale Flow Behavior in Tight Gas and Shale Gas Reservoir Systems

    Microsoft Academic Search

    C. M. Freeman; G. J. Moridis; T. A. Blasingame

    Various attempts have been made to model flow in shale gas systems. However, there is currently little consensus regarding\\u000a the impact of molecular and Knudsen diffusion on flow behavior over time in such systems. Direct measurement or model-based\\u000a estimation of matrix permeability for these “ultra-tight” reservoirs has proven unreliable. The composition of gas produced\\u000a from tight gas and shale gas

  11. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  12. Create Gas

    NSDL National Science Digital Library

    2012-03-22

    Learners mix vinegar and baking soda together in a bottle to create a chemical reaction. The reaction produces a gas, carbon dioxide, which inflates a balloon attached to the mouth of the bottle. This helps learners "see" the gas, which is otherwise invisible.

  13. Farm dependence on natural gas

    SciTech Connect

    Devlin, P.J.

    1981-01-01

    This study was undertaken to explore the impacts of natural gas price increases and supply contraints on agricultural production in order to indicate the types of adjustments farmers would need to make, and to provide state and federal policymakers with an awareness of the crop, state, and regional dependence on natural gas for farm production. A qualitative analysis involving collection of information, summarization and analysis of current operational use of natural gas on farms, and calculation of farm dependence on natural gas, by crop, state, and region was undertaken. An econometric anlaysis involving estimation of consumption functions for natural gas used for irrigation and crop drying was also undertaken. The econometric analysis conducted in this study was less successful than the qualitative analysis, most probably a result of data constraints leading to a very small sample size. The qualitative analysis showed that farmers in the Southern Plains region are most dependent on natural gas for irrigation, followed by farmers in the Northern Plains. Production of rice, cotton and grain sorghum is most dependent on natural gas for irrigation. Dependence on natural gas for crop drying is most marked in the Delta States and Northern Plains regions. Rice, peanuts and grain sorghum depend most heavily among crops on natural gas for drying. The variables which seem to have the greatest impact on the consumption of natural gas for irrigation based on the econometric estimation include the quality of land (represented by its market value), the price of fertilizer, and the price of diesel fuel (a substitute). The estimated crop drying equations did not provide useful results.

  14. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  15. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas!

    PubMed Central

    2013-01-01

    We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents. PMID:23967379

  16. Gas Chromatography

    NSDL National Science Digital Library

    This is a website from the US Environmental Protection Agency that explains Gas Chromatography for those interested in environmental analysis. The level of the material assumes some user background in the field.

  17. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-04-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design of the bench-scale equipment continues.

  19. Assessing greenhouse gas emissions from university purchases

    Microsoft Academic Search

    Matthew Thurston; Matthew J. Eckelman

    2011-01-01

    Purpose – A greenhouse gas (GHG) inventory was conducted for Yale University's procurement of goods and services over a one-year period. The goal of the inventory was to identify the financial expenditures resulting in the greatest “indirect” GHG emissions. This project is part of an ongoing effort to quantify and reduce the university's environmental impacts. Design\\/methodology\\/approach – The impacts of

  20. Technology's Impact on Production

    SciTech Connect

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  1. Gulf of Mexico summary report\\/index, November 1984June 1986: Outer Continental Shelf oil and gas activities in the Gulf of Mexico and their onshore impacts. [Contains glossary

    Microsoft Academic Search

    S. P. Risotto; J. H. Collins

    1986-01-01

    The Outer Continental Shelf Oil and Gas Information Program of the Minerals Management Service has published two types of documents (summary reports and indexes) to describe oil- and gas-related activities in each of the Outer Continental Shelf regions. In an effort to cut printing costs, the two documents have been combined to eliminate any overlap of information. This Gulf of

  2. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  3. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  4. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-30

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  5. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-01-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  6. Environmental Dimensions of Shale Gas Extraction and Stray Gas Migration

    NASA Astrophysics Data System (ADS)

    Jackson, Robert

    2013-03-01

    Shale gas extraction is growing rapidly in the United States and elsewhere, developed in part through advances in technologies such as horizontal drilling and hydraulic fracturing. Concerns over potential environmental impacts have accompanied the boom in natural gas extraction. For several years we have studied drinking water quality, asking the question, ``Is water quality different for homeowners living near natural gas wells?'' We have sampled shallow groundwater systems of 300 homeowners, the majority of them in the Marcellus formation of Pennsylvania and New York, for brines, dissolved gases, and other attributes. We have also examined how much methane reaches the atmosphere during the extraction and distribution of natural gas. In a study published in May of 2011 (Osborn et al. 2011, PNAS 108:8172-8176), we found no evidence of increase salt concentrations or fracturing fluids with distance to gas wells for 68 sampled homes. However, dissolved methane concentrations were 17 times higher on average for water wells found within 1km distance of them. A subset of homeowners also had groundwater that indicated the presence of natural hydraulic connections to deeper formations, suggesting specific structural and hydrodynamic regimes where shallow drinking water resources might be at greater risk of contamination with fugitive gases during drilling and hydraulic fracturing of shale gas (Warner et al. 2012, PNAS 109:11961-11966). This presentation will discuss new results from shale gas sampling in 2011 and 2012.

  7. Security-Constrained Unit Commitment With Natural Gas Transmission Constraints

    Microsoft Academic Search

    Cong Liu; Mohammad Shahidehpour; Yong Fu; Zuyi Li

    2009-01-01

    The contribution of this paper focuses on the development of a security-based methodology for the solution of short-term SCUC when considering the impact of natural gas transmission system. The proposed methodology examines the interdependency of electricity and natural gas in a highly complex transmission system. The natural gas transmission system is modeled as a set of nonlinear equations. The proposed

  8. 75 FR 16828 - Notice of Intent To Prepare and Scope an Environmental Impact Statement (EIS) for the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ...OCS planning areas for oil and gas leasing: Beaufort...impacts from accidental oil spills, potential impacts to...relationship between the Oil and Gas Program and the...Environmental Assessment, Minerals Management Service, 381...

  9. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.

  10. Compositions and Greenhouse Gas Emission Factors of Flared and Vented Gas in the Western Canadian Sedimentary Basin

    Microsoft Academic Search

    Matthew R. Johnson; Adam R. Coderre

    2012-01-01

    A significant obstacle in evaluating mitigation strategies for flaring and venting in the upstream oil and gas industry is the lack of publicly available data on the chemical composition of the gas. This information is required to determine the economic value of the gas, infrastructure and processing requirements, and potential emissions or emissions credits, all of which have significant impact

  11. Natural gas 1994: Issues and trends

    SciTech Connect

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  12. Natural gas 1998: Issues and trends

    SciTech Connect

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  13. Coal and Gas Industries in Australia a. Overview of Australian coal and gas industries

    E-print Network

    Subramanian, Venkat

    Topics · Coal and Gas Industries in Australia a. Overview of Australian coal and gas industries b and storage in Australia e. Safety, environmental and social impact of mining in Australia f. Site visit forecasting b. Electricity market c. Energy economics in Australia #12;

  14. Gas Chromatography

    NSDL National Science Digital Library

    This site contains a brief introduction to the concepts of injection and detection in gas chromatography, focusing on the split/splitless injection port and flame ionization detectors. The treatment is similar to that in analytical chemistry textbooks, and includes detailed illustrations.

  15. Got Gas?

    NSDL National Science Digital Library

    Discovery Centre

    1999-01-01

    Create gas with a glass of water, some wire, conductors and a battery! You will be separating water (H2O) into oxygen and hydrogen. This hands-on experiment explores the process of electrolysis, and shows how graphite in a pencil works as an electrical conductor.

  16. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  17. Volcanic gas emissions can often be inter-preted as signals from deep within the Earth.

    E-print Network

    Long, Bernard

    to communities surrounding a volcano.The environmental impacts of volcanic gas emissions are observed on local and the environmental impacts of volcanic gas emissions,scientists benefit from working together to improve volcanoes to compare and improve volcanic gas monitoring methods,and to pool their knowledge as a scientific

  18. Dam Impacts

    NSDL National Science Digital Library

    2014-09-18

    While the creation of a dam provides many benefits, it can have negative impacts on local ecosystems. Students learn about the major environmental impacts of dams and the engineering solutions used to address them.

  19. Gas cluster ion beam processing

    SciTech Connect

    Yamada, I.; Matsuo, J.; Toyoda, N.; Aoki, T.; Jones, E.; Insepov, Z. [Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606-01 (Japan)

    1997-06-20

    Unique characteristics of gas cluster ion beam processing are reviewed. Cluster ion beams consisting of a few hundreds to thousands of atoms have been generated from various kinds of gas materials. Multi-collisions during the impact of accelerated cluster ions upon the substrate surfaces produce fundamentally low energy bombarding effects in a range of a few eV to hundreds of eV per atom at very high density. These bombarding characteristics can be applied to shallow ion implantation, high yield sputtering and smoothing, surface cleaning and low temperature thin film formation.

  20. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.