Science.gov

Sample records for gas diffusion media

  1. Probing porous media with gas diffusion NMR.

    PubMed

    Mair, R W; Wong, G P; Hoffmann, D; Hurlimann, M D; Patz, S; Schwartz, L M; Walsworth, R L

    1999-10-18

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks. PMID:11543587

  2. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  3. Gas-phase diffusion in porous media: Comparison of models

    SciTech Connect

    Webb, S.W.

    1998-09-01

    Two models are commonly used to analyze gas-phase diffusion in porous media in the presence of advection, the Advective-Dispersive Model (ADM) and the Dusty-gas Model (DGM). The ADM, which is used in TOUGH2, is based on a simple linear addition of advection calculated by Darcy`s law and ordinary diffusion using Fick`s law with a porosity-tortuosity-gas saturation multiplier to account for the porous medium. Another approach for gas-phase transport in porous media is the Dusty-Gas Model. This model applies the kinetic theory of gases to the gaseous components and the porous media (or dust) to combine transport due to diffusion and advection that includes porous medium effects. The two approaches are compared in this paper.

  4. Development of a compact multipass oxygen sensor used for gas diffusion studies in opaque media.

    PubMed

    Larsson, Jim; Mei, Liang; Lundin, Patrik; Bood, Joakim; Svanberg, Sune

    2015-11-20

    A highly scattering porous ceramic sample is employed as a miniature random-scattering multipass gas cell for monitoring of oxygen content in opaque media, that is, wood materials in the present work. Gas in scattering media absorption spectroscopy is used by employing a 760 nm near-infrared laser diode to probe the absorption of molecular oxygen enclosed in the pores of the ceramic material working as the multipass gas cell, with a porosity of 75%. A path length enhancement of approximately 26 times and a signal-to-noise ratio of about 60 were obtained for the ceramic sample used in this work. The gas sensor was then used in a case study of the gas diffusion in wood materials, namely, oak, spruce, and mahogany samples. Differences depending on whether gas diffusion was studied longitudinal or radial to the tree annual rings are demonstrated, with very little gas diffusing in the radial direction. We can also observe that the gas diffusion for the densest material-oak-had the fastest diffusion time, and mahogany, which had the lowest density, showed the slowest diffusion time. PMID:26836536

  5. Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Daigle, Hugh; Hunt, Allen G.; Ewing, Robert P.; Sahimi, Muhammad

    2015-01-01

    Understanding and accurate prediction of gas or liquid phase (solute) diffusion are essential to accurate prediction of contaminant transport in partially saturated porous media. In this study, we propose analytical equations, using concepts from percolation theory and the Effective Medium Approximation (EMA) to model the saturation dependence of both gas and solute diffusion in porous media. The predictions of our theoretical approach agree well with the results of nine lattice Boltzmann simulations. We find that the universal quadratic scaling predicted by percolation theory, combined with the universal linear scaling predicted by the EMA, describes diffusion in porous media with both relatively broad and extremely narrow pore size distributions.

  6. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    NASA Astrophysics Data System (ADS)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  7. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

    SciTech Connect

    Webb, S.W.

    1996-05-01

    Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

  8. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media.

    PubMed

    Mair, R W; Hürlimann, M D; Sen, P N; Schwartz, L M; Patz, S; Walsworth, R L

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects. PMID:11445310

  9. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  10. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media.

    PubMed

    Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L

    2002-06-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. PMID:12165255

  11. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  12. Diffusion in disordered media

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo; Ben-Avraham, Daniel

    2002-01-01

    Diffusion in disordered systems does not follow the classical laws which describe transport in ordered crystalline media, and this leads to many anomalous physical properties. Since the application of percolation theory, the main advances in the understanding of these processes have come from fractal theory. Scaling theories and numerical simulations are important tools to describe diffusion processes (random walks: the 'ant in the labyrinth') on percolation systems and fractals. Different types of disordered systems exhibiting anomalous diffusion are presented (the incipient infinite percolation cluster, diffusion-limited aggregation clusters, lattice animals, and random combs), and scaling theories as well as numerical simulations of greater sophistication are described. Also, diffusion in the presence of singular distributions of transition rates is discussed and related to anomalous diffusion on disordered structures.

  13. NOTE: Investigation of a copper etching technique to fabricate metallic gas diffusion media

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Yuan; Prasad, Ajay K.; Advani, Suresh G.

    2006-11-01

    A new fabrication technique based on etching is employed to convert a copper foil into a porous structure with an array of micron size pores. The motivation stems from the need to develop a more efficient and controllable gas diffusion medium for fuel cell applications. The influence of mask shape, mask width and etching time was investigated experimentally. A correlation to predict trench width with etching time was derived; normalizing by mask width allows one to collapse the data. The etching rates to obtain micro-scale features, which are of the order of 1 2 µm min 1, are mainly dominated by the mask width due to mass-transport resistance. It is possible to control the pore dimensions, porosity and pore size distributions with this technique.

  14. Review of enhanced vapor diffusion in porous media

    SciTech Connect

    Webb, S.W.; Ho, C.K.

    1998-08-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  15. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.

    2015-04-01

    Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.

  16. A model for the effective diffusion of gas or the vapor phase in a fractured media unsaturated zone driven by periodic atmospheric pressure fluctuations

    SciTech Connect

    Vold, E.L.

    1997-03-01

    There is evidence for migration of tritiated water vapor through the tuff in the unsaturated zone from the buried disposal shafts located on a narrow mesa top at Area G, Los Alamos, NM. Field data are consistent with an effective in-situ vapor phase diffusion coefficient of 1.5x10{sup {minus}3} m{sup s}/s, or a factor of 60 greater than the binary diffusion coefficient for water vapor in air. A model is derived to explain this observation of anomolously large diffusion, which relates an effective vapor or gas phase diffusion coefficient in the fractured porous media to the subsurface propagation of atmospheric pressure fluctuations (barometric pumping). The near surface (unattenuated) diffusion coefficient is independent of mode period under the simplified assumptions of a complete {open_quote}mixing mechanism{close_quote} for the effective diffusion process. The unattenuated effective diffusion driven by this barometric pumping is proportional to an average media permeability times the sum of the square of pressure mode amplitudes, while the attenuation length is proportional to the squarer root of the product of permeability times mode period. There is evidence that the permeability needed to evaluate the pressure attenuation length is the in-situ value, approximately that of the matrix. The diffusion which results using Area G parameter values is negligible in the matrix but becomes large at the effective permeability of the fractured tuff matrix. The effective diffusion coefficient predicted by this model, due to pressure fluctuations and the observed fracture characteristics, is in good agreement with the observed in-situ diffusion coefficient for tritium field measurements. It is concluded that barometric pumping in combination with the enhanced permeability of the fractured media is a likely candidate to account for the observed in-field migration of vapor in the near surface unsaturated zone at Area G.

  17. Gas fluidized-bed stirred media mill

    SciTech Connect

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  18. Upscaling diffusion waves in porous media

    NASA Astrophysics Data System (ADS)

    Valdés-Parada, Francisco J.; Álvarez Ramírez, José; Ochoa-Tapia, J. Alberto

    2016-04-01

    The aim of this work is to derive the effective-medium equations and to estimate the related effective diffusivities for diffusion waves in porous media. Effective diffusivities are estimated within the framework of the volume averaging method, where they are obtained from the solution of the associated closure problems in 2D and 3D periodic unit cells. The results showed that the transport of diffusion waves are governed by the diffusion and co-diffusion mechanisms of harmonic waves. In addition, numerical results showed that the effective diffusivities increase with frequency, while the effective co-diffusivities display a resonance-like behavior. Our results also indicate that geometry plays a more significant effect over the predictions of the co-diffusion coefficient at moderate frequencies and it mainly influences the predictions of the direct diffusivity at low frequencies (i . e .,ω∗ ≪ 1).

  19. Diffusivities of synthesis gas and Fischer-Tropsch products in slurry media. Quarterly report, September-December 1984

    SciTech Connect

    Akgerman, A.

    1985-01-01

    The goal of this research is to develop a fast and accurate method for measuring liquid diffusion coefficients for the Fischer-Tropsch system at temperatures from ambient to 573 K and pressures from ambient to 7 MPa. The Taylor dispersion technique will be utilized for measuring the diffusivities of carbon monoxide, hydrogen, heptane, octane, nonane, decane, and decanol in molten Fischer-Tropsch wax. The theoretical criteria for measuring diffusivities by the Taylor dispersion method have been given. In addition, the practical departures from an ideal experiment have been discussed; correction for the non-ideal conditions are found in Appendix B (Alizadeh et al., 1980). The effect of varying viscosity on secondary flow effects has been pointed out; it appears that under typical laboratory space limitations, using commercially available tubing, and with diffusivities on the order of 10/sup -9/ m/sup 2//s, it will not be possible to completely eliminate these effects. An apparatus for measuring diffusivity at high temperatures and pressures, where data has heretofore been scarce, is presented. With this apparatus rapid measurements may be made, and with the aid of computer control the measurements may be repeated and large volumes of data generated with minimum requirements of the operator. We anticipate our accuracy being between 0.5 and 4%. 20 references, 4 figures.

  20. Molecular diffusion in porous media by PGSE ESR.

    PubMed

    Talmon, Yael; Shtirberg, Lazar; Harneit, Wolfgang; Rogozhnikova, Olga Yu; Tormyshev, Victor; Blank, Aharon

    2010-06-21

    Diffusion in porous media is a general subject that involves many fields of research, such as chemistry (e.g. porous catalytic pallets), biology (e.g. porous cellular organelles), and materials science (e.g. porous polymer matrixes for controlled-release and gas-storage materials). Pulsed-gradient spin-echo nuclear magnetic resonance (PGSE NMR) is a powerful technique that is often employed to characterize complex diffusion patterns inside porous media. Typically it measures the motion of at least approximately 10(15) molecules occurring in the milliseconds-to-seconds time scale, which can be used to characterize diffusion in porous media with features of approximately 2-3 mum and above (in common aqueous environments). Electron Spin Resonance (ESR), which operates in the nanoseconds-to-microseconds time scale with much better spin sensitivity, can in principle be employed to measure complex diffusion patterns in porous media with much finer features (down to approximately 10 nm). However, up to now, severe technical constraints precluded the adaptation of PGSE ESR to porous media research. In this work we demonstrate for the first time the use of PGSE ESR in the characterization of molecular restricted diffusion in common liquid solutions embedded in a model system for porous media made of sub-micron glass spheres. A unique ESR resonator, efficient gradient coils and fast gradient current drivers enable these measurements. This work can be further extended in the future to many applications that involve dynamical processes occurring in porous media with features in the deep sub-micron range down to true nanometric length scales. PMID:20372729

  1. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  2. Diffusing-wave spectroscopy of nonergodic media

    SciTech Connect

    Scheffold, F.; Skipetrov, S. E.; Romer, S.; Schurtenberger, P.

    2001-06-01

    We introduce an elegant method that allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solidlike samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called {open_quotes}multiplication rule,{close_quotes} which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.

  3. Diffusing-wave spectroscopy of nonergodic media.

    PubMed

    Scheffold, F; Skipetrov, S E; Romer, S; Schurtenberger, P

    2001-06-01

    We introduce an elegant method that allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solidlike samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule," which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique. PMID:11415101

  4. Diffusion Driven Combustion Waves in Porous Media

    NASA Technical Reports Server (NTRS)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  5. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  6. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    SciTech Connect

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-10-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media.

  7. Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion

    SciTech Connect

    WEBB, STEPHEN W.

    2001-10-01

    The GEO-SEQ Project is investigating methods for geological sequestration of CO{sub 2}. This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k = 10{sup -11} m{sup 2}) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful.

  8. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  9. Pathlength determination for gas in scattering media absorption spectroscopy.

    PubMed

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  10. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  11. A Mathematical Model of Coupled Gas Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects

    NASA Astrophysics Data System (ADS)

    Liu, Qingquan; Cheng, Yuanping; Zhou, Hongxing; Guo, Pinkun; An, Fenghua; Chen, Haidong

    2015-05-01

    The influence of gas diffusion behavior on gas flow and permeability evolution in coal seams is evaluated in this paper. Coalbed methane (CBM) reservoirs differ from conventional porous media and fractured gas reservoirs due to certain unique features, which lead to two distinct gas pressures: one in fractures and the other in the coal matrix. The latter pressure, also known as the sorption pressure, will be used in calculating sorption-based volume changes. The effective stress laws for single-porosity media is not suitable for CBM reservoirs, and the effective stress laws for multi-porosity media need to be applied. The realization of the above two points is based on the study of the two-phase state of gas migration (involving Fickian diffusion and Darcy flow) in a coal seam. Then, a general porosity and permeability model based on the P-M model is proposed to fit this phenomenon. Moreover, the Klinkenberg effect has been taken into account and set as a reference object. Finally, a coupled gas flow and coal deformation model is proposed and solved by using a finite element method. The numerical results indicate that the effects of gas diffusion behavior and Klinkenberg behavior can have a critical influence on the gas pressure, residual gas content, and permeability evolution during the entire methane degasification period, and the impacts of the two effects are of the same order of magnitude. Without considering the gas diffusion effect, the gas pressure and residual gas content will be underestimated, and the permeability will be overestimated.

  12. Pressure diffusion waves in porous media

    SciTech Connect

    Silin, Dmitry; Korneev, Valeri; Goloshubin, Gennady

    2003-04-08

    Pressure diffusion wave in porous rocks are under consideration. The pressure diffusion mechanism can provide an explanation of the high attenuation of low-frequency signals in fluid-saturated rocks. Both single and dual porosity models are considered. In either case, the attenuation coefficient is a function of the frequency.

  13. On vibrational diffusion segregation in granular media

    NASA Astrophysics Data System (ADS)

    Blekhman, I. I.; Blekhman, L. I.; Vaisberg, L. A.; Vasilkov, V. B.; Yakimova, K. S.

    2016-01-01

    In this paper, the definition and description of vibrational diffusion (gradient) segregation of the bulk materials have been provided. The results of the experimental studies of this kind of segregation are described. This technique can be very useful for creation of entirely new high effective machines for granular separation. The results of theoretical investigation are presented. In this investigation, the diffusion equation, in which random and deterministic parameters are taken into consideration, has been used.

  14. Microgravity Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  15. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  16. Diffusion NMR methods applied to xenon gas for materials study.

    PubMed

    Mair, R W; Rosen, M S; Wang, R; Cory, D G; Walsworth, R L

    2002-12-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. PMID:12807139

  17. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  18. Purging of multilayer insulation by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Spuckler, C. M.

    1976-01-01

    An experimental investigation was conducted to determine the time required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable (nitrogen) gas concentration of less than 1 percent within the panel. Two flat, rectangular MLI panel configurations, one incorporating a butt joint, were tested. The insulation panels consisted of 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The test results indicated that the rate which the condensable gas concentration at the edge or at the butt joint of an MLI panel was reduced was a significant factor in the total time required to reduce the condensable gas concentration within the panel to less than 1 percent. The experimental data agreed well with analytical predictions made by using a simple, one-dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent.

  19. Spiral core in singly diffusive excitable media

    SciTech Connect

    Kessler, D.A. ); Levine, H.; Reynolds, W.N. )

    1992-01-20

    We formulate the problem of finding the spiral core which smoothly matches onto the asymptotic rotating solution of the FitzHugh-Nagumo model. We prove that the inner problem (with scale {epsilon}, the ratio of the reaction rates) has a solution for all possible outer solutions on scale {epsilon}{sup 2/3}; furthermore, we explicitly determine this solution via a simple numerical procedure. This completes the rigorous demonstration of the existence of rotating spiral solutions in singly diffusive excitable systems.

  20. Simulating the Gas Diffusion Coefficient in Macropore Network Images: Influences of Soil Pore Morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the diffusion coefficient is necessary for modeling gas transport in soils and other porous media. This study was conducted to determine the relationship between the diffusion coefficient and pore structure parameters, such as the fractal dimension of pores (Dmp), the shortest path leng...

  1. Coherent random lasing in diffusive resonant media

    SciTech Connect

    Uppu, Ravitej; Tiwari, Anjani Kumar; Mujumdar, Sushil

    2011-10-03

    We investigate diffusive propagation of light and consequent random lasing in a medium comprising resonant spherical scatterers. A Monte-Carlo calculation based on photon propagation via three-dimensional random walks is employed to obtain the dwell-times of light in the system. We compare the inter-scatterer and intra-scatterer dwell-times for representative resonant and non-resonant wavelengths. Our results show that more efficient random lasing, with intense coherent modes, is obtained when the gain is present inside the scatterers. Further, a larger reduction in frequency fluctuations is achieved by the system with intra-scatterer gain.

  2. Lattice Boltzmann Modeling of Gaseous Diffusion in Unsaturated Porous Media under Variable Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Or, D.; Jones, S.; Sukop, M.

    2004-05-01

    Liquid distribution in unsaturated porous media under different gravitational forces and resulting gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. Different fluid behavior in plant growth media under microgravity conditions as compared to earth presents a challenge to plant growth in long duration space exploration missions. Our primary objective was to provide qualitative description and quantitative measures of the role of reduced gravity on hydraulic and gaseous transport properties in simulated porous media. We implemented a multi-phase lattice Boltzmann code for equilibrium distribution of liquid in an idealized two-dimensional porous medium under microgravity and "normal" gravity conditions. The information was then used to provide boundary conditions for simulation of gaseous diffusion through the equilibrium domains (considering diffusion through liquid phase negligibly small). The models were tested by comparison with several analytical solutions to the diffusion equation, with excellent results. The relative diffusion coefficient for both series of simulations (with and without gravity) as functions of air-filled porosity was in good agreement with established models of Millington-Quirk. Liquid distribution under earth's gravity featured increased water content at the lower part of the medium relative to the distribution in reduced gravity, which resulted in decreased gas diffusion through a vertically oriented column of a porous medium. Simulation results for larger domains under various orientations will be presented.

  3. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  4. Measurement of gas diffusion through soils: comparison of laboratory methods.

    PubMed

    Allaire, Suzanne E; Lafond, Jonathan A; Cabral, Alexandre R; Lange, Sébastien F

    2008-11-01

    Gas movement through soils is important for ecosystems and engineering in many ways such as for microbial and plant respiration, passive methane oxidation in landfill covers and oxidation of mine residues. Diffusion is one of the most important gas movement processes and the determination of the diffusion coefficient is a crucial step in any study. Five laboratory methods used for measuring the relative gas diffusion coefficient (D(s)/D(o)) were compared using a loamy sand, a porous media commonly found in agricultural fields and in several engineered structures, such as in landfill final covers. In the absence of macropores, all methods gave rather similar values of D(s)/D(o). Methods allowing the study of microscale variability indicated that the presence of macropores highly influenced gas movement, thus the value of D(s)/D(o), which, near a macropore may be one order of magnitude higher than in regions without macropores. Repacked columns do not allow the study of heterogeneity in D(s)/D(o). Natural spatial variability in D(s)/D(o) due to water distribution and preferential pathways can only be studied in large systems, but these systems are difficult to handle. Advantages and disadvantages of each method are discussed. PMID:18974902

  5. Reaction-Diffusion Patterns in Structured Media

    NASA Astrophysics Data System (ADS)

    Epstein, Irving

    I will look at pattern formation in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction in media that are structured at length scales ranging from ten nanometers to a few centimeters. A reverse microemulsion consisting of nanometer diameter droplets of water containing the reactants dispersed in oil allows the physical structure (size, spacing) of the droplets and their chemical composition to be controlled independently, enabling one to generate a remarkable variety of stationary and moving patterns, including Turing structures, ordinary and antispirals, packet waves and spatiotemporal chaos. One- and two-dimensional arrays of aqueous droplets in oil generated by microfluidic techniques have diameters of the order of 100 micrometers and produce a different array of patterns that can be precisely controlled with light. In particular, circular arrays of droplets provide a testing ground for some of Turing's ideas about morphogenesis. By attaching the BZ catalyst to a polymer that shrinks and swells in response to changes in the redox state of the catalyst, one can construct gel materials that transduce chemical changes to mechanical motion, a phenomenon modeled with considerable success by the Balazs group. If time permits, I will also discuss the BZ reaction in coupled macroscopic flow reactors that mimic small neural networks.

  6. Diffusion of Lexical Change in Social Media

    PubMed Central

    Eisenstein, Jacob; O'Connor, Brendan; Smith, Noah A.; Xing, Eric P.

    2014-01-01

    Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity – especially with regard to race – plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified “netspeak” dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English. PMID:25409166

  7. Diffusion of lexical change in social media.

    PubMed

    Eisenstein, Jacob; O'Connor, Brendan; Smith, Noah A; Xing, Eric P

    2014-01-01

    Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English. PMID:25409166

  8. Enhancement of gas-phase diffusion in the presence of liquid

    NASA Astrophysics Data System (ADS)

    Webb, S.; Angert, A.

    2003-04-01

    Gas diffusion in porous media occurs in both the gas and liquid phases. In many instances, gas diffusion in the liquid phase is ignored. However, under many conditions, gas diffusion in the liquid phase may be more important than gas diffusion in the gas phase. Two different cases will be examined in this work. The first case is a continuous liquid path between the gas concentrations of interest modeled after Jury et al. (1984). The second case is the situation at low liquid saturation where liquid islands exist. For the first case, Jury's model can be rewritten as a ratio of the total gas diffusion in the gas and liquid phases to that just in the gas phase. The liquid diffusion coefficient is approximately 10-4 times the gas diffusion coefficient consistent with Jury et al. (1984). The ratio of total diffusion to gas-phase diffusion is then only a function of Henry's constant and the liquid saturation. For higher values of Henry's constant, such as for CO2 and O2, the effect of diffusion in the liquid phase is small except at high liquid saturations. For small values of Henry's constant, such as for some VOCs and explosive compounds, diffusion in the liquid phase dominates for low and moderate liquid saturation values. The second case is the enhancement of diffusion caused by liquid islands at low liquid saturation. Enhanced vapor diffusion across liquid islands has been observed and modeled by Webb and Ho (1999), where condensation and evaporation occur on opposite ends of the liquid island. Vapor diffusion enhancement of up to a factor of 10 has been observed. Similarly, gas can diffuse through the liquid island. For high values of Henry's constant, gas diffusion through liquid islands is negligible and can be ignored. For small values of Henry's constant, diffusion through liquid islands may be much greater than diffusion through gas, so the rate is enhanced. The work was sponsored by the Geneva International Center for Humanitarian Demining (GICHD) under the

  9. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.

    PubMed

    Chau, Jessica Furrer; Or, Dani

    2006-11-01

    The effect of drainage front morphology on gaseous diffusion through partially saturated porous media is analyzed using the lattice Boltzmann method (LBM). Flow regimes for immiscible displacement in porous media have been characterized as stable displacement, capillary fingering, and viscous fingering. The dominance of a flow regime is associated with the relative magnitudes of gravity, viscous, and capillary forces, quantifiable via the Bond number Bo, capillary number Ca, and their difference, Bo-Ca . Forced drainage from an initially saturated two-dimensional (2D) porous medium was simulated and the resulting flow patterns were analyzed and compared with theoretical predictions and experimental results. The LBM simulations reproduced expected flow morphologies for a range of drainage velocities and gravitational forces (i.e., a range of capillary and Bond numbers). Furthermore, measures of drainage front width as a function of the dimensionless difference Bo-Ca correspond well with scaling laws derived from percolation theory. Effects of flow morphology on residual fluid entrapment and gaseous diffusion were assessed by running LBM diffusion simulations through the partially saturated domain for a range of water contents. The effective diffusion coefficient as a function of water content was estimated for three regimes: stable drainage front, capillary fingering, and viscous fingering. Significant reductions in gaseous diffusion coefficient were found for viscous fingering relative to stable displacement, and to a lesser extent for capillary fingering, indicating that wetting phase distribution with a high degree of fingering in the 2D domain severely restricts connectivity of gas diffusion pathways through the medium. The study lends support for the use of LBM in design and management of fluids in porous media under variable gravity, and enhances the understanding of the role of dynamic fluid behavior on macroscopic transport properties of partially saturated

  10. Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance

    SciTech Connect

    Weber, Adam

    2010-03-05

    A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.

  11. Density PDFs of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2012-09-01

    The probability distribution functions (PDFs) of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5∘ and |b|≥ 5∘ are considered separately. Our results provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  12. Spatial mapping of fluorophore quantum yield in diffusive media.

    PubMed

    Zhao, Yanyu; Roblyer, Darren

    2015-08-01

    Fluorescence quantum yield (QY) indicates the efficiency of the fluorescence process. The QY of many fluorophores is sensitive to local tissue environments, highlighting the possibility of using QY as an indicator of important parameters such as pH or temperature. QY is commonly measured by comparison to a well-known standard in nonscattering media. We propose a new imaging method, called quantum yield imaging (QYI), to spatially map the QY of a fluorophore within an optically diffusive media. QYI utilizes the wide-field diffuse optical technique spatial frequency domain imaging (SFDI) as well as planar fluorescence imaging. SFDI is used to measure the optical properties of the background media and the absorption contributed by the fluorophore. The unknown QY is then calculated by combining information from both modalities. A fluorescent sample with known QY is used to account for instrument response. To demonstrate QYI, rhodamine B and SNARF-5 were imaged in liquid phantoms with different background optical properties. The methanol:water ratio and pH were changed for rhodamine B and SNARF-5 solvents, respectively, altering the QY of each through a wide range. QY was determined with an agreement of 0.021 and 0.012 for rhodamine B and SNARF-5, respectively. PMID:26308165

  13. Noncontact fluorescence diffuse optical tomography of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Hervé, L.; Koenig, A.; da Silva, A.; Berger, M.; Boutet, J.; Dinten, J. M.; Peltié, P.; Rizo, P.

    2007-08-01

    Fluorescence-enhanced diffuse optical tomography is expected to be useful to the collection of functional information from small animal models. This technique is currently limited by the extent of tissue heterogeneity and management of the shape of the animals. We propose an approach based on the reconstruction of object heterogeneity, which provides an original solution to the two problems. Three evaluation campaigns are described: the first two were performed on phantoms designed to test the reconstructions in highly heterogeneous media and noncontact geometries; the third was conducted on mice with lung tumors to test fluorescence yield reconstruction feasibility in vivo.

  14. Simulating diffusion processes in discontinuous media: Benchmark tests

    NASA Astrophysics Data System (ADS)

    Lejay, Antoine; Pichot, Géraldine

    2016-06-01

    We present several benchmark tests for Monte Carlo methods simulating diffusion in one-dimensional discontinuous media. These benchmark tests aim at studying the potential bias of the schemes and their impact on the estimation of micro- or macroscopic quantities (repartition of masses, fluxes, mean residence time, …). These benchmark tests are backed by a statistical analysis to filter out the bias from the unavoidable Monte Carlo error. We apply them on four different algorithms. The results of the numerical tests give a valuable insight into the fine behavior of these schemes, as well as rules to choose between them.

  15. Carbon Chains in the Diffuse Interstellar Gas

    NASA Astrophysics Data System (ADS)

    Thaddeus, P.

    1999-05-01

    Linear carbon chain molecules are the dominant fraction of the 125 molecules which have now been identified in interstellar clouds or circumstellar shells, and the only molecules which have been conclusively identified as carriers of optical diffuse interstellar bands are carbon chains (as discussed by Maier at this meeting). In our laboratory over the past two years we have succeeded in detecting 46 carbon chains by applying Fourier transform microwave spectroscopy to supersonic molecular beams of reactive species produced in a gas discharge. The radio spectrum of all - including hyperfine structure when present - has been measured to the point that the laboratory astrophysics is complete: very precise rest frequencies are in hand for astronomical searches, and six of the chains have in fact already been detected with large radio telescopes. Because the longer chains tend to have their strongest lines at low frequencies, the resurfaced Arecibo telescope and the Green Bank Telescope under construction promise to be especially effective search instruments. Carbon chains are by far the best candidates for the several hundred diffuse bands which have been identified since 1922, and since the chain densities achieved in the laboratory are fairly high by the standards of laser spectroscopy, the classical problem of the diffuse bands may be on the point of general solution.

  16. Liquid water transport mechanism in the gas diffusion layer

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Wu, C. W.

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water.

  17. Narrow groove welding gas diffuser assembly and welding torch

    SciTech Connect

    Rooney, Stephen J.

    2000-02-04

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  18. Narrow groove welding gas diffuser assembly and welding torch

    DOEpatents

    Rooney, Stephen J.

    2001-01-01

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  19. Ice Formation in Gas-Diffusion Layers

    SciTech Connect

    Dursch, Thomas; Radke, Clayton J.; Weber, Adam Z.

    2010-07-10

    Under sub-freezing conditions, ice forms in the gas-diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) drastically reducing cell performance. Although a number of strategies exist to prevent ice formation, there is little fundamental understanding of the mechanisms of freezing within PEMFC components. Differential scanning calorimetry (DSC) is used to elucidate the effects of hydrophobicity (Teflon® loading) and water saturation on the rate of ice formation within three commercial GDLs. We find that as the Teflon® loading increases, the crystallization temperature decreases due to a change in internal ice/substrate contact angle, as well as the attainable level of water saturation. Classical nucleation theory predicts the correct trend in freezing temperature with Teflon® loading.

  20. Diffuse Hot Gas in M51

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric

    2014-08-01

    X-ray observations of face-on spiral galaxies reveal diffuse emission across the face of nearby galaxies. Whether that emission represents hot gas or unresolved point sources remains to be determined. We present two examples of our pursuit of an answer. First, a Chandra observation of M51 reveals a difference in the soft X-ray emission of the arms. The fitted spectra exhibit similar temperatures for the model components, but different abundances, particularly for Mg. Second, we compare the X-ray emission of M51 with data at other wavelengths via 'pixel statistics'. We adaptively bin the X-ray image and apply the resulting mask to data at other wavelengths to search for pixel correlations. We report on our results and inferences to date.

  1. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  2. Anisotropic diffusion of neutral particles in stochastic media

    NASA Astrophysics Data System (ADS)

    Vasques, Richard

    This work introduces a new homogenization theory for the transport of particles in stochastic media. This theory utilizes a nonclassical form of the Boltzmann equation in which the locations of the scattering centers in the system are correlated and the distance-to-collision is not exponentially distributed. We take the diffusion limit of this equation and derive an anisotropic diffusion equation. (The diffusion is anisotropic because the mean and mean square distances between collisions in the horizontal and vertical directions are slightly different.) We then generate different possible realizations of modeled 2-D and 3-D Pebble-Bed Reactor cores, divided into crystal (honeycomb in 2-D, face-centered in 3-D) and random structures. (To generate the random structures, we developed 2-D and 3-D ballistic deposition algorithms.) We apply Monte Carlo codes (which we also developed) in these structures to simulate neutron transport in both 2-D and 3-D systems; results from these simulations are presented. We show that the results predicted using the new theory more closely agree with the numerical experiments than the atomic mix results and its corrections, and that the new theory can accurately predict small anisotropic effects detected in the simulations. We conclude by discussing the general anisotropic behavior of particles that are born close to the wall of the core, and by showing that the new theory can be used to accurately estimate this effect.

  3. Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media

    NASA Astrophysics Data System (ADS)

    Monnig, N. D.; Benson, D. A.

    2007-12-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.

  4. Experimental study of advective-diffusive gaseous CO2 transport through porous media

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Sharma, Prabhakar; Niemi, Auli; Fagerlund, Fritjof

    2014-05-01

    Leakage of gaseous CO2 into the shallow subsurface system is one of the main concerns associated with geologic storage resources. A better understanding of CO2 leakage in the shallow subsurface plays an important role for developing leakage monitoring programs. CO2 may reach the unsaturated zone by different leak mechanisms such as exsolution from CO2 supersaturated water and continuous bubbling or gas flow along a leakage path. In the unsaturated zone, the CO2 is heavier than air and may accumulate below the ground surface and move laterally. We developed a small-scale experiment setup to study the possible gaseous CO2 transport mechanisms with different controlled conditions. In this study, the experiment setup was applied to measure CO2 distributions in time and space through homogenous dry sand in which the CO2 concentrations through the domain were measured by sensitive gas sensors. The preliminary analysis of the result suggests that the transport and distribution of gaseous CO2 is spatially and temporally sensitive for the selected experimental conditions of gas flow rate and porous media. To better understand the advection and diffusion processes through the unsaturated zone, the experimental results are coupled with the dusty gas model (DGM) of Mason et al. (1967). The dusty gas model's constitutive relationships are integrated into a numerical model for multicomponent gas mixture flow and transport in porous media. The DGM considers interactions between all gaseous species and Knudsen diffusion which is important in fine grained soils. Results from the applied model were consistent with the experimental breakthrough curves obtained in this study.

  5. A Numerical Assessment of Cosmic-Ray Energy Diffusion through Turbulent Media

    NASA Astrophysics Data System (ADS)

    Fatuzzo, M.; Melia, F.

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  6. A numerical assessment of cosmic-ray energy diffusion through turbulent media

    SciTech Connect

    Fatuzzo, M.; Melia, F. E-mail: fmelia@email.arizona.edu

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  7. Gas transport in unsaturated porous media: the adequacy of Fick's law

    USGS Publications Warehouse

    Thorstenson, D.C.; Pollock, D.W.

    1989-01-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors

  8. Surface Properties of PEMFC Gas Diffusion Layers

    SciTech Connect

    WoodIII, David L; Rulison, Christopher; Borup, Rodney

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 higher than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.

  9. Gas phase radiative effects in diffusion flames

    NASA Astrophysics Data System (ADS)

    Bedir, Hasan

    Several radiation models are evaluated for a stagnation point diffusion flame of a solid fuel in terms of accuracy and computational time. Narrowband, wideband, spectral line weighted sum of gray gases (SLWSGG), and gray gas models are included in the comparison. Radiative heat flux predictions by the nongray narrowband, wideband, and SLWSGG models are found to be in good agreement with each other, whereas the gray gas models are found to be inaccurate. The narrowband model, the most complex among the models evaluated, is then applied first to a solid fuel and second to a pure gaseous diffusion flame. A polymethylmethacrylate (PMMA) diffusion flame in a stagnation point geometry is solved with the narrowband model with COsb2, Hsb2O, and MMA vapor included in participating species. A detailed account of the emission and absorption from these species as well as the radiative heat fluxes are given as a function of the stretch rate. It is found that at low stretch rate the importance of radiation is increased due to an increase in the optical thickness, and a decrease in the conductive heat flux. Results show that COsb2 is the biggest emitter and absorber in the flame, MMA vapor is the second and Hsb2O is the least important. A pure gaseous flame in an opposed jet configuration is solved with the narrowband radiation model with CO as the fuel, and Osb2 as the oxidizer. Detailed. chemical kinetics and transport are incorporated into the combustion model with the use of the CHEMKIN and TRANSPORT software packages. The governing equations are solved with a modified version of the OPPDIF code. Dry and wet CO flames as well as COsb2 dilution are studied. Comparison of the results with and without the consideration of radiation reveals that the radiation is important for the whole flammable range of dry CO flames and for the low stretch rates of wet flames. Without the consideration of radiation the temperature and the species mole fractions (especially of minor species

  10. Imaging Absorbing Structures Embedded in Thick Diffusing Media.

    NASA Astrophysics Data System (ADS)

    Dilworth, David Saunders

    Linear systems models and confocal imaging techniques are applied to the problem of imaging absorbing structures embedded in thick diffusing media. At the microscopic level, the model is linear in complex field and space variant; at the macroscopic level where spatial averaging processes are considered the model is linear in irradiance and space variant, thereby becoming mathematically more tractable. We describe the planar confocal imager, in which a small spot of light scans the front surface of a diffuser, and the light distribution on the back surface is sampled for each position of the scanning spot. A composite image is then formed by selection of one pixel from each of the 25,600 images, viz., a pixel from a spot opposite or nearly opposite from the scanning spot. The overall process is effectively a confocal imaging process. The planar system can be modified to create 3-D confocal imaging, where many stereo image pairs are created of the absorbing structures within a thick diffuser. Techniques for both planar and exfoliative deconvolution are investigated. Planar deconvolution sharpens images affected by space invariant processes in which the image point spread function is always the same. Exfoliatative deconvolution is a systematic method for sharpening images formed by space variant processes in which the point spread function varies in accordance with the depth of the embedded object. Results from planar and 3-D confocal scanning verify the linear systems model and demonstrate that the broad beam point spread function width (the point spread function formed by conventional, non-confocal imaging) can be reduced by a factor of 2. Results from planar and exfoliative deconvolution demonstrate that the confocal point spread function width can be reduced by a factor of 1.5. Preliminary optical and data processing techniques are discussed for developing a coherent confocal scanner. The image resolution from this type of scanner will be determined by the

  11. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  12. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    SciTech Connect

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  13. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  14. Copper Gas Diffusers For Purging Line-Focus Laser Welds

    NASA Technical Reports Server (NTRS)

    Fonteyne, Steve L.; Hosking, Timothy J.; Shelley, D. Mark

    1996-01-01

    Modified flow diffusers built for inert-gas purging of welds made with 5-kW CO(2) lasers operating with line-focus optics in conduction mode instead of with point-focus optics in customary keyhole mode. Diffusers made of copper components brazed together, robust enough to withstand strong reflections of line-focused laser energy.

  15. Study of a simple model for the transition between the ballistic and the diffusive regimes in diffusive media

    NASA Astrophysics Data System (ADS)

    Ben, Igor; Layosh, Yonatan Y.; Granot, Er'el

    2016-06-01

    A Monte Carlo simulation was utilized to investigate a simple model for the transition between the ballistic and the diffusive regimes in diffusive media. The simulation focuses on the propagation of visible and near-infrared light in biological tissues. This research has mainly two findings: (1) the transition can be described, as was found experimentally, with good accuracy by only two terms (ballistic and diffusive). (2) The model can be utilized for cases where the absorption coefficient is not negligible compared to the scattering coefficient by adding a power-law prefactor to the diffusive term.

  16. Applying Diffusion Theory: Adoption of Media Literacy Programs in Schools.

    ERIC Educational Resources Information Center

    Yates, Bradford L.

    Recent research indicates that 48 of the 50 states have school curricula frameworks that contain one or more elements that call for some form of media literacy education. Such findings indicate that media literacy is slowly becoming an integral part of school curricula. However, full adoption of media literacy programs has yet to occur.…

  17. Fractal Analysis of Gas Diffusion in Porous Nanofibers

    NASA Astrophysics Data System (ADS)

    Xiao, Boqi; Fan, Jintu; Wang, Zongchi; Cai, Xin; Zhao, Xige

    2015-02-01

    In this study, with the consideration of pore size distribution and tortuosity of capillaries, the analytical model for gas diffusivity of porous nanofibers is derived based on fractal theory. The proposed fractal model for the normalized gas diffusivity (De/D0) is found to be a function of the porosity, the area fractal dimensions of pore and the fractal dimension of tortuous capillaries. It is found that the normalized gas diffusivity decreases with increasing of the tortuosity fractal dimension. However, the normalized gas diffusivity is positively correlated with the porosity. The prediction of the proposed fractal model for porous nanofibers with porosity less than 0.75 is highly consistent with the experimental and analytical results found in the literature. The model predictions are compared with the previously reported experimental data, and are in good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. Every parameter of the proposed formula of calculating the normalized gas diffusivity has clear physical meaning. The proposed fractal model can reveal the physical mechanisms of gas diffusion in porous nanofibers.

  18. The effect of spatial variation in potential energy on the diffusion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Livshits, A. I.

    2016-05-01

    The standard equation of diffusion in heterogeneous media is found to be incomplete. The effect of heterogeneity on diffusion phenomena is commonly considered to be caused by only spatial variations of diffusion coefficient while the spatial difference in the potential energy of diffusing particles due to their interactions with the inhomogeneous medium is not taken into consideration. The possibility of new transport phenomena in heterogeneous media follows from the corrected equation. In particular the great increase of hydrogen permeability through the membranes of metallic alloy is turned out possible due to an optimization of spatial distribution of the alloy composition.

  19. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    SciTech Connect

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  20. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  1. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  2. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  3. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  4. Propagation of pore pressure diffusion waves in saturated dual-porosity media (II)

    NASA Astrophysics Data System (ADS)

    Yang, Duoxing; Li, Qi; Zhang, Lianzhong

    2016-04-01

    A mechanism has been established for pressure diffusion waves in dual-porosity media. Pressure diffusion waves are heavily damped with relatively low velocities and short wavelengths. The characteristic frequency dominates the attenuation behavior of pressure diffusions and separates wave fields into two asymptotic regimes: relaxed and unrelaxed. Characteristic delay times control the pressure diffusion between the matrix and the fractures. The transition zones in wavelength and attenuation peak shift toward high frequencies when the characteristic delay time decreases. In contrast, the transition zones in both phase and group velocity shift toward low frequencies as the characteristic time of the delay increases. In a spatially dependent diffusivity field, the pressure diffusion waves in dual-porosity media obey an accumulation-depletion law.

  5. An empirical formula based on Monte Carlo simulation for diffuse reflectance from turbid media

    NASA Astrophysics Data System (ADS)

    Gnanatheepam, Einstein; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Diffuse reflectance spectroscopy has been widely used in diagnostic oncology and characterization of laser irradiated tissue. However, still accurate and simple analytical equation does not exist for estimation of diffuse reflectance from turbid media. In this work, a diffuse reflectance lookup table for a range of tissue optical properties was generated using Monte Carlo simulation. Based on the generated Monte Carlo lookup table, an empirical formula for diffuse reflectance was developed using surface fitting method. The variance between the Monte Carlo lookup table surface and the surface obtained from the proposed empirical formula is less than 1%. The proposed empirical formula may be used for modeling of diffuse reflectance from tissue.

  6. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  7. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures. PMID:25679044

  8. Single-shot diffusion measurement in laser-polarized Gas

    NASA Technical Reports Server (NTRS)

    Peled, S.; Tseng, C. H.; Sodickson, A. A.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.

    1999-01-01

    A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method. Copyright 1999 Academic Press.

  9. Prediction of Diffusion Coefficients in Porous Media using Tortuosity Factors Based on Interfacial Areas

    SciTech Connect

    Saripalli, Kanaka P.; Serne, R. Jeffrey; Meyer, Philip D.; McGrail, B. Peter

    2002-08-01

    Determination of aqueous phase diffusion coefficients of solutes through porous media is essential for understanding and modeling contaminant transport. Prediction of diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity and constrictivity factors. No methods are available for the direct measurement of these factors, which are empirical in their definition. In this paper, a new definition for the tortuosity factor is proposed, as the real to ideal interfacial area ratio. We define the tortuosity factor for saturated porous media (ts) as the ratio S/So (specific surface of real porous medium to that of an idealized capillary bundle). For unsaturated media, tortuosity factor (ta) is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of real and the corresponding idealized porous medium). This tortuosity factor is suitably measured using sorptive tracers (e.g., nitrogen adsorption method) for saturated media and interfacial tracers for unsaturated media. A model based on this new definition of tortuosity factors, termed the Interfacial Area Ratio (IAR) model, is presented for the prediction of diffusion coefficients as a function of the degree of water saturation. Diffusion coefficients and diffusive resistances measured in a number of saturated and unsaturated granular porous media, for solutes in dilute aqueous solutions, agree well with the predictions of the IAR model. A comparison of permeability of saturated sands estimated based on ts and the same based on the Kozeny-Carman equation confirm the usefulness of the ts parameter as a measure of tortuosity.

  10. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2008-08-29

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  11. Multicomponent Gas Diffusion and an Appropriate Momentum Boundary Condition

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1994-01-01

    Multicomponent gas diffusion is reviewed with particular emphasis on gas flows near solid boundaries-the so-called Kramers-Kistemaker effect. The aim is to derive an appropriate momentum boundary condition which governs many gaseous species diffusing together. The many species' generalization of the traditional single gas condition, either as slip or stick (no-slip), is not obvious, particularly for technologically important cases of lower gas pressures and very dissimilar molecular weight gases. No convincing theoretical case exists for why two gases should interact with solid boundaries equally but in opposite flow directions, such that the total gas flow exactly vanishes. ln this way, the multicomponent no-slip boundary requires careful treatment The approaches discussed here generally adopt a microscopic model for gas-solid contact. The method has the advantage that the mathematics remain tractable and hence experimentally testable. Two new proposals are put forward, the first building in some molecular collision physics, the second drawing on a detailed view of surface diffusion which does not unphysically extrapolate bulk gas properties to govern the adsorbed molecules. The outcome is a better accounting of previously anomalous experiments. Models predict novel slip conditions appearing even for the case of equal molecular weight components. These approaches become particularly significant in view of a conceptual contradiction found to arise in previous derivations of the appropriate boundary conditions. The analogous case of three gases, one of which is uniformly distributed and hence non-diffusing, presents a further refinement which gives unexpected flow reversals near solid boundaries. This case is investigated alone and for aggregating gas species near their condensation point. In addition to predicting new physics, this investigation carries practical implications for controlling vapor diffusion in the growth of crystals used in medical diagnosis (e

  12. Diffusive Gas Loss from Silica Glass Ampoules at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1998-01-01

    Changes in the pressure of hydrogen, helium and neon due to diffusion through the wall of silica crystal growth ampoules at elevated temperatures were determined experimentally. We show that, while both He- and Ne-losses closely follow conventional model of diffusive gas permeation through the wall, hydrogen losses, in particular at low fill pressures, can be much larger. This is interpreted in terms of the high solubility of hydrogen in silica glasses.

  13. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  14. Nonclassical transport in fractal media with a diffusion barrier

    SciTech Connect

    Dvoretskaya, O. A. Kondratenko, P. S.

    2013-04-15

    We investigate the impurity transport in a randomly heterogeneous fractal medium with a diffusion barrier. The barrier is due to low permeable medium surrounding the source. The transport regimes and asymptotic (large-distance) concentration distributions are found. The presence of the diffusion barrier results in the retardation of the transport regimes at short times. As regards the asymptotic concentration distribution, the barrier influence persists for long times as well.

  15. Generalized diffusion approximation for highly absorbing media and small source-detector separations

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Guiling; Luo, Qingming; Gong, Hui

    2006-01-01

    The diffusion approximation to the transport equation is commonly used in biomedical optical diagnostic techniques, but constrains its applicability to highly scattering system. The generalized diffusion approximation was developed by Venugopalan can be used to quantify optical properties of turbid media using small source detector separations and allow the measurement of media with highly absorption. Unfortunately, the simulated result from this theory was larger than the real value because δ-Eddington phase function contained too much forward scattering. Here a new independent control parameter is introduced to δ-Eddington phase function so as to modify the generalized diffusion approximation presented. The solution is presented in the stationary case for infinite media with a collimated source of finite size exhibiting spherical symmetry. The solution is compared to results given by the conventional diffusion theory, the generalized diffusion approximation as well as to the Monte-Carlo simulation in steady state diffusion equation for slab boundary condition. The simulation results show that the modified generalized diffusion approximation with an appropriate control parameter is more closed to Monte-Carlo simulation. The modified generalized formulation of diffusion theory presented here may enable the quantitative application of present optical diagnostic techniques to turbid systems which are more highly absorbing and allow these systems to be probed using smaller source-detector separations.

  16. Correlation between information diffusion and opinion evolution on social media

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Zhang, Zhenjiang

    2014-12-01

    Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate.

  17. Diffusive dynamics of nanoparticles in ultra-confined media

    SciTech Connect

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; Retterer, Scott T; He, Kai

    2015-01-01

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Together, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.

  18. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGESBeta

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; Retterer, Scott T; He, Kai

    2015-01-01

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Together, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  19. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  20. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  1. Heat diffusion in the disordered electron gas

    NASA Astrophysics Data System (ADS)

    Schwiete, G.; Finkel'stein, A. M.

    2016-03-01

    We study the thermal conductivity of the disordered two-dimensional electron gas. To this end, we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the subtemperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat density correlation function, the balance of various terms turns out to be rather different from that for the correlation functions of other conserved quantities such as the density-density or spin density-spin density correlation function.

  2. The Diffuse Ionized Gas in the large telescopes era

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.

    2005-12-01

    In this workshop we summarize the ``state of the art'' of the Diffuse Ionized Gas. We present all the possible situations which can produce ionization outside an H II region, as well as some of the observations that can be performed with the GTC instrumentation and how relevant they can be in the undestanding of the ionization mechanisms of the DIG.

  3. Diffusive and thermodiffusive transfer of magnetic nanoparticles in porous media.

    PubMed

    Sints, Viesturs; Blums, Elmars; Maiorov, Michail; Kronkalns, Gunars

    2015-05-01

    Experimental results on mass transfer within a thin porous layer saturated with ferrofluid are outlined in this paper. From the analysis of particle concentration distribution across the layer it is shown that both the mass diffusion and the Soret coefficients of nanoparticles are remarkably less than those measured in free fluid. The particle transport coefficient changes due to an external uniform magnetic field qualitatively well agree with the predictions of existing theoretical research. The magnetic field that is oriented transversely to the porous layer causes an increase in the diffusion coefficient and a decrease in the Soret coefficient whilst the longitudinal field causes a reduction of the mass diffusion and an intensification of the particle thermodiffusion. PMID:25957178

  4. Gas turbine engine with radial diffuser and shortened mid section

    SciTech Connect

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  5. Modeling intragranular diffusion in low-connectivity granular media

    NASA Astrophysics Data System (ADS)

    Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong

    2012-03-01

    Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.

  6. Crossover from anomalous to normal diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; di Caprio, Dung

    2014-06-01

    Random walks (RW) of particles adsorbed in the internal walls of porous deposits produced by ballistic-type growth models are studied. The particles start at the external surface of the deposits and enter their pores in order to simulate an external flux of a species towards a porous solid. For short times, the walker concentration decays as a stretched exponential of the depth z, but a crossover to long-time normal diffusion is observed in most samples. The anomalous concentration profile remains at long times in very porous solids if the walker steps are restricted to nearest neighbors and is accompanied with subdiffusion features. These findings are correlated with a decay of the explored area with z. The study of RW of tracer particles left at the internal part of the solid rules out an interpretation by diffusion equations with position-dependent coefficients. A model of RW in a tube of decreasing cross section explains those results by showing long crossovers from an effective subdiffusion regime to an asymptotic normal diffusion. The crossover position and density are analytically calculated for a tube with area decreasing exponentially with z and show good agreement with numerical data. The anomalous decay of the concentration profile is interpreted as a templating effect of the tube shape on the total number of diffusing particles at each depth, while the volumetric concentration in the actually explored porous region may not have significant decay. These results may explain the anomalous diffusion of metal atoms in porous deposits observed in recent works. They also confirm the difficulty in interpreting experimental or computational data on anomalous transport reported in recent works, particularly if only the concentration profiles are measured.

  7. Nonlinear diffusion in two-dimensional ordered porous media based on a free volume theory

    NASA Astrophysics Data System (ADS)

    Godec, A.; Gaberscek, M.; Jamnik, J.; Merzel, F.

    2009-12-01

    A continuum nonlinear diffusion model is developed to describe molecular transport in ordered porous media. An existing generic van der Waals equation of state based free volume theory of binary diffusion coefficients is modified and introduced into the two-dimensional diffusion equation. The resulting diffusion equation is solved numerically with the alternating-direction fully implicit method under Neumann boundary conditions. Two types of pore structure symmetries are considered, hexagonal and cubic. The former is modeled as parallel channels while in case of the latter equal-sized channels are placed perpendicularly thus creating an interconnected network. First, general features of transport in both systems are explored, followed by the analysis of the impact of molecular properties on diffusion inside and out of the porous matrix. The influence of pore size on the diffusion-controlled release kinetics is assessed and the findings used to comment recent experimental studies of drug release profiles from ordered mesoporous silicates.

  8. Experimental approaches to kinetics of gas diffusion in hydrogenase.

    PubMed

    Leroux, Fanny; Dementin, Sébastien; Burlat, Bénédicte; Cournac, Laurent; Volbeda, Anne; Champ, Stéphanie; Martin, Lydie; Guigliarelli, Bruno; Bertrand, Patrick; Fontecilla-Camps, Juan; Rousset, Marc; Léger, Christophe

    2008-08-12

    Hydrogenases, which catalyze H(2) to H(+) conversion as part of the bioenergetic metabolism of many microorganisms, are among the metalloenzymes for which a gas-substrate tunnel has been described by using crystallography and molecular dynamics. However, the correlation between protein structure and gas-diffusion kinetics is unexplored. Here, we introduce two quantitative methods for probing the rates of diffusion within hydrogenases. One uses protein film voltammetry to resolve the kinetics of binding and release of the competitive inhibitor CO; the other is based on interpreting the yield in the isotope exchange assay. We study structurally characterized mutants of a NiFe hydrogenase, and we show that two mutations, which significantly narrow the tunnel near the entrance of the catalytic center, decrease the rates of diffusion of CO and H(2) toward and from the active site by up to 2 orders of magnitude. This proves the existence of a functional channel, which matches the hydrophobic cavity found in the crystal. However, the changes in diffusion rates do not fully correlate with the obstruction induced by the mutation and deduced from the x-ray structures. Our results demonstrate the necessity of measuring diffusion rates and emphasize the role of side-chain dynamics in determining these. PMID:18685111

  9. Experimental approaches to kinetics of gas diffusion in hydrogenase

    PubMed Central

    Leroux, Fanny; Dementin, Sébastien; Burlat, Bénédicte; Cournac, Laurent; Volbeda, Anne; Champ, Stéphanie; Martin, Lydie; Guigliarelli, Bruno; Bertrand, Patrick; Fontecilla-Camps, Juan; Rousset, Marc; Léger, Christophe

    2008-01-01

    Hydrogenases, which catalyze H2 to H+ conversion as part of the bioenergetic metabolism of many microorganisms, are among the metalloenzymes for which a gas-substrate tunnel has been described by using crystallography and molecular dynamics. However, the correlation between protein structure and gas-diffusion kinetics is unexplored. Here, we introduce two quantitative methods for probing the rates of diffusion within hydrogenases. One uses protein film voltammetry to resolve the kinetics of binding and release of the competitive inhibitor CO; the other is based on interpreting the yield in the isotope exchange assay. We study structurally characterized mutants of a NiFe hydrogenase, and we show that two mutations, which significantly narrow the tunnel near the entrance of the catalytic center, decrease the rates of diffusion of CO and H2 toward and from the active site by up to 2 orders of magnitude. This proves the existence of a functional channel, which matches the hydrophobic cavity found in the crystal. However, the changes in diffusion rates do not fully correlate with the obstruction induced by the mutation and deduced from the x-ray structures. Our results demonstrate the necessity of measuring diffusion rates and emphasize the role of side-chain dynamics in determining these. PMID:18685111

  10. An Ohm's law analogy for the effective diffusivity of composite media

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Valdes-Parada, F. J.; Ibarra-Valdez, C.

    2016-04-01

    The aim of this work is to obtain an equation for the effective diffusivity of permeable composite media based on an analogy with Ohm's law of electricity. Here, particles are transported across a composite medium, which is seen as an arrangement of series and parallel resistances. Comparison with simulations of Brownian particles traveling through the successive walls of the medium showed good agreement for moderate inclusion-to-continuous medium diffusivity ratio.

  11. Bulk and surface controlled diffusion of fission gas atoms

    SciTech Connect

    Andersson, Anders D.

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion in UO

  12. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  13. Cages and anomalous diffusion in vibrated dense granular media.

    PubMed

    Scalliet, Camille; Gnoli, Andrea; Puglisi, Andrea; Vulpiani, Angelo

    2015-05-15

    A vertically shaken granular medium hosts a blade rotating around a fixed vertical axis, which acts as a mesorheological probe. At high densities, independently of the shaking intensity, the blade's dynamics shows strong caging effects, marked by transient subdiffusion and a maximum in the velocity power density spectrum, at a resonant frequency ~10 Hz. Interpreting the data through a diffusing harmonic cage model allows us to retrieve the elastic constant of the granular medium and its collective diffusion coefficient. For high frequencies f, a tail ~1/f in the velocity power density spectrum reveals nontrivial correlations in the intracage microdynamics. At very long times (larger than 10 s), a superdiffusive behavior emerges, ballistic in the most extreme cases. Consistently, the distribution of slow velocity inversion times τ displays a power-law decay, likely due to persistent collective fluctuations of the host medium. PMID:26024199

  14. Creep rate induced by surface diffusion of porous media

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Li, Y. D.; Wang, X.

    2016-01-01

    Holes in materials can cause improved or unique performance of the material when the sizes, shapes, and orientation of holes as well as grains are controlled in materials. In the paper, a computational method for creep rate induced by hole surface diffusion of porous materials is presented. The driven force for diffusional mass transport along the hole surface is the surface diffusion energy of hole and the strain energy acting on the surface, which is obtained from rigorous elastic theory. In order to apply the present solution to the realistic porous materials the scale effect is considered by using finite element method based on two-dimensional unit cell for porous materials under uniaxial tension.

  15. Cages and Anomalous Diffusion in Vibrated Dense Granular Media

    NASA Astrophysics Data System (ADS)

    Scalliet, Camille; Gnoli, Andrea; Puglisi, Andrea; Vulpiani, Angelo

    2015-05-01

    A vertically shaken granular medium hosts a blade rotating around a fixed vertical axis, which acts as a mesorheological probe. At high densities, independently of the shaking intensity, the blade's dynamics shows strong caging effects, marked by transient subdiffusion and a maximum in the velocity power density spectrum, at a resonant frequency ˜10 Hz . Interpreting the data through a diffusing harmonic cage model allows us to retrieve the elastic constant of the granular medium and its collective diffusion coefficient. For high frequencies f , a tail ˜1 /f in the velocity power density spectrum reveals nontrivial correlations in the intracage microdynamics. At very long times (larger than 10 s), a superdiffusive behavior emerges, ballistic in the most extreme cases. Consistently, the distribution of slow velocity inversion times τ displays a power-law decay, likely due to persistent collective fluctuations of the host medium.

  16. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius. PMID:19062834

  17. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    NASA Astrophysics Data System (ADS)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  18. Laser perforated fuel cell diffusion media. Part I: Related changes in performance and water content

    NASA Astrophysics Data System (ADS)

    Manahan, M. P.; Hatzell, M. C.; Kumbur, E. C.; Mench, M. M.

    In this study, cathode-side, bi-layered diffusion media (DM) samples with micro-porous layer were perforated with 300 μm laser-cut holes (covering 15% of the surface area in a homogenous pattern) using a ytterbium fiber laser to investigate the effect of structural changes on the gas and water transport. Under reduced humidity conditions (50% inlet relative humidity on the anode and cathode), the perforated DM were observed to increase the potential by an average of 6% for current densities ranging from 0.2 to 1.4 A cm -2. However, the perforated DM showed reduced performance for current densities greater than 1.4 A cm -2 and at all currents under high-humidity conditions. Neutron radiography experiments were also performed to understand the changes in liquid water retention characteristics of DM due to the laser perforations. Significant water accumulation and water redistribution were observed in the perforated DM, which helps explain the observed performance behavior. The results indicate that the perforations act as water pooling and possible channeling locations, which significantly alter the water condensation, storage, and transport scheme within the fuel cell. These observations suggest that proper tailoring of fuel cell DM possesses significant potential to enable fuel cell operations with reduce liquid overhead and high performance.

  19. Speed of reaction-diffusion fronts in spatially heterogeneous media.

    PubMed

    Méndez, Vicenç; Fort, Joaquim; Rotstein, Horacio G; Fedotov, Sergei

    2003-10-01

    The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach. Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and fractal heterogeneities, the analytic results have been compared with numerical results exhibiting a good agreement. Finally we reach a general expression for the speed of the front in the case of smooth and weak heterogeneities. PMID:14682921

  20. A Mathematical Model of Diffusion-Limited Gas Bubble Dynamics in Tissue with Varying Diffusion Region Thickness

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.; Paloski, William H. (Technical Monitor)

    2000-01-01

    A three-region mathematical model of gas bubble dynamics has been shown suitable for describing diffusion-limited dynamics of more than one bubble in a given volume of extravascular tissue. The model is based on the dynamics of gas exchange between a bubble and a well-stirred tissue region through an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the gas content of the diffusion region remains constant as the volume of the region increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume, because only cases in which the diffusion region volume is a small fraction of the overall tissue volume were considered. We herein extend the three-region model to correct these theoretical inconsistencies by allowing both the thickness and gas content of the diffusion region to vary during bubble evolution. A postulated difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region leads to variation in diffusion region gas content and thickness during bubble growth and resolution. This variable thickness, differential diffusivity (VTDD) model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models for given model and decompression parameters, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects, Keywords: decompression sickness, gas diffusion in tissue, diffusivity

  1. Residual aqueous ozone determination by gas diffusion flow injection analysis

    SciTech Connect

    Straka, M.R.; Gordon, G.; Pacey, G.E.

    1985-08-01

    A method for the determination of residual aqueous ozone utilizing the technique of gas diffusion flow injection analysis and the redox reagents potassium indigo trisulfonate and bis(terpyridine)iron(II) is described. The system uses a commercially available gas diffusion cell fitted with a microporous Teflon membrane to significantly reduce or eliminate potential interferences such as chlorine and oxidized forms of manganese. Detection limits of 0.03 mg/L ozone are possible with sensitivities and linear ranges comparable to the manual method. Selectivity is significantly improved and chlorine interference is reduced to 0.008 mg/L of apparent ozone for each part per million of chlorine present while oxidized manganese interference is completely eliminated. This method provides a sample throughput of 65 samples per hour. 30 references, 2 figures, 2 tables.

  2. Method of making gas diffusion layers for electrochemical cells

    DOEpatents

    Frisk, Joseph William; Boand, Wayne Meredith; Larson, James Michael

    2002-01-01

    A method is provided for making a gas diffusion layer for an electrochemical cell comprising the steps of: a) combining carbon particles and one or more surfactants in a typically aqueous vehicle to make a preliminary composition, typically by high shear mixing; b) adding one or more highly fluorinated polymers to said preliminary composition by low shear mixing to make a coating composition; and c) applying the coating composition to an electrically conductive porous substrate, typically by a low shear coating method.

  3. Neutral gas and diffuse interstellar bands in the LMC

    NASA Technical Reports Server (NTRS)

    Danks, Anthony C.; Penprase, Brian

    1994-01-01

    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.

  4. Gas storage through impermeation of porous media by hydrate formation

    SciTech Connect

    Hatzikiriakos, S.G.; Englezos, P.

    1994-12-31

    A mathematical model was developed for the simulation of the methane hydrate formation in a homocline. The rate of hydrate growth was computed by calculating the movement of the hydrate-water interface. This movement was found to be very slow (less than 0.01 mm/hr) and strongly dependent on the value of the effective diffusivity of the gas in the hydrate zone. The temperature at the hydrate-water interface was found to remain practically constant. Finally, the simulations indicate that the development of a hydrate barrier in the permeable formation creates favorable gas storage conditions in the homocline.

  5. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  6. Diffusion in multilayer media: Transient behavior of the lateral diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Weiss, George H.

    2006-04-01

    A general formalism for treating lateral diffusion in a multilayer medium is developed. The formalism is based on the relation between the lateral diffusion and the distribution of the cumulative residence time, which the diffusing particle spends in different layers. We exploit this fact to derive general expressions which give the global and local time-dependent diffusion coefficients in terms of the average cumulative times spent by the particle in different layers and the probabilities of finding the particle in different layers, respectively. These expressions are used to generalize two recently obtained results: (a) A solution for the short-time behavior of the lateral diffusion coefficient in two layers separated by a permeable membrane obtained by a perturbation theory is extended to the entire range of time. (b) A solution for the time-dependent diffusion coefficient of a ligand, which repeatedly dissociates and rebinds to sites on a planar surface, obtained under the assumption that the medium above the surface is infinite, is generalized to allow for the medium layer of finite thickness. For the latter problem we derive an expression for the Fourier-Laplace transform of the propagator in terms of the double Laplace transform of the probability density of the cumulative residence time spent by the ligand in the medium layer.

  7. Green Functions for Diffuse Photon-Density Waves Generated by a Line Source in Two Nonabsorbing Turbid Media in Contact

    NASA Astrophysics Data System (ADS)

    Shendeleva, Margarita L.

    2004-03-01

    Diffuse photon-density waves generated by an instantaneous line source that is parallel to the interface between two semi-infinite turbid media are studied by use of the diffusion approximation. For two nonabsorbing media the Green functions for diffuse light are obtained based on the Green functions for temperature fields that were derived with the Cagniard-de Hoop method. The boundary conditions for diffuse light take into account the discontinuity in the specific intensity at the interface between two media with different refractive indices. The results of the calculations of the specific intensities and the gradient lines for different sets of parameters are presented.

  8. Magnetic Field Reconnection and Diffusion in Turbulent Media

    NASA Astrophysics Data System (ADS)

    Tecumseh Vishniac, Ethan; Lalescu, Cristian; Eyink, Gregory; Lazarian, Alex

    2015-08-01

    Turbulent cascades give rise to universal behavior, where the dependence of dynamical variables on length scales is insensitive to microphysical transport coefficients. We consider the behavior of magnetic fields in highly conducting, strongly turbulent media. The idea of `frozen-in' magnetic field lines, which applies to laminar flows in ideal plasmas, is grossly violated in this context. We will show how turbulent Richardson advection brings field lines implosively together from distances far apart to microphysical scales separations. We report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or `spontaneously stochastic', as predicted in analytical studies. We trace the motion of large scale field lines and show that they move through the turbulent fluid on dynamical time scales. We analyze regions of large scale reconnection and compare them to instances of reconnection in the fast solar wind.

  9. Diffuse Ionized Gas Line Strengths from Echelle Spectroscopy

    NASA Astrophysics Data System (ADS)

    Terndrup, D. M.; Peterson, R. C.

    1996-05-01

    We discuss serendipitous detections of several emission lines from the diffuse interstellar medium in high-resolution spectra of stars in Baade's Window and globular clusters near the Galactic center. Following Lehnert & Heckman (1994, ApJ, 426, L27), we show that the ratios of the strengths of the emission lines of Hα , [N II], and [S II] are inconsistent with those of H II regions, but match those of the diffuse ionized gas, suggesting this as its origin. We discuss these ratios and upper limits to the line strengths of [O I] lambda 6300 and He I lambda 5879. It is difficult to specify where the emitting gas is located along the line of sight to Baade's Window, since this is along the Galaxy's minor axis where the (low) gas velocity poses no constraint. However, we note that the two spectra acquired 1 arcmin apart in Baade's Window are indistinguishable, with equal line strengths and velocity widths. The emission lines are significantly fainter in the sky spectrum of a star in the globular cluster NGC 5927, where the gas velocity indicates that the emission probably does arise in or near the galactic disk.

  10. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  11. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow. PMID:26356890

  12. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2016-04-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  13. Validity of the second Fick's law for modeling ion-exchange diffusion in non-crystalline viscoelastic media (glasses)

    NASA Astrophysics Data System (ADS)

    Tagantsev, D. K.; Ivanenko, D. V.

    2016-04-01

    It is shown that, in general case, the diffusion equation (or the second Fick's law) does not provide an adequate description of ion-exchange transport phenomena in viscoelastic media, including glassy or any other non-crystalline media. In this connection the general phenomenological model of ion-exchange diffusion in viscoelastic media has been developed. A theoretical analysis of the model shows that, in the case of a linear dependence of medium density on the concentration of diffusing ions, the necessary and sufficient condition of the absolute validity of the diffusion equation in viscoelastic media is Φ ≫ 1, where Φ = τD/τR is the dimensionless value (or criterion of similarity), with τD = L2/D being the characteristic time of diffusion and τR = η/G being the characteristic time of stress relaxation, where L, D, η, and G are the characteristic length of diffusion, the diffusivity, the viscosity, and the shear modulus, respectively. The value of 1/Φ characterizes the accuracy which is provided if the second Fick's law is used in the simulation of ion-exchange diffusion in viscoelastic media. We have demonstrated the applicability of this criterion experimentally. Our experimental studies on ion-exchange diffusion in an oxide glass (typical viscoelastic media) have shown that under the condition the Φ > 105 the experimental concentration profiles are close to those predicted by the second Fick's law to within an accuracy of 1%.

  14. Upscaling momentum and mass transport under Knudsen and binary diffusion gas slip conditions

    NASA Astrophysics Data System (ADS)

    Valdes-Parada, F. J.; Lasseux, D.

    2015-12-01

    Modeling of gas phase flow in porous media is relevant as it is present in a wide variety of applications ranging from nanofluidic systems to subsurface contaminant transport. In this work, we derive a macroscopic model to study slightly compressible gas flow in porous media for conditions in which the tangential fluid velocity undergoes a slip at the solid interface due to Knudsen effects and to mass diffusion in binary conditions. To this end, we use the method of volume averaging to derive the governing equations at the Darcy scale for both mass and momentum transport. The momentum transport model consists on a modification to Darcy's law due to mass dispersion and to total density gradients. For mass transport, the resulting model is the conventional convection-dispersion equation with two correction terms, one affecting convective transport and the second one affecting mass dispersion due to gas compressibility. The macroscopic model reduces to the one reported by Altevogt et al. (2003) for the case in which gas slip is only due to a concentration gradient and to the one by Lasseux et al. (2014) under Knudsen slip conditions. The model is written in terms of effective-medium coefficients that can be predicted from solving the associated closure problems in representative unit cells. For conditions in which the Péclet number is much greater than one and when the Knudsen number is not exceedingly small compared to the unity, our computations show that the predictions of the longitudinal dispersion may reach an error as high as 60% compared to the predictions obtained by ignoring gas slip. Altevogt A.S., Rolston D.E., Whitaker S. New equations for binary gas transport in porous media, Part 1: equation development. Advances in Water Resources, Vol. 26, 695-715, 2003. Lasseux D., Valdés-Parada F.J., Ochoa-Tapia J.A., Goyeau B. A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media. Physics of Fluids, Vol. 26, 053102, 2014.

  15. Verification of the integrity of barriers using gas diffusion

    SciTech Connect

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier`s integrity after emplacement, and monitoring of the barrier`s performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF{sub 6}) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF{sub 6} diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF{sub 6} through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days.

  16. The kinematics of the diffuse ionized gas in NGC 4666

    NASA Astrophysics Data System (ADS)

    Voigtländer, P.; Kamphuis, P.; Marcelin, M.; Bomans, D. J.; Dettmar, R.-J.

    2013-06-01

    Context. The global properties of the interstellar medium with processes such as infall and outflow of gas and a large scale circulation of matter and its consequences for star formation and chemical enrichment are important for the understanding of galaxy evolution. Aims: In this paper we studied the kinematics and morphology of the diffuse ionized gas (DIG) in the disk and in the halo of the star forming spiral galaxy NGC 4666 to derive information about its kinematical properties. Especially, we searched for infalling and outflowing ionized gas. Methods: We determined surface brightness, radial velocity, and velocity dispersion of the warm ionized gas via high spectral resolution (R ≈ 9000) Fabry-Pérot interferometry. This allows the determination of the global velocity field and the detection of local deviations from this velocity field. We calculated models of the DIG distribution and its kinematics for comparison with the measured data. In this way we determined fundamental parameters such as the inclination and the scale height of NGC 4666, and established the need for an additional gas component to fit our observed data. Results: We found individual areas, especially along the minor axis, with gas components reaching into the halo which we interpret as an outflowing component of the DIG. As the main result of our study, we were able to determine that the vertical structure of the DIG distribution in NGC 4666 is best modeled with two components of ionized gas, a thick and a thin disk with 0.8 kpc and 0.2 kpc scale height, respectively. Therefore, the enhanced star formation in NGC 4666 drives an outflow and also maintains a thick ionized gas layer reminiscent of the Reynold's layer in the Milky Way.

  17. The diffusion of muonic deuterium atoms in deuterium gas

    SciTech Connect

    Kraiman, J.B.

    1989-01-01

    Negative muons were brought to rest in a target array consisting of 30-50 parallel plastic foils coated with Au which were separated by a few mm. The interstitial volumes between the foils were filled with deuterium gas at pressures from 0.094 bar to 1.52 bar. Muons which stopped in the deuterium formed {mu}d atoms, which subsequently diffused through the gas until either the muon decayed or the {mu}d atom struck a foil surface. For {mu}d atoms impinging upon the Au layer, the muon would transfer to an Au atom, resulting in the formation of a {mu}Au atom in a highly excited state. De-excitation to the 1S ground state resulted in emission of characteristic muonic Au x rays, and after the muon was absorbed by the Au nucleus, the emission of Pt {gamma} rays. These transfer photons were detected by one of four germanium x-ray detectors adjacent to the target vessel. Analysis of the time distributions formed by collecting delayed transfer events for several sets of experimental conditions yielded information on the diffusion process of {mu}d atoms in deuterium gas.

  18. "Dark" Atomic Gas in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2015-08-01

    Far-infrared and gamma-ray surveys indicate there are significantly more nucleons in the diffuse interstellar medium than are traced by HI and CO emission. We are using the Arecibo Observatory to complement Planck observations, testing hypotheses for the origin of "dark gas" associated with the far-infrared and gamma rays. The "dark gas" is really the far-infrared emission in excess over what can be explained by dust mixed with atomic gas traced by the 21-cm line in the GALFA survey. First we test the hypothesis that the excess is molecular gas, by measuring OH absorption toward selected radio sources. Next, we are observing HI absorption, because cold atomic gas is optically thick and does not emit as readily in the 21-cm line, but it can be seen in absorption against radio continuum sources. We will observe radio sources near clouds with far-infrared emission measured by Planck to be in excess of the high-resolution HI observations from the Arecibo GALFA HI survey. We will also test another hypothesis that the ”dark gas” is molecular by observing OH absorption toward the brightest sources.

  19. Properties of turbulence in natural gas-oxygen diffusion flames

    SciTech Connect

    Sautet, J.C.; Ditaranto, M. ); Samaniego, J.M.; Charon, O. )

    1999-07-01

    Measurements of turbulent flow field velocities, including first and second order velocity moments and the shear stress are carried out by laser Doppler velocimetry in five different, 25 kW, turbulent natural gas-oxygen diffusion flames. The mean flow behavior is described including the velocity half value radius as well as centerline velocity. Mean radial velocity profiles are fitted by a Gaussian function. According to the initial momentum ratio, different jet dynamic behaviors are pointed out by the description of the fluctuating velocity field.

  20. Diffuse Ionized Gas in the Dwarf Galaxy DDO 53

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Hidalgo-Gámez, A. M.

    We study the diffuse ionized gas (DIG) in the M81 group dwarf irregular galaxy DDO 53. We use long-slit spectroscopy in order to determine the most interesting line ratios. We compare these ratios with classical and leaking photoionization, shocks and turbulent layer models. As other dwarf irregular galaxies, the spectral characteristics are very diferent to those of the DIG in spiral galaxies: the excitation is higher and the [SII/Hα] much lower. A combination of leakage photoionization models plus shocks will be able to explain these characteristics.

  1. Digital Volume Imaging of the PEFC Gas Diffusion Layer

    SciTech Connect

    Mukherjee, Partha P

    2010-01-01

    The gas diffusion layer (GDL) plays a key role in the overall performance/durability of a polymer electrolyte fuel cell (PEFC). Of profound importance, especially in the context of water management and flooding phenomena, is the influence of the underlying pore morphology and wetting characteristics of the GDL microstructure. In this article, we present the digital volumetric imaging (DVI) technique in order to generate the 3-D carbon paper GDL microstructure. The internal pore structure and the local microstructural variations in terms of fiber alignment and fiber/binder distributions are investigated using the several 3-D thin sections of the sample obtained from DVI.

  2. Digital volume imaging of the PEFC gas diffusion layer

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Mukherjee, Partha; Shim, Eunkyoung

    2010-01-01

    The gas diffusion layer (GDL) plays a key role in the overall performance/durability of a polymer electrolyte fuel cell (PEFC). Of profound importance, especially in the context of water management and flooding phenomena, is the influence of the underlying pore morphology and wetting characteristics Of the GDL microstructure. In this article, we present the digital volumetric imaging (DVI) technique in order to generate the 3-D carbon paper GDL microstructure. The internal pore structure and the local microstructural variations in terms of fiber alignment and fiber/binder distributions are investigated using the several 3-D thin sections of the sample obtained from DVI.

  3. A novel rumor diffusion model considering the effect of truth in online social media

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei

    2015-12-01

    In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.

  4. FAST Mapping of Diffuse HI Gas in the Local Universe

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.

    2016-02-01

    We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.

  5. Impact of Moisture Content and Grain Size on Hydrocarbon Diffusion in Porous Media

    NASA Astrophysics Data System (ADS)

    McLain, A. A.; Ho, C. K.

    2001-12-01

    Diffusion of hydrocarbon vapors in porous media can play an important role in our ability to characterize subsurface contaminants such as trichloroethylene (TCE). For example, traditional monitoring methods often rely on direct sampling of contaminated soils or vapor. These samples may be influenced by the diffusion of vapors away from the contaminant source term, such as non-aqueous-phase TCE liquid. In addition, diffusion of hydrocarbon vapors can also impact the migration and dispersion of the contaminant in the subsurface. Therefore, understanding the diffusion rates and vapor transport processes of hydrocarbons in variably-saturated, heterogeneous porous media will assist in the characterization and detection of these subsurface contaminants. The purpose of this study was to investigate the impact of soil heterogeneity and water-moisture content on the diffusion processes for TCE. A one-dimensional column experiment was used to monitor the rates of vapor diffusion through sand. Experiments were performed with different average water-moisture contents and different grain sizes. On one end of the column, a reservoir cap is used to encase the TCE, providing a constant vapor boundary condition while sealing the end. The other end of the column contains a novel microchemical sensor. The sensor employs a polymer-absorption resistor (chemiresistor) that reversibly swells and increases in resistance when exposed to hydrocarbons. Once calibrated, the chemiresistors can be used to passively monitor vapor concentrations. This unique method allows the detection of in-situ vapor concentrations without disturbing the local environment. Results are presented in the form of vapor-concentration breakthrough curves as detected by the sensor. The shape of the breakthrough curve is dependent on several key parameters, including the length of the column and parameters (e.g., water-moisture content and grain-size) that affect the effective diffusion coefficient of TCE in air

  6. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    SciTech Connect

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  7. Gas lasers pumped by runaway electrons preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexei I.

    2015-05-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of gas mixtures at elevated pressures and can produce laser emission. We report experimental and simulated results of application of the REP DD for excitation of different active gas mixtures. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing predicting the radiation parameters of nitrogen laser at 337.1 nm. Peculiarities of the REP DD development in different gas mixtures are studied, as well. It was shown that the REP DD allows obtaining efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Laser action on N2, HF, and DF molecules was obtained with the efficiency close to the limiting value. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  8. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  9. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  10. Interstellar gas, dust and diffuse bands in the SMC

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.; Cordiner, M. A.; Ehrenfreund, P.; Kaper, L.; Sarre, P. J.; Foing, B. H.; Spaans, M.; Cami, J.; Sofia, U. J.; Clayton, G. C.; Gordon, K. D.; Salama, F.

    2007-08-01

    Aims:In order to gain new insight into the unidentified identity of the diffuse interstellar band (DIB) carriers, this paper describes research into possible links between the shape of the interstellar extinction curve (including the 2175 Å bump and far-UV rise), the presence or absence of DIBs, and physical and chemical conditions of the diffuse interstellar medium (gas and dust) in the Small Magellanic Cloud (SMC). Methods: We searched for DIB absorption features in VLT/UVES spectra of early-type stars in the SMC whose reddened lines-of-sight probe the diffuse interstellar medium of the SMC. Apparent column density profiles of interstellar atomic species (Na i, K i, Ca ii and Ti ii) are constructed to provide information on the distribution and conditions of the interstellar gas. Results: The characteristics of eight DIBs detected toward the SMC wing target AzV 456 are studied and upper limits are derived for the DIB equivalent widths toward the SMC stars AzV 398, AzV 214, AzV 18, AzV 65 and Sk 191. The amount of reddening is derived for these SMC sightlines, and, using RV and the H i column density, converted into a gas-to-dust ratio. From the atomic column density ratios we infer an indication of the strength of the interstellar radiation field, the titanium depletion level and a relative measure of turbulence/quiescence. The presence or absence of DIBs appears to be related to the shape of the extinction curve, in particular with respect to the presence or absence of the 2175 Å feature. Our measurements indicate that the DIB characteristics depend on the local physical conditions and chemical composition of the interstellar medium of the SMC, which apparently determine the rate of formation (and/or) destruction of the DIB carriers. The UV radiation field (via photoionisation and photo-destruction) and the metallicity (i.e. carbon abundance) are important factors in determining diffuse band strengths which can differ greatly both between and within galaxies

  11. A new model for thermal contact resistance between fuel cell gas diffusion layers and bipolar plates

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2014-11-01

    A new analytical model is developed to predict the thermal contact resistance (TCR) between fibrous porous media such as gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs) and flat surfaces (bipolar plates). This robust model accounts for the salient geometrical parameters of GDLs, mechanical deformation, and thermophysical properties of the contacting bodies. The model is successfully validated against experimental data, and is used to perform in a comprehensive parametric study to investigate the effects of fiber parameters such as waviness and GDL properties on the TCR. Fiber waviness, diameter and surface curvature, as well as GDL porosity, are found to have a strong influence on TCR whereas fiber length does not affect the TCR when the porosity is kept constant. Such findings provide useful guidance for design and manufacturing of more effective GDLs for PEMFC heat management. The analytic model can be readily implemented in simulation and modeling of PEMFCs, and can be extended with minor modifications to other fibrous porous media such as fibrous catalysts, insulating media and sintered metals.

  12. Supernova remnants and diffuse ionized gas in M31

    NASA Astrophysics Data System (ADS)

    Walterbos, Rene; Braun, Robert

    1990-07-01

    Researchers have compiled an initial list of radio/optical supernova remnants (SNRs) in M31, by searching for radio identifications of emission-line sources with a high (SII)/H alpha ratio (greater than 0.60). The (SII) filter included both sulfur lines and the H alpha filter did not include (NII). This search revealed 11 SNRs, of which only two were known. In addition, researchers detected radio emission from 3 SNRs that were identified in previous optical surveys (D'Odorico et al., 1980), but that were outside the charge coupled device (CCD) fields. The 14 objects only include the most obvious candidates, but a full search is in progress and the researchers expect to find several more SNRs. Also not all optical SNRs show detectable radio emission and a pure optical list of SNR candidates based only on the ratio of (SII)/H alpha emission contains many more objects. Two conclusions are apparent. First, the radio properties of the SNRs in M31 are quite similar to those of Galactic SNRs as is illustrated. The brightnesses are not systematically lower as has been suggested in the past (Dickel and D'Odorico, 1984). Second, the slope of the relation is close to -2; this slope is expected from the intrinsic dependence between surface brightness and diameter. The radio luminosity of the SNRs does not seem to depend strongly on diameter, or age, contrary to model predictions. Selection effects, however, play an important role in these plots. The CCD images show widespread diffuse ionized gas with a ratio of (SII)/H alpha that is higher than that of discrete HII regions. Discrete HII regions typically show ratios between 0.2 to 0.3, while the diffuse gas in the arms consistently shows ratios of 0.5. Researchers can trace this gas across the spiral arms to emission measures below 5 pc cm (-6). Its properties seem to be similar to that of the diffuse gas in the solar neighborhood.

  13. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works. PMID:24814719

  14. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  15. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  16. Gas diffusion optic flow calculation and its applications in gas cloud infrared imaging

    NASA Astrophysics Data System (ADS)

    Liu, Shao-hua; Luo, Xiu-li; Wang, Ling-xue; Cai, Yi

    2015-11-01

    Motion detection frequently employs Optic Flow to get the velocity of solid targets in imaging sequences. This paper suggests calculate the gas diffusion velocity in infrared gas leaking videos by optic flow algorithms. Gas target is significantly different from solid objects, which has variable margin and gray values in diffusion. A series of tests with various scenes and leakage rate were performed to compare the effect of main stream methods, such as Farneback algorithm, PyrLK and BM algorithm. Farneback algorithm seems to have the best result in those tests. Besides, the robustness of methods used in uncooled infrared imaging may decline seriously for the low resolution, big noise and poor contrast ratio. This research adopted a special foreground detection method (FDM) and spectral filtering technique to address this issue. FDM firstly computes corresponding sample sets of each pixel, and uses the background based on the sets to make a correlation analysis with the current frame. Spectral filtering technique means get two or three images in different spectrum by band pass filters, and show a better result by mixing those images. In addition, for Optic Flow methods have ability to precisely detect directional motion and to ignore the nondirectional one, these methods could be employed to highlight the gas area and reduce the background noise. This paper offers a credible way for obtaining the diffusion velocity and resolves the robust troubles in practical application. In the meanwhile, it is an exploration of optic flow in varied shape target detection.

  17. Kinematics of the Diffuse Ionized Gas Disk of Andromeda

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander; Howley, K.; Guhathakurta, P.; Dorman, C.; SPLASH Collaboration

    2012-01-01

    This research focuses on the flattened rotating diffuse ionized gas (DIG) disk of the Andromeda Galaxy (M31). For this we use spectra from 25 multislit masks obtained by the SPLASH collaboration using the DEIMOS spectrograph on the Keck-II 10-meter telescope. Each mask contains 200 slits covering the region around M32 (S of the center of M31), the major axis of M31, and the SE minor axis. DIG emission was serendipitously detected in the background sky of these slits. By creating a normalized "sky spectrum” to remove various other sources of emission (such as night sky lines) in the background of these slits, we have examined the rotation of the DIG disk using individual line-of-sight velocity measurements of Hα, [NII] and [SII] emission. his emission is probably the result of newly formed stars ionizing the gas in the disk. The measured IG rotation will be compared to the rotation of M31's stellar disk and HI gas disk, as well as models of an infinitely thin rotating disk, to better understand the relationship between the components of the galactic disk and its differential rotation. We wish to acknowledge the NSF for funding on this project.

  18. How does C+ recombine in diffuse molecular gas?

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.

    2011-03-01

    Aims: We wish to understand the processes whereby the dominant state of free carbon shifts from C+ to C I and CO in progressively denser and/or darker diffuse and translucent clouds. Methods: We discuss recent compilations and observations of C I, H I, H2 and CO measured in uv absorption and compare the observations with models of the thermal and ionization equilibrium including and excluding grain-assisted neutralization of atomic ions such as C+. Results: There are significant disparities in N(C I) and divergent behaviour with respect to H I and especially H2 and CO in two recent discussions of the C I abundance in diffuse and translucent gas. If the older data tabulated by Wolfire et al. (2008, ApJ, 680, 384) are considered, the run of N(C I) with N(H I) and N(H2) is comfortably explained only by models embodying grain-assisted atomic-ion neutralization, much as those authors noted. If the newer data of Burgh et al. (2010, ApJ, 708, 334) are considered, either lower density models with grain-assisted atomic-ion neutralization or much denser models without it may suffice. In either case N(CO) increases from 1014 cm-2 to 1016 cm-2 with little change in N(C I) in either dataset, presenting a real challenge to models of C+ recombination and CO formation in the C + → C I → CO transition. Conclusions.N(CO) exceeds N(C I) even at N(CO) ≳ 3 × 1015 cm-2, well within the regime of diffuse gas where the dominant form of free gas phase carbon is C+; one of the supposed signatures of the translucent regime, that C I is the dominant form of free carbon, is not found on the sky. However, the C I data clearly need to be put on a firmer basis before the C + → C I → CO transition may be understood. Ambiguities in the C I column densities determined in uv absorption may perhaps be resolved by sub-mm observations with Herschel or ALMA.

  19. Theory and simulation of time-fractional fluid diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Sanchez-Sesma, Francisco J.; Luzón, Francisco; Perez Gavilán, Juan J.

    2013-08-01

    We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald-Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’.

  20. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  1. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  2. Uniform self-diffusion in a granular gas

    NASA Astrophysics Data System (ADS)

    Brey, J. Javier; Ruiz-Montero, M. J.

    2013-11-01

    A granular gas composed of inelastic hard spheres or disks in the homogeneous cooling state is considered. Some of the particles are labeled and their number density exhibits a time-independent linear profile along a given direction. As a consequence, there is a uniform flux of labeled particles in that direction. It is shown that the inelastic Boltzmann-Enskog kinetic equation has a solution describing this self-diffusion state. Approximate expressions for the transport equation and the distribution function of labeled particles are derived. The theoretical predictions are compared with simulation results obtained using the direct simulation Monte Carlo method to generate solutions of the kinetic equation. A fairly good agreement is found.

  3. Novel gas diffusion layer with water management function for PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Jinhua; Matsuura, Toyoaki; Hori, Michio

    The water management of the membrane electrode assembly (MEA) is a critical technology in developing a polymer electrolyte membrane fuel cell (PEMFC). To maintain the MEA with a satisfactory water content and distribution, a novel gas diffusion layer (GDL) was designed by inserting a water management layer (WML) between the traditional GDL and the catalyst layer of the PEMFC. A simulator was developed for the optimization of the GDL, where the water distribution in the electrode and the profile of the water transport in the polymer membrane could be predicted. For this purpose, the water vapor permeability of the GDL, which was the main variable, was investigated under conditions similar to the PEMFC. Furthermore, the cell performance of the PEMFC with the GDL was tested. The testing results indicated that the water management in the MEA could be significantly improved by using the WML.

  4. Modeling heating curve for gas hydrate dissociation in porous media.

    PubMed

    Dicharry, Christophe; Gayet, Pascal; Marion, Gérard; Graciaa, Alain; Nesterov, Anatoliy N

    2005-09-15

    A method for modeling the heating curve for gas hydrate dissociation in porous media at isochoric conditions (constant cell volume) is presented. This method consists of using an equation of state of the gas, the cumulative volume distribution (CVD) of the porous medium, and a van der Waals-Platteeuw-type thermodynamic model that includes a capillary term. The proposed method was tested to predict the heating curves for methane hydrate dissociation in a mesoporous silica glass for saturated conditions (liquid volume = pore volume) and for a fractional conversion of water to hydrate of 1 (100% of the available water was converted to hydrate). The shape factor (F) of the hydrate-water interface was found equal to 1, supporting a cylindrical shape for the hydrate particles during hydrate dissociation. Using F = 1, it has been possible to predict the heating curve for different ranges of pressure and temperature. The excellent agreement between the calculated and experimental heating curves supports the validity of our approach. PMID:16853195

  5. A numerical study for transport phenomena of nanoscale gas flow in porous media

    NASA Astrophysics Data System (ADS)

    Oshima, Tomoya; Yonemura, Shigeru; Tokumasu, Takashi

    2012-11-01

    Gas flow in porous media occurs in various engineering devices such as catalytic converters and fuel cells. In order to improve the performance of such devices, it is important to understand transport phenomena in porous media. In porous media with pores as small as a molecular mean free path, molecular motions need to be directly considered instead of treating gas flow as a continuum, and effects of complicated channels need to be taken into account. Therefore, such gas flow was analyzed by using the direct simulation Monte Carlo (DSMC) method, which is the stochastic solution of the Boltzmann equation. Numerical simulations of gas flow driven by pressure gradient without surface reaction were performed to clarify transport phenomena in porous media imitated by arranging nanoscale solid particles randomly. The effects of pressure gradient, diameter of particles and porosity on gas flow rates and permeability of porous media were investigated.

  6. Density probability distribution functions of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2008-10-01

    In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  7. Photoionized Mixing Layer Models of the Diffuse Ionized Gas

    NASA Astrophysics Data System (ADS)

    Binette, Luc; Flores-Fajardo, Nahiely; Raga, Alejandro C.; Drissen, Laurent; Morisset, Christophe

    2009-04-01

    It is generally believed that O stars, confined near the galactic midplane, are somehow able to photoionize a significant fraction of what is termed the "diffuse ionized gas" (DIG) of spiral galaxies, which can extend up to 1-2 kpc above the galactic midplane. The heating of the DIG remains poorly understood, however, as simple photoionization models do not reproduce the observed line ratio correlations well or the DIG temperature. We present turbulent mixing layer (TML) models in which warm photoionized condensations are immersed in a hot supersonic wind. Turbulent dissipation and mixing generate an intermediate region where the gas is accelerated, heated, and mixed. The emission spectrum of such layers is compared with observations of Rand of the DIG in the edge-on spiral NGC 891. We generate two sequence of models that fit the line ratio correlations between [S II]/Hα, [O I]/Hα, [N II]/[S II], and [O III]/Hβ reasonably well. In one sequence of models, the hot wind velocity increases, while in the other, the ionization parameter and layer opacity increase. Despite the success of the mixing layer models, the overall efficiency in reprocessing the stellar UV is much too low, much less than 1%, which compels us to reject the TML model in its present form.

  8. Dual-Phase-Lag Model of Wave Propagation at the Interface Between Elastic and Thermoelastic Diffusion Media

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Gupta, V.

    2015-01-01

    A dual-phase-lag diffusion model, augmenting the Fick law by the inclusion of the delay times of the mass flow and the potential gradient at the interface between two media into it, is proposed. The effects of reflection and refraction of plane waves at the interface between an elastic and a thermoelastic diffusion media were investigated with the use of this model. It was established that the ratios between the amplitudes and energies of the waves reflected and refracted at the interface between the indicated media are determined by the angle of incidence of radiation on this interface, the frequency of the incident wave, and the thermoelastic and diffusion properties of the media. Expressions for the ratios between the energies of different reflected and refracted waves and the energy of the incident were derived. The variation in these ratios with change in the angle of incidence of radiation on the indicated interface was calculated numerically and represented graphically.

  9. A Search for Hot, Diffuse Gas in Superclusters

    NASA Technical Reports Server (NTRS)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  10. Rare clinical presentation of diffuse large B-cell lymphoma as otitis media and facial palsy

    PubMed Central

    Siddiahgari, Sirisha Rani; Yerukula, Pallavi; Lingappa, Lokesh; Moodahadu, Latha S.

    2016-01-01

    Extra nodal presentation of Non Hodgkins Lymphoma (NHL) is a rare entity, and data available about the NHL that primarily involves of middle ear and mastoid is limited. We report a case of diffuse large B cell lymphoma (DLBCL), in a 2 year 8 month old boy, who developed otalgia and facial palsy. Computed tomography revealed a mass in the left mastoid. Mastoid exploration and histopathological examination revealed DLBCL. This case highlights the importance of considering malignant lymphoma as one of the differential diagnosis in persistent otitis media and/facial palsy. PMID:27195036

  11. The effect of thermal neutron field slagging caused by cylindrical BF3 counters in diffusion media

    NASA Technical Reports Server (NTRS)

    Gorshkov, G. V.; Tsvetkov, O. S.; Yakovlev, R. M.

    1975-01-01

    Computations are carried out in transport approximation (first collision method) for the attenuation of the field of thermal neutrons formed in counters of the CHM-8 and CHMO-5 type. The deflection of the thermal neutron field is also obtained near the counters and in the air (shade effect) and in various decelerating media (water, paraffin, plexiglas) for which the calculations are carried out on the basis of diffusion theory. To verify the calculations, the distribution of the density of the thermal neutrons at various distances from the counter in the water is measured.

  12. Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications

    NASA Astrophysics Data System (ADS)

    Li, X. D.; O'Leary, M. A.; Boas, D. A.; Chance, Britton; Yodh, A. G.

    1996-07-01

    We present analytic solutions for fluorescent diffuse photon density waves originating from fluorophores distributed in thick turbid media. Solutions are derived for a homogeneous turbid medium containing a uniform distribution of fluorophores and for a system that is homogeneous except for the presence of a single spherical inhomogeneity. Generally the inhomogeneity has fluorophore concentration, and lifetime and optical properties that differ from those of the background. The analytic solutions are verified by numerical calculations and are used to determine the fluorophore lifetime and concentration changes required for the accurate detection of inhomogeneities in biologically relevant systems. The relative sensitivities of absorption and fluorescence methods are compared.

  13. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Ramanujam, Nirmala

    2007-04-01

    A scaling Monte Carlo method has been developed to calculate diffuse reflectance from multilayered media with a wide range of optical properties in the ultraviolet-visible wavelength range. This multilayered scaling method employs the photon trajectory information generated from a single baseline Monte Carlo simulation of a homogeneous medium to scale the exit distance and exit weight of photons for a new set of optical properties in the multilayered medium. The scaling method is particularly suited to simulating diffuse reflectance spectra or creating a Monte Carlo database to extract optical properties of layered media, both of which are demonstrated in this paper. Particularly, it was found that the root-mean-square error (RMSE) between scaled diffuse reflectance, for which the anisotropy factor and refractive index in the baseline simulation were, respectively, 0.9 and 1.338, and independently simulated diffuse reflectance was less than or equal to 5% for source-detector separations from 200 to 1500 μm when the anisotropy factor of the top layer in a two-layered epithelial tissue model was varied from 0.8 to 0.99; in contrast, the RMSE was always less than 5% for all separations (from 0 to 1500 μm) when the anisotropy factor of the bottom layer was varied from 0.7 to 0.99. When the refractive index of either layer in the two-layered tissue model was varied from 1.3 to 1.4, the RMSE was less than 10%. The scaling method can reduce computation time by more than 2 orders of magnitude compared with independent Monte Carlo simulations.

  14. A review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: Does enhanced vapor-phase diffusion exist?

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1996-05-01

    A review of mechanisms, models, and data relevant to the postulated phenomenon of enhanced vapor-phase diffusion in porous media is presented. Information is obtained from literature spanning two different disciplines (soil science and engineering) to gain a diverse perspective on this topic. Findings indicate that while enhanced vapor diffusion tends to correct the discrepancies observed between past theory and experiments, no direct evidence exists to support the postulated processes causing enhanced vapor diffusion. Numerical modeling analyses of experiments representative of the two disciplines are presented in this paper to assess the sensitivity of different systems to enhanced vapor diffusion. Pore-scale modeling is also performed to evaluate the relative significance of enhanced vapor diffusion mechanisms when compared to Fickian diffusion. The results demonstrate the need for additional experiments so that more discerning analyses can be performed.

  15. Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion

    NASA Astrophysics Data System (ADS)

    Gouze, Philippe; Melean, Yasmin; Le Borgne, Tanguy; Dentz, Marco; Carrera, Jesus

    2008-11-01

    Mobile-immobile mass transfer is widely used to model non-Fickian dispersion in porous media. Nevertheless, the memory function, implemented in the sink/source term of the transport equation to characterize diffusion in the matrix (i.e., the immobile domain), is rarely measured directly. Therefore, the question can be posed as to whether the memory function is just a practical way of increasing the degrees of freedom for fitting tracer test breakthrough curves or whether it actually models the physics of tracer transport. In this paper we first present a technique to measure the memory function of aquifer samples and then compare the results with the memory function fitted from a set of field-scale tracer tests performed in the same aquifer. The memory function is computed by solving the matrix diffusion equation using a random walk approach. The properties that control diffusion (i.e., mobile-immobile interface and immobile domain cluster shapes, porosity, and tortuosity) are investigated by X-ray microtomography. Once the geometry of the matrix clusters is measured, the shape of the memory function is controlled by the value of the porosity at the percolation threshold and of the tortuosity of the diffusion path. These parameters can be evaluated from microtomographic images. The computed memory function compares well with the memory function deduced from the field-scale tracer tests. We conclude that for the reservoir rock studied here, the atypical non-Fickian dispersion measured from the tracer test is well explained by microscale diffusion processes in the immobile domain. A diffusion-controlled mobile-immobile mass transfer model therefore appears to be valid for this specific case.

  16. Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.

    2014-02-01

    The physical structure of polar firn plays a key role in the mechanisms by which glaciers and ice sheets preserve a natural archive of past atmospheric composition. This study presents the first measurements of gas diffusivity and permeability along with microstructural information measured from the near-surface firn through the firn column to pore close-off. Both fine- and coarse-grained firn from Summit, Greenland are included in this study to investigate the variability in firn caused by seasonal and storm-event layering. Our measurements reveal that the porosity of firn (derived from density) is insufficient to describe the full profiles of diffusivity and permeability, particularly at porosity values above 0.5. Thus, even a model that could perfectly predict the density profile would be insufficient for application to issues involving gas transport. The measured diffusivity profile presented here is compared to two diffusivity profiles modeled from firn air measurements from Summit. Because of differences in scale and in firn processes between the true field situation, firn modeling, and laboratory measurements, the results follow a similar overall pattern but do not align; our results constitute a lower bound on diffusive transport. In comparing our measurements of both diffusivity and permeability to previous parameterizations from numerical 3-D lattice-Boltzmann modeling, it is evident that the previous relationships to porosity are likely site-specific. We present parameterizations relating diffusivity and permeability to porosity as a possible tool, though use of direct measurements would be far more accurate when feasible. The relationships between gas transport properties and microstructural properties are characterized and compared to existing relationships for general porous media, specifically the Katz-Thompson (KT), Kozeny-Carman (KC), and Archie's law approximations. While those approximations can capture the general trend of gas transport

  17. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  18. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems. PMID:27176384

  19. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  20. Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2016-07-01

    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman–Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.

  1. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  2. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  3. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  4. Transport and Diffusion in Porous Media: Computation at the Interface Between Physics and Geology

    NASA Astrophysics Data System (ADS)

    Schwartz, Lawrence M.

    1997-08-01

    Problems involving transport in porous media are of interest throughout the fields of petroleum exploration and environmental monitoring and remediation. The systems being studied can vary in size from centimeter scale rock or soil samples to kilometer scale reservoirs and aquifers. Clearly, the smaller the sample the more easily can the medium's structure and composition be characterized, and the better defined is the associated computational problem. The study of transport in small geological systems is often similar to corresponding problems in the study of more familiar heterogeneous systems such as polymer gels, catalytic beds and cementitious materials. The defining characteristic of porous media is that they are comprised of two percolating interconnected channels, the solid and pore networks. Transport processes of interest in such systems typically involve the flow of electrical current, viscous fluids, or fine grained particles. A closely related phenomena, nuclear magnetic resonance (NMR), is controlled by diffusion in the pore network. We will review the development of two and three dimensional model porous media, and will outline the calculation of their physical properties. We will also discuss the direct measurement of the pore structure by synchrotron X-ray microtomography. The presentation will concentrate on the case in which the geological system is uniform when viewed above a certain cutoff length scale but is heterogeneous when viewed below that length scale. This is often the case in shaly sands and reservoir rocks with combined inter-granular and micro-porosity.

  5. Upscaling the diffusion equations in particulate media made of highly conductive particles. I. Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Vassal, J.-P.; Orgéas, L.; Favier, D.; Auriault, J.-L.; Le Corre, S.

    2008-01-01

    Many analytical and numerical works have been devoted to the prediction of macroscopic effective transport properties in particulate media. Usually, structure and properties of macroscopic balance and constitutive equations are stated a priori. In this paper, the upscaling of the transient diffusion equations in concentrated particulate media with possible particle-particle interfacial barriers, highly conductive particles, poorly conductive matrix, and temperature-dependent physical properties is revisited using the homogenization method based on multiple scale asymptotic expansions. This method uses no a priori assumptions on the physics at the macroscale. For the considered physics and microstructures and depending on the order of magnitude of dimensionless Biot and Fourier numbers, it is shown that some situations cannot be homogenized. For other situations, three different macroscopic models are identified, depending on the quality of particle-particle contacts. They are one-phase media, following the standard heat equation and Fourier’s law. Calculations of the effective conductivity tensor and heat capacity are proved to be uncoupled. Linear and steady state continuous localization problems must be solved on representative elementary volumes to compute the effective conductivity tensors for the two first models. For the third model, i.e., for highly resistive contacts, the localization problem becomes simpler and discrete whatever the shape of particles. In paper II [Vassal , Phys. Rev. E 77, 011303 (2008)], diffusion through networks of slender, wavy, entangled, and oriented fibers is considered. Discrete localization problems can then be obtained for all models, as well as semianalytical or fully analytical expressions of the corresponding effective conductivity tensors.

  6. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Walvoord, Michelle A.; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-08-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  7. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Rob; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  8. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation

    NASA Astrophysics Data System (ADS)

    Spear, John T.; Gore, John C.

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues.

  9. Diffuse Ionized Gas inside the Dwarf Irregular Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Peimbert, A.

    2007-05-01

    We have studied the differences between the diffuse ionized gas (DIG) and the H II regions along a slit position in the local dwarf irregular galaxy NGC 6822. The slit position passes through the two most prominent H II regions: Hubble V and Hubble X. Important differences have been found in the excitation, ionization, and [N II] λ6584/Hα and [S II] λ6717/Hα line ratios between the DIG and the H II locations. Moreover, the values of all the line ratios are not similar to those in the DIG locations of spiral galaxies but are very similar to the values in other irregular galaxies, such as IC 10. We also determined the rate of recombination using the He I λ5875 line. Finally, we obtained a picture of the ionization sources of the DIG. We consider that the leakage of photons from the H II regions might explain most of the line ratios, except [N II]/Hα, which might be explained by turbulence. Based on observations collected at the European Southern Observatory, Chile, proposal 69.C-0203(A).

  10. Analysis of the diffuse ionized gas database: DIGEDA

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Binette, L.

    2009-10-01

    Studies of the Diffuse Ionized Gas (DIG) have progressed without providing so far any strict criterion to distinguish DIGs from H II regions. In this work, we compile the emission line measurements of 29 galaxies that are available in the scientific literature, thereby setting up the first DIG database (DIGEDA). Making use of this database, we proceed to analyze the global properties of the DIG using the [NII]λ6583/Hα, [O I]λ6300/Hα, [O III]λ5007/Hβ and [SII]λ6716/Hα lines ratios, including the H α emission measure. This analysis leads us to conclude that the [N II]/Hα ratio provides an objective criterion for distinguishing whether an emission region is a DIG or an H II region, while the EM(Hα) is a useful quantity only when the galaxies are considered individually. Finally, we find that the emission regions of Irr galaxies classified as DIG in the literature appear in fact to be much more similar to H II regions than to the DIGs of spiral galaxies.

  11. Telecentric suppression of diffuse light in imaging of highly anisotropic scattering media.

    PubMed

    Visbal Onufrak, Michelle A; Konger, Raymond L; Kim, Young L

    2016-01-01

    The telecentric lens, which was originally used in the machine vision industry, has often been utilized in biomedical imaging systems due to its commonly known properties, such as large transverse field of view, constant magnification, and long working distance. However, its potential advantages in optical imaging of biological tissue, which is highly diffusive, have not been fully explored. We revisit the idea that a telecentric lens system can bring an alternative yet simple method for reducing unwanted scattering or diffuse light in biological tissue, owing to its highly anisotropic scattering properties. Using biological tissue and tissue phantoms, we demonstrate advantages attributed to the use of telecentric lens in tissue imaging compared with imaging using conventional nontelecentric optics. Directional or angular gating (or filtering) using a telecentric lens is beneficial for removing a portion of diffuse light in highly anisotropic scattering media with high values of the scattering anisotropy factor. We envision that a telecentric lens could be potentially incorporated into an instrument of modest design and cost, increasing rapid practical adoption. PMID:26696179

  12. Derivation and Solution of Multifrequency Radiation Diffusion Equations for Homogeneous Refractive Lossy Media

    SciTech Connect

    Shestakov, A I; Vignes, R M; Stolken, J S

    2010-01-05

    Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The system is coupled to a diffusion equation for the matter temperature. We are interested in modeling annealing of silica (SiO{sub 2}). We derive boundary conditions at a planar air-silica interface taking account of reflectivities. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO{sub 2} laser, {lambda} = 10.59 {micro}m. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm) with a laser, Gaussian profile (r{sub 0} = 0.5 mm for 1/e decay).

  13. Measurement and prediction of the oxygen diffusion coefficient in partly saturated media

    NASA Astrophysics Data System (ADS)

    Aachib, M.; Mbonimpa, M.; Aubertin, M.; Bussiere, B.

    2004-05-01

    Molecular diffusion is an important mechanism for gas transport in various natural and man-made systems. This is particularly the case with soil covers installed on acid generating mine tailings, where oxygen availability has to be controlled. One of the most important roles of such covers is to limit gas flux, which depends on the effective diffusion coefficient De of the cover materials. This paper presents an experimental procedure and results from oxygen diffusion tests performed on different types of materials, at various degrees of saturation. The determination of De in the laboratory from the test data is based on solutions to Fick's laws. The ensuing values of De are compared to values calculated from available models that relate De to basic material properties, including porosity and degree of saturation. Statistical indicators are used to evaluate the accuracy of selected models, individually and on a comparative basis. It is shown that modified versions of the Millington-Quirk and Millington-Shearer models provide De values close to the measured data. A semi-empirical expression, ensuing from these models and measurements, is proposed as a simple means of estimating De.

  14. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGESBeta

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; Peter, William H.; Toops, Todd J.; Green, Jr., Johney Boyd

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  15. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  16. Controlling gas diffusion layer oxidation by homogeneous hydrophobic coating for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Hiramitsu, Yusuke; Sato, Hitoshi; Kobayashi, Kenji; Hori, Michio

    Reduced production costs and enhanced durability are necessary for practical application of polymer electrolyte fuel cells. There has been a great deal of concern about degradation of the gas diffusion layer located outside the membrane electrode assembly. However, very few studies have been carried out on the degradation process, and no suitable methods for improving the durability of the cell have been found. In this work, the influence on the cell performance and factors involved in the degradation of the gas diffusion layer has been clarified through power generation tests. Long-term power generation tests on single cells for 6000 h were carried out under high humidity conditions with homogeneous and inhomogeneous hydrophobic coating gas diffusion layers. The results showed that the increase in the diffusion overvoltage from the gas diffusion layer could be controlled by the use of a homogeneous coating. Post-analyses indicated that this occurred by controlling oxidation of the carbon fiber.

  17. Susceptibility testing of Actinobacillus pleuropneumoniae in Denmark. Evaluation of three different media of MIC-determinations and tablet diffusion tests.

    PubMed

    Aarestrup, F M; Jensen, N E

    1999-02-12

    This study was conducted to compare the applicability of three different media in sensitivity testing of Actinobacillus pleuropneumoniae by means of MIC and tablet diffusion tests. The media used were: modified PPLO agar, chocolatized Mueller-Hinton-II and Columbia agar supplemented with NAD. Seven antimicrobial agents were tested: ceftiofur, enrofloxacin, penicillin, spectinomycin, tiamulin, trimethoprim + sulfadiazine and tylosin, against 40 randomly selected A. pleuropneumoniae isolates. In general, good agreement was found between results obtained with all combinations of media, most antimicrobials tested and the two-test systems. Some variations between media were observed for spectinomycin, tiamulin and tylosin. For ceftiofur and trimethoprim + sulfadiazine some isolates with low MIC-values were classified as resistant using tablet diffusion, indicating that the break points of resistance for these antimicrobials using the tablet diffusion tests need adjustment. Using current break points for resistance with MIC-determinations, all isolates tested susceptible to ceftiofur, enrofloxacin, penicillin, tiamulin and trimethoprim + sulfadiazine. A larger number of isolates tested resistant to spectinomycin and tylosin on all three media using both MIC determinations and tablet diffusion. PMID:10063535

  18. Improvement of oxygen diffusion characteristic in gas diffusion layer with planar-distributed wettability for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Koresawa, Ryo; Utaka, Yoshio

    2014-12-01

    Mass transfer characteristics of gas diffusion layer (GDL) are closely related to performance of polymer electrolyte fuel cells. Therefore, it is necessary to clarify the characteristics of water distribution relating to the microscopic conformation and oxygen diffusivity of GDL. A hybrid type carbon paper GDL with planar-distributed wettability is investigated for control of liquid water movement and distribution due to hydrophobic to hydrophilic areas that provide wettability differences in GDL and to achieve enhancement of both oxygen diffusion and moisture retention. Hybrid GDLs with different PTFE content were fabricated in an attempt to improve the oxygen diffusion characteristics. The effects of different PTFE contents on the oxygen diffusivity and water distribution were simultaneously measured and observed using galvanic cell oxygen absorber and X-ray radiography. The PTFE distribution was observed using scanning electron microscopy. The formation of oxygen diffusion paths was confirmed by X-ray radiography, where voids in the hybrid GDL were first formed in the hydrophobic regions and then spread to the untreated wetting region. Thus, the formation of oxygen diffusion paths enhanced the oxygen diffusion. In addition, the effects of local PTFE content in the hydrophobic region and the optimal amount of PTFE for hybrid GDL were elucidated.

  19. Determination of binary diffusion coefficients of various gas species used in respiratory physiology.

    PubMed

    Worth, H; Nüsse, W; Piiper, J

    1978-01-01

    In order to provide data required for quantitative analysis of gas diffusion in lung airways, diffusion of He, CO, O2, CO2 and SF6 in various gases used in respiratory physiology was studied in vitro at 37 degrees C and 25 degrees C. The gases were allowed to mix by diffusion in a closed cylindrical tube (length 2 m, internal diameter 1 cm), one half of which was initially filled with 1% test gas in a second gas and the other half of which was filled with the second gas only. Kinetics of diffusional equilibration was determined by withdrawal of spot samples analyzed by gas chromatography. The binary (mutual) diffusion coefficients (D) computed there from were in most cases in good agreement with values calculated on the basis of the Chapman-Enskog theory. PMID:625611

  20. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  1. In situ bioremediation: A network model of diffusion and flow in granular porous media

    SciTech Connect

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  2. Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps

    SciTech Connect

    Lejay, Antoine; Pichot, Geraldine

    2012-08-30

    In this article, we propose new Monte Carlo techniques for moving a diffusive particle in a discontinuous media. In this framework, we characterize the stochastic process that governs the positions of the particle. The key tool is the reduction of the process to a Skew Brownian motion (SBM). In a zone where the coefficients are locally constant on each side of the discontinuity, the new position of the particle after a constant time step is sampled from the exact distribution of the SBM process at the considered time. To do so, we propose two different but equivalent algorithms: a two-steps simulation with a stop at the discontinuity and a one-step direct simulation of the SBM dynamic. Some benchmark tests illustrate their effectiveness.

  3. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media.

    PubMed

    Panigrahi, Swapnesh; Fade, Julien; Ramachandran, Hema; Alouini, Mehdi

    2016-07-11

    The efficiency of using intensity modulated light for the estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium. PMID:27410875

  4. Surface lattice solitons in diffusive nonlinear media with spatially modulated nonlinearity.

    PubMed

    Zhan, Kaiyun; Jiao, Zhiyong; Li, Xi; Jia, Yulei; Zhang, Hui

    2015-09-01

    Two families of gap and twisted surface lattice solitons in diffusive nonlinear periodic media with spatially modulated nonlinearity are reported. It is shown that the existence and stability of such solitons are extremely spatially modulated nonlinearity sensitive. For self-focusing nonlinearity, gap surface solitons belonging to the semi-infinite gap are stable in whole existence domain, twisted surface solitons are also linearly stable in low modulated strength region and a very narrow unstable region near the upper cutoff appears in high modulated strength region. In the self-defocusing case, surface gap solitons belonging to the first gap can propagate stably in whole existence domain except for an extremely narrow region close to the Bloch band, twisted solitons belonging to this gap are unstable in the entire existence domain. PMID:26368497

  5. Variance reduction in Monte Carlo analysis of rarefied gas diffusion

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.

    1972-01-01

    The present analysis uses the Monte Carlo method to solve the problem of rarefied diffusion between parallel walls. The diffusing molecules are evaporated or emitted from one of two parallel walls and diffused through another molecular species. The analysis treats the diffusing molecule as undergoing a Markov random walk and the local macroscopic properties are found as the expected value of the random variable, the random walk payoff. By biasing the transition probabilities and changing the collision payoffs the expected Markov walk payoff is retained but its variance is reduced so that the M. C. result has a much smaller error.

  6. Variance reduction in Monte Carlo analysis of rarefied gas diffusion.

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.

    1972-01-01

    The problem of rarefied diffusion between parallel walls is solved using the Monte Carlo method. The diffusing molecules are evaporated or emitted from one of the two parallel walls and diffuse through another molecular species. The Monte Carlo analysis treats the diffusing molecule as undergoing a Markov random walk, and the local macroscopic properties are found as the expected value of the random variable, the random walk payoff. By biasing the transition probabilities and changing the collision payoffs, the expected Markov walk payoff is retained but its variance is reduced so that the Monte Carlo result has a much smaller error.

  7. What determines drying rates at the onset of diffusion controlled stage-2 evaporation from porous media?

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Or, D.

    2011-09-01

    Early stages of evaporation from porous media are marked by relatively high evaporation rates supplied by capillary liquid flow from a receding drying front to vaporization surface. At a characteristic drying front depth, hydraulic continuity to the surface is disrupted marking the onset of stage-2 evaporation where a lower evaporative flux is supported by vapor diffusion. Observations suggest that in some cases the transition is accompanied by a jump in the vaporization plane from the surface to a certain depth below. The resulting range of evaporation rates at the onset of stage-2 is relatively narrow (0.5-2.5 mm d-1). The objective is to estimate the depth of the vaporization plane that defines vapor diffusion length at the onset of stage-2. The working hypothesis is that the jump length is determined by a characteristic length of connected clusters at the secondary drying front that obeys a power law with the system's Bond number. We conducted evaporation experiments using sands and glass beads of different particle size distributions and extracted experimental data from the literature for model comparison. Results indicate the jump length at the end of stage-1 was affected primarily by porous media properties and less so by boundary conditions. Results show power law relationships between the length of the vaporization plane jump and Bond number with an exponent of -0.48 in good agreement with the percolation theory theoretical exponent of -0.47. The results explain the origins of a relatively narrow range of evaporation rates at the onset of stage-2, and provide a means for estimating these rates.

  8. Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1999-01-01

    As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conducted at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.

  9. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  10. Development of a gas method for migration studies in fractured and porous media

    SciTech Connect

    Vaeaetaeinen, K.; Timonen, J.; Hautojaervi, A.

    1993-12-31

    A gas method for fast measurements of diffusion properties of porous materials has been developed. Diffusion coefficients in the gas phase are typically four orders of magnitude larger than those in the liquid phase. For samples whose structures do not change much upon drying it is possible to estimate the diffusion properties of the liquid phase when the properties of the gas phase are known. Advantages of the gas method are quick and easy measurements and therefore they can be used to optimize the liquid-phase measurements which may last months or years. For materials with good correlation between the base and liquid-phase diffusion, the number of liquid phase measurements can be greatly reduced. Nitrogen was used as the carrier gas and helium as the tracer gas. Helium concentrations were measured by using standard techniques. The equipment was tested for two sample geometries, a column made of a polished granite slab and an acrylic slab with a flow channel in between, and a hollow bore core where diffusion occurs through the sample. Both types of measurement were modelled and apparent diffusion coefficients in the gas phase were determined.

  11. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  12. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  13. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  14. Influence of hydrophobic treatment on the structure of compressed gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Tötzke, C.; Gaiselmann, G.; Osenberg, M.; Arlt, T.; Markötter, H.; Hilger, A.; Kupsch, A.; Müller, B. R.; Schmidt, V.; Lehnert, W.; Manke, I.

    2016-08-01

    Carbon fiber based felt materials are widely used as gas diffusion layer (GDL) in fuel cells. Their transport properties can be adjusted by adding hydrophobic agents such as polytetrafluoroethylene (PTFE). We present a synchrotron X-ray tomographic study on the felt material Freudenberg H2315 with different PTFE finishing. In this study, we analyze changes in microstructure and shape of GDLs at increasing degree of compression which are related to their specific PTFE load. A dedicated compression device mimicking the channel-land pattern of the flowfield is used to reproduce the inhomogeneous compression found in a fuel cell. Transport relevant geometrical parameters such as porosity, pore size distribution and geometric tortuosity are calculated and consequences for media transport discussed. PTFE finishing results in a marked change of shape of compressed GDLs: surface is smoothed and the invasion of GDL fibers into the flow field channel strongly mitigated. Furthermore, the PTFE impacts the microstructure of the compressed GDL. The number of available wide transport paths is significantly increased as compared to the untreated material. These changes improve the transport capacity liquid water through the GDL and promote the discharge of liquid water droplets from the cell.

  15. Pulsed-field-gradient measurements of time-dependent gas diffusion

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.

    1998-01-01

    Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.

  16. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA~10/μt‧ and tDA~20/vμt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  17. Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhou, Jianqin; Astrath, Nelson G. C.; Navessin, Titichai; Liu, Zhong-Sheng (Simon); Lei, Chao; Rohling, Jurandir H.; Bessarabov, Dmitri; Knights, Shanna; Ye, Siyu

    In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O 2-N 2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al 2O 3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1.47 ± 0.05) × 10 -7 m 2 s -1 for the catalyst layers. Porosity and pore size distribution of the catalyst layers are also measured using Hg porosimetry. The diffusion resistance of the interface between the catalyst layer and the substrate is found to be negligible. The experimental results show that the O 2-N 2 diffusion in the catalyst layers is dominated by the Knudsen effect.

  18. Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2003-01-01

    Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.

  19. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  20. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  1. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  2. Analysis of the flow of gas through low-permeability porous media

    SciTech Connect

    Newberg, M.A.; Arastoopour, H.

    1986-11-01

    A computer program based on the continuity and momentum equations for prediction of the flow of gas through low-permeability porous media was developed. This program uses the FORSIM code, which is based on the method of lines and several integration algorithms. Transient gas flow rates predicted with the computer program were compared with Inst. of Gas Technology's (IGT's) data for both partially water-saturated and dry tight-sand core samples.

  3. Nonlinear structure of the diffusing gas-metal interface in a thermonuclear plasma.

    PubMed

    Molvig, Kim; Vold, Erik L; Dodd, Evan S; Wilks, Scott C

    2014-10-01

    This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given. PMID:25325648

  4. Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2002-01-01

    Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.

  5. Subdiffusion, Anomalous Diffusion and Propagation of a Particle Moving in Random and Periodic Media

    NASA Astrophysics Data System (ADS)

    Mishra, Shradha; Bhattacharya, Sanchari; Webb, Benjamin; Cohen, E. G. D.

    2016-02-01

    We investigate the motion of a single particle moving on a two-dimensional square lattice whose sites are occupied by right and left rotators. These left and right rotators deterministically rotate the particle's velocity to the right or left, respectively and flip orientation from right to left or from left to right after scattering the particle. We study three types of configurations of left and right rotators, which we think of as types of media, through with the particle moves. These are completely random (CR), random periodic (RP), and completely periodic (CP) configurations. For CR configurations the particle's dynamics depends on the ratio r of right to left scatterers in the following way. For small r˜eq 0, when the configuration is nearly homogeneous, the particle subdiffuses with an exponent of 2/3, similar to the diffusion of a macromolecule in a crowded environment. Also, the particle's trajectory has a fractal dimension of d_f˜eq 4/3, comparable to that of a self-avoiding walk. As the ratio increases to r˜eq 1, the particle's dynamics transitions from subdiffusion to anomalous diffusion with a fractal dimension of d_f˜eq 7/4, similar to that of a percolating cluster in 2-d. In RP configurations, which are more structured than CR configurations but also randomly generated, we find that the particle has the same statistic as in the CR case. In contrast, CP configurations, which are highly structured, typically will cause the particle to go through a transient stage of subdiffusion, which then abruptly changes to propagation. Interestingly, the subdiffusive stage has an exponent of approximately 2/3 and a fractal dimension of d_f˜eq 4/3, similar to the case of CR and RP configurations for small r.

  6. INERTIAL CASCADE IMPACTOR SUBSTRATE MEDIA FOR FLUE GAS SAMPLING

    EPA Science Inventory

    The report summarizes Southern Research Institute's experience with greases and glass fiber filter material used as collection substrates in inertial cascade impactors. Available greases and glass fiber filter media have been tested to determine which are most suitable for flue g...

  7. Dynamics of effusive and diffusive gas separation on pillared graphene.

    PubMed

    Wesołowski, Radosław P; Terzyk, Artur P

    2016-06-22

    Pillared graphene structures, from a practical viewpoint, are very interesting novel carbon materials. Combining the properties of graphene and nanotubes, such as durability, chemical purity and a controlled structure, they were proven to be effective membranes for noble gas separation processes. Here, we examine their possible use for other, more commercially useful gas mixture separation, i.e. air and coal gas. The mechanism of air gas transport through the pillar channels is studied, and the prospective application of 2-D pillared membranes in effusion-like processes provided. The separative abilities of hybrid systems consisting of membranes with different channel diameters in relation to coal gas are proven to be promising. PMID:27297664

  8. A rapid method for the measurement and estimation of CO2 diffusivity in liquid hydrocarbon-saturated porous media using MRI.

    PubMed

    Zhao, Yuechao; Chen, Junlin; Yang, Mingjun; Liu, Yu; Song, Yongchen

    2016-05-01

    In this study, magnetic resonance imaging (MRI) was used to dynamically visualize the diffusion process of CO2 in porous media saturated with liquid hydrocarbon. Based on the assumption of semi-infinite media, effective CO2 diffusivity was obtained directly by the nonlinear fitting of one MR profile during the diffusion process. These experimental findings obtained based on MRI method showed a close agreement with the conventional pressure-volume-temperature method. The novel MRI-based technique is a time-saving approach that can reduce the duration of CO2 diffusivity measurement more than 90%, and realize rapid and accurate measurement and estimation of CO2 diffusivity. PMID:26707850

  9. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    SciTech Connect

    Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang; Perriot, Romain Thibault; Tonks, Michael; Stanek, Christopher Richard

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  10. Fractional and fractal dynamics approach to anomalous diffusion in porous media: application to landslide behavior

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco

    2016-04-01

    Richardson's treatise on turbulent diffusion in 1926 [24] and today, the list of system displaying anomalous dynamical behavior is quite extensive. We only report some examples: charge carrier transport in amorphous semiconductors [25], porous systems [26], reptation dynamics in polymeric systems [27, 28], transport on fractal geometries [29], the long-time dynamics of DNA sequences [30]. In this scenario, the fractional calculus is used to generalized the Fokker-Planck linear equation -∂P (x,t)=D ∇2P (x,t), ∂t (3) where P (x,t) is the density of probability in the space x=[x1, x2, x3] and time t, while D >0 is the diffusion coefficient. Such processes are characterized by Eq. (1). An example of Eq. (3) generalization is ∂∂tP (x,t)=D∇ αP β(x,t) ‑ ∞ < α ≤ 2 β > ‑ 1 , (4) where the fractional based-derivatives Laplacian Σ(∂α/∂xα)i, (i = 1, 2, 3), of non-linear term Pβ(x,t) is taken into account [31]. Another generalized form is represented by equation ∂∂tδδP(x,t)=D ∇ αP(x,t) δ > 0 α ≤ 2 , (5) that considers also the fractional time-derivative [32]. These fractional-described processes exhibit a power law patters as expressed by Eq. (2). This general introduction introduces the presented work, whose aim is to develop a theoretical model in order to forecast the triggering and propagation of landslides, using the techniques of fractional calculus. The latter is suitable for modeling the water infiltration (i.e., the pore water pressure diffusion in the soil) and the dynamical processes in the fractal media [33]. Alternatively the fractal representation of temporal and spatial derivative (the fractal order only appears in the denominator of the derivative) is considered and the results are compared to the fractional one. The prediction of landslides and the discovering of the triggering mechanism, is one of the challenging problems in earth science. Landslides can be triggered by different factors but in most cases the trigger is an

  11. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  12. Gas diffusion cell removes carbon dioxide from occupied airtight enclosures

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Small, lightweight permeable cell package separates and removes carbon dioxide from respiratory gas mixtures. The cell is regenerative while chemically inert in the presence of carbon dioxide so that only adsorption takes place.

  13. Gas hydrate dynamics in heterogeneous media - challenges for numerical modeling

    NASA Astrophysics Data System (ADS)

    Burwicz, Ewa; Ruepke, Lars; Wallmann, Klaus

    2013-04-01

    Gas hydrates are ice-like crystalline cage structures containing various greenhouse gases, such as methane or CO2, which are locked within their spatial structure. Gas hydrate distribution in oceanic settings is mainly controlled by three factors: 1) low temperature regimes, 2) high pressure regimes, and 3) presence of biodegradable organic matter. Due to their composition, hydrates are vulnerable to temperature, pressure, and, to a smaller degree, salinity changes. The occurrence of gas hydrates in marine sediments was discovered mainly along continental margins (slope and rise) where water depths exceed 400 m and the bottom water temperatures are small enough to sustain their presence. The amount of gas hydrates present in marine sediments on a global scale is still under debate. Several numerical models of a different complexity have been developed to estimate the potential amount of clathrates locked world-wide within marine sediments. The range of estimates starts from 500 Gt up to 57,000 Gt of methane carbon which implies a variation of several orders of magnitude. It has been already established that current climate changes are triggering some of the methane releases around the world. Prominent gas hydrate occurrence zones, such as Blake Ridge, can provide important information of the scale of potential hazards and help to predict a future impact of such events. Blake Ridge is a well investigated gas hydrate province containing a large amount of a locked methane gas. With the new numerical multiphase model we have been investigating 1) the potential risk of gas hydrate destabilization caused by several environmental factors (e.g. bottom water temperature rise, sea-level variations), 2) the effect of changing sedimentation regimes to the total amount of gas hydrate, 3) dynamics of hydrate formation in heterogeneous sediment layers, and 4) the impact of dynamic compaction on fluid and gas flow regimes. The model contains four phases (solid porous matrix, pore

  14. The most diffuse molecular gas in the galaxy.

    PubMed

    Liszt, Harvey S

    2013-10-01

    Interstellar molecules preferentially reside in denser, cooler, optically shielded portions of the interstellar medium, but a weak residue of H2 will form via purely gas-phase processes involving H(-) even in rather bare atomic gas, the so-called warm interstellar medium where the temperature (>1000 K) and electron fraction (0.01 to 0.1) are relatively high. Along with H2, a few trace molecules will also form in this gas, partially because strongly endothermic reactions such as C(+) + H2 → CH(+) + H are energetically allowed. The observed abundance patterns of SH(+), CH(+) and OH(+) are reproduced by the warm gas chemistry, but not their overall abundances with respect to hydrogen. Even the very smallest molecular hydrogen fractions observed in the Milky Way along sightlines of low mean density are well above those that can readily be produced in the warm interstellar medium by gas-phase or grain-surface H2 formation processes. This suggests that density inhomogeneities may obscure the molecular contribution of warmer gas. PMID:23390998

  15. Fractional and fractal dynamics approach to anomalous diffusion in porous media: application to landslide behavior

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco

    2016-04-01

    Richardson's treatise on turbulent diffusion in 1926 [24] and today, the list of system displaying anomalous dynamical behavior is quite extensive. We only report some examples: charge carrier transport in amorphous semiconductors [25], porous systems [26], reptation dynamics in polymeric systems [27, 28], transport on fractal geometries [29], the long-time dynamics of DNA sequences [30]. In this scenario, the fractional calculus is used to generalized the Fokker-Planck linear equation -∂P (x,t)=D ∇2P (x,t), ∂t (3) where P (x,t) is the density of probability in the space x=[x1, x2, x3] and time t, while D >0 is the diffusion coefficient. Such processes are characterized by Eq. (1). An example of Eq. (3) generalization is ∂∂tP (x,t)=D∇ αP β(x,t) ‑ ∞ < α ≤ 2 β > ‑ 1 , (4) where the fractional based-derivatives Laplacian Σ(∂α/∂xα)i, (i = 1, 2, 3), of non-linear term Pβ(x,t) is taken into account [31]. Another generalized form is represented by equation ∂∂tδδP(x,t)=D ∇ αP(x,t) δ > 0 α ≤ 2 , (5) that considers also the fractional time-derivative [32]. These fractional-described processes exhibit a power law patters as expressed by Eq. (2). This general introduction introduces the presented work, whose aim is to develop a theoretical model in order to forecast the triggering and propagation of landslides, using the techniques of fractional calculus. The latter is suitable for modeling the water infiltration (i.e., the pore water pressure diffusion in the soil) and the dynamical processes in the fractal media [33]. Alternatively the fractal representation of temporal and spatial derivative (the fractal order only appears in the denominator of the derivative) is considered and the results are compared to the fractional one. The prediction of landslides and the discovering of the triggering mechanism, is one of the challenging problems in earth science. Landslides can be triggered by different factors but in most cases the trigger is an

  16. Compilation and evaluation of gas-phase diffusion coefficients of reactive trace gases in the atmosphere: volume 2. Organic compounds and Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Pöschl, U.; Cox, R. A.; Kalberer, M.

    2015-02-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. Knudsen numbers of gases with unknown diffusivity can be approximated by a simple function of particle diameter and pressure and can be used to characterize the influence of diffusion on gas uptake by aerosol or cloud particles. We use a kinetic multi-layer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas-phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  17. Diffusion-perfusion relationships in skeletal muscle: models and experimental evidence from inert gas washout.

    PubMed

    Piiper, J; Meyer, M

    1984-01-01

    In order to study the dependence of blood-tissue gas exchange upon diffusion, the simultaneous washout of two inert gases of differing diffusivity was investigated in isolated-perfused dog gastrocnemius preparations. The muscles were equilibrated with CH4 and SF6 via arterial blood. The washout kinetics were determined from venous blood samples analyzed by gas chromatography. The results revealed the following features: The washout of the test gases was pronouncedly multi-exponential, and could be described by three exponential components when analyzed to 5% of the initial value. The non-exponential washout was attributed to unequal distribution of capillary blood flow to tissue volume. The mean ratio of washout rate constants CH4/SF6 was within 1.10-1.25 and was even smaller than the ratio expected for pure perfusion limitation (1.46). Therefore, no evidence for effective tissue-blood diffusion limitation was obtained. The observed washout rate constant ratio could be explained by a model with veno-arterial back diffusion which more strongly retards washout kinetics of the better diffusible gas (CH4) as compared to the less diffusible gas (SF6). PMID:6731103

  18. Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levinský, Petr; Kalvoda, Ladislav; Aubrecht, Jan; Fojtíková, Jaroslava

    2015-01-01

    The kinetic parameters of a chemo-optical transducer layer sensitive to gaseous ammonia are characterized by means of attenuation total reflection method. The tested layer consists of cross-linked polydimethylsiloxane matrix sensitized by quinoline-based organometallic dye showing the selective chemical reaction with ammonia. Upper and lower limits of the ammonia diffusion coefficient and the ammonia-dye reaction constant are derived from the obtained experimental data and compared with other data available in literature and obtained from computer simulations.

  19. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage

    SciTech Connect

    Borah, B; Zhang, HD; Snurr, RQ

    2015-03-03

    Diffusion of methane, ethane, propane and n-butane was studied within the micropores of several metal organic frameworks (MOFs) of varying topologies, including the MOFs PCN-14, NU-125, NU-1100 and DUT-49. Diffusion coefficients of the pure components, as well as methane/ethane, methane/ propane and methane/butane binary mixtures, were calculated using molecular dynamics simulations to understand the effect of the longer alkanes on uptake of natural gas in MOB. The calculated self diffusion coefficients of all four components are on the order of 10(-8) m(2)/s. The diffusion coefficients of the pure components decrease as a function of chain length in all of the MOFs studied and show different behaviour as a function of loading in different MOB. The self-diffusivities follow the trend DPCN-14 < DNU-125 approximate to DNU-1100 < DDUT-49, which is exactly the reverse order of the densities of the MOFs: PCN-14 > NU-125 approximate to NU-1100 > DUT-49. By comparing the diffusion of pure methane and methane mixtures vvith the higher alkancs, it is observed that the diffusivity of methane is unaffected by the presence of the higher alkanes in the MOFs considered, indicating that the diffusion path of methane is not blocked by the higher alkanes present in natural gas. (C) 2014 Elsevier Ltd. All rights reserved.

  20. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    SciTech Connect

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.

  1. A fractal permeability model for gas flow through dual-porosity media

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Yu, Boming

    2012-01-01

    The dual-porosity medium, i.e., a matrix porous medium coupled with fractured networks, extensively exists in fissured rocks, natural gas reservoirs, and other natural underground reservoirs or in resolving subsurface contamination problems. This work investigates gas permeability through matrix porous media embedded with randomly distributed fractal-like tree networks. The analytical expression for gas permeability in dual-porosity media is derived based on both the pore size of matrix and the mother channel diameter of embedded fractal-like tree networks having fractal distribution. It is found that gas permeability is a function of structural parameters (the fractal dimensions for pore area and tortuous capillaries, porosity and the maximum diameter of matrix, the length ratio, the diameter ratio, the branching levels and angle of the embedded networks) for dual-porosity media. The proposed model does not contain any empirical constant. The model predictions are compared with the available experimental data and simulating results, a fair agreement among them is found. The influences of geometrical parameters on the gas permeability in the media are also analyzed.

  2. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  3. Distribution and Mass of Diffuse and Dense CO Gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Heyer, Mark; Brunt, Christopher M.; Clark, Paul; Klessen, Ralf; Shetty, Rahul

    2016-02-01

    Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star-forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital for understanding the relation between molecular gas and star formation. We examine the Galactic distribution of two CO-emitting gas components, a high column density component detected in 13CO and 12CO, and a low column density component detected in 12CO, but not in 13CO. The “diffuse” and “dense” components are identified using a combination of smoothing, masking, and erosion/dilation procedures, making use of three large-scale 12CO and 13CO surveys of the inner and outer Milky Way. The diffuse component, which globally represents 25% (1.5 × 108M⊙) of the total molecular gas mass (6.5 × {10}8 M⊙), is more extended perpendicular to the Galactic plane. The fraction of diffuse gas increases from ˜10%-20% at a galactocentric radius of 3-4 kpc to 50% at 15 kpc, and increases with decreasing surface density. In the inner Galaxy, a yet denser component traced by CS emission represents 14% of the total molecular gas mass traced by 12CO emission. Only 14% of the molecular gas mass traced by 12CO emission is identified as part of molecular clouds in 13CO surveys by cloud identification algorithms. This study indicates that CO emission not only traces star-forming clouds, but also a significant diffuse molecular ISM component.

  4. Media.

    ERIC Educational Resources Information Center

    Allen, Lee E., Ed.

    1974-01-01

    Intended for secondary English teachers, the materials and ideas presented here suggest ways to use media in the classroom in teaching visual and auditory discrimination while enlivening classes and motivating students. Contents include "Media Specialists Need Not Apply," which discusses the need for preparation of media educators with…

  5. Porous liquids: A promising class of media for gas separation

    DOE PAGESBeta

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  6. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  7. Using Rare Gas Permeation to Probe Methanol Diffusion near the Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

    2009-12-01

    The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid mobility at temperatures near the glass transition. The temperature dependence of the diffusivity is well described by a Vogel-Fulcher-Tamman equation. These new measurements and the temperature dependent kinetic parameters obtained from their analysis provide clear evidence that methanol is a fragile liquid near the glass transition.

  8. Using rare gas permeation to probe methanol diffusion near the glass transition temperature.

    PubMed

    Matthiesen, Jesper; Smith, R Scott; Kay, Bruce D

    2009-12-11

    The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid mobility at temperatures near the glass transition. The temperature dependence of the diffusivity is well described by a Vogel-Fulcher-Tamman equation. These new measurements and the temperature dependent kinetic parameters obtained from their analysis provide clear evidence that methanol is a fragile liquid near the glass transition. PMID:20366212

  9. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks

    SciTech Connect

    Torgersen, T.; Kennedy, B.M.; van Soest, M.C.

    2004-06-14

    The mechanisms responsible for noble gas concentrations, abundance patterns, and strong retentivity in sedimentary lithologies remain poorly explained. Diffusion-controlled fractionation of noble gases is modeled and examined as an explanation for the absolute and relative abundances of noble gases observed in sediments. Since the physical properties of the noble gases are strong functions of atomic mass, the individual diffusion coefficients, adsorption coefficients and atomic radii combine to impede heavy noble gas (Xe) diffusion relative to light noble gas (Ne) diffusion. Filling of lithic grains/half-spaces by diffusive processes thus produces Ne enrichments in the early and middle stages of the filling process with F(Ne) values similar to that observed in volcanic glasses. Emptying lithic grains/half-spaces produces a Xe-enriched residual in the late (but not final) stages of the process producing F(Xe) values similar to that observed in shales. 'Exotic but unexceptional' shales that exhibit both F(Ne) and F(Xe) enrichments can be produced by incomplete emptying followed by incomplete filling. This mechanism is consistent with literature reported noble gas abundance patterns but may still require a separate mechanism for strong retention. A system of labyrinths-with-constrictions and/or C-, Si-nanotubes when combined with simple adsorption can result in stronger diffusive separation and non-steady-state enrichments that persist for longer times. Enhanced adsorption to multiple C atoms inside C-nanotubes as well as dangling functional groups closing the ends of nanotubes can provide potential mechanisms for 'strong retention'. We need new methods of examining noble gases in rocks to determine the role and function of angstrom-scale structures in both the diffusive enrichment process and the 'strong retention' process for noble gas abundances in terrestrial rocks.

  10. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  11. Diffusion of relativistic gas mixtures in gravitational fields

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.

    2014-01-01

    A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman-Enskog method. The main focus of this work is to obtain Fick’s law without the thermal-diffusion cross-effect. Fick’s law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appear in Fourier’s law in the presence of gravitational fields and are related to an acceleration and a gravitational potential gradient, but unlike Fourier’s law these last two terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and become smaller than those in its absence.

  12. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  13. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model.

    PubMed

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  14. Accurate Diffusion Coefficients of Organosoluble Reference Dyes in Organic Media Measured by Dual-Focus Fluorescence Correlation Spectroscopy.

    PubMed

    Goossens, Karel; Prior, Mira; Pacheco, Victor; Willbold, Dieter; Müllen, Klaus; Enderlein, Jörg; Hofkens, Johan; Gregor, Ingo

    2015-07-28

    Dual-focus fluorescence correlation spectroscopy (2fFCS) is a versatile method to determine accurate diffusion coefficients of fluorescent species in an absolute, reference-free manner. Whereas (either classical or dual-focus) FCS has been employed primarily in the life sciences and thus in aqueous environments, it is increasingly being used in materials chemistry, as well. These measurements are often performed in nonaqueous media such as organic solvents. However, the diffusion coefficients of reference dyes in organic solvents are not readily available. For this reason we determined the translational diffusion coefficients of several commercially available organosoluble fluorescent dyes by means of 2fFCS. The selected dyes and organic solvents span the visible spectrum and a broad range of refractive indices, respectively. The diffusion coefficients can be used as absolute reference values for the calibration of experimental FCS setups, allowing quantitative measurements to be performed. We show that reliable information about the hydrodynamic dimensions of the fluorescent species (including noncommercial compounds) within organic media can be extracted from the 2fFCS data. PMID:26144863

  15. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    NASA Astrophysics Data System (ADS)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  16. Experimental Investigation of Laminar Gas Jet Diffusion Flames in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Cochran, Thomas H.

    1972-01-01

    An experimental program was conducted to study the burning of laminar gas jet diffusion flames in a zero-gravity environment. The tests were conducted in a 2.2-Second-Zero-Gravity Facility and were a part of a continuing effort investigating the effects of gravity on basic combustion processes. The photographic results indicate that steady state gas jet diffusion flames existed in zero gravity but they were geometrically quite different than their normal-gravity counterparts. Methane-air flames were found to be approximately 50 percent longer and wider in zero gravity than in normal gravity.

  17. Bacterial Growth on Distant Naphthalene Diffusing through Water, Air, and Water-Saturated and Nonsaturated Porous Media

    PubMed Central

    Harms, H.

    1996-01-01

    The influence of substrate diffusion on bacterial growth was investigated. Crystalline naphthalene was supplied as the substrate at various distances in the range of centimeters from naphthalene-degrading organisms separated from the substrate by agar-solidified mineral medium. Within 2 weeks, the cells grew to final numbers which were negatively correlated with the distance from the substrate. A mathematical model that combined (i) Monod growth kinetics extended by a term for culture maintenance and (ii) substrate diffusion could explain the observed growth curves. The model could also predict growth on naphthalene that was separated from the bacteria by air. In addition, the bacteria were grown on distant naphthalene that had to diffuse to the cells through water-saturated and unsaturated porous media. The growth of the bacteria could be used to calculate the effective diffusivity of naphthalene in the three-phase system. Diffusion of naphthalene in the pore space containing 80% air was roughly 1 order of magnitude faster than in medium containing only 20% air because of the high Henry's law coefficient of naphthalene. It is proposed that the effective diffusivities of the substrates and the spatial distribution of substrates and bacteria are the main determinants of final cell numbers and, consequently, final degradation rates. PMID:16535349

  18. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2009-12-01

    In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer 'compartments.' We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D{sub interlayer} of water tracers and representative cations (Na{sup +}, Cs{sup +}, Sr{sup 2+}) in Na-smectite interlayers. We find that a remarkably simple expression relates D{sub interlayer} to the pore-scale parameter {delta}{sub nanopore} {<=} 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: {delta}{sub nanopore} = D{sub interlayer}/D{sub 0}, where D{sub 0} is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracer H{sub 2}O, Na{sup +}, Sr{sup 2+} and Cs{sup +}+ in compacted Na-smectite-rich materials.

  19. Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo

    2015-07-01

    Diffusion processes in heterogeneous media, and biological systems in particular, are riddled with the difficult theoretical issue of whether the true origin of anomalous behavior is renewal or memory, or a special combination of the two. Accounting for the possible mixture of renewal and memory sources of subdiffusion is challenging from a computational point of view as well. This problem is exacerbated by the limited number of techniques available for solving fractional diffusion equations with time-dependent coefficients. We propose an iterative scheme for solving fractional differential equations with time-dependent coefficients that is based on a parametric expansion in the fractional index. We demonstrate how this method can be used to predict the long-time behavior of nonautonomous fractional differential equations by studying the anomalous diffusion process arising from a mixture of renewal and memory sources.

  20. General slip regime permeability model for gas flow through porous media

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  1. Effect of gas accumulation and biofilm growth on the dispersivity of porous media

    NASA Astrophysics Data System (ADS)

    Ye, S.; Sleep, B. E.; Chien, C.

    2009-12-01

    The effects of biofilm growth and methane gas accumulation on the transport in porous media were investigated in an anaerobic two-dimensional sand-filled cell. Inoculation of the lower portion of the cell with a methanogenic culture and addition of methanol to the bottom of the cell led to biomass growth and formation of a gas phase. Gas generated at the bottom of the cell in the biologically active zone moved upwards in discrete fingers, so that gas saturations in the biologically active zone at the bottom of the cell did not exceed 40-50%, while gas accumulation at the top of the cell produced gas saturations as high as 80%. In the most biologically active zone at the bottom of the cell, porosity reductions due to biofilm growth were estimated to be 80-95%. The effects of biofilm and gas generation on the dispersivity were separated by performing one tracer test in the presence of both biofilm and a gas phase and a second tracer test after removal of the gas phase through water flushing. The dispersivity increased by 20 times in the presence of both biofilm and a gas phase, and increased by 4.8 times in the presence of only biofilm. The results of tracer tests demonstrated that transport in the two-dimensional cell were significantly affected by gas accumulation and biofilm growth, and especially by gas accumulation.

  2. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2003-12-01

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  3. The Properties of Diffuse Warm and Hot Gas in I Zw 18

    NASA Astrophysics Data System (ADS)

    Bomans, D. J.

    With their generally low metallicity and shallow potential wells, low mass galaxies are especially well suited laboratories for the interplay between gas and stars. Even moderate star formation events effect large parts of the host system and outflows of warm and hot gas with freshly produced metals appear to be relatively common. In addition the cooling rate of the hot gas in the outflows should be depressed as effect of the low metallicity. While the study of the creation and transport of the hot gas and the interaction between hot and colder gas needs X-ray data, relatively little data are available in the literature for dwarf galaxies, yet. Here we present a case study of the diffuse hot gas of I Zw 18 using CHANDRA ACIS-S imaging and spectroscopy. The X-ray results are compared with HST imaging and long-slit echelle spectroscopy of the warm diffuse gas. I Zw 18 is an especially well suited target due to extremely low metallicity, relatively high current star formation rate, and low mass. Narrow band imaging and echelle spectroscopy demonstrate that gas is flowing out of the galaxy. The low metallicity should aid the detection of metallicity differences between the galaxy and the hot, possibly metal-enriched gas on its way out of the host galaxy. The ACIS-S spectrum is discussed in this respect.

  4. Sparsepak Observations of Diffuse Ionized Gas Halo Kinematics in NGC891

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    We present WIYN SparsePak observations of the diffuse ionized gas (DIG) hallo of NGC891. Preliminary results of an analysis of the halo velocity field reveal a clear gradient of the azimuthal velocity with z which agrees with results for the neutral gas. The magnitude of the gradient has been determined, using two independent methods, to be approximately 15 km s-1 kpc-1.

  5. Monte Carlo simulation with fixed steplength for diffusion processes in nonhomogeneous media

    NASA Astrophysics Data System (ADS)

    Ruiz Barlett, V.; Hoyuelos, M.; Mártin, H. O.

    2013-04-01

    Monte Carlo simulation is one of the most important tools in the study of diffusion processes. For constant diffusion coefficients, an appropriate Gaussian distribution of particle's steplengths can generate exact results, when compared with integration of the diffusion equation. It is important to notice that the same method is completely erroneous when applied to non-homogeneous diffusion coefficients. A simple alternative, jumping at fixed steplengths with appropriate transition probabilities, produces correct results. Here, a model for diffusion of calcium ions in the neuromuscular junction of the crayfish is used as a test to compare Monte Carlo simulation with fixed and Gaussian steplength.

  6. Transport of methane and noble gases during gas push-pull tests in variably saturated porous media.

    PubMed

    Gómez, Katherine; Gonzalez-Gil, Graciela; Schroth, Martin H; Zeyer, Josef

    2008-04-01

    The gas push-pull test (GPPT) is a single-well gas-tracer method to quantify in situ rates of CH4 oxidation in soils. To improve the design and interpretation of GPPT field experiments, gas component transport during GPPTs was examined in abiotic porous media over a range of water saturations (0.0 < or = Sw < or = 0.61). A series of GPPTs using He, Ne, and Ar as tracers for CH4 were performed at two injection/extraction gas flow rates (approximately 200 and approximately 700 mL min(-1)) in a laboratory tank. Extraction phase breakthrough curves and mass recovery curves of the gaseous components became more similar at higher Sw as water in the pore space restricted diffusive gas-phase transport. Diffusional fractionation of the stable carbon isotopes of CH4 during the extraction period of GPPTs also decreased with increasing Sw (particularly when Sw > 0.42). Gas-component transport during GPPTs was numerically simulated using estimated hydraulic parameters for the porous media and no fitting of data for the GPPTs. Numerical simulations accurately predicted the relative decline of the gaseous components in the breakthrough curves, but slightly overestimated recoveries at low Sw (< or = 0.35) and underestimated recoveries at high Sw (> or = 0.49). Comparison of numerical simulations considering and not considering air-water partitioning indicated that removal of gaseous components through dissolution in pore water was not significant during GPPTs, even at Sw = 0.61. These data indicate that Ar is a good tracer for CH4 physical transport over the full range of Sw studied, whereas, at Sw > 0.61, any of the tracers could be used. Greater mass recovery at higher Sw raises the possibility to reduce gas flow rates, thereby extending GPPT times in environments such as tundra soils where low activity due to low temperatures may require longer test times to establish a quantifiable difference between reactant and tracer breakthrough curves. PMID:18504990

  7. Quantification of trapped gas redistribution in dual-porosity media with continuous and discontinuous domains

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Sacha, Jan; Jelinkova, Vladimira; Cislerova, Milena; Vontobel, Peter

    2016-04-01

    Nonwetting phase (residual air) is trapped in the porous media at water contents close to the saturation. Trapped gas phase resides in pores in form of bubbles, blobs or cluster forming residual gas saturation. In homogeneous soil media trapped gas is relatively stable until it is released upon porous media drainage. If porous media remain saturated, trapped gas can slowly dissolve in response to changed air solubility of surrounding water. In heterogeneous media, relatively rapid change in the trapped gas distribution can be observed soon after the gas is initially trapped during infiltration. It has been recently shown that the mass transfer of gas is directed from regions of fine porosity to regions of coarse porosity. The mass transfer was quantified by means of neutron tomography for the case of dual porosity sample under steady state flow. However the underlying mechanism of the gas mass transfer is still not clear. Based on the robust experience of visualization of the flow within heterogeneous samples, it seems that due to the huge local (microscopic) pressure gradients between contrasting pore radii the portion of faster flowing water becomes attracted into small pores of high capillary pressure. The process depends on the initial distribution of entrapped air which has to be considered as random in dependence on the history and circumstances of wetting/drying. In this study, the redistribution of trapped gas was quantitatively studied by 3D neutron imaging on samples composed of fine porous ceramic and coarse sand. The redistribution of water was studied under no-flow and steady state flow conditions. Two different inner geometries of the samples were developed. In the first case the low permeability regions (ceramics) were disconnected, while in the second structure, the fine porosity material was continuous from the top to the bottom of the sample. Quantitative 3D neutron tomography imaging revealed similar redistribution process in both cases of

  8. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    SciTech Connect

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  9. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  10. Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers.

    PubMed

    Forner-Cuenca, Antoni; Biesdorf, Johannes; Gubler, Lorenz; Kristiansen, Per Magnus; Schmidt, Thomas Justus; Boillat, Pierre

    2015-11-01

    A novel method to produce gas diffusion layers with patterned wettability for fuel cells is presented. The local irradiation and subsequent grafting permits full design flexibility and wettability tuning, while modifying throughout the whole material thickness. These water highways have improved operando performance due to an optimized water management inside the cells. PMID:26395373

  11. Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.

    2015-10-01

    This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.

  12. Characterization of Spatial and Temporal Variations in the Optical Properties of Tissuelike Media with Diffuse Reflectance Imaging

    NASA Astrophysics Data System (ADS)

    Fabbri, Francesco; Franceschini, Maria Angela; Fantini, Sergio

    2003-06-01

    We describe a method to characterize spatial or temporal changes in the optical properties of turbid media using diffuse reflectance images acquired under broad-beam illumination conditions. We performed experiments on liquid phantoms whose absorption (µa ) and reduced scattering (µs ') coefficients were representative of those of biological tissues in the near infrared. We found that the relative diffuse reflectance R depends on µa and µs ' only through the ratio µaµs ' and that dependence can be well described with an analytical expression previously reported in the literature [S. L. Jacques, Kluwer Academic Dordrecht (1996) . We have found that this expression for ]R deviates from experimental values by no more than 8% for various illumination and detection angles within the range 0 -30 °. Therefore, this analytical expression for R holds with good approximation even if the investigated medium presents curved or irregular surfaces. Using this expression, it is possible to translate spatial or temporal changes in the relative diffuse reflectance from a turbid medium into quantitative estimates of the corresponding changes of (µaµs ')1/2 . In the case of media with optical properties similar to those of tissue in the near infrared, we found that the changes of µaµs ' should occur over a volume approximately 2 mm deep and 4 mm x 4 mm wide to apply this expression.

  13. Optimized ejector-diffuser design procedure for natural gas vapor recovery

    SciTech Connect

    Dutton, J.C.; Carroll, B.F.

    1983-01-01

    A procedure for designing optimized ejector-diffuser systems for recovering natural gas vapor from oil storage tanks is presented. The system utilizes high pressure gas from the separator to entrain the ambient pressure gas from the tanks and then pumps the mixture to the sales line. The analysis predicts the minimum separator pressure and the optimum nozzle Mach number and ejector area ratio required to accomplish this task. The results of a parametric study suggest that this system is feasible and that the higher the required ejector compression ratio the more critical is the use of an optimized design.

  14. Water vapor diffusion effects on gas dynamics in a sonoluminescing bubble.

    PubMed

    Xu, Ning; Apfel, Robert E; Khong, Anthony; Hu, Xiwei; Wang, Long

    2003-07-01

    Calculations based on a consideration of gas diffusion of gas dynamics in a sonoluminescing bubble filled with a noble gas and water vapor are carried out. Xenon-, argon-, and helium-filled bubbles are studied. In the absence of shock waves, bubble temperatures are found to be decreased, a decrease attributable to the large heat capacity of water vapor. Peak bubble temperature reductions are seen in bubbles containing Xe or Ar but not in those containing He. Further extrapolations provide evidence for the occurrence of shock waves in bubbles with Xe and water vapor. No shock waves are observed in bubbles with Ar or He. PMID:12935248

  15. Diffuse gas emissions at the Ukinrek Maars, Alaska: Implications for magmatic degassing and volcanic monitoring

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGimsey, R.G.; Hunt, A.G.

    2009-01-01

    Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m-2 d-1, was found in conspicuous zones of plant damage or kill that cover 30,000-50,000 m2 in area. Total diffuse CO2 emission was estimated at 21-44 t d-1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d-1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar ??13C values (???-6???), 3He/4He ratios (5.9-7.2 RA), and CO2/3He ratios (1-2 ?? 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 ?? 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas-water-rock interactions play a major role in the location, magnitude and chemistry of the emissions.

  16. Purging of a multilayer insulation with dacron tuft spacer by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Fisk, W. J.

    1976-01-01

    The time and purge gas usage required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable gas (nitrogen) concentration of less than 1 percent within the panel are stipulated. Two different, flat, rectangular MLI panels, one incorporating a butt joint, were constructed of of 11 double-aluminized Mylar (DAM) radiation shields separated by Dacron tuft spacers. The DAM/Dacron tuft concept is known commercially as Superfloc. The nitrogen gas concentration as a function of time within the MLI panel could be adequately predicted by using a simple, one dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent. The time and purge gas usage required to achieve 1 percent nitrogen gas concentration within the MLI panel varied from 208 to 86 minutes and 34.1 to 56.5 MLI panel purge volumes, respectively, for gaseous helium purge rates from 10 to 40 MLI panel volumes per hour.

  17. Time series analyses of gas-bubble residence time in porous media

    NASA Astrophysics Data System (ADS)

    Lazik, Detlef; Krauss, Gunnar; Geistlinger, Helmut; Vogel, Hans-Jörg

    2010-05-01

    Gas injection into coarse, water saturated sediments results in buoyancy driven bubble movement between an incoherent more or less stable trapped gas phase. The quantitative understanding of the coupled processes resulting in entrapment and movement of the incoherent gas phase allows for optimizing the interaction of trapped and moving gas clusters during air sparging. For granular media with particles larger than 4 mm gas flow becomes continuous without entrapment of large gas clusters. For particles smaller than 1 mm channeling flow is observed. For intermediate particle sizes the gas phase moves within buoyancy driven bubbles between entrapped clusters. To analyze this phenomena we designed a 2D flow cell filled with 2 mm glass beads. The total gas saturation could be measured gravimetrically at high temporal resolution. Gas was injected close to the lower boundary where the volume of injected gas bubbles could be controlled between 10 cm³ and 5000 cm³. This was achieved by changing the size of a reservoir attached to the injection point in which the gas pressure was increased until the air-enty point of the porous medium was reached and the gas cluster was relesed. The pressure of the reservoir was monitored to detect the frequncy of injected gas bubbles. Based on these data the mean and variance of traveltimes could be reliabely determined. The measurements are related to the bulk material and are not restricted to optical observations at the container wall. Thus our method can be applied to any type of sample containment. Nevertheless, the results are in agreement with additional optical measurements obtained at the transparent cell wall. We found that the mean traveltimes are the same irrespective the size of injected bubbles however the variance depends on bubble size in a non-liner manner. In conclusion we discuss the possibility to control the interaction between injected and trapped gas through the injected bubble size.

  18. Investigations of Air Perfusion through Porous Media and Super-Hydrophobic Surface Active Gas Replenishment

    NASA Astrophysics Data System (ADS)

    Perlin, Marc; Gose, James W.; Golovin, Kevin; Ceccio, Steven L.; Tuteja, Anish

    2015-11-01

    Super-hydrophobic (SH) materials have been used successfully to generate reduced skin-friction in laminar flows. Success in the laminar regime has led researchers to try SH materials in turbulent flows. More often than not, this has been unsuccessful at providing meaningful skin-friction drag reduction, and has even generated increased drag. This failure is frequently attributed to the wetting of an SH surface or equivalently the transition from the Cassie-Baxter to the Wenzel state. The result is fluid flow over an essentially roughened surface. In this investigation the researchers aim to perfuse small amounts of gas through porous media, including sintered and foam metals, to attain skin-friction drag reduction in a fully-developed turbulent channel flow. As air is perfused through porous media, the solid - liquid interaction at the interface transitions to a solid - liquid - gas interaction. This can result in an interface that functions similarly to SH materials. Controlled air perfusion that provides the necessary replenishment of lost gas at the interface might prevent wetting, and thus eliminate or reduce the effect of the roughness on the flow. This latter possibility is investigated by perfusing small amounts of gas through porous media with and without SH coatings. To quantify the effectiveness of this method, pressure drop is used to infer friction drag along the surface in a fully-developed turbulent channel flow. The authors recognize the support of ONR.

  19. Modeling water infiltration in unsaturated porous media by interacting lattice gas-cellular automata

    NASA Astrophysics Data System (ADS)

    di Pietro, L. B.; Melayah, A.; Zaleski, S.

    1994-10-01

    A two-dimensional lattice gas-cellular automaton fluid model with long-range interactions (Appert and Zaleski, 1990) is used to simulate saturated and unsaturated water infiltration in porous media. Water and gas within the porous medium are simulated by applying the dense and the light phase, respectively, of the cellular automaton fluid. Various wetting properties can be modeled when adjusting the corresponding solid-liquid interactions. The lattice gas rules include a gravity force step to allow buoyancy-driven flow. The model handles with ease complex geometries of the solid, and an algorithm for generating random porous media is presented. The results of four types of simulation experiments are presented: (1) We verified Poiseuille's law for steady and saturated flow between two parallel plates. (2) We analyzed transient water infiltration between two parallel plates of varying degrees of saturation and various apertures. (3) Philip's infiltration equation was adequately simulated in an unsaturated porous medium. (4) Infiltration into an aggregated medium containing one vertical parallel crack was simulated. Further applications of this lattice gas method for studying unsaturated flow in porous media are discussed.

  20. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M.

    2015-05-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. This is because different trace gas molecules have similar mean free paths in air at a given pressure. Thus, we introduce the pressure-normalised mean free path, λP ~ 100 nm atm, as a near-constant generic parameter that can be used for approximate calculation of Knudsen numbers as a simple function of gas pressure and particle diameter to characterise the influence of gas phase diffusion on the uptake of gases by aerosol or cloud particles. We use a kinetic multilayer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  1. Random media characterization using the analysis of diffusing light data on the basis of an effective medium model.

    PubMed

    Zimnyakov, Dmitry A; Pravdin, Alexander B; Kuznetsova, Liana V; Kochubey, Vyacheslav I; Tuchin, Valery V; Wang, Ruikang K; Ushakova, Olga V

    2007-03-01

    The transport properties of dense random media such as rutile powder layers and polyball suspensions are analyzed in visible and near infrared on the basis of experimental data on coherent backscattering, diffuse transmittance, and low-coherence interferometry. The developed technique of retrieval of the transport parameters of examined scattering media allows the evaluation of the transport mean free path l* and the effective refractive index n(ef) of the medium without a priori knowledge of the optical properties of the scattering particles. It is found that with decreasing wavelength lambda(0) the value of localization parameter 2pin(ef)l*/lambda(0) of the studied rutile samples abruptly drops and approaches approximately 2.6 at 473 nm. This peculiarity is caused by the very large scattering efficiency of scatterers in the vicinity of the first Mie resonance. PMID:17301861

  2. Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow

    NASA Astrophysics Data System (ADS)

    Blanco, Rafael Rodriguez

    In this investigation the performance of a gas turbine exhaust diffuser subject to the outlet flow conditions of a turbine stage is evaluated. Towards that goal, a fully three-dimensional computational analysis has been performed where several turbine stage-exhaust diffuser configurations have been studied: a turbine stage with a shrouded rotor coupled to a diffuser with increasing divergence angle in the diffuser, and a turbine stage with an unshrouded rotor was also considered for the exhaust diffuser performance analysis. The large load of this investigation was evaluated using a steady state numerical analysis utilizing the "mixing plane" algorithm between the rotating rotor and stationary stator and diffuser rows. Finally, an unsteady analysis is performed on a turbine stage with an unshrouded rotor coupled to an annular exhaust diffuser with an outer wall opening angle of 18°. It has been found that the over the tip leakage flow in the unshrouded rotor emerges as a swirling wall jet at the upper wall of the diffuser. When using the turbine with the shrouded rotor no wall jet was observed, making the flow at the entrance to the diffuser "quasi-uniform". The maximum opening angle of the diffuser upper wall achieved before the diffuser stalls was 12° with a static pressure recovery coefficient of Cp = 0.293. When the wall jet was observed, diffuser opening angles of 18° were possible with a static pressure recovery of Cp = 0.365. Consequently the wall jet energizes the diffuser upper wall boundary layer flow, allows for higher static pressure recovery levels and postpones diffuser stall. By altering the speed of the rotor the effect of the swirl in the turbine exit plane on the performance of the diffuser was explored. In the case where the wall jet was absent the diffuser recovers more pressure when the inlet is swirl-free. In this case the performance of the diffuser is independent on whether the turbine exit flow has co or counter swirl. In the presence of

  3. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations. PMID:23938989

  4. An experimental investigation of the relationship between borehole-NMR derived effective diffusion in unconsolidated media and hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Irons, T. P.; Martin, K.; Abraham, J. D.

    2014-12-01

    A staple in the oilfield-borehole NMR measurements are increasingly being relied upon for hydrologic characterization. Most tool designs utilize strong permanent magnets in order to achieve sufficient S/N, this has the side effect that the measured NMR phenomenon occur in the presence of a constant static-field gradient (∇B0)left( nabla mathbf{B}_0 right). The gradient can be exploited, using enhanced diffusion methods (EDM), in order to measure the temperature-dependent effective diffusion (Deff(T)D_{mathit{eff}}(T)) constant of the investigated fluids. EDM have proven to be powerful and reliable techniques for fluid-type discrimination.In water-only samples deviation of the apparent diffusion from the intrinsic molecular diffusion coefficient of water (Dw(T))(D_w(T)) is primarily controlled by restricted diffusion-the physical obstruction of spins which impedes free diffusion within the gradient. The ability to relate hydraulic conductivity to NMR measurements is of fundamental interest in hydrogeophysics. Commonly, NMR relaxation and recovery time constants (T1,2)left(T_{1,2}right) are used for this purpose. A growing body of work has highlighted the complicated nature of these relationships, particularity in unconsolidated high-porosity media. Furthermore, these relationships are dependent on the surface relaxivity (ρNrho_{N}) and micro-porosity of the media. DeffD_{mathit{eff}} is intrinsically linked to the mobility of spins within a sample, has been related to pore geometry, and intriguingly shares units with transmissivity. The short-time behavior of DeffD_{mathit{eff}} is independent of ρNrho_N while full records can be used to yield estimates of relaxivity. In this study we compare data collected from laboratory and borehole NMR instruments with laboratory permeameter measurements for unconsolidated mixtures of sands, silt, and fine gravels. A 2D inversion for T2T_2 and DeffD_{mathit{eff}} was developed under the assumption that all diffusion

  5. 3D MRI of non-Gaussian 3He gas diffusion in the rat lung

    NASA Astrophysics Data System (ADS)

    Jacob, Richard E.; Laicher, Gernot; Minard, Kevin R.

    2007-10-01

    In 3He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted 3He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only ˜1 L of hyperpolarized 3He gas. Diffusion weighting ranges from 0 s/cm 2 to 40 s/cm 2. Results show that the non-Gaussian effects of 3He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.

  6. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  7. Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers.

    PubMed

    Choi, Gihoon; Choi, Seokheun

    2015-09-01

    The goal of this work is to pursue analytical approaches that elucidate electron and proton diffusion inside the Shewanella oneidensis biofilm and bulk liquid, which will inevitably promote the translation of Microbial Fuel Cell (MFC) technology for renewable, "green energy" solutions that are in demand to sustain the world's ever-increasing energy demands and to mitigate the depletion of current resources. This study provides a novel strategy for monitoring electron/proton fluxes in 3-D multi-laminate structures of paper as a scaffold to support S. oneidensis biofilms and bulk media liquid. Multiple layers of paper containing bacterial cells and/or media are stacked to form a layered 3-D model of the overall biofilm/bulk liquid construct. Mass transport of electrons and protons into this 3-D system can be quantified along with the exploration of microbial energy production. Assembly of a 3D paper stack can be modular and allows us to control the thickness of the overall biofilm/bulk liquid construct with the different diffusion distances of the electrons/protons through the stack. By measuring the current generated from the 3-D stack, the electron and proton diffusivity through biofilms were quantitatively investigated. We found that (i) the diffusion length of the electrons/protons in the S. oneidensis biofilm/bulk liquid is a determinant factor for the MFC performance, (ii) the electron transfer through the endogenous mediators of S. oneidensis can be a more critical factor to limit the current/power generation of the MFCs than the proton transfer in the MFC system and (iii) the thicker biofilm allows higher and longer current generation but requires more time to reach a peak current value and increases the total energy loss of the MFC system. PMID:26179156

  8. Molecular diffusion in disordered interfacial media as probed by pulsed field gradients and nuclear magnetic relaxation dispersion

    NASA Astrophysics Data System (ADS)

    Levitz, P.; Korb, J.-P.; Bryant, R. G.

    1999-10-01

    We address the question of probing the fluid dynamics in disordered interfacial media by Pulsed field gradient (PFG) and Magnetic relaxation dispersion (MRD) techniques. We show that the PFG method is useful to separate the effects of morphology from the connectivity in disordered macroporous media. We propose simulations of molecular dynamics and spectral density functions, J(ω), in a reconstructed mesoporous medium for different limiting conditions at the pore surface. An algebraic form is found for J(ω) in presence of a surface diffusion and a local exploration of the pore network. A logarithmic form of J(ω) is found in presence of a pure surface diffusion. We present magnetic relaxation dispersion experiments (MRD) for water and acetone in calibrated mesoporous media to support the main results of our simulations and theories. Nous présentons les avantages respectifs des méthodes de gradients de champs pulsés (PFG) et de relaxation magnétique nucléaire en champs cyclés (MRD) pour sonder la dynamique moléculaire dans les milieux interfaciaux désordonnés. La méthode PFG est utile pour séparer la morphologie et la connectivité dans des milieux macroporeux. Des simulations de diffusion moléculaire et de densité spectrale J(ω) en milieux mésoporeux sont présentées dans différentes conditions limites aux interfaces des pores. Nous trouvons une forme de dispersion algébrique de J(ω) pour une diffusion de surface assistée d'une exploration locale du réseau de pores et une forme logarithmique dans le cas d'une simple diffusion de surface. Les résultats expérimentaux de la méthode MRD pour de l'eau et de l'acétone dans des milieux mésoporeux calibrés supportent les résultats principaux de nos simulations et théories.

  9. Fractional diffusion analysis of the electromagnetic fields generated by a transient straight current source over a porous geological media

    NASA Astrophysics Data System (ADS)

    Ge, J.; Everett, M. E.; Weiss, C. J.

    2010-12-01

    An interpretation based on the Continuous Time Random Walk theory (CTRW) to the diffusion of electromagnetic fields generated by a transient straight current source over a porous geological media is presented here. The CTRW theory is demonstrated to be a powerful tool to concisely and more accurately model a transport process in a fractal medium with complex structures, comparing to the classical transport theory. In the controlled-source electromagnetic (EM) induction setting, the time dependent evolution of the EM field of some sources over a rough medium are governed by the fractional diffusion EM equation in a CTRW sense. The master equation can be solved for a uniform conducting half-space in the Laplace domain semi-analytically. We use 2D finite difference method to calculate the solution numerically for the assigned space and transform to time domain with Gaver-Stehfest algorithm. Here we adopt a spatially uniform roughness parameter β in the solution to characterize the complexity of the geoelectrical structure of the geological medium. To introduce the heterogeneity to our model, we set up the space as several 2 D blocks with different conductivities and βs. Then we compare our results with the synthetic data we got from the high resolution numerical simulations. We are able to show that by introducing the heterogeneity to the fractional diffusion perspective, our approach is competent for tracing the diffusion process with less model parameters.

  10. Application of subgroup decomposition in diffusion theory to gas cooled thermal reactor problem

    SciTech Connect

    Yasseri, S.; Rahnema, F.

    2013-07-01

    In this paper, the accuracy and computational efficiency of the subgroup decomposition (SGD) method in diffusion theory is assessed in a ID benchmark problem characteristic of gas cooled thermal systems. This method can be viewed as a significant improvement in accuracy of standard coarse-group calculations used for VHTR whole core analysis in which core environmental effect and energy angle coupling are pronounced. It is shown that a 2-group SGD calculation reproduces fine-group (47) results with 1.5 to 6 times faster computational speed depending on the stabilizing schemes while it is as efficient as single standard 6-group diffusion calculation. (authors)

  11. Non-diffusive spin dynamics in a two-dimensional electron gas

    SciTech Connect

    Weber, C.P.

    2010-04-28

    We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.

  12. Inverse gas chromatography. V - Computer simulation of diffusion processes on the column

    NASA Technical Reports Server (NTRS)

    Hattam, Paul; Munk, Petr

    1988-01-01

    The elution behavior of low molecular weight probes on inverse gas chromatography (IGC) columns is simulated using a computer. The IGC model is based on a polymer stationary phase of uniform thickness with a nonnegligible resitance to probe penetration. Three characteristic numbers are found to determine the whole process: Z(p) characterizing the distribution of the probe between phases, Z(f) describing the diffusion in the polymer phase, and Z(g) related to diffusion in the gaseous phase. For situations when Z(p)/Z(f) is less than 2, the standard evaluation procedures are virtually useless. The actual behavior of such systems is described.

  13. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  14. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  15. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGESBeta

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  16. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-06-26

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  17. Effect of advective flow in fractures and matrix diffusion on natural gas production

    NASA Astrophysics Data System (ADS)

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-01

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network-based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three-dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. These results also suggest that matrix diffusion may support reduced production over longer time frames.

  18. Mass transport in gas diffusion layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Martinez, Michael J.

    This dissertation describes fundamental properties of gas diffusion media (GDM) and their relationship to the mass transport in proton exchange membrane fuel cells (PEMFCs). First, the accuracy of solving the multi-component equations for PEMFC by using a computational fluid dynamics (CFD) technique is examined. This technique uses an approximated multi-component (AMC) model with a correction term that guarantees the overall mass balance. Accuracy is assessed by comparing the species concentrations computed with the Maxwell-Stefan and the AMC model. This comparison is important because the structure of some CFD programs does not permit the direct use of the Maxwell-Stefan equations. Here, it is shown that the maximum error between the two models is less than 5%. Second, the ratio of tortuosity to porosity, known as the MacMullin number, is reported for different carbon cloth and carbon paper GDM. This analysis show that only carbon cloths GDM follow the commonly accepted Bruggeman equation and that carbon paper GDM have a different relationship between the tortuosity and the porosity. These differences are discussed in terms of path length created by the orientation of fibers of each GDM. Third, data for the hydrophilic and hydrophobic pore size distributions (PSD) are presented for two types of GDM used in PEMFCs. The data were obtained by using two common measurement methods, intrusion porosimetry (IP) and the method of standard porosimetry (MSP). The use of multiple working fluids to access hydrophilic and hydrophobic pores is discussed as well as the limitations associated with structural changes of the GDM during the tests. The differences in interpretations of the data between the two methods for both GDM have significant implications relative to the distribution of hydrophilic and hydrophobic pores that control liquid water transport. Finally, a two-phase mass-transport-only model (MTOM) that incorporates the tortuosity and the PSD data described above is

  19. Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media

    PubMed Central

    Wan, Jiamin; Wilson, John L.; Kieft, Thomas L.

    1994-01-01

    In this article, a new mechanism influencing the transport of microorganisms through unsaturated porous media is examined, and a new method for directly visualizing bacterial behavior within a porous medium under controlled chemical and flow conditions is introduced. Resting cells of hydrophilic and relatively hydrophobic bacterial strains isolated from groundwater were used as model microorganisms. The degree of hydrophobicity was determined by contact-angle measurements. Glass micromodels allowed the direct observation of bacterial behavior on a pore scale, and three types of sand columns with different gas saturations provided quantitative measurements of the observed phenomena on a porous medium scale. The reproducibility of each break-through curve was established in three to five repeated experiments. The data collected from the column experiments can be explained by phenomena directly observed in the micromodel experiments. The retention rate of bacteria is proportional to the gas saturation in porous media because of the preferential sorption of bacteria onto the gas-water interface over the solid-water interface. The degree of sorption is controlled mainly by cell surface hydrophobicity under the simulated groundwater conditions because of hydrophobic forces between the organisms and the interfaces. The sorption onto the gas-water interface is essentially irreversible because of capillary forces. This preferential and irreversible sorption at the gas-water interface strongly influences the movement and spatial distribution of microorganisms. Images PMID:16349180

  20. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    NASA Astrophysics Data System (ADS)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  1. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  2. Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Valdivia, Juan-Carlos; Marquez, Jesús; Susarrey, Orlando; Solorio-Avila, Marco A.

    2016-08-01

    In this Letter, we report experimental and theoretical studies of Newtonian fluid flow through permeable media with fractal porosity. Darcy flow experiments were performed on samples with a deterministic pre-fractal pore network. We found that the seepage velocity is linearly proportional to the pressure drop, but the apparent absolute permeability increases with the increase of sample length in the flow direction L. We claim that a violation of the Hagen-Poiseuille law is due to an anomalous diffusion of the fluid momentum. In this regard we argue that the momentum diffusion is governed by the flow metric induced by the fractal topology of the pore network. The Darcy-like equation for laminar flow in a fractal pore network is derived. This equation reveals that the apparent absolute permeability is independent of L, only if the number of effective spatial degrees of freedom in the pore-network ν is equal to the network fractal (self-similarity) dimension D, e.g. it is in the case of fractal tree-like networks. Otherwise, the apparent absolute permeability either decreases with L, if ν < D, e.g. in media with self-avoiding fractal channels, or increases with L, if ν > D, as this is in the case of the inverse Menger sponge.

  3. Estimating diffusion coefficients in low-permeability porous media using a macropore column

    SciTech Connect

    Young, D.F.; Ball, W.P.

    1998-09-01

    Diffusion coefficients in an aquitard material were measured by conducting miscible solute transport experiments through a specially constructed macropore column. Stainless steel HPLC columns were prepared in a manner that created an annular region of repacked aquitard material and a central core of medium-grained quartz sand. The column transport approach minimizes volatilization and sorption losses that can be problematic when measuring hydrophobic organic chemical diffusion with diffusion-cell methods or column-sectioning techniques. In the transport experiments, solutes (triated water, 1,2,4-trichlorobenzene, and tetrachloroethene) were transported through the central core by convection and hydrodynamic dispersion and through the low-permeability annulus by radial diffusion. All transport parameters were independently measured except for the effective diffusion coefficient in the aquitard material, which was obtained by model fitting. Batch-determined retardation factors agreed very closely with moment-derived retardation factors determined from the column experiments, and no evidence of pore exclusion was found. A model with retarded diffusion was found to apply, and the effective tortuosity factor of the aquitard material was estimated at an average value of 5.1.

  4. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  5. Random Vibration Tests for Prediction of Fatigue Life of Diffuser Structure for Gas Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Maurer, O. F.; Banaszak, D. L.

    1980-01-01

    Static and dynamic strain measurements which were taken during test stand operations of the gas dynamic laser (GDL) for the AF Airborne Laser Laboratory indicated that higher than expected vibrational stress levels may possibly limit the fatigue life of the laser structure. Particularly the diffuser sidewall structure exhibited large amplitude random vibrations which were excited by the internal gas flow. The diffuser structure consists of two layers of brazed stainless steel, AISI-347, panels. Cooling ducts were milled into the outer face sheet. These in turn are backed by the inner face sheet. So called T-rail stiffeners silver-brazed to the outer face sheets add the required stiffness and divide the sidewall into smaller rectangular plate sections.

  6. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

    SciTech Connect

    Hollowell, D.A.; Pacey, G.E.; Gordon, G.

    1985-12-01

    An automated absorbance technique for the determination of aqueous chlorine dioxide has been developed by utilizing gas diffusion flow injection analysis. A gas diffusion membrane is used to separate the donor (sampling) stream from the acceptor (detecting) stream. The absorbance of chlorine dioxide is monitored at 359 nm. The first method uses distilled water as the acceptor stream and gives a detection limit of 0.25 mg/L chlorine dioxide. This system is over 550 times more selective for chlorine dioxide than chlorine. To further minimize chlorine interference, oxalic acid is used in the acceptor stream. The detection limit for this system is 0.45 mg/L chlorine dioxide. This second system is over 5400 times more selective for chlorine dioxide than chlorine. Both methods show excellent selectivity for chlorine dioxide over iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite and perchlorate ions. 18 references, 7 figures, 3 tables.

  7. Three-dimensional visualization of harmful gas diffusion in an urban area

    NASA Astrophysics Data System (ADS)

    Jian, H.; Fan, X.

    2014-02-01

    This paper simulated a harmful gas diffusion in an urban area. Based on the Gaussian Plume Model, the simulation was performed in the 3D virtual environment of the Digital Earth Scientific Platform, which was established by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS). This paper calculated the spread distance of harmful gas in every direction and the concentration of a certain point near to the accident point. The spread range of the gas with same concentration could be drawn in the scene and the 3D range affected by the gas diffusion accident also could be performed as well. The result showed that combining the Gaussian Plume Model with GIS technology we can show the affected range clearly in the scene by using curved surface with different color and transparency, which was much better than the common two-dimensional visualization. Besides, this paper also discussed the way to count the number of people who might be affected by the harmful gas, trying to make sense in emergency evacuation and city planning.

  8. Can the Lyman Continuum Leaked Out of H II Regions Explain Diffuse Ionized Gas?

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il

    2009-09-01

    We present an attempt to explain the diffuse Hα emission of a face-on galaxy M 51 with the "standard" photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Hα emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the "on-the-spot" approximation. The scale height of the ionized gas needed to explain the diffuse Hα emission with the scenario is found to be of the order of ~1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of κ0 ≈ 0.4-0.8 kpc-1 at the galactic plane, or, equivalently, an effective cross section as low as σeff ~ 10-5 of the photoionization cross section at 912 Å is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Hα emissions around H II regions, and can account for only lsim26% of the Hα luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Hα intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.

  9. Intense velocity-shears, magnetic fields and filaments in diffuse gas

    NASA Astrophysics Data System (ADS)

    Falgarone, Edith; Hily-Blant, Pierre; Levrier, François; Berthet, Manuel; Bastien, Pierre; Clemens, Dan

    2015-03-01

    The dissipation of turbulence is a key process in the evolution of diffuse gas towards denser structures. The vast range of coupled scales and the variety of dissipative processes in interstellar turbulence make it a complex system to analyze. Observations now provide powerful statistics of the gas velocity field, density and magnetic field orientations, opening a rich field of investigation. On-going comparisons of the orientation of intense velocity-shears, magnetic field and tenuous filaments of matter in a turbulent high-latitude cloud are promising.

  10. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    SciTech Connect

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  11. Gas detection and migration in geological media: lessons learned from the Roselend Natural Laboratory (Invited)

    NASA Astrophysics Data System (ADS)

    Pili, E.; Guillon, S.; Agrinier, P.; Sabroux, J.; Adler, P. M.

    2013-12-01

    The Roselend Natural Laboratory (French Alps) is a unique facility for studying gas transport in the subsurface and across the geosphere-atmosphere interface. At 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. While many parameters controlling the state of the geological system are known, analogous gas-tracer experiments were conducted at the field-scale with SF6 and 3He. Water infiltration, permeability and the concentrations of many gases, naturally occurring or injected, are recorded via long-term and high-resolution monitoring. The fracture network is characterized thanks to extensive drilling, logging and modeling. These experiments are used to determine the physical and chemical processes that would control the noble gas source term after an underground nuclear explosion in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT) and to develop and validate the corresponding numerical models. The Roselend Natural Laboratory also provides a test bed for sampling protocols and instrument developments. Detection of gases relevant to CTBT issues requires that their baseline concentration is understood. Experiments and subsequent modeling demonstrated that baselines are a highly dynamical process resulting from gas sources, sinks and modulation by barometric pressure and water movements. Gas migration from underground cavities occurs as early venting through fractures due to advection driven by gas overpressure. It is associated with very large dilution which requires very low detection limits. Late-time seepage occurs through fractured porous media thanks to barometric pumping, which is only efficient for a narrow window of parameter values. Full calculation for real fractured porous media is now available.

  12. Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media.

    PubMed

    Aldarf, M; Fourcade, F; Amrane, A; Prigent, Y

    2004-07-01

    Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese. PMID:15211490

  13. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the

  14. Multiscale Structured and Functionally Graded Gas Diffusion Electrodes for PEM-Fuel Cells and Electrodialysis

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Franz, M.; Bienhüls, C.; Willert-Porada, M.

    2008-02-01

    In the presented work, different methods of preparation of functionally graded gas diffusion electrodes (GDE) for fuel cell and electrodialysis application were investigated. High electrochemical performance with a low platinum catalyst content of only 0.1 mg/cm2 was achieved. The new GDEs are superior to commercial ones with five times higher platinum content, due to their optimized pore structure and improved distribution of catalyst and ion conductive polymer.

  15. Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Rausch, M. H.; Fröba, A. P.

    2015-11-01

    The paper reports on binary diffusion coefficient data for the gaseous systems argon-neon, krypton-helium, ammonia-helium, nitrous oxide-nitrogen, and propane-helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon-helium, krypton-argon, krypton-neon, xenon-helium, xenon-krypton, nitrous oxide-carbon dioxide, and propane-carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.

  16. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  17. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

  18. Analysis of the gas-dynamic performance of a vaned diffuser with given velocity distribution along the vane's surfaces

    NASA Astrophysics Data System (ADS)

    Kalinkevych, M.; Obukhov, O.; Obukhova, O.; Miroshnychenko, A.

    2015-08-01

    Extension of the effective range of vaned diffusers is one of the promising ways to improve the centrifugal compressor's stages which are used in numerous fields of industry. The new method of profiling of the diffuser vanes has been developed using Stratford's results and boundary layer theory by Loytsanskiy. The developed method is based on the solution of the inverse task of gas-dynamic using given velocity distribution along the vane's surface. Comparison of the results of numerical simulations for different diffusers has shown that the performance of the diffuser designed with the resulting velocity distribution are better. Influence of the vane profile, number of the vanes, diffuser outlet diameter and the diffuser width on diffuser characteristics has been investigated. The results of the simulations have been used to formulate recommendations on the design of high-effectiveness vaned diffusers for centrifugal stages of different types.

  19. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  20. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  1. Efficient gas lasers pumped by run-away electron preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexey I.

    2015-02-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of active gas mixtures at elevated pressures and can produce laser emission. We report experimental and calculated results of application of the REP DD for excitation of different active gas mixtures. It was shown that the REP DD allows to obtain efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at 337.1 nm. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. Lasing was obtained on molecules N2, HF, and DF with the efficiency close to the limiting value. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  2. Effect of binders on natural graphite powder-based gas diffusion electrode for Mg-air cell

    NASA Astrophysics Data System (ADS)

    Arinton, Ghenadi; Rianto, Anton; Faizal, Ferry; Hidayat, Darmawan; Hidayat, Sahrul; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    This paper mainly discussed the electrical performance of gas diffusion electrode of Mg-Air Cell. The gas diffusion electrodes (GDE) use a natural graphite powder as catalyst material. The effect of additional binders to the GDE have been investigated to improve electrode performances. Several types of GDE have been developed using binder materials such as epoxy resin, natural clay, carboxymethyl cellulose (CMC) and urea-formaldehyde (UF). By using discharge performance measurement, the characteristics of the as-prepared GDEs are reported.

  3. Significance of diffusion processes during the formation of regional gas-saturation in formation systems and the gas capacity of deep horizons

    SciTech Connect

    Shilov, Y.S.; Makarenko, F.A.

    1982-09-01

    The diffusion dispersal of methane is analyzed according to Fick's Law, and the relative gas-saturation of the formation systems of differing lithologic composition are predicted through the geologic periods. Good agreement between the calculated values of the gas-saturation of the formation systems and the true data enabled us to record the beginning of breakdown of gas pools and the rates of their diminution. From the relationships of the specific losses of gas, expressed in the height of the gas column under the formational conditions, and the amplitudes of the structures, an attempt has been made to assess the commercial gas-capacity in the depths.

  4. Diffusion and crystallization mechanisms of Ge /Au bilayer media for write-once optical disk

    NASA Astrophysics Data System (ADS)

    Wu, T. H.; Kuo, P. C.; Ou, S. L.; Chen, Jung-Po; Yen, Po-Fu; Jeng, Tzuan-Ren; Wu, Chih-Yuan; Huang, Der-Ray

    2008-01-01

    Ge /Au bilayer thin films were fabricated by magnetron sputtering method, the temperature dependence of resistance from room temperature to 500°C and concentration depth profiles are measured. From the temperature dependence of resistance measurement, we found two phase change phenomena which occurred at 175 and 360°C. The element concentration depth profiles of the as-deposited and recorded region indicate that the Au-Ge alloy is initially formed at the Ge /Au interface. The dominant diffusion element is Au atom and the diffusion path is from Au layer to Ge layer. The optimum simulated bit error rate value is about 1.4×0-6 at 9.0mW under two time high definition digital versatile disk (HD DVD) recording speed. The dynamic tests show that this Ge /Au bilayer films can be applied to one to two times HD DVD-R.

  5. A simple method for the determination of resistance to gas diffusion in plant organs.

    PubMed

    Cameron, A C; Yang, S F

    1982-07-01

    A simple method was developed for the determination of resistance coefficients for ethylene diffusion in plant tissues based on the kinetic analysis of the efflux of preloaded ethane gas. Efflux curves were analyzed to obtain first-order rate constants and resistance coefficients. Resistance coefficients determined by the ethane efflux and steady-state methods were found to agree well. Employing the ethane efflux method, it was shown that over 97% of gas exchange of tomato (Lycopersicum esculentum Mill., cv. ;Ace') fruits occurs through the stem scar. The resistances to diffusion of tomato skin and stem scar were found to be 280,000 and 300 seconds per centimeter, respectively; the combined resistance of intact tomato fruits was approximately 7,800 seconds per centimeter. The ethane efflux method was employed to show that plastic shrink-wrapping of English cucumbers (Cucumis sativus L. var anglicus Bailey) increased the resistance to ethane diffusion from 1.1 x 10(3) to 23 x 10(3) seconds per centimeter. PMID:16662447

  6. Amperometric Determination of Sulfite by Gas Diffusion-Sequential Injection with Boron-Doped Diamond Electrode

    PubMed Central

    Chinvongamorn, Chakorn; Pinwattana, Kulwadee; Praphairaksit, Narong; Imato, Toshihiko; Chailapakul, Orawon

    2008-01-01

    A gas diffusion sequential injection system with amperometric detection using a boron-doped diamond electrode was developed for the determination of sulfite. A gas diffusion unit (GDU) was used to prevent interference from sample matrices for the electrochemical measurement. The sample was mixed with an acid solution to generate gaseous sulfur dioxide prior to its passage through the donor channel of the GDU. The sulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1M phosphate buffer (pH 8)/0.1% sodium dodecyl sulfate in the acceptor channel of the GDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell and detected directly by amperometry using the boron-doped diamond electrode at 0.95 V (versus Ag/AgCl). Sodium dodecyl sulfate was added to the carrier solution to prevent electrode fouling. This method was applicable in the concentration range of 0.2-20 mg SO32−/L and a detection limit (S/N = 3) of 0.05 mg SO32−/L was achieved. This method was successfully applied to the determination of sulfite in wines and the analytical results agreed well with those obtained by iodimetric titration. The relative standard deviations for the analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was 65 h−1.

  7. Characterising oil and water in porous media using decay due to diffusion in the internal field

    NASA Astrophysics Data System (ADS)

    Lewis, Rhiannon T.; Djurhuus, Ketil; Seland, John Georg

    2015-10-01

    In the method Decay due to Diffusion in the Internal Field (DDIF), the diffusion behaviour of water molecules in the internal magnetic field makes it possible to determine a distribution of pore sizes in a sample. The DDIF experiment can also be extended to a DDIF-Carr-Purcell-Meiboom-Gill (DDIF-CPMG) experiment to measure correlations between the pore size and the transverse relaxation time, T2 . In this study we have for the first time applied the DDIF experiment and the DDIF-CPMG experiment to porous materials saturated with both water and oil. Because of the large difference in diffusion rates between water and oil molecules, the DDIF experiment will act as a filter for the signal from oil, and we are left with the DDIF-signal from water only. This has been verified in model systems consisting of glass beads immersed in separate layers of water and oil, and in a sandstone sample saturated with water and oil. The results show that the DDIF and DDIF-CPMG experiments enable the determination of the confining geometry of the water phase, and how this geometry is correlated to T2 . Data obtained in the sandstone sample saturated with water and oil also show that with the exception of the smallest pores there is no clear correlation between pore size and the relaxation time of water.

  8. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  9. A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Lasseux, D.; Parada, F. J. Valdes; Tapia, J. A. Ochoa; Goyeau, B.

    2014-05-01

    The study of gas slip-flow in porous media is relevant in many applications ranging from nanotechnology to enhanced oil recovery and in any situation involving low-pressure gas-transport through structures having sufficiently small pores. In this paper, we use the method of volume averaging for deriving effective-medium equations in the framework of a slightly compressible gas flow. The result of the upscaling process is an effective-medium model subjected to time- and length-scale constraints, which are clearly identified in our derivation. At the first order in the Knudsen number, the macroscopic momentum transport equation corresponds to a Darcy-like model involving the classical intrinsic permeability tensor and a slip-flow correction tensor that is also intrinsic. It generalizes the Darcy-Klinkenberg equation for ideal gas flow, and exhibits a more complex form for dense gas. The component values of the two intrinsic tensors were computed by solving the associated closure problems on two- and three-dimensional periodic unit cells. Furthermore, the dependence of the slip-flow correction with the porosity was also verified to agree with approximate analytical results. Our predictions show a power-law relationship between the permeability and the slip-flow correction that is consistent with other works. Nevertheless, the generalization of such a relationship to any configuration requires more analysis.

  10. Drift and diffusion of spin and charge density waves in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Yang, Luyi; Koralek, J. D.; Orenstein, J.; Tibbetts, D. R.; Reno, J. L.; Lilly, M. P.

    2011-03-01

    We use transient grating spectroscopy (TGS) to study the persistent spin helix (PSH) state and electron-hole density wave (EHDW) in a 2D electron gas in the presence of an in-plane electric field parallel to the wavevector of the PSH or EHDW. By directly measuring the phase, we can measure the PSH and EHDW displacement with 10 nm spatial and sub-picosecond time resolution. We obtain both the spin diffusion and mobility and ambipolar diffusion and mobility from the TGS measurements of PSH and EHDW, respectively. The spin transresistivity extracted from the spin diffusion is in excellent agreement with the RPA theory of spin Coulomb drag (SCD). The spin mobility data indicate that SCD may also play a role in the spin wave drifting process. From the ambipolar diffusion and mobility, we obtain the transresistivity of electrons and holes in the same layer, which is much stronger than is typically seen in the conventional Coulomb drag experiments on coupled quantum wells.

  11. Description of gas/particle sorption kinetics with an intraparticle diffusion model: Desorption experiments

    USGS Publications Warehouse

    Rounds, S.A.; Tiffany, B.A.; Pankow, J.F.

    1993-01-01

    Aerosol particles from a highway tunnel were collected on a Teflon membrane filter (TMF) using standard techniques. Sorbed organic compounds were then desorbed for 28 days by passing clean nitrogen through the filter. Volatile n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were liberated from the filter quickly; only a small fraction of the less volatile ra-alkanes and PAHs were desorbed. A nonlinear least-squares method was used to fit an intraparticle diffusion model to the experimental data. Two fitting parameters were used: the gas/particle partition coefficient (Kp and an effective intraparticle diffusion coefficient (Oeff). Optimized values of Kp are in agreement with previously reported values. The slope of a correlation between the fitted values of Deff and Kp agrees well with theory, but the absolute values of Deff are a factor of ???106 smaller than predicted for sorption-retarded, gaseous diffusion. Slow transport through an organic or solid phase within the particles or preferential flow through the bed of particulate matter on the filter might be the cause of these very small effective diffusion coefficients. ?? 1993 American Chemical Society.

  12. Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media

    SciTech Connect

    Xiaoyi Li; Hai Huang; Paul Meakin

    2008-09-01

    The nonlinear coupling of fluid flow, reactive chemical transport and pore structure changes due to mineral precipitation (or dissolution) in porous media play a key role in a wide variety of processes of scientific interest and practical importance. Significant examples include the evolution of fracture apertures in the subsurface, acid fracturing stimulation for enhanced oil recovery and immobilizations of radionuclides and heavy metals in contaminated groundwater. We have developed a pore-scale simulation technique for modeling coupled reactive flow and structure evolution in porous media and fracture apertures. Advection, diffusion, and mineral precipitation resulting in changes in pore geometries are treated simultaneously by solving fully coupled fluid momentum and reactive solute transport equations. In this model, the reaction-induced evolution of solid grain surfaces is captured using a level set method. A sub-grid representation of the interface, based on the level set approach, is used instead of pixel representations of the interface often used in cellular-automata and most lattice-Boltzmann methods. The model is validated against analytical solutions for simplified geometries. Precipitation processes were simulated under various flow conditions and reaction rates, and the resulting pore geometry changes are discussed. Quantitative relationships between permeability and porosity under various flow conditions and reaction rates are reported.

  13. Investigating the Diffuse Ionized Gas throughout the Magellanic Cloud System with WHAM

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Madsen, Gregory J.; Hill, Alex S.

    2015-01-01

    We present early stages of an H-α survey of the Magellanic System using the Wisconsin H-α Mapper (WHAM). Our maps of the Small Magellanic Cloud, Large Magellanic Cloud, and Magellanic Bridge are the most sensitive kinematic maps of ionized gas throughout the System. With a velocity resolution of 12 km/s, WHAM observations can cleanly separate diffuse emission at Magellanic velocities from that of the Milky Way and terrestrial sources. These new maps of the SMC and LMC compliment observations of the Magellanic Bridge by Barger et al. (2013), who found H-alpha emission extending throughout and beyond the observed H I emission. Using WHAM's unprecedented sensitivity to the limit of atmospheric line confusion (~ 10s of mR), we find that ionized gas emission extends at least 5 degrees beyond the traditional boundary of the SMC when compared to recent deep-imaging surveys (e.g., MCELS; Smith et al. 2005). The diffuse ionized emission extent is similar to the neutral gas extent as traced by 21 cm. We present spectra comparing H I and H-alpha kinematic signatures throughout the emission region, which are dominated by galactic rotation. Multi-wavelength observations are also underway in [S II] and [N II] for the SMC and LMC. WHAM research and operations are supported through NSF Award AST-1108911.

  14. Quantum Mechanical Limitations to Spin Diffusion in the Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Enss, Tilman; Haussmann, Rudolf

    2012-11-01

    We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of Ds≃1.3ℏ/m approaching the quantum limit of diffusion for a particle of mass m. Conversely, the spin drag rate reaches a maximum value of Γsd≃1.2kBTF/ℏ in terms of the Fermi temperature TF. The frequency-dependent spin conductivity σs(ω) exhibits a broad Drude peak, with spectral weight transferred to a universal high-frequency tail σs(ω→∞)=ℏ1/2C/3π(mω)3/2 proportional to the Tan contact density C. For the spin susceptibility χs(T) we find no downturn in the normal phase.

  15. Diffusive transfer of polarized 3He gas through depolarizing magnetic gradients

    NASA Astrophysics Data System (ADS)

    Maxwell, J. D.; Epstein, C. S.; Milner, R. G.

    2015-03-01

    Transfer of polarized 3He gas across spatially varying magnetic fields will facilitate a new source of polarized 3He ions for particle accelerators. In this context, depolarization of atoms as they pass through regions of significant transverse field gradients is a major concern. To understand these depolarization effects, we have built a system consisting of a Helmholtz coil pair and a solenoid, both with central magnetic fields of order 30 gauss. The atoms are polarized via metastability exchange optical pumping in the Helmholtz coil and are in diffusive contact via a glass tube with a second test cell in the solenoid. We have carried out measurements of the spin relaxation during transfer of polarization in 3He at 1 torr by diffusion. We explore the use of measurements of the loss of polarization taken in one cell to infer the polarization in the other cell.

  16. The transition from silicon to gas detection media in nuclear physics

    NASA Astrophysics Data System (ADS)

    Pollacco, Emanuel C.

    2016-06-01

    Emerging radioactive beams and multi petawatt laser facilities are sturdily transforming our base concepts in instruments in nuclear physics. The changes are fuelled by studies of nuclei close to the drip-line or exotic reactions. This physics demands high luminosity, wide phase space cover with good resolution in energy, time, position and sampled waveform. By judiciously modifying the micro-world of the particle or space physics instruments (Double Sided Strip Si Detectors, Micro-Pattern Gas Amplifiers, microelectronics), we are on the path to initiate dream experiments. In the following a brief status in the domain is reported for selected instruments that highlight the present trends with silicon and the growing shift towards gas media for charged particle detection.

  17. The Effect of Geochemical Reaction on Convective Mixing in a Gravitationally Unstable Diffusive Boundary Layer in Porous Media: Geological Storage of CO2 in Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Ghesmat, Karim; Hassanzadeh, Hassan; Abedi, Jalal

    2010-11-01

    The storage of carbon dioxide and acid gases in deep geological formations is considered a promising option for mitigation of greenhouse gas emissions. Understanding of the primary mechanisms, such as convective mixing and geochemistry that affect the long-term geostorage process in deep saline aquifers is of prime importance. First, a linear stability analysis of an unstable diffusive boundary layer in porous media is presented, where the instability occurs due to a density difference between the carbon dioxide saturated brine and the resident brine. The linear stability results have revealed that geochemistry stabilizes the boundary layer. A detailed physical discussion is also presented with an examination of vorticity and concentration eigenfunctions and streamlines' contours to reveal how the geochemical reaction may affect these physical terms. Second, nonlinear direct numerical simulations are presented, in which the evolution of density-driven instabilities for different reaction rates are discussed. The results indicate that the boundary layer will be more stable for systems with a higher rate of reaction. However, the quantitative analyses show that more carbon dioxide may be removed from the supercritical free phase as the flux at the boundary is higher for flow systems coupled with stronger geochemical reactions.

  18. Investigating the Diffuse Ionized Gas in the Magellanic Stream with Mapped WHAM Observations

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Hernandez, Mike

    2016-01-01

    We present early stages of an Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). While the neutral component of the Stream may extend 200° across the sky (Nidever et al. 2010), its ionized gas has not yet been studied in detail. Fox et al. 2014 find that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral and may extend 30° away from the H I emission. However, such absorption-line studies are not sensitive to the overall morphology of the ionized gas. Using targeted Hα emission observations of the Magellanic Stream, Barger et al. 2015 find that although the warm ionized gas tracks the neutral gas, it often spans a few degrees away from the H I emission at slightly offset velocities. Using WHAM's unprecedented sensitivity to diffuse emission (~ 10s of mR) and its velocity resolution (12 km/s) to isolate Stream emission, we are now conducting the first full Hα survey of its ionized component. Here we present early results, including spatial and kinematic comparisons to the well-established neutral profile of the Stream. WHAM research and operations are supported through NSF Award AST-1108911.

  19. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  20. Thermal diffusivity of lead-free solders measured by photothermal beam deflection. Effect of the surrounding media

    NASA Astrophysics Data System (ADS)

    Prior, P.; Gören, A.; Macedo, F.; Ferreira, J. A.; Soares, D.

    2005-06-01

    The search for lead-free alloys has increased markedly in recent years, as new environmental regulations have been approved. In particular, traditional solders used in the microelectronics industry are now being gradually replaced by new lead-free materials.

    In this work, we report measurements of the thermal properties of new Sn-based alloys with varying contents of Bi, Al, Ag and Cu, which have been developed as alternatives to the traditional lead-based solders used in microelectronic assemblies.

    Measurements of thermal diffusivity were performed using the photothermal beam deflection [1] (PBD) technique. We tested the influence of the surrounding media in the quality of the measurements. We found out that the sensitivity can be greatly improved using as surrounding medium fluids with very low thermal diffusivities and high refractive index change with temperature (partialn /partialT ).

    Although a more general physical characterisation of the lead-free alloys, concerning measurements of electrical resistivity, mechanical properties and structural characterisation, is still under way, these thermal measurements combined with information about the electrical resistivity show that these alloys can be good alternatives for soldering applications.

  1. Mechanical response of granular media: New insights from Diffusing-Wave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Erpelding, M.; Amon, A.; Crassous, J.

    2010-07-01

    We experimentally investigate the deformation of a granular material submitted to a localised compression force. The strain field is characterised using a near field Diffusing-Wave Spectroscopy technique. The results of point load experiments on an elastic sample are first presented to illutrate the possibilities of the technique. Then, we report new results concerning the behaviour of a granular medium, showing a non-linear response with the force increment and a spatial repartition of the strain that differs from elasticity. Moreover, we analyse the partial reversibility of the deformation after a loading/unloading cycle in terms of both elastic and plastic contributions.

  2. An information diffusion model based on retweeting mechanism for online social media

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Zhang, Zhen-jiang; Zhu, Jiang; Zhang, Ying

    2012-06-01

    To characterize information propagation on online microblogs, we propose a diffusion model (SCIR) which contains four possible states: Susceptible, contacted, infected and refractory. Agents that read the information but have not decided to spread it, stay in the contacted state. They may become infected or refractory, and both the infected and refractory state are stable. Results show during the evolution process, more contacted agents appear in scale-free networks than in regular lattices. The degree based density of infected agents increases with the degree monotonously, but larger average network degree doesn't always mean less relaxation time.

  3. Optical measurements of absorption changes in two-layered diffusive media

    NASA Astrophysics Data System (ADS)

    Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E.; Fantini, Sergio

    2004-04-01

    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ~0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ~4% for the superficial layer and ~10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  4. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  5. An Experimental and Computational Evaluation of the Importance of Molecular Diffusion in Gas Gravity Currents

    NASA Astrophysics Data System (ADS)

    Herman, Jeremy J.

    The accidental release of hazardous, denser-than-air gases during their transport or manufacture is a vital area of study for process safety researchers. This project examines the importance of molecular diffusion on the developing concentration field of a gas gravity current released into a calm environment. Questions which arose from the unexpectedly severe explosion in 2005 at Buncefield, England were of particular interest. The accidental overfilling of a large tank with gasoline on a completely calm morning led to a massive open air explosion. Forensic evidence showed that at the time of ignition, a vapor cloud, most of which now appears to have been within the flammability limits, covered approximately 120,000 m2. Neither the severity of the explosion, nor the size of the vapor cloud would have been anticipated. Experiments were conducted in which carbon dioxide was released from a sunken source into a one meter wide channel devoid of any wind. These experiments were designed in such a way as to mitigate the formation of a raised head at the front of the gravity current which would have resulted in turbulent entrainment of air. This was done to create a flow in which molecular diffusion was the controlling form of mixing between the carbon dioxide and air. Concentration measurements were taken using flame ionization detection at varying depths and down channel locations. A model of the experiments was developed using COMSOL Multiphysics. The only form of mixing allowed between carbon dioxide and air in the model was molecular diffusion. In this manner the accuracy of the assertion that molecular diffusion was controlling in our experiments was checked and verified. Experimental measurements showed a large variation of gas concentration with depth of the gravity current at the very beginning of the channel where the gas emerged up from the sunken source and began flowing down channel. Due to this variation, molecular diffusion caused the vertical concentration

  6. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  7. Numerical modeling of two-phase behavior in the PEFC gas diffusion layer

    SciTech Connect

    Mukherjee, Partha Pa223876; Kang, Qinjun; Mukundan, Rangachary; Borup, Rod L

    2009-01-01

    A critical performance limitation in the polymer electrolye fuel cell (PEFC) is attributed to the mass transport loss originating from suboptimal liquid water transport and flooding phenomena. Liquid water can block the porous pathways in the fibrous gas diffusion layer (GDL) and the catalyst layer (CL), thus hindering oxygen transport from the flow field to the electrochemically actives sites in the catalyst layer. In this paper, the study of the two phase behavior and the durability implications due to the wetting characteristics in the carbon paper GDL are presented using a pore-scale modeling framework.

  8. Highly robust transparent and conductive gas diffusion barriers based on tin oxide.

    PubMed

    Behrendt, Andreas; Friedenberger, Christian; Gahlmann, Tobias; Trost, Sara; Becker, Tim; Zilberberg, Kirill; Polywka, Andreas; Görrn, Patrick; Riedl, Thomas

    2015-10-21

    Transparent and electrically conductive gas diffusion barriers are reported. Tin oxide (SnOx ) thin films grown by atomic layer deposition afford extremely low water vapor transmission rates (WVTR) on the order of 10(-6) g (m(2) day)(-1) , six orders of magnitude better than that established with ITO layers. The electrical conductivity of SnOx remains high under damp heat conditions (85 °C/85% relative humidity (RH)), while that of ZnO quickly degrades by more than five orders of magnitude. PMID:26310881

  9. A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.

    2004-12-01

    Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.

  10. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials.

    PubMed

    Liu, Yu

    2016-05-11

    I developed a novel time-dependent density functional theory (TDDFT) and applied it to complicated 3-dimensional systems for the first time. Superior to conventional TDDFT, the diffusion coefficient is modeled as a function of density profile, which is self-determined by the entropy scaling rule instead using an input parameter. The theory was employed to mimic gas diffusion in a nanoporous material. The TDDFT prediction on the transport diffusivity was reasonable compared to simulations. Moreover, the time-dependent density profiles gave an insight into the microscopic mechanism of the diffusion process. PMID:27121986

  11. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  12. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  13. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  14. Velocity, correlation time and diffusivity measurements in highly turbulent gas flow by an MRI method

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Newling, Ben

    2007-03-01

    We present non-invasive, quantitative MRI wind-tunnel measurements in flowing gas (velocity > 10 m/s) at high Reynolds numbers (Re > 10^5). Our measurement method is three-dimensional and has the potential for saving time over traditional pointwise techniques. The method is suitable for liquids and for gases. We demonstrate the use of the technique on different test sections (bluff obstruction, clark Y-wing and cylinder). The mean velocity of gas flowing past those sections has been measured. We also investigate methods to measure flow correlation times by changing the acquisition interval between excitation of the sample and detection of the signal. This may be accomplished by making separate measurements or by using a multiple-point acquisition method. A measurement of correlation time allows us to map turbulent diffusivity. The MRI data are compared with computational fluid dynamics.

  15. Template-directed fabrication of porous gas diffusion layer for magnesium air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2015-11-01

    The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.

  16. Atomically detailed models of gas mixture diffusion through CuBTC membranes

    SciTech Connect

    Keskin S; Liu JC; Johnson JK.

    2009-10-01

    Metal–organic frameworks are intriguing crystalline nanoporous materials that have potential applications in adsorption-based and membrane-based gas separations. We describe atomically detailed simulations of gas adsorption and diffusion in CuBTC that have been used to predict the performance of CuBTC membranes for separation of H2/CH4, CO2/CH4 and CO2/H2 mixtures. CuBTC membranes are predicted to have higher selectivities for all three mixtures than MOF-5 membranes, the only other metal–organic framework material for which detailed predictions of membrane selectivities have been made. Our results give insight into the physical properties that will be desirable in tuning the pore structure of MOFs for specific membrane-based separations

  17. Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media

    SciTech Connect

    Tanaka, Masanobu; Hörning, Marcel; Kitahata, Hiroyuki; Yoshikawa, Kenichi

    2015-10-15

    In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction.

  18. Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media

    NASA Astrophysics Data System (ADS)

    Tanaka, Masanobu; Hörning, Marcel; Kitahata, Hiroyuki; Yoshikawa, Kenichi

    2015-10-01

    In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction.

  19. Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media.

    PubMed

    Tanaka, Masanobu; Hörning, Marcel; Kitahata, Hiroyuki; Yoshikawa, Kenichi

    2015-10-01

    In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction. PMID:26520093

  20. High Pressure Gas Permeation and Liquid Diffusion Studies of Coflon and Tefzel Thermoplastics. Revision

    NASA Technical Reports Server (NTRS)

    Morgan, G. J.; Campion, R. P.

    1997-01-01

    The life of fluid-carrying flexible or umbilical pipes during service at elevated temperatures and pressures depends inter alia on their resistance to attack by the fluids present and the rate at which these fluids are absorbed by the pipe lining materials. The consequences of fluid ingress into the thermoplastic lining could mean a) a reduction in its mechanical strength, to increase chances of crack formation and growth and thus a loss of integrity, b) the occurrence of permeation right through the lining material, with pressure build- up in the outer pipe wall construction (of flexible pipes) or chemical attack (from a hostile permeant) on outer layers of reinforcements. Therefore it is important within this project to have relevant permeation data for Coflon and Tefzel thermoplastics: the former is plasticised, the latter is not. A previous report (CAPP/M.2) described experimental equipment and techniques used by MERL when measuring high pressure (up to 5000 psi) gas permeation and liquid diffusion through thermoplastic samples cut from extruded bar or pipe, and provided the basic theory involved. Norsk Hydro are also performing gas permeation tests on pipe sections, at up to 100 bars (1450 psi) pressure or so, and reporting separately. Some comparisons between data from Norsk Hydro and MERL have been made herein. The tests should be considered as complementary, as the Norsk Hydro test has the obvious benefit of using complete pipe sections, whilst MERL can test at much higher pressures, up to 1000 bar if necessary. The sophisticated analytical measuring equipment of Norsk Hydro can distinguish the individual components of mixed gases and hence the various permeation-linked coefficients whereas MERL, in using pressure increase at constant volume to determine permeation rate, is limited to obtaining single gas data, or apparent (or representative) coefficients for a mixed gas as a whole. Except for the initial fluid diffusion data for Tefzel described in CAPP

  1. Field experiments yield new insights into gas exchange and excess air formation in natural porous media

    NASA Astrophysics Data System (ADS)

    Klump, Stephan; Tomonaga, Yama; Kienzler, Peter; Kinzelbach, Wolfgang; Baumann, Thomas; Imboden, Dieter M.; Kipfer, Rolf

    2007-03-01

    Gas exchange between seepage water and soil air within the unsaturated and quasi-saturated zones is fundamentally different from gas exchange between water and gas across a free boundary layer, e.g., in lakes or rivers. In addition to the atmospheric equilibrium fraction, most groundwater samples contain an excess of dissolved atmospheric gases which is called "excess air". Excess air in groundwater is not only of crucial importance for the interpretation of gaseous environmental tracer data, but also for other aspects of groundwater hydrology, e.g., for oxygen availability in bio-remediation and in connection with changes in transport dynamics caused by the presence of entrapped air bubbles. Whereas atmospheric solubility equilibrium is controlled mainly by local soil temperature, the excess air component is characterized by the (hydrostatic) pressure acting on entrapped air bubbles within the quasi-saturated zone. Here we present the results of preliminary field experiments in which we investigated gas exchange and excess air formation in natural porous media. The experimental data suggest that the formation of excess air depends significantly on soil properties and on infiltration mechanisms. Excess air was produced by the partial dissolution of entrapped air bubbles during a sprinkling experiment in fine-grained sediments, whereas similar experiments conducted in coarse sand and gravel did not lead to the formation of excess air in the infiltrating water. Furthermore, the experiments revealed that the noble gas temperatures determined from noble gases dissolved in seepage water at different depths are identical to the corresponding in situ soil temperatures. This finding is important for all applications of noble gases as a paleotemperature indicator in groundwater since these applications are always based on the assumption that the noble gas temperature is identical to the (past) soil temperature.

  2. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  3. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  4. Direct observations of gas-hydrate formation in natural porous media on the micro-scale

    NASA Astrophysics Data System (ADS)

    Chaouachi, M.; Sell, K.; Falenty, A.; Enzmann, F.; Kersten, M.; Pinzer, B.; Saenger, E. H.; Kuhs, W. F.

    2013-12-01

    Gas hydrates (GH) are crystalline, inclusion compounds consisting of hydrogen-bonded water network encaging small gas molecules such as methane, ethane, CO2, etc (Sloan and Koh 2008). Natural gas hydrates are found worldwide in marine sediments and permafrost regions as a result of a reaction of biogenic or thermogenic gas with water under elevated pressure. Although a large amount of research on GH has been carried out over the years, the micro-structural aspects of GH growth, and in particular the contacts with the sedimentary matrix as well as the details of the distribution remain largely speculative. The present study was undertaken to shed light onto the well-established but not fully understood seismic anomalies, in particular the unusual attenuation of seismic waves in GH-bearing sediments, which may well be linked to micro-structural features. Observations of in-situ GH growth have been performed in a custom-build pressure cell (operating pressures up to several bar) mounted at the TOMCAT beam line of SLS/ PSI. In order to provide sufficient absorption contrast between phases and reduce pressure requirements for the cell we have used Xe instead of CH4. To the best of our knowledge this represents the first direct observation of GH growth in natural porous media with sub-micron spatial resolution and gives insight into the nucleation location and growth process of GH. The progress of the formation of sI Xe-hydrate in natural quartz sand was observed with a time-resolution of several minutes; the runs were conducted with an excess of a free-gas phase and show that the nucleation starts at the gas-water interface. Initially, a GH film is formed at this interface with a typical thickness of several μm; this film may well be permeable to gas as suggested in the past - which would explain the rapid transport of gas molecules for further conversion of water to hydrate, completed in less than 20 min. Clearly, initially the growth is directed mainly into the

  5. Study of effective transport properties of fresh and aged gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  6. Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures

    NASA Astrophysics Data System (ADS)

    Bouazza, M. T.; Bouledroua, M.

    In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.

  7. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    NASA Astrophysics Data System (ADS)

    Molins, S.; Mayer, K. U.

    2007-05-01

    The two-way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate-rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  8. Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion

    NASA Technical Reports Server (NTRS)

    Salamon, N. J. (Principal Investigator); Sullivan, Roy M.; Lee, Sunpyo

    1995-01-01

    A theory for time-dependent thermal and gas diffusion in mechanically time-rate-independent anisotropic poroelastic composites has been developed. This theory advances previous work by the latter two authors by providing for critical transverse shear through a three-dimensional axisymmetric formulation and using it in a new hypothesis for determining the Biot fluid pressure-solid stress coupling factor. The derived governing equations couple material deformation with temperature and internal pore pressure and more strongly couple gas diffusion and heat transfer than the previous theory. Hence the theory accounts for the interactions between conductive heat transfer in the porous body and convective heat carried by the mass flux through the pores. The Bubnov Galerkin finite element method is applied to the governing equations to transform them into a semidiscrete finite element system. A numerical procedure is developed to solve the coupled equations in the space and time domains. The method is used to simulate two high temperature tests involving thermal-chemical decomposition of carbon-phenolic composites. In comparison with measured data, the results are accurate. Moreover unlike previous work, for a single set of poroelastic parameters, they are consistent with two measurements in a restrained thermal growth test.

  9. The initial transient period of gravitationally unstable diffusive boundary layers developing in porous media

    NASA Astrophysics Data System (ADS)

    Tilton, Nils; Daniel, Don; Riaz, Amir

    2013-09-01

    Gravitationally unstable, transient, diffusive boundary layers play an important role in carbon dioxide sequestration. Though the linear stability of these layers has been studied extensively, there is wide disagreement in the results, and it is not clear which methodology best reflects the physics of the instability. We demonstrate that this disagreement stems from an inherent sensitivity of the problem to how perturbation growth is measured. During an initial transient period, the concentration and velocity fields exhibit different growth rates and these rates depend on the norm used to measure perturbation amplitude. This sensitivity decreases at late times as perturbations converge to dominant quasi-steady eigenmodes. Therefore, we characterize the linear regime by measuring the duration of the initial transient period, and we interpret the convergence process by examining the growth rates and non-orthogonality of the quasi-steady eigenmodes. To judge the relevance of various methodologies and perturbation structures to physical systems, we demonstrate that every perturbation has a maximum allowable initial amplitude above which the sum of the base-state and perturbation produces unphysical negative concentrations. We then perform direct numerical simulations to demonstrate that optimal perturbations considered in previous studies cannot support finite initial amplitudes. Consequently, convection in physical systems is more likely triggered by "sub-optimal" perturbations that support finite initial amplitudes.

  10. Adjusting media. A new perspective on the diffusion of communication technology.

    PubMed

    Holaday, D

    1989-01-01

    In the worldwide proliferation of communication technology there has been little attention paid to the 1st contacts with it. The ceremonies, conferences, problems, responses of the receivers and carriers of the technology have gone unexamined. To find a theory of cultural transmission in relation to communication technology, there are problems identifying cultural patterns that give structure to its use and operation. In developing countries most persuasion campaigns, educational programmes and other development projects using communications technology have failed. At 1st it was thought that these failures were due to the peasants personalities or the conservative nature of their societies. Recent research suggests that economic and political constraints introduced from outside the community caused these failures. To gain knowledge in the diffusion of communication technology one must find the specific area of economic or social development in which local groups are involved. Then analysis is recommended of the nature of the structures in which these groups integrate their social activities, in relation to that area of development. It may then be possible to see the orders of action that change this activity to the traditional communications structures. By viewing the transfer of communications technology in this way, more emphasis will be placed on how technology is integrated into local activities, and how decisions and policies of other rural and local areas effects them. PMID:12282928

  11. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Munholland, Jonah L.; Mumford, Kevin G.; Kueper, Bernard H.

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water.

  12. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.

    PubMed

    Munholland, Jonah L; Mumford, Kevin G; Kueper, Bernard H

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water. PMID:26638038

  13. Experimental and theoretical study of a dual-layer gas diffusion layer in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Park, Sehkyu

    2008-07-01

    The gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) functions as a diffuser and a current collector. The GDL typically consists of the microporous layer (MPL) and the macroporous substrate (MPS). The MPL reduces the ohmic losses and facilitates water removal in the MEA. In this study, a novel method was developed to prepare a dual-layer GDL that enhances the catalyst utilization and the overall fuel cell performance. Several characterization techniques, including mercury porosimetry, water permeation measurement, electrochemical polarization and ac impedance spectroscopy were performed to investigate how carbon loading (or MPL thickness) and PTFE content in the MPL and in the MPS control the water management in PEM fuel cells. An experimental study on carbon loading in the MPL showed that a relatively low carbon loading (0.5 mg cm-2 in this study) results in a balancing of water saturations in the catalyst layer and the GDL, thus improving the oxygen diffusion kinetics. Experimental studies on PTFE content in the MPL and in the MPS indicated that effective water management is attributed to the trade-off between the pore volume and the hydrophobic property of each diffusion layer. A theoretical study of a dual-layer GDL in PEM fuel cells demonstrated that saturation in the MPS is intimately coupled with both the fraction of hydrophilic surface and the average pore diameter. A thin and more hydrophobic MPL altered the pore geometry and the hydrophobic property of a MPS, resulting in better mass transport of reactants and products in the MEA.

  14. [Influence of changed gas media on acoustic parameters of human forced exhalation].

    PubMed

    D'iachenko, A I; Korenbaum, V I; Shulagin, Iu A; Osipova, A A; Mikhaĭlovskaia, A N; Popova, Iu A; Kir'ianova, E V; Kostiv, A E; Mokerova, E S; Shin, S N; Pochekutova, I A

    2012-01-01

    In previous study it was shown that duration of tracheal forced expiratory noises is promising to reveal negative changes of lung function after dive. The objective is a study of parameters of tracheal forced expiratory noises in changed gas media. The first experiment involved 25 volunteers (22-60 years), performed forced exhalation under normal pressure with air, oxygen-helium and oxygen-krypton mixtures. The second experiment in the chamber involved 6 volunteers (25-46 years), which performed forced exhalation with air under normal pressure (0.1 MPa), and under elevated pressure 0.263 MPa with air and oxygen-helium mixture. In the first experiment the direct linear dependence on gas density was found for forced expiratory noises common duration in the band of 200-2000 Hz and for its durations in narrow 200-Hz bands, excluding high frequency range 1400-2000 Hz. In the second experiment a significant reversed dependence of high frequency durations and spectral energies in 200-Hz bands (1600-2000 Hz) on adiabatic gas compressibility. Individual dynamics of common duration of tracheal forced expiratory noises under model dive of 16.3 m (0.263 MPa) is more then the diagnostic threshold of this parameter for lung function decrease, previously obtained for divers under normal pressure. PMID:22567842

  15. A new quasi-steady method to measure gas permeability of weakly permeable porous media

    NASA Astrophysics Data System (ADS)

    Jannot, Yves; Lasseux, Didier

    2012-01-01

    A new quasi-steady method for the determination of the apparent gas permeability of porous materials is presented in this paper along with the corresponding interpretative physical model derived from the unsteady flow equations. This method is mainly dedicated to the measurement of very low permeability of thin porous media, although thicker but more permeable samples may also be analyzed. The method relies on quasi-steady flow resulting from a (quasi) constant pressure maintained at the inlet face of the sample. Gas flow-rate, as low as 3 × 10-10 m3/s, is determined from the record of pressure increase in a reservoir connected to the outlet face of the sample. An estimate of the characteristic time, tc, to reach quasi-steady flow after imposing a constant pressure at the inlet is derived. It is validated by direct numerical simulations of the complete unsteady flow, clearly defining the required experimental duration for the method to apply. Experimental results obtained on rather permeable and thick rock samples are reported showing an excellent agreement of the measured permeability with that determined independently on the same sample whereas the experimental value of tc is also in very good agreement with the predicted one. The method is further employed on a composite material sheet allowing the identification of an apparent gas permeability of about 10-23 m2.

  16. ROSAT detection of diffuse hot gas in the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Wang, Q. David; Walterbos, Rene A. M.; Steakley, Michael F.; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT observation is presented of the edge-on spiral galaxy NGC 4631, a nearby Sc/SBd galaxy best known for its extended radio halo. Because of the low foreground Galactic X-ray-absorbing gas column density, N(sub H) approximately 1.4 x 10(exp 20)cm(exp -2), this observation is sensitive to gas of temperature greater than or equal to a few times 10(exp 5) K. A soft (approximately 0.25 keV) X-ray radiation out to more than 8 kpc above the midplane of the galaxy was detected. The strongest X-ray emission in the halo is above the central disk, a region of about 3 kpc radius which shows high star formation activity. The X-ray emission in the halo is bordered by two extended filaments of radio continuum emission. Diffuse X-ray emission from hot gas in the galaxy's disk was found. The spectrum of the radiation can be characterized by a thermal plasma with a temperature of 3 x 10(exp 6) K and a radiative cooling rate of approximately 8 x 10(exp 39) ergs s(exp -1). This rate is only a few percent of the estimated supernova energy release in the interstellar medium of the galaxy. Analysis of the X-ray spectrum shows evidence for the presence of a cooler (several times 10(exp 5) K) halo gas component that could consume a much larger fraction of the supernova energy. Strong evidence was found for disk/halo interaction. Hot gas apparently blows out from supershells in the galaxy's disk at a rate of approximately 1 solar mass yr(exp -1). This outflow of hot gas drags magnetic field lines up in the halo and forms a magnetized gaseous halo. If the magnetic field lines are still anchored to the disk gas at large disk radii, the outflowing gas may be confined high above the disk by magnetic pressure. A strong X-ray source which coincides spatially with an H I supershell has been identified. However, the source is likely an extremely luminous X-ray binary with L(sub chi)(0.1 - 2 keV) approximately 5 x 10(exp 39) ergs s(exp -1), which makes it a stellar mass black hole candidate.

  17. A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scott, E. H.

    1982-01-01

    The gravitational collapse of isothermal, nonrotating magnetic gas clouds have been calculated numerically, including the effects of ambipolar diffusion. The fractional ionization in the clouds is approximated by a power-law function of the gas density, f = K/n to the q-power, where K and q are adjustable parameters. Eleven numerical experiments were run, and the results indicate that the asymptotic character of collapse is determined mainly by the value of q and is largely independent of the other parameters characterizing a cloud (e.g., K, cloud mass). In particular, there is nearly a one-to-one correspondence between q and the slope, x, of the central magnetic field strength-gas density relationship. If q is no more than 0.8, a cloud collapses asymptotically, as though the magnetic field were 'frozen' to the neutral matter. The magnetic field strength at the center of a collapsing cloud is strongly amplified during collapse even for values of q of about 1, despite extremely low values of fractional ionization. A discussion of the theoretical basis for this unexpected behavior is given. Possible implications of our results for the problems of magnetic braking of rotating protostars and star formation in general are also presented.

  18. Identifying Extraplanar Diffuse Ionized Gas in a Sample of MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Hubbard, Ryan J.; Diamond-Stanic, Aleksandar M.; MaNGA Team

    2016-01-01

    The efficiency with which galaxies convert gas into stars is driven by the continuous cycle of accretion and feedback processes within the circumgalactic medium. Extraplanar diffuse ionized gas (eDIG) can provide insights into the tumultuous processes that govern the evolution of galactic disks because eDIG emission traces both inflowing and outflowing gas. With the help of state-of-the-art, spatially-resolved spectroscopy from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), we developed a computational method to identify eDIG based on the strength of and spatial extent of optical emission lines for a diverse sample of 550 nearby galaxies. This sample includes roughly half of the MaNGA galaxies that will become publicly available in summer 2016 as part of the Thirteenth Data Release of the Sloan Digital Sky Survey. We identified signatures of eDIG in 8% of the galaxies in this sample, and we found that these signatures are particularly common among galaxies with active star formation and inclination angles >45 degrees. Our analysis of the morphology, incidence, and kinematics of eDIG has important implications for current models of accretion and feedback processes that regulate star formation in galaxies. We acknowledge support from the Astrophysics REU program at the University of Wisconsin-Madison, the National Astronomy Consortium, and The Grainger Foundation.

  19. Nonlinear photoacoustic response of opaque media in gas microphone signal detection

    NASA Astrophysics Data System (ADS)

    Madvaliev, U.; Salikhov, T. Kh.; Sharifov, D. M.; Khan, N. A.

    2006-03-01

    We have theoretically studied the effect of thermal nonlinearity, due to the temperature dependence of the thermophysical and optical parameters for thermally thick opaque media, on the characteristics of the fundamental photoacoustic signal when the signal is detected by a gas microphone. We have shown that the dependence of the amplitude of the nonlinear component of the signal on the intensity of the incident radiation I0 is expressed by means of the dependence of the temperature rise for the irradiated sample surface Θ0 on I0, and the thermal nonlinearity does not affect the phase of the photoacoustic signal. We propose a theory for generation of the second harmonic of the photoacoustic signal. We have established that the phase shift of the photoacoustic signal is equal to 3π/4, while its amplitude depends on the frequency (˜ω-3/2) and the intensity (˜ I{0/2}).

  20. Transient behavior of simultaneous flow of gas and surfactant solution in consolidated porous media

    SciTech Connect

    Baghdikian, S.Y.; Handy, L.L.

    1991-07-01

    The main objective of this experimental research was to investigate the mechanisms of foam generation and propagation in porous media. Results obtained give an insight into the conditions of foam generation and propagation in porous media. The rate of propagation of foam is determined by the rates of lamellae generation, destruction, and trapping. Several of the factors that contribute to foam generation have studied with Chevron Chaser SD1000 surfactant. Interfacial tension (IFT) measurements were performed using a spinning drop apparatus. The IFT of two surfactant samples of different concentrations were measured with dodecane and crude oil from the Huntington Beach Field as a function of temperature and time. Foam was used as an oil-displacing fluid. However, when displacing oil, foam was not any more effective than simultaneous brine and gas injection. A series of experiments was performed to study the conditions of foam generation in Berea sandstone cores. Results show that foam may be generated in sandstone at low flow velocities after extended incubation periods. The effect of pregenerating foam before injection into the sandstone was also studied. The pressure profiles in the core were monitored using three pressure taps along the length of the core. A systematic study of foaming with different fluid velocities and foam qualities provides extensive data for foam flow conditions. 134 refs., 57 figs., 2 tabs.

  1. Experimental characterization of the water transport properties of PEM fuel cells diffusion media

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.

    2012-11-01

    A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.

  2. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  3. Microscale measurements of oxygen concentration across the thickness of diffusion media in operating polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Epting, William K.; Litster, Shawn

    2016-02-01

    Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.

  4. Measurement of capillary pressure in fuel cell diffusion media, micro-porous layers, catalyst layers, and interfaces

    NASA Astrophysics Data System (ADS)

    LaManna, Jacob M.; Bothe, James V.; Zhang, Feng Yuan; Mench, Matthew M.

    2014-12-01

    In this work, semi-empirical Leverett J-Function relationships relating capillary pressure and water saturation are experimentally derived for commercial and experimental polymer electrolyte fuel cell materials developed for automotive applications. Relationships were derived for Mitsubishi Rayon Corp. (MRC) U105 and General Motors (GM) experimental high tortuosity diffusion media (DM), the micro-porous layer (MPL), and the catalyst layer (CL). The standard Leverett J-Function under-predicted drainage curves for the DM at high saturation levels and significantly under-predicted the capillary pressure requirements for the MPL and CL across the entire saturation range. Composite structures were tested to understand interfacial effects for DM|MPL and MPL|CL. Each additional layer was found to superimpose its effects on capillary pressure onto the previous layers. The MPL formulation tested increased in porosity from a 136 nm peak average to a 153 nm peak average with increased surface porosity of the substrate. Additionally, small voids and pockets that accumulate liquid water were found to exist in the MPL|CL interface. The results of this work are useful for computational modelers seeking to enhance the resolution of their macroscopic multi-phase flow models which underestimate capillary pressure using the standard Leverett J-Function.

  5. A Spin Echo Sequence with a Single-Sided Bipolar Diffusion Gradient Pulse to Obtain Snapshot Diffusion Weighted Images in Moving Media

    PubMed Central

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2013-01-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence. PMID:22743539

  6. Diffusion and reaction layer structure and NOx reduction in turbulent natural gas flames. Annual report, January-December 1990

    SciTech Connect

    Driscoll, J.F.; Dahm, W.J.A.

    1991-06-17

    To identify and understand novel methods for in-flame NOx reduction in turbulent natural gas flames. The report involves four primary tasks: (1) to directly measure the NOx emission index levels over a wide range of turbulent flame conditions, (2) to measure the physical structure of the molecular diffusion and chemical reaction processes in turbulent gas flames, (3) to relate this structure to the primary physical processes that are involved in the formation of nitric oxides in turbulent natural gas flames, and (4) to incorporate the above results into simple models and scaling laws allowing accurate correlation and prediction of the overall NOx emission levels in practical natural gas burning applications.

  7. Performance enhancement of polymer electrolyte fuel cells by combining liquid removal mechanisms of a gas diffusion layer with wettability distribution and a gas channel with microgrooves

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Koresawa, Ryo

    2016-08-01

    Although polymer electrolyte fuel cells (PEFCs) are commercially available, there are still many problems that need to be addressed to improve their performance and increase their usage. At a high current density, generated water accumulates in the gas diffusion layer and in the gas channels of the cathode. This excess water obstructs oxygen transport, and as a result, cell performance is greatly reduced. To improve the cell performance, the effective removal of the generated water and the promotion of oxygen diffusion in the gas diffusion layer (GDL) are necessary. In this study, two functions proposed in previous reports were combined and applied to a PEFC: a hybrid GDL to form an oxygen diffusion path using a wettability distribution and a gas separator with microgrooves to enhance liquid removal. For a PEFC with a hybrid GDL and a gas separator with microgrooves, the concentration overvoltage of the PEFC was reduced, and the current density limit and maximum power density were increased compared with a conventional PEFC. Moreover, the stability of the cell voltage was markedly improved.

  8. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Chen, Ken S.

    2016-05-01

    In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

  9. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  10. Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion.

    PubMed

    Horst, Angelika E W; Mangold, Klaus-Michael; Holtmann, Dirk

    2016-02-01

    Combining the advantages of biological components (e.g., reaction specificity, self-replication) and electrochemical techniques in bioelectrochemical systems offers the opportunity to develop novel efficient and sustainable processes for the production of a number of valuable products. The choice of electrode material has a great impact on the performance of bioelectrochemical systems. In addition to the redox process at the electrodes, interactions of biocatalysts with electrodes (e.g., enzyme denaturation or biofouling) need to be considered. In recent years, gas diffusion electrodes (GDEs) have proved to be very attractive electrodes for bioelectrochemical purposes. GDEs are porous electrodes, that posses a large three-phase boundary surface. At this interface, a solid catalyst supports the electrochemical reaction between gaseous and liquid phase. This mini-review discusses the application of GDEs in microbial and enzymatic fuel cells, for microbial electrolysis, in biosensors and for electroenzymatic synthesis reactions. PMID:26152235

  11. Competition of coarsening and shredding of clusters in a driven diffusive lattice gas

    NASA Astrophysics Data System (ADS)

    Kunwar, Ambarish; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2006-06-01

    We investigate a driven diffusive lattice gas model with two oppositely moving species of particle. The model is motivated by bidirectional traffic of ants on a pre-existing trail. A third species, corresponding to pheromones used by the ants for communication, is not conserved and mediates interactions between the particles. Here we study the spatio-temporal organization of the particles. In the unidirectional variant of this model it is known to be determined by the formation and coarsening of 'loose clusters'. For our bidirectional model, we show that the interaction of oppositely moving clusters is essential. In the late stages of evolution the cluster size oscillates because of a competition between their 'shredding' during encounters with oppositely moving counterparts and subsequent 'coarsening' during collision-free evolution. We also establish a nontrivial dependence of the spatio-temporal organization on the system size.

  12. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS

    SciTech Connect

    Ala Qubbaj

    2001-03-30

    The advanced CFDRC software package was installed on a SUN-SPARC dual processor workstation (UTPA funded). The literature pertinent to the project was collected. The physical model was set and all parameters and variables were identified. Based on the physical model, the geometric modeling and grid generation processes were performed using the CFD-GEOM (Interactive Geometric Modeling and Grid Generation software). A total number of 11160 cells (248 x 45) were generated. The venturis in the cascade were modeled as two-dimensional axisymmetric convergent nozzles around the jet. With the cascade being added to the jet, the geometric complexity of the problem increased; which required multi-domain structured grid systems to be connected and matched on the boundaries. The natural gas/propane jet diffusion flame is being numerically analyzed. The numerical computations are being conducted using the CFDRC-ACE+ (advanced computational environment) software package. The results are expected soon.

  13. Gas Diffusion Coefficient in Variably Saturated Peat Soil: Development and Tests of Predictive Models

    NASA Astrophysics Data System (ADS)

    Unno, M.; Kawamoto, K.; Moldrup, P.; Komatsu, T.

    2008-12-01

    The soil-gas diffusion coefficient (Dp) and its dependency on air-filled porosity (ɛ) govern gas diffusion and reaction processes in soil. Accurate Dp(ɛ) prediction models for variably saturated peat soils are needed to evaluate vadose zone transport and fate of greenhouse gases such as methane in peaty wetlands. In this study, we measured Dp on undisturbed peat soil samples at different soil-water matric potentials, and developed new, linear and nonlinear expressions for describing and predicting Dp(ɛ). The new Dp(ɛ) models together with existing Dp(ɛ) models were tested against both measured data and independent data sets from literature. Twelve undisturbed 100cm3 peat soil cores were taken between the soil surface and down to 30-cm depth at Bibai wetland, Hokkaido, Japan. The soil cores were initially saturated with water, and drained at given matric potentials, pF=1.0, 1.5, 1.8, 2.0, 3.0, and 4.1 (where pF equals to log | Ψ | , Ψ: the soil-water matric potential in cm H2O), using the hanging water and pressure plate methods. At each matric potential, simultaneous measurements of volume shrinkage, soil-water retention, and Dp were conducted. Literature datasets of Dp(ɛ) for peat soil cores taken from different areas within the same wetland, specifically 12 samples from Iiyama and Hasegawa (2005) and 12 samples from Iiduka et al. (2008), were also used. A total of 191 measurements of Dp(ɛ) at pF ≤ 2.0 were applied for developing new Dp(ɛ) models for pF ≤ 2.0 where effects of shrinkage on Dp were assumed negligible. By modifying 3 existing Dp(ɛ) models, the Buckingham (1904) model, the Macroporosity-Dependent Model (MPD; Moldrup et al., 2000), and the Penman-Call model (Moldrup et al., 2005), we suggested 3 new Dp(ɛ) expressions for peat soil. In the Buckingham-based Dp(ɛ) model, a variable X(ɛ"w relationship (where X is the pore connectivity factor) derived from measurements was introduced in the Dp(ɛ) expression. In the Penman-Call-based Dp

  14. Effects of buoyancy on gas jet diffusion flames - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Bahadori, M. Y.

    1985-01-01

    Theoretical and experimental research on the effects of buoyancy on gas-jet diffusion flames is described. Part of this research involves an assessment of existing data obtained under reduced-gravity conditions. The results show that uncertainties in the current understanding of flame structure exist and further research is required before reliable predictions of ignition, stabilization, and propagation of flames under microgravity conditions can be made. Steady-state and transient theories have been developed and used in the analysis of existing drop-tower data and new data obtained from a stationary experiment involving inverted flames. The result of this research has led to the definition of a microgravity experiment to be performed in space.

  15. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.; Mason, R. E.; Oka, T.

    2015-10-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 μm have revealed a weak absorption feature due to two lines of the molecular ion {{{H}}}3+. The observed wavelength of the feature corresponds to a velocity of -70 km s-1 relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H{}3+ along with the previously known broad hydrocarbon absorption at 3.4μm are probably formed in diffuse gas that is in close proximity to the continuum source, i.e., within a few tens of parsecs of the central engine. Based on that conclusion and the measured H{}3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the active galactic nucleus of ˜1 M⊙ yr-1.

  16. Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Ioroi, Tsutomu; Oku, Takanori; Yasuda, Kazuaki; Kumagai, Naokazu; Miyazaki, Yoshinori

    Gas diffusion backings (GDBs) with various PTFE loadings for unitized regenerative polymer fuel cells (URFCs) were prepared and the relations between the PTFE loading amount and the URFC performance were examined. As for the GDB of the hydrogen electrode, both the fuel cell and water electrolysis performances were not affected by the amount of PTFE loading on the hydrogen side GDB. However, the URFC performances significantly depended on the PTFE loading amount of the GDB for the oxygen electrode; during the fuel cell and water electrolysis operations, URFC showed higher performances with smaller PTFE loadings but the cell with no PTFE-coated GDB showed a very deteriorated fuel cell performance. Cycle properties of the URFC revealed that the efficiency of the URFC decreased with the increasing cycles when the PTFE loading on oxygen side GDB was too low, however, a stable operation can be achieved with the appropriate PTFE loading on the GDB.

  17. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  18. GRAVITATIONAL INSTABILITY OF SOLIDS ASSISTED BY GAS DRAG: SLOWING BY TURBULENT MASS DIFFUSIVITY

    SciTech Connect

    Shariff, Karim; Cuzzi, Jeffrey N.

    2011-09-01

    The Goldreich and Ward (axisymmetric) gravitational instability of a razor thin particle layer occurs when the Toomre parameter Q{sub T} {identical_to} c{sub p}{Omega}{sub 0}/{pi}G{Sigma}{sub p} < 1 (c{sub p} being the particle dispersion velocity). Ward extended this analysis by adding the effect of gas drag upon particles and found that even when Q{sub T} > 1, sufficiently long waves were always unstable. Youdin carried out a detailed analysis and showed that the instability allows chondrule-sized ({approx}1 mm) particles to undergo radial clumping with reasonable growth times even in the presence of a moderate amount of turbulent stirring. The analysis of Youdin includes the role of turbulence in setting the thickness of the dust layer and in creating a turbulent particle pressure in the momentum equation. However, he ignores the effect of turbulent mass diffusivity on the disturbance wave. Here, we show that including this effect reduces the growth rate significantly, by an amount that depends on the level of turbulence, and reduces the maximum intensity of turbulence the instability can withstand by 1-3 orders of magnitude. The instability is viable only when turbulence is extremely weak and the solid to gas surface density of the particle layer is considerably enhanced over minimum-mass-nebula values. A simple mechanistic explanation of the instability shows how the azimuthal component of drag promotes instability while the radial component hinders it. A gravito-diffusive overstability is also possible but never realized in the nebula models.

  19. Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Kouassi, S.; Gautier, G.; Thery, J.; Desplobain, S.; Borella, M.; Ventura, L.; Laurent, J.-Y.

    2012-10-01

    Since the 90's, porous silicon has been studied and implemented in many devices, especially in MEMS technology. In this article, we present a new approach to build miniaturized proton exchange membrane micro-fuel cells using porous silicon as a hydrogen diffusion layer. In particular, we propose an innovative process to build micro fuel cells from a “corrugated iron like” 3D structured porous silicon substrates. This structure is able to increase up to 40% the cell area keeping a constant footprint on the silicon wafer. We propose here a process route to perform electrochemically 3D porous gas diffusion layers and to deposit fuel cell active layers on such substrates. The prototype peak power performance was measured to be 90 mW cm-2 in a “breathing configuration” at room temperature. These performances are less than expected if we compare with a reference 2D micro fuel cell. Actually, the active layer deposition processes are not fully optimized but this prototype demonstrates the feasibility of these 3D devices.

  20. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

    DOE PAGESBeta

    Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; Sholl, David S.; Greathouse, Jeffery A.; Allendorf, Mark D.

    2014-03-28

    Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less

  1. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

    SciTech Connect

    Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; Sholl, David S.; Greathouse, Jeffery A.; Allendorf, Mark D.

    2014-03-28

    Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of framework force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.

  2. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests

    SciTech Connect

    Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

    2011-04-15

    Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

  3. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored. PMID:26672387

  4. Holographic diffusers

    NASA Astrophysics Data System (ADS)

    Wadle, Stephen; Wuest, Daniel; Cantalupo, John; Lakes, Roderic S.

    1994-01-01

    Holographic diffusers are prepared using silver halide (Agfa 8E75 and Kodak 649F) and photopolymer (Polaroid DMP 128 and DuPont 600, 705, and 150 series) media. It is possible to control the diffusion angle in three ways: by selection of the properties of the source diffuser, by control of its subtended angle, and by selection of the holographic medium. Several conventional diffusers based on refraction or scattering of light are examined for comparison.

  5. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.

    PubMed

    Nowakowski, A F; Ballil, A; Nicolleau, F C G A

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation. PMID:26382524

  6. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation

    NASA Astrophysics Data System (ADS)

    Nowakowski, A. F.; Ballil, A.; Nicolleau, F. C. G. A.

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.

  7. A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Tötzke, C.; Manke, I.; Gaiselmann, G.; Bohner, J.; Müller, B. R.; Kupsch, A.; Hentschel, M. P.; Schmidt, V.; Banhart, J.; Lehnert, W.

    2015-04-01

    We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.

  8. A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers

    SciTech Connect

    Tötzke, C.; Manke, I.; Banhart, J.; Gaiselmann, G.; Schmidt, V.; Bohner, J.; Müller, B. R.; Kupsch, A.; Hentschel, M. P.; Lehnert, W.

    2015-04-15

    We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.

  9. Diffuse Ionized Gas in Irregular Galaxies. I. GR 8 and ESO 245-G05

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.

    2006-04-01

    We have studied the spectral characteristics of the diffuse ionized gas (DIG) in two irregular galaxies with low metallicities and intermediate star formation rates: ESO 245-G05 and GR 8. The [O III]/Hβ ratio in these galaxies is higher than in the DIG of spiral galaxies but not as high as in other irregular galaxies previously studied, such as IC 10 and NGC 6822. The [N II]/Hα and [S II]/Hα ratios have very small values, indicating the absence of shocks as the ionization source for this gas. This ionization can be explained in both galaxies with photon leakage from the H II regions as the only source. The percentage of photons that have escaped from the H II regions is small in ESO 245-G05, only 35%, but varies from 35% up to 60% in GR 8. We also investigated whether the differences found between spiral and irregular galaxies in the [O III]/Hβ and the [N II]/Hα ratios are due to differences in the metal content between these types of galaxies. Although the number of galaxies studied is not very large, it can be concluded that the [O III]/Hβ ratio is not related to the oxygen content, while the situation is more ambiguous for the [N II]/Hα ratio.

  10. Kinematics of the Diffuse Ionized Gas Halos of NGC 891 and NGC 5775

    NASA Astrophysics Data System (ADS)

    Heald, G. H.; Rand, R. J.; Benjamin, R. A.; Bershady, M. A.; Collins, J. A.; Bland-Hawthorn, J.

    2005-12-01

    As part of an ongoing effort to characterize the nature of the disk-halo interaction in spiral galaxies, we present an investigation into the kinematics of the diffuse ionized gas (DIG) halos of two edge-on spirals, NGC 891 and NGC 5775. Observations of optical emission lines were obtained at high spectral resolution with the SparsePak fiber array at WIYN, and the TAURUS-II Fabry-Perot interferometer at the AAT, respectively. Detailed three-dimensional models of the galaxies were created and compared with the data, revealing the presence of a vertical gradient in rotational velocity in each case. The sense of the gradient corresponds to decreasing rotation speed with increasing height above the disk; the magnitude is approximately 15 km s-1 kpc-1 in NGC 891, and 8 km s-1 kpc-1 in NGC 5775. Qualitatively, this behavior is predicted by models of the disk-halo interaction which consider gas being lifted out of the disk, but quantitative agreement has not yet been achieved. We describe the results of our observations, present a comparison with a purely ballistic model of disk-halo flow, and discuss prospects for a better understanding of this critical process in the evolution of galaxies. This material is based on work partially supported by the National Science Foundation under Grant No. AST 99-86113.

  11. Effect of a deep breath on gas mixing and diffusion in the lung.

    PubMed

    Prabhu, M B; Mink, J T; Graham, B L; Cotton, D J

    1990-03-01

    We examined the effect of a previous deep breath on both inert gas mixing and the single breath diffusing capacity (DLCOSB) during submaximal single breath maneuvers in normal subjects. Single breath washouts were performed either immediately after a deep breath or after breathing tidally for 10 min. Maneuvers consisted of inhaling test gas from functional residual capacity to 50% inspiratory capacity and, after either 0 or 6 s of breath holding, exhaling slowly back to residual volume. We measured the Fowler dead space, the Phase III slope of the alveolar plateau of the He washout (delta He/L), the amplitude of the cardiogenic oscillations (Oc), closing capacity, mixing efficiency (Emix) and DLCOSB using the three equation method. For maneuvers immediately after a deep breath we found that delta He/L was steeper and the Oc were larger for washouts with 6 s but not 0 s of breath holding, while Emix was significantly lower and DLCOSB significantly higher for both the 0 s and the 6 s breath holding maneuvers. We conclude that a deep breath increases DLCOSB but simultaneously also increases convective-dependent inhomogeneity in the lung. PMID:2356360

  12. Two-level hierarchical structure in nano-powder agglomerates in gas media

    NASA Astrophysics Data System (ADS)

    de Martin, Lilian; Bouwman, Wim G.; van Ommen, J. Ruud

    2012-11-01

    Nanoparticles in high concentration in a gas form agglomerates due to the interparticle van der Waals forces. The size and the internal structure of these nanoparticles agglomerates strongly influence their dynamics and their interaction with other objects. This information is crucial, for example, when studying inhalation of nanoparticles. It is common to model the structure of these agglomerates using a fractal approach and to compare their dimension with the dimension obtained from aggregation models, such diffusion limited aggregation (DLA). In this work we have analyzed the structure of nanoparticles agglomerates in situ by means of Spin-Echo Small-Angle Neutron Scattering (SESANS), while they were fluidized in a gas stream. The advantage of SESANS over conventional SANS is that SESANS can measure scales up to 20 microns, while SANS does not exceed a few hundred of nanometers. We have observed that when agglomerates interact, their structure cannot be characterized by using only one scaling parameter, the fractal dimension. We have found that there are at least two structure levels in the agglomerates and hence, we need at least two parameters to describe the autocorrelation function in each level.

  13. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    SciTech Connect

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent low water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.

  14. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE PAGESBeta

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore » water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  15. EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems

    Energy Science and Technology Software Center (ESTSC)

    2015-06-22

    EOS7CA is a TOUGH2 module for mixtures of a non-condensible gas (NCG) and air (with or without a gas tracer), an aqueous phase, and water vapor. The user can select the NCG as being CO2, N2, or CH4. EOS7CA uses a cubic equation of state with a multiphase version of Darcy’s Law to model flow and transport of gas and aqueous phase mixtures over a range of pressures and temperatures appropriate to shallow subsurface porousmore » media systems. The limitation to shallow systems arises from the use of Henry’s Law for gas solubility which is appropriate for low pressures but begins to over-predict solubility starting at pressures greater than approximately 1 MPa (10 bar). The components modeled in EOS7CA are water, brine, NCG, gas tracer, air, and optional heat.« less

  16. EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems

    SciTech Connect

    Oldenburg, Curtis M.

    2015-06-22

    EOS7CA is a TOUGH2 module for mixtures of a non-condensible gas (NCG) and air (with or without a gas tracer), an aqueous phase, and water vapor. The user can select the NCG as being CO2, N2, or CH4. EOS7CA uses a cubic equation of state with a multiphase version of Darcy’s Law to model flow and transport of gas and aqueous phase mixtures over a range of pressures and temperatures appropriate to shallow subsurface porous media systems. The limitation to shallow systems arises from the use of Henry’s Law for gas solubility which is appropriate for low pressures but begins to over-predict solubility starting at pressures greater than approximately 1 MPa (10 bar). The components modeled in EOS7CA are water, brine, NCG, gas tracer, air, and optional heat.

  17. Dust and gas jets: Evidence for a diffuse source in Halley's coma

    NASA Technical Reports Server (NTRS)

    Clairemidi, Jacques; Rousselot, Philippe; Vernotte, F.; Moreels, Guy

    1992-01-01

    The distribution of dust-scattered intensity in Halley's inner coma is measured with the Vega three-channel spectrometer at three selected wavelengths: 377, 482, and 607 nm. The variation along a cometo-centric radius may be described by a p(sup -s) law where p is the distance between nucleus and optical axis and s is an exponent which is equal to 1 except in an intermediate 3000 less than p less than 7000 km region where s = 1.5. The shape of the radial distribution may be explained with a model including solar radiation pressure effect and quantum scattering efficiencies calculated from Mie theory. Monochromatic images inside an angular sector having its apex at the nucleus show evidence of two dust jets which extend to 40,000 Km. The pixel-to-pixel ratio of two images of dust intensity at 377 and 482 nm shows that the scattered intensity presents an excess of blue coloration in a zone located around the jets between 10,000 and 25,000 km. This coloration is interpreted as being due to a population of sub-micronic grains which result of the fragmentation of dust particles transported in the jets. It is suggested that the diffuse source where an additional quantity of CO was detected might be connected with the presence of a dust jet. In the present scheme, grain particles with a size of several micron or 10 micron would be transported inside a dust jet to distances of several 10,000 km where they would suffer fragmentation and produce sub-micronic particles and a release of gas which would be at the origin of the diffuse source.

  18. Predicting the effects of gas diffusivity on photosynthesis and transpiration of plants grown under hypobaria

    NASA Astrophysics Data System (ADS)

    Gohil, Hemant L.; Correll, Melanie J.; Sinclair, Thomas

    2011-01-01

    As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ˜1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.

  19. An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths.

    PubMed

    Giordano, Gabriela Furlan; Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz; Lima, Renato Sousa; Kubota, Lauro Tatsuo

    2015-05-22

    An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH)2-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH)2 structure by insertion of Co(2+) and Cd(2+) ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v)(-1), respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate analysis, thus contributing for deployment of point-of-use technologies. All of the results were accurate with respect to those obtained by FTIR method at 95% confidence level. PMID:25937104

  20. Hyperpolarized Gas Diffusion MRI for the Study of Atelectasis and Acute Respiratory Distress Syndrome

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R.

    2014-01-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury (VALI), which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of CT, PET, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized gas magnetic resonance imaging (HP MRI)—a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces—is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of 3He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces; (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces; and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. PMID:24920074

  1. Interacting biochemical and diffusive controls on trace gas sources in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Manzoni, S.; Bellin, A.; Porporato, A. M.

    2011-12-01

    Microbes react to environmental conditions on different timescales. When conditions improve (e.g., rewetting, substrate amendment), the residing population exits the dormant state, becomes active and starts synthesizing extra-cellular enzymes. If substrate availability, and hence energy, is sufficient, microbes may start to reproduce and increase the size of their population. These dynamics make it complicated to interpret measured relationships between microbial activity (e.g., respiration, denitrification, N mineralization) and environmental conditions. In particular, the relationship between bacterial activity and soil moisture, which is derived by incubating soil samples at constant soil moisture levels, seems to vary under dynamic hydrological conditions. This may be related to both soil physical properties and the resilience of bacteria to adapt to rapid changes in soil moisture. We present a process-based model that includes both the above effects and test the hypothesis that the ratio of the time scale of biological versus physical factors determines the shape describing the relationship between microbial activity and soil moisture. In particular, we focus on the role of oxygen dynamics, which regulate the prevalence of aerobic versus anaerobic conditions and thus the prevalence of nitrification versus denitrification. We identify and compare the time scale of the biological oxygen consumption with the time scale of physical diffusion. Starting from well-aerated conditions, as bacteria consume O2 in solution, more oxygen dissolves from the atmosphere - depending on gas-filled porosity. If water dynamics or tillage limits re-aeration, this can affect the equilibrium between the aqueous and the gaseous phase and thus alter the time scale of the reactions. This balance between consumption and re-aeration by diffusion ultimately controls the water quality as well the production of trace gases.

  2. Hyphenation of gas-diffusion separation and ion chromatography. Part 1: determination of free sulfite in wines.

    PubMed

    Fäldt, S; Karlberg, B; Frenzel, W

    2001-10-01

    The hyphenation of gas-diffusion separation and ion chromatography (IC) is described as a convenient, reliable, robust, and economic method for in-line sample pre-treatment. The high selectivity associated with this method permits direct analysis of samples containing microparticulates, colloidal matter, and/or high molecular weight compounds. The determination of sulfite serves as a first example of its application. The method is based on the diffusional separation of SO2 following in-line oxidation with hydrogen peroxide to sulfate and final determination of the sulfate formed using IC. The influence of operational parameters has been thoroughly investigated and gas-diffusion cells of different geometries compared with respect to the gas-transfer rates obtained. Application to the analysis of wines demonstrates the utility of the method. PMID:11760049

  3. The ionization sources of the diffuse ionized gas in nearby disk galaxies

    NASA Astrophysics Data System (ADS)

    Voges, Erica Susan

    Diffuse ionized gas (DIG) has been shown to be an important component of the interstellar medium (ISM), with its large filling factor (>= 20%) and a mass that makes it the most massive component of the Galactic ionized ISM. Given that it has been found to be ubiquitous in both the Galaxy and external disk galaxies, the energy source to create and maintain the DIG must necessarily be large. Massive OB stars are the only known sources with enough energy to power the DIG, and DIG is also linked morphologically to OB stars as it is brightest near bright star forming regions. However, the details of the location and spectral types of the ionizing stars, as well as the relevance of other ionizing mechanisms, are still not clear. I present the results of three different studies aimed at exploring the ionization sources of the DIG. Optical spectroscopy of DIG in M33 and NGC 891 using the Gemini-North telescope has been obtained to compare diagnostic emission line ratios with photoionization models. The first detection of (O I] l6300 was made in the DIG of M33. In M33, models in which ionizing photons leaking from H II regions are responsible for the ionization of the DIG best fit our observed line ratios. In NGC 891, we found evidence that shock ionization may need to be included along with photoionization in order to explain our observed emission line ratios. The diffuse Ha fraction in eight nearby galaxies was studied as a function of radius and star formation rate per unit area. We found no correlation with radius, but we did find that regions with higher star formation rates have lower diffuse fractions. Neither of these results had any dependence on galaxy type. These results have implications regarding the circumstances under which H II regions may be leaking ionizing photons and thus ionizing DIG. We also compared observed and predicted ionizing photon emission rates for 39 H II regions in the Large Magellanic Cloud. Our results indicate that five of the H II

  4. Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence

    NASA Astrophysics Data System (ADS)

    Minter, Anthony H.; Spangler, Steven R.

    1997-08-01

    We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being

  5. DIFFUSE ATOMIC AND MOLECULAR GAS IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J

    SciTech Connect

    Ritchey, Adam M.; Welty, Daniel E.; York, Donald G.; Dahlstrom, Julie A.

    2015-02-01

    We present a comprehensive analysis of interstellar absorption lines seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ∼6 days before to ∼30 days after the supernova reached its maximum B-band brightness. We examine complex absorption from Na I, Ca II, K I, Ca I, CH{sup +}, CH, and CN, arising primarily from diffuse gas in the interstellar medium (ISM) of M82. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the various interstellar species detected reveal that the ISM of M82 probed by SN 2014J consists of a mixture of diffuse atomic and molecular clouds characterized by a wide range of physical/environmental conditions. Decreasing N(Na I)/N(Ca II) ratios and increasing N(Ca I)/N(K I) ratios with increasing velocity are indicative of reduced depletion in the higher-velocity material. Significant component-to-component scatter in the N(Na I)/N(Ca II) and N(Ca I)/N(Ca II) ratios may be due to variations in the local ionization conditions. An apparent anti-correlation between the N(CH{sup +})/N(CH) and N(Ca I)/N(Ca II) ratios can be understood in terms of an opposite dependence on gas density and radiation field strength, while the overall high CH{sup +} abundance may be indicative of enhanced turbulence in the ISM of M82. The Li abundance also seems to be enhanced in M82, which supports the conclusions of recent gamma-ray emission studies that the cosmic-ray acceleration processes are greatly enhanced in this starburst galaxy.

  6. Hydrogen atom chemisorption and diffusion on neutral and charged polycyclic aromatic hydrocarbon (PAH) flakes in the interstellar media

    NASA Astrophysics Data System (ADS)

    Sánchez, Morella; Ruette, Fernando

    2015-11-01

    Hydrogen atoms diffusion on a hydrocarbon flake is studied using PM6 and DFT programs using as models neutral and positive charged coronene. Chemisorption and potential energy surfaces and diffusion paths were calculated. Results show that diffusion occurs through Csbnd C bonds. Edge effects are very important because the most stable adsorptions occur on hydrogenated border sites, so the diffusion is biased toward edge sites. Charged coronene has stronger adsorption energies than neutral systems. A large difference between barriers in neutral and charged systems was not observed in most of the cases. A discussion of modeling diffusion processes is presented.

  7. Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2007-07-01

    We present moderate-resolution spectroscopy of extraplanar diffuse ionized gas (EDIG) emission in the edge-on spiral galaxy NGC 4302. The spectra were obtained with the SparsePak integral field unit (IFU) at the WIYN Observatory. The wavelength coverage of the observations includes the [N II] λ6548, 6583, Hα, and [S II] λ6716, 6731 emission lines. The spatial coverage of the IFU includes the entirety of the EDIG emission noted in previous imaging studies of this galaxy. The spectra are used to construct position-velocity (PV) diagrams at several ranges of heights above the midplane. Azimuthal velocities are directly extracted from the PV diagrams using the envelope-tracing method and indicate an extremely steep drop-off in rotational velocity with increasing height, with magnitude ~30 km s-1 kpc-1. We find evidence for a radial variation in the velocity gradient on the receding side. We have also performed artificial observations of galaxy models in an attempt to match the PV diagrams. The results of a statistical analysis also favor a gradient of ~30 km s-1 kpc-1. We compare these results with an entirely ballistic model of disk-halo flow and find a strong dichotomy between the observed kinematics and those predicted by the model. The disagreement is worse than we have found for other galaxies in previous studies. The conclusions of this paper are compared to results for two other galaxies, NGC 5775 and NGC 891. We find that the vertical gradient in rotation speed, per unit EDIG scale height, for all three galaxies is consistent with a constant magnitude (within the errors) of approximately 15-25 km s-1 per scale height, independent of radius. This relationship is also true within the galaxy NGC 4302. We also discuss how the gradient depends on the distribution and morphology of the EDIG and the star formation rates of the galaxies, and consequences for the origin of the gas.

  8. Gas Breakdown, Low Current diffuse discharges, Townsend's theory: A Friday afternoon experiment

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran

    2013-09-01

    Numerous aspects of the ``standard model'' of gas breakdown have been addressed in the past 20 years by Art Phelps and his coworkers. First, his studies of excitation coefficients were carried out in the Townsend regime where electric field is quasi uniform so swarm like conditions prevail. These studies have been extended to very high E/N where non-hydrodynamic effects were to be observed but were overshadowed in most cases by fast neutral excitation. Absolute calibration of emission provided a basis to obtain fast neutral cross section sets. This work necessarily overlapped with the left hand side of the Paschen curve and in extension of an ill fated data gathering experiment a review was made of all the processes that contribute to the secondary electron emission. It was shown that, if one includes all the processes, it is possible to fit the available breakdown data, Paschen curves and effective electron yields by binary collision data obtained in separate experiments. While performing measurements in the low current diffuse (Townsend) regime one can find negative differential resistance and oscillations. Both were explained by taking detailed information on properties of particles close to the cathode and small perturbations to the local field by the growing space charge. Last but not the least Phelps managed, with his coworkers to provide a phenomenology and predictions of the anomalously broadened profiles often observed in various discharges. In all those cases deep knowledge of atomic and molecular physics and of gas discharges were combined with best available data to produce quantitative (quantitative, quantitative) agreement with experiments. Coworkers: Dragana Maric. Supported by MPNTR project ON171037 and SANU project 155.

  9. Estimating oxygen diffusive conductances of gas-exchange systems: A stereological approach illustrated with the human placenta.

    PubMed

    Mayhew, Terry M

    2014-01-01

    For many organisms, respiratory gas exchange is a vital activity and different types of gas-exchange apparatus have evolved to meet individual needs. They include not only skin, gills, tracheal systems and lungs but also transient structures such as the chorioallantois of avian eggs and the placenta of eutherian mammals. The ability of these structures to allow passage of oxygen by passive diffusion can be expressed as a diffusive conductance (units: cm(3) O2 min(-1) kPa(-1)). Occasionally, the ability to estimate diffusive conductance by physiological techniques is compromised by the difficulty of obtaining O2 partial pressures on opposite sides of the tissue interface between the delivery medium (air, water, blood) and uptake medium (usually blood). An alternative strategy is to estimate a morphometric diffusive conductance by combining stereological estimates of key structural quantities (volumes, surface areas, membrane thicknesses) with complementary physicochemical data (O2-haemoglobin chemical reaction rates and Krogh's permeability coefficients). This approach has proved valuable in a variety of comparative studies on respiratory organs from diverse species. The underlying principles were formulated in pioneering studies on the pulmonary lung but are illustrated here by taking the human placenta as the gas exchanger. PMID:23069190

  10. Helium Ionization in the Diffuse Ionized Gas surrounding Ultra-compact HII regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, Edward B.

    2016-01-01

    We observed radio recombination lines (RRLs) from regions surrounding three Ultra-compact HII (UCHII) regions at frequencies near 5 GHz. The observations were made with the Green Bank Telescope (GBT). From existing observations we know that helium in the diffuse ionized gas (DIR), located far from the ionizing source, is not fully ionized. The objectives of our observations are to determine (a) the distance from the ionizing stars where helium is under ionized for a variety of physical conditions and (b) whether the helium ionization depends on the age of the ionizing star. With these objectives, we observed RRLs towards 16 positions in the envelops of UCHII regions G10.15-0.34, G23.46-0.20 and G29.96-0.02. Helium lines were detected toward 10 of the observed positions and hydrogen RRLs were detected toward all the observed positions. The observed ratio of ionized helium to ionized hydrogen (He^+/H^+) at the positions where helium lines are detected range between 0.03 and 0.09. At positions where helium lines are not detected the upper limit on the ratio is ~ 0.05. We discuss the dependence of He^+/H^+ ratio on the distance from and age of the ionizing star clusters in the observed sources.

  11. Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting

    DOE PAGESBeta

    Mo, Jingke; Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Jr, Johney Boyd; Zhang, Feng-Yuan

    2016-06-13

    Liquid/gas diffusion layers (LGDLs) play a crucial role in electrochemical energy technology and hydrogen production, and are expected to simultaneously transport electrons, heat, and reactants/products with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in proton exchange membrane fuel cells (PEMFCs), are unsuitable for PEM electrolyzer cells (PEMECs). In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm2 were asmore » low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 μm of conventional LGDLs to 25 μm will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance.« less

  12. Purging of a tank-mounted multilayer insulation system by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    The investigation was conducted on a multilayer insulation (MLI) system mounted on a spherical liquid hydrogen propellant tank. The MLI consisted of two blankets of insulation each containing 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The gaseous nitrogen initially contained within the MLI system and vacuum chamber was purged with gaseous helium introduced both underneath the MLI and into the vacuum chamber. The MLI panels were assumed to be purged primarily by means of gas diffusion. Overall, test results indicated that nitrogen concentrations well below 1 percent could be achieved everywhere within the MLI system. Typical times to achieve 1 percent nitrogen concentration within the MLI panels ranged from 69 minutes at the top of the tank to 158 minutes at the bottom of the tank. Four space-hold thermal performance tests indicated no significant thermal degradation of the MLI system had occurred due to the purge tests conducted. The final measured heat input attributed to the MLI was 7.23 watts as compared to 7.18 watts for the initial baseline thermal performance test.

  13. Valence and diffuse-bound anions of noble-gas complexes with uracil

    NASA Astrophysics Data System (ADS)

    Streit, Lívia; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2012-11-01

    Valence-bound (VB) and diffuse-bound (DB) anions of noble-gas (Ar, Kr, and Xe) complexes with uracil have been studied with ab initio methods. MP2 optimizations revealed minima corresponding to anions of both kinds in each case. Coupled-cluster singles and doubles with perturbative triples, CCSD(T), and electron propagator single-point calculations were performed in order to assess vertical and adiabatic electron detachment energies of these complexes. Ab initio electron propagator calculations employed the outer valence Green's function and partial third-order approximations, and the algebraic diagrammatic construction in third order. Basis set effects have been systematically examined. DB anions of all three complexes were adiabatically bound, with calculated adiabatic electron attachment energies below 0.06 eV. Corresponding vertical electron detachment energies were below 0.1 eV. As to VB anions, only the Xe complex had a positive adiabatic electron detachment energy, of 0.01 eV, with a corresponding vertical electron detachment energy of 0.6 eV. These computational findings are consistent with the interpretation of results previously obtained experimentally by Hendricks et al.

  14. Wetting properties of gas diffusion layers: Application of the Cassie-Baxter and Wenzel equations

    NASA Astrophysics Data System (ADS)

    Parry, Valérie; Berthomé, Grégory; Joud, Jean-Charles

    2012-05-01

    In this paper, the wetting behaviours of as received and aged commercial 10% PTFE loaded gas diffusion layer were studied using the Wilhelmy plate method with liquid water temperature ranging from 5 to 60 °C. Comparison were made with an untreated sample and a PTFE smooth plate. These experimental results, supported by chemical and morphological surface characterizations, were discussed in the frame of the Wenzel and Cassie-Baxter regimes. For each wetting regime, surface fraction of solid, PTFE and carbon fibres and/or roughness coefficient were estimated by solving a system of Cassie-Baxter and/or Wenzel equations. The transition to one wetting regime to the other is also commented. Finally, the effects of ageing and of water temperature were studied. Ageing was found to alter the wetting behaviour of the GDL through its chemical degradation. An erosion and the crazing of the PTFE coating and an oxidation of the carbon fibres were pointed out. The decrease of the water surface tension linked to an increase of its temperature is also shown to lead to a better wetting and to an increase of the solid surface fraction value. This effect is reinforced by GDL ageing.

  15. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    SciTech Connect

    Mukherjee, Partha P; Kang, Qinjun; Schulz, Volker P; Wang, Chao - Yang; Becker, Jurgen; Wiegmann, Andreas

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  16. Micro computed tomography and CFD simulation of drop deposition on gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Guilizzoni, M.; Santini, M.; Lorenzi, M.; Knisel, V.; Fest-Santini, S.

    2014-11-01

    Fuel cells are electrochemical power generation system which may achieve high energy efficiencies with environmentally friendly emissions. Among the different types, Proton Exchange Membrane fuel cells (PEMFC) seem at present one of the most promising choices. A very important component of a PEMFC is the gas diffusion layer (GDL), which has the primary role of managing water in the cell, allowing reactant gases transport to the catalyst layer while keeping the membrane correctly hydrated and preventing electrode flooding. Therefore, GDLs have to be porous and very hydrophobic. Carbon clothes or carbon papers coated with a hydrophobizing agent - typically a fluoropolymer - are used. Given the complex chemistry and morphology of the GDLs, wettability analyses on them present some critical issues when using the conventional contact angle measurement techniques. In this paper, the deposition of a drop on a GDL (produced using polytetrafluoroethylene-co-perfluoroalcoxy vinyl ether as the fluorinated polymer) was investigated by means of micro computed tomography (microCT) and numerical simulation. The microCT facility operational at the University of Bergamo was used to acquire a 3D tomography of a water drop deposed on a sample GDL. The reconstructed drop dataset allows thorough understanding of the real drop shape, of its contact area and contact line. The GDL dataset was used to create a realistic mesh for the numerical simulation of the drop deposition, which was performed using the OpenFOAM® interFOAM solver.

  17. The kinetic Sunyaev-Zel'dovich effect from the diffuse gas in the Local Group

    SciTech Connect

    Rubin, Douglas; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2014-01-01

    Since the Local Group (LG) of galaxies moves with a bulk velocity with respect to the cosmic microwave background radiation (CMB), free electrons in its gaseous halo should imprint large-scale non-primordial temperature shifts in the CMB via the kinetic Sunyaev-Zel'dovich (kSZ) effect. By modeling the distribution of gas in the LG halo and using its inferred velocity with respect to the CMB, we calculate the resulting kSZ signal from the diffuse LG medium. We find that it is dominated by a hot spot ∼ 10° in size in the direction of M31, where the optical depth of free electrons is the greatest. By performing a correlation analysis, we find no statistical evidence that the kSZ signal from model of the LG halo is embedded in the CMB temperature map measured by the Planck satellite. We constrain the amount of mass in the LG halo by limiting the kSZ temperature shift around the hot spot to be smaller than the observed temperature shift in the Planck map. We find the tightest constraints for models where the halo mass is highly concentrated, with the mass limited to roughly 2.5–5 × 10{sup 12}M{sub ⊙}, but note that halos with such high concentrations are rare.

  18. Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu

    2014-06-01

    A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.

  19. Deformation of PEM fuel cell gas diffusion layers under compressive loading: An analytical approach

    NASA Astrophysics Data System (ADS)

    Norouzifard, Vahid; Bahrami, Majid

    2014-10-01

    In the PEM fuel cell stack, the fibrous porous gas diffusion layer (GDL) provides mechanical support for the membrane assembly against the compressive loads imposed by bipolar plates. In this study, a new mechanistic model is developed using fundamental beam theory that can accurately predict the mechanical deflection of GDL under compressive loads. The present analytical model is built on a unit cell approach, which assumes a simplified geometry for the complex and random GDL microstructure. The model includes salient microstructural parameters and properties of the fibrous porous medium including: carbon fiber diameter, fiber elastic modulus, pore size distribution, and porosity. Carbon fiber bending is proved to be the main deformation mechanism at the unit cell level. A comprehensive optical measurement study with statistical analysis is performed to determine the geometrical parameters of the model for a number of commercially available GDL samples. A comparison between the present model and our experimental stress-strain data shows a good agreement for the linear deformation region, where the compressive pressure is higher than 1 MPa.

  20. Generation of a nonequlibrium plasma in heterophase atmospheric-pressure gas-liquid media and demonstration of its sterilization ability

    SciTech Connect

    Akishev, Yu. S.; Grushin, M. E.; Karal'nik, V. B.; Monich, A. E.; Pan'kin, M. V.; Trushkin, N. I.; Kholodenko, V. P.; Chugunov, V. A.; Zhirkova, N. A.; Irkhina, I. A.; Kobzev, E. N.

    2006-12-15

    Results are presented from experiments on the generation of a low-temperature nonequilibrium plasma in atmospheric-pressure heterophase gas-liquid media of different compositions: (i) a liquid with air bubbles and (ii) air with liquid aerosol. To illustrate possible application of a low-temperature plasma in a heterophase medium, experiments on the inactivation of some microorganisms by a low-temperature plasma have been performed.

  1. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.

    PubMed

    Mandelis, Andreas; Feng, Chris

    2002-02-01

    A three-dimensional theory of the frequency-domain thermal-wave field generated inside a turbid medium with optical and thermal properties of human tissue is presented. The optical source is treated as a three-dimensional harmonically modulated diffuse-photon-density wave (DPDW) field in the diffusion approximation of the radiative transfer theory. Unlike earlier Green-function-based theoretical models, exact boundary conditions are used based on the requirement that there should be no diffuse photon intensity entering the turbid medium from the outside. Explicit analytical expressions for the DPDW field and for the dependent thermal-wave field are obtained in the spatial Hankel-transform domain. The formalism is further extended to the calculation of the infrared photothermal radiometric signal arising from the nonradiatively generated thermal-wave distribution in turbid media with instantaneous nonradiative deexcitation as well as in media with nonzero fluorescence relaxation lifetimes. Numerical inversions have been performed and presented as examples of selected special cases of the theory. It is found that the present theory with exact DPDW-field boundary conditions is valid throughout the entire domain of the turbid medium, with the exception of the very near-surface ballistic photon "skin layer" (7-50 microm). Photothermal radiometric signals were found to be more reliably predicted than DPDW signals within this layer, due to the depth-integration nature of this detection methodology. PMID:11863565

  2. Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: Effect of local saturation and application to macroscopic continuum models

    NASA Astrophysics Data System (ADS)

    García-Salaberri, Pablo A.; Gostick, Jeff T.; Hwang, Gisuk; Weber, Adam Z.; Vera, Marcos

    2015-11-01

    Macroscopic continuum models are an essential tool to understand the complex transport phenomena that take place in gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs). Previous work has shown that macroscopic models require effective properties obtained under uniform saturation conditions to get a consistent physical formulation. This issue, mostly unappreciated in the open literature, is addressed in detail in this work. To this end, lattice Boltzmann simulations were performed on tomographic images of dry and water-invaded carbon-paper GDL subsamples with nearly uniform porosity and saturation distributions. The computed effective diffusivity shows an anisotropic dependence on local porosity similar to that reported for morphologically analogous GDLs. In contrast, the dependence on local saturation is rather isotropic, following a nearly quadratic power law. The capability of the local correlations to recover the layer-scale properties obtained from inhomogeneous GDLs is checked by global averaging. Good agreement is found between the upscaled results and the diffusivity data of the GDL from which the present subsamples were taken, as well as other global data presented in the literature. A higher blockage effect of local saturation is, however, expected for the under-the-rib region in operating PEFCs.

  3. Warm and Diffuse Gas and High Ionization Rate Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Oka, T.; Morong, C. P.; Geballe, T. R.; Indriolo, N.; McCall, B. J.; Goto, M.; Usuda, T.

    2011-06-01

    Using 12 newly found bright dust-embedded stars distributed from 140 pc West to 120 pc East of Sgr A*, we have observed spectra of H_3^+ and CO in the Central Molecular Zone of the Galactic center. Sightlines toward the 12 stars have been observed at the Gemini South Observatory on Cerro Pachon, Chile, and those for 2 of the stars at the Subaru Telescope on Mauna Kea Hawaii. This has extended our previous longitudinal coverage by a factor of 7. Although complete coverage of various transitions have yet to be made for some stars, almost all sightlines showed high total column densities of H_3^+ and highly populated (J, K) = (3, 3) metastable level, demonstrating the prevalence of the warm and diffuse gas previously observed from the center to 30 pc East and high ionization rate in the environment. A few sightlines did not show strong H_3^+ absorptions. It remains to be seen whether this is due to the radial and transverse location of the stars or lack of H_3^+. While the velocity profiles of H_3^+ toward stars from the center to 30 pc East are similar apart from subtle variations, the velocity profiles of the wider regions vary greatly ^a. A remarkable similarity has been noted between the velocity profile of H_3^+ toward a star nicknamed Iota and those of H_2O^+ and 13CH^+ observed toward Sgr B2 by the HIFI instrument of the Herschel Space Observatory. Although all these ions exist in diffuse environment, this is surprising since H_3^+ favors environments with high H_2 fraction f(H_2) while H_2O^+ and CH^+ favors low f(H_2). Also the peak of Sgr B2 and Iota are separated by 17 pc. Possible interpretations of this will be discussed. T. R. Geballe and T. Oka, ApJ, 709, L70 (2010). M. Goto, T. Usuda, T. R. Geballe, N. Indriolo, B. J. McCall, Th. Henning, and T. Oka, PASJ (2011) in press. P. Schilke, et al., A&A, 521, L11 (2010). E. Falgarone, private communication

  4. Apparent diffusion coefficient of hyperpolarized (3)He with minimal influence of the residual gas in small animals.

    PubMed

    Carrero-González, L; Kaulisch, T; Ruiz-Cabello, J; Pérez-Sánchez, J M; Peces-Barba, G; Stiller, D; Rodríguez, I

    2012-09-01

    The apparent diffusion coefficient (ADC) of hyperpolarized (HP) gases is a parameter that reflects changes in lung microstructure. However, ADC is dependent on many physiological and experimental variables that need to be controlled or specified in order to ensure the reliability and reproducibility of this parameter. A single breath-hold experiment is desirable in order to reduce the amount of consumed HP gas. The application of a positive end-expiratory pressure (PEEP) causes an increase in the residual gas volume. Depending on the applied PEEP, the ratio between the incoming and residual gas volumes will change and the ADC will vary, as long as both gases do not have the same diffusion coefficient. The most standard method for human applications uses air for breathing and a bolus of pure HP (3)He for MRI data acquisition. By applying this method in rats, we have demonstrated that ADC values are strongly dependent on the applied PEEP, and therefore on the residual gas volume in the lung. This outcome will play an important role in studies concerning certain diseases, such as emphysema, which is characterized by an increase in the residual volume. Ventilation with an oxygen-helium mixture (VOHeM) is a proposed single breath-hold method that uses two different gas mixtures (O(2)-(4)He for ventilation and HP (3)He-N(2) for imaging). The concentration of each gas in its respective mixture was calculated in order to obtain the same diffusion coefficient in both mixtures. ADCs obtained from VOHeM are independent of PEEP, thus minimizing the effect of the different residual volumes. PMID:22275333

  5. Monte-Carlo analysis of rarefied-gas diffusion including variance reduction using the theory of Markov random walks

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.

    1973-01-01

    Molecular diffusion through a rarefied gas is analyzed by using the theory of Markov random walks. The Markov walk is simulated on the computer by using random numbers to find the new states from the appropriate transition probabilities. As the sample molecule during its random walk passes a scoring position, which is a location at which the macroscopic diffusing flow variables such as molecular flux and molecular density are desired, an appropriate payoff is scored. The payoff is a function of the sample molecule velocity. For example, in obtaining the molecular flux across a scoring position, the random walk payoff is the net number of times the scoring position has been crossed in the positive direction. Similarly, when the molecular density is required, the payoff is the sum of the inverse velocity of the sample molecule passing the scoring position. The macroscopic diffusing flow variables are then found from the expected payoff of the random walks.

  6. An experimental investigation of gas-particle flows through diffusers in the freeboard region of fluidized beds

    SciTech Connect

    Kale, S.R.; Eaton, J.K.

    1985-09-01

    Results reported in Kale and Eaton showed that very-wide-angle diffusers located in the freeboard above a fluidized bed substantially reduce elutriation--a resul that was contrary to intuition. The present experiment was designed to explain these results. One set of measurements was made with the bed in place and a second set with the bed material removed. The flow structure was drastically altered by the presence of the fluidized bed below the diffuser. A simple analysis suggests that suspended particles in the diffuser flow are responsible for the change in the flow structure. Momentum loss from the gas to the suspended particles reduces the pressure gradient, thereby eliminating the tendency to separate.

  7. Effect of through-plane polytetrafluoroethylene distribution in gas diffusion layers on performance of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Iwamura, Takuya; Someya, Satoshi; Munakata, Tetsuo; Nakano, Akihiro; Heo, Yun; Ishida, Masayoshi; Nakajima, Hironori; Kitahara, Tatsumi

    2016-02-01

    This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE.

  8. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models

    SciTech Connect

    Mieussens, Luc

    2013-11-15

    The unified gas kinetic scheme (UGKS) of K. Xu et al. (2010) [37], originally developed for multiscale gas dynamics problems, is applied in this paper to a linear kinetic model of radiative transfer theory. While such problems exhibit purely diffusive behavior in the optically thick (or small Knudsen) regime, we prove that UGKS is still asymptotic preserving (AP) in this regime, but for the free transport regime as well. Moreover, this scheme is modified to include a time implicit discretization of the limit diffusion equation, and to correctly capture the solution in case of boundary layers. Contrary to many AP schemes, this method is based on a standard finite volume approach, it does neither use any decomposition of the solution, nor staggered grids. Several numerical tests demonstrate the properties of the scheme.

  9. Gas exchange dependency on diffusion coefficient: direct /sup 222/Rn and /sup 3/He comparisons in a small lake

    SciTech Connect

    Torgersen, T.; Mathieu, G.; Hesslein, R.H.; Broecker, W.S.

    1982-01-20

    A direct field comparison was conducted to determine the dependency of gas exchange coefficient (k/sub x/) on the diffusion coefficient (D/sub x/). The study also sought to confirm the enhanced vertical exchange properties of limnocorrals and similar enclosures. Gas exchange coefficients for /sup 222/Rn and /sup 3/He were determined in a small northern Ontario lake, using a /sup 226/Ra and /sup 3/H spike to gain the necessary precision. The results indicate that the gas exchange coefficient is functionally dependent on the diffusion coefficient raised to the 1.22/sub -35//sup + > 12/ power (k/sub x/ = f(D/sub x//sup 1.22)), clearly supporting the stagnant film model of gas exchange. Limnocorrals were found to have gas exchange rates up to 1.7 times higher than the whole lake in spite of the observation of more calm surface conditions in the corral than in the open lake. 33 references, 6 figures, 8 tables.

  10. Filling factors and scale heights of the diffuse ionized gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Mitra, D.; Mueller, P.

    2006-01-01

    The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (\\cite{cordes+lazio02}) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b|>5° and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight /line{f}v and the mean density in ionized clouds /line{n}c are inversely correlated: /line{f}v(/line{n}c ) = (0.0184± 0.0011) /line{n}c{ -1.07± 0.03} for the ranges 0.03 < /line{n}c < 2 {cm-3 and 0.8 > /line{f}v > 0.01. This relationship is very tight. The inverse correlation of /line{f}v and /line{n}c causes the well-known constancy of the average electron density along the line of sight. As /line{f}v(z) increases with distance from the Galactic plane |z|, the average size of the ionized clouds increases with |z|. (2) For |z| < 0.9 kpc the local density in clouds nc (z) and local filling factor f(z) are inversely correlated because the local electron density ne (z) = f(z) nc (z) is constant. We suggest that f(z) reaches a maximum value of >0.3 near |z| = 0.9 kpc, whereas nc (z) continues to decrease to higher |z|, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z| < 0.9 kpc the local distributions nc (z), f(z) and ne2(z) have the same scale height which is in the range 250 < h ⪉ 500 pc. (4) The average degree of ionization of the warm atomic gas /line{I}w (z) increases towards higher |z| similarly to /line{f}v (z). Towards |z| = 1 kpc, /line{f}v (z) = 0.24± 0.05 and /line{I}w (z) = 0.24± 0.02. Near |z| = 1 kpc most of the warm, atomic hydrogen is ionized.

  11. Relative gas diffusivity as a controller of soil N2 and N2O fluxes

    NASA Astrophysics Data System (ADS)

    Clough, Tim; Balaine, Nimlesh; Beare, Mike; Thomas, Steve

    2015-04-01

    Animal grazing may induce soil compaction and has been shown to enhance emissions of the greenhouse gas nitrous oxide (N2O). The dominant substrate for N2O production is urea, supplied to the soil in ruminant urine. While studies have examined the effects of water-filled pore space on N2O emissions there has been less attention paid to the role of soil physical properties, such as relative gas diffusivity (Dp/Do), on N2O emissions and associated emissions of dinitrogen (N2). Three experiments were performed on soil cores maintained at a range of soil bulk densities (1.1 to 1.5 Mg/m3) and soil matric potentials (-10 to -0.2 kPa). These soil cores received urea at 700 kg N/ha to simulate a urine deposition event. Using the 15N tracer technique we measured N2 and N2O fluxes in order to investigate the role of soil Dp/Do as a controlling factor the magnitude of N2 and N2O fluxes and the reduction of N2O. As soil compaction and soil moisture contents increased soil Dp/Do declined. This in turn resulted in slower rates of nitrification. The mean cumulative fluxes of N2O, as a percentage of N applied, ranged from <1 to 16% after 35 days. Cumulative N2 fluxes as a percentage of N applied, ranged from <1 to 60% after 35 days. Soil compaction and soil matric potential interacted to influence Dp/Do which in turn was seen to be a strong determinant of the magnitude of both N2O and N2 fluxes. As Dp/Do values decreased a critical value was reached where N2O fluxes rapidly switched from being at a maximum to a minimum while at the same time N2 production intensified. This was also reflected in the N2:N2O ratios, based on cumulative fluxes, which ranged from <1 to 25. When compared with water-filled pore space the Dp/Do variable proved to be a better predictor of the switch from N2O production to N2 production.

  12. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons. PMID:16784271

  13. A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream

    SciTech Connect

    E.A. Boiko; S.V. Pachkovskii

    2008-12-15

    A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.

  14. Integral Field Unit Observations of NGC 891: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2006-08-01

    We present high and moderate spectral resolution spectroscopy of diffuse ionized gas (DIG) emission in the halo of NGC 891. The data were obtained with the SparsePak integral field unit at the WIYN Observatory. The wavelength coverage includes the [N II] λλ6548, 6583, Hα, and [S II] λλ6716, 6731 emission lines. Position-velocity (PV) diagrams, constructed using spectra extracted from four SparsePak pointings in the halo, are used to examine the kinematics of the DIG. Using two independent methods, a vertical gradient in azimuthal velocity is found to be present in the northeast quadrant of the halo, with magnitude approximately 15-18 km s-1 kpc-1, in agreement with results from H I observations. The kinematics of the DIG suggests that this gradient begins at approximately 1 kpc above the midplane. In another part of the halo, the southeast quadrant, the kinematics is markedly different and suggest rotation at about 175 km s-1, much slower than the disk but with no vertical gradient. We use an entirely ballistic model of disk-halo flow in an attempt to reproduce the kinematics observed in the northeast quadrant. Analysis shows that the velocity gradient predicted by the ballistic model is far too shallow. Based on intensity cuts made parallel to the major axis in the ballistic model and an Hα image of NGC 891 from the literature, we conclude that the DIG halo is much more centrally concentrated than the model, suggesting that hydrodynamics dominate over ballistic motion in shaping the density structure of the halo. Velocity dispersion measurements along the minor axis of NGC 891 seem to indicate a lack of radial motions in the halo, but the uncertainties do not allow us to set firm limits.

  15. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  16. Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells (PEFCs)

    NASA Astrophysics Data System (ADS)

    Mortazavi, Mehdi; Tajiri, Kazuya

    2014-01-01

    The dynamic behavior of a liquid water droplet emerging and detaching from the surface of the gas diffusion layer (GDL) is investigated. The droplet growth and detachment are studied for different polytetrafluoroethylene (PTFE) contents within the GDL and for different superficial gas velocities flowing in the gas channel. To simulate the droplet behavior in the cathode and anode of an operating polymer electrolyte fuel cell, separate experiments are conducted with air and hydrogen being supplied in the gas channel, respectively. Both the superficial gas velocity and the PTFE content within the GDL are found to impact the droplet detachment diameter. Increasing the superficial gas velocity increases the drag force applied on the droplet sitting on the GDL surface. It is observed that the droplet detaches at a smaller diameter for higher superficial gas velocities. The droplets also detach at smaller diameters from GDLs with a higher amount of PTFE. Such observation is justified according to two different points of view: (1) heterogeneous through-plane PTFE distribution through the GDL and (2) reduced GDL surface roughness caused by PTFE loading.

  17. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  18. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k

  19. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  20. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2001-10-15

    The wettability of Berea and chalk samples for gas-oil and gas-water fluids were altered from strong liquid-wetting to intermediate gas-wetting. Two polymers, FC-722 and FC-759, were used to alter the wettability. FC-759 is soluble in water and some 20 times less expensive than FC-722. Gas and liquid relative permeabilities were measured before and after wettability alteration. The results demonstrate a significant increase in liquid-phase relative permeability. Gas-phase relative permeability for a fixed saturation may increase or decrease. However, because of the very high liquid mobility and reduced liquid saturation, the gas mobility also increases for a fixed pressure drop. A number of liquid injectivity tests were also carried out. The results reveal that the liquid-phase mobility can increase significantly when the wettability of rocks is altered from strong liquid-wetting to intermediate gas-wetting. All the results show clearly that the application of wettability alteration to intermediate gas-wetting may significantly increase deliverability in gas condensate reservoirs.

  1. Temperature, Density, Ionization Rate, and Morphology of Diffuse Gas Near the Galactic Center Probed by H_3^+

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Goto, Miwa; Usuda, Tomonori

    2014-06-01

    Since last year, infrared spectra of H_3^+ and CO have been obtained toward nine stars (designated by us α+, β, γ, γ-, δ, θ, κ, λ, and λ-) along the Galactic plane from 138 pc to the west of Sgr A* to 115 pc east, using IRCS of the Subaru Telescope and GNIRS of the Gemini North Observatory. All of the objects lie within the Central Molecular Zone (CMZ), a region of radius ˜150 pc at the center of the Galaxy. All sightlines except that toward λ (a red giant not suitable for H_3^+ spectroscopy) have high H_3^+ column densities on the order of a few times 1015 cm-2. The metastable R(3,3)^l absorption line was sought on seven sightlines (α+, β, γ, γ-, δ, θ, κ), each of which showed significant signal except κ for which detection of this line was inconclusive. These results indicate that the long (at least several tens of parsecs) columns of warm (T ˜ 250 K) and diffuse (n ≤ 100 cm-3) gas in which a high ionization rate of ζ of a few times 10-15 s-1 exists, found earlier by us on sightlines passing through the central 30 pc of the CMZ are present over nearly the entire CMZ. The velocity profiles of the H_3^+ absorption lines provide information on the morphology of the diffuse gas in the CMZ. The velocity profile toward star λ- (2MASS J17482472-2824313) observed by GNIRS is particularly noteworthy. The sightline toward this star, located 115 pc to the east of Sgr A*, shows the presence of warm diffuse gas near 0 radial velocity and complements an identical result at the west end (on sightlines toward α+ and previously observed sources α and β). Stars nearer to the center of the CMZ show the warm diffuse gas at negative velocities only. Although many more stars need to be observed, the results to date suggest the existence of an expanding molecular ring of diffuse gas which is, unlike previously reported, not rotating but purely expanding. Oka, T., Geballe, T. R., Goto, M., Usuda, T., and McCall, B. J. 2005, ApJ, 632 882 Goto, M., Usuda, T

  2. Experimental tracking of the evolution of foam in porous media

    SciTech Connect

    Cohen, D; Patzek, T.W.; Radke, C.J.

    1996-07-01

    The authors discuss the experiments that have been done to track the effects of diffusion of gas in foams trapped in porous media. They describe several types of experiments and discuss the difficulties that prevent quantitative results from being obtained in most cases. However, the experiments do help them understand the physics and diffusion-driven coarsening of foams trapped in porous media. This understanding is necessary to simulate the behavior of these foams and predict the mobilization characteristics of foam in porous media. At the end of this paper, they compare the trends and predictions resulting from the experimental work to the predictions of the models which are presented elsewhere.

  3. Effects of inhomogeneous partial absorption and the geometry of the boundary on population evolution of molecules diffusing in general porous media

    NASA Astrophysics Data System (ADS)

    Ryu, Seungoh

    2009-08-01

    We consider aspects of the population dynamics, inside a bound domain, of diffusing agents carrying an attribute which is stochastically destroyed upon contact with the boundary. The normal mode analysis of the relevant Helmholtz equation under the partially absorbing, but uniform, boundary condition provides a starting framework in understanding detailed evolution dynamics of the attribute in the time domain. In particular, the boundary-localized depletion has been widely employed in practical applications that depend on geometry of various porous media such as rocks, cement, bones, and cheese. While direct relationship between the pore geometry and the diffusion-relaxation spectrum forms the basis for such applications and has been extensively studied, relatively less attention has been paid to the spatial variation in the boundary condition. In this work, we focus on the way the pore geometry and the inhomogeneous depletion strength of the boundary become intertwined and thus obscure the direct relationship between the spectrum and the geometry. It is often impossible to gauge experimentally the degree to which such interference occurs. We fill this gap by perturbatively incorporating classes of spatially varying boundary conditions and derive their consequences that are observable through numerical simulations or controlled experiments on glass bead packs and artificially fabricated porous media. We identify features of the spectrum that are most sensitive to the inhomogeneity, apply the method to the spherical pore with a simple hemispherical binary distribution of the depletion strength, and obtain bounds for the induced change in the slowest relaxation mode.

  4. Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, Arunachala M.; Munukutla, Lakshmi

    Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack ® carbon) and carbon nano-fibers. The GDL samples' characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.

  5. Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Chen, Zhenqian

    2015-07-01

    A lattice Boltzmann method (LBM) of multicomponent diffusion is developed to examine multicomponent, noncontinuum mass diffusion in porous media. An additional collision interaction is proposed to mimic the Knudsen diffusion caused by the collision interaction between gas molecules and solid pore walls. Using the improved LBM model, the ternary mixtures diffusion is simulated in fractal porous structures which are reconstructed by the random midpoint displacement algorithm. The effects of fractal characteristics and Knudsen diffusion resistance on the multicomponent diffusion in porous structures are investigated and discussed. The results indicate that the smaller fractal dimension enhances the diffusion rate of gas mixtures in fractal porous structures. When the dimensionless Knudsen diffusion coefficient is less than 20, the presence of Knudsen diffusion resistance reduces the rate of mass diffusion in porous structures obviously, especially for the species with larger molecular weight.

  6. Evaluation of water transport in PEMFC gas diffusion layers using image analysis

    NASA Astrophysics Data System (ADS)

    Daino, Michael Mario

    Liquid water transport through the gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) was investigated through three interrelated studies utilizing the tools of image processing. First, a new framework and model for the digital generation and characterization of the microstructure of GDL materials with localized binder and polytetrafluoroethylene (PTFE) distributions were developed using 3D morphological imaging processing. The new generation technique closely mimics manufacturing processes and produces realistic 3D phase-differentiated digital microstructures in a cost- and time- effective manner. The generated distributions of hydrophobic (PTFE) and hydrophilic (carbon) regions representative of commercial GDL materials provides water transport modeling efforts with more accurate geometries to improve PEMFC water management. Second, through-plane transport in an operating PEMFC was investigated by developing and testing a transparent (visible and infrared) fuel cell. Visible observations and subsequent video processing revealed condensation of microdroplets on the GDL and implied the existence of condensation within the GDL. Temperature gradients across the cathode GDL under realistic operating conditions were obtained in a noninvasive manner using infrared imaging and subsequent image analysis. Recommendations for improving accuracy of PEMFC temperature measurements using infrared imaging were made. The final contribution of this work was the measurement and analysis of water breakthrough dynamics across GDL materials with and without microporous layers (MPLs). Dynamic breakthrough events, or recurrent breakthroughs, were observed for all GDL material investigated indicating the breakdown and re-build of water paths through the GDL caused by an intermittent water drainage process from the GDL surface. GDL materials without an MPL exhibited a dynamic breakthrough location phenomenon and significantly elevated water saturations. The results

  7. Densities and filling factors of the diffuse ionized gas in the Solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Müller, P.

    2008-10-01

    Aims: We analyse electron densities and filling factors of the diffuse ionized gas (DIG) in the Solar neighbourhood. Methods: We have combined dispersion measures and emission measures towards 38 pulsars at distances known to better than 50%, from which we derived the mean density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93± 0.13 kpc and the midplane electron density is 0.023± 0.004 cm-3, in agreement with earlier results. The average density along the line of sight is < n_e> = 0.018± 0.002 cm-3 and is nearly constant. Since < n_e> = F_vN_c, an inverse relationship between Fv and Nc is expected. We find F_v(N_c) = (0.011± 0.003) N_c-1.20± 0.13, which holds for the ranges N_c= 0.05-1 cm-3 and F_v= 0.4-0.01. Near the Galactic plane the dependence of Fv on Nc is significantly stronger than away from the plane. Fv does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08± 0.02 is considerable. The total pathlength through the ionized regions increases linearly to about 80 pc towards |z| = 1 kpc. Conclusions: Our study of Fv and Nc of the DIG is the first one based on a sample of pulsars with known distances. We confirm the existence of a tight, nearly inverse correlation between Fv and Nc in the DIG. The exact form of this relation depends on the regions in the Galaxy probed by the pulsar sample. The inverse F_v-Nc relation is consistent with a hierarchical, fractal density distribution in the DIG caused by turbulence. The observed near constancy of < n_e> then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.

  8. Gas Diffusion Barriers Using Atomic Layer Deposition: A New Calcium Test and Polymer Substrate Effects

    NASA Astrophysics Data System (ADS)

    Bertrand, Jacob Andrew

    The increasing demand on available energy resources has led to a desire for more energy efficient devices. The wide use of displays in consumer electronics, such as televisions, cell phones, cameras and computers makes them an ideal target for improvement. Organic light-emitting diodes (OLEDs) are a good candidate to replace traditional Si based devices. However, the low work function metals typically used as electrodes in OLEDs are very reactive with water and oxygen. Ultralow permeability gas diffusion barriers with water vapor transmission rates (WVTRs) as low as <10-6g/(m2*day) are required on the polymers used to fabricate organic electronic and thin film photovoltaic devices. Atomic Layer Deposition (ALD) uses self-limiting surface reactions to deposit thin conformal films. ALD is capable of depositing thin, conformal, high quality barriers. WVTR values as low as ˜5 x 10-5 g/(m2*day) have been measured for Al2O3 ALD films at 38 °C/85% RH using the Ca test with optical transmission probing. The Ca test is a technique with very high sensitivity to measure ultralow WVTRs. This test relies on measuring the oxidation of a Ca metal film by monitoring the change in its optical or electrical properties. However, glass lid control experiments have indicated that the WVTRs measured by the Ca test are limited by H2O permeability through the epoxy seals. Varying results have been reported in the literature using the electrical conductance of Ca to measure permeation. In this work, two approaches were applied to overcome the epoxy edge seal limitations. The first approach was to deposit Al2O 3 ALD barriers directly on Ca metal. While the Al 2O3 ALD barriers were successfully deposited, the measurement of an accurate WVTR was limited by barrier pinholes. The presence of pinholes in the Al2O3 ALD barrier on Ca results in the localized oxidation of the Ca sensor. Heterogeneous degradation of the Ca causes inaccuracies in the conductance of the film. As oxidation regions

  9. Microscale characterisation of stochastically reconstructed carbon fiber-based Gas Diffusion Layers; effects of anisotropy and resin content

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2016-07-01

    A novel process-based methodology is proposed for the stochastic reconstruction and accurate characterisation of Carbon fiber-based matrices, which are commonly used as Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. The modeling approach is efficiently complementing standard methods used for the description of the anisotropic deposition of carbon fibers, with a rigorous model simulating the spatial distribution of the graphitized resin that is typically used to enhance the structural properties and thermal/electrical conductivities of the composite Gas Diffusion Layer materials. The model uses as input typical pore and continuum scale properties (average porosity, fiber diameter, resin content and anisotropy) of such composites, which are obtained from X-ray computed microtomography measurements on commercially available carbon papers. This information is then used for the digital reconstruction of realistic composite fibrous matrices. By solving the corresponding conservation equations at the microscale in the obtained digital domains, their effective transport properties, such as Darcy permeabilities, effective diffusivities, thermal/electrical conductivities and void tortuosity, are determined focusing primarily on the effects of medium anisotropy and resin content. The calculated properties are matching very well with those of Toray carbon papers for reasonable values of the model parameters that control the anisotropy of the fibrous skeleton and the materials resin content.

  10. Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR

    NASA Astrophysics Data System (ADS)

    Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon

    2009-05-01

    Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.

  11. Analysis and design of numerical schemes for gas dynamics. 2: Artificial diffusion and discrete shock structure

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The effect of artificial diffusion on discrete shock structures is examined for a family of schemes which includes scalar diffusion, convective upwind and split pressure (CUSP) schemes, and upwind schemes with characteristics splitting. The analysis leads to conditions on the diffusive flux such that stationary discrete shocks can contain a single interior point. The simplest formulation which meets these conditions is a CUSP scheme in which the coefficients of the pressure differences is fully determined by the coefficient of convective diffusion. It is also shown how both the characteristic and CUSP schemes can be modified to preserve constant stagnation enthalpy in steady flow, leading to four variants, the E and H-characteristic schemes, and the E and H-CUSP schemes. Numerical results are presented which confirm the properties of these schemes.

  12. In-plane and through-plane local and average Nusselt numbers in fibrous porous materials with different fiber layer temperatures: Gas diffusion layers for fuel cells

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2016-09-01

    Convective heat transfer inside fibrous gas diffusion layers (GDLs) noticeably impacts the heat and water management of air-cooled polymer electrolyte membrane fuel cells (PEMFCs). Cutting-edge experiments have recently proved that convective heat transfer inside fibrous GDLs increases their thermal resistances considerably. However, heat transfer coefficients are difficult to measure experimentally or compute numerically for the millions of the tiny pores inside microstructural GDLs. The present study provides robust analytic models for predicting the heat transfer coefficient for both through-plane and in-plane flows inside fibrous media such as GDLs. The model is based on the unit cell approach and the integral method. Closed-form formulas are developed for local and average heat transfer coefficients. The model considers the temperature variations of the fiber layers along the medium thickness while assuming the same temperature for all the fibers in each layer. The model is well verified by COMSOL numerical data for a few pores inside a GDL. The simple, closed-form easy-to-use formulas developed in this study can be readily employed for predicting Nusselt number inside multilayer fibrous porous materials.

  13. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    SciTech Connect

    Liu, J. Chien-Chih

    1993-10-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li{sub 2}BeF{sub 4} (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel.

  14. Diffusion, thermalization, and optical pumping of YbF molecules in a cold buffer-gas cell

    NASA Astrophysics Data System (ADS)

    Skoff, S. M.; Hendricks, R. J.; Sinclair, C. D. J.; Hudson, J. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.

    2011-02-01

    We produce YbF molecules with a density of 1018 m-3 using laser ablation inside a cryogenically cooled cell filled with a helium buffer gas. Using absorption imaging and absorption spectroscopy we study the formation, diffusion, thermalization, and optical pumping of the molecules. The absorption images show an initial rapid expansion of molecules away from the ablation target followed by a much slower diffusion to the cell walls. We study how the time constant for diffusion depends on the helium density and temperature and obtain values for the YbF-He diffusion cross section at two different temperatures. We measure the translational and rotational temperatures of the molecules as a function of time since formation, obtain the characteristic time constant for the molecules to thermalize with the cell walls, and elucidate the process responsible for limiting this thermalization rate. Finally, we make a detailed study of how the absorption of the probe laser saturates as its intensity increases, showing that the saturation intensity is proportional to the helium density. We use this to estimate collision rates and the density of molecules in the cell.

  15. Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Roberts, Daniel E.; Rikvold, Per Arne

    2005-02-01

    The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasiequilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.

  16. Isotope study on diffusion in CaSO{sub 4} formed during sorbent-flue-gas reaction

    SciTech Connect

    Hsia, C.; St. Pierre, G.R.; Fan, L.S.

    1995-10-01

    In sorbent-flue-gas reactions, porous CaO sorbent particles are used to capture SO{sub 2} by formation of CaSO{sub 4}. Because of the large molar volume of CaSO{sub 4}, the internal surface area which is originally available for reaction diminishes as CaSO{sub 4} forms. Once the CaSO{sub 4} layer forms, further sorbent sulfation is believed to be controlled by the product layer diffusion process. It has been suggested that the product layer diffusion occurs by gaseous diffusion (Simons and Garman, 1976) and by ionic diffusion (Bhatia and Perlmutter, 1981). In this work, a two-stage sulfation experiment using {sup 32}SO{sub 2} and {sup 34}SO{sub 2} was performed. For the first stage of sulfation, at 1,300 C, 5,000 ppm {sup 32}SO{sub 2}/air mixture was passed into the mullite tube and circulated out through the bubbler continuously. This stage lasted for 14 days. When the first stage was terminated, the tablets were removed from the furnace and examined. At the beginning of the second stage sulfation, 5,000 ppm {sup 32}SO{sub 2}/air mixture was first used during the heating period. As soon as the tube temperature reached 1,300 C, the mechanical pump was turned on and the pressure in the tube was reduced immediately. Upon the completion of the evacuation, isotope gas 75%{sup 34}SO{sub 2}-25%{sup 32}SO{sub 2} was introduced into the mullite tube. Appropriate amount of air was also introduced into the tube such that the total SO{sub 2} concentration was roughly 5,000 ppm. The second stage sulfation lasted for three days. The SIMS analysis was performed by Microelectronics Center in North Carolina.

  17. CRITICAL EVALUATION OF THE DIFFUSION HYPOTHESIS IN THE THEORY OF POROUS MEDIA VOLATILE ORGANIC COMPOUND (VOC) SOURCES AND SINKS

    EPA Science Inventory

    The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...

  18. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    USGS Publications Warehouse

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2011-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.

  19. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    PubMed Central

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2012-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. PMID:22115089

  20. Northwest Plume Groundwater System Green-sand Media Removal and Waste Packaging Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    Troutman, M.T.; Richards, C.J.; Tarantino, J.J.

    2006-07-01

    The Northwest Plume Groundwater System (NWPGS) was temporarily shut down due to high differential pressures across the green-sand filters. Increased levels of suspended solids were introduced into the system from monitoring well development water, equipment decontamination water, and secondary containment water. These waters were treated for suspended solids through a groundwater pretreatment system but were suspected of causing the high differential pressures in the green-sand filters. Prior to the system being shutdown, the NWPGS had been experiencing increasingly shorter run times between filter backwashes indicating that the normal backwash cycle was not adequately removing the fines. This condition led to the removal and replacement of green-sand media from two filter vessels. Discussions include problems with the removal process, waste packaging specifications, requirements for the disposition of green-sand media, and lessons learned. (authors)

  1. Driven diffusion in the two-dimensional lattice Coulomb gas: A model for flux flow in superconducting networks

    SciTech Connect

    Lee, J. ); Teitel, S. )

    1994-08-01

    We carry out driven-diffusion Monte Carlo simulations of the two-dimensional classical lattice Coulomb gas in an applied uniform electric field, as a model for vortex motion due to an applied dc current in a periodic superconducting network. A finite-size version of dynamic scaling is used to extract the dynamic critical exponent [ital z], and infer the nonlinear response at the transition temperature. We consider the Coulomb gases [ital f]=0 and [ital f]=1/2, corresponding to a superconducting network with an applied transverse magnetic field of zero, and one-half flux quantum per unit cell, respectively.

  2. Injection, flow, and mixing of CO2 in porous media with residual gas.

    SciTech Connect

    Oldenburg, C.M.; Doughty, C.A.

    2010-09-01

    Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

  3. M=1 and 2 gravitational instabilities in spiral disks. I. Diffuse gas.

    NASA Astrophysics Data System (ADS)

    Junqueira, S.; Combes, F.

    1996-08-01

    We report the results of self-gravitating simulations of spiral galaxies, modeled by stellar and gaseous components, developed to investigate in particular the role of dissipation in the evolution of galaxy disks. The gas disk is simulated by the Beam-Scheme method, where it is considered as a self-gravitating fluid. The results suggest that the gravitational coupling between the stars and gas plays a fundamental role in the formation and dissolution of stellar bars, depending on the gaseous mass concentration and on the degree of dissipation. In addition we remark that initially concentrated gas disks can be unstable to the one-armed (m=1) spiral perturbations, which may explain the lopsided features observed in the gas distribution of the late-type isolated galaxies. The development of the m=1 feature slows down the radial gas flows towards the center, since the large-scale gravity torques are then much weaker.

  4. Benchmarking Rapid TLES Simulations of Gas Diffusion in Proteins: Mapping O2 Migration and Escape in Myoglobin as a Case Study.

    PubMed

    Shadrina, Maria S; English, Ann M; Peslherbe, Gilles H

    2016-04-12

    Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independently, while the protein and water molecules experience an average interaction from all copies. Furthermore, gas migration within a protein matrix can be accelerated without altering protein dynamics by increasing the effective temperature of the TLES copies. These features of TLES enable rapid simulations of gas diffusion within a protein matrix at significantly reduced (∼98%) computational cost. However, the results of TLES and standard MD simulations have not been systematically compared, which limits the adoption of the TLES approach. We address this drawback here by benchmarking TLES against standard MD in the simulation of O2 diffusion in myoglobin (Mb) as a case study since this model system has been extensively characterized. We find that 2 ns TLES and 108 ns standard simulations map the same network of diffusion tunnels in Mb and uncover the same docking sites, barriers, and escape portals. We further discuss the influence of simulation time as well as the number of independent simulations on the O2 population density within the diffusion tunnels and on the sampling of Mb's conformational space as revealed by principal component analysis. Overall, our comprehensive benchmarking reveals that TLES is an appropriate and robust tool for the rapid mapping of gas diffusion in proteins when the kinetic data provided by standard MD are not required. Furthermore, TLES provides explicit ligand diffusion pathways, unlike most rapid methods. PMID:26938707

  5. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  6. The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul

    Dense cores in dark clouds are the sites where young stars form. These regions manifest as relatively small (<0.1pc) pockets of cold and dense gas. If we wish to understand the star formation process, we have to understand the physical conditions in dense cores. This has been a main aim of star formation research in the past decade. Today, we do indeed possess a good knowledge of the density and velocity structure of cores, as well as their chemical evolution and physical lifetime. However, we do not understand well how dense cores form out of the diffuse gas clouds surrounding them. It is crucial that we constrain the relationship between dense cores and their environment: if we only understand dense cores, we may be able to understand how individual stars form --- but we would not know how the star forming dense cores themselves come into existence. We therefore propose to obtain data sets that reveal both dense cores and the clouds containing them in the same map. Based on these maps, we will study how dense cores form out of their natal clouds. Since cores form stars, this knowledge is crucial for the development of a complete theoretical and observational understanding of the formation of stars and their planets, as envisioned in NASA's Strategic Science Plan. Fortunately, existing archival data allow to derive exactly the sort of maps we need for our analysis. Here, we describe a program that exclusively builds on PACS and SPIRE dust emission imaging data from the NASA-supported Herschel mission. The degree-sized wide-field Herschel maps of the nearby (<260pc) Polaris Flare and Aquila Rift clouds are ideal for our work. They permit to resolve dense cores (<0.1pc), while the maps also reveal large-scale cloud structure (5pc and larger). We will generate column density maps from these dust emission maps and then run a tree-based hierarchical multi-scale structure analysis on them. Only this procedure permits to exploit the full potential of the maps: we will

  7. Light propagation through weakly scattering media: a study of Monte Carlo vs. diffusion theory with application to neuroimaging

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2015-07-01

    One of the major challenges within Optical Imaging, photon propagation through clear layers embedded between scattering tissues, can be now efficiently modelled in real-time thanks to the Monte Carlo approach based on GPU. Because of its nature, the photon propagation problem can be very easily parallelized and ran on low cost hardware, avoiding the need for expensive Super Computers. A comparison between Diffusion and MC photon propagation theory is presented in this work with application to neuroimaging, investigating low scattering regions in a mouse-like phantom. Regions such as the Cerebral Spinal Fluid, are currently not taken into account in the classical computational models because of the impossibility to accurately simulate light propagation using fast Diffusive Equation approaches, leading to inaccuracies during the reconstruction process. The goal of the study presented here, is to reduce and further improve the computation accuracy of the reconstructed solution in a highly realistic scenario in the case of neuroimaging in preclinical mouse models.

  8. Electrochemical reduction of CO₂ to organic acids by a Pd-MWNTs gas-diffusion electrode in aqueous medium.

    PubMed

    Lu, Guang; Wang, Hui; Bian, Zhaoyong; Liu, Xin

    2013-01-01

    Pd-multiwalled carbon nanotubes (Pd-MWNTs) catalysts for the conversion of CO₂ to organic acids were prepared by the ethylene glycol reduction and fully characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) technologies. The amorphous Pd particles with an average size of 5.7 nm were highly dispersed on the surface of carbon nanotubes. Functional groups of the MWNTs played a key role in the palladium deposition. The results indicated that Pd-MWNTs could transform CO₂ into organic acid with high catalytic activity and CO₂ could take part in the reduction reaction directly. Additionally, the electrochemical reduction of CO₂ was investigated by a diaphragm electrolysis device, using a Pd-MWNTs gas-diffusion electrode as a cathode and a Ti/RuO₂ net as an anode. The main products in present system were formic acid and acetic acid identified by ion chromatograph. The selectivity of the products could be achieved by reaction conditions changing. The optimum faraday efficiencies of formic and acetic acids formed on the Pd-MWNTs gas-diffusion electrode at 4₂V electrode voltages under 1 atm CO₂ were 34.5% and 52.3%, respectively. PMID:24453849

  9. Electrochemical Reduction of CO2 to Organic Acids by a Pd-MWNTs Gas-Diffusion Electrode in Aqueous Medium

    PubMed Central

    Lu, Guang; Bian, Zhaoyong; Liu, Xin

    2013-01-01

    Pd-multiwalled carbon nanotubes (Pd-MWNTs) catalysts for the conversion of CO2 to organic acids were prepared by the ethylene glycol reduction and fully characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) technologies. The amorphous Pd particles with an average size of 5.7 nm were highly dispersed on the surface of carbon nanotubes. Functional groups of the MWNTs played a key role in the palladium deposition. The results indicated that Pd-MWNTs could transform CO2 into organic acid with high catalytic activity and CO2 could take part in the reduction reaction directly. Additionally, the electrochemical reduction of CO2 was investigated by a diaphragm electrolysis device, using a Pd-MWNTs gas-diffusion electrode as a cathode and a Ti/RuO2 net as an anode. The main products in present system were formic acid and acetic acid identified by ion chromatograph. The selectivity of the products could be achieved by reaction conditions changing. The optimum faraday efficiencies of formic and acetic acids formed on the Pd-MWNTs gas-diffusion electrode at 4 V electrode voltages under 1 atm CO2 were 34.5% and 52.3%, respectively. PMID:24453849

  10. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes.

    PubMed

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-04-29

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte. PMID:26987282

  11. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    NASA Astrophysics Data System (ADS)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  12. Using Sulfur Hexafluoride to Quantify the Gas Leakage Rate within the Landscape Evolution Observatory (LEO) and the Diffusion Coefficient of the Crushed Basalt

    NASA Astrophysics Data System (ADS)

    Barta, J.; Costa, M.; Van Haren, J. L. M.; Pangle, L. A.; Troch, P. A. A.

    2014-12-01

    In order to understand the biological processes taking place on an experimental hillslope with vegetation, it is important to know the amount of gasses such as oxygen and carbon dioxide being produced and consumed. When studying the gas exchange rates in a closed system like the Landscape Evolution Observatory (LEO), one must take into account gas that is being lost or gained from other sources. Aside from biogeochemical processes, gas concentrations in the LEO atmosphere may change due to leakage to the outside environment and diffusion into the soil. To quantify these fluxes, two constants must be determined experimentally: the gas leakage constant L and the coefficient of diffusion for the hillslope soil. To accomplish this, a tracer gas, sulfur hexafluoride, was injected into the sealed east bay chamber and syringes were used to take samples periodically from the airspace and from the hillslope soil. The relative sulfur hexafluoride concentrations were then analyzed with a SRI 8610c gas chromatograph. By analyzing both the the airspace concentration decay as well as the concentration in the soil, the chamber's leakage constant was determined to be and the soil diffusion coefficient was also determined. Once these values are experimentally quantified, they can be used in equations to quantify the rate of gas leakage and soil diffusion of more important gases such as carbon dioxide and oxygen.

  13. Design Calculations for Gas Flow & Diffusion Behavior in the large Diameter Container & Cask

    SciTech Connect

    PIEPHO, M.G.

    2003-10-21

    This report describes the calculations for the gas behavior in the void volumes or gas spaces of the sludge Large Diameter Container (LDC) and Cask. The objective is to prevent flammable gas conditions in the LDC and Cask gas spaces. This is achieved by the Active Inert Ventilation System (AIVS), which uses argon gas for dilution purposes. With AIVS, the oxygen content is kept below 5 vol% in the LDC, and the hydrogen content is kept below 4 vol% in the Cask before its purge at the KE Basin. After the Cask sweep-through purge with argon at the KE Basin, oxygen is kept below 5% in both the Cask and the LDC. The analysis here assumes that any oxygen generated in the sludge is consumed by the uranium and uranium dioxide (SNF-18133, ''Gas Behavior in Large Diameter Containers (LDCs) During and Following Loading with 105K East Sludge''). Thus, oxygen production from radiolysis is intentionally not included in this report, but hydrogen from radiolysis and from chemical reactions between uranium and water are considered, depending on the scenario being analyzed. The analysis starts immediately after the final decant at K Basin, when argon is assumed to be the only gas in the LDC gas space, except for the normal water vapor. The oxygen ingress is calculated during the disconnecting of the lines hoses from the LDC, during the time that air is surrounding the LDC with two NucFil-type filters in place after the disconnect, before the Cask is sealed, and, finally, during the sweep-through Cask purge. Dissolution of oxygen from water due to increasing sludge temperatures (mainly during hot transport to the T Plant) is also included.

  14. CASCADER: An M-chain gas-phase radionuclide transport and fate model. Volume 3: Heterogeneous layered porous media

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77.

  15. Fractional Diffusion Analysis of the Electromagnetic Field In Fractured Media Part II: 2.5-D Approach

    NASA Astrophysics Data System (ADS)

    Ge, J.; Everett, M. E.; Weiss, C. J.

    2012-12-01

    A 2.5D finite difference (FD) frequency-domain modeling algorithm based on the theory of fractional diffusion of electromagnetic (EM) fields generated by a loop source lying above a fractured geological medium is addressed in this paper. The presence of fractures in the subsurface, usually containing highly conductive pore fluids, gives rise to spatially hierarchical flow paths of induced EM eddy currents. The diffusion of EM eddy currents in such formations is anomalous, generalizing the classical Gaussian process described by the conventional Maxwell equations. Based on the continuous time random walk (CTRW) theory, the diffusion of EM eddy currents in a rough medium is governed by the fractional Maxwell equations. Here, we model the EM response of a 2D subsurface containing fractured zones, with a 3D loop source, which results the so-called 2.5D model geometry. The governing equation in the frequency domain is converted using Fourier transform into k domain along the strike direction (along which the model conductivity doesn't vary). The resulting equation system is solved by the multifrontal massively parallel solver (MUMPS). The data obtained is then converted back to spatial domain and the time domain. We find excellent agreement between the FD and analytic solutions for a rough halfspace model. Then FD solutions are calculated for a 2D fault zone model with variable conductivity and roughness. We compare the results with responses from several classical models and explore the relationship between the roughness and the spatial density of the fracture distribution.

  16. Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media by densely packed multi-pixel photodiode reflectance probe

    NASA Astrophysics Data System (ADS)

    Senlik, Ozlem; Greening, Gage; Muldoon, Timothy J.; Jokerst, Nan M.

    2016-03-01

    Spatially-resolved diffuse reflectance (SRDR) measurements provide photon path information, and enable layered tissue analysis. This paper presents experimental SRDR measurements on two-layer PDMS skin tissue-mimicking phantoms of varying top layer thicknesses, and bulk phantoms of varying optical properties using concentric multi-pixel photodiode array (CMPA) probes, and corresponding forward Monte Carlo simulations. The CMPA is the most densely packed semiconductor SRDR probe reported to date. Signal contrasts between the single layer phantom and bi-layer phantoms with varying top layer thicknesses are as high as 80%. The mean error between the Monte Carlo simulations and the experiment is less than 6.2 %.

  17. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  18. Ionization of the diffuse gas in galaxies: Hot low-mass evolved stars at work

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Stasinska, G.; Binette, L.

    2011-10-01

    The Diffuse Ionized Medium (DIG) is visible through its faint optical line emission outside classical HII regions (Reynolds 1971) and turns out to be a major component of the interstellar medium in galaxies. OB stars in galaxies likely represent the main source of ionizing photons for the DIG. However, an additional source is needed to explain the increase of [NII]/Hα, [SII]/Hα with galactic height.

  19. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  20. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    SciTech Connect

    Chien-Chih Liu, J.

    1993-12-31

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li{sub 2}BeF{sub 4} (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.