Science.gov

Sample records for gas chromatography-electron-capture detection

  1. DETERMINATION OF ACRYLAMIDE IN RAT SERUM AND SCIATIC NERVE BY GAS CHROMATOGRAPHY-ELECTRON-CAPTURE DETECTION

    EPA Science Inventory

    A modified method for the derivatization and analysis of acrylamide as 2-bromopropenamide by gas chromatography/electron capture detection was validated in serum and sciatic nerve from rats. he method was accurate and precise over the concentration range of 2240 to 74700 ppm (w/v...

  2. Detection of trace levels of triclopyr using capillary gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry.

    PubMed

    Begley, P; Foulger, B E

    1988-04-01

    Triclopyr, after esterification, is shown to be a suitable candidate for detection by gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry forming a characteristic carboxylate anion which offers a high detection sensitivity. A detection limit of 70 fg reaching the ionizer is indicated. Low backgrounds and an absence of chemical interferences are shown for vegetation extracts, using a simple method of extraction and derivatisation. A similar behaviour is demonstrated for 2,4-D and 2,4,5-T. PMID:3379116

  3. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  4. [Analysis of organochlorine pesticides and pyrethroid pesticides in vegetables by gas chromatography-electron capture detection coupled with solid-phase extraction using multiwalled carbon nanotubes as adsorbent].

    PubMed

    Zhao, Haixiang; Jia, Yanxia; Ding, Mingyu; Sun, Dajiang; Zhao, Mengbin

    2011-05-01

    A multi-residue analytical method based on solid-phase extraction (SPE) with multiwalled carbon nanotubes (MWCNTs) as adsorbent was developed. The determination of 6 organochlorine pesticides and 7 pyrethroid pesticides in vegetables (including cucumber, cherry tomato, cabbage, lettuce, purple cabbage, leek, shallot and onion) was carried out by gas chromatography-electron capture detection (GC-ECD). The GC-ECD method used two columns (HP-50 and HP-1) and two ECD detectors. The HP-50 column was used for the analysis and the HP-1 column for validation. The clean-up conditions were optimized. The analytes were extracted by acetonitrile, and the extract was cleaned up by the MWCNTs SPE cartridge. The extract was re-dissolved by hexane, eluted with acetone-hexane (7:3, v/v) from the columns. The recoveries were over 70% for the 11 pesticides in the 13 pesticides. The results indicated that the MWCNTs SPE cartridge was efficient for 8 vegetable samples, because it reduced the contamination of the coloring materials to GC-ECD. The experimental results showed the MWCNTs SPE cartridge can adsorb the coloring materials and the eluant was nearly colorless. PMID:21847981

  5. Use of green coating (cork) in solid-phase microextraction for the determination of organochlorine pesticides in water by gas chromatography-electron capture detection.

    PubMed

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2015-03-01

    A novel method for the determination of organochlorine pesticides in water samples with extraction using cork fiber and analysis by gas chromatography with electron capture detector was developed. Also, the procedure to extract these pesticides with DVB/Car/PDMS fiber was optimized. The optimization of the variables involved in the extraction of organochlorine pesticides using the aforementioned fibers was carried out by multivariate design. The optimum extraction conditions were sample temperature 75 °C, extraction time 60 min and sodium chloride concentration 10% for the cork fiber and sample temperature 50 °C and extraction time 60 min (without salt) for the DVB/Car/PDMS fiber. The quantification limits for the two fibers varied between 1.0 and 10.0 ng L(-1). The linear correlation coefficients were >0.98 for both fibers. The method applied with the use of the cork fiber provided recovery values between 60.3 and 112.7 and RSD≤25.5 (n=3). The extraction efficiency values for the cork and DVB/Car/PDMS fibers were similar. The results show that cork is a promising alternative as a coating for SPME. PMID:25618687

  6. Copper clean-up procedure for ultrasonic extraction and analysis of pyrethroid and phenylpyrazole pesticides in sediments by gas chromatography-electron capture detection.

    PubMed

    Wu, Jun; Lin, Youjian; Lu, Jian; Wilson, Chris

    2011-08-15

    A rapid ultrasonic extraction method coupled with a heated-copper clean-up procedure for removing interfering constituents was developed for analyzing pyrethroid and phenylpyrazole pesticides in sediments. Incubation of the 60 mL extract with 12 g copper granules at 60 °C for 2h was determined to be the optimal conditions for removing the interfering constituents. Eleven pyrethroid and phenylpyrazole pesticides were spiked into sediment samples to determine the effectiveness of the ultrasonic extraction method. The average recoveries of pyrethroids and phenylpyrazoles in sediment at 4 °C storage on day 0, 1, 7, 14, and 21 ranged from 98.6 to 120.0%, 79.2 to 116.0%, 85.0 to 119.7%, 93.6 to 118.7%, and 92.1 to 118.2%, respectively, with all percent relative standard deviations less than 10% (most <6%). This illustrated the stability of pyrethroids and phenylpyrazoles in sediment during sediment aging at 4 °C. Recoveries of the pesticides ranged from 98.6% to 120.0% for lowest fortification level (2-16 μg kg⁻¹), from 97.8% to 117.9% for middle fortification level (10-80 μg kg⁻¹), and from 94.3% to 118.1% for highest fortification level (20-160 μg kg⁻¹). Relative standard deviations of pesticide recoveries were usually less than 7%. Method detection limits of target pesticides ranged from 0.22 μg kg⁻¹ to 3.72 μg kg⁻¹. Furthermore, field sediment samples collected from four residential lakes during a three-month monitoring period were analyzed to evaluate the effectiveness of this method. Bifenthrin was detected in all of sediment samples (highest concentration 260.33±41.71 μg kg⁻¹, lowest concentration 5.68±0.38 μg kg⁻¹, and fipronil sulfone was detected at least once in sediment samples collected from three sites with concentrations ranging from 1.73±0.53 to 7.53±0.01 μg kg⁻¹. PMID:21684581

  7. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    PubMed

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis. PMID:26411480

  8. Suitability of magnetic particle immunoassay for the analysis of PBDEs in Hawaiian freshwater fish and crabs in comparison with gas chromatography/electron capture detection-ion trap mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gas chromatograph/electron capture detector-ion trap mass spectrometer (GC/ECD-ITMS) was used for the determination of polybrominated diphenyl ethers (PBDEs) in freshwater fish and crabs. The samples were also analyzed with an enzyme-linked immunosorbent assay (ELISA). GC/ECD-ITMS results showed...

  9. Determination of acetanilide herbicides in cereal crops using accelerated solvent extraction, solid-phase extraction and gas chromatography-electron capture detector.

    PubMed

    Zhang, Yaping; Yang, Jun; Shi, Ronghua; Su, Qingde; Yao, Li; Li, Panpan

    2011-07-01

    A method was developed to determine eight acetanilide herbicides from cereal crops based on accelerated solvent extraction (ASE) and solid-phase extraction (SPE) followed by gas chromatography-electron capture detector (GC-ECD) analysis. During the ASE process, the effect of four parameters (temperature, static time, static cycles and solvent) on the extraction efficiency was considered and compared with shake-flask extraction method. After extraction with ASE, four SPE tubes (graphitic carbon black/primary secondary amine (GCB/PSA), GCB, Florisil and alumina-N) were assayed for comparison to obtain the best clean-up efficiency. The results show that GCB/PSA cartridge gave the best recoveries and cleanest chromatograms. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. At 0.05 mg/kg spiked level, recoveries and precision values for rice, wheat and maize were 82.3-115.8 and 1.1-13.6%, respectively. For all the herbicides, LOD and LOQ ranged from 0.8 to 1.7 μg/kg and from 2.4 to 5.3 μg/kg, respectively. The proposed analytical methodology was applied for the analysis of the targets in samples; only three herbicides, propyzamid, metolachlor and diflufenican, were detected in two samples. PMID:21656677

  10. An examination of pentafluorobenzoyl derivatization strategies for the analysis of fatty alcohols using gas chromatography/electron capture negative ion chemical ionization-mass spectrometry.

    PubMed

    Bowden, John A; Ford, David A

    2011-05-15

    Gas chromatography/electron capture negative ion chemical ionization-mass spectrometry (GC/ECNICI-MS) combined with pentafluorobenzoyl derivatization (PFBoyl) is frequently used for the sensitive detection of fatty alcohols (FOH). However, this derivatization technique suffers from a lack of established reaction protocols, time-consuming reactions, and the presence of reagent artifacts or unwanted derivatization by-products which can hinder analyte detection. Here, strategies are presented to reduce the problems associated with PFBoyl-derivatization, including (1) the optimization of reaction conditions (derivatization time and temperature) for a variety of PFBoyl-derivatized FOH, (2) an investigation of microwave-accelerated derivatization (MAD) as a rapid alternative heating mechanism for the PFBoyl-derivatization of FOH, and (3) an analysis of an alternative strategy employing a solvent extraction procedure post-derivatization to reduce the detrimental effects commonly associated with PFBoyl derivatization reagents. The optimal reaction conditions for the PFBoyl-derivatization of FOH were determined to be 60°C for 45 min. The investigation in MAD demonstrated the potential of obtaining comparable PFBoyl-derivatizations to those obtained using traditional heating methods, albeit in a reaction time of 3 min. An examination of several solvents for post-derivatization extraction revealed improved relative response factors in comparison to those obtained without solvent extraction. The best solvents for the PFBoyl-FOH extraction, dichloromethane and tert-butyl methyl ether, were also compared to the no solvent extraction samples with standard response curves and PFBoyl-derivatized FOH in Bligh-Dyer extracted rat plasma. PMID:21094100

  11. Determination of phenolic flame-retardants in human plasma using solid-phase extraction and gas chromatography-electron-capture mass spectrometry.

    PubMed

    Thomsen, C; Janák, K; Lundanes, E; Becher, G

    2001-01-01

    A method for determination of phenolic flame-retardants in human plasma utilizing solid-phase extraction (SPE) and gas chromatography with electron-capture mass spectrometric detection (GC-ECMS), has been developed. The plasma lipids were decomposed by application of concentrated sulphuric acid directly on the polystyrene-divinylbenzene SPE column. The method has been validated for 2,4,6-tribromophenol (TriBP), pentabromophenol (PeBP), tetrachlorobisphenol-A (TCBP-A) and tetrabromobisphenol-A (TBBP-A) in the concentration range 1.2-25, 0.4-40, 4-200 and 4-200 pg g(-1) plasma, respectively. The average absolute recovery of the analytes ranged from 51 to 85%. Tetrabromo-o-cresol and chlorotribromobisphenol-A were found suitable as internal standards, and the average recovery of the analytes relative to the internal standards was in the range 93-107%. The repeatability of the method was in the range 4-30% relative standard deviation. The estimated detection limits of TriBP, PeBP, TCBP-A and TBBP-A were 0.3, 0.4, 3.0 and 0.8 pg g(-1) plasma, respectively. The method has been used for analysis of plasma samples from potentially occupationally exposed human individuals. PMID:11204209

  12. Optimization of the determination of polybrominated diphenyl ethers in human serum using solid-phase extraction and gas chromatography-electron capture negative ionization mass spectrometry.

    PubMed

    Covaci, Adrian; Voorspoels, Stefan

    2005-12-01

    A simple, rapid, sensitive and reproducible method based on solid-phase extraction (SPE) and acidified silica clean-up was developed for the measurement of 12 polybrominated diphenyl ethers (PBDEs), including BDE 209, and 2,2',4,4',5,5'-hexabromobiphenyl (BB 153) in human serum. Several solid-phase sorbents (Empore C(18), Isolute Phenyl, Isolute ENV+ and OASIS HLB) were tested and it was found that OASIStrade mark HLB (500 mg) gives the highest absolute recoveries (between 64% and 95%, R.S.D.<17%, n=3) for all tested analytes and internal standards. Removal of co-extracted biogenic materials was performed using a 6 ml disposable cartridge containing (from bottom to top) silica impregnated with sulphuric acid, activated silica and anhydrous sodium sulphate. PBDEs and BB 153 were quantified using a gas chromatograph coupled with a mass spectrometer (MS) operated in electron-capture negative ionization mode. The method limits of quantification (LOQ) ranged between 0.2 and 25 pg/ml serum (0.1 and 4 ng/g lipid weight). LOQs were dependent on the analyte levels in procedural blanks which resulted in the highest LOQs for PBDE congeners found in higher concentrations in blanks (e.g. BDE 47, 99 and 209). The use of OASIS HLB SPE cartridge allowed a good method repeatability (within- and between-day precision<12% for all congeners, except for BDE 209<17%, n=3). The method was applied to serum samples from a random Belgian population. The obtained results were within the range of PBDE levels in other non-exposed population from Europe. PMID:16203180

  13. The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2

    SciTech Connect

    Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

    1994-12-01

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign} and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W).

  14. Determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection

    SciTech Connect

    Parish, K.J.; Applegate, D.V.; Boparai, A.S.; Reedy, G.T.

    1993-12-01

    Type IV Rocky Flats Plant (RFP) radioactive sludge samples must be evaluated for polychlorinated biphenyl (PCB) content before disposal. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign}) and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory studies a nonradioactive simulated Type IV RFP sludge was prepared having a composition similar to that expected from field samples. A simplified method was developed for extraction, purification and analysis of PCBs using samples of simulated sludge spiked with Aroclors 1254 and 1260 (reports provided to Argonne indicated Aroclors 1254 and 1260 as the most likely PCB contaminants in RFP sludge samples). The developed method was compared to the Environmental Protection Agency (EPA) accepted SW-846 method for analysis of PCBs (Method 8081). The accuracy and precision data were found to be similar for the two methods. The developed method was also tested with samples of simulated sludge spiked with Pu (in solid and solution forms). Reduction of radioactivity in final extract versus in the spike sample ranged from a factor of 10{sup 5} to 10{sup 7}.

  15. A Novel Method for Profiling and Quantifying Short- and Medium-Chain Chlorinated Paraffins in Environmental Samples Using Comprehensive Two-Dimensional Gas Chromatography-Electron Capture Negative Ionization High-Resolution Time-of-Flight Mass Spectrometry.

    PubMed

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin

    2016-07-19

    Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples. PMID:27183176

  16. Rapid determination of the isomeric truxillines in illicit cocaine via capillary gas chromatography/flame ionization detection and their use and implication in the determination of cocaine origin and trafficking routes.

    PubMed

    Mallette, Jennifer R; Casale, John F

    2014-10-17

    The isomeric truxillines are a group of minor alkaloids present in all illicit cocaine samples. The relative amount of truxillines in cocaine is indicative of the variety of coca used for cocaine processing, and thus, is useful in source determination. Previously, the determination of isomeric truxillines in cocaine was performed with a gas chromatography/electron capture detection method. However, due to the tedious sample preparation as well as the expense and maintenance required of electron capture detectors, the protocol was converted to a gas chromatography/flame-ionization detection method. Ten truxilline isomers (alpha-, beta-, delta-, epsilon-, gamma-, omega, zeta-, peri-, neo-, and epi-) were quantified relative to a structurally related internal standard, 4',4″-dimethyl-α-truxillic acid dimethyl ester. The method was shown to have a linear response from 0.001 to 1.00 mg/mL and a lower detection limit of 0.001 mg/mL. In this method, the truxillines are directly reduced with lithium aluminum hydride and then acylated with heptafluorobutyric anhydride prior to analysis. The analysis of more than 100 cocaine hydrochloride samples is presented and compared to data obtained by the previous methodology. Authentic cocaine samples obtained from the source countries of Colombia, Bolivia, and Peru were also analyzed, and comparative data on more than 23,000 samples analyzed over the past 10 years with the previous methodology is presented. PMID:25219521

  17. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    PubMed Central

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-01-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis. PMID:26883080

  18. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    NASA Astrophysics Data System (ADS)

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-02-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909-0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06-2 ng/L and 0.2-6 ng/L for OCPs and 0.02-3 ng/L and 0.06-7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65-9.89% for OCPs and 0.98-13.99% for PYPs, respectively. Average recoveries were in the range of 47.74-120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67-31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis.

  19. Determination of Chlorophenols in Water Samples Using Solid-Phase Extraction Enrichment Procedure and Gas Chromatography Analysis.

    PubMed

    Ben Hassine, S; Hammami, B; Touil, S; Driss, M R

    2015-11-01

    Solid-phase extraction (SPE) procedure followed by derivatization and gas chromatography electron capture detection was evaluated for the determination of trace amounts of chlorophenols (CPs) in waters samples. Different parameters affecting extraction efficiency such as, volume of elution solvent, volume and pH of water sample, quantity of sorbent phase were studied and optimized. SPE was carried out on polystyrene-divinylbenzene (Bond Elut ENV) and high recoveries were obtained using 1000 mg of this cartridge for the treatment of 500 mL of acidified water sample. The described method was then tested on spiked tap, mineral, ground and surface water samples. The overall procedure provided limits of detection lower than 20 ng L(-1), recoveries of 70%-106% and an enrichment factor of 500 for the examined CPs in 500 mL water samples. Among the studied compounds, pentachlorophenol was detected in tap water at a concentration level of 0.06 µg L(-1). PMID:26067701

  20. Detection of gas leakage

    DOEpatents

    Thornberg, Steven M; Brown, Jason

    2015-02-17

    A method of detecting leaks and measuring volumes as well as a device, the Power-free Pump Module (PPM), provides a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement. The PPM is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr) using a venturi pump, perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  1. Detection of gas leakage

    DOEpatents

    Thornberg, Steven; Brown, Jason

    2012-06-19

    A method of detecting leaks and measuring volumes as well as an apparatus, the Power-free Pump Module (PPM), that is a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement, where the invention is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr), perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  2. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  3. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  4. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  5. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  6. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  7. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  8. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  9. Structure elucidation of an artifact discharging from rubber-based vial closures by means of gas chromatography/tandem mass spectrometry.

    PubMed

    Kapp, Thomas; Vetter, Walter

    2006-12-01

    The use of vial closures equipped with butyl rubber septa may lead to sample contamination by rubber additives discharging from the septum material. In this study, the structure elucidation of an artifact causing intense signals in gas chromatography/electron capture negative ion mass spectrometry (GC/ECNI-MS) and gas chromatographic analyses with electron capture detection is described. Tentative identification of the leached compound was achieved by employing tandem mass spectrometric techniques both in electron capture negative ion and in electron ionization modes. The artifact could thus be characterized as 2-benzothiazolyl-N,N-dimethyl dithiocarbamate, which is a known vulcanization accelerator for rubber. It is conceivable that the identified compound or related substances are also used in other applications. Therefore, two food-related matrixes were investigated for a possible migration of this compound into foods. During these analyses, the tentatively identified rubber additive was detected in an aqueous extract of a rubber seal ring for canning jars. GC/ECNI-MS provided better sensitivity and selectivity than GC/EI-MS for the determination of the rubber additive and other mercaptobenzothiazole-derived substances. PMID:17134153

  10. System and method for detecting gas

    SciTech Connect

    Chow, Oscar Ken; Moulthrop, Lawrence Clinton; Dreier, Ken Wayne; Miller, Jacob Andrew

    2010-03-16

    A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

  11. Rapid determination of dichlorodiphenyltrichloroethane and its main metabolites in aqueous samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    PubMed

    Vinoth Kumar, Ponnusamy; Jen, Jen-Fon

    2011-03-01

    A rapid and sensitive analytical method for the determination of dichlorodiphenyltrichloroethane (DDT) and its main metabolites in environmental aqueous samples has been developed using one-step microwave-assisted headspace controlled-temperature liquid-phase micro-extraction (MA-HS-CT-LPME) technique coupled with gas chromatography-electron-capture detection (GC-ECD). In this study, the one-step extraction of DDT and its main metabolites was achieved by using microwave heating to accelerate the evaporation of analytes into the controlled-temperature headspace to form a cloudy mist vapor zone for LPME sampling. Parameters influencing extraction efficiency were thoroughly optimized, and the best extraction for DDT and its main metabolites from 10-mL aqueous sample at pH 6.0 was achieved by using 1-octanol (4-μL) as the LPME solvent, sampling at 34°C for 6.5 min under 249W of microwave irradiation. Under optimum conditions, excellent linear relationship was obtained in the range of 0.05-1.0 μg/L for 1-dichloro-2,2-bis-(p'-chlorophenyl)ethylene (p,p'-DDE), 0.1-2.0 μg/L for o,p'-DDT, 0.15-3.0 μg/L for 1,1-dichloro-2,2-bis-(p'-chlorophenyl)ethane (p,p'-DDD) and p,p'-DDT, with detection limits of 20 ng/L for p,p'-DDE, and 30 ng/L for o,p'-DDT, p,p'-DDD and p,p'-DDT. Precision was in the range of 3.2-11.3% RSD. The proposed method was validated with environmental water samples. The spiked recovery was between 95.5% and 101.3% for agricultural-field water, between 94% and 99.7% for sea water and between 93.5% and 98% for river water. Thus the established method has been proved to be a simple, rapid, sensitive, inexpensive and eco-friendly procedure for the determination of DDT and its main metabolites in environmental water samples. PMID:21251695

  12. Method for detecting gas turbine engine flashback

    DOEpatents

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  13. Microwave Radar Detection of Gas Pipeline Leaks

    NASA Astrophysics Data System (ADS)

    Gopalsami, N.; Kanareykin, D. B.; Asanov, V.; Bakhtiari, S.; Raptis, A. C.

    2003-03-01

    We are developing a microwave radar sensing and imaging system to detect and locate gas leaks in natural gas pipelines. The underlying detection principle is radar backscattering from the index-of-refraction inhomogeneities introduced by the dispersion of methane in air. An essential first step in the development effort is modeling to estimate the radar cross section. This paper describes the modeling results and the experimental efforts underway to validate the model. For the case of leaks from small holes in a pressurized gas pipeline, we modeled the gas dynamics of the leak jet to determine the plume geometry and the variation of methane concentration in air as a function of distance from the leak source. From the static and dynamic changes in the index of refraction in the turbulent plume, the radar backscatter cross sections were calculated. The results show that the radar cross sections of the leak plumes should be detectable by special-purpose radars.

  14. Detection of hydrogen chloride gas in air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1978-01-01

    Launch vehicle effluent (LVE) monitoring is part of NASA's overall tropospheric and stratospheric environmental program. Following nine techniques are evaluated and developed in report: bubbler method, pH measurements, indicator tubes, microcoulometers, modified condensation nuclei counter, dual-isotope absorption, gas-filter correlation, chemiluminescent nitric oxide detection, chemiluminescent luminol-oxidation detection.

  15. Semiconducting polymers for gas detection

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Sheratte, M. B.

    1975-01-01

    Conjugated polyenes, and polyesters containing phthalocyanine in their backbone, were synthesized. These polymers were characterized by chemical analysis, thermogravimetric analysis, spectral analysis, and X-ray diffraction studies for crystallinity, as well as for their film-forming capability and gas/polymer interactions. Most of the polymers were relatively insensitive to water vapor up to 50 percent relative humidity, but the polyester/phthalocyanine (iron) polymer was relatively insensitive up to 100 percent RH. On the other hand, poly(p-dimethylaminophenylacetylene) was too conductive at 100 percent RH. Of the gases tested, the only ones that gave any evidence of interacting with the polymers were SO2, NOx, HCN and NH3. Poly(imidazole)/thiophene responded to each of these gases at all relative humidities, while the other polymers gave varying response, depending upon the RH. Thus, since most of these gases were electron-accepting, the electron-donating character of poly(imidazole)/thiophene substantiates the concept of electronegativity being the operating principle for interaction effects. Of the six polymers prepared, poly(imidazole)/thiophene first showed a very good response to smoldering cotton, but it later became nonresponsive; presumably due to oxidation effects.

  16. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Fan, Hui; Hildenbrand, Zacariah; Wong, Derek; Wetz, David; Schug, Kevin A

    2015-04-01

    The analysis of complex mixtures of permanent gases consisting of low molecular weight hydrocarbons, inert gases, and toxic species plays an increasingly important role in today's economy. A new gas chromatography detector based on vacuum ultraviolet (VUV) spectroscopy (GC-VUV), which simultaneously collects full scan (115-240 nm) VUV and UV absorption of eluting analytes, was applied to analyze mixtures of permanent gases. Sample mixtures ranged from off-gassing of decomposing Li-ion and Li-metal batteries to natural gas samples and water samples taken from private wells in close proximity to unconventional natural gas extraction. Gas chromatography separations were performed with a porous layer open tubular column. Components such as C1-C5 linear and branched hydrocarbons, water, oxygen, and nitrogen were separated and detected in natural gas and the headspace of natural gas-contaminated water samples. Of interest for the transport of lithium batteries were the detection of flammable and toxic gases, such as methane, ethylene, chloromethane, dimethyl ether, 1,3-butadiene, CS2, and methylproprionate, among others. Featured is the capability for deconvolution of co-eluting signals from different analytes. PMID:25724098

  17. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  18. Gas sensitive materials for gas detection and methods of making

    SciTech Connect

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  19. Gas sensitive materials for gas detection and method of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  20. Infrared hyperspectral imaging sensor for gas detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2000-11-01

    A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.

  1. Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector.

    PubMed

    Zhu, Yonghong; Li, Genrong; Duan, Yunpeng; Chen, Shiqi; Zhang, Chun; Li, Yanfei

    2008-08-15

    A gas chromatography electron capture detector (GC-ECD) using the standard addition method was developed for the determination of acrylamide in heat-processed foods. The method entails extraction of acrylamide with water, filtration, defatting with n-hexane, derivatization with hydrobromic acid and saturated bromine-water, and liquid-liquid extraction with ethyl acetate. The sample pretreatment required no SPE clean-up and concentration steps prior to injection. The final extract was analyzed by GC-ECD. The chromatographic analysis was performed on polar columns, e.g. Supelcowax-10 capillary column, and good retention and peak response of the analyte were achieved under the optimal conditions. The qualification of the analyte was by identifying the peak with same retention time as standard compound 2,3-DBPA and confirmed by GC-MS. GC-MS analysis confirmed that 2,3-DBPA was converted to 2-BPA nearly completely on the polar capillary column, whether or not treated with triethylamine. A four-point standard addition protocol was used to quantify acrylamide in food samples. The limit of detection (LOD) was estimated to be 0.6μg/kg on the basis of ECD technique. Validation and quantification results demonstrated that the method should be regarded as a low-cost, convenient, and reliable alternative for conventional investigation of acrylamide. PMID:26050006

  2. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  3. Detection of gas atoms with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  4. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  5. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  6. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  7. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  8. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  9. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  10. Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection.

    PubMed

    Wu, Mingxue; Chen, Gang; Liu, Ping; Zhou, Weihong; Jia, Qiong

    2016-01-01

    A novel hybrid material incorporating porous aromatic frameworks and an ionic liquid, 1-(triethoxy silyl)propyl-3-aminopropyl imidazole hexafluorophosphate, was prepared as solid-phase microextraction coating and employed for the extraction of organochlorine pesticides. Combining the advantages of porous aromatic frameworks and an ionic liquid, the fiber exhibited a high adsorption capacity for organochlorine pesticides. Under optimized experimental conditions, enhancement factors of 247-1696 were obtained with good linearity in the range of 1-500 μg L(-1). The detection limits and quantification limits were determined to be in the range of 0.11-0.29 μg L(-1) and 0.35-0.93 μg L(-1). The relative standard deviations for six replicates of organochlorine pesticides were in the range of 4.4%-7.2% and 5.7%-10.1% for one fiber and fiber-to-fiber, respectively. By coupling with a gas chromatography-electron capture detector, the novel fiber was successfully used for the determination of organochlorine pesticides in juice and milk samples with recoveries of 76.1%-121.3%. PMID:26579991

  11. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Griffin, Timothy P.; Adams, Frederick; Follistein, Duke

    2003-01-01

    The Hazardous Gas Detection Lab is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response and limits of detection. Unfortunately, these systems are large, heavy and expensive. This feature limits the ability to perform gas analysis in certain applications. Smaller and lighter mass spectrometer systems could be used in many more applications primarily due to the portability of the system. Such applications would include air analysis in confined spaces, in-situ environmental analysis and emergency response. In general, system cost is lowered as size is reduced. With a low cost air analysis system, several systems could be utilized for monitoring large areas. These networked systems could be deployed at job-sites for worker safety, throughout a community for pollution warnings, or dispersed in a battlefield for early warning of chemical or biological threats. Presented will be information on the first prototype of this type of system. Included will be field trial data, with this prototype performing air analysis autonomously from an aircraft.

  12. Sensor array for toxic gas detection

    DOEpatents

    Stetter, Joseph R.; Zaromb, Solomon; Penrose, William R.

    1987-01-01

    A portable instrument for use in the field in detecting and identifying a hazardous component in air or other gas including an array of small sensors which upon exposure to the gas from a pattern of electrical responses, a source of standard response patterns characteristic of various components, and microprocessor means for comparing the sensor-formed response pattern with one or more standard patterns to thereby identify the component on a display. The number of responses may be increased beyond the number of sensors by changing the operating voltage, temperature or other condition associated with one or more sensors to provide a plurality of responses from each of one or more of the sensors. In one embodiment, the instrument is capable of identifying anyone of over 50-100 hazardous components.

  13. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  14. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Compressor stations: Gas detection. 192.736... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.736 Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in...

  15. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Compressor stations: Gas detection. 192.736... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.736 Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in...

  16. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compressor stations: Gas detection. 192.736... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.736 Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in...

  17. Time reversal technique for gas leakage detection.

    PubMed

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise. PMID:25920866

  18. Development of a sample preparation method for the analysis of current-use pesticides in sediment using gas chromatography.

    PubMed

    Wang, Dongli; Weston, Donald P; Ding, Yuping; Lydy, Michael J

    2010-02-01

    Pyrethroid insecticides have been implicated as the cause of sediment toxicity to Hyalella azteca in both agricultural and urban areas of California; however, for a subset of these toxic sediments (approximately 30%), the cause of toxicity remains unidentified. This article describes the analytical method development for seven additional pesticides that are being examined to determine if they might play a role in the unexplained toxicity. A pressurized liquid extraction method was optimized to simultaneously extract diazinon, methyl parathion, oxyfluorfen, dicofol, fenpropathrin, pyraclostrobin, and indoxacarb from sediment, and the extracts were cleaned using a two-step solid-phase extraction procedure. The final extract was analyzed for the target pesticides by gas chromatography/nitrogen-phosphorus detector (GC/NPD), and gas chromatography/electron capture detector (GC/ECD), after sulfur was removed by shaking with copper and cold crystallization. Three sediments were used as reference matrices to assess method accuracy and precision. Method detection limits were 0.23-1.8 ng/g dry sediment using seven replicates of sediment spiked at 1.0 ng/g dry sediment. Recoveries ranged from 61.6 to 118% with relative standard deviations of 2.1-17% when spiked at 5.0 and 50 ng/g dry sediment. The three reference sediments, spiked with 50 ng/g dry weight of the pesticide mixture, were aged for 0.25, 1, 4, 7, and 14 days. Recoveries of the pesticides in the sediments generally decreased with increased aging time, but the magnitude of the decline was pesticide and sediment dependent. The developed method was applied to field-collected sediments from the Central Valley of California. PMID:19798461

  19. Quartz crystals detect gas contaminants during vacuum chamber evacuation

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1967-01-01

    Piezoelectric quartz crystals detect condensable gas contaminants backstreaming into a vacuum chamber when a pump is evacuating the chamber. One crystal acts as a thermometer, the other detects mass change. They are energized by electronic equipment which records frequency changes.

  20. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  1. Detectivity of gas leakage based on electromagnetic radiation transfer

    NASA Astrophysics Data System (ADS)

    Long, Yunting; Wang, Lingxue; Li, Jiakun; Zhang, Changxing; Zhang, Bei

    2011-05-01

    Standoff detection of gas leakage is a fundamental need in petrochemical and power industries. The passive gas imaging system using thermal imager has been proven to be efficient to visualize leaking gas which is not visible to the naked eye. The detection probability of gas leakage is the basis for designing a gas imaging system. Supposing the performance parameters of the thermal imager are known, the detectivity based on electromagnetic radiation transfer model to image gas leakage is analyzed. This model takes into consideration a physical analysis of the gas plume spread in the atmosphere-the interaction processes between the gas and its surrounding environment, the temperature of the gas and the background, the background surface emissivity, and also gas concentration, etc. Under a certain environmental conditions, through calculating the radiation reaching to the detector from the camera's optical field of view, we obtain an entity "Gas Equivalent Blackbody Temperature Difference (GEBTD)" which is the radiation difference between the on-plume and off-plume regions. Comparing the GEBTD with the Noise Equivalent Temperature Difference (NETD) of the thermal imager, we can know whether the system can image the gas leakage. At last, an example of detecting CO2 gas by JADE MWIR thermal imager with a narrow band-pass filter is presented.

  2. Towards aerial natural gas leak detection system based on TDLAS

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  3. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  4. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the

  5. Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Trincavelli, Marco

    2012-01-01

    We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets. PMID:23443385

  6. Natural Gas Hydrates: Occurrence, Distribution, and Detection

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Dillon, William P.

    We publish this volume at a time when there is a growing interest in gas hydrates and major expansion in international research efforts. The first recognition of natural gas hydrate on land in Arctic conditions was in the mid-1960s (by I. Makogon) and in the seabed environment only in the early 1970s, after natural seafloor gas hydrate was drilled on the Blake Ridge during Deep Sea Drilling Project Leg 11. Initial scientific investigations were slow to develop because the study of natural gas hydrates is unusually challenging. Gas hydrate exists in nature in conditions of temperature and pressure where human beings cannot survive, and if gas hydrate is transported from its region of stability to normal Earth-surface conditions, it dissociates. Thus, in contrast to most minerals, we cannot depend on drilled samples to provide accurate estimates of the amount of gas hydrate present. Even the heat and changes in chemistry (methane saturation, salinity, etc.) introduced by the drilling process affect the gas hydrate, independent of the changes brought about by moving a sample to the surface. Gas hydrate has been identified in nature generally by inference from indirect evidence in drilling data or by using remotely sensed indications, mostly from seismic data. Obviously, the established techniques ofgeologic analysis, which require direct observation and sampling, do not apply to gas hydrate studies, and controversy has surrounded many interpretations. Pressure/temperature conditions appropriate for the existence of gas hydrate occur over the greater part of the shallow subsurface of the Earth beneath the ocean at water depths exceeding about 500 m (shallower beneath colder Arctic seas) and on land beneath high-latitude permafrost. Gas hydrate actually will be present in such conditions, however, only where methane is present at high concentrations. In the Arctic, these methane concentrations are often associated with petroleum deposits, whereas at continental margins

  7. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

  8. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  9. Improvements in NDIR gas detection within the same optical chamber

    NASA Astrophysics Data System (ADS)

    Martinez-Anton, Juan Carlos; Silva-Lopez, Manuel

    2011-10-01

    Non-dispersive infrared (NDIR) is a well known technique for gas concentration monitoring. Lead salt photoconductors and thermopile detectors are typically used. Together with gas filter correlation (GFC) they are the basis for a reference standard in environmental gas monitoring like carbon monoxide determination and other gas species. To increase gas sensitivity, a multi-pass optical cavity is often used. In this contribution we propose a new optical design that allows for auto-reference multiple gas detection. It basically consists of an array of White's cell multi-pass camera that allows multiple channels with independent lengths inside the same volume. We explore its performance for carbon monoxide detection and based on recent commercial developments in infrared detector and emitter technologies.

  10. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  11. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF PESTICIDE SAMPLES BY GC/ECD (BCO-L-24.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used for detection and quantification by gas chromatography electron capture detector (GC/ECD) of pesticides in a variety of matrices, including air, house dust, soil, handwipes, and surface wipes. Other SOP's detail the extract...

  12. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... limit value listed in 29 CFR 1910.1000 for that cargo; and (2) Fixed gas sampling tubes in each hold... must be set at or below the threshold limit value listed in 29 CFR 1910.1000 for the cargo carried. ... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each...

  13. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... limit value listed in 29 CFR 1910.1000 for that cargo; and (2) Fixed gas sampling tubes in each hold... must be set at or below the threshold limit value listed in 29 CFR 1910.1000 for the cargo carried. ... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each...

  14. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... limit value listed in 29 CFR 1910.1000 for that cargo; and (2) Fixed gas sampling tubes in each hold... tubes with their open ends in the upper part of the space. (c) A vessel that carries methyl bromide or... paragraph (j). (e) Each alarm under § 154.1350(e) on a vessel that carries methyl bromide or sulfur...

  15. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... limit value listed in 29 CFR 1910.1000 for that cargo; and (2) Fixed gas sampling tubes in each hold... tubes with their open ends in the upper part of the space. (c) A vessel that carries methyl bromide or... paragraph (j). (e) Each alarm under § 154.1350(e) on a vessel that carries methyl bromide or sulfur...

  16. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... limit value listed in 29 CFR 1910.1000 for that cargo; and (2) Fixed gas sampling tubes in each hold... tubes with their open ends in the upper part of the space. (c) A vessel that carries methyl bromide or... paragraph (j). (e) Each alarm under § 154.1350(e) on a vessel that carries methyl bromide or sulfur...

  17. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-09-30

    During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

  18. Detection system for a gas chromatograph

    DOEpatents

    Hayes, John M.; Small, Gerald J.

    1984-01-01

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.

  19. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    Decker, D.

    1995-05-01

    Exploration strategies are needed to identify subtle basement features critical to locating fractured regions in advance of drilling in tight gas reservoirs. The Piceance Basin served as a demonstration site for an analysis utilizing aeromagnetic surveys, remote sensing, Landsat Thematic Mapper, and Side Looking Airborne Radar imagery for the basin and surrounding areas. Spatially detailed aeromagnetic maps were used to to interpret zones of basement structure.

  20. In-fiber modal interferometer for high sensitivity gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Jin, Wei

    2015-09-01

    We demonstrate a gas sensor based on mode interference in a hollow-core photonic bandgap fiber. Gas absorption of a pump laser beam induces phase modulation of a propagating probe beam, which is detected by use of an in-fiber modal interferometer. An estimated detection limit of ~2 ppm acetylene (~7x10-5 in terms of noise equivalent absorbance or NEA) is achieved with 30-cm-long HC-PBF operating at the near infrared wavelength. This NEA is ~22 times better than state-of-the-art HC-PBF gas sensors based on direct absorption spectroscopy.

  1. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  2. Detection of gas leaks in the subsurface environment

    NASA Astrophysics Data System (ADS)

    Ghandehari, Masoud; Khalil, Gamal; Kimura, Fletcher

    2005-05-01

    Leaking valves, connections and distribution pipelines are significant sources of fugitive gas and volatile chemical emissions in chemical manufacturing, gas production, transmission, and oil refineries. A gas leak detection method has been developed based on continuous monitoring of the oxygen concentration surrounding a natural gas pipeline. The method utilizes optical fibers coated with an oxygen permeable polymeric film containing a luminescent sensor molecule. When the specialty fiber is illuminated by a light source that excites the luminophor, the functional cladding compound has the ability to detect and quantify leaks by measuring small changes in oxygen concentrations in the surrounding environment. Key features of the technology include long-term performance based on well understood platinum porphyrin chemistry, in addition to the capability of distributed sensing using fiber optic evanescent field spectroscopy. Results of leak detection in various environments namely atmospheric conditions, dry sand as well as saturated sand is reported, along with test results on long term system performance.

  3. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  4. Early detection of combustible gas leaks using open path infrared (IR) gas detectors

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward; Baliga, Shankar

    2012-06-01

    Open path IR gas detectors are a mainstay in the oil and gas industry. They are used in a variety of instances to identify gas accumulations or monitor gas cloud migrations. In offshore installations, open path optical gas detectors are used to monitor drilling and production operations, crude oil separation, compression, and exhaust and ventilation systems. Because they can monitor a perimeter or fence line, they are ideally suited for detecting gas in open facilities, where point gas detectors would be difficult or expensive to deploy. Despite their widespread use, open path optical gas detectors are rarely employed to detect low level concentrations of combustible gases. Standard models are typically set to alarm at 50% LEL-m (50% LEL extended over one meter), providing sufficiently early warning when gas accumulations occur. Nevertheless, in cases in which a combustible gas is diluted quickly, such as ventilation exhaust ducting, it may be necessary to set the detector to alarm at the lowest predictable level. Further, interest in low level infrared gas detection has been growing as gases such as CH4 and CO2 are greenhouse gases. The present paper describes a mid-wave infrared (MWIR) open path system designed to detect combustible and carbon dioxide gas leaks in the parts-per-million-meter (ppm-m or mg/cm2). The detector has been installed in offshore platforms and large onshore facilities to detect a variety of flammable gases and vapors. Advantages and limitations of the system are presented. False alarm immunity and resilience to atmospheric interferences are also discussed.

  5. Temperature detection in a gas turbine

    DOEpatents

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  6. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  7. Compressive hyperspectral sensor for LWIR gas detection

    NASA Astrophysics Data System (ADS)

    Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard

    2012-06-01

    Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.

  8. Imaging spectrometer for fugitive gas leak detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    1999-12-01

    Under contract to the U.S. Air Force and Navy, Pacific Advanced Technology has developed a very sensitive infrared imaging spectrometer that can perform remote imaging and spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of smoke stack emissions and fugitive leaks. To date remote continuous emission monitoring (CEM) systems have not been approved by the EPA, however, they are under consideration. If the remote sensing technology is available with the sensitivity to monitor emission at the required levels and man portable it can reduce the cost and improve the reliability of performing such measurements. Pacific Advanced Technology (PAT) believes that it currently has this technology available to industry. This paper will present results from a field test where gas vapors during a refueling process were imaged and identified. In addition images of propane from a leaking stove will be presented. We at PAT have developed a real time image processing board that enhances the signal to noise ratio of low contrast gases and makes them easily viewable using the Image Multispectral Sensing (IMSS) imaging spectrometer. The IMSS imaging spectrometer is the size of a camcorder. Currently the data is stored in a Notebook computer thus allowing the system to be easily carried into power plants to look for fugitive leaks. In the future the IMSS will have an embedded processor and DSP and will be able to transfer data over an Ethernet link.

  9. Wide-band gas leak imaging detection system using UFPA

    NASA Astrophysics Data System (ADS)

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas

  10. [A mobile sensor for remote detection of natural gas leakage].

    PubMed

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way. PMID:22512213

  11. Methods for gas detection using stationary hyperspectral imaging sensors

    DOEpatents

    Conger, James L.; Henderson, John R.

    2012-04-24

    According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

  12. Surface Ionization Gas Detection at SnO2 Surfaces

    NASA Astrophysics Data System (ADS)

    Krenkow, A.; Oberhüttinger, C.; Habauzit, A.; Kessler, M.; Göbel, J.; Müller, G.

    2009-05-01

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO2 surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  13. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  14. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  15. Predicting detection probabilities for gas mixtures over HSI backgrounds

    SciTech Connect

    Tardiff, Mark F.; Walsh, Stephen J.; Anderson, Kevin K.; Chilton, Lawrence

    2009-12-29

    Detecting and identifying weak gaseous plumes using thermal image data acquired by airborne detectors is an area of ongoing research. This contribution investigates the relative detectability of gas mixtures over different backgrounds and a range of plume temperatures that are warmer and cooler than the ground. The focus of this analysis to support mission planning. When the mission is intended to collect evidence of particular chemicals, the analysis presented is this report can be used to determine conditions under which useful data can be acquired. Initial analyses can be used to determine whether LWIR is useful for the anticipated gas, temperature, and background combination.

  16. Energy requirements for methods improving gas detection by modulating physical properties of resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Trawka, M.; Kotarski, M.

    2016-01-01

    One of the most important disadvantage of resistive gas sensors is their limited gas selectivity. Therefore, various methods modulating their physical properties are used to improve gas detection. These methods are usually limited to temperature modulation or UV light irradiation for the layers exhibiting photocatalytic effect. These methods cause increased energy consumption. In our study we consider how much energy has to be supplied to utilize such methods and what kind of additional information can be gathered. We present experimental results of selected resistive gas sensors, including commercial and prototype constructions, and practical solutions of modulating their physical properties.

  17. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  18. Detection of chlorinated methanes by tin oxide gas sensors.

    PubMed

    Park, S H; Son, Y C; Shaw, B R; Creasy, K E; Suib, S L

    2001-08-01

    Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry. PMID:11534610

  19. Hyperspectral trace gas detection using the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Salvador, Mark Z.; Resmini, Ronald G.; Gomez, Richard B.

    2008-04-01

    A method for trace gas detection in hyperspectral data is demonstrated using the wavelet packet transform. This new method, the Wavelet Packet Subspace (WPS), applies the wavelet packet transform and selects a best basis for pattern matching. The wavelet packet transform is an extension of the wavelet transform, which fully decomposes a signal into a library of wavelet packet bases. Application of the wavelet packet transform to hyperspectral data for the detection of trace gases takes advantage of the ability of the wavelet transform to locate spectral features in both scale and location. By analyzing the wavelet packet tree of specific gas, nodes of the tree are selected which represent an orthogonal best basis. The best basis represents the significant spectral features of that gas. This is then used to identify pixels in the scene using existing matching algorithms such as spectral angle or matched filter. Using data from the Airborne Hyperspectral Imager (AHI), this method is compared to traditional matched filter detection methods. Initial results demonstrate a promising wavelet packet subspace technique for hyperspectral trace gas detection applications.

  20. Summary of gas release events detected by hydrogen monitoring

    SciTech Connect

    MCCAIN, D.J.

    1999-05-18

    This paper summarizes the results of monitoring tank headspace for flammable gas release events. In over 40 tank years of monitoring the largest detected release in a single-shell tank is 2.4 cubic meters of Hydrogen. In the double-shell tanks the largest release is 19.3 cubic meters except in SY-101 pre mixer pump installation condition.

  1. Pattern recognition for selective odor detection with gas sensor arrays.

    PubMed

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  2. Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays

    PubMed Central

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  3. Circumnuclear molecular gas in M87 detected with ALMA

    NASA Astrophysics Data System (ADS)

    Vlahakis, Catherine E.

    2016-01-01

    We present the detection of circumnuclear molecular gas residing within 100 pc of the supermassive black hole (SMBH) in the galaxy M87 (3C 274), using the Atacama Large Millimeter/submillimeter Array (ALMA) to image the gas on spatial scales from 100 to 10 pc. The proximity of M87, the archetypical giant elliptical radio galaxy at the centre of the Virgo galaxy cluster, presents a unique opportunity to investigate in detail the circumnuclear molecular gas revealed first by single-dish observations and recently imaged for the first time with ALMA (Vlahakis et al., in prep). ALMA's unique long baseline capability now allows us to make the first detailed investigation of the properties of the interstellar medium around the galaxy's SMBH on scales down to 10 pc (0.1 arcsec). Here, we present results of ALMA Band 3 CO J=1-0 observations obtained at different angular resolutions. With this data we are able to trace the bulk of the molecular gas as well as the continuum emission, providing the deepest and highest spatial resolution images yet of the molecular gas content of this giant elliptical galaxy. The highest resolution data allow us to unambiguously resolve the molecular gas structures for the first time and investigate, in unprecedented detail, the nature and origin of molecular gas that resides within the sphere of influence of the SMBH.

  4. Detection and Appraisal of Gas Hydrates: Indian Scenario

    NASA Astrophysics Data System (ADS)

    Sain, K.

    2009-04-01

    Gas hydrates, found in shallow sediments of permafrost and outer continental margins, are crystalline form of methane and water. The carbon within global gas hydrates is estimated two times the carbon contained in world-wide fossil fuels. It is also predicted that 15% recovery of gas hydrates can meet the global energy requirement for the next 200 years. Several parameters like bathymetry, seafloor temperature, sediment thickness, rate of sedimentation and total organic carbon content indicate very good prospect of gas hydrates in the vast offshore regions of India. Methane stored in the form of gas hydrates within the Indian exclusive economic zone is estimated to be few hundred times the country's conventional gas reserve. India produces less than one-third of her oil requirement and gas hydrates provide great hopes as a viable source of energy in the 21st century. Thus identification and quantitative assessment of gas hydrates are very important. By scrutiny and reanalysis of available surface seismic data, signatures of gas hydrates have been found out in the Kerala-Konkan and Saurashtra basins in the western margin, and Krishna-Godavari, Mahanadi and Andaman regions in the eastern margin of India by mapping the bottom simulating reflector or BSR based on its characteristic features. In fact, the coring and drilling in 2006 by the Indian National Gas Hydrate Program have established the ground truth in the eastern margin. It has become all the more important now to identify further prospective regions with or without BSR; demarcate the lateral/areal extent of gas hydrate-bearing sediments and evaluate their resource potential in both margins of India. We have developed various approaches based on seismic traveltime tomography; waveform inversion; amplitude versus offset (AVO) modeling; AVO attributes; seismic attributes and rock physics modeling for the detection, delineation and quantification of gas-hydrates. The blanking, reflection strength, instantaneous

  5. Low-Cost Resonant Cavity Raman Gas Probe for Multi-Gas Detection

    NASA Astrophysics Data System (ADS)

    Thorstensen, J.; Haugholt, K. H.; Ferber, A.; Bakke, K. A. H.; Tschudi, J.

    2014-12-01

    Raman based gas sensing can be attractive in several industrial applications, due to its multi-gas sensing capabilities and its ability to detect O_2 and N_2. In this article, we have built a Raman gas probe, based on low-cost components, which has shown an estimated detection limit of 0.5 % for 30 second measurements of N_2 and O_2. While this detection limit is higher than that of commercially available equipment, our estimated component cost is approximately one tenth of the price of commercially available equipment. The use of a resonant Fabry-Pérot cavity increases the scattered signal, and hence the sensitivity, by a factor of 50. The cavity is kept in resonance using a piezo-actuated mirror and a photodiode in a feedback loop. The system described in this article was made with minimum-cost components to demonstrate the low-cost principle. However, it is possible to decrease the detection limit using a higher-powered (but still low-cost) laser and improving the collection optics. By applying these improvements, the detection limit and estimated measurement precision will be sufficient for e.g. the monitoring of input gases in combustion processes, such as e.g. (bio-)gas power plants. In these processes, knowledge about gas compositions with 0.1 % (absolute) precision can help regulate and optimize process conditions. The system has the potential to provide a low-cost, industrial Raman sensor that is optimized for specific gas-detection applications.

  6. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  7. Detection of circumstellar gas associated with GG Tauri

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Snell, R. L.; Strom, K. M.; Strom, S. E.; Edwards, S.; Fukui, Y.; Mizuno, A.; Hayashi, M.; Ohashi, N.

    1993-01-01

    Double-peaked (C-12)O (1-0) emission centered on the young T Tauri star GG Tau possesses a line profile which may be modeled on the assumption that CO emission arises in an extended circumstellar disk. While bounds on the observed gas mass can be estimated on this basis, it is suggested that a large amount of mass could lie within a small and optically thick region, escaping detection due to beam-dilution effects. In addition, CO may no longer accurately trace the gas mass due to its dissociation, or freezing into grains, or due to the locking-up of carbon into more complex molecules.

  8. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  9. Development of trace gas detection instrumentation. [using the heterodyne principle

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Breadboard hardware was constructed to demonstrate detection of a gaseous species by the heterodyne principle. The characteristics of the component parts were investigated and preliminary measurements were made to establish the sensitivity and selectivity of the method for gas analysis of CO, CO2, and N2O. A prototype heterodyne gas analyzer was designed, built, and brought into operational condition. Performance parameters of the prototype analyzer were investigated and its sensitivity to CO2 measured. Further development was undertaken for both the optical bench and the electronic processor components. A three-gas prototype analyzer, capable of measuring the gases CO, CO2, and CH4 was also constructed and tested. Detailed descriptions of the work and results are presented.

  10. Liquid metal-to-gas leak-detection instruments. [LMFBR

    SciTech Connect

    Matlin, E.; Witherspoon, J.E.; Johnson, J.L.

    1982-01-01

    It is desirable for liquid-metal-cooled reactors that small liquid metal-to-gas leaks be reliably detected. Testing has been performed on a number of detection systems to evaluate their sensitivity, response time, and performance characteristics. This testing has been scheduled in three phases. The first phase was aimed at screening out the least suitable detectors and optimizing the performance of the most promising. In the second phase, candidates were tested in a 1500 ft/sup 3/ walk-in type enclosure in which leaks were simulated on 24-in. and 3-in. piping. In the third phase of testing, selected type detectors were tested in the 1500-ft/sup 3/ enclosure with Clinch River Breeder Reactor Plant (CRBRP) pipe insulation configurations and detector tubing configuration with cell gas recirculation simulated. Endurance testing of detection equipment was also performed as part of this effort. Test results have been shown that aerosol-type detectors will reliably detect leaks as small as a few grams per hour when sampling pipe insulation annuli.

  11. Sulfur gas geochemical detection of hydrothermal systems. Final report

    SciTech Connect

    Rouse, G.E.

    1984-01-01

    The purpose of this investigation was to determine whether a system of exploration using sulfur gases was capable of detecting convecting hydrothermal systems. Three surveying techniques were used at the Roosevelt Hot Springs KGRA in Utah. These were (a) a sniffing technique, capable of instantaneous determinations of sulfur gas concentration, (b) an accumulator technique, capable of integrating the sulfur gas emanations over a 30 day interval, and (c) a method of analyzing the soils for vaporous sulfur compounds. Because of limitations in the sniffer technique, only a limited amount of surveying was done with this method. The accumulator and soil sampling techniques were conducted on a 1000 foot grid at Roosevelt Hot Springs, and each sample site was visited three times during the spring of 1980. Thus, three soil samples and two accumulator samples were collected at each site. The results are shown as averages of three soil and two accumulator determinations of sulfur gas concentrations at each site. Soil surveys and accumulator surveys were conducted at two additional KGRA's which were chosen based on the state of knowledge of these hydrothermal systems and upon their differences from Roosevelt Hot Springs in an effort to show that the exploration methods would be effective in detecting geothermal reservoirs in general. The results at Roosevelt Hot Springs, Utah show that each of the three surveying methods was capable of detecting sulfur gas anomalies which can be interpreted to be related to the source at depth, based on resistivity mapping of that source, and also correlatable with major structural features of the area which are thought to be controlling the geometry of the geothermal reservoir. The results of the surveys at Roosevelt did not indicate that either the soil sampling technique or the accumulator technique was superior to the other.

  12. Naturally fractured tight gas - gas reservoir detection optimization. Quarterly report, June 1, 1996--September 30, 1996

    SciTech Connect

    Maxwell, J.M.; Ortoleva, P.; Payne, D.; Sibo, W.

    1996-11-15

    This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period 9/30/93 to 3/31/97. Data from seismic surveys are analyzed for structural imaging of reflector units. The data were stacked using the new, improved statics and normal moveout velocities. The 3-D basin modeling effort is continuing with code development. The main activities of this quarter were analysis of fluid pressure data, improved sedimentary history, lithologic unit geometry reconstruction algorithm and computer module, and further improvement, verification, and debugging of the basin stress and multi-phase reaction transport module.

  13. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  14. ULTRASENSITIVE HIGH-TEMPERATURE SELECTIVE GAS DETECTION USING PIEZOELECTRIC MICROCANTILEVERS

    SciTech Connect

    Wan Y. Shih; Tejas Patil; Qiang Zhao; Yi-Shi Chiu; Wei-Heng Shih

    2004-03-05

    We have obtained very promising results in the Phase I study. Specifically, for temperature effects, we have established that piezoelectric cantilever sensors could retain their resonance peak strength at high temperatures, i.e., the Q values of the resonance peaks remained above 10 even when the temperature was very close to the Curie temperature. This confirms that a piezoelectric cantilever sensor can be used as a sensor up to its Curie temperature. Furthermore, we have shown that the mass detection sensitivity remained unchanged at different temperatures. For selective gas detection, we have demonstrated selective NH{sub 3} detection using piezoelectric cantilever sensors coated with mesoporous SiO{sub 2}. For high-temperature sensor materials development, we have achieved highly oriented Sr-doped lead titanate thin films that possessed superior dielectric and ferroelectric properties. Such highly oriented films can be microfabricated into high-performance piezoelectric microcantilever sensors that can be used up to 490 C. We have accomplished the goal of Phase I study in exploring the various aspects of a high-temperature gas sensor. We propose to continue the study in Phase II to develop a sensor that is suitable for high-temperature applications using piezoelectrics with a high Curie temperature and by controlling the effects of temperature. The lead titanate based thin film developed in Phase I is good for applications up to 490 C. In phase II, we will develop lithium niobate thin film based cantilevers for applications up to 1000 C.

  15. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  16. Detection of gas atoms via vibration of graphenes

    NASA Astrophysics Data System (ADS)

    Arash, Behrouz; Wang, Quan; Duan, Wen Hui

    2011-06-01

    The application of single-layered graphene sheets as mass sensors in detection of noble gases via a vibration analysis of graphenes is investigated using molecular dynamics simulations. An index based on frequency shifts of the graphenes attached by the distinct noble gas atoms is defined and examined to measure the sensitivity of the sensors. The dependence of number and location of gas atoms, size of graphene sheets, and type of restrained boundary of the sheets on the sensitivity is particularly studied. The simulation results indicate the resolution of a mass sensor made of a square graphene sheet with a size of 10 nm can achieve an order of 10 femtograms and the mass sensitivity can be enhanced with a decrease in sizes of graphenes.

  17. Naturally fractured tight gas reservoir detection optimization. Final report

    SciTech Connect

    1997-11-19

    This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

  18. Wireless gas detection with a smartphone via rf communication

    PubMed Central

    Azzarelli, Joseph M.; Mirica, Katherine A.; Ravnsbæk, Jens B.; Swager, Timothy M.

    2014-01-01

    Chemical sensing is of critical importance to human health, safety, and security, yet it is not broadly implemented because existing sensors often require trained personnel, expensive and bulky equipment, and have large power requirements. This study reports the development of a smartphone-based sensing strategy that employs chemiresponsive nanomaterials integrated into the circuitry of commercial near-field communication tags to achieve non-line-of-sight, portable, and inexpensive detection and discrimination of gas-phase chemicals (e.g., ammonia, hydrogen peroxide, cyclohexanone, and water) at part-per-thousand and part-per-million concentrations. PMID:25489066

  19. Wireless gas detection with a smartphone via rf communication.

    PubMed

    Azzarelli, Joseph M; Mirica, Katherine A; Ravnsbæk, Jens B; Swager, Timothy M

    2014-12-23

    Chemical sensing is of critical importance to human health, safety, and security, yet it is not broadly implemented because existing sensors often require trained personnel, expensive and bulky equipment, and have large power requirements. This study reports the development of a smartphone-based sensing strategy that employs chemiresponsive nanomaterials integrated into the circuitry of commercial near-field communication tags to achieve non-line-of-sight, portable, and inexpensive detection and discrimination of gas-phase chemicals (e.g., ammonia, hydrogen peroxide, cyclohexanone, and water) at part-per-thousand and part-per-million concentrations. PMID:25489066

  20. Atypical Applications for Gas-coupled Laser Acoustic Detection

    NASA Astrophysics Data System (ADS)

    Caron, J. N.; Kunapareddy, P.

    2014-06-01

    Gas-coupled laser acoustic detection (GCLAD) was primarily developed to sense laser-generated ultrasound in composite materials. In a typical setup, a laser beam is directed parallel to the material surface. Radiated ultrasound waves deflect or displace the probe beam resulting from changes in the air's index of refraction. A position-sensitive photodetector senses the beam movement, and produces a signal proportional to the ultrasound wave. In this paper, we discuss three applications of GCLAD that take advantage of the unique detection characteristics. Directivity patterns of ultrasound amplitude in water demonstrate the use of GCLAD as a directional hydrophone. We also demonstrate the sensing of waveforms from a gelatin. The gelatin mimics ultrasound propagation through skin tissues. Lastly, we show how GCLAD can be used as a line receiver for continuous laser generation of ultrasound. CLGU may enable ultrasound scanning at rates that are orders of magnitude faster than current methods.

  1. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  2. High Altitude Aerial Natural Gas Leak Detection System

    SciTech Connect

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  3. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    PubMed

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs. PMID:27007771

  4. Trace gas monitoring with infrared laser-based detection schemes

    NASA Astrophysics Data System (ADS)

    Sigrist, M. W.; Bartlome, R.; Marinov, D.; Rey, J. M.; Vogler, D. E.; Wächter, H.

    2008-02-01

    The success of laser-based trace gas sensing techniques crucially depends on the availability and performance of tunable laser sources combined with appropriate detection schemes. Besides near-infrared diode lasers, continuously tunable midinfrared quantum cascade lasers and nonlinear optical laser sources are preferentially employed today. Detection schemes are based on sensitive absorption measurements and comprise direct absorption in multi-pass cells as well as photoacoustic and cavity ringdown techniques in various configurations. We illustrate the performance of several systems implemented in our laboratory. These include time-resolved multicomponent traffic emission measurements with a mobile CO2-laser photoacoustic system, a diode-laser based cavity ringdown device for measurements of impurities in industrial process control, isotope ratio measurements with a difference frequency (DFG) laser source combined with balanced path length detection, detection of methylamines for breath analysis with both a near-IR diode laser and a DFG source, and finally, acetone measurements with a heatable multipass cell intended for vapor phase studies on doping agents in urine samples.

  5. Hydrocarbon gas detection with microelectromechanical Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Tuohiniemi, Mikko; Mäkynen, Jussi; Näkki, Ismo; Antila, Jarkko

    2013-05-01

    VTT Technical Research Centre of Finland has developed microelectromechanical (MEMS) Fabry-Perot interferometer (FPI) for hydrocarbon measurements. Fabry-Perot interferometer is a structure where is two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. The manufactured MEMS FPIs have been characterized. The tuning wavelength range of the MEMS FPI is 2.8-3.5 μm and its spectral resolution is 50-60 nm. VTT has designed and manufactured a handheld size demonstrator device based on the technology presented in this abstract. This device demonstrates gas detecting by measuring cigarette lighter gas and various plastic materials transmission spectra. The demonstrator contains light source, gas cell, MEMS FPI, detector and control electronics. It is connected to a laptop by USB connection, additional power supply or connection is not needed.

  6. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    SciTech Connect

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

  7. Detection of atmospheric trace gas species by DOAS gas-analyzer

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2014-11-01

    A differential optical absorption spectroscopy (DOAS) gas-analyzer was successfully tested. A high pressure 150-W Xe arc lamp was employed as a light source This system consisted of a coaxial telescope, a spectrometer, an analyzer and retroreflector. In order to record the spectra, a monochrometer with a grating and photodiode array was adopted. Gas analyzer spectral data bank includes more than 30 moleculas absorbed in UV spectral region. The measured absorption spectra were evaluated by using a least-squares fit to determine the average mixing ratio of each species in the atmosphere. A number of air pollutants concentrations: SO2, NO2, O3, etc were trace measured. Minimally detected concentration on pathlength 400 m is the unit of ppb at the time of accumulation of 2 min. The results of the field test measurements of pollutants in Tomsk are presented.

  8. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  9. Digital array gas radiometer (DAGR): a sensitive and reliable trace gas detection concept

    NASA Astrophysics Data System (ADS)

    Gordley, Larry L.; McHugh, Martin J.; Marshall, B. T.; Thompson, Earl

    2009-05-01

    The Digital Array Gas Radiometer (DAGR) concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR) for remote trace gas detection and monitoring. GFCR sensors have been successful in many infrared remote sensing applications. Historically however, solar backscatter measurements have not been as successful because instrument designs have been susceptible to natural variations in surface albedo, which induce clutter and degrade the sensitivity. DAGR overcomes this limitation with several key innovations. First, a pupil imaging system scrambles the received light, removing nearly all spatial clutter and permitting a small calibration source to be easily inserted. Then, by using focal plane arrays rather than single detectors to collect the light, dramatic advances in dynamic range can be achieved. Finally, when used with the calibration source, data processing approaches can further mitigate detector non-uniformity effects. DAGR sensors can be made as small as digital cameras and are well suited for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Easily integrated into a satellite platform, a space-based DAGR would provide near-global sensing of climatically important species such as such as CO, CH4, and N2O. Aircraft and UAV measurements with a DAGR could be used to monitor agricultural and industrial emissions. Ground-based or portable DAGRs could augment early warning systems for chemical weapons or toxic materials. Finally, planetary science applications include detection and mapping of biomarkers such as CH4 in the Martian atmosphere.

  10. Infrared thermography to detect residual ceramic in gas turbine blades

    NASA Astrophysics Data System (ADS)

    Meola, C.; Carlomagno, G. M.; di Foggia, M.; Natale, O.

    2008-06-01

    A serious problem in the production of gas turbine blades is the detection of residual ceramic cores inside the cooling passages; in fact, the presence of even small ceramic pieces affects turbine performance and may cause difficulties in successive manufacturing. Therefore, it is important to have a non-destructive technique that must be capable of detecting tiny ceramic fragments in a fast and easy way. In this perspective, the suitability of infrared thermography was investigated within cooperation between the University of Naples and the Europea Microfusioni Aerospaziali S.p.A. (EMA). Several blades of three different types were inspected revealing that in many cases infrared thermography can discover small ceramic fragments which were missed by X-ray inspection. In addition, infrared thermography allows gaining of information about other types of anomalies (e.g., surface defects) during the same testing step (by eventually changing the test parameters) and then saving time and money. The obtained results look promising in view of introducing infrared thermography among industrial instrumentation as an alternative to, or integrated with, the most currently utilized non-destructive techniques.

  11. a Mini Multi-Gas Detection System Based on Infrared Principle

    NASA Astrophysics Data System (ADS)

    Zhijian, Xie; Qiulin, Tan

    2006-12-01

    To counter the problems of gas accidents in coal mines, family safety resulted from using gas, a new infrared detection system with integration and miniaturization has been developed. The infrared detection optics principle used in developing this system is mainly analyzed. The idea that multi gas detection is introduced and guided through analyzing single gas detection is got across. Through researching the design of cell structure, the cell with integration and miniaturization has been devised. The way of data transmission on Controller Area Network (CAN) bus is explained. By taking Single-Chip Microcomputer (SCM) as intelligence handling, the functional block diagram of gas detection system is designed with its hardware and software system analyzed and devised. This system designed has reached the technology requirement of lower power consumption, mini-volume, big measure range, and able to realize multi-gas detection.

  12. Miniaturized Hollow-Waveguide Gas Correlation Radiometer (GCR) for Trace Gas Detection in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, E. M.; Melroy, H. R.

    2012-01-01

    Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Here, we present a miniaturized and simplified version of this instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface. Reduction of the size and mass of the GCR instrument has been achieved by implementing a lightweight, 1 mm inner diameter hollow-core optical fiber (hollow waveguide) for the gas correlation cell. Based on a comparison with an Earth orbiting CO2 gas correlation instrument, replacement of the 10 meter mUltipass cell with hollow waveguide of equivalent pathlength reduces the cell mass from approx 150 kg to approx 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately I meter in diameter by 0.05 m in height (mass and volume reductions of >99%). This modular instrument technique can be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance.

  13. Improved low concentration gas detection system based on intracavity fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Liu, Kun; Jia, Dagong; Xu, Tianhua; Liu, Tiegen; Peng, Gangding; Jing, Wencai; Zhang, Yimo

    2011-02-01

    The improvement of a low concentration gas detection system based on the intracavity fiber laser is proposed in this paper. The sensitivity of the system is deduced based on Lambert-Beer law. The optimized system was established with the gas cell made elaborately. In order to apply the wavelength sweeping technique, the fiber Bragg grating reflector was substituted by the wavelength independent Faraday rotation reflector. The sensitivity of the system for acetylene detection is reduced to less than 100 ppm by using the average of three absorption spectra. The acetylene detection coefficients of variation with different concentrations are measured. The gas measurement system is validated to detect low concentration gas effectively.

  14. Detection methods for atoms and radicals in the gas phase

    NASA Astrophysics Data System (ADS)

    Hack, W.

    This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized (CH, Cd, Cf, CC1, CBr, Cn, Cs, CSe, CH2, CD2, Chf, Cdf, CHC1, CHBr, CF2, CC12, CBr2, CFC1, CFBr, CH3, CD3, CF3, CH2F, CH2C1, CH2Br, CHF2, CHC12, CHBr2, Hco, Fco, CH30, CD30, CH2OH, CH3S, Nco, CH4N, CH302, CF302; C2, C2N, C2H, C20, C2HO, C2H3, C2F3, C2H5, C2HsO, C2H4OH, CH3CO, CD3CO, C2H3O, C2H502, CH3COO2, C2H4N, C2H6N, C3; Si, SiF, SiF2, SiO, SiC, Si2; Ge, GeC, GeO, GeF, GeF2, GeCl2, Sn, SnF, SnO, SnF2, Pb, PbF, PbF2, PbO, PbS). In table 2 detection methods for about 25 other atoms and 60 radicals are listed: (H, D, O, O2, Oh, Od, HO2, DO2, F, Ci, Br, I, Fo, Cio, BrO, Io, FO2, C1O2, Li, Na, K, Rb, Cs, N, N3, Nh, Nd, Nf, Nci, NBr, NH2, ND2, Nhd, Nhf, NF2, NC12, N2H3, No, NO2, NO3, Hno, Dno, P, Ph, Pd, Pf, Pci, PH2, PD2, PF2, Po, As, AsO, AsS, Sb, Bi, S, S2, Sh, Sd, Sf, SF2, So, Hso, Dso, Sn, Se, Te, Se2, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, Bh, BH2, Bo, Bn, B02, Cd, Hg, UF5). The tables also cite some recent kinetic applications of the various methods.

  15. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  16. Numerical investigation of coal seam gas detection using airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Abdulla, Mohamed

    The use of airborne electromagnetic (AEM) techniques has been mostly utilized in the mining industry. The various AEM systems enable fast data acquisition to detect zones of interest in exploration and in some cases are used to delineate targets on a production scale. For coal seam gas (CSG) reservoirs, reservoir thickness and the resistivity contrast present a new challenge to the present AEM systems in terms of detectability. Our research question began with the idea of using AEM methods in the detection of thin reservoirs. CSG reservoirs resemble thin reservoirs that have been and are currently being produced. In this thesis we present the results of a feasibility analysis of AEM study on coal seam reservoirs using synthetic models. The aim of the study is to contribute and bridge the gap of the scientific literature on AEM systems in settings such as CSG exploration. In the models we have chosen to simulate both in 1-D and 3-D, the CSG target resistivity was varied from a resistive to a conductive target (4 ohm.m, 150 ohm.m, and 667 ohm.m) to compare the different responses while the target thickness was fixed to resemble a stack of coal seams at that interval. Due to the differences in 1-D and 3-D modelling, we also examine the differences resulting from each modelling set up. The results of the 1-D forward modeling served as a first order understanding of the detection depths by AEM for CSG reservoirs. Three CSG reservoir horizontally layered earth model scenarios were examined, half-space, conductive/resistive and resistive/conductive. The response behavior for each of the three scenarios differs with the differing target resistivities. The 1-D modeling in both the halfspace and conductive/resistive models shows detection at depths beyond 300 m for three cases of target resistivity outlined above. After the 300-m depth, the response falls below the assumed noise floor level of 5% response difference. However, when a resistive layer overlies a conductive host

  17. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  18. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  19. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  20. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  1. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  2. Field tests of probes for detecting internal corrosion of natural gas transmission pipelines

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S.; Kane, Russell D.; Meidinger, Brian

    2005-01-01

    A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  3. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  4. Evaluation of Gas Chromatography/Mini-IMS to Detect VOCs

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Reese, Eric; Peters, Randy; James, John T.; Billica, Roger (Technical Monitor)

    1999-01-01

    The Toxicology Laboratory at Johnson Space Center (JSC) has pioneered the use of gas chromatography-ion mobility spectrometry (GC/IMS) for measuring target volatile organic compounds (VOCs) aboard spacecraft. Graseby Dynamics, under contract to NASA/Wyle, has built several volatile organic analyzers (VOA) based on GC/IMS. Foremost among these have been the volatile organic analyzer-risk mitigation unit and the two flight VOA units for International Space Station (ISS). The development and evaluation of these instruments has been chronicled through presentations at the International Conference on Ion Mobility Spectrometry over the past three years. As the flight VOA from Graseby is prepared for operation on ISS at JSC, it is time to begin evaluations of technologies for the next generation VOA, Although the desired instrument characteristics for the next generation unit are the same as the current unit, the requirements are much more stringent. As NASA looks toward future missions beyond Earth environs, a premium will be placed upon small, light, reliable, autonomous hardware. It is with these visions in mind that the JSC Toxicology Laboratory began a search for the next generation VOA. One technology that is a candidate for the next generation VOA is GC/IMS. The recent miniaturization of IMS technology permits it to compete with other, inherently small, technologies such as chip-sized sensor arrays. This paper will discuss the lessons learned from the VOA experience and how that has shaped the design of a potential second generation VOA based upon GC/IMS technology. Data will be presented from preliminary evaluations of GC technology and the mini-IMS when exposed to VOCs likely to be detected aboard spacecraft. Results from the evaluation of an integrated GC/mini-IMS system will be shown if available.

  5. Detection of gas hydrate sediments using prestack seismic AVA inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Ru-Wei; Li, Hong-Qi; Zhang, Bao-Jin; Huang, Han-Dong; Wen, Peng-Fei

    2015-09-01

    Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this study, based on AVA forward modeling and angle-domain common-image gathers we use prestack AVA parameters consistency inversion in predicting gas hydrate sediments in the Shenhu area at northern slope of South China Sea, and obtain the vertical and lateral features and saturation of GHS.

  6. Methane leaks from oil and gas fields detected from space

    NASA Astrophysics Data System (ADS)

    Rosen, Julia

    2014-11-01

    A few years ago, while poring over satellite images of the Earth at night, scientists spotted the bright glow of natural gas flares burning in the oil and gas fields that have fueled America's recent energy boom. Now they have spotted something else from space: large plumes of fugitive methane gas liberated from these formations by unconventional extraction methods like horizontal drilling and hydraulic fracturing.

  7. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well. PMID:25144442

  8. SOIL-GAS MEASUREMENT FOR DETECTION OF SUBSURFACE ORGANIC CONTAMINATION

    EPA Science Inventory

    The Lockheed Gas Analysis System (LGAS) grab-sampling method and the PETREX Static Surface Trapping Pyrolysis/Mass Spectrometry (SST-Py/MS) passive sampling technique for soil-gas measurement have been field tested at the Pittman Lateral near Henderson, Nevada. This site has unco...

  9. Portable instrument and method for detecting reduced sulfur compounds in a gas

    DOEpatents

    Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

    1983-06-01

    A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

  10. Gas hydrate detection and mapping on the US east coast

    SciTech Connect

    Ahlbrandt, T.S.; Dillon, W.P.

    1993-12-31

    Project objectives are to identify and map gas hydrate accumulations on the US eastern continental margin using remote sensing (seismic profiling) techniques and to relate these concentrations to the geological factors that-control them. In order to test the remote sensing methods, gas hydrate-cemented sediments will be tested in the laboratory and an effort will be made to perform similar physical tests on natural hydrate-cemented sediments from the study area. Gas hydrate potentially may represent a future major resource of energy. Furthermore, it may influence climate change because it forms a large reservoir for methane, which is a very effective greenhouse gas; its breakdown probably is a controlling factor for sea-floor landslides; and its presence has significant effect on the acoustic velocity of sea-floor sediments.

  11. Fibre optic systems for gas detection principals, progress and prospects

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2010-11-01

    Gas sensing is evolving into an important application contributing particularly to environmental and safety monitoring. Fibre optic sensing will have an important role to play as the need for gas measurements increase. This paper seeks to overview of the optical techniques which are compatible with fibre optic technology and present a limited snapshot of the applications. Fibre optic techniques offer intrinsic safety, reliability and very long interrogation distances over the fibre link together with prospects for highly multiplexed and distributed systems. There are two basic approaches for fibre sensing targeted at gas measurements. The first involves some intermediate compound in contact with the end of the fibre (or deposited along the fibre) whose optical properties change with the presence of the gas of interest, usually measured spectroscopically. The second involves direct absorption spectroscopy typically in the near infrared. Former techniques are invariably responsive to a number of gas species and are usually difficult to calibrate accurately. The latter techniques are highly gas specific and can be accurately calibrated. However both approaches have their application sectors depending upon particular measurement requirements. The paper presents a brief overview of the principles of both these techniques and analyses some of their applications.

  12. Sensing Mechanisms for Carbon Nanotube Based NH3 Gas Detection

    SciTech Connect

    Peng, Ning; Zhang, Qing; Chow, Chee L.; Tan, Ooi K.; Marzari, Nicola N.

    2009-03-31

    There has been an argument on carbon nanotube (CNT) based gas detectors with a field-effect transistor (FET) geometry: do the response signals result from charge transfer between adsorbed gas molecules and the CNT channel and/or from the gas species induced Schottky barrier modulation at the CNT/metal contacts? To differentiate the sensing mechanisms, we employed three CNTFET structures, i.e., (1) the entire CNT channel and CNT/electrode contacts are accessible to NH3 gas; (2) the CNT/electrode contacts are passivated with a Si3N4 thin film, leaving the CNT channel open to the gas and, in contrast, (3) the CNT channel is covered with the film, while the contacts are open to the gas. We suggest that the Schottky barrier modulation at the contacts is the dominant mechanism from room temperature to 150°C. At higher temperatures, the charge transfer process contributes to the response signals. There is a clear evidence that the adsorption of NH3 on the CNT channel is facilitated by environmental oxygen.

  13. Near infrared spectroscopy for fibre based gas detection

    NASA Astrophysics Data System (ADS)

    Stewart, George; Johnstone, Walter; Thursby, Graham; Culshaw, Brian

    2010-04-01

    Gas sensing systems based on fibre optic linked near infra red absorption cells are potentially a flexible and effective tool for monitoring accumulations of hazardous and noxious gases in enclosed areas such as tunnels and mines. Additionally the same baseline technology is readily modified to measure concentrations of hydrocarbon fuels - notably but not exclusively methane, and monitoring emissions of greenhouse gases. Furthermore the system can be readily implemented to provide intrinsically safe monitoring over extensive areas at up to ~250 points from a single interrogation unit. In this paper we review our work on fibre coupled gas sensing systems. We outline the basic principles through which repeatable and accurate self calibrating gas measurements may be realised, including the recover of detailed line shapes for non contact temperature and / or pressure measurements in addition to concentration assessments in harsh environments. We also outline our experience in using these systems in extensive networks operating under inhospitable conditions over extended periods extending to several years.

  14. A gas chromatography-thermal conductivity detection method for helium detection in postmortem blood and tissue specimens.

    PubMed

    Schaff, Jason E; Karas, Roman P; Marinetti, Laureen

    2012-03-01

    In cases of death by inert gas asphyxiation, it can be difficult to obtain toxicological evidence supporting assignment of a cause of death. Because of its low mass and high diffusivity, and its common use as a carrier gas, helium presents a particular challenge in this respect. We describe a rapid and simple gas chromatography-thermal conductivity detection method to qualitatively screen a variety of postmortem biological specimens for the presence of helium. Application of this method is demonstrated with three case examples, encompassing an array of different biological matrices. PMID:22337780

  15. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. LOTH; GARY J. MORRIS; GEORGE M. PALMER; RICHARD GUILER

    2004-01-05

    The power point presentation for the Natural Gas Technologies II Conference held on February 8-11, 2004 in Phoenix AZ, published the presentations made at the conference, therefore required all presenters to submit their presentation prior to November 2003. However in the remainder of year, significant new test data became available which were incorporated in the actual presentation made at the Natural Gas Technologies II Conference. The 6th progress report presents the updated actual slide show used during the paper presentation by Richard Guiler.

  16. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  17. Three-gas detection system with IR optical sensor based on NDIR technology

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun

    2015-11-01

    In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive infra-red (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel pyroelectric sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The infrared light is reflected twice before reaching to detectors, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.

  18. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries.

    PubMed

    Gondal, M A; Dastageer, A; Shwehdi, M H

    2004-01-01

    A photoacoustic (PA) spectrometer with high selectivity and sensitivity has been developed for trace gas analysis and for the detection of gas leak at part per trillion by volume (pptV) level. This PA system comprises of a resonant photoacoustic cell, a pulsed line tunable CO(2) laser as an excitation source and a sensitive electret microphone as a photoacoustic detector with an option to trigger the safety alarm system for early warning of gas leaks. In this work, three resonant PA cells with various geometries have been developed at our laboratory for the detection of photoacoustic signal using pulsed laser system and their comparative performance have been studied. As a special application of this PA system, the detection of sulfur hexa fluoride (SF(6)) gas using these three cells has been carried out for optimizing the sensitivity. Besides this, our PA system can very well be applied for pollution monitoring and detection of hazardous gases in a noisy environment. PMID:18969274

  19. Systems and methods for detecting a flame in a fuel nozzle of a gas turbine

    SciTech Connect

    Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

    2013-05-07

    A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

  20. On-chip mid-infrared gas detection using chalcogenide glass waveguide

    NASA Astrophysics Data System (ADS)

    Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D. T. H.

    2016-04-01

    We demonstrate an on-chip sensor for room-temperature detection of methane gas using a broadband spiral chalcogenide glass waveguide coupled with off-chip laser and detector. The waveguide is fabricated using UV lithography patterning and lift-off after thermal evaporation. We measure the intensity change due to the presence and concentration of methane gas in the mid-infrared (MIR) range. This work provides an approach for broadband planar MIR gas sensing.

  1. First results of ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong

    2014-11-01

    The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.

  2. LOW COST IMAGER FOR POLLUTANT GAS LEAK DETECTION - PHASE II

    EPA Science Inventory

    An inexpensive imaging Instrument to quickly locate leaks of methane and other greenhouse and VOC gases would reduce the cost and effort expended by industry to comply with EPA regulations. In Phase I, of this WBIR program, a new gas leak visualization camera was demonstrated...

  3. Gas and flame detection and identification using uncooled MWIR imaging sensors

    NASA Astrophysics Data System (ADS)

    Linares, Rodrigo; Vergara, Germán.; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, María.; Baldasano, Arturo

    2015-05-01

    Gas detectors are nowadays widely spread for safety purposes in industrial facilities. They are categorized by the type of gas they detect: combustible and/or toxic. Whereas electrochemical sensors have limited lifetime and maintenance issues, infrared sensors are reliable and free of maintenance devices used for detecting a wide variety of VOCs and inflammable gases such as hydrocarbon vapors. They usually work via a system of transmitters (light sources) which power is interfered when a gas is present in the optical path. A spectral analysis of this optical interference allows the gas detection and identification. Optical flame detectors are sensors intended to sight and respond to the presence of a flame, faster than a smoke detector or a heat detector would do. Many of these systems operate in the infrared band in order to detect the heat radiation, most of the times by comparison of three specific wavelength bands. Most of the present infrared gas and optical flame detectors traditionally make use of MWIR single point sensors rather than imaging sensors; this is mainly due to the lack of affordable imaging sensing technologies in this band of the infrared spectrum. However, the appearance of uncooled imaging MWIR sensors made of VPD PbSe, with spectral detection range from 1 to 5 microns, opens the possibility to incorporate these sensors into gas and flame detection systems to allow area monitoring.

  4. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  5. Evaluating Gas-Phase Transport And Detection Of Noble Gas Signals From Underground Nuclear Explosions Using Chemical Tracers

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Hunter, S. L.; Sun, Y.; Wagoner, J. L.; Ruddle, D.; Anderson, G.; Felske, D.; Myers, K.; Zucca, J. J.; Emer, D. F.; Townsend, M.; Drellack, S.; Chipman, V.; Snelson, C. M.

    2013-12-01

    The 1993 Non-Proliferation Experiment (NPE) involved detonating 1 kiloton of chemical explosive in a subsurface cavity which also contained bottles of tracer gases (ref 1). That experiment provided an improved understanding of transport processes relevant to the detection of noble gas signals at the surface emanating from a clandestine underground nuclear explosion (UNE). As an alternative to performing large chemical detonations to simulate gas transport from UNEs, we have developed a test bed for subsurface gas transport, sampling and detection studies using a former UNE cavity. The test bed site allows for the opportunity to evaluate pathways to the surface created by the UNE as well as possible transport mechanisms including barometric pumping and cavity pressurization (ref 2). With the test bed we have monitored long-term chemical tracers as well as newly injected tracers. In order to perform high temporal resolution tracer gas monitoring, we have also developed a Subsurface Gas Smart Sampler (SGSS) which has application during an actual On Site Inspection (OSI) and is available for deployment in OSI field exercises planned for 2014. Deployment of five SGSS at the remote test bed has provided unparalleled detail concerning relationships involving tracer gas transport to the surface, barometric fluctuations and temporal variations in the natural radon concentration. We anticipate that the results of our tracer experiments will continue to support the development of improved noble gas detection technology for both OSI and International Monitoring System applications. 1. C.R. Carrigan et al., 1996, Nature, 382, p. 528. 2. Y. Sun and C.R. Carrigan, 2012, Pure Appl. Geophys., DOI 10.1007/s00024-012-0514-4.

  6. Instrumental Analysis in Environmental Chemistry - Gas Phase Detection Systems

    ERIC Educational Resources Information Center

    Stedman, Donald H.; Meyers, Philip A.

    1974-01-01

    Discusses advances made in chemical analysis instrumentation used in environmental monitoring. This first of two articles is concerned with analytical instrumentation in which detection and dispersion depend ultimately on the properties of gaseous molecules. (JR)

  7. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  8. Detecting gas hydrate behavior in crude oil using NMR.

    PubMed

    Gao, Shuqiang; House, Waylon; Chapman, Walter G

    2006-04-01

    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions. PMID:16570953

  9. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    SciTech Connect

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3) oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.

  10. False-alarm characterization in hyperspectral gas-detection applications

    NASA Astrophysics Data System (ADS)

    DiPietro, Robert S.; Truslow, Eric; Manolakis, Dimitris G.; Golowich, Steven E.; Lockwood, Ronald B.

    2012-09-01

    Chemical cloud detection using long-wave infrared (LWIR) hyperspectral-imaging sensors has many civilian and military applications, including chemical warfare threat mitigation, environmental monitoring, and emergency response. Current capabilities are limited by variation in background clutter as opposed to the physics of photon detection, and this makes the statistical characterization of clutter and clutter-induced false alarms essential to the design of practical systems. In this exploratory work, we use hyperspectral data collected both on the ground and in the air to spectrally and spatially characterize false alarms. Focusing on two widely-used detectors, the matched filter (MF) and the adaptive cosine estimator (ACE), we compare empirical false-alarm rates to their theoretical counterparts - detector output under Gaussian, t and t-mixture distributed data - and show that these models often underestimate false-alarm rates. Next, we threshold real detection maps and show that true detections and false alarms often exhibit very different spatial behavior. To exploit this difference and understand how spatial processing affects performance, the spatial behavior of false alarms must be understood. We take a first step in this direction by showing that, although the behavior may `look' quite random, it is not well captured by the complete-spatial-randomness model. Finally, we describe how our findings impact the design of real detection systems.

  11. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  12. Detecting gas seeps in Arctic water areas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Kuznetsova, T. V.

    2015-12-01

    We consider the specific features of remote registration of sources of natural hydrocarbon gas seeps in Arctic water areas to substantiate the possibility of aerospace monitoring of shelf zones prospective for hydrocarbons. The main characteristics of degassing sources and their manifestations at the surface and in the water column have been determined. The areas of the Arctic shelf with potential natural gas shows that can be detected through remote sensing have been identified. We analyze promising aerospace methods for the registration of gas shows in the sea and give examples of hydrocarbon gas seeps observed from space.

  13. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  14. Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments

    DOEpatents

    Carpenter, Michael A.; Sirinakis, George

    2011-01-04

    A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.

  15. Neutron detection with noble gas scintillation: a review of recent results

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, Michael; Miller, Eric C.; Thompson, Alan K.; Kowler, Alex; Vest, Rob; Yue, Andrew; Koeth, Tim; Al-Sheikhly, Mohammad; Clark, Charles

    2015-08-01

    Thermal neutron detection is of vital importance to many disciplines, including neutron scattering, workplace monitoring, and homeland protection. We survey recent results from our collaboration which couple low-pressure noble gas scintillation with novel approaches to neutron absorbing materials and geometries to achieve potentially advantageous detector concepts. Noble gas scintillators were used for neutron detection as early as the late 1950's. Modern use of noble gas scintillation includes liquid and solid forms of argon and xenon in the dark matter and neutron physics experiments and commercially available high pressure applications have achieved high resolution gamma ray spectroscopy. Little attention has been paid to the overlap between low pressure noble gas scintillation and thermal neutron detection, for which there are many potential benefits.

  16. Gas detection mechanism for single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony; Dube, Isha; Fedorov, Georgy; Paranjape, Makarand; Barbara, Paola; Georgetown/RRC Kurchatov Collaboration

    2011-03-01

    We study field-effect transistors fabricated with carbon nanotube (CNT) networks to determine whether the gas sensing mechanism is due to molecules adsorbed on the nanotubes, or changes at the interface between the nanotubes and the contacts. Our previous work showed that in devices made with isolated CNT, the response to nitrogen dioxide was mainly due to the contact interfaces. Here, we focus on CNT networks and use SU-8 layers patterned with e-beam lithography to passivate the contact interfaces, while leaving the network exposed. We look to investigate possible differences in sensing mechanism for devices made with isolated tubes versus networks. Work funded by NSF, DMR 1008242.

  17. Gas detection for alternate-fuel vehicle facilities.

    PubMed

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal. PMID:12754860

  18. LOW COST IMAGER FOR POLLUTANT GAS LEAK DETECTION - PHASE I

    EPA Science Inventory

    Infrared (IR) imaging is the best method for detecting leaks of pollutant gases, but current technology based on cooled IR imagers is far too expensive ($75,000 to $150,000) for everyday field use by those who need it to meet regulatory limits—electric and petrochemical ...

  19. Detection of unknown gas-phase chemical plumes in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Theiler, James; Wohlberg, Brendt

    2013-05-01

    Gas-phase chemical plumes exhibit, particularly in the infrared, distinctive emission signatures as a function of wavelength. Hyperspectral imagery can exploit this distinctiveness to detect specific chemicals, even at low concentrations, using matched filters that are tailored both the the specific structure of the chemical signature and to the statistics of the background clutter. But what if the chemical species is unknown? One can apply matched filters to a long list of candidate chemicals (or chemical mixtures), or one can treat the problem as one of anomaly detection. In this case, however, the anomalous signals of interest are not completely unknown. Gas spectra are generically sparse (absorbing or emitting at only a few wavelengths), and this property can be exploited to enhance the sensitivity of anomaly detection algorithms. This paper investigates the utility of sparse signal anomaly detection for the problem of finding plumes of gas with unknown chemistry in hyperspectral imagery.

  20. Incorporating spatial information into gas plume detection in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Grant, Cameron S.

    Detection of chemical plumes in hyperpsectral data is a problem having solutions that focus on spectral information. These solutions neglect the presence of the spatial information in the scene. The spatial information is exploited in this work by assignment of prior probabilities to neighborhood configurations of signal presence or absence. These probabilities are leveraged in a total probability approach to testing for signal presence in a pixel of interest. The two new algorithms developed are named spatial information detection enhancement (SIDE) and bolt--on SIDE (B--SIDE). The results are explored in comparison to the clutter matched filter (CMF), a standard spectral technique, and to several supervised machine learning techniques. The results show a great improvement of SIDE over these other techniques, in some cases showing the poorest performance of the SIDE filter being much better than the CMF at its best.

  1. Fiber optic TDLAS-based multi-gas remote detection system for mine goaf fire

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Li, Yanfang; Shang, Ying; Zhang, Tingting; Song, Zhiqiang; Wang, Chang; Liu, Tongyu

    2010-10-01

    Spontaneous combustion in coal goaf area is one of major disasters in coal mines. Detection technology based on signature Gas is the primary means of spontaneous combustion forecasting of coal goaf area. A real-time remote fire gas detection system is proposed based on tunable diode laser absorption spectroscopy technology, to achieve valid test of signature gas (CO, CO2, CH4, C2H2 and C2H4). The System uses the wavelength, respectively 1.567um, 1.608um, 1.653um, 1.530um, 1.623um near-infrared band fiber-coupled distributed feedback laser (DFB) as the light source, Combined wavelength modulation spectroscopy and harmonic detection technique, developed a fiber-coupled white-type long-path gas absorption cell, to achieve high sensitivity detection of gas concentration. The system achieved a remote on-line monitoring of multi-component gas concentration,to meet the fire forecast need for Coal goaf area. There are obvious advantages Compared with the existing beam tube monitoring system in coal mine.

  2. Detection of gas plumes in cluttered environments using long-wave infrared hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Broadwater, Joshua B.; Spisz, Thomas S.; Carr, Alison K.

    2008-04-01

    Long-wave infrared hyperspectral sensors provide the ability to detect gas plumes at stand-off distances. A number of detection algorithms have been developed for such applications, but in situations where the gas is released in a complex background and is at air temperature, these detectors can generate a considerable amount of false alarms. To make matters more difficult, the gas tends to have non-uniform concentrations throughout the plume making it spatially similar to the false alarms. Simple post-processing using median filters can remove a number of the false alarms, but at the cost of removing a significant amount of the gas plume as well. We approach the problem using an adaptive subpixel detector and morphological processing techniques. The adaptive subpixel detection algorithm is able to detect the gas plume against the complex background. We then use morphological processing techniques to isolate the gas plume while simultaneously rejecting nearly all false alarms. Results will be demonstrated on a set of ground-based long-wave infrared hyperspectral image sequences.

  3. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    PubMed

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time. PMID:24611396

  4. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  5. Chemoresistive Gas Sensors for the Detection of Colorectal Cancer Biomarkers

    PubMed Central

    Malagù, Cesare; Fabbri, Barbara; Gherardi, Sandro; Giberti, Alessio; Guidi, Vincenzo; Landini, Nicolò; Zonta, Giulia

    2014-01-01

    Numerous medical studies show that tumor growth is accompanied by protein changes that may lead to the peroxidation of the cell membrane with consequent emission of volatile organic compounds (VOCs) by breath or intestinal gases that should be seen as biomarkers for colorectal cancer (CRC). The analysis of VOCs represents a non-invasive and potentially inexpensive preliminary screening technique. An array of chemoresistive gas sensors based on screen-printed metal oxide semiconducting films has been selected to discriminate gases of oncological interest, e.g., 1-iodononane and benzene, widely assumed to be biomarkers of colorectal cancer, from those of interference in the gut, such as methane and nitric oxide. PMID:25313496

  6. Multiple headspace extraction for gas detection in ionic liquids.

    PubMed

    Müller, D; Fühl, M; Pinkwart, K; Baltes, N

    2014-10-16

    In this study multiple headspace extraction was used for the first time to measure the saturation concentration of carbon monoxide and oxygen in various ionic liquids (ILs). Many processes in ILs involve the reaction of gases so that the reactant solubility is not a mere characteristical parameter, but understanding the solubility of gases in ILs is required for assessing the feasibility of possible applications. Multiple headspace extraction has proofed to be a powerful tool to obtain solubilities in good accordance with literature data. The measured saturation concentration for carbon monoxide and oxygen in ILs based on rarely researched tetracyanoborates and other anions was in the range of 1.5-6.5mmol/L. The great advantage of multiple headspace extraction is that it is a nonexpensive method that can be realised in most analytical laboratories by combination of a simple gas chromatograph and an eligible headspace injector. PMID:25458524

  7. [A Detection Technique for Gas Concentration Based on the Spectral Line Shape Function].

    PubMed

    Zhou, Mo; Yang, Bing-chu; Tao, Shao-hua

    2015-04-01

    The methods that can rapidly and precisely measure concentrations of various gases have extensive applications in the fields such as air quality analysis, environmental pollution detection, and so on. The gas detection method based on the tunable laser absorption spectroscopy is considered a promising technique. For the infrared spectrum detection techniques, the line shape function of an absorption spectrum of a gas is an important parameter in qualitative and quantitative analysis of a gas. Specifically, how to obtain the line shape function of an absorption spectrum of a gas quickly and accurately is a key problem in the gas detection fields. In this paper we analyzed several existing line shape functions and proposed a method to calculate precisely the line shape function of a gas, and investigated the relation between the gas concentration and the peak value of a line shape function. Then we experimentally measured the absorption spectra of an acetylene gas in the wavelength range of 1,515-1,545 nm with a tunable laser source and a built-in spectrometer. With Lambert-Beer law we calculated the peak values of the line shape function of the gas at the given frequencies, and obtained a fitting curve for the line shape function in the whole waveband by using a computer program. Comparing the measured results with the calculated results of the Voigt function, we found that there was a deviation-between the experimental results and the calculated results. And we found that the measured concentration of the acetylene gas by using the fitting curve of the line shape function was more accurate and compatible with the actual situation. Hence, the empirical formula for the line shape function obtained from the experimental results would be more suitable for the concentration measurement of a gas. As the fitting curve for the line shape function of the acetylene gas has been deduced from the experiment, the corresponding peak values of the spectral lines can be

  8. Numerical evidence of gas hydrate detection by means of electroseismics

    NASA Astrophysics Data System (ADS)

    Zyserman, Fabio I.; Gauzellino, Patricia M.; Santos, Juan E.

    2012-11-01

    This work presents numerical evidence that methane hydrate-bearing sediments located below permafrost can be detected using electroseismics as a prospecting tool. The numerically solved equations are the ones developed by Pride; we modified them by using an extended Biot formulation to appropriately deal with a composite (rock-ice/rock-methane hydrate) solid matrix. We modeled the subsurface as a two dimensional medium, and we used electromagnetic sources to give rise to the so called SHTE and PSVTM modes. The obtained results show that the seismic response is sensitive to the methane hydrate concentration.

  9. Electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines

    SciTech Connect

    Holcomb, Gordon R.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Russell, James H.; Ziomek-Moroz, Margaret

    2002-09-01

    The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

  10. Electron capture gas chromatographic detection of acethylmethylcarbinol produced by neisseria gonorrhoeae.

    PubMed

    Morse, C D; Brooks, J B; Kellogg, D S

    1976-01-01

    Acetylmethylcarbinol (acetoin) production by Neisseria gonorrhoeae and other Neisseria species was established by gas-liquid chromatography and by mass spectrometric data. Sixty-nine isolates of Neisseria were tested by incubating them in a chemically defined fluid medium. The medium was extracted with organic solvents and derivatized with heptafluorobutryic anhydride for gas chromatography and mass spectrometry. Cultures of 58 of the same strains were tested with the conventional Voges-Proskauer reagents, and results were compared with those of gas-liquid chromatography. When glucose was used as an energy source, N. gonorrhoeae, some N. meningitidis, and N. lactamica produced enough acetoin in 16 h to be detectable by either method, whereas other Neisseria species produce amounts detectable only by gas chromatography. The conventional acetylmethylcarbinol test with the chemically defined medium and maltose as an energy source might be used to develop methods that would differentiate certain members of the genus, including the pathogenic species. PMID:815266

  11. Granular gas of ellipsoids: analytical collision detection implemented on GPUs

    NASA Astrophysics Data System (ADS)

    Rubio-Largo, S. M.; Lind, P. G.; Maza, D.; Hidalgo, R. C.

    2015-06-01

    We present a hybrid GPU-CPU implementation of an accurate discrete element model for a system of ellipsoids. The ellipsoids have three translational degrees of freedom, their rotational motion being described through quaternions and the contact interaction between two ellipsoids is described by a force which accounts for the elastic and dissipative interactions. Further we combine the exact derivation of contact points between ellipsoids (Wang et al. in Computing 72(1-2):235-246, 2004) with the advantages of the GPU-NVIDIA parallelization strategy (Owens et al. in Comput Graph Forum 26:80-113, 2007). This novelty makes the analytical algorithm computationally feasible when dealing with several thousands of particles. As a benchmark, we simulate a granular gas of frictionless ellipsoids identifying a classical homogeneous cooling state for ellipsoids. For low dissipative systems, the behavior of the granular temperature indicates that the cooling dynamics is governed by the elongation of the ellipsoids and the restitution coefficient. Our outcomes comply with the statistical mechanical laws and the results are in agreement with previous findings for hard ellipsoids (Bereolos et al. in J Chem Phys 99:6087, 1993; Villemot and Talbot in Granul Matter 14:91-97, 2012). Additionally, new insight is provided namely suggesting that the mean field description of the cooling dynamics of elongated particles is conditioned by the particle shape and the degree of energy equipartition.

  12. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  13. System for detecting and estimating concentrations of gas or liquid analytes

    NASA Technical Reports Server (NTRS)

    Homer, Margie L. (Inventor); Jan, Darrell L. (Inventor); Jewell, April D. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Manfreda, Allison M. (Inventor); Ryan, Margaret A. (Inventor); Shevade, Abhijit V. (Inventor); Taylor, Charles (Inventor); Tran, Tuan A. (Inventor)

    2011-01-01

    A sensor system for detecting and estimating concentrations of various gas or liquid analytes. In an embodiment, the resistances of a set of sensors are measured to provide a set of responses over time where the resistances are indicative of gas or liquid sorption, depending upon the sensors. A concentration vector for the analytes is estimated by satisfying a criterion of goodness using the set of responses. Other embodiments are described and claimed.

  14. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997

    SciTech Connect

    1998-04-01

    This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

  15. An integrated knowledge system for the Space Shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn

    1993-01-01

    A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.

  16. An integrated knowledge system for the Space Shuttle hazardous gas detection system

    NASA Astrophysics Data System (ADS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn

    1993-10-01

    A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.

  17. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. - Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrogation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  18. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being, developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrocation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being, applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  19. Fluorometric, water-based sensors for the detection of nerve gas G mimics DMMP, DCP and DCNP.

    PubMed

    Wild, Andreas; Winter, Andreas; Hager, Martin D; Schubert, Ulrich S

    2012-01-25

    Water-based Zn(II) bisterpyridine systems were used as fluorometric sensors for the detection of the nerve gas G mimics DMMP, DCP and DCNP. Analyte concentrations in the range of 10(-7) to 10(-6) M are detectable in solution. The utilization of a test stripe additionally allows the detection of organophosphonates from the gas phase. PMID:22158657

  20. IV-VI semiconductor lasers for gas phase biomarker detection

    NASA Astrophysics Data System (ADS)

    McCann, Patrick; Namjou, Khosrow; Roller, Chad; McMillen, Gina; Kamat, Pratyuma

    2007-09-01

    A promising absorption spectroscopy application for mid-IR lasers is exhaled breath analysis where sensitive, selective, and speedy measurement of small gas phase biomarker molecules can be used to diagnose disease and monitor therapies. Many molecules such as nitric oxide, ethane, formaldehyde, acetaldehyde, acetone, carbonyl sulfide, and carbon disulfide have been connected to diseases or conditions such as asthma, oxidative stress, breast cancer, lung cancer, diabetes, organ transplant rejection, and schizophrenia. Measuring these and other, yet to be discovered, biomarker molecules in exhaled breath with mid-IR lasers offers great potential for improving health care since such tests are non-invasive, real-time, and do not require expensive consumables or chemical reagents. Motivated by these potential benefits, mid-IR laser spectrometers equipped with presently available cryogenically-cooled IV-VI lasers mounted in compact Stirling coolers have been developed for clinical research applications. This paper will begin with a description of the development of mid-IR laser instruments and their use in the largest known exhaled breath clinical study ever performed. It will then shift to a description of recent work on the development of new IV-VI semiconductor quantum well materials and laser fabrication methods that offer the promise of low power consumption (i.e. efficient) continuous wave emission at room temperature. Taken together, the demonstration of compelling clinical applications with large market opportunities and the clear identification of a viable pathway to develop low cost mid-IR laser instrumentation can create a renewed focus for future research and development efforts within the mid-IR materials and devices area.

  1. Detection of Molecular Gas in Void Galaxies : Implications for Star Formation in Isolated Environments

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2015-12-01

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1-0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1-0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 108 and 109 M⊙. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M⊙ yr-1 which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  2. Sensor Array Devices Utilizing Nano-structured Metal-oxides for Hazardous Gas Detection

    NASA Astrophysics Data System (ADS)

    Andio, Mark A.

    Methane and carbon monoxide are two hazardous gases which require continuous monitoring by gas sensors in underground coal mines for explosion prevention and toxicity, respectively. This work explored implementing miniaturized gas sensors in this area to simultaneously detect both gases for benefits of increased portability and reduced power consumption of the chemiresistive gas sensor device. The focus of this research was to understand how the particle size, morphology, and microstructure of the metaloxide film affected the gas sensor performance to the two gases of interest on miniaturized gas sensor devices in the form of microhotplate platforms. This was done through three main research studies. The first was conducted by growing SnO2 nanowires from SnO 2 particles using an Au-catalyst. Growth conditions including temperature, time, and oxygen partial pressure were explored to determine the formation aspects of the SnO2 nanowires. Gas sensor studies were completed that provided evidence that the SnO2 nanowires increased detection to a fixed concentration of carbon monoxide compared to SnO2 particles without nano-structure formation. A second research study was performed to compare the gas sensor performance of SnO2 nanoparticles, hierarchical particles, and micron-size particles. The nanoparticles were developed into an ink and deposited via ink-jet printing on the microhotplate substrates to control the microstructure of the metal-oxide film. By preventing agglomeration of the nanoparticle film, the SnO2 nanoparticles displayed similar gas sensor performance to methane and carbon monoxide as the hierarchical particles. Both nano-structures had much higher gas sensor response than the micron-size particles which confirms the surface area of the metal-oxide film is critical for reaction of the analyte gas at the surface. The last research study presented in the dissertation describes an oxide nanoparticle array developed for detecting methane and carbon

  3. Development of fault section detecting system for gas insulated transmission lines

    SciTech Connect

    Nakamura, E.; Uchida, K.; Koshilishi, M.; Mitsui, T.; Miyamoto, S.; Nakamura, K.; Itaka, K.; Hara, T.; Yoda, T.

    1986-01-01

    A fault section detecting system using optical magnetic field sensors developed for gas insulated transmission lines (GIL) is reported. A bismuth silicon oxide (Bi/sub 12/SiO/sub 20/, or BSO) single crystal was adopted for the optical magnetic field sensor. A method of mounting the sensors to GIL which enables the sensors to detect the conductor current from outside the enclosure was developed. With the developed fault detector, faults occurring inside a section of GIL between sensors are detected by discriminating the phases of conductor currents detected by the sensors. The system was confirmed to have sufficient performance for application to commerical GILS.

  4. TREFEX: Trend Estimation and Change Detection in the Response of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Schaffernicht, Erik; Trincavelli, Marco

    2013-01-01

    Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time. PMID:23736853

  5. Assembly of polythiophenes on responsive polymer microgels for the highly selective detection of ammonia gas

    DOE PAGESBeta

    Chang, Aiping; Peng, Yahui; Li, Zezhou; Yu, Xiang; Hong, Kunlun; Zhou, Shuiqin; Wu, Weitai

    2016-04-05

    For this study, a class of smart composite materials based on the assembly of conjugated polymers on responsive polymer microgels has been prepared. We have chosen poly(3-((2-(2-methoxyethoxy)ethoxy)methyl)-thiophene) as the model conjugated polymer and an ammonia-responsive microgel of phenoxazinium-functionalized poly(N-isopropylacrylamide-co-propargyl acrylate) as the model template. Under this design, the composite materials can combine the electrical conductivity of the conjugated polymers and the ammonia recognisability of the ammonia-responsive polymer microgels; the cooperation of these properties allows the reversible control of electrical conductivity by ammonia gas. Those composite materials can not only adapt to ammonia gas, but also convert changes in the concentrationmore » of ammonia into conductance, allowing the electrical detection of ammonia gas with high selectivity. This makes the composite materials different from the conductive polymer platforms reported previously, which may also respond to non-ammonia gases and the response induced by non-ammonia gases is close to that induced by ammonia gas. Using these composite materials as sensing materials for the electrical detection of ammonia gas, the detection limit can reach as low as 1.1 ppb. Finally, these features enable their use for the electrical detection of ammonia in breath.« less

  6. Combined raman and IR fiber-based sensor for gas detection

    SciTech Connect

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  7. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January--March 1995

    SciTech Connect

    1995-05-01

    This report describes progress in the following five projects: (1) Geologic assessment of the Piceance Basin; (2) Regional stratigraphic studies, Upper Cretaceous Mesaverde Group, southern Piceance Basin, Colorado; (3) Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins--Foundation for a new approach to exploration and resource assessments of continuous type deposits; (4) Delineation of Piceance Basin basement structures using multiple source data--Implications for fractured reservoir exploration; and (5) Gas and water-saturated conditions in the Piceance Basin, western Colorado--Implications for fractured reservoir detection in a gas-centered coal basin.

  8. Surface Ionization Gas Detection at SnO{sub 2} Surfaces

    SciTech Connect

    Krenkow, A.; Oberhuettinger, C.; Habauzit, A.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-05-23

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO{sub 2} surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  9. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  10. A micro-thermoelectric gas sensor for detection of hydrogen and atomic oxygen.

    PubMed

    Park, Se-Chul; Yoon, Seung-Il; Lee, Chung-il; Kim, Yong-Jun; Song, Soonho

    2009-02-01

    This paper demonstrates the fabrication and performance of a micro-thermoelectric gas sensor for an effective and inexpensive gas analysis system. The proposed micro-thermoelectric gas sensor was fabricated by using a surface micromachining technique. The sensing mechanism, consisting of thermoelectric material and a novel metal catalyst, was fabricated on the highly thermally resistive layer for reduced heat transfer to the substrate allowing for a simple fabrication process. The micro-thermoelectric gas sensor detects target gas species by measuring the reaction heat of the catalytic reaction between the target gas and a novel metal catalyst using Cu-Bi thermopiles. The catalytic reaction occurs only on the hot junction of the sensing thermopile where the metal catalyst is deposited. In order to reduce the external thermal noise, a difference between the output voltage of the sensing and the reference thermopiles was measured by using a differential amplifier. The response of the fabricated sensor was linear to temperature difference. The fabricated sensor can be used to detect various concentrations of hydrogen and atomic oxygen, where the output voltage linearly increased with the gas concentration. PMID:19173043

  11. Detecting leaks in gas-filled pressure vessels using acoustic resonances.

    PubMed

    Gillis, K A; Moldover, M R; Mehl, J B

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f(2) than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f(2), we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10(-5) h(-1) = - 0.11 yr(-1) from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10(-2) h(-1) using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.). PMID:27250456

  12. Detection of individual atoms in helium buffer gas and observation of their real-time motion

    NASA Technical Reports Server (NTRS)

    Pan, C. L.; Prodan, J. V.; Fairbank, W. M., Jr.; She, C. Y.

    1980-01-01

    Single atoms are detected and their motion measured for the first time to our knowledge by the fluorescence photon-burst method in the presence of large quantities of buffer gas. A single-clipped digital correlator records the photon burst in real time and displays the atom's transit time across the laser beam. A comparison is made of the special requirements for single-atom detection in vacuum and in a buffer gas. Finally, the probability distribution of the bursts from many atoms is measured. It further proves that the bursts observed on resonance are due to single atoms and not simply to noise fluctuations.

  13. Development of an intelligent hypertext manual for the space shuttle hazardous gas detection system

    NASA Astrophysics Data System (ADS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie

    A computer-based Integrated Knowledge System (IKS), the Intelligent Hypertext Manual (IHM), is being developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at the Huntsville Operations Support Center (HOSC). The IHM stores all HGDS related knowledge and presents them in an interactive and intuitive manner. The IHM's purpose is to provide HGDS personnel with the capabilities of: enhancing the interpretation of real time data; recognizing and identifying possible faults in the Space Shuttle sub-system related to hazardous gas detections; locating applicable documentation related to procedures, constraints, and previous fault histories; and assisting in the training of personnel.

  14. Development of an intelligent hypertext manual for the space shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie

    1992-01-01

    A computer-based Integrated Knowledge System (IKS), the Intelligent Hypertext Manual (IHM), is being developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at the Huntsville Operations Support Center (HOSC). The IHM stores all HGDS related knowledge and presents them in an interactive and intuitive manner. The IHM's purpose is to provide HGDS personnel with the capabilities of: enhancing the interpretation of real time data; recognizing and identifying possible faults in the Space Shuttle sub-system related to hazardous gas detections; locating applicable documentation related to procedures, constraints, and previous fault histories; and assisting in the training of personnel.

  15. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  16. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays. PMID:27131696

  17. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    PubMed

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  18. Gas chromatographic identification of Clostridium difficile and detection of cytotoxin from a modified selective medium.

    PubMed Central

    Levett, P N; Phillips, K D

    1985-01-01

    A modification of an existing selective medium for Clostridium difficile is described. Inclusion in the medium of DL nor-leucine and p-hydroxyphenylacetic acid enables identification of C difficile to be made directly from primary isolation plates by gas chromatographic detection of caproic acid and p-cresol. Plugs of agar withdrawn from the selective medium also allow the detection of cytotoxin production in vitro. PMID:3968212

  19. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    SciTech Connect

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  20. The Variance Analysis for Seismic Attributes in Oil-and-Gas detection at the Midlle of Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, C.; Jingyi, F.

    2011-12-01

    seismic attributes of reflection data is important for oil-and-gas detection. It turns to be a new technique to identify oil and/or gas reservoirs with the information brought by seismic waves. Local changes and variances would be detected in the seismic waves at and around the area with oil or/and gas, which could be used to issue oil and gas reservoirs and provide basement for geophysical evaluation on hydrocarbon traps. The method has been tested in the middle of Tarim Basin, and the analysis of seismic attributes and its relationship with oil and gas reservoirs seems to have cast a new light for detecting hydrocarbon traps. Before exploring and drilling for oil and gas, data accessing and data mining, especially for the seismic attribute data, are suggested to be done for hydrocarbon detection and trap evaluation, in order to avoid risk and improve efficiency in oil-and-gas exploration.

  1. A tracer method for quantifying contamination of building supply air: reentrainment of laboratory hood exhausts.

    PubMed

    Barnett, J L; Richard, M L; Rose, V E

    1983-08-01

    A method is described for quantifying the reentrainment of exhaust air contaminants into a building's fresh-air supply system. The method relies on the "tracer" gas, sulfur hexafluoride (SF6), which Is detected by infrared (IR) absorption analysis. This method of analysis differs from the conventional gas chromatography, electron capture detection method due to the MIRAN-1 A's portability, direct-reading capabilities, ease of operation and modest cost. Specific instrument settings for the MIRAN-1 A are given such that detection of SF6 will be optimized without interference. Calculations for quantifying reentrainment are presented and discussed for the "worst case" reentrainment observed. PMID:6624644

  2. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    1996-12-31

    The objective is to determine methods for detection and mapping of naturally fractured systems for economic production of natural gas from fractured reservoirs. This report contains: 3D P-wave alternate processing; down hole 3C geophone analysis; fracture pattern analysis of the Fort Union and Wind River Basin; 3D-3C seismic processing; and technology transfer.

  3. Naturally fractured tight gas reservoir detection optimization. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    Research continued on methods to detect naturally fractured tight gas reservoirs. This report contains a seismic survey map, and reports on efforts towards a source test to select the source parameters for a 37 square mile compressional wave 3-D seismic survey. Considerations of the source tests are discussed.

  4. Novel technology for flame and gas detection in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Spector, Yechiel; Jacobson, Esther

    1999-01-01

    A reliable and high performance novel method of flame and gas optical spectral analysis was developed to meet the specific flame and gas detection of the petrochemical industry. Petrochemical industries, especially the offshore and unmanned areas in onshore refineries, pose a major safety hazard with respect to potential explosions and fire events. Unwanted fuel spills or fugitive flammable vapor clouds, migrating along congested pipe lines and hot production areas may cause upon ignition significant loss or damage. To help prevents events like the catastrophic fire that destroyed the offshore oil platform Piper Alpha in July 1988, a reliable and fast gas and flame detection system can be used to trigger effective risk management actions. The present paper describes a patented method of Triple Optical Spectral Analysis employed for the detection of various gases in the air according to their unique 'spectral finger print' absorption characteristics of radiation, as well as for analysis of emission and absorption radiation from combustion processes for flame detection purpose. The method has been applied in the development of unique gas and flame monitoring system designed for 'high risk - harsh/extreme weather conditions continuous operation'. These systems have been recently installed on several offshore platforms and oil rigs as well as on 'floating production Storage and Offloading' - FPSO vessels. The systems advantages and limitations as well as several installations and test data are presented. Various atmospheric conditions as well as false alarm stimulus are discussed.

  5. Spectroscopic observations of low-lying gas clouds: sensitivity of detection by method of covariance matrix

    NASA Astrophysics Data System (ADS)

    Margolis, Jack S.; Liu, Karen Y.; Moynihan, Philip I.

    1999-01-01

    The sensitivity of spectroscopic detection of low-lying gas clouds by an arbitrary spectrometer may be determined by simulating the observation using a high spectral resolution radiative transfer code. The instrumental characteristics may be superimposed on the simulation and the accuracy of the retrieval of the desired parameters may be estimated by use of the covariance matrix.

  6. Use of intelligent pigs to detect stress corrosion cracking in gas pipelines

    SciTech Connect

    Culbertson, D.L.

    1996-08-01

    To ensure the integrity and serviceability of gas pipelines, operators periodically utilize intelligent pigging. This inspection technique has proven to be a cost effective approach for determining the condition of operating pipelines. Recent advancements in intelligent pigging technology are now aiding the pipeline industry in the detection of stress corrosion cracking.

  7. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  8. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen.

    PubMed

    Cardoza-Contreras, Marlene N; Romo-Herrera, José M; Ríos, Luis A; García-Gutiérrez, R; Zepeda, T A; Contreras, Oscar E

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H₂ pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H₂. PMID:26690158

  9. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen

    PubMed Central

    Cardoza-Contreras, Marlene N.; Romo-Herrera, José M.; Ríos, Luis A.; García-Gutiérrez, R.; Zepeda, T. A.; Contreras, Oscar E.

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2. PMID:26690158

  10. Self-heated silicon nanowires for high performance hydrogen gas detection.

    PubMed

    Ahn, Jae-Hyuk; Yun, Jeonghoon; Moon, Dong-Il; Choi, Yang-Kyu; Park, Inkyu

    2015-03-01

    Self-heated silicon nanowire sensors for high-performance, ultralow-power hydrogen detection have been developed. A top-down nanofabrication method based on well-established semiconductor manufacturing technology was utilized to fabricate silicon nanowires in wafer scale with high reproducibility and excellent compatibility with electronic readout circuits. Decoration of palladium nanoparticles onto the silicon nanowires enables sensitive and selective detection of hydrogen gas at room temperature. Self-heating of silicon nanowire sensors allows us to enhance response and recovery performances to hydrogen gas, and to reduce the influence of interfering gases such as water vapor and carbon monoxide. A short-pulsed heating during recovery was found to be effective for additional reduction of operation power as well as recovery characteristics. This self-heated silicon nanowire gas sensor will be suitable for ultralow-power applications such as mobile telecommunication devices and wireless sensing nodes. PMID:25670503

  11. Self-heated silicon nanowires for high performance hydrogen gas detection

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Yun, Jeonghoon; Moon, Dong-Il; Choi, Yang-Kyu; Park, Inkyu

    2015-03-01

    Self-heated silicon nanowire sensors for high-performance, ultralow-power hydrogen detection have been developed. A top-down nanofabrication method based on well-established semiconductor manufacturing technology was utilized to fabricate silicon nanowires in wafer scale with high reproducibility and excellent compatibility with electronic readout circuits. Decoration of palladium nanoparticles onto the silicon nanowires enables sensitive and selective detection of hydrogen gas at room temperature. Self-heating of silicon nanowire sensors allows us to enhance response and recovery performances to hydrogen gas, and to reduce the influence of interfering gases such as water vapor and carbon monoxide. A short-pulsed heating during recovery was found to be effective for additional reduction of operation power as well as recovery characteristics. This self-heated silicon nanowire gas sensor will be suitable for ultralow-power applications such as mobile telecommunication devices and wireless sensing nodes.

  12. On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry

    NASA Astrophysics Data System (ADS)

    Sinclair, J. A.; Irwin, P. G. J.; Calcutt, S. B.; Wilson, E. L.

    2015-11-01

    The martian atmosphere is host to many trace gases including water (H2O) and its isotopologues, methane (CH4) and potentially sulphur dioxide (SO2), nitrous oxide (N2O) and further organic compounds, which would serve as indirect tracers of geological, chemical and biological processes on Mars. With exception of the recent detection of CH4 by Curiosity, previous detections of these species have been unsuccessful or considered tentative due to the low concentrations of these species in the atmosphere (∼10-9 partial pressures), limited spectral resolving power and/or signal-to-noise and the challenge of discriminating between telluric and martian features when observing from the Earth. In this study, we present radiative transfer simulations of an alternative method for detection of trace gas species - the gas correlation radiometry method. Two potential observing scenarios were explored where a gas correlation filter radiometer (GCFR) instrument: (1) performs nadir and/or limb sounding of the martian atmosphere in the thermal infrared (200-2000 cm-1 from an orbiting spacecraft or (2) performs solar occultation measurements in the near-infrared (2000-5000 cm-1) from a lander on the martian surface. In both scenarios, simulations of a narrowband filter radiometer (without gas correlation) were also generated to serve as a comparison. From a spacecraft, we find that a gas correlation filter radiometer, in comparison to a filter radiometer (FR), offers a greater discrimination between temperature and dust, a greater discrimination between H2O and HDO, and would allow detection of N2O and CH3OH at concentrations of ∼10 ppbv and ∼2 ppbv, respectively, which are lower than previously-derived upper limits. However, the lowest retrievable concentration of SO2 (approximately 2 ppbv) is comparable with previous upper limits and CH4 is only detectable at concentrations of approximately 10 ppbv, which is an order of magnitude higher than the concentration recently measured

  13. A probe for in situ, remote, detection of defects in buried plastic natural gas pipelines

    SciTech Connect

    Mathur, M.P.; Spenik, J.L.; Condon, C.M.; Monazam, E.R.; Fincham, W.L.

    2007-12-18

    Several techniques are available to determine the integrity of in situ metal pipeline but very little is available in the literature to determine the integrity of plastic pipelines. Since the decade of the 1970s much of the newly installed gas distribution and transmission lines in the United States are fabricated from polyethylene or other plastic. A probe has been developed to determine the in situ integrity of plastic natural gas pipelines that can be installed on a traversing mechanism (pig) to detect abnormalities in the walls of the plastic natural gas pipeline from the interior. This probe has its own internal power source and can be deployed into existing natural gas supply lines. Utilizing the capacitance parameter, the probe inspects the pipe for flaws and records the data internally which can be retrieved later for analysis.

  14. Good odorant practices ensure safer operations. [Natural gas odorant detection methods

    SciTech Connect

    Oudman, P. )

    1993-12-01

    Regulations in Canada and the US require that combustible gas used as a fuel be odorized at such a level that a concentration in air of one-fifth the lower explosive limit the gas can be readily detected and recognized by a person with a normal sense of smell. These regulations do not specify how the odorant level should be determined. However, since the requirement is related to smell, the level should be determined by an olfactory method. There are two odorant monitoring methods commonly used by gas companies, the olfactory (odorometer) and the instrumentation (gas chromatograph) methods. The instrument method provides only quantitative results, which somehow must be related to an olfactory response. This paper discusses these methods.

  15. Effect of Background Emissivity on Gas Detection in Thermal Hyperspectral Imagery

    SciTech Connect

    Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence K.; Metoyer, Candace N.

    2008-10-02

    Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temper- ature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background emissivity and plume/ground temperatures are isolated, and their effects on net chemical signal are described. This analysis shows that the plume’s physical state, emission or absorption, is directly dependent on the background emissivity. It then describes what conditions on the background emissivity have inhibiting effects on the net chemical signal. These claims are illustrated by analyzing synthetic hyperspectral imaging data with the Adaptive Matched Filter using four chemicals and three distinct background emissivities. Two chemicals (Carbontetrachloride and Tetraflourosilane) in the analysis had a very strong relationship with the background emissivities: they exhibited absorbance over a small range of wavenumbers and the background emissivities showed a consistent ordering at these wavenumbers. Analysis of simulated hyperspectral images containing these chemicals showed complete agreement with the analysis of the physics-based model that described when the background emissivities would have inhibiting effects on gas detection. The other chemicals considered (Ammonia and Tributylphosphate) exhibited very complex absorbance structure across the longwave infrared spectrum. Analysis of images containing these chemicals revealed that the the analysis of the physics-based model did not hold completely for these complex chemicals but did suggest that gas detection was dominated by their dominant absorbance features. These results provide some explanation of the effect of the background emissivity on gas detection and a more general exploration of gas absorbance/background emissivity variability and their effects on

  16. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    SciTech Connect

    Lavelle, C. M. Miller, E. C.; Coplan, M.; Thompson, Alan K.; Vest, Robert E.; Yue, A. T.; Kowler, A. L.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  17. Greenhouse Gas Molecule CO2 Detection Using a Capacitive Micromachined Ultrasound Transducer.

    PubMed

    Barauskas, Dovydas; Pelenis, Donatas; Virzonis, Darius; Baltrus, John P; Baltrusaitis, Jonas

    2016-07-01

    We manufactured and tested a capacitive micromachined ultrasound transducer (CMUT)-based sensor for CO2 detection at environmentally relevant concentrations using polyethylenimine as a CO2 binding material. The assembly of a sensing chip was 10 × 20 mm, and up to 5 gases can potentially be detected simultaneously using a masking technique and different sensing materials. The limit of detection was calculated to be 0.033 CO2 vol % while the limit of quantification was calculated to be 0.102%. The sensor exhibited a linear response between 0.06% and 0.30% CO2 while concentrations close to those in flue gas can also be measured using dilution with inert gas. PMID:27321769

  18. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  19. Detectability of trace gases in the Martian atmosphere using gas correlation filter radiometry

    NASA Astrophysics Data System (ADS)

    Sinclair, J.; Irwin, P. G. J.; Wilson, E.; Calcutt, S.

    2015-10-01

    We present the results of radiative transfer simulations of a gas correlation filter radiometer (GCFR) in the detection of trace species in the Martian atmosphere. We investigated two scenarios: 1) nadir and/or limb sounding from a Mars orbiter in the thermal infrared, 2) solar occultation measurements in the near-infrared from the Martian surface. In both scenarios, a GCFR would allow detection of trace gases at a lower concentration than that detectable by a conventional filter radiometer. In nadir/limb sounding, we find that CH4, SO2, N2O, C2H2 and CH3OH are detectable at concentrations lower than previously-derived upper limits. From solar occultation measurements, we find that CH4, SO2, C2H2, C2H6 are detectable at concentrations lower than previously-derived upper limits but only in low dust conditions.

  20. Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection.

    PubMed

    Mahattanatawee, Kanjana; Perez-Cacho, Pilar Ruiz; Davenport, Thomas; Rouseff, Russell

    2007-03-01

    Odor volatiles in three major lychee cultivars (Mauritius, Brewster, and Hak Ip) were examined using gas chromatography-olfactometry, gas chromatography-mass spectrometry, and gas chromatography-pulsed flame photometric detection. Fifty-nine odor-active compounds were observed including 11 peaks, which were associated with sulfur detector responses. Eight sulfur volatiles were identified as follows: hydrogen sulfide, dimethyl sulfide, diethyl disulfide, 2-acetyl-2-thiazoline, 2-methyl thiazole, 2,4-dithiopentane, dimethyl trisulfide, and methional. Mauritius contained 25% and Brewster contained 81% as much total sulfur volatiles as Hak Ip. Cultivars were evaluated using eight odor attributes: floral, honey, green/woody, tropical fruit, peach/apricot, citrus, cabbage, and garlic. Major odor differences in cabbage and garlic attributes correlated with cultivar sulfur volatile composition. The 24 odor volatiles common to all three cultivars were acetaldehyde, ethanol, ethyl-3-methylbutanoate, diethyl disulfide, 2-methyl thiazole, 1-octen-3-one, cis-rose oxide, hexanol, dimethyl trisulfide, alpha-thujone, methional, 2-ethyl hexanol, citronellal, (E)-2-nonenal, linalool, octanol, (E,Z)-2,6-nonadienal, menthol, 2-acetyl-2-thiazoline, (E,E)-2,4-nonadienal, beta-damascenone, 2-phenylethanol, beta-ionone, and 4-vinyl-guaiacol. PMID:17266328

  1. Tunnel-field-effect-transistor based gas-sensor: Introducing gas detection with a quantum-mechanical transducer

    NASA Astrophysics Data System (ADS)

    Sarkar, Deblina; Gossner, Harald; Hansch, Walter; Banerjee, Kaustav

    2013-01-01

    A gas-sensor based on tunnel-field-effect-transistor (TFET) is proposed that leverages the unique current injection mechanism in the form of quantum-mechanical band-to-band tunneling to achieve substantially improved performance compared to conventional metal-oxide-semiconductor field-effect-transistors (MOSFETs) for detection of gas species under ambient conditions. While nonlocal phonon-assisted tunneling model is used for detailed device simulations, in order to provide better physical insights, analytical formula for sensitivity is derived for both metal as well as organic conducting polymer based sensing elements. Analytical derivations are also presented for capturing the effects of temperature on sensor performance. Combining the developed analytical and numerical models, intricate properties of the sensor such as gate bias dependence of sensitivity, relationship between the required work-function modulation and subthreshold swing, counter-intuitive increase in threshold voltage for MOSFETs and reduction in tunneling probability for TFETs with temperature are explained. It is shown that TFET gas-sensors can not only lead to more than 10 000× increase in sensitivity but also provide design flexibility and immunity against screening of work-function modulation through non-specific gases as well as ensure stable operation under temperature variations.

  2. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    SciTech Connect

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-15

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  3. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-01

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N2, and 0.05% CO2 are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50-250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  4. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    SciTech Connect

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection. Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.

  5. Generalized average of signals (GAS) - a new method for denoising and phase detection

    NASA Astrophysics Data System (ADS)

    Malek, J.; Kolinsky, P.; Strunc, J.; Valenta, J.

    2007-12-01

    A novel method called Generalized Average of Signals (GAS) was developed and tested during the last two years (Málek et al., in press). This method is designed for processing of seismograms from dense seismic arrays and is convenient mainly for denoising and weak phase detection. The main idea of the GAS method is based on non-linear stacking of seismograms in frequency domain, which considerably improves signal-to-noise ratio of coherent seismograms. Several synthetic tests of the GAS method are presented and the results are compared with the PWS method of Schimell and Paulssen (1997). Moreover, examples of application on real data are presented. These examples were chosen to show a broad applicability of the method in experiments of different scales. The first one shows identification of S-waves on seismograms from shallow seismic. The second one concerns identification of converted waves from local earthquakes registered at the WEBNET local network in western Bohemia. Finally, the third one depicts identification of PKIKP onsets on seismograms of teleseismic earthquakes. Schimmel, M., Paulssen H. (1997): Noise reduction and detection of weak, coherent signals through phase- weighted stacks. Geophys. J. Int. 130, 497-505. Málek J., Kolínský P., Strunc J. and Valenta J. (2007): Generalized average of signals (GAS) - a new method for detection of very weak waves in seismograms. Acta Geodyn. et Geomater., in press.

  6. Diamond Film Gas Sensors for Leak Detection of Semiconductor Doping Gases

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazushi; Yokota, Yoshihiro; Tachibana, Takeshi; Miyata, Koichi; Kobashi, Koji; Fukunaga, Tetsuya; Takada, Tadashi

    2000-01-01

    Gas sensors for leak detection of toxic semiconductor doping gases such as PH3, B2H6, and AsH3 were fabricated using diamond films. The sensors have a double-layered structure composed of undoped and B-doped polycrystalline diamond layers with Pt electrodes. The relative changes in the resistance of the sensors were typically 10-20% for 0.2 ppm PH3 in air, and the highest value was over 100%. It was concluded that the diamond film gas sensors fabricated in the present work would be practically applicable as compact solid-state sensors with an advantage over the conventional aqueous electrolyte sensors.

  7. Gas detection and migration in geological media: lessons learned from the Roselend Natural Laboratory (Invited)

    NASA Astrophysics Data System (ADS)

    Pili, E.; Guillon, S.; Agrinier, P.; Sabroux, J.; Adler, P. M.

    2013-12-01

    The Roselend Natural Laboratory (French Alps) is a unique facility for studying gas transport in the subsurface and across the geosphere-atmosphere interface. At 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. While many parameters controlling the state of the geological system are known, analogous gas-tracer experiments were conducted at the field-scale with SF6 and 3He. Water infiltration, permeability and the concentrations of many gases, naturally occurring or injected, are recorded via long-term and high-resolution monitoring. The fracture network is characterized thanks to extensive drilling, logging and modeling. These experiments are used to determine the physical and chemical processes that would control the noble gas source term after an underground nuclear explosion in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT) and to develop and validate the corresponding numerical models. The Roselend Natural Laboratory also provides a test bed for sampling protocols and instrument developments. Detection of gases relevant to CTBT issues requires that their baseline concentration is understood. Experiments and subsequent modeling demonstrated that baselines are a highly dynamical process resulting from gas sources, sinks and modulation by barometric pressure and water movements. Gas migration from underground cavities occurs as early venting through fractures due to advection driven by gas overpressure. It is associated with very large dilution which requires very low detection limits. Late-time seepage occurs through fractured porous media thanks to barometric pumping, which is only efficient for a narrow window of parameter values. Full calculation for real fractured porous media is now available.

  8. The importance of background in the detection and identification of gas plumes using emissive infrared hyperspectral sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, Herbert J.; Jellison, Gerard P.; Miller, David P.; Salvaggio, Carl; Miller, Craig J.

    2003-09-01

    Using a Fourier transform infrared field spectrometer, spectral infrared radiance measurements were made of several generated gas plumes against both a uniform sky and terrestrial background. Background temperature, spectral complexity, and physical homogeneity each influenced the success of emissive infrared spectral sensing technology in detecting and identifying the presence of a gas plume and its component constituents. As expected, high temperature contrast and uniform backgrounds provided the best conditions for detectibility and diagnostic identification. This report will summarize some of SITAC's findings concerning plume detectability, including the importance of plume cooling, plumes in emission and absorption, the effects of optical thickness, and the effects of condensing plumes on gas detection.

  9. Detection of chlorinated pesticides on the surface of fungus using ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Cliff, B.; Weibel, D. E.; Lockyer, N. P.; Jungnickel, H.; Stephens, G.; Vickerman, J. C.

    2003-01-01

    Chlorinated organic compounds are commonly used as pesticides (e.g. Lindane or DDT); unfortunately these compounds have the ability to be concentrated in aquatic and terrestrial food chains causing environmental problems due to their toxicity. Therefore there is a need for their removal using wastewater treatment plants. It is known that these pollutants adsorb on to the surface of the fungi Rhizopus arrizus from a water solution. However the actual mode of biosorption is unknown. We aim to investigate this interaction further using time-of-flight (ToF)-SIMS. Samples of fungus were grown in aqueous solutions containing Lindane then freeze-dried, the presence of Lindane was independently quantified by a gas chromatography-electron capture detector technique. The samples were then subjected to ToF-SIMS analysis. Evidence for Lindane was seen on the surface of the fungus, however it became apparent that the Lindane was too volatile for such an analysis. This rapid deterioration of signal is preventing a more in depth study of the interaction between Lindane and R. arrhizus. However it is anticipated that by utilising a frozen-hydrated sample preparation technique, of a type currently being developed at UMIST, that these challenges would be overcome.

  10. Detection of gas leaks along pipelines by spectrally tuned infrared imaging

    NASA Astrophysics Data System (ADS)

    Gross, Werner; Hierl, Thomas; Scheuerpflug, H.; Schirl, U.; Schulz, Max J.

    1998-12-01

    We present a novel method developed for the localization of leaks along natural gas pipelines. Methane distributions in the atmosphere around the leaky pipeline are detected and visualized by spectrally tuned IR imaging. In contrast to conventional techniques which utilize laser radiation sources or scanning, we irradiate the overall region under investigation by 1 kW halogen lamps. The scene background is subtracted by a real-time computer evaluation of the image. The methane gas emitted from the leak creates a flickering cloud in the image which is easily recognized. Methane concentrations as low as 0.03 percent by volume are visible. The method was successfully tested under realistic conditions on a buried pipeline by a natural gas provider.

  11. One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection

    PubMed Central

    Zhao, Xiaoli; Cai, Bin; Tang, Qingxin; Tong, Yanhong; Liu, Yichun

    2014-01-01

    Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorable for the studies of the response mechanism. On the other hand; one main merit of the field-effect sensors is to provide an extra gate electrode to realize the current modulation; so that the sensitivity can be dramatically enhanced by changing the conductivity when operating the sensors in the subthreshold regime. This article reviews the recent developments in the field of 1D nanostructure FET for gas detection. The sensor configuration; the performance as well as their sensing mechanism are evaluated. PMID:25090418

  12. Evaluation of an Interferometric Sensor for In-Space Detection of Gas Leaks

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2009-01-01

    Space mission planning often involves long-term storage of volatile liquids or high-pressure gases. These may include cryogenic fuels and oxidizers, high-pressure gases, and life-support-critical consumables. The risk associated with the storage of fluids and gases in space systems has long been an issue and the ability to retain these fluids is often tied to mission success. A leak in the storage or distribution system can cause many different problems, including a simple, but mission endangering, loss of inventory or, in severe cases, unbalanced thrust loads on a flight vehicle. Cryogenic propellants are especially difficult to store, especially over a long duration. The propellant can boil off and be lost through the insulating walls of the tank or simple thermal cycling of the fittings, valves, and propellant feed lines may unseat seals allowing the fluid to escape. Current NASA missions call for long-duration in-space storage of propellants, oxidizers, and life support supplies. Leaks of a scale detectable through a pressure drop in the storage tank are often catastrophic and have long been the focus of ground-based mitigation efforts where redundant systems are often employed. However, there is presently no technology available for detecting and monitoring low-level, but still mission-endangering, gas leaks in space. Standard in-space gas detection methods either have a very limited pressure range over which they operate effectively or are limited to certain gases. Mass spectrometer systems are able to perform the detection tasks, but their size, mass and use of high voltage, which could potentially lead to an arc that ignites a combustible propellent, severely limit their usefulness in a space system. In this paper, we present results from testing of the light-based interferometric gas monitoring and leak detection sensor shown in Fig. 1. The output of the sensor is an interference fringe pattern that is a function of the gas density, and commensurate index

  13. Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy.

    PubMed

    Mukherjee, Anadi; Prasanna, Manu; Lane, Michael; Go, Rowel; Dunayevskiy, Ilya; Tsekoun, Alexei; Patel, C Kumar N

    2008-09-20

    We report high-throughput, nondispersive optical multiplexing of laser beams using a scanning galvanometer. We have utilized this technique for multispecies trace-gas detection using multiple quantum cascade laser photoacoustic spectroscopy. We demonstrate switching from one laser to another in less than 1 s, a performance level needed for a comprehensive multispecies sensor, and a high signal-to-noise ratio detection of five gaseous components, NH(3), NO(2), dimethyl methyl phosphonate (DMMP, a simulant for nerve agents), acetone, and ethylene glycol, in a room air gas mixture containing approximately 3 ppb of NH(3), approximately 8 ppb of NO(2), approximately 20 ppb of DMMP, approximately 30 ppb of acetone, and approximately 40 ppb of ethylene glycol. PMID:18806847

  14. Detection of molecular gas in the quasar BR1202 - 0725 at redshift z = 4.69.

    PubMed

    Ohta, K; Yamada, T; Nakanishi, K; Kohno, K; Akiyama, M; Kawabe, R

    1996-08-01

    Although great efforts have been made to locate molecular gas--the material out of which stars form--in the early Universe, there have been only two firm detections at high redshift. Both are gravitationally lensed objects at redshift z approximately = 2.5 (refs 9-14). Here we report the detection of CO emission from the radio-quiet quasar BR1202 - 0725, which is at redshift z = 4.69. From the observed CO luminosity, we estimate that almost 10(11) solar masses of molecular hydrogen are associated with the quasar; this is comparable to the stellar mass of a present-day luminous galaxy. Our results suggest that BR1202 - 0725 is a massive galaxy, in which the gas is largely concentrated in the central region, and that is currently undergoing a large burst of star formation. PMID:8684482

  15. Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection

    NASA Astrophysics Data System (ADS)

    Galli, I.; Bartalini, S.; Borri, S.; Cancio, P.; Mazzotti, D.; de Natale, P.; Giusfredi, G.

    2011-12-01

    Radiocarbon (C14) concentrations at a 43 parts-per-quadrillion level are measured by using saturated-absorption cavity ringdown spectroscopy by exciting radiocarbon-dioxide (C14O216) molecules at the 4.5μm wavelength. The ultimate sensitivity limits of molecular trace gas sensing are pushed down to attobar pressures using a comb-assisted absorption spectroscopy setup. Such a result represents the lowest pressure ever detected for a gas of simple molecules. The unique sensitivity, the wide dynamic range, the compactness, and the relatively low cost of this table-top setup open new perspectives for C14-tracing applications, such as radiocarbon dating, biomedicine, or environmental and earth sciences. The detection of other very rare molecules can be pursued as well thanks to the wide and continuous mid-IR spectral coverage of the described setup.

  16. Derivatization of pinacolyl alcohol with phenyldimethylchlorosilane for enhanced detection by gas chromatography-mass spectrometry.

    PubMed

    Albo, Rebecca L F; Valdez, Carlos A; Leif, Roald N; Mulcahy, Heather A; Koester, Carolyn

    2014-08-01

    A derivatization procedure for the qualitative gas chromatography-mass spectrometry (GC-MS) analysis of pinacolyl alcohol (PA) that employs phenyldimethylchlorosilane (PhDMClS) and the promoter N-methylimidazole is described. While PA, underivatized, can be detected using conventional gas chromatographic methods, its polarity and low boiling point make its detection in complex matrices challenging. The silylation procedure described herein generates a PA-derivative exhibiting an increased on-column retention time, thus shifting its GC-MS signal away from commonly encountered, volatile, interfering analytes. Derivatized PA could be distinguished from other PhDMClS-derivatized isomeric alcohols by its unique retention time and mass spectrum. The derivatization was demonstrated to perform well in the GC-MS analysis and identification of PA in samples from Proficiency Tests administered by the Organisation for the Prohibition of Chemical Weapons (OPCW). PMID:24481624

  17. Sensing Materials for the Detection of Chlorine Gas Using Embedded Piezoresistive Microcantilever Sensors

    SciTech Connect

    T. L. Porter, T. Vail, A. Wooley, R. J. Venedam

    2008-10-01

    Embedded piezoresistive microcantilever (EPM) sensors may be constructed for a variety of sensing applications. In each application, a custom sensing material is designed that will respond volumetrically to the desired analyte. Here, we have constructed EPM sensors for the detection of chlorine gas (Cl2). The sensing materials used consisted of polymer matrices combined with sodium iodide crystals. Sensors constructed from a silicone-based matrix exhibited the greatest response to Cl2, with detection limits in an outdoor exposure setting of approximately 20 parts per million.

  18. Detection of internal defects in a liquid natural gas tank by use of infrared thermography

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.

    1978-01-01

    The use of an infrared scanning technique to detect defects in the secondary barrier of a liquid natural gas tank is described. The method works by detecting leak-caused temperature differences as low as 0.2 K, but can provide only an approximate idea of the extent of the defect. The nondestructive method was tested in a study of a LNG tank already at its location in a ship; the secondary barrier was located inside the tank wall. Defective areas indicated by the infrared radiometric measurements were confirmed by other probe techniques and by physical examination.

  19. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  20. Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing

    PubMed Central

    Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried

    2016-01-01

    We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0–70% for propane and 0–90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891

  1. Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing

    NASA Astrophysics Data System (ADS)

    Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; Macfarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried

    2016-02-01

    We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0-70% for propane and 0-90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration.

  2. Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing.

    PubMed

    Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried

    2016-01-01

    We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0-70% for propane and 0-90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891

  3. Trace gas detection in hyperspectral imagery using the wavelet packet subspace

    NASA Astrophysics Data System (ADS)

    Salvador, Mark A. Z.

    This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.

  4. The development of a pulsed laser imaging system for natural gas leak detection

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas J.

    The detection of gas leaks represents a critical operation performed regularly by the gas industry to maintain the integrity and safety of its vast network of piping, both above and below the ground. We are developing a technology that allows the real-time imaging of gas plumes in a television format. Termed backscatter absorption gas imaging (BAGI), the technique operates by illuminating a scene with infrared laser radiation having a wavelength that is absorbed by the gas to be detected (in this case, methane). Backscattered laser radiation is used to create a video image of the scene. If a leak of the target gas is present in the field-of-view of the camera, it attenuates a portion of the backscatter and creates a dark cloud in the video picture. The specific purpose of this project is to investigate a new method of accomplishing BAGI using a pulsed laser source. The pulsed laser imager under development in this project is expected to have a range (greater than or equal to 40 m) and sensitivity (less than 10 ppm-m) that will surpass the respective attributes of a scanned continuous wave laser imager. The pulsed system will operate by flooding (rather than scanning) the imaged scene with pulses of laser radiation. Imaging will be accomplished using a focal-plane array camera that operates in a snapshot format. The higher power of the pulsed laser source and the more effective collection optics of the focal-plane array-based receiver will allow the performance enhancements to be achieved.

  5. Determination of Hydrocarbon Group-Type of Diesel Fuels by Gas Chromatography with Vacuum Ultraviolet Detection.

    PubMed

    Weber, Brandon M; Walsh, Phillip; Harynuk, James J

    2016-06-01

    A GC-vacuum ultraviolet (UV) method to perform group-type separations of diesel range fuels was developed. The method relies on an ionic liquid column to separate diesel samples into saturates, mono-, di-, and polyaromatics by gas chromatography, with selective detection via vacuum UV absorption spectroscopy. Vacuum UV detection was necessary to solve a coelution between saturates and monoaromatics. The method was used to measure group-type composition of 10 oilsands-derived Synfuel light diesel samples, 3 Syncrude light gas oils, and 1 quality control sample. The gas chromatography (GC)-vacuum UV results for the Synfuel samples were similar (absolute % error of 0.8) to historical results from the supercritical fluid chromatography (SFC) analysis. For the light gas oils, discrepancies were noted between SFC results and GC-vacuum UV results; however, these samples are known to be challenging to quantify by SFC-flame ionization detector (FID) due to incomplete resolution between the saturate/monoaromatic and/or monoaromatic/diaromatic group types when applied to samples heavier than diesel (i.e., having a larger fraction of higher molecular weight species). The quality control sample also performed well when comparing both methods (absolute % error of 0.2) and the results agreed within error for saturates, mono- and polyaromatics. PMID:27125997

  6. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  7. Tentative detection of warm intervening gas towards PKS 0548-322 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Barcons, X.; Paerels, F. B. S.; Carrera, F. J.; Ceballos, M. T.; Sako, M.

    2005-06-01

    We present the results of a long (~93 ks) XMM-Newton observation of the bright BL-Lac object PKS 0548-322 (z= 0.069). Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength λ= 23.33 +/- 0.01 Å, which we interpret as OVI Kα absorption at z= 0.058, i.e. ~3000 km s-1 from the background object. The observed equivalent width of the absorption line, ~30 mÅ, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density of NOVI~ 2 × 1016 cm-2 and turbulence with a Doppler velocity parameter b > 100 km s-1. Within the limitations of our RGS spectrum, no OVII or OV Kα absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is ~2.5 × 105 K, with significantly lower or higher values being excluded by our limits on OV or OVII. If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through OVI absorption. The existence of such a high column density absorber, much stronger than any previously detected one in OVI, would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.

  8. An overview of micromachined platforms for thermal sensing and gas detection

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.

    1997-03-01

    Micromachined hotplates, membranes, filaments, and cantilevers have all been used as platforms for thermal sensing and gas detection. Compared with conventional devices, micromachined sensors are characterized by low power consumption, high sensitivity, and fast response time. Much of these gains can be attributed to the size reductions achieved by micromachining. In addition, micromachining permits easy, yet precise tailoring of the heat transfer characteristics of these devices. By simple alterations in device geometry and materials used, the relative magnitudes of radiation, convection and conduction losses and Joule heat gains can be adjusted, and in this way device response can be optimized for specific applications. The free-standing design of micromachined platforms, for example, reduces heat conduction losses to the substrate, thereby making them attractive as low power, fast-response heaters suitable for a number of applications. However, while micromachining solves some of the heat transfer problems typical of conventionally produced devices, it introduces some of its own. These trade-offs will be discussed in the context of several micromachined thermal and gas sensors present in the literature. These include micromachined flow sensors, gas thermal conductivity sensors, pressure sensors, uncooled IR sensors, metal-oxide and catalytic/calorimetric gas sensors. Recent results obtained for a microbridge-based catalytic/calorimetric gas sensor will also be presented as a means of further illustrating the concepts of thermal design in micromachined sensors.

  9. Determination of acoustic speed for improving leak detection and location in gas pipelines

    NASA Astrophysics Data System (ADS)

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed.

  10. Determination of acoustic speed for improving leak detection and location in gas pipelines.

    PubMed

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed. PMID:24593385

  11. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tian, Q.

    2012-07-01

    Oil-gas reservoir exploration using hyperspectral remote sensing, which based on the theory of hydrocarbon microseepage information and fine spectral response of target, is a new direction for the application of remote sensing technology. In this paper, Qaidam Basin and Liaodong Bay in China were selected as the study areas. Based on the hydrocarbon microseepage theory, the analysis of crude oil in soil in Qaidam Basin and spectral experiment of crude oil in sea water in Liaodong Bay, Hyperion hyperspectral remote sensing images were used to develop the method of oil-gas exploration. The results indicated that the area of oil-gas reservoir in Qaidam Basin could be delimited in two ways: the oil-gas reservoir can be obtained directly by the absorption bands near 1730nm in Hyperion image; and Linear Spectral Unmixing (LSU) and Spectral Angle Matching (SAM) of alteration mineral (e.g. kaolinite, illite) could be used to indirectly detect the target area in Qaidam Basin. In addition, combined with the optimal bands in the region of visible/near-infrared, SAM was used to extract the thin oil slick of microseepage in Liaodong Bay. Then the target area of oil-gas reservoir in Liaodong Bay can be delineated.

  12. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    SciTech Connect

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods such as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only

  13. Development of a van-portable remote-sensing laser system for selective detection of natural gas leaks

    NASA Astrophysics Data System (ADS)

    Rosengreen, A.; Vanderlaan, J.

    1984-04-01

    A mobile leak-survey system was developed for gas mains buried in the street that is faster and more efficient than existing systems. The feasibility of the laser remote-sensing technique for selective detection of leaking natural gas was demonstrated. A laser breadboard system was developed using a spectral differential absorption technique for detection of ethane from natural gas leaks. The system was then successfully demonstrated using an outdoor simulated gas leak. To estimate system performance, a preliminary system analysis was performed.

  14. First Detection of Gas-phase Methanol in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Loomis, Ryan A.; Öberg, Karin I.; Kama, Mihkel; van ’t Hoff, Merel L. R.; Millar, Tom J.; Aikawa, Yuri; Herbst, Eric; Widicus Weaver, Susanna L.; Nomura, Hideko

    2016-05-01

    The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with the Atacama Large Millimeter/submillimeter Array, is spectrally resolved and detected across six velocity channels (\\gt 3σ ), reaching a peak signal-to-noise of 5.5σ , with the kinematic pattern expected for TW Hya. Using an appropriate disk model, a fractional abundance of 3× {10}-12{--}4× {10}-11 (with respect to H2) reproduces the stacked line profile and channel maps, with the favored abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position, suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at ≈ 30 {{au}}, reaching a column density ≈ 3{--}6× {10}12 cm‑2. In the case of TW Hya, the larger (up to millimeter-sized) grains, residing in the inner 50 au, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window into studying complex organic chemistry during planetary system formation.

  15. Detection for Non-Milk Fat in Dairy Product by Gas Chromatography

    PubMed Central

    2016-01-01

    The aim of this study was to evaluate the potential use of fatty acids, triacylglycerols, and cholesterol in the detection of adulterated milk fat. The fatty acid, triacylglycerol, and cholesterol profiles of the mixtures of milk and non-milk fat (adulteration ratios of 10%, 30%, 50%, 70%, and 90%) were analyzed by gas chromatography. The results showed that concentrations of the fatty acids with oleic acid (C18:1n9c) and linoleic acid (C18:2n6c), triglycerides with C52 and C54, and cholesterol detected are proportional to the adulteration ratios remarkably. Oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, and C54 were lower in pure milk fat than in adulterated mixtures. In contrast, pure milk has a higher cholesterol concentration than all adulterated mixtures (adulteration concentration in the range 10-90%). Thus, we suggest that oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, C54, and cholesterol are suitable indicators and can be used as biomarkers to rapidly detect adulterated milk fat by gas chromatography. This study is expected to provide basic data for adulteration and material usage. Moreover, this new approach can detect the presence of foreign oils and fats in the milk fat of cheese and can find application in related studies. PMID:27194929

  16. Detection for Non-Milk Fat in Dairy Product by Gas Chromatography.

    PubMed

    Kim, Ha-Jung; Park, Jung-Min; Lee, Jung-Hoon; Kim, Jin-Man

    2016-01-01

    The aim of this study was to evaluate the potential use of fatty acids, triacylglycerols, and cholesterol in the detection of adulterated milk fat. The fatty acid, triacylglycerol, and cholesterol profiles of the mixtures of milk and non-milk fat (adulteration ratios of 10%, 30%, 50%, 70%, and 90%) were analyzed by gas chromatography. The results showed that concentrations of the fatty acids with oleic acid (C18:1n9c) and linoleic acid (C18:2n6c), triglycerides with C52 and C54, and cholesterol detected are proportional to the adulteration ratios remarkably. Oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, and C54 were lower in pure milk fat than in adulterated mixtures. In contrast, pure milk has a higher cholesterol concentration than all adulterated mixtures (adulteration concentration in the range 10-90%). Thus, we suggest that oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, C54, and cholesterol are suitable indicators and can be used as biomarkers to rapidly detect adulterated milk fat by gas chromatography. This study is expected to provide basic data for adulteration and material usage. Moreover, this new approach can detect the presence of foreign oils and fats in the milk fat of cheese and can find application in related studies. PMID:27194929

  17. Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Sahlberg, A. L.; Nilsson, H.; Lundgren, E.; Zetterberg, J.

    2015-11-01

    Sensitive and non-intrusive detection of gas-phase methanol with high spatial and temporal resolution has for the first time been reported using mid-infrared degenerate four-wave mixing (IR-DFWM). IR-DFWM spectra of methanol have been successfully recorded in nitrogen-diluted gas flows at room temperature and at 300 °C, by probing ro-vibrational transitions belonging to the fundamental C-H stretching modes, ν 2 and ν 9, and the O-H stretching mode, ν 1. The detection limit of methanol vapor at room temperature and atmospheric pressure is estimated to be 250 ppm with the present setup. Potential interference from CH4 and CO2 is discussed from recorded IR-DFWM spectra of CH4 and CO2, and it was found that detection of methanol free from CH4 and CO2 interference is possible. These results show the potential of the detection of methanol with IR-DFWM for applications in both combustion and catalytic environments, such as CO2 hydrogenation and CH4 oxidation.

  18. Frequency Modulated Spectroscopy (FMS) - A Novel Method for Standoff Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Fessenden, J. E.; Clegg, S. M.; Nowak-Lovato, K.; Martinez, R.; Dobeck, L. M.; Spangler, L.

    2015-12-01

    Geologic storage of carbon rich gases captured from the emissions of fossil fuel combustion is a promising option to mitigate against greenhouse warming scenarios. Monitoring surface gas seepage is a strategy to create a successful geologic storage facility. At Los Alamos National Laboratory, new laser systems have been engineered which can measure concentration and isotope ratios of CO2, CH4, and H2S in real time and up to 1 km distances. These systems can work in closed and open path (LIght Detection And Ranging or LIDAR) settings where we use Frequency Modulated Spectroscopy (FMS) to measure the harmonics of the primary absorption peak for CO2, CH4, and H2S absorptions. This provides between 100-1000 times sensitivity to allow for small concentrations or low abundance isotopes to be observed at distance. We tested these systems at various locations around Los Alamos National Laboratory and at the ZERT Controlled Release site in Bozeman Montana. Results show pollution signatures, ecologically productive fluxes, and carbon storage signatures depending upon location monitored. We will present these results and share unique features of this novel system. Remote detection of concentration and isotope profiles of greenhouse and toxic gases can provide a new method for stand-off detection and mapping of gas in the environment. For geologic storage scenarios, this will allow for larger areas to be interrogated for subsurface CO2 leak detection and can accelerate the Monitoring Verification and Accounting (MVA) mission goals for the Carbon Sequestration and Storage (CCS) communities.

  19. Research on Ground-Based LWIR Hyperspectral Imaging Remote Gas Detection.

    PubMed

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Yang, Zhi-xiong; Wang, Hai-yangi; Fu, Yan-peng; Li, Xun-niu; Liao, Ning-fang; Su, Jun-hong

    2016-02-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent spectral radiance (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6 x 10⁻⁸ W · (cm⁻¹ · sr · cm²)⁻¹ at single sampling. The data is the same as commercial temporal modulation hyperspectral imaging spectrometer. It can prove the advantage of this technique. This technique still has space to be improved. For instance, spectral response range of CHIPED-1 LWIR hyperspectral imaging prototype can reach 11. 5 µm by testing the transmission curve of polypropylene film. In this article, choosing the results of outdoor high-rise and diethyl ether gas experiment as an example, the authors research on the detecting method of 2D distribution chemical gas VOC by infrared hyperspectral imaging. There is no observed diethyl ether gas from the infrared spectral slice of the same wave number in complicated background and low concentration. By doing the difference spectrum, the authors can see the space distribution of diethyl ether gas clearly. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on. PMID:27209776

  20. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    PubMed

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. PMID:26881999

  1. Terrestrial laser scanning for detection of landfill gas: a pilot study

    NASA Astrophysics Data System (ADS)

    Reshetyuk, Yuriy; Mårtensson, Stig-Göran

    2014-04-01

    Methane built up in landfills as a result of breaking down of organic materials can be a renewable energy source if it is taken advantage of. The aim of research presented in this paper is to detect landfill gas (that contains methane) by means of terrestrial laser scanning. The hypothesis is that where no surface leakage has been reported, the landfill gas will expand or migrate. Therefore, it is possible to detect it through repeated scanning of the same area and comparison of Digital Terrain Models (DTMs) generated from the point clouds. Only the most significant movements, i.e. vertical, are of interest in this case. During September-November 2011, a small area at Forsbacka landfill in the vicinity of Gävle was scanned 10 times. Epoch-to-epoch comparisons of the resulting DTMs have shown two significant changes (-27 and +19 mm) in elevation of the surface, and it is not impossible that they are caused by migrating landfill gas. The method tested in this study is deemed to be rigorous and accurate for detecting small-scale swell-shrink behaviour of the ground surface (in our case a landfill surface). However, both data processing and interpretation of the results have been considerably complicated by presence of low vegetation (weeds) on the study site, which was dificult to filter away completely from the data. Based on our pilot study, we recommend that a larger area and a longer period of time are chosen to give basis for more grounded conclusions about presence of landfill gas.

  2. [Detection technology of methane gas concentration based on infrared absorption spectrum].

    PubMed

    Luo, Da-Feng; Yang, Jian-Hua; Zhong, Chong-Gui

    2011-02-01

    According to the disadvantages of current methane sensor in coal mine, the infrared methane concentration detection system based on the principle of infrared spectrum absorption was designed using differential absorption technology. In the system single light beam absorbing cell and single light beam and double wavelengths technology are adopted. Differential amplifier circuit serves as the core of faint signal processing circuit that detects the output signal of methane concentration, and linear formula fits the curve of methane concentration and output voltage, which realizes accurate and full range detection of gas concentration. Experiment shows that measurement error is less than 2%, and the system has very high measurement precision and possesses the basis of industrial applications. PMID:21510386

  3. Tunable photonic cavities for in-situ spectroscopic trace gas detection

    DOEpatents

    Bond, Tiziana; Cole, Garrett; Goddard, Lynford

    2012-11-13

    Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.

  4. Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Krause, O.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T.

    2013-12-01

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of 36ArH+ at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed 36ArH+ emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  5. Gas detection from smoke stacks: finding multiple constituent gases in a plume using infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Rotman, D. N.; Rotman, S. R.; Blumberg, D. G.; Ontiveros, E.; Messinger, D.

    2011-11-01

    An iterative algorithm which identifies the presence of different gases using a hyperspectral image was developed and tested. The algorithm uses the "stepwise regression" method combined with new methods of detection and identification. This algorithm begins with a library of gas signatures; an initial fit is done with all the gases. The algorithm then eliminates those signatures which do not noticeably improve the fit to the measured signature. We then consider which of the gases that were detected have a high probability of being mistaken with the detection of other gases that are also present in the scene. A necessary post-processing step eliminates gases which do not uniquely fit the signature of the examined pixel, with an emphasis on eliminating gases which may have been misidentified.

  6. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed. PMID:24337290

  7. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    SciTech Connect

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNL focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.

  8. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    PubMed

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-01

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported. PMID:26742539

  9. A DETECTION OF MOLECULAR GAS EMISSION IN THE HOST GALAXY OF GRB 080517

    SciTech Connect

    Stanway, E. R.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Van der Laan, T. P. R.

    2015-01-01

    We have observed the host galaxy of the low-redshift, low-luminosity Swift GRB 080517 at 105.8 GHz using the IRAM Plateau de Bure interferometer. We detect an emission line with integrated flux SΔν = 0.39 ± 0.05 Jy km s{sup –1}—consistent both spatially and in velocity with identification as the J = 1-0 rotational transition of carbon monoxide (CO) at the host galaxy redshift. This represents only the third long gamma-ray burst (GRB) host galaxy with molecular gas detected in emission. The inferred molecular gas mass, M{sub H{sub 2}}∼6.3×10{sup 8} M {sub ☉}, implies a gas consumption timescale of ∼40 Myr if star formation continues at its current rate. Similar short timescales appear characteristic of the long GRB population with CO observations to date, suggesting that the GRB in these sources occurs toward the end of their star formation episode.

  10. Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1995-07-21

    The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.

  11. Detection of bad indoor environment with a miniaturized gas sensor system

    NASA Astrophysics Data System (ADS)

    Huber, J.; Binninger, R.; Schmitt, K.; Wöllenstein, J.

    2013-05-01

    Bad indoor environment is often the reason for health impairment of people who spend most of their time indoors. Modern buildings are almost air tight and air exchange is too low. This problem often occurs in retrofitted buildings. A long time result can be mold formation in buildings. To get early information about bad indoor climate or mold formation, sensor systems which detect volatile organic compounds (VOC) are needed. The biggest challenge in measuring VOC gases in this scenario are the small concentrations. We present a miniaturized preconcentrating gas sensor system with two chambers for measuring organic gases. Preconcentration is realized with a thermoelectric element to activate sampling and desorption process in one chamber, delivering temperature gradients to a highly porous surface. The second chamber consists of a gas detecting element to indicate the preconcentrated VOC. By driving a temperature cycle with longtime cooling and fast heating the gas is preconcentrated and then desorbed quickly. Furthermore an electronic circuit board has been developed to control the complete system. The result is a complete sensor system with mechanical setup, electronic control, measurement, analyzation and peripheral communication. Measurements regarding temperature behavior of the system are performed, as measurements with VOC.

  12. The Beta Pictoris Phenomenon in A-Shell Stars: Detection of Accreting Gas

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Perez, Mario R.; Talavera, A.; McCollum, B.; Rawley, L. A.; England, M. N.; Schlegel, M.

    1996-01-01

    We present the results of an expanded survey of A-shell stars using IUE high-dispersion spectra and find accreting, circumstellar gas in the line of sight to nine stars, in addition to the previously identified beta Pic, HR 10, and 131 Tau, which can be followed to between +70 and 100 km/s relative to the star. Two of the program stars, HD 88195 and HD 148283, show variable high-velocity gas. Given the small number of IUE spectra for our program stars, detection of high-velocity, accreting gas in 2/3 of the A-shell stars sampled indicates that accretion is an intrinsic part of the A-shell phenomenon and that beta Pic is not unique among main-sequence A stars in exhibiting such activity. Our program stars, as a group, have smaller column densities of high-velocity gas and smaller near-IR excesses compared with beta Pic. These features are consistent with greater central clearing of a remnant debris disk, compared with beta Pic, and suggest that the majority of field A-shell stars are older than beta Pic.

  13. Method for Detection of Trace Metal and Metalloid Contaminants in Coal-Generated Fuel Gas Using Gas Chromatography/Ion Trap Mass Spectrometry

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-07-15

    There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH3), phosphine (PH3), and hydrogen selenide (H2Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed.

  14. Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas.

    PubMed

    Wang, Xianfeng; Wang, Jialin; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang; Luo, Wenjing; Zheng, Gang

    2012-12-01

    This work describes the detection of trace hydrogen chloride (HCl) gas through analyses of the resonance frequency signal from quartz crystal microbalance (QCM) sensors coated with polyaniline (PANI) functionalized polyamide 6 (PA 6) (PANI-PA 6) nanofiber-net-binary (NNB) structured membranes. The PA 6 NNB substrate comprising nanofibers and spider-web-like nano-nets fabricated by a versatile electro-spinning/netting (ESN) process offered an ideal interface for the uniform PANI functionalization and enhanced sensing performance. Benefiting from the large specific surface area, high porosity, and strong adhesive force to the QCM electrode of the PANI-PA 6 NNB membranes, the developed HCl-selective sensors exhibited a rapid response, good reproducibility and stability, and low detection limit (7 ppb) at room temperature. Additionally, the PANI-PA 6 NNB sensing membranes presented visible color changes upon cycled exposure to HCl and ammonia, suggesting their potential application in the development of colorimetric sensors. The PANI-PA 6 NNB coated QCM sensors are considered to be a promising candidate for trace HCl gas detection in practical applications. PMID:23108331

  15. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  16. Detection of the Elusive Triazane Molecule (N3 H5 ) in the Gas Phase.

    PubMed

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M; Sun, Bing-Jian; Chen, Shih-Hua; Chang, Agnes H-H; Kaiser, Ralf I

    2015-10-26

    We report the detection of triazane (N3 H5 ) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3 ) and hydrazine (N2 H4 ) of fundamental importance for the understanding of the stability of single-bonded chains of nitrogen atoms and a potential key intermediate in hydrogen-nitrogen chemistry. The experimental results along with electronic-structure calculations reveal that triazane presents a stable molecule with a nitrogen-nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 μs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron-time-of-flight mass spectrometer. Isotopic substitution experiments exploiting [D3 ]-ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5 ]-triazane (N3 D5 ). PMID:26331382

  17. NO x gas detection characteristics in FET-type multi-walled carbon nanotube-based gas sensors for various electrode spacings

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Jang, Kyung Uk; Kim, Tae Wan

    2016-03-01

    In this study, we fabricated a p-channel FET-type NO x gas sensor by using multi-walled carbon nanotubes (MWCNTs). Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. In particular, gas sensors require characteristics such as high speed, selectivity, and sensitivity. The fabricated sensor was used to detect NO x gas for different values of the gate-source voltage (V gs ) and the electrode spacings (30, 60, 90, and 120 μm). The gas sensor that absorbed NO x gas molecules showed a decrease in resistance. The sensitivity of the gas sensor was increased by increasing the electrode spacing. Additionally, while changing the Vgs and the temperature inside the chamber for the MWCNT gas sensor, we obtained the sensitivity and the normalized response for detecting NO x gas. We also obtained the adsorption energy (U a ) by using Arrhenius plots based on the reduction of resistance due to voltage variations. The adsorption energy was found to increase with increasing applied voltage.

  18. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  19. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  20. The transition from silicon to gas detection media in nuclear physics

    NASA Astrophysics Data System (ADS)

    Pollacco, Emanuel C.

    2016-06-01

    Emerging radioactive beams and multi petawatt laser facilities are sturdily transforming our base concepts in instruments in nuclear physics. The changes are fuelled by studies of nuclei close to the drip-line or exotic reactions. This physics demands high luminosity, wide phase space cover with good resolution in energy, time, position and sampled waveform. By judiciously modifying the micro-world of the particle or space physics instruments (Double Sided Strip Si Detectors, Micro-Pattern Gas Amplifiers, microelectronics), we are on the path to initiate dream experiments. In the following a brief status in the domain is reported for selected instruments that highlight the present trends with silicon and the growing shift towards gas media for charged particle detection.

  1. Nanomolecular gas sensor architectures based on functionalized carbon nanotubes for vapor detection

    NASA Astrophysics Data System (ADS)

    Hines, Deon; Zhang, Henan; Rümmeli, Mark H.; Adebimpe, David; Akins, Daniel L.

    2015-05-01

    There is enormous interest in detection of simple & complex odors by mean of electronic instrumentation. Specifically, our work focuses on creating derivatized-nanotube-based "electronic noses" for the detection and identification of gases, and other materials. We have grafted single-walled carbon nanotubes (SWNTs) with an array of electron-donating and electron withdrawing moieties and have characterized some of the physicochemical properties of the modified nanotubes. Gas sensing elements have been fabricated by spin coating the functionalized nanotubes onto interdigitated electrodes (IDE's), creating an array of sensors. Each element in the sensor array can contain a different functionalized matrix. This facilitates the construction of chemical sensor arrays with high selectivity and sensitivity; a methodology that mimics the mammalian olfactory system. Exposure of these coated IDEs to organic vapors and the successful classification of the data obtained under DC monitoring, indicate that the system can function as gas sensors of high repeatability and selectivity for a wide range of common analytes. Since the detection of explosive materials is also of concern in this research, our next phase focuses on explosives such as, TNT, RDX, and Triacetone Triperoxide (TATP). Sensor data from individual detection are assessed on their own individual merits, after which they are amalgamated and reclassified to present each vapor as unique data point on a 2-dimensional map and with minimum loss of information. This approach can assist the nation's need for a technology to defeat IEDs through the use of methods that detect unique chemical signatures associated with explosive molecules and byproducts.

  2. ROSAT detection of diffuse hot gas in the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Wang, Q. David; Walterbos, Rene A. M.; Steakley, Michael F.; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT observation is presented of the edge-on spiral galaxy NGC 4631, a nearby Sc/SBd galaxy best known for its extended radio halo. Because of the low foreground Galactic X-ray-absorbing gas column density, N(sub H) approximately 1.4 x 10(exp 20)cm(exp -2), this observation is sensitive to gas of temperature greater than or equal to a few times 10(exp 5) K. A soft (approximately 0.25 keV) X-ray radiation out to more than 8 kpc above the midplane of the galaxy was detected. The strongest X-ray emission in the halo is above the central disk, a region of about 3 kpc radius which shows high star formation activity. The X-ray emission in the halo is bordered by two extended filaments of radio continuum emission. Diffuse X-ray emission from hot gas in the galaxy's disk was found. The spectrum of the radiation can be characterized by a thermal plasma with a temperature of 3 x 10(exp 6) K and a radiative cooling rate of approximately 8 x 10(exp 39) ergs s(exp -1). This rate is only a few percent of the estimated supernova energy release in the interstellar medium of the galaxy. Analysis of the X-ray spectrum shows evidence for the presence of a cooler (several times 10(exp 5) K) halo gas component that could consume a much larger fraction of the supernova energy. Strong evidence was found for disk/halo interaction. Hot gas apparently blows out from supershells in the galaxy's disk at a rate of approximately 1 solar mass yr(exp -1). This outflow of hot gas drags magnetic field lines up in the halo and forms a magnetized gaseous halo. If the magnetic field lines are still anchored to the disk gas at large disk radii, the outflowing gas may be confined high above the disk by magnetic pressure. A strong X-ray source which coincides spatially with an H I supershell has been identified. However, the source is likely an extremely luminous X-ray binary with L(sub chi)(0.1 - 2 keV) approximately 5 x 10(exp 39) ergs s(exp -1), which makes it a stellar mass black hole candidate.

  3. Gas analyzer for continuous monitoring of trace level methanethiol by microchannel collection and fluorescence detection.

    PubMed

    Toda, Kei; Kuwahara, Haruka; Kajiwara, Hidetaka; Hirota, Kazutoshi; Ohira, Shin-Ichi

    2014-09-01

    The highly odorous compound methanethiol, CH3SH, is commonly produced in biodegradation of biomass and industrial processes, and is classed as 2000 times more odorous than NH3. However, there is no simple analytical method for detecting low parts-per-billion in volume ratio (ppbv) levels of CH3SH. In this study, a micro gas analysis system (μGAS) was developed for continuous or near real time measurement of CH3SH at ppbv levels. In addition to a commercial fluorescence detector, a miniature high sensitivity fluorescence detector was developed using a novel micro-photomultiplier tube device. CH3SH was collected by absorption into an alkaline solution in a honeycomb-patterned microchannel scrubber and then mixed with the fluorescent reagent, 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). Gaseous CH3SH was measured without serious interference from other sulfur compounds or amines. The limits of detection were 0.2ppbv with the commercial detector and 0.3ppbv with the miniature detector. CH3SH produced from a pulping process was monitored with the μGAS system and the data agreed well with those obtained by collection with a silica gel tube followed by thermal desorption-gas chromatography-mass spectrometry. The portable system with the miniature fluorescence detector was used to monitor CH3SH levels in near-real time in a stockyard and it was shown that the major odor component, CH3SH, presented and its concentration varied dynamically with time. PMID:25109855

  4. Fast detection of coliform bacteria by means of gas chromatography-differential mobility spectrometry.

    PubMed

    Saptalena, Lena Ganda; Kuklya, Andriy; Telgheder, Ursula

    2016-05-01

    In this study, we demonstrate that the combination of an enzymatic method (based on Colilert-18 medium) and gas chromatography-differential mobility spectrometry (GC-DMS) can reduce the time required for detection of coliform bacteria (including Escherichia coli) from 18 to 2.5 h. The presented method includes the incubation (~2.5 h) of the sample containing coliform bacteria in Colilert-18 medium. The incubation time of 2.5 h is required for the activation of the β-galactosidase enzyme. Produced during the incubation biomarker o-nitrophenol (ONP) can be detected by means of GC-DMS within just 200 s. The detection limit for ONP was 45 ng (on-column). The method developed in this work provides significantly shorter analysis time compared with standard methods, and can be potentially adapted to the field conditions. Therefore, this method is a promising tool for an early detection of coliform bacteria (including E. coli). Graphical Abstract Fast detection of coliform bacteria by means of GC-DMS. PMID:27002609

  5. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  6. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    NASA Astrophysics Data System (ADS)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  7. Sensitivity of detection of fugitive methane emissions from coal seam gas fields

    NASA Astrophysics Data System (ADS)

    Feitz, A. J.; Berko, H.; Wilson, P.; Jenkins, C.; Loh, Z. M.; Etheridge, D.

    2013-12-01

    There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of δ13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and

  8. Tentative detection of warm intervening gas towards PKS 0548-322 with XMM-Newton

    SciTech Connect

    Barcons, X.

    2005-03-17

    We present the results of a long ({approx} 93 ksec) XMM-Newton observation of the bright BL-Lac object PKS 0548-322 (z = 0.069). Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength {lambda} = 23.33 {+-} 0.01 {angstrom} which we interpret as OVI K{alpha} absorption at z = 0.058, i.e., {approx} 3000 km s{sup -1} from the background object. The observed equivalent width of the absorption line {approx} 30m {angstrom}, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density N{sub OVI} {approx} 2 x 10{sup 16} cm{sup -2} and turbulence with a Doppler velocity parameter b > 100 km s{sup -1}. Within the limitations of our RGS spectrum, no OVII or OV K{alpha} absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is {approx} 2.5 x 10{sup 5} K, with significantly lower or higher values being excluded by our limits on OV or OVII. If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through OVI absorption. The existence of such a high column density absorber, much stronger than any previously detected one in OVI, would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.

  9. Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space

    NASA Astrophysics Data System (ADS)

    Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi

    Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were

  10. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Melroy, H.; Wilson, E. L.; Georgieva, E.

    2012-12-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent pathlength reduces the mass from ~150 kg to ~0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of >99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to ~30 ppb for formaldehyde, and ~500 ppb for methane. We expect custom bandpass filters and 6 m long waveguides to significantly improve these

  11. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhao, Quanqin; Fan, Weiliu; Zhan, Jinhua

    2011-04-01

    Porous SnO2 nanospheres with high surface areas have been synthesized through a solvothermal method in the absence of any templates. The structure and morphology of the resultant products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption technique. The as-prepared SnO2 porous nanospheres with the diameters ranging from 90-150 nm are composed of small nanocrystals with average sizes of less than 10 nm. Results demonstrated that the formation of porous SnO2 nanospheres is ascribed to etching the center part of the nanospheres. It was found that hydrochloric acid and NaClO played important roles in determining the final morphologies of the porous SnO2 nanospheres. The gas sensing properties of the as-prepared porous SnO2 nanospheres were investigated. By the comparative gas sensing tests, the porous SnO2 nanospheres exhibited a superior gas sensing performance toward ppb level 2-chloroethanol and formaldehyde vapor, implying promising applications in detecting toxic volatile organic compounds (VOCs).Porous SnO2 nanospheres with high surface areas have been synthesized through a solvothermal method in the absence of any templates. The structure and morphology of the resultant products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption technique. The as-prepared SnO2 porous nanospheres with the diameters ranging from 90-150 nm are composed of small nanocrystals with average sizes of less than 10 nm. Results demonstrated that the formation of porous SnO2 nanospheres is ascribed to etching the center part of the nanospheres. It was found that hydrochloric acid and NaClO played important roles in determining the final morphologies of the porous SnO2 nanospheres. The gas sensing

  12. Circumstellar Gas-Disk Variability Around A-Type Stars: The Detection of Exocomets?

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Montgomery, Sharon

    2013-07-01

    We present medium spectral resolution (R ~ 60,000) observations of the CaII K-line (3,933 Å) absorption profiles observed toward 21 nearby A-type stars thought to possess circumstellar gas debris disks. The stars were repeatedly observed over two observing runs on the 2.1 m Otto Struve telescope at the McDonald Observatory, Texas in 2011 May and 2012 November. Nightly changes in the absorption strength of the CaII K-line near the stellar radial velocity were observed in four of the stars (HD 21620, HD 110411, HD 145964 and HD 183324). This type of absorption variability indicates the presence of a circumstellar gas disk around these stars. We also have detected weak absorption features that sporadically appear with velocities in the range ± 100 km s-1 of the main circumstellar K-line in the spectra of HD 21620, HD 42111, HD 110411 and HD 145964. Due to the known presence of both gas and dust disks surrounding these four stars, these transient absorption features are most probably associated with the presence of Falling Evaporated Bodies (FEBs, or exocomets) that are thought to liberate gas on their grazing trajectory toward and around the central star. This now brings the total number of A-type stars in which the evaporation of CaII gas from protoplanetary bodies (i.e., exocomets) has been observed to vary on a nightly basis to 10 systems. A statistical analysis of the 10 A-stars showing FEB-activity near the CaII K-line compared to 21 A-type stars that exhibit no measurable variability reveals that FEB-activity occurs in significantly younger stellar systems that also exhibit chemical peculiarities. The presence of FEB-activity does not appear to be associated with a strong mid-IR excess. This is probably linked to the disk inclination angle, since unless the viewing angle is favorable the detection of time-variable absorption may be unlikely. Additionally, if the systems are more evolved then the evaporation of gas due to FEB activity could have ceased, whereas

  13. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Melroy, Hilary R.; Wilson, Emily L.; Georgieva, Elena

    2012-01-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent path length reduces the mass from approximately 150 kg to approximately 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of greater than 99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to approximately 30 ppb for formaldehyde, and approximately 500 ppb for methane. We expect custom

  14. Determination of fluoxetine and norfluoxetine in plasma by gas chromatography with electron-capture detection

    SciTech Connect

    Nash, J.F.; Bopp, R.J.; Carmichael, R.H.; Farid, K.Z.; Lemberger, L.

    1982-10-01

    This gas-chromatographic method for assay of fluoxetine and norfluoxetine in human plasma involves extraction of the drugs and use of a /sup 63/Ni electron-capture detector. The linear range of detection is 25 to 800 micrograms/L for each drug. Overall precision (CV) in the concentration range of 10 to 100 micrograms/L for both drugs was approximately 10%. Accuracy (relative error) in the same concentration range was approximately +10%. None of the commonly prescribed antidepressants or tranquilizers that we tested interfere with the assay.

  15. Intelligent hypertext manual development for the Space Shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Hoyt, W. Andes

    1989-01-01

    This research is designed to utilize artificial intelligence (AI) technology to increase the efficiency of personnel involved with monitoring the space shuttle hazardous gas detection systems at the Marshall Space Flight Center. The objective is to create a computerized service manual in the form of a hypertext and expert system which stores experts' knowledge and experience. The resulting Intelligent Manual will assist the user in interpreting data timely, in identifying possible faults, in locating the applicable documentation efficiently, in training inexperienced personnel effectively, and updating the manual frequently as required.

  16. Determination of water content by capillary gas chromatography coupled with thermal conductivity detection.

    PubMed

    Lodi, A; Bellini, M S; Clavel, A; Pijnenburg, N

    2011-11-01

    This article presents some experience obtained by applying capillary gas chromatography coupled with thermal conductivity detection (GC/TCD) to the determination of water in substances for pharmaceutical use. This technique represents a useful, orthogonal tool complementary to water determination methods based on volumetric or coulometric titration. It can also represent an alternative technique when such titrations are not applicable. This article presents the preliminary results obtained in a number of case studies where a GC/TCD procedure was applied in comparison with pharmacopoeial methods to substances with different water contents. PMID:22225767

  17. Detection of extragalactic CF+ toward PKS 1830-211. Chemical differentiation in the absorbing gas

    NASA Astrophysics Data System (ADS)

    Muller, S.; Kawaguchi, K.; Black, J. H.; Amano, T.

    2016-05-01

    We report the first extragalactic detection of the fluoromethylidynium ion CF+ in the z = 0.89 absorber toward PKS 1830-211. We estimate an abundance of ~3 × 10-10 relative to H2 and that ~1% of fluorine is captured in CF+. The absorption line profile of CF+ is found to be markedly different from that of other species observed within the same tuning, and is notably anticorrelated with CH3OH. On the other hand, the CF+ profile resembles that of [C I]. Our results are consistent with expected fluorine chemistry and point to chemical differentiation in the column of absorbing gas.

  18. Experiences with a new soil gas technique for detecting petroleum pollution

    SciTech Connect

    Mazac, O.; Landa, I.; Rohde, J.R.; Kelly, W.E.; Blaha, J.H.

    1996-12-31

    This paper presents field experiences obtained with a new technology for detecting petroleum pollution in soil and ground water based on in situ determination of hydrocarbon concentrations in soil air. Ecoprobe is a new soil gas device from RS-Dynamics in the Czech Republic. The rugged waterproof device is equipped with a built-in computer-controlled semiconductor sensor. Three case histories are presented that demonstrate the use of the equipment under typical conditions. Two case histories present the use of the device under typical field conditions; the third case history compares results from the Ecoprobe and a commercial photoionization detector (PID) device.

  19. Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

    SciTech Connect

    Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.; Pohl, Phillip Isabio; Hughes, Robert Clark; Wang, Yifeng; McGrath, Lucas K.; Ho, Clifford Kuofei; Gao, Huizhen

    2004-09-01

    Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring

  20. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness. PMID:24005155

  1. Detection of the greenhouse gas signal from space - A progress report

    NASA Technical Reports Server (NTRS)

    Barnett, T. P.; Haskins, R.; Chahine, M.

    1991-01-01

    The spatial distribution of the expected changes in the atmospheric water vapor content and cloud cover, as predicted by the transient greenhouse gas (GHG) simulation of Hansen et al. (1988), are examined to determine whether the signals would be large enough and unique enough to be useful in a GHG detection study. The nature of the predicted GHG signal was first examined using the transient CO2 run from the GISS ocean/atmosphere general circulation model. Next, the remotely sensed irradiance characteristics data (as the measure of water vapor content) supplied by the HIRS/MSU sensors for the area of the equatorial cold tongue region (the region in which there are no measurement stations). It is shown that HIRS/MSU signals can provide data necessary for detecting GHS signals in atmospheric moisture for regions where ground observations are not possible.

  2. H2S Analysis in Biological Samples Using Gas Chromatography with Sulfur Chemiluminescence Detection

    PubMed Central

    Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) is a metabolite and signaling molecule in biological tissues that regulates many physiological processes. Reliable and sensitive methods for H2S analysis are necessary for a better understanding of H2S biology and for the pharmacological modulation of H2S levels in vivo. In this chapter, we describe the use of gas chromatography coupled to sulfur chemiluminescence detection to measure the rates of H2S production and degradation by tissue homogenates at physiologically relevant concentrations of substrates. This method allows separation of H2S from other sulfur compounds and provides sensitivity of detection to ~15 pg (or 0.5 pmol) of H2S per injected sample. PMID:25725519

  3. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    2004-10-25

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at En'Urga Inc. The multi-spectral scanner was also evaluated using a blind DoE study at RMOTC. The performance of the scanner was inconsistent during the blind DoE study. However, most of the leaks were outside the view of the multi-spectral scanner. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, a rugged prototype scanner will be developed and evaluated, both at En'Urga Inc. and any potential field sites.

  4. Development of an Intelligent Hypertext Manual for the Space Shuttle Hazardous Gas Detection System

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Overbey, Glenn; Bangasser, Carl; Cegielski, Eric

    1992-01-01

    The Intelligent Hypertext Manual (IHM) for the Hazardous Gas Detection System (HGDS) of the Space Shuttle is described as an example of an integrated knowledge system. The IHM is described in terms of its design as a system for facilitating the interpretation of real-time data regarding hazardous gases and their successful and timely detection. Hypermedia technology is employed that incorporates text, video, and sound, and the architecture of the IHM integrated knowledge system is based on knowledge elements, a basic user interface, and integrated application software. Knowledge organization enhances the retrieval of documents for launch commit criteria, operations and maintenance requirements, flight-measurement location, and hypermedia incorporation. The integration of computer and AI technologies for the HGDS IHM demonstrates the potential for enhancing efficiency in aerospace operations with aerospace data that are easy to retrieve.

  5. Detection of Pristine Gas Two Billion Years After the Big Bang

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; O'Meara, John M.; Prochaska, J. Xavier

    2011-12-01

    In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.

  6. Detection of pristine gas two billion years after the Big Bang.

    PubMed

    Fumagalli, Michele; O'Meara, John M; Prochaska, J Xavier

    2011-12-01

    In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous. PMID:22075722

  7. THE INVISIBLE MAJORITY? EVOLUTION AND DETECTION OF OUTER PLANETARY SYSTEMS WITHOUT GAS GIANTS

    SciTech Connect

    Mann, Andrew W.; Gaidos, Eric; Gaudi, B. Scott

    2010-08-20

    We present 230 realizations of a numerical model of planet formation in systems without gas giants. These represent a scenario in which protoplanets grow in a region of a circumstellar disk where water ice condenses and the surface density of solids is enhanced (the 'ice line'), but fail to accrete massive gas envelopes before the gaseous disk is dispersed. Each simulation consists of a small number of gravitationally interacting oligarchs (protoplanets) and a much larger number of small bodies that represent the natal disk of planetesimals. Time zero of each simulation represents the epoch at which the gas has disappeared, and the dynamics are integrated for 5 billion years (Gyr). We investigate systems with varying initial number of oligarchs, oligarch spacing, location of the ice line, total mass in the ice line, and oligarch mean density. Systems become chaotic in {approx}1 Myr but settle into stable configurations in 10-100 Myr. We find: (1) runs consistently produce a 5-9 M {sub +} planet at a semimajor axis of 0.25-0.6 times the position of the ice line, (2) the distribution of planets' orbital eccentricities is distinct from, and skewed toward lower values than the observed distribution of (giant) exoplanet orbits, (3) Inner systems of two dominant planets (e.g., Earth and Venus) are not stable or do not form because of the gravitational influence of the innermost icy planet. The planets predicted by our model are unlikely to be detected by current Doppler observations. Microlensing is currently sensitive to the most massive planets found in our simulations, and may have already found several analogs. A scenario where up to 60% of stars host systems such as those we simulate is consistent with all the available data. We predict that, if this scenario holds, the NASA Kepler spacecraft will detect about 120 planets by two or more transits over the course of its 3.5 yr mission. Furthermore, we predict detectable transit timing variations exceeding 20 minutes

  8. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.

    PubMed

    Bakr, Waseem S; Gillen, Jonathon I; Peng, Amy; Fölling, Simon; Greiner, Markus

    2009-11-01

    Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyse the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard-regime optical lattice can be used for quantum simulations of solid-state models. The opposite approach is to build up microscopic quantum systems atom-by-atom, with complete control over all degrees of freedom. The atoms or ions act as qubits and allow the realization of quantum gates, with the goal of creating highly controllable quantum information systems. Until now, the macroscopic and microscopic strategies have been fairly disconnected. Here we present a quantum gas 'microscope' that bridges the two approaches, realizing a system in which atoms of a macroscopic ensemble are detected individually and a complete set of degrees of freedom for each of them is determined through preparation and measurement. By implementing a high-resolution optical imaging system, single atoms are detected with near-unity fidelity on individual sites of a Hubbard-regime optical lattice. The lattice itself is generated by projecting a holographic mask through the imaging system. It has an arbitrary geometry, chosen to support both strong tunnel coupling between lattice sites and strong on-site confinement. Our approach can be used to directly detect strongly correlated states of matter; in the context of condensed matter simulation, this corresponds to the detection of individual electrons in the simulated crystal. Also, the quantum gas microscope may enable addressing and read-out of large-scale quantum information systems based on ultracold atoms. PMID:19890326

  9. Detection of Greenhouse Gas Precursors from Diesel Engines Using Electrochemical and Photoacoustic Sensors

    PubMed Central

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO2 Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NOx and SO2 from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range. PMID:22163437

  10. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind DoE study at RMOTC. The performance of the scanner was inconsistent during the blind DoE study. However, most of the leaks were outside the view of the multi-spectral scanner. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. Electronic and mechanical design of the scanner to make it a self standing sensor was completed during the last six months of the project. The prototype scanner was tested with methane leaks at 15 feet and 30 feet, at a flow rate of 25 SCFH. The prototype scanner successfully detected the leaks. This concluded the project.

  11. Detection of greenhouse gas precursors from diesel engines using electrochemical and photoacoustic sensors.

    PubMed

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO(2) Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NO(x) and SO(2) from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range. PMID:22163437

  12. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2004-05-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  13. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  14. Detection and quantification of gas-phase oxidized mercury compounds by GC/MS

    NASA Astrophysics Data System (ADS)

    Jones, Colleen P.; Lyman, Seth N.; Jaffe, Daniel A.; Allen, Tanner; O'Neil, Trevor L.

    2016-05-01

    Most mercury pollution is emitted to the atmosphere, and the location and bioavailability of deposited mercury largely depends on poorly understood atmospheric chemical reactions that convert elemental mercury into oxidized mercury compounds. Current measurement methods do not speciate oxidized mercury, leading to uncertainty about which mercury compounds exist in the atmosphere and how oxidized mercury is formed. We have developed a gas chromatography/mass spectrometry (GC-MS)-based system for identification and quantification of atmospheric oxidized mercury compounds. The system consists of an ambient air collection device, a thermal desorption module, a cryofocusing system, a gas chromatograph, and an ultra-sensitive mass spectrometer. It was able to separate and identify mercury halides with detection limits low enough for ambient air collection (90 pg), but an improved ambient air collection device is needed. The GC/MS system was unable to quantify HgO or Hg(NO3)2, and data collected cast doubt upon the existence of HgO in the gas phase.

  15. Leak detection in gas pipeline by acoustic and signal processing - A review

    NASA Astrophysics Data System (ADS)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  16. [Raman Signal Enhancement for Gas Detection Using a Hollow Core Optical Fiber].

    PubMed

    Guo, Jin-jia; Yang, De-wang; Liu, Chun-hao

    2016-01-01

    Raman spectroscopy has been widely used for gas detection due to the advantages of simultaneous multiple species recognition, rapid analysis, and no sample preparation, etc. Low sensitivity is still a great limitation for Raman application. In this work a Raman system based on a hollow core optical fiber (HCOF) was built and the detection sensitivity for the gas was significantly improved. Also a comparison was carried out between the HCOF Raman system and back-scattering Raman system. The obtained results indicated that the HCOF Raman system could well enhance the signal while also for the background and noise. Using HCOF system, 60 folds signal enhancement was achieved with SNR improvement of 6 times for the N2 and O2 in air when comparing to the back-scattering system. While for the same signal intensity, with HCOF system the exposure time was well shortened to 1/60 and the noise was decreased to 1/2 than the back-scattering system. PMID:27228748

  17. Patterned electrode-based amperometric gas sensor for direct nitric oxide detection within microfluidic devices.

    PubMed

    Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E; Takayama, Shuichi

    2010-04-15

    This article describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin ( approximately 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. The electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65-0.75 V vs Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interfering agents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to the approximately 1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas-permeable microchannels, as they are stimulated with endotoxin. PMID:20329749

  18. Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.

    2011-12-01

    Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.

  19. Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane

    PubMed Central

    Tan, Qiulin; Pei, Xiangdong; Zhu, Simin; Sun, Dong; Liu, Jun; Xue, Chenyang; Liang, Ting; Zhang, Wendong; Xiong, Jijun

    2013-01-01

    In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal), the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements. PMID:23539025

  20. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data

    NASA Astrophysics Data System (ADS)

    Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.

    2013-05-01

    Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.

  1. The detection of single electrons using a Micromegas gas amplification and a MediPix2 CMOS pixel readout

    NASA Astrophysics Data System (ADS)

    Fornaini, A.; Campbell, M.; Chefdeville, M.; Colas, P.; Colijn, A. P.; van der Graaf, H.; Giomataris, Y.; Heijne, E. H. M.; Kluit, P.; Llopart, X.; Schmitz, J.; Timmermans, J.; Visschers, J. L.

    2005-07-01

    By placing a Micromegas gas gain grid on top of a CMOS pixel readout circuit (MediPix2), we developed a device which acts as a pixel-segmented direct anode in gas-filled detectors. With a He/Isobutane 80/20 mixture (capable of achieving gas gain factors up to 20×103) and employing a drift length of 15 mm, signals from radioactive sources and cosmic radiation were measured. Single primary electrons originating from the passage of cosmic muons through the gas volume were detected with an efficiency higher than 90%.

  2. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model.

    PubMed

    Jingyi, Zhu

    2015-01-01

    The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor. PMID:26198910

  3. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model

    PubMed Central

    Jingyi, Zhu

    2015-01-01

    The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor. PMID:26198910

  4. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  5. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  6. Seismic network detection capability within the natural gas fields in Northern Germany

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Plenefisch, Thomas

    2016-04-01

    The Northern German basin is a tectonic region of relatively low seismic activity with only singular and weak tectonic events. However, during the last decades seismicity raised in the vicinity of the natural gas fields. Due to the spatial vicinity of the epicenters to the operated gas fields and their appearance starting after the beginning of extraction they are ranked as induced events. The epicenters of these events extend 50 km NS and 400 km EW from the border to the Netherlands in the West to Altmark region in the East. Altogether, 63 events with ML 0.5 to 4.5 were detected between 1977 and 2015. Many of them were felt by parts of the inhabitants up to 15 km from the epicenter whereas the strongest one, the magnitude 4.5 event close to the village of Rotenburg on 20th October 2004, was even felt in Hamburg as far as 65 km from the epicenter. Several new installed surface and borehole stations have recently improved the monitoring capabilities in the region. The station network design and number of station varied significantly during the last years and only a few seismic stations were operational over the entire period. This variability was not taken into account for the assessment of the seismicity like the b-value and completeness. For some of the areas it is still difficult to detect and analyze events with magnitude below 2 due to bad noise conditions invoked by the thick sediments as well as to the relatively large area to be covered. Up to now, it is not clear whether the small number of fore- and aftershocks is an inherent characteristic of the induced events and thereby different from tectonic earthquake sequences or only the effect of the non appropriate seismic surveillance during the last decades. Seismicity in a low magnitude range could not be detected in some of the areas but should exist if the Gutenberg-Richter relation is valid. The detection capability can be one of the reasons and is now estimated for the main active areas as a function of

  7. Solid state gas sensors for detection of explosives and explosive precursors

    NASA Astrophysics Data System (ADS)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A

  8. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 104

    SciTech Connect

    Ross, G.A.

    1998-03-27

    A sample of solids was obtained from tank 104 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprenel tubing (Phthalate free). The sample obtained in a glass jar with Teflon 2 lid, was analyzed for PCBs as Aroclor mixtures. A soxhlet extraction procedure was used to extract the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). The extraction method closely follows SW-846 method 3540C and the analysis follows SW-846 method.

  9. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 101

    SciTech Connect

    Diaz, L.A.

    1998-02-04

    One waste sample that was obtained with solids from tank 101 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprene tubing (Phthalate free) was obtained in a glass jar with teflon lid was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Results are presented.

  10. Polychlorinate biphenyls (PCB) analysis report for solid sample for 219S tank 102

    SciTech Connect

    Ross, G.A.

    1997-12-05

    One waste sample was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Extraction follows closely method 354 C of SW-846, analysis follows SW-846 method 8082. A cross reference of laboratory sample number to the customer identification is given in a table.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Remote laser detection of natural gas leakages from pipelines

    NASA Astrophysics Data System (ADS)

    Petukhov, V. O.; Gorobets, V. A.; Andreev, Yu M.; Lanskii, G. V.

    2010-02-01

    A differential absorption lidar based on a tunable TEA CO2 laser emitting at 42 lines of the 'hot' 0111 — 1110 band in the range from 10.9 to 11.4 μm is developed for detecting natural gas leakages from oil pipelines by measuring the ethane content in the atmosphere. The ethane detection sensitivity is 0.9 ppm km. The presence of methane does not distort the measurement results. The developed lidar can detect the natural gas leakage from kilometre heights at the flying velocities up to 200 km h-1 and a probe pulse repetition rate of 5 Hz.

  12. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    SciTech Connect

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near

  13. Fiber methane gas detector based on harmonic detection and application in ventilation air methane power generation

    NASA Astrophysics Data System (ADS)

    Li, Yanfang; Wei, Yubin; Shang, Ying; Zhao, Yanjie; Zhang, Tingting; Zhao, Weisong; Wang, Chang; Liu, Tongyu

    2010-10-01

    A fiber methane detector based on spectrum absorption is reported. The methane monitor use a distributed feedback diode lasers(DFB) which is near infrared spectroscopy as the optic source, we realized online harmonic detection of the methane. The advantages of this detector include high precision, elimination of interference from humidity and other gases as well as long recalibration cycle. The detection of CH4 is very important in the methane power generation. Especially the detection of the tail gas with high temperature is the dependence to judge the generator. In this paper, we give some data witch gained from the local of methane power generation. The data reach an agreement with the measurements of the sensor using in mine. And the detector has the function of self reference, so the detector is more depended. This proved that the fiber methane detector can meet the needs of the generator. It have some contribution to the production safety of the mine and the energy saving and emission reduction and the environmental protection.

  14. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    SciTech Connect

    Caron, James N.; Kunapareddy, Pratima

    2014-02-18

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content.

  15. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    NASA Astrophysics Data System (ADS)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  16. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    PubMed Central

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  17. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    PubMed

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  18. Headspace gas chromatographic determination of methylene chloride in decaffeinated tea and coffee, with electrolytic conductivity detection.

    PubMed

    Page, B D; Charbonneau, C F

    1984-01-01

    A headspace gas chromatographic procedure is described for the determination of methylene chloride (MC) in decaffeinated tea and coffee. The tea or coffee sample, with added methylene bromide (MB) internal standard, is equilibrated for 1.5 h at 100 degrees C in aqueous sodium sulfate before manual headspace sampling. MC and MB are separated on a Porasil A column at 160 degrees C and detected by using a Coulson electrolytic conductivity detector. For coffee and tea samples spiked at 1.3 ppm MC, as well as commercially decaffeinated teas and coffees containing up to 8 ppm MC, coefficients of variation were 10% or less. For decaffeinated teas, problems involving sample homogeneity and loss of MC before sealing the headspace vial had to be overcome. Similar problems with decaffeinated instant and ground coffees were minimal. The headspace procedure was superior to a previously reported distillation technique. MC was readily detected at 0.05 ppm. Fourteen decaffeinated teas and 15 decaffeinated coffees were analyzed; MC was detected at levels that ranged up to 15.9 and 4.0 ppm, respectively. PMID:6469909

  19. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection

    NASA Astrophysics Data System (ADS)

    Li, Zhili; Wang, Zhen; Wang, Chao; Ren, Wei

    2016-05-01

    We reported the development of an evanescent-wave quartz-enhanced photoacoustic sensor (EW-QEPAS) using a single-mode optical fiber tip for sensitive gas detection in the extended near-infrared region. It is a spectroscopic technique based on the combination of quartz-enhanced photoacoustic spectroscopy with fiber-optic evanescent-wave absorption to achieve low optical noise, easy optical alignment, and high compactness. Carbon monoxide (CO) detection at 2.3 μm using a fiber-coupled, continuous-wave, distributed-feedback laser was selected for the sensor demonstration. By tapering the optical fiber down to 2.5 μm diameter using the flame-brushing technique, an evanescent field of ~0.6 mW around the fiber tip was absorbed by CO molecules. Besides an excellent linear response ( R 2 = 0.9996) to CO concentrations, the EW-QEPAS sensor achieved a normalized noise-equivalent absorption (NNEA) coefficient of 8.6 × 10-8 cm-1W/√Hz for an incident optical power of 1.8 mW and integration time of 1 s. The sensor detection sensitivity can be further improved by enhancing the evanescent-wave power on the fiber tip.

  20. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-04-15

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at En'Urga Inc. The multi-spectral scanner was also evaluated using a blind DoE study at RMOTC. The performance of the scanner was inconsistent during the blind DoE study. However, most of the leaks were outside the view of the multi-spectral scanner. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. Electronic design of the scanner to make it a self standing sensor is currently in progress. During the last six months of the project, the electronic and mechanical design will be completed and evaluated at En'Urga Inc.

  1. Novelty detection by multivariate kernel density estimation and growing neural gas algorithm

    NASA Astrophysics Data System (ADS)

    Fink, Olga; Zio, Enrico; Weidmann, Ulrich

    2015-01-01

    One of the underlying assumptions when using data-based methods for pattern recognition in diagnostics or prognostics is that the selected data sample used to train and test the algorithm is representative of the entire dataset and covers all combinations of parameters and conditions, and resulting system states. However in practice, operating and environmental conditions may change, unexpected and previously unanticipated events may occur and corresponding new anomalous patterns develop. Therefore for practical applications, techniques are required to detect novelties in patterns and give confidence to the user on the validity of the performed diagnosis and predictions. In this paper, the application of two types of novelty detection approaches is compared: a statistical approach based on multivariate kernel density estimation and an approach based on a type of unsupervised artificial neural network, called the growing neural gas (GNG). The comparison is performed on a case study in the field of railway turnout systems. Both approaches demonstrate their suitability for detecting novel patterns. Furthermore, GNG proves to be more flexible, especially with respect to dimensionality of the input data and suitability for online learning.

  2. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  3. Limited Streamer Tube System for Detecting Contamination in the Gas Used in the BaBar Instrumented Flux Return

    SciTech Connect

    Huntley, L.I.; /Franklin - Marshall Coll.

    2006-08-30

    The Resistive Plate Chambers (RPCs) initially installed in the Instrumented Flux Return (IFR) of the BABAR particle detector have proven unreliable and inefficient for detecting muons and neutral hadrons. In the summer of 2004, the BABAR Collaboration began replacing the RPCs with Limited Streamer Tubes (LSTs). LST operation requires a mixture of very pure gases and an operating voltage of 5500 V to achieve maximum efficiency. In the past, the gas supplies obtained by the BABAR Collaboration have contained contaminants that caused the efficiency of the IFR LSTs to drop from approximately 90% to approximately 60%. Therefore, it was necessary to develop a method for testing this gas for contaminants. An LST test system was designed and built using two existing LSTs, one placed 1 cm above the other. These LSTs detect cosmic muons in place of particles created during the BABAR experiment. The effect of gas contamination was mimicked by reducing the operating voltage of the test system in order to lower the detection efficiency. When contaminated gas was simulated, the coincidence rate and the percent coincidence between the LSTs in the test system dropped off significantly, demonstrating that test system can be used as an indicator of gas purity. In the fall of 2006, the LST test system will be installed in the gas storage area near the BABAR facility for the purpose of testing the gas being sent to the IFR.

  4. Estimation of seismically detectable portion of a gas plume: CO2CRC Otway project case study

    NASA Astrophysics Data System (ADS)

    Pevzner, Roman; Caspari, Eva; Bona, Andrej; Galvin, Robert; Gurevich, Boris

    2013-04-01

    CO2CRC Otway project comprises of several experiments involving CO2/CH4 or pure CO2 gas injection into different geological formations at the Otway test site (Victoria, Australia). During the first stage of the project, which was finished in 2010, more than 64,000 t of gas were injected into the depleted gas reservoir at ~2 km depth. At the moment, preparations for the next stage of the project aiming to examine capabilities of seismic monitoring of small scale injection (up to 15,000 t) into saline formation are ongoing. Time-lapse seismic is one of the most typical methods for CO2 geosequestration monitoring. Significant experience was gained during the first stage of the project through acquisition and analysis of the 4D surface seismic and numerous time-lapse VSP surveys. In order to justify the second stage of the project and optimise parameters of the experiment, several modelling studies were conducted. In order to predict seismic signal we populate realistic geological model with elastic properties, model their changes using fluid substitution technique applied to the fluid flow simulation results and compute synthetic seismic baseline and monitor volumes. To assess detectability of the time-lapse signal caused by the injection, we assume that the time-lapse noise level will be equivalent to the level of difference between the last two Otway 3D surveys acquired in 2009 and 2010 using conventional surface technique (15,000 lbs vibroseis sources and single geophones as the receivers). In order to quantify the uncertainties in plume imaging/visualisation due to the time-lapse noise realisation we propose to use multiple noise realisations with the same F-Kx-Ky amplitude spectra as the field noise for each synthetic signal volume. Having signal detection criterion defined in the terms of signal/time- lapse noise level on a single trace we estimate visible portion of the plume as a function of this criterion. This approach also gives an opportunity to attempt to

  5. Detecting Organic Compounds in Martian Soil Analogues Using Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Mahaffy, P. R.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil [l], suggesting the absence of a widely distributed Martian biota. However, Benner et d. have suggested that significant amounts of non-volatile organic compounds, possibly including oxidation products of bioorganic molecules (e.g. carboxylic acids) would not have been detected by the Viking GCMS [2]. Moreover, other key organic compounds important to biology, such as amino acids and nucleobases, would also likely have been missed by the Viking GCMS as these compounds require chemical derivatization to be stable in a GC column [3]. Recent pyrolysis experiments with a Mars soil analogue that had been innoculated with Escherichia coli bacteria have shown that amino acid decomposition products (amines) and nucleobases are among the most abundant products generated after pyrolysis of the bacterial cells [4,5]. At the part per billion level (Viking GCMS detection limit), these pyrolysis products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments [4]. Analytical protocols are under development for upcoming in situ lander opportunities to target several important biological compounds including amino acids and nucleobases. For example, extraction and chemical derivatization techniques [3] are being adapted for space flight use to transform reactive or fragile molecules that would not have been detected by the Viking GCMS instruments, into species that are sufficiently volatile to be detected by GCMS. Recent experiments carried out at NASA Goddard have shown that using this derivatization technique all of the targeted compounds

  6. Nonlinear photoacoustic response of opaque media in gas microphone signal detection

    NASA Astrophysics Data System (ADS)

    Madvaliev, U.; Salikhov, T. Kh.; Sharifov, D. M.; Khan, N. A.

    2006-03-01

    We have theoretically studied the effect of thermal nonlinearity, due to the temperature dependence of the thermophysical and optical parameters for thermally thick opaque media, on the characteristics of the fundamental photoacoustic signal when the signal is detected by a gas microphone. We have shown that the dependence of the amplitude of the nonlinear component of the signal on the intensity of the incident radiation I0 is expressed by means of the dependence of the temperature rise for the irradiated sample surface Θ0 on I0, and the thermal nonlinearity does not affect the phase of the photoacoustic signal. We propose a theory for generation of the second harmonic of the photoacoustic signal. We have established that the phase shift of the photoacoustic signal is equal to 3π/4, while its amplitude depends on the frequency (˜ω-3/2) and the intensity (˜ I{0/2}).

  7. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors

    PubMed Central

    La Notte, Mario; Troia, Benedetto; Muciaccia, Tommaso; Campanella, Carlo Edoardo; De Leonardis, Francesco; Passaro, Vittorio M. N.

    2014-01-01

    Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator. PMID:24618728

  8. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    2004-04-01

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first six months of the project, the design for a laboratory version of the multispectral scanner was completed. The optical, mechanical, and electronic design for the scanner was completed. The optical design was analyzed using Zeemax Optical Design software and found to provide sufficiently resolved performance for the scanner. The electronic design was evaluated using a bread board and very high signal to noise ratios were obtained. Fabrication of a laboratory version of the multi-spectral scanner is currently in progress. A technology status report and a research management plan was also completed during the same period.

  9. He-Ne and CW CO2 laser long-path systems for gas detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1986-01-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  10. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  11. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds. PMID:25430303

  12. Detecting different correlation regimes in a 1D Bose gas using in-situ absorption imaging

    NASA Astrophysics Data System (ADS)

    Salces-Carcoba, Francisco; Sugawa, Seiji; Yue, Yuchen; Putra, Andika; Spielman, Ian

    2016-05-01

    We present the realization of a single 1D Bose gas (1DBG) using a tightly focused Laguerre-Gauss beam as a waveguide for a 87Rb cloud. Axial confinement is provided by a weak trap that also sets the final density profile. A homogeneous 1DBG at T = 0 can be fully described by the dimensionless interaction parameter γ ~ 1/n, where n is the linear density; at sufficiently low densities the system becomes strongly interacting. An inhomogeneous (trapped) system can enter this description within the local density approximation (LDA) where the interaction parameter becomes position dependent γ(x) ~ 1/n(x). The system then displays different correlation regimes over its extension which can be detected by measuring its equation of state (EoS) or the density density correlations in real space using in-situ absorption imaging.

  13. Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection.

    PubMed

    Purcaro, Giorgia; Barp, Laura; Beccaria, Marco; Conte, Lanfranco S

    2016-12-01

    The profile of minor compounds, such as alcohols, sterols, free and alkyl fatty acids, waxes, etc., was investigated in different vegetable oils by a comprehensive gas chromatographic system, coupled with a simultaneous dual detection (flame ionisation detector and mass spectrometer) for quantitative and qualitative purposes. Such a system generated a unique two-dimensional chromatogram to be used as a chemical fingerprint. Multi-level information, due not only to a more "comprehensive" preparation technique, but also thanks to the exploitation of a more powerful and sensitive analytical determination allowed the extrapolation of diagnostic information from the minor components profile of different vegetable oils, along with their characteristic profile. Furthermore, an admixture of an extra virgin olive oil with a low amount of sunflower and palm oils was evaluated, attesting to the powerful diagnostic information provided by the proposed approach. PMID:27374590

  14. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    PubMed

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%. PMID:27283669

  15. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors.

    PubMed

    La Notte, Mario; Troia, Benedetto; Muciaccia, Tommaso; Campanella, Carlo Edoardo; De Leonardis, Francesco; Passaro, Vittorio M N

    2014-01-01

    Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10(-8) RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator. PMID:24618728

  16. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experimentsa)

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.; Batha, S. H.

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ˜400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  17. Possible Detection of Perchlorates by Evolved Gas Analysis of Rocknest Soils: Global Implication

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.; Sutter, B.; Ming, D. W.; McKay, C. P.; Navarro-Gonzalez, R.; Franz, H. B.; McAdam, A.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. Rocknest was selected as the source of the first samples analyzed because it is representative of both windblown material in Gale crater as well as the globally-distributed dust. The four samples analyzed by SAM were portioned from the fifth scoop at this location. The material delivered to SAM passed through a 150 m sieve and should have been well mixed during the sample acquisition/ preparation/handoff process. Rocknest samples were heated to 835 C at a 35 C/minute ramp rate with a He carrier gas flow rate of 1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar. Evolved gases were detected by a quadrupole mass spectrometer (QMS).

  18. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  19. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    SciTech Connect

    Herrmann, H. W. Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  20. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.

    PubMed

    Wolf, J-C; Schaer, M; P Siegenthaler, P; Zenobi, R

    2015-01-01

    Ultrasensitive direct gas-phase detection of chemical warfare agents (CWAs) is demonstrated utilizing active capillary plasma ionization and triple quadrupole mass spectrometry (MS) instrumentation. Four G- agents, two V-agents and various blistering agents [including sulfur mustard (HD)] were detected directly in the gas phase with limits of detection in the low parts per trillion (ng m(-3)) range. The direct detection of HD was shown for dry carrier gas conditions, but signals vanished when humidity was present, indicating a possible direct detection of HD after sufficient gas phase pretreatment. The method provided sufficient sensitivity to monitor directly the investigated volatile CWAs way below their corresponding minimal effect dose, and in most cases even below the eight hours worker exposure concentration. In general, the ionization is very soft, with little to no in-source fragmentation. Especially for the G-agents, some dimer formation occurred at higher concentrations. This adds complexity, but also further selectivity, to the corresponding mass spectra. Our results show that the active capillary plasma ionization is a robust, sensitive, "plug and play" ambient ionization source suited (but not exclusively) to the very sensitive detection of CWAs. It has the potential to be used with portable MS instrumentation. PMID:26307710

  1. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  2. Designing a reliable leak bio-detection system for natural gas pipelines.

    PubMed

    Batzias, F A; Siontorou, C G; Spanidis, P-M P

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. PMID:21177031

  3. Low-cost multispectral vegetation imaging system for detecting leaking CO₂ gas.

    PubMed

    Hogan, Justin A; Shaw, Joseph A; Lawrence, Rick L; Larimer, Randal M

    2012-02-01

    As a component of a multisensor approach to monitoring carbon sequestration sites for possible leaks of the CO₂ gas from underground reservoirs, a low-cost multispectral imaging system has been developed for indirect detection of gas leaks through observations of the resulting stress in overlying vegetation. The imager employs front-end optics designed to provide a full 50° field of view with a small, low-cost CMOS detector, while still maintaining quasi-collimated light through the angle-dependent interference filters used to define the spectral bands. Red and near-infrared vegetation reflectances are used to compute the normalized difference vegetation index (NDVI) and spatial and temporal patterns are analyzed statistically to identify regions of anomalous stress, which are then flagged for closer inspection with in-situ CO₂ sensors. The system is entirely self-contained with an onboard compact computer and is housed in a weather-proof housing to enable extended outdoor deployment. PMID:22307130

  4. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    PubMed

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time. PMID:23176364

  5. Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%. PMID:24818660

  6. Chemical warfare agent detection in complex environments with comprehensive two-dimensional gas chromatography

    NASA Astrophysics Data System (ADS)

    Reichenbach, Stephen E.; Ni, Mingtian; Kottapalli, Visweswara; Visvanathan, Arvind; Ledford, Edward B., Jr.; Oostdijk, John; Trap, Henk C.

    2003-08-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is an emerging technology for chemical separation that provides an order-of-magnitude increase in separation capacity over traditional gas chromatography. GCxGC separates chemical species with two capillary columns interfaced by two-stage thermal desorption. Because GCxGC is comprehensive and has high separation capacity, it can perform multiple traditional analytical methods with a single analysis. GCxGC has great potential for a wide variety of environmental sensing applications, including detection of chemical warfare agents (CWA) and other harmful chemicals. This paper demonstrates separation of nerve agents sarin and soman from a matrix of gasoline and diesel fuel. Using a combination of an initial column separating on the basis of boiling point and a second column separating on the basis of polarity, GCxGC clearly separates the nerve agents from the thousands of other chemicals in the sample. The GCxGC data is visualized, processed, and analyzed as a two-dimensional digital image using a software system for GCxGC image processing developed at the University of Nebraska - Lincoln.

  7. Non-invasive timing of gas gun projectiles with light detection and ranging

    NASA Astrophysics Data System (ADS)

    Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.

    2014-05-01

    We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.

  8. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas.

    PubMed

    Ringer, Joachim M

    2013-01-01

    The chemical warfare agents (CWA) Sarin, Soman, Cyclosarin and Tabun were characterised by proton transfer mass spectrometry (PTRMS). It was found that PTRMS is a suitable technique to detect nerve agents highly sensitively, highly selectively and in near real-time. Methods were found to suppress molecule fragmentation which is significant under PTRMS hollow cathode ionisation conditions. In this context, the drift voltage (as one of the most important system parameters) was varied and ammonia was introduced as an additional chemical reagent gas. Auxiliary chemicals such as ammonia affect ionisation processes and are quite common in context with detectors for CWAs based on ion mobility spectrometry (IMS). With both, variation of drift voltage and ammonia as the reagent gas, fragmentation can be suppressed effectively. Suppression of fragmentation is crucial particularly concerning the implementation of an algorithm for automated agent identification in field applications. On the other hand, appearance of particular fragments might deliver additional information. Degradation and rearrangement products of nerve agents are not distinctive for the particular agent but for the chemical class they belong to. It was found that switching between ammonia doped and ordinary water ionisation chemistry can easily be performed within a few seconds. Making use of this effect it is possible to switch between fragment and molecular ion peak spectra. Thus, targeted fragmentation can be used to confirm identification based only on single peak detection. PTRMS turned out to be a promising technique for future CWA detectors. In terms of sensitivity, response time and selectivity (or confidence of identification, respectively) PTRMS performs as a bridging technique between IMS and GC-MS. PMID:24308198

  9. Design, fabrication, and optimization of photo acoustic gas sensor for the trace level detection of NO2 in the atmosphere.

    PubMed

    Gondal, Mohammed A; Dastageer, Mohamed A

    2010-09-01

    Photoacoustic (PA) gas sensor for the detection of hazardous NO(2) with detection limit as low as few part per billion by volume (ppbV) has been designed and tested with pulsed UV laser. Some design optimization factors such as the optimum cell geometry, buffer gas etc has been proposed. It was found that a cylindrical cell with many acoustic filters considerably dampens the noise level and also argon as a buffer gas improves the photoacoustic signal level and this combination substantially improved the signal to noise ratio and the limit of detection. Ambiguous decline of photo acoustic signal at higher NO(2) concentration due to the adsorption of NO(2) on the walls of the photoacoustic cells and the dependence of this effect on the buffer gases are also discussed. The PA signal dependence on incident laser energy for three cells was also investigated. PMID:20665325

  10. Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method.

    NASA Astrophysics Data System (ADS)

    Hegerl, Gabriele C.; von Storch, Hans; Hasselmann, Klaus; Santer, Benjamin D.; Cubasch, Ulrich; Jones, Philip D.

    1996-10-01

    A strategy using statistically optimal fingerprints to detect anthropogenic climate change is outlined and applied to near-surface temperature trends. The components of this strategy include observations, information about natural climate variability, and a `guess pattern' representing the expected time-space pattern of anthropogenic climate change. The expected anthropogenic climate change is identified through projection of the observations onto an appropriate optimal fingerprint, yielding a scalar-detection variable. The statistically optimal fingerprint is obtained by weighting the components of the guess pattern (truncated to some small-dimensional space) toward low-noise directions. The null hypothesis that the observed climate change is part of natural climate variability is then tested.This strategy is applied to detecting a greenhouse-gas-induced climate change in the spatial pattern of near-surface temperature trends defined for time intervals of 15-30 years. The expected pattern of climate change is derived from a transient simulation with a coupled ocean-atmosphere general circulation model. Global gridded near-surface temperature observations are used to represent the observed climate change. Information on the natural variability needed to establish the statistics of the detection variable is extracted from long control simulations of coupled ocean-atmosphere models and, additionally, from the observations themselves (from which an estimated greenhouse warming signal has been removed). While the model control simulations contain only variability caused by the internal dynamics of the atmosphere-ocean system, the observations additionally contain the response to various external forcings (e.g., volcanic eruptions, changes in solar radiation, and residual anthropogenic forcing). The resulting estimate of climate noise has large uncertainties but is qualitatively the best the authors can presently offer.The null hypothesis that the latest observed 20-yr

  11. Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha

    2012-01-01

    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  13. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas

    NASA Astrophysics Data System (ADS)

    Wehinger, Andreas; Schmid, Alex; Mechtcheriakov, Sergei; Ledochowski, Maximilian; Grabmer, Christoph; Gastl, Guenther A.; Amann, Anton

    2007-08-01

    Background Determination of the diagnostic usefulness of proton transfer reaction mass spectrometry (PTR-MS) for detecting primary lung cancer through analysis of volatile organic compounds (VOCs) in exhaled human breath was demonstrated in this investigation. Unlike, for example, gas-chromatographic analyses, PTR-MS can be used without time-consuming preconcentration of the gas samples.Methods By means of PTR-MS, exhaled breath samples from primary lung cancer patients (n = 17) were analyzed and compared with both an overall control collective (controls total, n = 170) and three sub-collectives: hospital personnel (controls hospital, n = 35), age-matched persons (controls age, n = 25), and smokers (controls s, n = 60), respectively.Results Among the VOCs present at reasonably high concentrations, the ones leading to the product ion at m/z = 31 (VOC-31, tentatively protonated formaldehyde) and m/z = 43 (VOC-43, tentatively a fragment of protonated iso-propanol), were found at significantly higher concentrations in the breath gas of the primary lung cancer patients as compared to the healthy controls at the following median concentrations (with interquartile distance, iqr): For VOC-31 the median concentrations were 7.0 ppb (iqr, 15.5 ppb) versus 3.0 ppb (iqr, 1.9 ppb) with P < 10-4. For VOC-43 the median concentrations were 244.1 ppb (iqr, 236.2 ppb) versus 94.1 ppb (iqr, 55.2 ppb) with P < 10-6. The discriminative power between the two collectives was further assessed by ROC-curves obtained upon variation of the chosen threshold concentration and by Fisher's Quadratic Discriminant Method.Conclusions Within the limits of pilot study, VOC-31 and -43 were found to best discriminate between exhaled breath of primary lung cancer cases and healthy controls. Simple and time-saving breath gas analysis by PTR-MS makes this method attractive for a larger clinical evaluation. It may become a new valuable tool for diagnosing primary lung cancer.

  14. A ground-based trace gas observing system for detection of Arctic and Boreal change

    NASA Astrophysics Data System (ADS)

    Karion, A.; Miller, J. B.; Sweeney, C.; Bruhwiler, L.; Newberger, T.; Miller, C. E.; Dinardo, S. J.; Wolter, S.; Ledlow, L.

    2012-12-01

    /fall wetland emissions to be evident as a late summer/early fall bulge. Moreover, analysis of δ13C of CH4 has also indicated that methane consumption by OH masks a substantial biogenic (mostly wetland) source in summer. Starting summer 2012, 14C of CH4 measurements were initiated to help determine the age of the biogenic emissions. In addition to biogenic tracers, a large suite of measured anthropogenic tracers can be used to identify periods of transport from both local (i.e. Fairbanks) and mid-latitude sources of pollutant CO, CO2 and CH4. As a whole, our tower measurements represent an important component of detecting trace gas emissions from permafrost.

  15. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    PubMed Central

    Heasler, Patrick; Posse, Christian; Hylden, Jeff; Anderson, Kevin

    2007-01-01

    This paper presents a nonlinear Bayesian regression algorithm for detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remote-sensing spectra, and the terrestrial (or atmospheric) parameters that are estimated is typically littered with many unknown “nuisance” parameters. Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. The generated LWIR scenes contain plumes of varying intensities, and this allows estimation uncertainty and probability of detection to be quantified. The results show that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty. Specifically, the methodology produces a standard error that is more realistic than that produced by matched filter estimation.

  16. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.

    PubMed

    Sekhar, Praveen K; Brosha, Eric L; Mukundan, Rangachary; Linker, Kevin L; Brusseau, Charles; Garzon, Fernando H

    2011-06-15

    In this article, selective and sensitive detection of trace amounts of pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) is demonstrated. The screening system is based on a sampling/concentrator front end and electrochemical potentiometric gas sensors as the detector. Preferential hydrocarbon and nitrogen oxide(s) mixed potential sensors based on lanthanum strontium chromite and Pt electrodes with yttria stabilized zirconia (YSZ) solid electrolyte were used to capture the signature of the explosives. Quantitative measurements based on hydrocarbon and nitrogen oxide sensor responses indicated that the detector sensitivity scaled proportionally with the mass of the explosives (1-3 μg). Moreover, the results showed that PETN, TNT, and RDX samples could be discriminated from each other by calculating the ratio of nitrogen oxides to hydrocarbon integrated area under the peak. Further, the use of front-end technology to collect and concentrate the high explosive (HE) vapors make intrinsically low vapor pressure of the HE less of an obstacle for detection while ensuring higher sensitivity levels. In addition, the ability to use multiple sensors each tuned to basic chemical structures (e.g., nitro, amino, peroxide, and hydrocarbon groups) in HE materials will permit the construction of low-cost detector systems for screening a wide spectrum of explosives with lower false positives than present-day technologies. PMID:21435779

  17. Detection of metabolites of trapped humans using ion mobility spectrometry coupled with gas chromatography.

    PubMed

    Vautz, Wolfgang; Slodzynski, Rafael; Hariharan, Chandrasekhara; Seifert, Luzia; Nolte, Jürgen; Fobbe, Rita; Sielemann, Stefanie; Lao, Bolan C; Huo, Ran; Thomas, C L Paul; Hildebrand, Lars

    2013-02-19

    For the first time, ion mobility spectrometry coupled with rapid gas chromatography, using multicapillary columns, was applied for the development of a pattern of signs of life for the localization of entrapped victims after disaster events (e.g., earthquake, terroristic attack). During a simulation experiment with entrapped volunteers, 12 human metabolites could be detected in the air of the void with sufficient sensitivity to enable a valid decision on the presence of a living person. Using a basic normalized summation of the measured concentrations, all volunteers involved in the particular experiments could be recognized only few minutes after they entered the simulation void and after less than 3 min of analysis time. An additional independent validation experiment enabled the recognition of a person in a room of ∼25 m(3) after ∼30 min with sufficiently high sensitivity to detect even a person briefly leaving the room. Undoubtedly, additional work must be done on analysis time and weight of the equipment, as well as on validation during real disaster events. However, the enormous potential of the method as a significantly helpful tool for search-and-rescue operations, in addition to trained canines, could be demonstrated. PMID:23249433

  18. Does Moisture Influence the Chemical Detection of Gas Molecules Adsorbed on Single-Wall Carbon Nanotubes?

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2009-03-01

    In this work, the role of water in the detection of hydrazine (N2H4) by a single-wall carbon nanotube (SWCNT) is investigated using first principles electronic structure calculations (DFT/GGA--USPP)[1]. This calculation is undertaken to interpret the experimental resistivity measurements for N2H4 adsorbed on SWCNT that reveal an n-type behavior [2]. Our preliminary theoretical studies of the adsorption of N2H4 on SWCNT revealed physisorption for N2H4 and an unaltered band structure for the SWCNT [3]. This prompted us to look into the role of water on the bonding of N2H4 to the SWCNT. We found that, by introducing a monolayer of water film on the (8,0) SWCNT, the adsorption of N2H4 can introduce occupied states near the Fermi level, exhibiting an n-type behavior. However, the introduction of just few water molecules was not sufficient to influence the electronic structure of N2H4/SWCNT. Presently, we are studying the influence of water films on the chemical detection of a variety of other gas molecules (N2, NH3, etc.) by SWCNTs, and the results from such studies will also be reported. [1]. G. Kresse et al. Phys. Rev. B 54, 11169 (1996). [2]. S. Desai, et al. (APS, March 2008). [3]. M. Yu, et al. (APS, March 2008).

  19. [Determination and distribution of sulfur compounds in coked gasoline by gas chromatography-sulfur chemiluminescence detection].

    PubMed

    Yang, Yongtan; Wang, Zheng

    2007-05-01

    The method for the separation and determination of sulfur compounds in coked gasoline by gas chromatography-sulfur chemiluminescence detection (GC-SCD) was established. Seventy-four sulfur compounds including hydrogen sulfide, mercaptans, sulfides, disulfides, thiophene, alkyl thiophenes, benzothiophene, alkyl benzothiophenes in a coked gasoline sample were identified by standard samples and past identified results. The retention indexes of different sulfur compounds in coked gasoline under programmed temperature condition were calculated based on the retention times of hydrosulfide, ethyl mercaptan, n-propyl mercaptan, thiophene, 2-methyl thiophene, 2-ethylthiophene, 2-propylthiophene, C4-thiophene (t(R) = 40.28 min), benzothiophene, and methylbenzothiophene (t(R) = 58.13 min). The relative standard deviations of the determination results of main sulfur compounds (isopropyl mercaptan, n-propyl mercaptan, n-butyl mercaptan, 2-methylthiophene, 3-methylthiophene, 2, 4-dimethylthiophene, 2,3,4-trimethylthiophene) in coked gasoline were less than 5%, and the detection limit for sulfur was 0.05 mg/L. The linear range of sulfur was 0.2 - 400 mg/L for each sulfur compounds (r2 = 0. 999). The contents of sulfur compounds, especially the content of mercaptan, are much more than those in the catalytic gasoline. There is also a big difference in the sulfur contents between 2-methylthiophene and 3-methylthiophene. The data can be useful for the study of hydrodesulfurizing catalyst and industrial process planning. PMID:17679435

  20. The gas-liquid chromatograph and the electron capture detection in equine drug testing.

    PubMed Central

    Blake, J. W.; Tobin, T.

    1976-01-01

    Three gas-liquid chromatographic (G.L.C.) procedures discussed have been designed around the four "esses" of detection tests--speed, sensitivity, simplicity, and specificity. These techniques are admirably applicable to the very low plasma drug levels encountered in blood testing under pre-race conditions. The methods are equally applicable to post-race testing procedures, where both blood and urine samples are tested. Drugs can only rarely be detected by the electron capture detector (E.C.D.) without a prior derivatization step, which conveys to the drug(s) high electron affinity. Because of broad applicability, two derivatizing agents, heptafluorobutyric (HFBA) and pentafluorpropionic (PFPA) anhydrides are employed. The three techniques, allowing broad coverage of various drug classes are: 1) direct derivatization of drugs to form strongly electron capturing amides and esters. 2) reductive fragmentation of drugs with lithium aluminum hydride to form alcohols, with conversion to ester derivatives. 3) oxidative fragmentation of drugs with potassium dichromate to form derivatizable groups, followed by direct derivatization. PMID:1000157

  1. Electrical detection of spin transport in Si two-dimensional electron gas systems.

    PubMed

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and [Formula: see text] at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices. PMID:27479155

  2. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection.

    PubMed

    Tiscione, Nicholas B; Alford, Ilene; Yeatman, Dustin Tate; Shan, Xiaoqin

    2011-09-01

    Ethanol is the most frequently identified compound in forensic toxicology. Although confirmation involving mass spectrometry is desirable, relatively few methods have been published to date. A novel technique utilizing a Dean's Switch to simultaneously quantitate and confirm ethyl alcohol by flame-ionization (FID) and mass spectrometric (MS) detection after headspace sampling and gas chromatographic separation is presented. Using 100 μL of sample, the limits of detection and quantitation were 0.005 and 0.010 g/dL, respectively. The zero-order linear range (r(2) > 0.990) was determined to span the concentrations of 0.010 to 1.000 g/dL. The coefficient of variation of replicate analyses was less than 3.1%. Quantitative accuracy was within ±8%, ±6%, ±3%, and ±1.5% at concentrations of 0.010, 0.025, 0.080, and 0.300 g/dL, respectively. In addition, 1,1-difluoroethane was validated for qualitative identification by this method. The validated FID-MS method provides a procedure for the quantitation of ethyl alcohol in blood by FID with simultaneous confirmation by MS and can also be utilized as an identification method for inhalants such as 1,1-difluoroethane. PMID:21871160

  3. Algorithms for near real-time detection of gas leaks from buried pipelines using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Hoffmann, G. D.; Silver, E. A.; Pickles, W.; Male, E.

    2009-12-01

    Gas leaks from buried pipelines can directly impact the health of overlying vegetation. The leak can produce patches of highly stressed or dead vegetation. Plant health can be assessed remotely by measuring the depth of the chlorophyll absorption, which is located between 550 nm and 700 nm in reflectance imagery. Chlorophyll absorption is readily recognizable in multispectral and hyperspectral imagery as a strong absorption band centered on red light (typically 680 nm wavelength). We have examined several methods of measuring chlorophyll absorption with the goal of automating vegetation stress detection above underground pipelines in order to facilitate same-day detection of potential pipeline leak locations. One method, in which we measure vegetation stress as the ratio of the measured reflectance at peak absorption to the spectral continuum, was particularly successful. We compare the results of this measurement with a manual analysis of 0.18 m resolution imagery of several controlled CO2 leaks, finding the automatic analysis to be robust. High spatial resolution is shown to greatly increase the quality of the results, however, we show that this method works in even 3 m resolution imagery of an underground pipeline methane leak. This algorithm runs very quickly for large images. We are developing the image analysis algorithm to operate in real-time while flying buried pipeline right of way with hyperspectral sensors.

  4. Electrical detection of spin transport in Si two-dimensional electron gas systems

    NASA Astrophysics Data System (ADS)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin–orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  5. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    SciTech Connect

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  6. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    USGS Publications Warehouse

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  7. Nano Sensors for Gas Detection in Space and Ground Support Applications

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.

    2006-01-01

    Personnel living in a space environment as well as technicians and engineers preparing spacecraft for launch can potentially be exposed to small amounts of hazardous gases. It is therefore important to be able to detect, identify and quantify the presence of a gas especially when its presence could lead to a fatal situation. The use of small and sensitive sensors can allow for the placement of these devices over a large area, thus allowing for a more precise and timely determination of a gas leak. ASRC Aerospace and its research partners are developing nano sensors for detection of various gases, including but not limited to: H2, NH3, N2O4, hydrazine and others. Initial laboratory testing has demonstrated the capability to detect the gases in concentrations lower than parts per million. Testing and development is continuing to improve the response and recovery times, to increase the sensitivity of the devices. Different coatings and electrodes are currently being evaluated to determine the optimum configuration of a variety of gases. The small footprint of the Nano sensors allows for several devices, each responsive in a different way to different gases, to be placed into a single substrate. Multiple devices embedded into a single substrate results in increased reliability and in a decrease for periodic calibrations. The use of different coatings will result in a small electronic nose capable of distinguishing between different gases. A multi-channel signal conditioner amplifier built on a small multi chip module is used to process the output of the sensors and to deliver a signal that can be remotely monitored. All the data is digitized and transmitted over the same cable pair used to power the amplifier. Multiple outputs can be connected to a single cable pair in order to minimize the added weight and expense associated with cabling in a spacecraft. The sensors will be run through a qualification process to evaluate their suitability for space applications we are

  8. Increasing the selectivity and sensitivity of gas sensors for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Mallin, Daniel

    Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user. In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization. It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst. An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from

  9. Simultaneous detection of ten psychedelic phenethylamines in urine by gas chromatography-mass spectrometry.

    PubMed

    Kerrigan, Sarah; Banuelos, Stephanie; Perrella, Laura; Hardy, Brittany

    2011-09-01

    Psychedelic phenethylamines are an emerging class of designer drugs capable of producing a complex array of sought after adrenergic and hallucinogenic effects. Toxicological detection poses a number of challenges to laboratories. The purpose of this study was to develop a procedure for the detection of psychedelic amphetamines using techniques that are widely accepted in forensic toxicology laboratories. In all, 10 target analytes were selected: 2,5-dimethoxy-4-bromophenethylamine (2C-B), 2,5-dimethoxyphenethylamine (2C-H), 2,5-dimethoxy-4iodophenethylamine (2C-I), 2,5-dimethoxy-4ethylthiophenethylamine (2C-T-2), 2,5-dimethoxy-4-(n)propylthiophenethylamine (2C-T-7), 4-methylthioamphetamine (4-MTA), 2,5-dimethoxy-4-bromoamphetamine (DOB), 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy4-iodoamphetamine (DOI), and 2,5-dimethoxy-4methylamphetamine (DOM). Target drugs in urine were analyzed by gas chromatography in selected ion monitoring mode after mixed-mode solid-phase extraction. Limits of detection for all analytes were 2-10 ng/mL, and limits of quantitation were 10 ng/mL or less. Precision evaluated at 50 and 500 ng/mL yielded CVs of 0.4-7.9% and accuracy in the range 91-116%. Calibration curves were linear to 1500 ng/mL using mescaline-d₉ as the internal standard. No carryover was evident at 5000 ng/mL (the highest concentration tested) and no interferences were observed from the presence of other structurally related compounds or endogenous bases. PMID:21871155

  10. Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.

    PubMed

    Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang

    2015-03-01

    Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors. PMID:26413689

  11. Detection threshold energy of high energy cascade showers using thermoluminescence PTFE-sheet and hot-gas reader

    NASA Technical Reports Server (NTRS)

    Kino, S.; Nakanishi, A.; Miono, S.; Kitajima, T.; Yanagita, T.; Nakatsuka, T.; Ohmori, N.; Hazama, M.

    1985-01-01

    A new thermoluminescence (TL) sheet was developed as a detector for high energy components in air showers. For the investigation of detection threshold energy for a cascade showeer, TL sheets were exposed at Mt. Fuji with X ray films in emulsion chambers and were scanned by a hot-gas reader. It is concluded that if a gamma ray whose energy is more than 6 TeV enters vertically into lead chambers, the resulting cascade shower is readily detectable at maximum development.

  12. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  13. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  14. Development of a Chemiluminescence Method for Gas-Phase HO2 Detection

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Lloyd, J.; Springston, S.

    2003-12-01

    Hydroperoxyl Radical (HO2) is a highly reactive intermediate species that participates in photochemical processes in the troposphere. Accurate measurement of HO2 will facilitate the verification of the ozone production mechanism used by the atmospheric chemistry community. HO2 is also the major source of H2O2, which is responsible for the oxidation of SO2 in droplets. Here, we describe a new HO2 detection method based on flow injection analysis (FIA) with a chemiluminescence detector. Gas-phase HO2 is first scrubbed into a pH 9 borax buffer solution, then injected into a chemiluminescence detector, where HO2 and its conjugate base O2- react with MCLA, a synthetic analog of the luciferin from the crustacean Cypridina, to emit light at 465 nm. This technique shows high sensitivity (DL = 0.1 nM in liquid phase or 1 pptv in gas phase) and selectivity for the HO2 / O2- system. A unique feature of our technique is the calibration with a radiolytic method that uses a 60Co gamma ray source to quantitatively produce stable aqueous HO2 / O2- standards. This calibration method is highly reproducible, producing an instrument response that varies less than 5% from day to day. We tested our instrument in the meteorology field at Brookhaven National Laboratory (BNL), which is considered a clean remote rural site with background ozone levels about 30 ppbv. On July 17, 2003, a clear sunny day, with a steady NW wind, HO2 started to build up after sunrise and reached a maximum of 9 pptv at about 3 pm local time, approximately two hours after the maximum solar intensity. Our technique has the advantages of simplicity, low cost and ease of operation. It is especially suitable for field measurements, where space and energy resources are usually limited.

  15. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide

    PubMed Central

    Toombs, Christopher F; Insko, Michael A; Wintner, Edward A; Deckwerth, Thomas L; Usansky, Helen; Jamil, Khurram; Goldstein, Brahm; Cooreman, Michael; Szabo, Csaba

    2010-01-01

    INTRODUCTION Hydrogen sulphide (H2S) is an endogenous gaseous signaling molecule and potential therapeutic agent. Emerging studies indicate its therapeutic potential in a variety of cardiovascular diseases and in critical illness. Augmentation of endogenous sulphide concentrations by intravenous administration of sodium sulphide can be used for the delivery of H2S to the tissues. In the current study, we have measured H2S concentrations in the exhaled breath of healthy human volunteers subjected to increasing doses sodium sulphide in a human phase I safety and tolerability study. METHODS We have measured reactive sulphide in the blood via ex vivo derivatization of sulphide with monobromobimane to form sulphide-dibimane and blood concentrations of thiosulfate (major oxidative metabolite of sulphide) via ion chromatography. We have measured exhaled H2S concentrations using a custom-made device based on a sulphide gas detector (Interscan). RESULTS Administration of IK-1001, a parenteral formulation of Na2S (0.005–0.20 mg kg−1, i.v., infused over 1 min) induced an elevation of blood sulphide and thiosulfate concentrations over baseline, which was observed within the first 1–5 min following administration of IK-1001 at 0.10 mg kg−1 dose and higher. In all subjects, basal exhaled H2S was observed to be higher than the ambient concentration of H2S gas in room air, indicative of on-going endogenous H2S production in human subjects. Upon intravenous administration of Na2S, a rapid elevation of exhaled H2S concentrations was observed. The amount of exhaled H2S rapidly decreased after discontinuation of the infusion of Na2S. CONCLUSION Exhaled H2S represents a detectable route of elimination after parenteral administration of Na2S. PMID:20565454

  16. Detection efficiency of a high-pressure gas scintillation proportional chamber.

    PubMed

    Fahey, F H; Zimmerman, R E; Judy, P F; Lanza, R C

    1987-01-01

    The detection efficiency of a high-pressure, gas scintillation proportional chamber (GSPC), designed for medical imaging in the 30-150 keV energy range, has been investigated through measurement and Monte Carlo simulation. Measurements were conducted on a GSPC containing 4 atm of pure xenon separated from a hexagonal array of seven ultraviolet-sensitive photomultiplier tubes by 1.27-cm-thick fused-silica windows. Experimental measurements of the photopeak efficiency, fluorescence escape efficiency, and the energy collection efficiency were obtained. Results were also obtained for different photon energies and different values of temporal resolution. The measurements were compared with the results obtained from a Monte Carlo simulation designed specifically for investigating the imaging of low-energy photons (below 150 keV) with a gas-filled detector. The simulation was used to estimate photopeak efficiency, fluorescence escape efficiency, photopeak-to-fluorescence escape peak ratio, quantum interaction efficiency, energy collection efficiency, and local energy collection efficiency. The photopeak efficiency of the GSPC relative to that of a 3-in. (7.62-cm)-thick sodium iodide crystal was measured to be 0.284 +/- 0.001 at 60 keV and 0.057 +/- 0.001 at 140 keV. Of the 60-keV photons incident upon the detector, 70% +/- 4% interacted in the detector, with 28% +/- 1% being in the photopeak, as estimated both by experimentation and through the simulation. The maximum energy collection efficiency was found to be 65% at 60 keV, with 46% being deposited within 0.2 cm of the initial photon interaction. The information gained from this study is being used to design an optimized detector for use in specialized nuclear medicine studies. PMID:3561331

  17. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection

    NASA Astrophysics Data System (ADS)

    Qin, Qiming; Zhang, Zili; Chen, Li; Wang, Nan; Zhang, Chengye

    2016-01-01

    This paper proposes a method that combined hyperspectral remote sensing with super-low-frequency (SLF) electromagnetic detection to extract oil and gas reservoir characteristics from surface to underground, for the purpose of determining oil and gas exploration target regions. The study area in Xinjiang Karamay oil-gas field, China, was investigated. First, a Hyperion dataset was used to extract altered minerals (montmorillonite, chlorite, and siderite), which were comparatively verified by field survey and spectral measurement. Second, the SLF electromagnetic datasets were then acquired where the altered minerals were distributed. An inverse distance weighting method was utilized to acquire two-dimensional profiles of the electrical feature distribution of different formations on the subsurface. Finally, existing geological data, field work, and the results derived from Hyperion images and SLF electromagnetic datasets were comprehensively analyzed to confirm the oil and gas exploration target region. The results of both hyperspectral remote sensing and SLF electromagnetic detection had a good consistency with the geological materials in this study. This paper demonstrates that the combination of hyperspectral remote sensing and SLF electromagnetic detection is suitable for the early exploration of oil and gas reservoirs, which is characterized by low exploration costs, large exploration areas, and a high working efficiency.

  18. SIMULTANEOUS DETERMINATION OF ORGANOTIN, ORGANOLEAD, AND ORGANOMERCURY COMPOUNDS IN ENVIRONMENTAL SAMPLES USING CAPILLARY GAS CHROMATOGRAPHY WITH ATOMIC EMISSION DETECTION

    EPA Science Inventory

    As part of a continuing evaluation of new analytical and sample preparation techniques conducted by the US Environmental Protection Agency (EPA), the use of capillary gas chromatography with atomic emission detection (GC-AED) for the simultaneous determination of organotin, organ...

  19. CAPILLARY GAS CHROMATOGRAPHY-ATOMIC EMISSION DETECTION METHOD FOR THE DETERMINATION OF PENTYLATED ORGANOTIN COMPOUNDS: INTERLABORATORY STUDY

    EPA Science Inventory

    A capillary gas chromatography-atomic emission detection (GC-AED) method was developed for the U. S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, NV, for determination of selected organotin compounds. Here we report on an interlabora...

  20. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  1. Gas chromatography using a resistively heated column with mass spectrometric detection for rapid analysis of pyridine released from Bacillus spores.

    PubMed

    Smith, Philip A; MacDonald, Stephen

    2004-05-21

    Gas chromatography using a resistively heated analytical column with full scan electron impact mass spectrometry (EI-MS) was used to detect pyridine generated from heating Bacillus spores in a custom designed furnace inlet, along with gasoline range aromatic (GRA) hydrocarbons representing an environmental contaminant that could interfere with detection of the biologically-derived compound. Gas phase materials from the furnace inlet were collected onto a section of cooled open tubular column, and carrier gas flow was then routed through the trapping column onto the analytical column. Both sections of column were contained within low thermal mass tubular metal sheaths, with each independently and resistively heated allowing rapid temperature ramps and cooling. An analysis time of 2 min resolved spore-derived pyridine from the other organics, and allowed identification by mass spectrum match. Throughput of 20 analyses per hour was shown to be possible with a 1-min column cool-down time between analyses. PMID:15146930

  2. A procedure for comprehensive two-dimensional gas chromatography retention time locked dual detection.

    PubMed

    Mommers, John; Ritzen, Erik; Dutriez, Thomas; van der Wal, Sjoerd

    2016-08-26

    In this paper, a novel, and easy to perform, retention time locking procedure for locking primary and secondary retention times of detector signals in comprehensive two-dimensional gas chromatography (GCxGC) dual-detection is proposed and its advantages are demonstrated and discussed. The dual detection retention time locking procedure is a 2-step process for a GCxGC system in which the effluent of the primary column is split, by using a pressure regulated splitter, towards the GCxGC modulator using two identical secondary GC columns of which one is installed in the main GC oven and the other is installed in a secondary GC oven. The first step of the locking procedure is to minimize the secondary retention time difference between both detectors of a compound, which has a retention factor (k) close to 0. This is done by stepwise altering the effective secondary column length, simply by sliding the secondary column, which is installed in the main oven, forwards or backwards through the modulator. The second step is to minimize the secondary retention time difference of a compound which has a significant retention in both dimensions. This is done by stepwise altering the secondary oven temperature rate. This locking procedure was successfully demonstrated for the analysis of a diesel sample by GCxGC coupled to a time of flight mass spectrometer (TOFMS) and a nitrogen chemiluminescence detector (NCD) and by GCxGC coupled to a TOFMS and a flame ionization detector (FID). For all compounds the average absolute secondary retention time differences between the NCD or the FID and the TOFMS detectors were 0.03, and 0.07s, respectively, which are significantly less than the average peak widths at half heights, which was 0.2s. PMID:27466154

  3. Determination of Prometryn in Vetiver Grass and Water Using Gas Chromatography-Nitrogen Chemiluminescence Detection.

    PubMed

    Sun, Shixian; Li, Yongmei; Lv, Ping; Punamiya, Pravin; Sarkar, Dibyendu; Dan, Youming; Ma, Junrong; Zheng, Yi

    2016-02-01

    Nitrogen chemiluminescence detector (NCD) is a nitrogen-specific detector that responds to ammonia, hydrazine, hydrogen cyanide and nitrogen oxide. A method to analyze the herbicide prometryn in plant and water samples was developed using gas chromatograph (GC) coupled with NCD. Extracts from plant (vetiver grass) and water matrices were analyzed for prometryn using an Agilent 7890A GC coupled with an Agilent 255 NCD in a split injection mode with a ratio of 2 : 1. Separation was carried out at 200°C and combustion at 1,018°C with H2 and O2 following optimized method development conditions. The percent recovery of prometryn in the two different matrices tested ranged from 81 to 107%, with relative standard deviations varying from 0.10 to 3.30% for spiked samples. Detection limit of the proposed method was 0.02 µg mL(-1) and the limit of quantification was 0.06 µg mL(-1). The proposed GC-NCD method was successfully applied to determine prometryn extracted from plant and water samples without potential interference of S-triazine, a pesticide from the same group. PMID:26250891

  4. Detection of very large ions in aircraft gas turbine engine combustor exhaust: charged small soot particles?

    NASA Astrophysics Data System (ADS)

    Wilhelm, S.; Haverkamp, H.; Sorokin, A.; Arnold, F.

    Small electrically charged soot particles (CSP) present in the exhaust of a jet aircraft engine combustor have been detected by a Large Ion Mass Spectrometer and quantitatively measured by an Ion Mobility Analyzer. The size and concentration measurements which took place at an aircraft gas-turbine engine combustor test-rig at the ground covered different combustor conditions (fuel flow=FF, fuel sulphur content=FSC). At the high-pressure turbine stage of the engine, CSP-diameters were mostly around 6 nm and CSP-concentrations reached up to 4.8×10 7 cm -3 (positive and negative) corresponding to a CSP-emission index ECSP=2.5×10 15 CSP kg -1 fuel burnt. The ECSP increased with FF but did not increase with FSC. The latter indicates that sulphur was not a major component of the large ions. Possible CSP-sources and CSP-sinks as well as CSP-roles are discussed.

  5. Lyapunov-Based Sensor Failure Detection And Recovery For The Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Haralambous, Michael G.

    2001-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in terms of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  6. LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Haralambous, Michael G.

    2002-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  7. Direct estimation of carbaryl by gas liquid chromatography with nitrogen phosphorus detection.

    PubMed

    Battu, Raminderjit Singh; Mandal, Kousik; Urvashi; Pandher, Suneet; Takkar, Reenu; Singh, Balwinder

    2012-07-01

    A simple and efficient analytical method was standardized for the estimation of residues of carbaryl in various substrates comprising grape berries, kinnow pulps, kinnow rind and soil. The samples were refluxed using mixture of methanol: 0.5 N HCl (1:1 v/v); diluted with brine solution, partitioned into chloroform and dried over anhydrous sodium sulfate. Further the samples were treated with anhydrous magnesium sulfate and primary secondary amine. Final clear extracts were concentrated under vacuum and reconstituted the volume into acetone. The residues were estimated directly on gas liquid chromatograph equipped with nitrogen phosphorus detection system equipped with a capillary column packed with 5 % diphenyl 95 % dimethyl polysiloxane non-polar phase. A consistent recovery from 82 % to 97 % for carbaryl was observed when samples were spiked at levels ranging from 0.05 to 1.00 mg kg(-1). The limit of quantification of the method was worked out to be 0.05 mg kg(-1) for grape berries, kinnow pulp, kinnow rind and soil. PMID:22487961

  8. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    SciTech Connect

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  9. Naturally fractured tight gas reservoir detection optimization. Quarterly status report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-04-15

    The objective of the study will be to demonstrate the geological and geophysical technology needed to detect and analyze, economically, naturally fractured tight gas reservoirs. Delays in subcontract approval for the RTM model with Indiana University had caused additional delays in commencement of the modeling effort. Now that the subcontract is signed, modeling work has commenced. Subcontract preparation and negotiations for the aeromagnetic fly-over by World Geoscience are also proceeding as planned. Because we have clearly documented production trends in the Parachute and Rulison fields, future effort will be directed toward geologic explanations of these production trends. Several regional cross-sections through these fields will be used to illustrate geologic differences and similarities between the two fields. This information will be critical to calibration of the RTM model and development of the optimal locations for infill drilling and recompletion strategies. Upon completion of the field studies, focus will be redirected toward development of a regional tectonic synthesis from Precambrian through today for the Piceance Basin and the uplifts surrounding this region. This effort will integrate published studies, seismic, wellbore, gravity and remote sensing data to delineate regions in the basin where additional field work is necessary to fully determine the geologic evolution of the basin.

  10. Coupling gas chromatography and electronic nose detection for detailed cigarette smoke aroma characterization.

    PubMed

    Rambla-Alegre, Maria; Tienpont, Bart; Mitsui, Kazuhisa; Masugi, Eri; Yoshimura, Yuta; Nagata, Hisanori; David, Frank; Sandra, Pat

    2014-10-24

    Aroma characterization of whole cigarette smoke samples using sensory panels or electronic nose (E-nose) devices is difficult due to the masking effect of major constituents and solvent used for the extraction step. On the other hand, GC in combination with olfactometry detection does not allow to study the delicate balance and synergetic effect of aroma solutes. To overcome these limitations a new instrumental set-up consisting of heart-cutting gas chromatography using a capillary flow technology based Deans switch and low thermal mass GC in combination with an electronic nose device is presented as an alternative to GC-olfactometry. This new hyphenated GC-E-nose configuration is used for the characterization of cigarette smoke aroma. The system allows the transfer, combination or omission of selected GC fractions before injection in the E-nose. Principal component analysis (PCA) and discriminant factor analysis (DFA) allowed clear visualizing of the differences among cigarette brands and classifying them independently of their nicotine content. Omission and perceptual interaction tests could also be carried out using this configuration. The results are promising and suggest that the GC-E-nose hyphenation is a good approach to measure the contribution level of individual compounds to the whole cigarette smoke. PMID:25260341

  11. Development of a curb-valve flowmeter for gas theft detection. Final report

    SciTech Connect

    Fitzgerald, K.F.; Glicksman, L.R.; Peterson, C.R.

    1984-09-01

    Today, according to numerous gas utilities, significant revenues are being lost via theft of service, losses ultimately passed on to the businesses honest customers. A method to detect such thievery developed was the design of a secondary flowmetering device. Located outside a suspected concern, and placed within the small confines of a modified valve or pipe structure, its function is to act as a cross reference for the existing positive-displacement meter. The concept chosen was the phenomena of vortex shedding, a fluid oscillatory instability which is used extensively as a measuring technique in the process control industry. Feasibility studies were carried out using a flat, non-moving bluff-shedding element and a piezo-electric bimorph ceramic cantilevered behind it. Both elements were situated within a curb valve based prototype design having a test section inner diameter of one inch. As predicted, experiments demonstrate a repeatable, linear relationship between frequency of oscillation and volume flow for flow rates between 200 and 1000 CFH.

  12. Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994

    SciTech Connect

    1994-10-01

    This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

  13. An Atmosphere-based Method for Detection and Quantification of Methane Emisions from Natural Gas Infrastructure in an Urban Environment

    NASA Astrophysics Data System (ADS)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Nehrkorn, T.; Zahniser, M. S.; Sargent, M. R.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2015-12-01

    Methane emissions from the natural gas supply-chain are highly uncertain and can vary widely among components and processes. We present an atmosphere-based method for detecting and quantifying the area and time-averaged surface flux of methane from natural gas infrastructure, and its application to the case-study of Boston, Massachusetts. Continuous measurements of atmospheric methane at a network of stations, inside and outside the city, are used to quantify the atmospheric methane gradient due to emissions from the urban area. Simultaneous observations of atmospheric ethane, and data on the ethane and methane content of the pipeline gas flowing through the region, are used to trace the atmospheric methane enhancement to the natural gas source. An atmospheric transport model is used to quantitatively relate the observed methane enhancement to a surface flux from the whole urban region. We find that methane emissions from natural gas in the urban region over one year was equal to 2.7 ± 0.6 % of the natural gas delivered to the region. Our findings for Boston suggest natural-gas-consuming regions, generally, may be larger sources of methane to the atmosphere than is current estimated and represent areas of significant resource loss.

  14. In2O3-based micro gas sensor for detecting NO x gases

    NASA Astrophysics Data System (ADS)

    Kim, Bum-Joon; Song, In-Gyu; Kim, Jung-Sik

    2014-03-01

    In this study, NO x micro gas sensors for monitoring the indoor atmosphere of automobile were fabricated using MEMS (microelectromechanical system) technology and a sol-gel process. The sensing electrode and micro heater were designed to have a co-planar typed structure in a Pt thin film layer. The thermal characteristics of a micro heater array were analyzed using a finite element method (FEM). The chip size of the gas sensor was approximately 2 mm × 2 mm. Indium oxide as a sensing material for NO x gas was synthesized by a sol-gel process with indium isopropoxide as a precursor. Field emission Scanning electron microscopy and x-ray diffraction showed that particle size of the synthesized In2O3 was approximately 17-45 nm. The maximum gas sensitivity as the relative resistance ( R s = R gas / R air ) was observed at 275°C with a value of 8.0 at 1 ppm NO2 gas. The response (80% saturation) and recovery times were within 1 min. The sensing properties of NO2 gas exhibited linear behavior with increasing gas concentration. The sensing mechanism of the gas sensor was explained by the variations in the electron depletion layers and the adsorption of gas molecules on the In2O3 particle surface. These results suggest that in the future, MEMS-based gas sensors can be used as automotive-exhaust-gas sensors.

  15. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Dongying, Wang; Yu, Pei; Wei, Fan

    2015-09-01

    To resolve the measured target position to determine and locate leak problems with current gas leak detection and localization systems based on ultrasonic technology, this paper presents an improved multi-array ultrasonic gas leak TDOA (time difference of arrival) localization and detection method. This method involves arranging ultrasonic transducers at equal intervals in a high-sensitivity detector array, using small differences in ultrasonic sound intensity to determine the scope of the leak and generate a rough localization, and then using an array TDOA localization algorithm to determine the precise leak location. This method is then implemented in an ultrasonic leak detection and localization system. Experimental results showed that the TDOA localization method, using auxiliary sound intensity factors to avoid dependence on a single sound intensity to determine the leak size and location, achieved a localization error of less than 2 mm. The validity and correctness of this approach were thus verified.

  16. High-resolution seismic detection of shallow natural gas beneath Hutchinson, Kansas

    USGS Publications Warehouse

    Nissen, S.E.; Watney, W.L.; Xia, J.

    2004-01-01

    Two high-resolution seismic reflection surveys were conducted to identify shallow natural gas that had caused explosions in Hutchinson, Kansas, in January 2001. Gas presence is associated with both a bright spot and a dim-out on the seismic reflection profiles. Core and log data from wells drilled to vent the gas indicate that the gas-bearing interval corresponds to thin dolomite layers, which have higher P-wave velocities than the surrounding shales. Gas in fractures can reduce the velocity of the dolomite interval to that of the shales (or lower). Depending on the magnitude of the velocity change, either a dim-out or bright spot is produced. Sonic logs from gas-bearing vent wells, recorded after venting of gas, show no anomalous velocity, indicating that as gas dissipates, any associated seismic anomaly will be reduced. Lateral variations in the seismic properties of the gas-bearing interval and adjacent strata (namely, variations in dolomite and shale content) also have a significant effect on the seismic signature of the interval, mimicking the effect of a small amount of gas. Only where the gas zone is relatively thick (2-3 m; 7-10 ft), creating a high-amplitude negative seismic reflection, is the seismic signature diagnostic of gas. Therefore, whereas the dim-outs observed on the seismic reflection profiles may be the result of gas presence, they are equally well explained by lateral variations in lithology. Dim-outs should not be used in the Hutchinson area as an indicator of gas. The observed bright spot, however, is most likely a unique gas response. Copyright ?? 2004. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  17. Short-Time-Response measurements of nitrogen dioxide and peroxyacetyl nitrate by fast capillary gas chromatography with luminol detection.

    SciTech Connect

    Marley, N. A.; Gaffney, J. S.; Drayton, P. J.

    2000-12-07

    The interaction of hydrocarbons and nitrogen oxides in sunlight to produce photochemical smog has been well studied over the years. In the past, the workhorse for the measurement of NO{sub 2}and NO was the chemiluminescent reaction with ozone. This method has detection limits of approximately 0.5 ppb in most commercial instruments, but it cannot detect NO{sub 2} directly; the instrument detects NO and uses hot catalytic surfaces to decompose all other nitrogen oxides (including NO{sub 2}) to NO for detection (l). The main problem with the method is the inherent difficulty in detecting excited NO{sub 2}, which emits over a broad region beginning at approximately 660 nm and has a maximum at 1270 nm, thus requiring a red-shifted photomultiplier for detection. The use of luminol for direct chemiluminescent detection of NO{sub 2} was demonstrated to have greater inherent sensitivity (detection limits of 5 ppt) than the indirect ozone chemiluminescence detection (2). In the luminol system, a gas-liquid reaction leads to light emission with a maximum at approximately 425 nm, at the maximum sensitivity for most photomultiplier tubes. This emission is responsible for the increased detection sensitivities. The biggest problem with this method for direct measurement of NO{sub 2} has been interference due to other soluble oxidants, particularly peroxyacyl nitrates (PANs).

  18. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds

    PubMed Central

    Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; de Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria

    2013-01-01

    The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications. PMID:24316571

  19. Carbon Nanomaterials for Detection, Assessment and Purification of Oil and Natural Gas

    NASA Astrophysics Data System (ADS)

    Hwang, Chih-Chau

    This thesis studies several carbon nanomaterials. Their synthesis and characterization are studied as well as their potential applications to the oil industry. The carbon nanomaterials studied here include mesoporous carbon (CMK-3), sulfur- or nitrogen-doped porous carbon (SPC or NPC), and commercial carbon black (CB). Through appropriate functionalization, these carbon nanomaterials exhibit unique properties and their performances in detection, assessment as well as purification of oil and natural gas are studied and demonstrated. First, it was shown that amine-modified CMK-3 composites, polyethylenimine-CMK-3 (PEI-CMK-3) and polyvinylamine-CMK-3 (PVA-CMK-3) can be synthesized through in situ polymerization of amine species within the channels of the CMK-3. The synthesis process results in the entrapped amine polymers interpenetrating the composite frameworks of the CMK-3, improving the CO2 capture performance and recycle stability. CO2 uptake by the synthesized composites was determined using a gravimetric method at 30°C and 1 atm; the 39% PEI-CMK-3 composite had ˜12 wt% (3.1 mmol/g) CO2 uptake capacity and the 37% PVA-CMK-3 composite had ˜13 wt% (3.5 mmol/g) CO 2 uptake capacity. A desorption temperature of 75°C was sufficient for regeneration. The CO2 uptake was the same when using 10% CO 2 in a 90% CH4, C2H6 and C3H 8 mixture, underscoring this composite's efficacy for CO 2 sequestration from natural gas. Secondly, nucleophilic porous carbons (SPC and NPC) were synthesized from simple and inexpensive carbon-sulfur and carbon-nitrogen precursors. A strong sorbate-sorbent interaction between CO2 and nucleophilic centers in the porous carbon was established using spectroscopic and heat of sorption data. Raman spectroscopy supports the assertion that the nucleophilic centers react with the CO2 to produce carbonate anions that further cause polymerization in the porous carbon channels to form poly(CO2) under much lower pressure than previously reported for such

  20. Carbon Nanomaterials for Detection, Assessment and Purification of Oil and Natural Gas

    NASA Astrophysics Data System (ADS)

    Hwang, Chih-Chau

    This thesis studies several carbon nanomaterials. Their synthesis and characterization are studied as well as their potential applications to the oil industry. The carbon nanomaterials studied here include mesoporous carbon (CMK-3), sulfur- or nitrogen-doped porous carbon (SPC or NPC), and commercial carbon black (CB). Through appropriate functionalization, these carbon nanomaterials exhibit unique properties and their performances in detection, assessment as well as purification of oil and natural gas are studied and demonstrated. First, it was shown that amine-modified CMK-3 composites, polyethylenimine-CMK-3 (PEI-CMK-3) and polyvinylamine-CMK-3 (PVA-CMK-3) can be synthesized through in situ polymerization of amine species within the channels of the CMK-3. The synthesis process results in the entrapped amine polymers interpenetrating the composite frameworks of the CMK-3, improving the CO2 capture performance and recycle stability. CO2 uptake by the synthesized composites was determined using a gravimetric method at 30°C and 1 atm; the 39% PEI-CMK-3 composite had ˜12 wt% (3.1 mmol/g) CO2 uptake capacity and the 37% PVA-CMK-3 composite had ˜13 wt% (3.5 mmol/g) CO 2 uptake capacity. A desorption temperature of 75°C was sufficient for regeneration. The CO2 uptake was the same when using 10% CO 2 in a 90% CH4, C2H6 and C3H 8 mixture, underscoring this composite's efficacy for CO 2 sequestration from natural gas. Secondly, nucleophilic porous carbons (SPC and NPC) were synthesized from simple and inexpensive carbon-sulfur and carbon-nitrogen precursors. A strong sorbate-sorbent interaction between CO2 and nucleophilic centers in the porous carbon was established using spectroscopic and heat of sorption data. Raman spectroscopy supports the assertion that the nucleophilic centers react with the CO2 to produce carbonate anions that further cause polymerization in the porous carbon channels to form poly(CO2) under much lower pressure than previously reported for such

  1. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  2. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    SciTech Connect

    Langridge, Justin M.; Shillings, Alexander J. L.; Jones, Roderic L.; Ball, Stephen M.

    2008-12-15

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modes of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO{sub 2} (versus a laser broadband cavity ringdown spectrometer) and for H{sub 2}O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+{delta} absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO{sub 3} as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1{sigma} detection limit

  3. Detection of dehydroepiandrosterone misuse by means of gas chromatography- combustion-isotope ratio mass spectrometry.

    PubMed

    Mareck, Ute; Geyer, Hans; Flenker, Ulrich; Piper, Thomas; Thevis, Mario; Schänzer, Wilhelm

    2007-01-01

    According to World Anti-Doping Agency (WADA) rules (WADA Technical Document-TD2004EAAS) urine samples containing dehydroepiandrosterone (DHEA) concentrations greater than 100 ng ML(-1) shall be submitted to isotope ratio mass spectrometry (IRMS) analysis. The threshold concentration is based on the equivalent to the glucuronide, and the DHEA concentrations have to be adjusted for a specific gravity value of 1.020. In 2006, 11,012 doping control urine samples from national and international federations were analyzed in the Cologne doping control laboratory, 100 (0.9%) of them yielding concentrations of DHEA greater than 100 ng mL(-1). Sixty-eight percent of the specimens showed specific gravity values higher than 1.020, 52% originated from soccer players, 95% were taken in competition, 85% were male urines, 99% of the IRMS results did not indicate an application of testosterone or related prohormones. Only one urine sample was reported as an adverse analytical finding having 319 ng mL(-1) DHEA (screening result), more than 10,000 ng mL(-1) androsterone and depleted carbon isotope ratio values for the testosterone metabolites androsterone and etiocholanolone. Statistical evaluation showed significantly different DHEA concentrations between specimens taken in- and out-of- competition, whereas females showed smaller DHEA values than males for both types of control. Also a strong influence of the DHEA excretion on different sport disciplines was detectable. The highest DHEA values were detected for game sports (soccer, basketball, handball, ice hockey), followed by boxing and wrestling. In 2007, 6622 doping control urine samples were analyzed for 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo), a DHEA metabolite which was described as a useful gas chromatography-mass spectrometry (GC-MS) screening marker for DHEA abuse. Nineteen urine specimens showed concentrations higher than the suggested threshold of 140 ng mL(-1), six urine samples yielded

  4. Determination of methyl bromide in foods by headspace capillary gas chromatography with electron capture detection.

    PubMed

    Page, B D; Avon, R J

    1989-01-01

    Methyl bromide (MB, bromomethane) is determined in a variety of foods by headspace capillary gas chromatography with electron capture detection. The comminuted food sample as an aqueous sodium sulfate slurry is equilibrated with stirring for 1 h at room temperature before a 1 mL headspace aliquot is removed and injected using a modified on-column syringe needle. Methyl bromide is cryogenically focussed at -60 degrees C and then eluted by temperature programming. The procedure requires blending of soft samples, e.g. raisins, prunes, or oranges, and ultrasonic homogenization of hard samples, e.g. wheat, cocoa beans, corn, or nuts, with portions of water and ice so the final temperature of the food-water slurry is less than 1 degree C. A 20 g aliquot (4 g food) is then added to a cold headspace vial containing 4 g sodium sulfate. Losses of MB during a 3.5 min ultrasonic homogenization of wheat were 11% at 0.95 ppb and 4.4% at 4.8 ppb. For flour, cocoa, and finely divided spices, which do not require blending, 4 g is added to the cold headspace vial containing 16 mL cold water and 4 g sodium sulfate. Studies show that comminution of wheat or peanuts must be carried out to release MB trapped within the food so the headspace equilibrium can be attained in 1 h as well as to obtain homogeneous samples and representative sampling. No interferences were noted with the above foods or with many grain-based baking mixes analyzed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2808244

  5. Improved method for rapid detection of phthalates in bottled water by gas chromatography-mass spectrometry.

    PubMed

    Otero, Paz; Saha, Sushanta Kumar; Moane, Siobhan; Barron, John; Clancy, Gerard; Murray, Patrick

    2015-08-01

    An improved gas chromatography-mass spectrometry (GC-MS) method for simple, rapid and precise quantification of phthalates in drinking water is presented. This method was validated for bis (2-n-butoxyethyl) phthalate (DBEP), bis (2-n-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), di-butyl phthalate (DBP), diethyl phthalate (DEP), dihexyl phthalate (DHP), dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP) and dinonyl phthalate (DINP). Linearity of 0.9984>r(2)>0.9975 in the range of 0.075-4.8μg/mL for the selected phthalates was obtained. Accuracy values were in the range of 93-114% and RSD% for the analysis of 1.2μg/mL of each phthalate was below 2.3% (n=9). This new method design has significantly improved the detection in terms of rapidity, specificity, repeatability and accuracy compared to available methods. The procedure has been applied to the analyses of three different brands of commercially available bottled mineral water and the corresponding plastic bottles. Phthalates were extracted with dichloromethane and re-constituted in cyclohexane prior to GC-MS analysis. When the validated GC-MS method was applied to the quantification of the selected phthalates in the samples, only DBP (up to 0.0675±0.0018μg/mL) and DEHP (up to 1.6848±0.1631μg/mL) were found. Furthermore, we provide specific data about the concentration of DBP and DEHP in bottled water attributable to migration of phthalates from respective plastic bottles. PMID:26134297

  6. Infiltration rate measurement by active perfluorocarbon monitoring

    SciTech Connect

    Menzies, K.T.; Pong, C.M.; Randel, M.A. )

    1987-01-01

    The rate of air infiltration in homes and buildings is a significant factor affecting the magnitude of human exposure to air pollutants in the indoor environment. Several techniques have been utilized for the determination of air infiltration. These include building pressurization and tracer analysis, e.g., SF/sub 6/. Dietz and Cote at Brookhaven National Laboratory (BNL) have developed a simple, steady-state tracer kit that can be utilized by homeowners. This kit includes a source(s) of perfluorocarbon, i.e., perfluoromethylcyclohexane (PMCH) or perfluorodimethylcyclohexane (PDCH), and a passive sampling tube containing Ambersorb XE-347. Typically, the sampling tube is deployed for several days and then returned to a laboratory for analysis by thermal desorption/gas chromatography/electron capture detection. The authors developed an alternative sampling and analysis technique for PMCH/PDCH in homes. In order to facilitate monitoring of short-term infiltration rates (i.e., less than one day) they developed an active sorbent sampling method and solvent desorption/gas chromatography/electron capture detection analytical method. The method is based on the collection of PMCH on charcoal. The method validation, which is discussed in this article, includes analytical method development, selection of a solid sorbent, determination of desorption efficiency, analysis of breakthrough, testing of storage stability, and assessment of precision and accuracy in both the laboratory and field environment.

  7. A systems level characterization and tradespace evaluation of a simulated airborne Fourier transform infrared spectrometer for gas detection

    NASA Astrophysics Data System (ADS)

    Weiner, Aaron

    The remote sensing gas detection problem is one with no straightforward solution. While success has been achieved in detecting and identifying gases released from industrial stacks and other large plumes, the fugitive gas detection problem is far more complex. Fugitive gas represents a far smaller target and may be generated by leaking pipes, vents, or small scale chemical production. The nature of fugitive gas emission is such that one has no foreknowledge of the location, quantity, or transient rate of the targeted effluent which requires one to cover a broad area with high sensitivity. In such a scenario, a mobile airborne platform would be a likely candidate. Further, the spectrometer used for gas detection should be capable of rapid scan rates to prevent spatial and spectral smearing, while maintaining high resolution to aid in species identification. Often, insufficient signal to noise (SNR) prevents spectrometers from delivering useful results under such conditions. While common dispersive element spectrometers (DES) suffer from decreasing SNR with increasing spectral dispersion, Fourier Transform Spectrometers (FTS) generally do not and would seemingly be an ideal choice for such an application. FTS are ubiquitous in chemical laboratories and in use as ground based spectrometers, but have not become as pervasive in mobile applications. While FTS spectrometers would otherwise be ideal for high resolution rapid scanning in search of gaseous effluents, when conducted via a mobile platform the process of optical interferogram formation to form spectra is corrupted when the input signal is temporally unstable. This work seeks to explore the tradespace of an airborne Michelson based FTS in terms of modeling and characterizing the performance degradation over a variety of environmental and optical parameters. The major variables modeled and examined include: maximum optical path distance (resolution), scan rate, platform velocity, altitude, atmospheric and

  8. Derivatization and gas chromatographic-mass spectrometric detection of anabolic steroid residues isolated from edible muscle tissues.

    PubMed

    Daeseleire, E; De Guesquière, A; Van Peteghem, C

    1991-01-01

    A method was developed for the detection of anabolic steroid residues in edible muscle tissues. After enzymic digestion of the tissue and purification on disposable C18 solid-phase extraction columns, the extract was injected onto a C18 reversed-phase high-performance liquid chromatographic column. Three fractions or windows were collected, each containing specific analytes. After evaporation to dryness, the residues were subjected to a derivatization procedure which yielded suitable derivatives. After gas chromatographic-mass spectrometric analysis, both gas chromatographic retention data and mass spectral data were used for the detection and identification of nortestosterone, testosterone, estradiol, ethinylestradiol, trenbolone, methyltestosterone, chlormadinone acetate, medroxyprogesterone acetate and megestrol acetate. PMID:2026730

  9. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection.

    PubMed

    Trevitt, Adam J; Goulay, Fabien

    2016-02-17

    For reactive gas-phase environments, including combustion, extraterrestrials atmospheres and our Earth's atmosphere, the availability of quality chemical data is essential for predictive chemical models. These data include reaction rate coefficients and product branching fractions. This perspective overviews recent isomer-resolved production detection experiments for reactions of two of the most reactive gas phase radicals, the CN and CH radicals, with a suite of small hydrocarbons. A particular focus is given to flow-tube experiments using synchrotron photoionization mass spectrometry. Coupled with computational studies and other experiment techniques, flow tube isomer-resolved product detection have provided significant mechanistic details of these radical + neutral reactions with some general patterns emerging. PMID:26841339

  10. Reduced and Oxidized Sulfur Compounds Detected by Evolved Gas Analyses of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D., Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Rampe, E. B.; Steele, A.; Wray, J. J.

    2014-01-01

    Sulfate minerals have been directly detected or strongly inferred from several Mars datasets and indicate that aqueous alteration of martian surface materials has occurred. Indications of reduced sulfur phases (e.g., sulfides) from orbital and in situ investigations of martian materials have been fewer in number, but these phases are observed in martian meteorites and are likely because they are common minor phases in basaltic rocks. Here we discuss potential sources for the S-bearing compounds detected by the Mars Science Laboratory (MSL) Sample Analysis at Mars (SAM) instrument’s evolved gas analysis (EGA) experiments.

  11. A simple and sensitive quantitation of N,N-dimethyltryptamine by gas chromatography with surface ionization detection.

    PubMed

    Ishii, A; Seno, H; Suzuki, O; Hattori, H; Kumazawa, T

    1997-01-01

    A simple and sensitive method for determination of N,N-dimethyltryptamine (DMT) by gas chromatography (GC) with surface ionization detection (SID) is presented. Whole blood or urine, containing DMT and gramine (internal standard), was subjected to solid-phase extraction with a Sep-Pak C18 cartridge before analysis by GC-SID. The calibration curve was linear in the DMT range of 1.25-20 ng/mL blood or urine. The detection limit of DMT was about 0.5 ng/mL (10 pg on-column). The recovery of both DMT and gramine spiked in biological fluids was above 86%. PMID:9013290

  12. Detection of Induced Seismicity Due to Oil and Gas Extraction in the Northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Fadugba, O. I.; Ebel, J.

    2014-12-01

    Drilling operations and extraction of oil and gas (O&G) may lead to subsurface slumping or compression of sediments due to reduced vertical principal stress which may lead to small earthquakes at the drilling site. O&G extraction is common in the northern Gulf of Mexico (NGM) and only thirty-five earthquakes of magnitudes between 2.3 and 6.0 have been recorded in the area from 1974 to the present. The purpose of this research is to detect more earthquakes using stacks of seismic data from the EarthScope Transportable USArray (TA) from 2011 to 2013, and determine the spatiotemporal relationship between the detected earthquakes and O&G extraction. TA waveform records were retrieved from IRIS database and a narrow bandpass filter of 1 - 2 Hz was applied to remove background and high frequency noises and focus on the low energy part of the signal. The seismic record at all stations was plotted vertically with respect to distance from the Gulf. An Automatic Gain Control (AGC) using Root Mean Square was applied to boost the signals at farther stations. More than 1500 events have been detected, including teleseisms and local blasts from the area, especially from the three Walter Minerals coal mines in Alabama. No offshore earthquakes have been detected in the data, although data processing is still ongoing. Therefore, any earthquake activity, if present, associated with the offshore oil and gas production must be at a magnitude below the detection threshold of the algorithm.

  13. Detection and quantification of fugitive emissions from Colorado oil and gas production operations using remote monitoring

    EPA Science Inventory

    Western states contain vast amounts of oil and gas production. For example, Weld County Colorado contains approximately 25,000 active oil and gas well sites with associated production operations. There is little information on the air pollutant emission potential from this source...

  14. Calculating the detection limits of chamber-based greenhouse gas flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamber-based measurement of greenhouse gas emissions from soil is a common technique. However, when changes in chamber headspace gas concentrations are small over time, determination of the flux can be problematic. Several factors contribute to the reliability of measured fluxes, including: samplin...

  15. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    PubMed

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature. PMID:27483827

  16. Detection of magnetic state in a nanoscale ferromagnetic ring by using ballistic semiconductor two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Hara, Masahiro; Shibata, Junya; Kimura, Takashi; Otani, Yoshichika

    2006-02-01

    We have developed a method of measuring magnetization process in a ferromagnetic ring by analyzing a characteristic response of a semiconductor two-dimensional electron gas (2DEG) lying beneath the ring. A 2DEG microcross structure is formed underneath a ferromagnetic ring to detect the position of paired domain walls of the onion state. The variation of the bend resistance due to the rotation of the paired domain walls is quantitatively reproduced by a semiclassical billiard model.

  17. Direct Detection of Precursors of Gas Giants Formed by Gravitational Instability with the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Mayer, Lucio; Peters, Thomas; Pineda, Jaime E.; Wadsley, James; Rogers, Patrick

    2016-06-01

    Phases of gravitational instability are expected in the early phases of disk evolution, when the disk mass is still a substantial fraction of the mass of the star. Disk fragmentation into sub-stellar objects could occur in the cold exterior part of the disk. Direct detection of massive gaseous clumps on their way to collapse into gas giant planets would offer an unprecedented test of the disk instability model. Here we use state-of-the-art 3D radiation-hydro simulations of disks undergoing fragmentation into massive gas giants, post-processed with RADMC-3D to produce dust continuum emission maps. These are then fed into the Common Astronomy Software Applications (CASA) ALMA simulator. The synthetic maps show that both overdense spiral arms and actual clumps at different stages of collapse can be detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the full configuration at the distance of the Ophiuchus star forming region (125 pc). The detection of clumps is particularly effective at shorter wavelengths (690 GHz) combining two resolutions with multi-scale clean. Furthermore, we show that a flux-based estimate of the mass of a protoplanetary clump can be comparable to a factor of three higher than the gravitationally bound clump mass. The estimated mass depends on the assumed opacity, and on the gas temperature, which should be set using the input of radiation-hydro simulations. We conclude that ALMA has the capability to detect “smoking gun” systems that are a signpost of the disk instability model for gas giant planet formation.

  18. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell

    NASA Astrophysics Data System (ADS)

    Krzempek, Karol; Jahjah, Mohammad; Lewicki, Rafał; Stefański, Przemysław; So, Stephen; Thomazy, David; Tittel, Frank K.

    2013-09-01

    The development of a continuous wave, thermoelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy as the detection technique. TDLAS was performed using an ultra-compact 57.6 m effective optical path length innovative spherical multipass cell capable of 459 passes between two mirrors separated by 12.5 cm and optimized for the 2.5-4 μm range TEC mercury-cadmium-telluride detector. For an interference-free C2H6 absorption line located at 2,976.8 cm-1, a 1 σ minimum detection limit of 740 pptv with a 1 s lock-in amplifier time constant was achieved.

  19. Simultaneous Photoacoustic and Photopyroelectric Detection of Trace Gas Emissions from Some Plant Parts and Their Related Essential Oils in a Combined Detection Cell

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.

    The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.

  20. An optical sensor for detecting the contact location of a gas-liquid interface on a body

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (Ls) and a resolution of 0.01Ls can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall.

  1. An optical sensor for detecting the contact location of a gas-liquid interface on a body.

    PubMed

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (L(s)) and a resolution of 0.01L(s) can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall. PMID:25173325

  2. Development of a Random Field Model for Gas Plume Detection in Multiple LWIR Images.

    SciTech Connect

    Heasler, Patrick G.

    2008-09-30

    This report develops a random field model that describes gas plumes in LWIR remote sensing images. The random field model serves as a prior distribution that can be combined with LWIR data to produce a posterior that determines the probability that a gas plume exists in the scene and also maps the most probable location of any plume. The random field model is intended to work with a single pixel regression estimator--a regression model that estimates gas concentration on an individual pixel basis.

  3. The Gas Exchange Experiment for life detection - The Viking Mars Lander.

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.

    1972-01-01

    The Gas Exchange Experiment of the Viking mission accepts a sample of Martian soil, incubates this soil with nutrient medium, and periodically samples the enclosed atmosphere over this soil for the gases H2, N2, O2, Kr, and CO2. These gases are analyzed by an automated gas chromatograph, and the data are transmitted to earth. The design of the experiment and the qualitative and quantitative changes, if any, of gas composition should allow conclusions to be made on the presence of life on Mars. Data and theory substantiating this approach are presented.

  4. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.

    PubMed

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  5. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    PubMed Central

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  6. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    PubMed

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  7. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    PubMed Central

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  8. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    PubMed

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials. PMID:24527961

  9. An imaging gas scintillation proportional counter for the detection of subkiloelectron-volt X-rays

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H. M.; Vartanian, M. H.

    1981-01-01

    A large area imaging gas scintillation proportional counter (IGSPC) was constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counted (GSPC) with a micron polyprotylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. Over a sensitive area of 21 cu cm the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV.

  10. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOEpatents

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  11. Detection of a turbulent gas component associated with a starless core with subthermal turbulence in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Ohashi, Satoshi; Tatematsu, Ken'ichi; Sanhueza, Patricio; Hirota, Tomoya; Choi, Minho; Mizuno, Norikazu

    2016-07-01

    We report the detection of a wing component in NH3 emission towards the starless core TUKH122 with subthermal turbulence in the Orion A cloud. This NH3 core is suggested to be on the verge of star formation because the turbulence inside the NH3 core is almost completely dissipated, and also because it is surrounded by CCS, which resembles the prestellar core L1544 in Taurus showing infall motions. Observations were carried out with the Nobeyama 45-m telescope at 0.05 km s-1 velocity resolution. We find that the NH3 line profile consists of two components. The quiescent main component has a small linewidth of 0.3 km s-1 dominated by thermal motion, and the red-shifted wing component has a large linewidth of 1.36 km s-1 representing turbulent motion. These components show kinetic temperatures of 11 and <30 K, respectively. Furthermore, there is a clear velocity offset between the NH3 quiescent gas (Local Standard of Rest velocity = 3.7 km s-1) and the turbulent gas (4.4 km s-1). The centroid velocity of the turbulent gas corresponds to that of the surrounding gas traced by the 13CO (J = 1-0) and CS (J = 2-1) lines. Large Velocity Gradient (LVG) model calculations for CS and CO show that the turbulent gas has a temperature of 8-13 K and an H2 density of ˜104 cm-3, suggesting that the temperature of the turbulent component is also ˜10 K. The detections of both NH3 quiescent and wing components may indicate a sharp transition from the turbulent parent cloud to the quiescent dense core.

  12. Detection of a turbulent gas component associated with a starless core with subthermal turbulence in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Ohashi, Satoshi; Tatematsu, Ken'ichi; Sanhueza, Patricio; Nguyen Luong, Quang; Hirota, Tomoya; Choi, Minho; Mizuno, Norikazu

    2016-04-01

    We report the detection of a wing component in NH3 emission toward the starless core TUKH122 with subthermal turbulence in the Orion A cloud. This NH3 core is suggested to be on the verge of star formation because the turbulence inside the NH3 core is almost completely dissipated, and also because it is surrounded by CCS, which resembles the prestellar core L1544 in Taurus showing infall motions. Observations were carried out with the Nobeyama 45 m telescope at 0.05 km s-1 velocity resolution. We find that the NH3 line profile consists of two components. The quiescent main component has a small linewidth of 0.3 km s-1 dominated by thermal motions, and the red-shifted wing component has a large linewidth of 1.36 km s-1 representing turbulent motions. These components show kinetic temperatures of 11 K and < 30 K, respectively. Furthermore, there is a clear velocity offset between the NH3 quiescent gas (VLSR = 3.7 km s-1) and the turbulent gas (VLSR = 4.4 km s-1). The centroid velocity of the turbulent gas corresponds to that of the surrounding gas traced by the 13CO (J = 1 - 0) and CS (J = 2 - 1) lines. LVG model calculations for CS and CO show that the turbulent gas has a temperature of 8 - 13 K and an H2 density of ∼ 104 cm-3, suggesting that the temperature of the turbulent component is also ∼ 10 K. The detections of both NH3 quiescent and wing components may indicate a sharp transition from the turbulent parent cloud to the quiescent dense core.

  13. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Rampe, E. B.; Steele, A.; Wray, J. J.

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (<150 µm) from three sites in Yellowknife Bay, an aeolian bedform termed Rocknest (hereafter "RN") and two samples drilled from the Sheepbed mudstone at sites named John Klein ("JK") and Cumberland ("CB"). SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases. The identity of evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  14. Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    McNaghten, E. D.; Parkes, A. M.; Griffiths, B. C.; Whitehouse, A. I.; Palanco, S.

    2009-10-01

    We report what we believe to be the first demonstration of the detection of trace quantities of helium and argon in binary and ternary gas mixtures with nitrogen by laser-induced breakdown spectroscopy (LIBS). Although significant quenching of helium transitions due to collisional deactivation of excited species was observed, it was found that losses in analytical sensitivity could be minimized by increasing the laser irradiance and decreasing the pressure at which the analyses were performed. In consequence, limits of detection of parts-per-million and tens of parts-per-million and linear dynamic ranges of several orders of magnitude in analyte concentration were obtained. The results of this study suggest that LIBS may have potential applications in the detection of other noble gases at trace concentrations.

  15. Detection of induced seismicity due to oil and gas extraction in the northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Fadugba, Oluwaseun Idowu

    Drilling operations and extraction of oil and gas (O&G) may lead to subsurface slumping or compression of sediments due to reduced vertical principal stress which may lead to small earthquakes at the drilling site. O&G extraction is common in the northern Gulf of Mexico (NGM) and only thirty-five earthquakes of magnitudes between 2.3 and 6.0 have been recorded in the area from 1974 to the present. The purpose of this research is to detect more earthquakes using stacks of seismic data from the Transportable USArray (TA) from 2011 to 2013, and determine the spatiotemporal relationship between the detected earthquakes and O&G extraction. Five new small offshore earthquakes, that may be associated with the offshore O&G production, have been detected in the data. Spatial correlation of the epicenters with offshore drilling sites shows that the earthquakes may be due to the O&G extraction.

  16. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis.

    PubMed

    Peng, Dan; Bi, Yanlan; Ren, Xiaona; Yang, Guolong; Sun, Shangde; Wang, Xuede

    2015-12-01

    This study was performed to develop a hierarchical approach for detection and quantification of adulteration of sesame oil with vegetable oils using gas chromatography (GC). At first, a model was constructed to discriminate the difference between authentic sesame oils and adulterated sesame oils using support vector machine (SVM) algorithm. Then, another SVM-based model is developed to identify the type of adulterant in the mixed oil. At last, prediction models for sesame oil were built for each kind of oil using partial least square method. To validate this approach, 746 samples were prepared by mixing authentic sesame oils with five types of vegetable oil. The prediction results show that the detection limit for authentication is as low as 5% in mixing ratio and the root-mean-square errors for prediction range from 1.19% to 4.29%, meaning that this approach is a valuable tool to detect and quantify the adulteration of sesame oil. PMID:26041212

  17. Thermal Solid Sample Introduction-Fast Gas Chromatography-Low Flow Ion Mobility Spectrometry as a field screening detection system.

    PubMed

    Hajialigol, Saeed; Ghorashi, Seyed Alireza; Alinoori, Amir Hossein; Torabpour, Amir; Azimi, Mehdi

    2012-12-14

    The potential of Thermal Solid Sample Introduction (TSSI)-Fast Gas Chromatography (GC)-Low Flow Ion Mobility Spectrometry (LF-IMS) having been designed and constructed in Engineering Research Center of Esfahan, detector group was investigated for chemical detection capabilities. Customizing the configuration of fast GC-IMS as a high technology, provides unique solutions for rapid detection of a broad range of chemical mixtures in many operational environments. TSSI configuration provides fast and easily applied method for direct detection with no additional sample preparation or extraction. The time required for total analysis, less than 265 s, was determined by the wide range of solid matrixes, including nitrate esters, nitroaromatics, and a nitramine. The fast extraction together with the short separation time limits degradation of the thermally labile compounds and decreases the peak widths, which results in larger peak intensities and a simultaneous improvement in detection limits. For signal-to-noise ratio equals to 5, the detection limits for instrument for TNT, DNT and RDX were attained 15, 10 and 50 ng/μl respectively. The combination of short analysis time and low detection limits make this instrument a potential candidate for field screening techniques. PMID:23141709

  18. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

    2016-02-01

    Conventional contacting transducers for ultrasonic wave detection are highly sensitive and tuned for real-time imaging with fixed array geometries. However, optical detection provides an alternative to contacting transducers when a small sensor footprint, a large frequency bandwidth, or non-contacting detection is required. Typical optical detection relies on a Doppler-shifted reflection of light from the target, but gas coupled-laser acoustic detection (GCLAD) provides an alternative optical detection method for photoacoustic (PA) and ultrasound imaging that does not involve surface reflectivity. Instead, GCLAD is a line-detector that measures the deflection of an optical beam propagating parallel to the sample, as the refractive index of the air near the sample is affected by particle displacement on the sample surface. We describe the underlying principles of GCLAD and derive a formula for quantifying the surface displacement from a remote GCLAD measurement. We discuss a design for removing the location-dependent displacement bias along the probe beam and a method for measuring the attenuation coefficient of the surrounding air. GCLAD results are used to quantify the surface displacement in a laser-ultrasound experiment, which shows 94% agreement to line-integrated data from a commercial laser vibrometer point detector. Finally, we demonstrate the feasibility of PA imaging of an artery-sized absorber using a detector 5.8 cm from a phantom surface.

  19. Determination of antimony in environment samples by gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping.

    PubMed

    Ye, Yousheng; Sang, Jianchi; Ma, Hongbing; Tao, Guanhong

    2010-06-15

    A novel method for the determination of antimony in environmental samples was developed with gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping. The stibine, generated from samples by borohydride reduction of antimony using flow injection technique, was separated by using a new gas-liquid separator, dried with an ice-salt cryogenic bath and concentrated in a glass U-tube immersed in liquid nitrogen. Re-vaporization of stibine based on its boiling point was achieved by allowing the tube to warm at room temperature. A gas phase chemiluminescence signal was produced during the ozonation of the hydride in a reflective chamber. Under optimal conditions, the proposed method was characterized by a wide linear calibration range from 1.0microgL(-1) to 10.0mgL(-1) with a detection limit of 0.18microgL(-1) (n=11). The relative standard deviation for 10.0microgL(-1) antimony was 3.56% (n=11) and the sampling rate was 15 samples h(-1). Blank signal was reduced by the purification of reagents and the interference from transition metal ions was eliminated by the addition of L-cysteine into samples. The method was applied to the determination of antimony in environmental samples with satisfactory results. PMID:20441930

  20. Preparation and Application of TiO2 Nanotube Array Gas Sensor for SF6-Insulated Equipment Detection: a Review.

    PubMed

    Zhang, Xiaoxing; Gui, Yingang; Dong, Xingchen

    2016-12-01

    Since Zwilling and co-workers first introduced the electrochemical anodization method to prepare TiO2 nanotubes in 1999, it has attracted a lot of researches due to its outstanding gas response and selectivity, making it widely used in gas detection field. This review presents an introduction to the sensor applications of TiO2 nanotube arrays (TNTAs) in sulfur hexafluoride (SF6)-insulated equipment, which is used to evaluate and diagnose the insulation status of SF6-insulated equipment by detecting their typical decomposition products of SF6: sulfur dioxide (SO2), thionyl fluoride (SOF2), and sulfuryl fluoride (SO2F2). The synthesis and sensing properties of TiO2 nanotubes are discussed first. Then, it is followed by discussing the theoretical sensing to the typical SF6 decomposition products, SO2, SOF2, and SO2F2, which analyzes the sensing mechanism at the molecular level. Finally, the gas response of pure and modified TiO2 nanotubes sensor to SO2, SOF2, and SO2F2 is provided according to the change of resistance in experimental observation. PMID:27316743

  1. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection

    NASA Astrophysics Data System (ADS)

    Richter, D.; Fried, A.; Wert, B. P.; Walega, J. G.; Tittel, F. K.

    The development of a compact tunable mid-IR laser system at 3.5 μm for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1σ replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5×10-10 cm-1.

  2. Preparation and Application of TiO2 Nanotube Array Gas Sensor for SF6-Insulated Equipment Detection: a Review

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Gui, Yingang; Dong, Xingchen

    2016-06-01

    Since Zwilling and co-workers first introduced the electrochemical anodization method to prepare TiO2 nanotubes in 1999, it has attracted a lot of researches due to its outstanding gas response and selectivity, making it widely used in gas detection field. This review presents an introduction to the sensor applications of TiO2 nanotube arrays (TNTAs) in sulfur hexafluoride (SF6)-insulated equipment, which is used to evaluate and diagnose the insulation status of SF6-insulated equipment by detecting their typical decomposition products of SF6: sulfur dioxide (SO2), thionyl fluoride (SOF2), and sulfuryl fluoride (SO2F2). The synthesis and sensing properties of TiO2 nanotubes are discussed first. Then, it is followed by discussing the theoretical sensing to the typical SF6 decomposition products, SO2, SOF2, and SO2F2, which analyzes the sensing mechanism at the molecular level. Finally, the gas response of pure and modified TiO2 nanotubes sensor to SO2, SOF2, and SO2F2 is provided according to the change of resistance in experimental observation.

  3. Improving the Detection Limit in a Capillary Raman System for In Situ Gas Analysis by Means of Fluorescence Reduction.

    PubMed

    Rupp, Simone; Off, Andreas; Seitz-Moskaliuk, Hendrik; James, Timothy M; Telle, Helmut H

    2015-01-01

    Raman spectroscopy for low-pressure or trace gas analysis is rather challenging, in particular in process control applications requiring trace detection and real-time response; in general, enhancement techniques are required. One possible enhancement approach which enjoys increasing popularity makes use of an internally-reflective capillary as the gas cell. However, in the majority of cases, such capillary systems were often limited in their achievable sensitivity by a significant fluorescence background, which is generated as a consequence of interactions between the laser light and optical glass components in the setup. In order to understand and counteract these problems we have investigated a range of fluorescence-reducing measures, including the rearrangement of optical elements, and the replacement of glass components--including the capillary itself--by metal alternatives. These studies now have led to a capillary setup in which fluorescence is practically eliminated and substantial signal enhancement over standard Raman setups is achieved. With this improved (prototype) setup, detection limits of well below 1 mbar could be obtained in sub-second acquisition times, demonstrating the potential of capillary Raman spectroscopy for real-time, in situ gas sensing and process control applications, down to trace level concentrations. PMID:26378545

  4. Quantitative and fingerprinting analysis of Atractylodes rhizome based on gas chromatography with flame ionization detection combined with chemometrics.

    PubMed

    Liu, Qiutao; Kong, Dandan; Luo, Jiaoyang; Kong, Weijun; Guo, Weiying; Yang, Meihua

    2016-07-01

    This study assessed the feasibility of gas chromatography with flame ionization detection fingerprinting combined with chemometrics for quality analysis of Atractylodes rhizome. We extracted essential oils from 20 Atractylodes lancea and Atractylodes koreana samples by hydrodistillation. The variation in extraction yields (1.33-4.06%) suggested that contents of the essential oils differed between species. The volatile components (atractylon, atractydin, and atractylenolide I, II, and III) were quantified by gas chromatography with flame ionization detection and confirmed by gas chromatography with mass spectrometry, and the results demonstrated that the number and content of volatile components differed between A. lancea and A. koreana. We then calculated the relative peak areas of common components and similarities of samples by comparing the chromatograms of A. lancea and A. koreana extracts. Also, we employed several chemometric techniques, including similarity analysis, hierarchical clustering analysis, principal component analysis, and partial least-squares discriminate analysis, to analyze the samples. Results were consistent across analytical methods and showed that samples could be separated according to species. Five volatile components in the essential oils were quantified to further validate the results of the multivariate statistical analysis. The method is simple, stable, accurate, and reproducible. Our results provide a foundation for quality control analysis of A. lancea and A. koreana. PMID:27133960

  5. Improving the Detection Limit in a Capillary Raman System for In Situ Gas Analysis by Means of Fluorescence Reduction

    PubMed Central

    Rupp, Simone; Off, Andreas; Seitz-Moskaliuk, Hendrik; James, Timothy M.; Telle, Helmut H.

    2015-01-01

    Raman spectroscopy for low-pressure or trace gas analysis is rather challenging, in particular in process control applications requiring trace detection and real-time response; in general, enhancement techniques are required. One possible enhancement approach which enjoys increasing popularity makes use of an internally-reflective capillary as the gas cell. However, in the majority of cases, such capillary systems were often limited in their achievable sensitivity by a significant fluorescence background, which is generated as a consequence of interactions between the laser light and optical glass components in the setup. In order to understand and counteract these problems we have investigated a range of fluorescence-reducing measures, including the rearrangement of optical elements, and the replacement of glass components—including the capillary itself—by metal alternatives. These studies now have led to a capillary setup in which fluorescence is practically eliminated and substantial signal enhancement over standard Raman setups is achieved. With this improved (prototype) setup, detection limits of well below 1 mbar could be obtained in sub-second acquisition times, demonstrating the potential of capillary Raman spectroscopy for real-time, in situ gas sensing and process control applications, down to trace level concentrations. PMID:26378545

  6. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    SciTech Connect

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  7. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection.

    PubMed

    Richter, D; Fried, A; Wert, B P; Walega, J G; Tittel, F K

    2002-01-01

    The development of a compact tunable mid-IR laser system at 3.5 micrometers for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1 sigma replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5 x 10-(10 )cm-1. PMID:12599397

  8. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook

    2014-03-15

    Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C. PMID:24473403

  9. Detection of hydrogen gas-producing anaerobes in refuse-derived fuel (RDF) pellets.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Ohmiya, Kunio; Sakka, Kazuo

    2005-11-01

    Recently, we reported that refuse-derived fuel (RDF) pellets contain a relatively high number of viable bacterial cells and that these bacteria generate heat and hydrogen gas during fermentation under wet conditions. In this study we analyzed bacterial cell numbers of RDF samples manufactured with different concentrations of calcium hydroxide, which is usually added to waste materials for the prevention of rotting of food wastes and the acceleration of drying of solid wastes, and determined the amount of hydrogen gas produced by them under wet conditions. Furthermore, we analyzed microflora of the RDF samples before and during fermentation by denaturing gradient gel electrophoresis of 16S rDNA followed by sequencing. We found that the RDF samples contained various kinds of clostridia capable of producing hydrogen gas. PMID:16306688

  10. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography

    PubMed Central

    Aldridge, Jared T.; Catlett, Jennie L.; Smith, Megan L.; Buan, Nicole R.

    2016-01-01

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO2. Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al., 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al., 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al., 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures. PMID:27559541

  11. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  12. Laboratory Studies Of Titan Haze: Simultaneous In Situ Detection Of Gas And Particle Species

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Li, R.; Yoon, H.; Hicks, R.; de Gouw, J.; Tolbert, M.

    2012-10-01

    Analyses of data obtained by multiple instruments carried by Cassini and Huygens have increased our knowledge of the composition of Titan’s atmosphere. While a wealth of new information about the aerosols in Titan’s atmosphere was obtained, their composition is still not well constrained. Laboratory experiments will therefore play a key role in furthering our understanding of the chemical processes resulting in the formation of haze in Titan’s atmosphere and its possible composition. We have obtained simultaneous in situ measurements of the gas- and particle-phase compositions produced by our Titan atmosphere simulation experiments (see e.g. [1]). The gas phase composition was measured using a Proton-Transfer Ion-Trap Mass Spectrometer (PIT-MS) and the aerosol composition was measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). This complementary set of measurements will allow us to address the partitioning of gas- and aerosol-phase species. Knowledge of the gas phase composition in which the particles in our experiments form allows both for better comparison to the chemistry that is occurring in Titan’s atmosphere and for enabling more accurate determination of the possible pathways involved in the transition from gas phase to aerosol. We will compare the results from experiments that used two different initial gas mixtures (98% N2/2% CH4 and 98%N2/2%CH4/50 ppm CO) and two different energy sources to initiate the chemical reactions that result in particle formation (spark discharge using a Tesla coil or FUV irradiation from a deuterium lamp (115-400 nm)). [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326. SMH is supported by NSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1102827.

  13. Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Sabbah, Samer; Rusch, Peter; Gerhard, Jörn-Hinnrich; Harig, Roland

    2013-05-01

    The release of toxic industrial compounds in urban areas is a threat for the population and the environment. In order to supply emergency response forces with information about the released compounds after accidents or terrorist attacks, monitoring systems such as the scanning imaging spectrometer SIGIS 2 or the hyperspectral imager HI 90 were developed. Both systems are based on the method of infrared spectroscopy. The systems were deployed to monitor gas clouds released in the harbor area of Hamburg. The gas clouds were identified, visualized and quantified from a distance in real time. Using data of two systems it was possible to identify contaminated areas and to determine the source location.

  14. Trace-Gas Detection with Off-Beam Quartz Enhanced Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-06-01

    Trace-gas sensors have a wide range of potential applications such as environmental monitoring, climate research, agriculture, workplace safety, medical diagnostics, and industrial process control. A recently introduced technique called quartz-enhanced photoacoustic spectroscopy (QEPAS) is described. QEPAS use a quartz tuning fork as an acoustic transducer for a photoacoustic signal induced in an absorbing gas by modulated optical radiation. Advantages of the QEPAS compared to conventional photoacoustic spectroscopy include immunity to environmental acoustic noise and ultra-small sample volume. Trace gases of , and were monitored with a novel off-beam QEPAS approach and are described in detail.

  15. The Determination of Pesticidal and Non-Pesticidal Organotin Compounds by in situ Ethylation and Capillary Gas Chromatography with Pulsed Flame Photometric Detection

    EPA Science Inventory

    The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...

  16. The Determination of Pesticidal and Non-Pesticidal Organotin Compounds in Water Matrices by in situ Ethylation and Gas Chromatography with Pulsed Flame Photometric Detection

    EPA Science Inventory

    The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...

  17. Measurement techniques investigated for detection of hydrogen chloride gas in ambient air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1976-01-01

    Nine basic techniques are discussed, ranging from concentration (parts per million) to dosage only (parts per million-seconds) measurement techniques. Data for each technique include lower detection limit, response time, instrument status, and in some cases, specificity. Several techniques discussed can detect ambient hydrogen chloride concentrations below 1 part per million with a response time of seconds.

  18. Detection of Noble Gas Radionuclides from an Underground Nuclear Explosion During a CTBT On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei

    2014-03-01

    The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.

  19. Determination of Trichlorfon Pesticide Residues in Milk via Gas Chromatography with μ-Electron Capture Detection and GC-MS.

    PubMed

    Hem, Lina; Khay, Sathya; Choi, Jeong-Heui; Morgan, E D; Abd El-Aty, A M; Shim, Jae-Han

    2010-06-01

    The pesticide trichlorfon is readily degraded under experimental conditions to dichlorvos. A method has therefore been developed by which residues of trichlorfon in milk are determined as dichlorvos, using gas chromatography with μ-electron capture detection. The identification of dichlorvos was confirmed by mass spectrometry. Milk was extracted with acetonitrile followed by centrifugation, freezing lipid filtration, and partitioning into dichloromethane. The residue after partitioning of dichloromethane was dissolved in ethyl acetate for gas chromatography. Recovery concentration was determined at 0.5, 1.0, and 2.0 of times the maximum permitted residue limits (MRLs) for trichlorfon in milk. The average recoveries (n = 6) ranged from 92.4 to 103.6%. The repeatability of the measurements was expressed as relative standard deviations (RSDs) ranging from 3.6%, to 6.7%. Limit of detection (LOD) and limit of quantification (LOQ) were 3.7 and 11.1 μg/l, respectively. The accuracy and precision (expressed as RSD) were estimated at concentrations from 25 to 250 μg/l. The intra- and inter-day accuracy (n = 6) ranged from 89.2%to 91% and 91.3% to 96.3%, respectively. The intra- and inter-day precisions were lower than 8%. The developed method was applied to determine trichlorfon in real samples collected from the seven major cities in the Republic of Korea. No residual trichlorfon was detected in any samples. PMID:24278518

  20. Detection of extraction artifacts in the analysis of honey volatiles using comprehensive two-dimensional gas chromatography.

    PubMed

    Rivellino, Sandra Regina; Hantao, Leandro Wang; Risticevic, Sanja; Carasek, Eduardo; Pawliszyn, Janusz; Augusto, Fabio

    2013-12-01

    Extraction using headspace solid phase microextraction (HS-SPME) coupled to comprehensive two-dimensional gas chromatography with flame ionisation detection (GC×GC-FID) was employed to evaluate the effect of SPME fractionation conditions (heating time and temperature) on the generation of artifacts. The occurrence of artifacts was more pronounced at higher fractionation temperatures and times which caused significant changes in the chromatographic profiles. The identification of the volatile fraction of the honey blend was performed through a two-dimensional gas chromatograph coupled to a mass spectrometer with time of flight analyser (GC×GC-ToFMS) by comparing the first dimension linear temperature programmed retention index ((1)D-LTPRI) with the peak's identities provided by the mass spectral similarity search. Several artifacts were found and identified - such as hydroxymethylfurfural, methyl-furone and furfural - and some of them were not previously detected as such in honey samples. These compounds were either the result of hydrolysis or thermal decomposition of components already present in the honey samples. This occurrence was attributed to the increased detectability provided by GC×GC compared to conventional GC. The possible emergence of previously unknown extraction artifacts as a general tendency related use of GC×GC instead of conventional GC is discussed as a result of these observations. PMID:23870897