Science.gov

Sample records for gas distension technique

  1. Putrefactive rigor: apparent rigor mortis due to gas distension.

    PubMed

    Gill, James R; Landi, Kristen

    2011-09-01

    Artifacts due to decomposition may cause confusion for the initial death investigator, leading to an incorrect suspicion of foul play. Putrefaction is a microorganism-driven process that results in foul odor, skin discoloration, purge, and bloating. Various decompositional gases including methane, hydrogen sulfide, carbon dioxide, and hydrogen will cause the body to bloat. We describe 3 instances of putrefactive gas distension (bloating) that produced the appearance of inappropriate rigor, so-called putrefactive rigor. These gases may distend the body to an extent that the extremities extend and lose contact with their underlying support surface. The medicolegal investigator must recognize that this is not true rigor mortis and the body was not necessarily moved after death for this gravity-defying position to occur. PMID:20375836

  2. Distensibility and pain of the uterine cervix evaluated by novel techniques.

    PubMed

    Gregersen, Hans; Hee, Lene; Liao, Donghua; Uldbjerg, Niels

    2016-07-01

    The article serves to review the literature on the human uterine cervix based on a new distension technology named functional luminal imaging probe. This technology was originally developed to study the biomechanical competence of the gastro-esophageal junction where it provides a geometric profile of the lumen during distension, which can be related to sensory data. We searched and reviewed publications on cervical distention from 2002. The functional luminal imaging probe technology has been used for studying the mechanical and mechano-sensory properties of the cervix in non-pregnant women. In early pregnant women and in term pregnant women, the technique provides geometric measurements from the whole cervical canal during distension, which changes dramatically during pregnancy. Furthermore, it has been demonstrated that the technique predicts the outcome of labor induction better than the Bishop score does. The functional luminal imaging probe technology has potential as a research tool as well as for clinical use in gynecology and obstetrics. PMID:26946059

  3. Increased distensibility in dependent veins following prolonged bedrest.

    PubMed

    Kölegård, Roger; Mekjavic, Igor B; Eiken, Ola

    2009-07-01

    Displacement of blood to the lower portion of the body that follows a postural transition from recumbent to erect is augmented by a prolonged period of recumbency (bedrest). Information is scarce as to what extent this augmented blood-volume shift to dependent veins is attributable to increased distensibility of the veins. Accordingly, we studied the effect of 5 weeks of horizontal bedrest on the pressure-distension relationship in limb veins. Elevation of venous distending pressure was induced by exposure of the body except the tested limb to supra-atmospheric pressure with the subject seated in a pressure chamber with one arm, or supine with a lower leg, protruding through a hole in the chamber door. Diameter changes in response to an increase of intravenous pressure (distensibility) from 60 to about 140 mmHg were measured in the brachial and posterior tibial veins using ultrasonographic techniques. Prior to bedrest, the distensibility was substantially less in the tibial than in the brachial vein. Bedrest increased (P < 0.01) pressure distension in the tibial vein by 86% from 7 +/- 3% before to 13 +/- 3% after bedrest. In the brachial vein, bedrest increased (P < 0.05) pressure distension by 36% from 14 +/- 5% before to 19 +/- 5% after bedrest. Thus, removal of the gravity-dependent pressure components that act along the blood vessels in erect posture increases the distensibility of dependent veins. PMID:19347352

  4. Rumen distension and contraction influence feed preference by sheep.

    PubMed

    Villalba, J J; Provenza, F D; Stott, R

    2009-01-01

    Distension of the rumen limits feed intake by livestock. Ruminal dysfunctions due to bloat, which causes distension by accumulation of excessive gas within the rumen, also reduce feeding. We hypothesized that excessive levels of rumen distension cause feed aversions and that preference increases for feeds eaten in association with recovery from bloat. To test these hypotheses, we determined whether 12 commercial crossbred lambs (average initial BW of 43 +/- 2 kg) could associate ingestion of specific feeds with the consequences of increased intraruminal pressure and its subsidence. Six of the lambs were fitted with rumen cannulas and offered ground alfalfa for 30 min after a rubber balloon was inserted into the rumen of each animal and distended with air to volumes of 1.8, 2.5, or 4.5 L. Subsequently, balloons were deflated and alfalfa was offered again for a second period of 30 min. Feed intake was not affected when the balloon was not distended (P = 0.45 to 0.93), but distension reduced feed intake (P < 0.001) in direct proportion to the magnitude of distension at all 3 volumes (R(2) = 0.70). Relief from distension promoted a compensatory increase in feed intake (P = 0.006). During conditioning to determine if lambs acquired a preference for a feed associated with recovery from distension, fistulated lambs were offered novel feeds: wheat bran (group 1; n = 3) and beet pulp (group 2; n = 3), and the balloon was distended for 30 min. Feeds were then switched and the balloons were deflated (recovery). Control lambs (n = 6) received the same feeding protocol without the balloons. Lambs formed strong aversions to feeds associated with distension and preferred feeds associated with recovery (P = 0.001 to P = 0.10). No preferences or avoidances were observed in control lambs conditioned without rumen distension (P = 0.17 to P = 0.87). Thus, rumen distension and recovery from distension induced feed aversions and preferences, respectively, which may be critical in

  5. Abdominal Distension and Vascular Collapse.

    PubMed

    Cosentino, Gina; Uwaifo, Gabriel I

    2016-04-01

    We present the case of a 43-year-old gentleman who presented to the emergency room with acute abdominal distension, confusion and vascular collapse. The emergent radiologic imaging obtained showed massive bilateral adrenal enlargement, but despite the initial clinical suspicion of possible overwhelming sepsis and/or massive abdominal/intralesional hemorrhage, lab tests based obtained rapidly confirmed the diagnosis of acute Addisonian crisis which responded dramatically to adrenocorticoid hormone replacement therapy and aggressive fluid resuscitation. The patient's established history of metastatic lung cancer confirmed this as a case of metastatic massive bilateral adrenal metastases with an initial presentation of acute adrenal insufficiency which is uncommon in the setting of metastatic carcinomatosis but more typically associated with lymphomas. Recognition of this clinical possibility is vital to enable rapid diagnosis and consequent life saving therapy. PMID:27328473

  6. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  7. Aortic Distensibility in Type 1 Diabetes

    PubMed Central

    Turkbey, Evrim B.; Redheuil, Alban; Backlund, Jye-Yu C.; Small, Alexander C.; Cleary, Patricia A.; Lachin, John M.; Lima, Joao A.C.; Bluemke, David A.

    2013-01-01

    OBJECTIVE To evaluate the relationship between long-term glycemia, traditional cardiovascular disease (CVD) risk factors, and ascending aortic stiffness in type 1 diabetes. RESEARCH DESIGN AND METHODS Eight hundred seventy-nine subjects in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study were evaluated. The stiffness/distensibility of the ascending thoracic aorta (AA) was measured with magnetic resonance imaging. Associations of AA distensibility and CVD risk factors, mean HbA1c, and cardiovascular complications including macroalbuminuria were assessed using multivariate linear regression models. RESULTS The mean age of the subjects was 50 ± 7 years (47% women, mean diabetes duration of 28 years). Over 22 years of follow-up, 27% of participants had cardiovascular complications. After adjusting for gender and cohort, AA distensibility was lower with increasing age, mean systolic blood pressure, LDL, and HbA1c measured over an average of 22 years (−26.3% per 10 years, −11.0% per 10 mmHg SBP, −1.8% per 10 mg/dL of LDL, and −9.3% per unit mean HbA1c [%], respectively). Patients with macroalbuminuria had 25% lower AA distensibility compared with those without (P < 0.0001). Lower AA distensibility also was associated with greater ratio of left ventricular mass to volume (−3.4% per 0.1 g/mL; P < 0.0001). CONCLUSIONS Our findings indicate strong adverse effects of hypertension, chronic hyperglycemia and macroalbuminuria on AA stiffness in type 1 diabetes in the DCCT/EDIC cohort. PMID:23474588

  8. Esophagogastric junction distensibility in hiatus hernia.

    PubMed

    Lottrup, C; McMahon, B P; Ejstrud, P; Ostapiuk, M A; Funch-Jensen, P; Drewes, A M

    2016-07-01

    Hiatus hernia is known to be an important risk factor for developing gastroesophageal reflux disease. We aimed to use the endoscopic functional lumen imaging probe (EndoFLIP) to evaluate the functional properties of the esophagogastric junction. EndoFLIP assessments were made in 30 patients with hiatus hernia and Barrett's esophagus, and in 14 healthy controls. The EndoFLIP was placed straddling the esophagogastric junction and the bag distended stepwise to 50 mL. Cross-sectional areas of the bag and intra-bag pressures were recorded continuously. Measurements were made in the separate sphincter components and hiatus hernia cavity. EndoFLIP measured functional aspects such as sphincter distensibility and pressure of all esophagogastric junction components and visualized all hiatus hernia present at endoscopy. The lower esophageal sphincter in hiatus hernia patients had a lower pressure (e.g. 47.7 ± 13.0 vs. 61.4 ± 19.2 mm Hg at 50-mL distension volume) and was more distensible (all P < 0.001) than the common esophagogastric junction in controls. In hiatus hernia patients, the crural diaphragm had a lower pressure (e.g. 29.6 ± 10.1 vs. 47.7 ± 13.0 mm Hg at 50-mL distension volume) and was more distensible (all P < 0.001) than the lower esophageal sphincter. There was a significant association between symptom scores in patients and EndoFLIP assessment. Conclusively, EndoFLIP was a useful tool. To evaluate the presence of a hiatus hernia and to measure the functional properties of the esophagogastric junction. Furthermore, EndoFLIP distinguished the separate esophagogastric junction components in hiatus hernia patients, and may help us understand the biomechanics of the esophagogastric junction and the mechanisms behind hiatal herniation. PMID:25789842

  9. Uterine distension differentially affects remodelling and distensibility of the uterine vasculature in non-pregnant rats.

    PubMed

    Osol, George; Barron, Carolyn; Mandalà, Maurizio

    2012-01-01

    During pregnancy the mammalian uterine circulation undergoes significant expansive remodelling necessary for normal pregnancy outcome. The underlying mechanisms are poorly defined. The goal of this study was to test the hypothesis that myometrial stretch actively stimulates uterine vascular remodelling by developing a new surgical approach to induce unilateral uterine distension in non-pregnant rats. Three weeks after surgery, which consisted of an infusion of medical-grade silicone into the uterine lumen, main and mesometrial uterine artery and vein length, diameter and distensibility were recorded. Radial artery diameter, distensibility and vascular smooth muscle mitotic rate (Ki67 staining) were also measured. Unilateral uterine distension resulted in significant increases in the length of main uterine artery and vein and mesometrial segments but had no effect on vessel diameter or distensibility. In contrast, there were significant increases in the diameter of the radial arteries associated with the distended uterus. These changes were accompanied by reduced arterial distensibility and increased vascular muscle hyperplasia. In summary, this is the first report to show that myometrial stretch is a sufficient stimulus to induce significant remodelling of uterine vessels in non-pregnant rats. Moreover, the results indicate differential regulation of these growth processes as a function of vessel size and type. PMID:22781934

  10. A novel in vivo approach to assess radial and axial distensibility of large and intermediate pulmonary artery branches.

    PubMed

    Bellofiore, A; Henningsen, J; Lepak, C G; Tian, L; Roldan-Alzate, A; Kellihan, H B; Consigny, D W; Francois, C J; Chesler, N C

    2015-04-01

    Pulmonary arteries (PAs) distend to accommodate increases in cardiac output. PA distensibility protects the right ventricle (RV) from excessive increases in pressure. Loss of PA distensibility plays a critical role in the fatal progression of pulmonary arterial hypertension (PAH) toward RV failure. However, it is unclear how PA distensibility is distributed across the generations of PA branches, mainly because of the lack of appropriate in vivo methods to measure distensibility of vessels other than the large, conduit PAs. In this study, we propose a novel approach to assess the distensibility of individual PA branches. The metric of PA distensibility we used is the slope of the stretch ratio-pressure relationship. To measure distensibility, we combined invasive measurements of mean PA pressure with angiographic imaging of the PA network of six healthy female dogs. Stacks of 2D images of the PAs, obtained from either contrast enhanced magnetic resonance angiography (CE-MRA) or computed tomography digital subtraction angiography (CT-DSA), were used to reconstruct 3D surface models of the PA network, from the first bifurcation down to the sixth generation of branches. For each branch of the PA, we calculated radial and longitudinal stretch between baseline and a pressurized state obtained via acute embolization of the pulmonary vasculature. Our results indicated that large and intermediate PA branches have a radial distensibility consistently close to 2%/mmHg. Our axial distensibility data, albeit affected by larger variability, suggested that the PAs distal to the first generation may not significantly elongate in vivo, presumably due to spatial constraints. Results from both angiographic techniques were comparable to data from established phase-contrast (PC) magnetic resonance imaging (MRI) and ex vivo mechanical tests, which can only be used in the first branch generation. Our novel method can be used to characterize PA distensibility in PAH patients undergoing

  11. Severe gastric distension in seven patients with cerebral palsy.

    PubMed

    Del Beccaro, M A; McLaughlin, J F; Polage, D L

    1991-10-01

    This is a report of two children who had severe recurrent gastric distension and vomiting, and five who experienced severe gastric distension without vomiting. Two of the five died during an episode of acute gastric distension. All had marked nutritional depletion, and severe spastic quadriplegia due to either cerebral palsy or acquired brain injury. None of the patients had significant gastroesophageal reflux. Positioning the patients in the left lateral decubitus position temporarily relieved their obstructions. Complete resolution of the distension and/or vomiting did not occur until after adequate weight gain. Loss of fat stores may lead to this type of recurrent gastric distension. PMID:1743416

  12. Pathologic aerophagia: a rare cause of chronic abdominal distension

    PubMed Central

    de Jesus, Lisieux Eyer; Cestari, Ana Beatriz C.S.S.; da Silva, Orli Carvalho; Fernandes, Marcia Antunes; Firme, Livia Honorato

    2015-01-01

    Objective: To describe an adolescent with pathologic aerophagia, a rare condition caused by excessive and inappropriate swallowing of air and to review its treatment and differential diagnoses. Case description: An 11-year-old mentally impaired blind girl presenting serious behavior problems and severe developmental delay with abdominal distension from the last 8 months. Her past history included a Nissen fundoplication. Abdominal CT and abdominal radiographs showed diffuse gas distension of the small bowel and colon. Hirschsprung's disease was excluded. The distention was minimal at the moment the child awoke and maximal at evening, and persisted after control of constipation. Audible repetitive and frequent movements of air swallowing were observed. The diagnosis of pathologic aerophagia associated to obsessive-compulsive disorder and developmental delay was made, but pharmacological treatment was unsuccessful. The patient was submitted to an endoscopic gastrostomy, permanently opened and elevated relative to the stomach. The distention was resolved, while maintaining oral nutrition. Comments: Pathologic aerophagia is a rare self-limiting condition in normal children exposed to high levels of stress and may be a persisting problem in children with psychiatric or neurologic disease. In this last group, the disease may cause serious complications. Pharmacological and behavioral treatments are ill-defined. Severe cases may demand surgical strategies, mainly decompressive gastrostomy. PMID:26100594

  13. Cylinder Fragmentation Using Gas Gun Techniques

    NASA Astrophysics Data System (ADS)

    Thornhill, T. F.; Reinhart, W. D.; Chhabildas, L. C.; Grady, D. E.; Wilson, L. T.

    2002-07-01

    In this study an experimental technique for study of cylinder fracture fragmentation characteristics has been developed on a two-stage light gas gun. This test method allows the study of cylinder fracture fragmentation in a laboratory environment under well-controlled loading conditions. Application of this technique allows measure of failure strain, strain rates, expansion velocity, and fragmentation toughness. Results of several experiments on Aermet steel are presented.

  14. New technique for calibrating hydrocarbon gas flowmeters

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Puster, R. L.

    1984-01-01

    A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.

  15. Nebivolol increases arterial distensibility in vivo.

    PubMed

    McEniery, Carmel M; Schmitt, Matthias; Qasem, Ahmad; Webb, David J; Avolio, Alberto P; Wilkinson, Ian B; Cockcroft, John R

    2004-09-01

    Arterial stiffness is a key determinant of cardiovascular risk in hypertensive patients. beta-Blockers appear to be less effective than other drugs in improving outcome in hypertensive patients, and a potential explanation may be that beta-blockers are less effective in reducing arterial stiffness. The aim of this study was to assess the direct effect of beta-blockade on pulse wave velocity (PWV), a robust measure of arterial distensibility, using a local, ovine, hind-limb model. In addition, we hypothesized that the vasodilating beta-blocker nebivolol, but not atenolol, would increase arterial distensibility in vivo. All studies were conducted in anesthetized sheep. PWV was recorded in vivo using a dual pressure-sensing catheter placed in the common iliac artery. Intraarterial infusion of nebivolol reduced PWV by 6+/-3% at the higher dose (P<0.001), but did not alter mean arterial pressure (change of -1+/-3 mm Hg, P=0.1). In contrast, atenolol had no effect on PWV (P=0.11) despite a small drop in mean pressure (change of -5+/-3 mm Hg, P<0.01). Infusion of glyceryl trinitrate led to a dose-dependent fall in PWV, and 2 nmol/min produced a similar reduction in PWV to the higher dose of nebivolol (500 nmol/min). The effect of nebivolol on PWV was significantly attenuated during coinfusion of N(G)-monomethyl-L-arginine (P=0.003) and also during coinfusion of butoxamine (P=0.02). These results demonstrate that nebivolol, but not atenolol, increases arterial distensibility. This effect of nebivolol is mediated through the release of NO via a beta2 adrenoceptor-dependent mechanism. Thus, nebivolol may be of benefit in conditions of increased large artery stiffness, such as isolated systolic hypertension. PMID:15262912

  16. Functional luminal imaging probe topography: an improved method for characterizing esophageal distensibility in eosinophilic esophagitis

    PubMed Central

    Kahrilas, Peter J.; Xiao, Yinglian; Nicodème, Frédéric; Gonsalves, Nirmala; Hirano, Ikuo; Pandolfino, John E.

    2013-01-01

    Objectives: The aims of this study were to develop a new method for analysis and presentation of esophageal distensibility data using high-resolution impedance planimetry recordings during a volume-controlled distention. Methods: Two control subjects and six patients with eosinophilic esophagitis (EoE) with stricture, narrow caliber or normal endoscopy according to EndoFLIP studies were included for analysis. Median filtering and pulse detection techniques were applied to the pressure signal and a wavelet decomposition technique was applied to the 16 channels of raw esophageal diameter data to reduce vascular artifact, respiratory effect and remove esophageal contraction interference. These data were used to generate a functional luminal imaging probe (FLIP) topography plot that describes regional variation of cross-sectional area (CSA). A previously developed computer program was used to calculate and model the CSA-pressure data to derive the slope of line fitting and distension plateau for each individual subject. The results were compared among the four endoscopic phenotypes. Results: Patients with EoE and normal endoscopy had similar esophageal distensibility parameters to those of normal controls whereas patients with EoE and stricture or narrow caliber had much lower distensibility than patients with EoE and normal endoscopy. The FLIP topography plots provided a global assessment of the esophageal distensibility along the axial plane of measurement that differentiated patients with varying degrees of endoscopic abnormality. Conclusions: New techniques can be leveraged to improve data analysis and presentation using EndoFLIP assessment of the esophageal body in EoE. These techniques may be helpful in defining clinically relevant phenotypes and guiding treatment strategies and should be helpful in structuring future outcome trials. PMID:23503784

  17. Arterial Stiffness, Distensibility, and Strain in Asthmatic Children

    PubMed Central

    Özkan, Esra Akyüz; Serin, Halil İbrahim; Khosroshahi, Hashem E.; Kılıç, Mahmut; Ekim, Meral; Beysel, Perihan; Geçit, U. Aliye; Domur, Esra

    2016-01-01

    Background We hypothesized that since asthma is a chronic inflammatory disease, it could lead to the early development of atherosclerosis in childhood-onset asthma. The aim of this study was to investigate arterial stiffness, distensibility, and strain of different peripheral arteries, the parameters of which can be used to detect atherosclerosis in asthmatic children. Material/Methods We studied 22 pediatric patients with asthma and 18 healthy children. Fasting blood glucose and cholesterol levels were evaluated to exclude children with diabetes and hyperlipidemia, which are risk factors for atherosclerosis. Renal, carotid, and brachial arteries diameters were measured. Using the measured data, stiffness, distensibility, and strain of the arteries of all children were calculated. Results Pulse pressure, systolic and diastolic blood pressure, heart rate, cholesterols, and glucose levels of the obese individuals were similar to the controls. In carotid arteries there were no statistical differences regarding stiffness, distensibility, and strain. According to multiple ANCOVA analysis, distensibility and strain of right and left brachial arteries and right renal artery were higher, whereas right renal artery stiffness was lower in asthmatic children than in controls. Approximately one-fifth of the change in the left and right brachial arteries and right renal artery distensibility and strain and a small portion of the change in the right renal artery stiffness were associated with asthma. In contrast, left renal artery distensibility, strain, and stiffness were not associated with asthma. Conclusions Peripheral arteries had higher distensibility and strain, and lower stiffness in asthmatic children than in controls. PMID:26803723

  18. Mechanical ventilation causes airway distension with proinflammatory sequelae in mice.

    PubMed

    Nickles, Hannah T; Sumkauskaite, Migle; Wang, Xin; Wegner, Ingmar; Puderbach, Michael; Kuebler, Wolfgang M

    2014-07-01

    The pathogenesis of ventilator-induced lung injury has predominantly been attributed to overdistension or mechanical opening and collapse of alveoli, whereas mechanical strain on the airways is rarely taken into consideration. Here, we hypothesized that mechanical ventilation may cause significant airway distension, which may contribute to the pathological features of ventilator-induced lung injury. C57BL/6J mice were anesthetized and mechanically ventilated at tidal volumes of 6, 10, or 15 ml/kg body wt. Mice were imaged by flat-panel volume computer tomography, and central airways were segmented and rendered in 3D for quantitative assessment of airway distension. Alveolar distension was imaged by intravital microscopy. Functional dead space was analyzed in vivo, and proinflammatory cytokine release was analyzed in isolated, ventilated tracheae. CT scans revealed a reversible, up to 2.5-fold increase in upper airway volume during mechanical ventilation compared with spontaneous breathing. Airway distension was most pronounced in main bronchi, which showed the largest volumes at tidal volumes of 10 ml/kg body wt. Conversely, airway distension in segmental bronchi and functional dead space increased almost linearly, and alveolar distension increased even disproportionately with higher tidal volumes. In isolated tracheae, mechanical ventilation stimulated the release of the early-response cytokines TNF-α and IL-1β. Mechanical ventilation causes a rapid, pronounced, and reversible distension of upper airways in mice that is associated with an increase in functional dead space. Upper airway distension is most pronounced at moderate tidal volumes, whereas higher tidal volumes redistribute preferentially to the alveolar compartment. Airway distension triggers proinflammatory responses and may thus contribute relevantly to ventilator-induced pathologies. PMID:24816486

  19. Response of canine lower esophageal sphincter to gastric distension.

    PubMed

    Franzi, S J; Martin, C J; Cox, M R; Dent, J

    1990-09-01

    The aim of this study was to localize the region of the stomach responsible for triggering distension-induced transient lower esophageal sphincter relaxation (TLESR). The canine stomach was partitioned into subsegments by a row of buttressed sutures. This separated either the fundus from the lesser curve or the proximal stomach from the antrum. After 1 mo each region was progressively distended while gastroesophageal pressures were monitored. At the time of the first TLESR, gastric wall tension was estimated from the bag pressure and volume. Distension of the intact stomach, lesser curve, or proximal stomach in 12 dogs produced a progressive increase in lower esophageal sphincter (LES) pressure, which was interrupted at low gastric wall tension (29, 35, and 40 mmHg.cm, respectively) by a superimposed TLESR. Background LES pressure fell progressively with distension of the antrum but was unchanged by distension of the fundus alone. Both the fundus and antrum had significantly higher thresholds for triggering TLESR (96 and 105 mmHg.cm). In another two dogs truncal vagotomy performed at the time of gastric partitioning prevented both the change in background LES pressure, and the triggering of TLESR, associated with proximal gastric and antral distension. We conclude that the subcardiac region of the stomach is primarily responsible for triggering TLESR induced by distension and that the effect on background LES pressure depends on the region distended. PMID:2399982

  20. Quantification of pulmonary arterial wall distensibility using parameters extracted from volumetric micro-CT images

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Dawson, Christopher A.

    1999-09-01

    Stiffening, or loss of distensibility, of arterial vessel walls is among the manifestations of a number of vascular diseases including pulmonary arterial hypertension. We are attempting to quantify the mechanical properties of vessel walls of the pulmonary arterial tree using parameters derived from high-resolution volumetric x-ray CT images of rat lungs. The pulmonary arterial trees of the excised lungs are filled with a contrast agent. The lungs are imaged with arterial pressures spanning the physiological range. Vessel segment diameters are measured from the inlet to the periphery, and distensibilities calculated from diameters as a function of pressure. The method shows promise as an adjunct to other morphometric techniques such as histology and corrosion casting. It possesses the advantages of being nondestructive, characterizing the vascular structures while the lungs are imaged rapidly and in a near-physiological state, and providing the ability to associate mechanical properties with vessel location in the intact tree hierarchy.

  1. Feasibility of esophagogastric junction distensibility measurement during Nissen fundoplication.

    PubMed

    Ilczyszyn, A; Botha, A J

    2014-01-01

    Increased esophagogastric junction distensibility has been implicated in the development of gastroesophageal reflux disease (GERD). Previous authors have demonstrated a reduction in distensibility following anti-reflux surgery, but the changes during the operation are not clear. Our study aimed to ascertain the feasibility of measuring intraoperative distensibility changes and to assess if this would have potential to modify the operation. Seventeen patients with GERD were managed in a standardized manner consisting of preoperative assessment with symptom scoring, endoscopy, 24 hours pH studies, and manometry. Patients then underwent laparoscopic Nissen fundoplication with intraoperative distensibility measurement using an EndoFLIP EF-325 functional luminal imaging probe (Crospon Ltd, Galway, Ireland). This device utilizes impedance planimetry technology to measure cross-sectional area and distensibility within a balloon-tipped catheter. This is inflated at the esophagogastric junction to fixed distension volumes. Thirty-second median cross-sectional area and intraballoon pressure measurements were recorded at 30 and 40 mL balloon distensions. Measurement time points were initially after induction of anesthesia, after pneumoperitoneum, after hiatal mobilization, after hiatal repair, after fundoplication, and finally pre-extubation. Postoperatively, patients continued on protocol and were discharged after a two-night stay tolerating a sloppy diet. Patients with a hiatus hernia on high-resolution manometry had a significantly higher initial esophagogastric junction distensibility index (DI) than those without. Hiatus repair and fundoplication resulted in a significant overall reduction in the median DI from the initial to final recordings (30 mL balloon distension reduction of 3.26 mm(2) /mmHg (P = 0.0087), 40 mL balloon distension reduction of 2.39 mm(2) /mmHg [P = 0.0039]). There was also a significant reduction in the DI after pneumoperitoneum, hiatus

  2. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    SciTech Connect

    Ervin, Kent M.

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  3. Multum non multa: airway distensibility by forced oscillations.

    PubMed

    Mermigkis, Charalampos; Schiza, Sophia E; Panagou, Panagiotis

    2016-01-01

    Airway distensibility although appears to be unaffected by airway smooth muscle tone probably related to airway remodelling, after bronchodilator treatment is significantly increased in subjects with asthma. We assessed airway distensibity and its first moment derivative in two patients with mild intermittent asthma and normal spirometry. The increase in airway distensibility after bronchodilation measured at the tidal volume range during quiet breathing by forced oscillations was not accompanied by a change in its first moment, while the latter showed a significant increase in a second patient after anti-inflammatory treatment. It appears that airway distensibility is sensitive to reduction of bronchial smooth muscle tone after bronchodilation, but in addition its first moment might provide information on a change of both bronchial smooth muscle tone and small airways inflammation. PMID:27374218

  4. A new technique for pumping hydrogen gas

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  5. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  6. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  7. GAS CURTAIN EXPERIMENTAL TECHNIQUE AND ANALYSIS METHODOLOGIES

    SciTech Connect

    J. R. KAMM; ET AL

    2001-01-01

    The qualitative and quantitative relationship of numerical simulation to the physical phenomena being modeled is of paramount importance in computational physics. If the phenomena are dominated by irregular (i. e., nonsmooth or disordered) behavior, then pointwise comparisons cannot be made and statistical measures are required. The problem we consider is the gas curtain Richtmyer-Meshkov (RM) instability experiments of Rightley et al. (13), which exhibit complicated, disordered motion. We examine four spectral analysis methods for quantifying the experimental data and computed results: Fourier analysis, structure functions, fractal analysis, and continuous wavelet transforms. We investigate the applicability of these methods for quantifying the details of fluid mixing.

  8. Technique for measuring gas conversion factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R. (Inventor)

    1985-01-01

    A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.

  9. Time reversal technique for gas leakage detection.

    PubMed

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise. PMID:25920866

  10. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  11. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  12. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  13. Developing a gas rocket performance prediction technique

    NASA Technical Reports Server (NTRS)

    Morgenthaler, J. H.; Moon, L. F.; Stepien, W. R.

    1974-01-01

    A simple, semi-empirical performance correlation/prediction technique applicable to gaseous and liquid propellant rocket engines is presented. Excellent correlations were attained for over 100 test firings by adjusting the computation of the gaseous mixing of an unreactive, coaxial jet using a correlation factor, F, which resulted in prediction of the experimental combustion efficiency for each firing. Static pressure, mean velocity and turbulence intensity in the developing region of non-reactive coaxial jets, typical of those of coaxial injector elements were determined. Detailed profiles were obtained at twelve axial locations (extending from the nozzle exit for a distance of five diameters) downstream from a single element of the Bell Aerospace H2/O2 19-element coaxial injector. These data are compared with analytical predictions made using both eddy viscosity and turbulence kinetic energy mixing models and available computer codes. Comparisons were disappointing, demonstrating the necessity of developing improved turbulence models and computational techniques before detailed predictions of practical coaxial free jet flows are attempted.

  14. Evaluating peripheral arterial volume distensibility by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Xu, Guan; Wei, Xinbin; Cheng, Qian; Wang, Xueding

    2015-03-01

    Stiffness of arteries, especially small arteries, is an important marker for many diseases and a good parameter to evaluate the risks of cardiovascular problems. In this research, we proposed a new method for measurement of local arterial distensibility by using photoacoustic microscopy (PAM) technology. Taking advantages from its excellent sensitivity and high spatial resolution, PAM can evaluate the morphology and volume change of a small artery accurately without involving any contrast agent. When working in the linear elastic range of a vessel, measuring the initial and the distended diameters of the vessel before and after pressure change facilitates quantitative assessment of vessel distensibility. The preliminary experiment on well-controlled gel phantoms demonstrates the feasibility of this technology.

  15. Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2012-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.

  16. Active reactions of the rabbit ear artery to distension.

    PubMed

    Speden, R N

    1984-06-01

    Changes in the external diameter of active arteries, excised from the rabbit ear, were recorded following jumps in pressure within the arteries. The arteries were either spontaneously active or were constricted with noradrenaline. Active arteries dilated when the transmural pressure was jumped from 60 to 100 mmHg, but the dilatation was largely, sometimes completely, overcome by compensatory constriction within 1-2 min. Varying the constriction from 15 to 80% of the maximal constriction had no effect on the ability of the arteries to counteract distension. An average of 90 +/- 2% of the distension was overcome in 2 min and this was achieved against increases in stress (force/wall cross-sectional area) on the muscle of not less than 74%. Jumps in pressure rarely enhanced constriction and then only when constriction was slight (less than 15% of maximal). Restoring the transmural pressure to 60 from 100 mmHg produced a transient constriction when the initial constriction was less than 50% of the maximal constriction. The sequence of counteraction of distension and transient constriction on reversing the pressure jump was reproducible for many hours. Increasing constriction of the arteries first decreased and then, at maximal constriction, suppressed all transient changes in diameter. Smaller jumps in pressure produced less dilatation which was more readily prevented by increasing constriction. These results show that the wall of the ear artery possesses a pressure-sensitive, negative feed-back mechanism which minimized changes in diameter following jumps in pressure. PMID:6747877

  17. Airway distension promotes leukocyte recruitment in rat tracheal circulation.

    PubMed

    Lim, Lina H K; Wagner, Elizabeth M

    2003-11-01

    Mechanical distortion of blood vessels is known to activate endothelial cells. Whether airway distension likewise activates the vascular endothelium within the airway wall is unknown. Using intravital microscopy in the rat trachea, we investigated if airway distention with the application of positive end-expiratory pressure (PEEP) caused leukocyte recruitment to the airway. Tracheal postcapillary venules were visualized and leukocyte kinetics monitored in anesthetized, mechanically ventilated rats (80 breaths/minute, 6 ml/kg VT, 1 cm H(2)O PEEP). Leukocyte rolling velocity (Vwbc) and the number of adherent cells were not altered with normal ventilation over the course of 2 hours. Ventilation with sustained PEEP (8 cm H(2)O for 1 hour reduced Vwbc and increased adhesion, reaching a maximum at 1 hour of PEEP. Intermittent (2x and 5x) 8 cm H(2)O PEEP also induced a similar reduction in Vwbc, accompanied by an increase in adhesion. However, leukocyte recruitment after airway distension is localized to the airways because increased PEEP did not induce leukocyte recruitment in the mesenteric microcirculation or when PEEP was applied to the lung distal to the site of measurement. Pretreatment with endothelin receptor and selectin inhibitors blocked the effects of distension on leukocyte recruitment, suggesting their involvement in the proinflammatory response. PMID:12869357

  18. Automated measurement of respiratory gas exchange by an inert gas dilution technique

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Rummel, J. A.; Michel, E. L.

    1974-01-01

    A respiratory gas analyzer (RGA) has been developed wherein a mass spectrometer is the sole transducer required for measurement of respiratory gas exchange. The mass spectrometer maintains all signals in absolute phase relationships, precluding the need to synchronize flow and gas composition as required in other systems. The RGA system was evaluated by comparison with the Douglas bag technique. The RGA system established the feasibility of the inert gas dilution method for measuring breath-by-breath respiratory gas exchange. This breath-by-breath analytical capability permits detailed study of transient respiratory responses to exercise.

  19. Does Measurement of Esophagogastric Junction Distensibility by EndoFLIP Predict Therapy-responsiveness to Endoluminal Fundoplication in Patients With Gastroesophageal Reflux Disease?

    PubMed Central

    Smeets, Fabiënne G M; Keszthelyi, Daniel; Bouvy, Nicole D; Masclee, Ad A M; Conchillo, José M

    2015-01-01

    Background/Aims In patients with gastroesophageal reflux disease (GERD), an increased esophagogastric junction (EGJ) distensibility has been described. Assessment of EGJ distensibility with the endoscopic functional luminal imaging probe (EndoFLIP) technique might identify patients responsive to transoral incisionless fundoplication (TIF), whereas postoperative measurement of EGJ distensibility might provide insight into the antireflux mechanism of TIF. Therefore, we investigated the value of the EndoFLIP technique in GERD patients treated by TIF. Methods Forty-two GERD patients underwent EGJ distensibility measurement before TIF using the EndoFLIP technique. In a subgroup of 25 patients, EndoFLIP measurement was repeated both postoperative and at 6 months follow-up. Treatment outcome was assessed according to esophageal acid exposure time (AET; objective outcome) and symptom scores (clinical outcome) 6 months after TIF. Results Multiple logistic regression analysis showed that preoperative EGJ distensibility (OR, 0.16; 95% CI, 0.03–0.78; P = 0.023) and preoperative AET (OR, 0.62; 95% CI, 0.42–0.90; P = 0.013) were independent predictors for objective treatment outcome but not for clinical outcome after TIF. The best cut-off value for objective outcome was 2.3 mm2/mmHg for preoperative EGJ distensibility and 11% for preoperative AET. EGJ distensibility decreased direct postoperative from 2.0 (1.2–3.3) to 1.4 (1.0–2.2) mm2/mmHg (P = 0.014), but increased to 2.2 (1.5–3.0) at 6 months follow-up (P = 0.925, compared to preoperative). Conclusions Preoperative EGJ distensibility and preoperative AET were independent predictors for objective treatment outcome but not for clinical outcome after TIF. According to our data, the EndoFLIP technique has no added value either in the preoperative diagnostic work-up or in the post-procedure evaluation of endoluminal antireflux therapy. PMID:25742904

  20. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  1. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  2. Determination of membrane tension during balloon distension of intestine.

    PubMed

    Gregersen, H; Kassab, G S; Fung, Y C

    2004-09-01

    During the last decades, it has become increasingly common to make balloons distension in visceral organs in vivo. In particular this is true for studies of gastrointestinal motor function and biomechanics. Balloon distension is often used for assessment of small intestinal compliance and tension based on Laplace's law for cylindrical pressure pipes. This commonly used law is valid only when the balloon-distended intestine is cylindrical. Experimentally, it is seen that the diameter of the balloon-distended intestine is not a constant, but variable in the axial direction. Hence, it is necessary to improve Laplace's law for intestinal investigation. In this paper we develop the framework for determination of the tension distribution in circumferential and longitudinal direction during balloon distension. When the radii of curvature are measured from a photograph of the intestinal profile, then the membrane stress resultants can be computed everywhere in the intestine in contact with the balloon from the equations of equilibrium. The experimental data were obtained from small intestinal segments from five pigs and three guinea pigs. Papaverine was injected before the animals were sacrificed to relax the intestinal smooth muscle. The segments were immersed in a bath with calcium-free Krebs solution with dextran and EGTA. A balloon was distended in the lumen with pressures up to 15 cmH2O in the pigs and 10 cmH2O in the guinea pigs and radii were measured along the z-axis. The tension in circumferential direction had its maximum approximately 25% away from the middle of the balloon. The circumferential tension was 2-3 times higher than the longitudinal tension. In conclusion when we know the shape of the intestine, we can compute the circumferential and longitudinal components of tension. The large variation in tensions along the z axis must be considered when performing balloon distension studies in the gastrointestinal tract for studying physiological and

  3. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  4. Gas Membrane Sensor Technique for Long Term Gas Measurements in Deep Boreholes

    NASA Astrophysics Data System (ADS)

    Zimmer, M.; Erzinger, J.; Kujawa, Chr.; Co2-Sink Group

    2009-04-01

    The direct determination of the gas composition in subsurface brines in deep boreholes is necessary for the characterization of existing fluids and the monitoring of changes of reservoir gases during industrial use. The conventional methods used for this purpose were mostly expensive and sophisticated techniques and typically involve the collection of discrete samples that are transported to a laboratory for analyses. Alternatively, the presented new gas membrane sensor technique allows for a permanent collection of gas in the subsurface and the continuous conduction of the gathered gas through a special borehole cable with subsequent real time analyses at the surface. The system is easy to handle, avoids complex mechanical components and therefore reduces costs. The main component of the gas sensor is a tube-shaped membrane, together with a piezoresistive pressure and temperature transmitter and two stainless steel capillaries embedded in a borehole cable for the gas transport to the surface. A filler material prevents the membrane from collapsing inwardly under pressures exceeding 200 bars. The practicability of our method was tested by comprehensive laboratory experiments at different pressures, temperatures and salt concentrations and by comparing the results with literature data on gas permeation coefficients and activation energies gained by the conventional "time-lag" method. By taking into account the permeability coefficient for carbon dioxide in the used polydimethylsiloxan membrane, the Henry-law coefficient and the salting out effect the quantification of dissolved carbon dioxide in deep borehole brines is possible. The described method was successful applied at the scientific carbon dioxide storage test site in Ketzin, Germany. Changes in the reservoir gas composition were monitored and the breakthrough of injected carbon dioxide and krypton gas tracer into the observation well were recorded.

  5. Perineal Distensibility Using Epi-no in Twin Pregnancies: Comparative Study with Singleton Pregnancies

    PubMed Central

    Kubotani, Juliana Sayuri; Moron, Antonio Fernandes; Zanetti, Miriam Raquel Diniz; Soares, Vanessa Cardoso Marques; Elito Júnior, Julio

    2014-01-01

    The aims of this study were to compare perineal distensibility between women with twin and singleton pregnancies and to correlate these women's perineal distensibility with anthropometric data. This prospective cross-sectional case-control study was conducted among nulliparous women, of whom 20 were pregnant with twins and 23 with a single fetus. Perineal distensibility was evaluated in the third trimester by means of Epi-no, which was introduced into the vagina and inflated up to the maximum tolerable limit. It was then withdrawn while inflated and its circumference was measured. The unpaired Student's t-test was used to compare perineal distensibility in the two groups and Pearson's correlation coefficient (r) was used to correlate the pregnant women's perineal distensibility with their anthropometric data. There was no difference in perineal distensibility between the twin group (16.51 ± 2.05 cm) and singleton group (16.13 ± 1.67 cm) (P = 0.50). There was a positive correlation between perineal distensibility and abdominal circumference (r = 0.36; P = 0.01). The greater the abdominal circumference was, the greater the perineal distensibility was, regardless of whether the pregnancy was twin or singleton. PMID:25006476

  6. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    SciTech Connect

    Charlton, William S

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  7. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  8. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected. PMID:20336837

  9. Impact of Airway Gas Exchange on the Multiple Inert Gas Elimination Technique: Theory

    PubMed Central

    Anderson, Joseph C.; Hlastala, Michael P.

    2011-01-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, V̇A/Q̇, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Q̇br. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: 1) the standard MIGET gases which included acetone and ether and 2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of V̇A/Q̇ and Q̇br. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean V̇A, greater log(SDVA), and more closely matched the imposed V̇A distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected. PMID:20336837

  10. Distensibility of the Esophagogastric Junction Assessed with the Functional Lumen Imaging Probe (FLIP™) in Achalasia Patients

    PubMed Central

    Pandolfino, John E.; de Ruigh, Annemijn; Nicodème, Frédéric; Xiao, Yinglian; Boris, Lubomyr; Kahrilas, Peter J.

    2013-01-01

    Background The functional lumen imaging probe (FLIP), measures esophagogastric junction (EGJ) distensibility (cross sectional area/luminal pressure) during volume-controlled distension. The aim of this study was to apply this tool to the assessment of the EGJ in untreated and treated achalasia patients and to compare EGJ distensibility with other diagnostic tools utilized in managing achalasia. Methods Findings from FLIP, high-resolution manometry (HRM), timed barium esophagram, and symptom assessment by Eckardt Score (ES) were compared in 54 achalasia patients (23 untreated, 31 treated). Twenty healthy volunteers underwent FLIP as a comparator group. The EGJ distensibility index (EGJ-DI) was defined at the ‘waist’ of the FLIP bag during volumetric distension, expressed in mm2/mmHg. The ES was used to gauge treatment outcome: good response < 3 or poor response ≥ 3. Key Results Of the 31 treated patients, 17 had good and 14 poor treatment response. The EGJ-DI was significantly different among groups, greatest in the control subjects and least in the untreated patients; patients with good treatment response had significantly greater EGJ-DI than untreated or patients with poor response. The correlations between EGJ-DI and ES and integrated relaxation pressure on HRM were significant. Conclusion The FLIP provided a useful measure of EGJ distensibility in achalasia patients that correlated with symptom severity. The measurement of EGJ distensibility was complementary to existing tests suggesting a potentially important role in the clinical management of achalasia. PMID:23413801

  11. New techniques will take the sting out of flue gas

    SciTech Connect

    Not Available

    1980-10-08

    A discussion covers some new techniques for reducing NO/sub x/ and/or sulfur dioxide emissions from stack gases, including the installation by Champlin Petroleum Co. of Exxon Research and Engineering Co.'s catalyst-free DeNox system, which relies on ammonia addition, at its Wilmington, California, refinery; UOP Inc.'s demonstration of the Shell Flue Gas Desulfurization (and NO/sub x/ removal) process at a Tampa, Florida, coal-fired unit owned by Tampa Electric Co.; and Sumitomo Chemical Co. Ltd.'s and Mitsui and Co. Ltd.'s plans to use Bergbau-Forschung G.m.b.H. technology, which removes both NO/sub x/ and sulfur dioxide.

  12. TRIDENT flyer plate Impact technique: comparison to gas gun plate impact technique

    SciTech Connect

    Koller, Darcie D; Gray, III, George T; Luo, Sheng-Nian

    2009-03-01

    This report describes the details of a series of plate impact experiments that were conducted on a gas gun in an effort to validate a new technique for plate impact using the TRIDENT laser to launch thin flyers. The diagnostics fielded were VISAR and identical samples and impactors were used on both platforms. All experimenters agree that the VISAR results should have agreed between the two experimental platforms. The VISAR results did not agree across the platforms and experimenters offer explanations and implications for this outcome.

  13. Pressure distension in leg vessels as influenced by prolonged bed rest and a pressure habituation regimen.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kounalakis, Stylianos N; Kölegård, Roger

    2016-06-15

    Bed rest increases pressure distension in arteries, arterioles, and veins of the leg. We hypothesized that bed-rest-induced deconditioning of leg vessels is governed by the removal of the local increments in transmural pressure induced by assuming erect posture and, therefore, can be counteracted by intermittently increasing local transmural pressure during the bed rest. Ten men underwent 5 wk of horizontal bed rest. A subatmospheric pressure (-90 mmHg) was intermittently applied to one lower leg [pressure habituation (PH) leg]. Vascular pressure distension was investigated before and after the bed rest, both in the PH and control (CN) leg by increasing local distending pressure, stepwise up to +200 mmHg. Vessel diameter and blood flow were measured in the posterior tibial artery and vessel diameter in the posterior tibial vein. In the CN leg, bed rest led to 5-fold and 2.7-fold increments (P < 0.01) in tibial artery pressure-distension and flow responses, respectively, and to a 2-fold increase in tibial vein pressure distension. In the PH leg, arterial pressure-distension and flow responses were unaffected by bed rest, whereas bed rest led to a 1.5-fold increase in venous pressure distension. It thus appears that bed-rest-induced deconditioning of leg arteries, arterioles, and veins is caused by removal of gravity-dependent local pressure loads and may be abolished or alleviated by a local pressure-habituation regimen. PMID:27079693

  14. Effects of octreotide on responses to colorectal distension in the rat

    PubMed Central

    Su, X; Burton, M; Gebhart, G

    2001-01-01

    BACKGROUND AND AIMS—It has been suggested that the analgesic effect of the somatostatin analogue octreotide in visceral pain involves peripheral mechanisms. We evaluated the effect of octreotide on responses to noxious colorectal distension in rats.
METHODS—In a behavioural study, pressor and electromyographic responses to colorectal distension were evaluated before and after intravenous or intrathecal administration of octreotide. In pelvic nerve afferent fibre recordings, responses of mechanosensitive fibres innervating the colon to noxious colorectal distension (80 mm Hg, 30 seconds) were tested before and after octreotide.
RESULTS—Octreotide was ineffective in attenuating responses to colorectal distension in either normal or acetic acid inflamed colon when administered intravenously but attenuated responses when given intrathecally. Administration of octreotide over a broad dose range (0.5 µg/kg to 2.4 mg/kg) did not alter responses of afferent fibres to noxious colorectal distension in untreated, or acetic acid or zymosan treated colons.
CONCLUSIONS—In the rat, octreotide has no peripheral (pelvic nerve) modulatory action in visceral nociception. The antinociceptive effect of octreotide in this model of visceral nociception is mediated by an action at central sites.


Keywords: octreotide; colorectal distension; electromyographic responses; afferent fibres; visceral pain; analgesic effect; rat PMID:11302968

  15. Hot gas stream application in micro-bonding technique

    NASA Astrophysics Data System (ADS)

    Andrijasevic, Daniela; Giouroudi, Ioanna; Smetana, Walter; Boehm, Stefan; Brenner, Werner

    2006-01-01

    This paper presents a new concept for bonding micro-parts with dimensions in the range of 50 μm to 300 μm. Two different kinds of adhesives - polyurethane adhesive foil and hot melt glue - were applied to a basic substrate by different techniques. The focused and concentrated hot gas stream softened glue which had been applied in a solid state. Micro-parts were then embossed in the softened glue, or covered and shielded by it. In this way, a rigid and compact bond was obtained after cooling. For the positioning of micro-parts (optical fibers), it has been necessary to manufacture adequate V-grooves. Finite element analyses using the ANSYS TM program package were performed in order to evaluate parameters which govern the heat transfer to the adhesive and substrate respectively. Experimental results are in good agreement with results obtained by the numerical simulations. The advantages of this new approach are small system size, low capital costs, simple usage, applicability to many material combinations, easy integration into existing production lines, etc.

  16. Regional Variation of Distal Esophagus Distensibility Assessed Using the Functional Luminal Imaging Probe (FLIP)

    PubMed Central

    Lin, Zhiyue; Nicodème, Frédéric; Boris, Lubomyr; Lin, Chen-Yuan; Kahrilas, Peter J; Pandolfino, John E

    2013-01-01

    Background This study aimed to evaluate the spatial variation of esophageal distensibility in normal subjects using a novel multichannel functional luminal imaging probe (FLIP). Methods Ten healthy subjects (4 male, age 21–49 years) were evaluated during endoscopy with a high-resolution impedance planimetry probe (FLIP) positioned through the esophagogastric junction (EGJ) and distal 10cm of the esophageal body. Stepwise bag distensions using 5 ml increments from 0 to 60 mL were conducted and simultaneous measurements of cross-sectional area (CSA) and the associated intrabag pressure from each subject were analyzed using a customized MATLAB™ program. The distensibility along the esophagus was determined and compared between the EGJ and interval locations at 2–5 cm and 6–10 cm above the EGJ. Results The pressure-CSA relationship was nearly linear among sites at lower pressures (0 to 7.5 mmHg) and reached a distension plateau at pressures ranging from 8 to 24 mmHg. The location of greatest distensibility was 4 cm above the EGJ. Although the CSAs of individual recording loci were not significantly different, there was a significant difference between the mean CSAs when comparing the region 2 to 5 cm proximal to EGJ to that 6 to 10 cm proximal to the EGJ. Conclusions There were significant regional differences in distensibility along the distal esophagus with lower values in the proximal part compared to more distal part. The greatest distensibility was noted to occur at about 4 cm above the EGJ in close proximity to the location of the contractile deceleration point and phrenic ampulla. PMID:23965159

  17. Peripheral venous distension elicits a blood pressure raising reflex in young and middle-aged adults.

    PubMed

    Matthews, Evan L; Brian, Michael S; Coyle, Dana E; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B

    2016-06-01

    Distension of peripheral veins in humans elicits a pressor and sympathoexcitatory response that is mediated through group III/IV skeletal muscle afferents. There is some evidence that autonomic reflexes mediated by these sensory fibers are blunted with increasing age, yet to date the venous distension reflex has only been studied in young adults. Therefore, we tested the hypothesis that the venous distension reflex would be attenuated in middle-aged compared with young adults. Nineteen young (14 men/5 women, 25 ± 1 yr) and 13 middle-aged (9 men/4 women, 50 ± 2 yr) healthy normotensive participants underwent venous distension via saline infusion through a retrograde intravenous catheter in an antecubital vein during limb occlusion. Beat-by-beat blood pressure, muscle sympathetic nerve activity (MSNA), and model flow-derived cardiac output (Q), and total peripheral resistance (TPR) were recorded throughout the trial. Mean arterial pressure (MAP) increased during the venous distension in both young (baseline 83 ± 2, peak 94 ± 3 mmHg; P < 0.05) and middle-aged adults (baseline 88 ± 2, peak 103 ± 3 mmHg; P < 0.05). MSNA also increased in both groups [young: baseline 886 ± 143, peak 1,961 ± 242 arbitrary units (AU)/min; middle-aged: baseline 1,164 ± 225, peak 2,515 ± 404 AU/min; both P < 0.05]. TPR (P < 0.001), but not Q (P = 0.76), increased during the trial. However, the observed increases in blood pressure, MSNA, and TPR were similar between young and middle-aged adults. Additionally, no correlation was found between age and the response to venous distension (all P > 0.05). These findings suggest that peripheral venous distension elicits a pressor and sympathetic response in middle-aged adults similar to the response observed in young adults. PMID:27053648

  18. Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis.

    PubMed

    Nevado, J J Berzas; Martín-Doimeadios, R C Rodríguez; Krupp, E M; Bernardo, F J Guzmán; Fariñas, N Rodríguez; Moreno, M Jiménez; Wallace, D; Ropero, M J Patiño

    2011-07-15

    In this study, we evaluate advantages and disadvantages of three hyphenated techniques for mercury speciation analysis in different sample matrices using gas chromatography (GC) with mass spectrometry (GC-MS), inductively coupled plasma mass spectrometry (GC-ICP-MS) and pyrolysis atomic fluorescence (GC-pyro-AFS) detection. Aqueous ethylation with NaBEt(4) was required in all cases. All systems were validated with respect to precision, with repeatability and reproducibility <5% RSD, confirmed by the Snedecor F-test. All methods proved to be robust according to a Plackett-Burnham design for 7 factors and 15 experiments, and calculations were carried out using the procedures described by Youden and Steiner. In order to evaluate accuracy, certified reference materials (DORM-2 and DOLT-3) were analyzed after closed-vessel microwave extraction with tetramethylammonium hydroxide (TMAH). No statistically significant differences were found to the certified values (p=0.05). The suitability for water samples analysis with different organic matter and chloride contents was evaluated by recovery experiments in synthetic spiked waters. Absolute detection and quantification limits were in the range of 2-6 pg for GC-pyro-AFS, 1-4 pg for GC-MS, with 0.05-0.21 pg for GC-ICP-MS showing the best limits of detection for the three systems employed. However, all systems are sufficiently sensitive for mercury speciation in environmental samples, with GC-MS and GC-ICP-MS offering isotope analysis capabilities for the use of species-specific isotope dilution analysis, and GC-pyro-AFS being the most cost effective alternative. PMID:21641604

  19. An analysis of oil and gas supply modeling techniques and a survey of offshore supply models

    SciTech Connect

    Walls, M.A.

    1990-01-01

    This report surveys the literature on empirical oil and gas supply modeling techniques. These techniques are categorized as either geologic/engineering, econometric, or hybrid - the last being a combination of geologic and econometric techniques. The geologic/ engineering models are further disaggregated into play analysis models and discovery process models. The strengths and weaknesses of each of the models are discussed. The report concludes with a discussion of how these techniques have been applied to offshore oil and gas supply.

  20. Low Cost Gas Turbine Off-Design Prediction Technique

    NASA Astrophysics Data System (ADS)

    Martinjako, Jeremy

    This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.

  1. Understanding soil-gas velocity leads to new sampling techniques

    SciTech Connect

    Roy, K.A.

    1989-12-01

    Predicting when periods of maximum vertical gas velocity occur for any geographic point mightily increases the sensitivity and reliability of detection. This article discusses sampling programs. Sampling programs can be completed during periods of maximum velocity, allowing field workers to collect the maximum amount of contaminant in trace-gas form per given unit of time.

  2. GRI-sponsored research tests gas measurement techniques

    SciTech Connect

    Kothari, K.M.; Gregor, J.G. )

    1991-09-01

    This paper reports on the Gas Research Institute (GRI) which is managing a comprehensive research and development (R and D) program in gas flow measurement to improve gas metering accuracy and to reduce operation and maintenance costs. A portion of the program is centered on construction of a Metering Research Facility (MRF) and collecting experimental data over a range of Reynolds numbers to determine the effects of upstream flow conditions on orifice and turbine meters. In addition, GRI is sponsoring the development of new concepts for energy content and energy rate measurement: a low-cost, low-power electronic flow measurement device and accurate gas mixtures for use with gas chromatographs and calorimeters.

  3. A psychophysiological study in humans using phasic colonic distension as a noxious visceral stimulus.

    PubMed

    Ness, T J; Metcalf, A M; Gebhart, G F

    1990-12-01

    Psychophysiological experiments were performed in 9 humans using constant-pressure, phasic, graded distention (30 sec, 20-70 mm Hg) of the sigmoid colon as a visceral stimulus. Reliable cardiovascular (pressor), respiratory and visceromotor responses in addition to reports of pressure/pain sensations were evoked by colonic distension in 8 of the 9 subjects. The pressure/pain sensations were referred to the lower abdomen, lower back and perineum and their intensity quantified using a visual analogue scale. Responses to colonic distension were graded and increased with repeated distensions at the same intensity (60 mm Hg). The area of referral as indicated by subject drawings increased with repeated distensions as did the intensity of the subjects' sensory and affective descriptors of the sensation. Five of the subjects differentiated between 'pressure' and 'pain' sensations evoked by colonic distension; the intensity of the 'pain' sensation accelerated during the distending stimulus whereas the 'pressure' sensation was typically stable or adapting during the distending stimulus. PMID:2293146

  4. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. PMID:21925651

  5. The clinical effect of hydraulic distension plus manual therapy on patients with frozen shoulder

    PubMed Central

    Kwak, Kwang-Il; Kim, Eun-Kyung

    2016-01-01

    [Purpose] This study aimed to develop a clinical protocol for the treatment of frozen shoulder using applied hydraulic distension plus manual therapy. [Subjects and Methods] Patients were randomly assigned to 2 groups: 60 patients in group A were treated with hydraulic distension plus manual therapy, and 61 in group B were treated with hydraulic distension alone. Treatment effects were assessed using the Visual Analog Scale (VAS) (pain and satisfaction), and active range of motion of the shoulder (forward flexion, internal and external rotation) before treatments and at 2, 6, 12, 24 weeks, and 1 year after the last injections. [Results] Patients in group A achieved faster pain relief and better satisfaction than patients in group B during the 6 weeks after treatment. However, no significant difference in VAS was observed between the groups at final follow-up. AROM of the shoulder was improved at final follow-up in both groups. [Conclusion] Hydraulic distension plus manual therapy provided faster pain relief, a higher level of patient satisfaction, and an earlier improvement in AROM of the shoulder than hydraulic distension alone in patients with frozen shoulder.

  6. A Safe and Efficient Technique for the Production of HCl/DCl Gas

    ERIC Educational Resources Information Center

    Mayer, Steven G.; Bard, Raymond R.; Cantrell, Kevin

    2008-01-01

    We present a safe and efficient technique to generate HCl/DCl gas for use in the classic physical chemistry experiment that introduces students to ro-vibrational spectroscopy. The reaction involves thionyl chloride and a mixture of water and deuterium oxide to produce HCl/DCl gas with SO[subscript 2] gas as a byproduct. The entire reaction is…

  7. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  8. Risk management technique for liquefied natural gas facilities

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  9. Influence of trimebutine on inflammation- and stress-induced hyperalgesia to rectal distension in rats.

    PubMed

    Lacheze, C; Coelho, A M; Fioramonti, J; Buéno, L

    1998-08-01

    The effects of trimebutine and its major metabolite, N-desmethyltrimebutine on inflammation- and stress-induced rectal hyperalgesia have been evaluated in rats fitted with electrodes implanted in the longitudinal striated muscle of the abdomen. Intermittent rectal distension was performed before and 3 days after induction of rectal inflammation by local infusion of trinitrobenzenesulphonic acid (in ethanol). Stress consisted of 2h partial restraint and rectal distension was performed before and 30min after the end of the partial restraint session. The animals were treated intraperitoneally with trimebutine or desmethyltrimebutine (5, 10 or 20mgkg(-1)) or vehicle 15min before rectal distension. Naloxone (1mgkg(-1)) or saline was injected subcutaneously before trimebutine and desmethyltrimebutine. Before treatment trimebutine at the highest dose (20mgkg(-1)) reduced the abdominal response to rectal distension for the highest volume of distension (1.6mL) whereas desmethyltrimebutine was inactive. After rectocolitis the abdominal response to rectal distension was enhanced and trimebutine at 5mgkg(-1) reduced and at 10 mgkg(-1) suppressed inflammation-induced hyperalgesia, an effect reversed by naloxone. Desmethyltrimebutine was inactive. Stress-induced hypersensitivity was attenuated or suppressed, or both, by trimebutine and desmethyltrimebutine at doses of 5, 10 or 20mgkg(-l); greater efficacy was observed for desmethyltrimebutine and the effects were not reversed by naloxone. It was concluded that trimebutine and desmethyltrimebutine are active against inflammation- and stress-induced rectal hyperalgesia but act differently. The effect of trimebutine on inflammation-induced hyperalgesia is mediated through opioid receptors. PMID:9751458

  10. Esophageal Distensibility as a Measure of Disease Severity in Patients with Eosinophilic Esophagitis

    PubMed Central

    Nicodème, Frédéric; Hirano, Ikuo; Chen, Joan; Robinson, Kenika; Lin, Zhiyue; Xiao, Yinglian; Gonsalves, Nirmala; Kwasny, Mary J; Kahrilas, Peter J; Pandolfino, John E

    2013-01-01

    Background & Aims The aim of this study was to assess whether measurements of esophageal distensibility, made by high-resolution impedance planimetry, correlated with important clinical outcomes in patients with eosinophilic esophagitis. Methods Seventy patients with eosinophilic esophagitis (50 male, ages 18–68) underwent endoscopy with esophageal biopsy collection and high-resolution impedance planimetry using the functional lumen-imaging probe. The patients were followed prospectively for an average of 9.2 months (range 3–14 months), and the risk of food impaction, requirement for dilation; symptom severity during the follow-up period was determined from medical records. Esophageal distensibility metrics and the severity of mucosal eosinophilia at baseline were compared between patients presenting with and without food impaction and those requiring or not requiring esophageal dilation. Logistic regression and stratification assessments were used to assess the predictive value of esophageal distensibility metrics in assessing risk of food impaction, the need for dilation, and continued symptoms. Results Patients with prior food impactions had significantly lower distensibility plateau (DP) values than those with solid food dysphagia alone. Additionally, patients sustaining food impaction and requiring esophageal dilation during the follow-up period had significantly lower DP values than those who did not. The severity of mucosal eosinophilia did not correlate with risk for food impaction, the requirement for dilation during follow up, or DP values. Conclusions Reduced esophageal distensibility predicts risk for food impaction and the requirement for esophageal dilation in patients with eosinophilic esophagitis. The severity of mucosal eosinophilia was not predictive of these outcomes and had a poor correlation with esophageal distensibility. PMID:23591279

  11. Regional aortic distensibility and its relationship with age and aortic stenosis: a computed tomography study.

    PubMed

    Wong, Dennis T L; Narayan, Om; Leong, Darryl P; Bertaso, Angela G; Maia, Murilo G; Ko, Brian S H; Baillie, Timothy; Seneviratne, Sujith K; Worthley, Matthew I; Meredith, Ian T; Cameron, James D

    2015-06-01

    Aortic distensibility (AD) decreases with age and increased aortic stiffness is independently associated with adverse cardiovascular outcomes. The association of severe aortic stenosis (AS) with AD in different aortic regions has not been evaluated. Elderly subjects with severe AS and a cohort of patients without AS of similar age were studied. Proximal aortic cross-sectional-area changes during the cardiac cycle were determined using retrospective-ECG-gating on 128-detector row computed-tomography. Using oscillometric-brachial-blood-pressure measurements, the AD at the ascending-aorta (AA), proximal-descending-aorta (PDA) and distal-descending-aorta (DDA) was determined. Linear mixed effects modelling was used to determine the association of age and aortic stenosis on regional AD. 102 patients were evaluated: 36 AS patients (70-85 years), 24 AS patients (>85 years) and 42 patients without AS (9 patients <50 years, 20 patients between 51-70 years and 13 patients 70-85 years). When comparing patients 70-85 years, AA distensibility was significantly lower in those with AS compared to those without AS (0.9 ± 0.9 vs. 1.4 ± 1.1, P = 0.03) while there was no difference in the PDA (1.0 ± 1.1 vs. 1.0 ± 1.2, P = 0.26) and DDA (1.1 ± 1.2 vs. 1.2 ± 0.8, P = 0.97). In patients without AS, AD decreased with age in all aortic regions (P < 0.001). The AA in patients <50 years were the most distensible compared to other aortic regions. There is regional variation in aortic distensibility with aging. Patients with aortic stenosis demonstrated regional differences in aortic distensibility with lower distensibility demonstrated in the proximal ascending aorta compared to an age-matched cohort. PMID:25855464

  12. Distensibility in human veins as affected by 5 weeks of repeated elevations of local transmural pressure.

    PubMed

    Kölegård, Roger; Eiken, Ola

    2011-12-01

    The objectives were to investigate the effects of repeated increments in local intravascular pressure (pressure training; PT) on (1) distensibility in two arm veins, and (2) pain in the arm induced by markedly increased intravascular pressure. Elevation of venous distending pressure (DP) in an arm was induced by placing the subject (n = 8) in a pressure chamber with one arm protruding to the outside via a port in the chamber door, and increasing chamber pressure. During 5 weeks, venous DP in one arm was repeatedly (3 × 40 min/week) increased (65-105 mmHg). Pressure-distension relationships were determined in the brachial and cephalic veins by measuring diameter changes by ultrasonography during stepwise increments in DP to 180 mmHg. In the brachial vein, the diameter change in response to an increase in DP from 30 to 180 mmHg (distensibility) was reduced (P < 0.05) in the pressure-trained arm (11%) compared to that in the control arm before (23%) and after (21%) PT. The cephalic vein showed a similar response with a reduced (P < 0.05) distensibility in the pressure-trained arm (20%) compared to that in the control arm before (29%) and after (25%) PT. At any given DP, arm pain was less (P < 0.05) in the pressure-trained arm than in the control arm before and after PT, presumably reflecting the reduced venous distensibility in the pressure-trained arm. The results support the concept that the distensibility of venous walls adapts to meet the demands imposed by the prevailing local transmural pressures. PMID:21461927

  13. Lung distensibility and airway function in intermediate alpha 1-antitrypsin deficiency (Pi MZ).

    PubMed Central

    Tattersall, S F; Pereira, R P; Hunter, D; Blundell, G; Pride, N B

    1979-01-01

    We examined the role of intermediate alpha 1-antitrypsin deficiency in predisposing to abnormalities of lung distensibility and airway function in 20 heterozygotes (Pi MZ) who were individually matched with a control Pi M subject of similar age, height, and smoking habits drawn from the same male, working population. There were no significant differences between the heterozygotes and their controls in the results of spirometry, maximum expiratory flow-volume curves (breathing air), single breath nitrogen test, arterialised capillary blood oxygen pressure, or single breath carbon monoxide transfer. Additional studies were made in 12 of the pairs of Pi MZ and Pi M subjects. Comparison of maximum expiratory flow-volume curves breathing air and 80% helium-20% oxygen showed no differences between the Pi MZ and Pi M subjects. Although airway function was similar in the two groups, four of 12 Pi MZ subjects showed abnormalities of the pressure-volume curve of the lung (reduction in lung recoil pressure, abnormal shape factor, increase in functional residual capacity). Abnormalities of washout of a helium-sulphur hexafluoride gas mixture, of a type previously described as characteristic of emphysema, were found in two of the men with abnormal pressure-volume curves. The results suggest that Pi MZ subjects have an increased susceptibility to alveolar abnormalities without increased abnormalities of airway function; this may explain the increased frequency of emphysema at necropsy despite many studies showing no predisposition to abnormal airway function in life. The functional changes we observed would be unlikely to cause symptoms. The risk of disablement from chronic lung disease appears to be only slightly enhanced by intermediate alpha 1-antitrypsin deficiency. PMID:316207

  14. The interaction between noradrenaline activation and distension activation of the rabbit ear artery.

    PubMed

    Speden, R N; Warren, D M

    1986-06-01

    Excised, pressurized segments of the rabbit ear artery have been used to examine the interaction between the transmural pressure and constriction of arteries by extraluminal noradrenaline. The bath temperature was kept at 32-33 degrees C to suppress instability and spontaneity of constriction. Fast, reproducible jumps in pressure were obtained by using a microcomputer to control an electropneumatic transducer. The arteries did not react actively to transmural pressure changes unless already activated by noradrenaline. Active arteries responded to distension by a pressure jump with a reproducible compensatory constriction which was unaffected by tetrodotoxin. The counteraction of distension was due primarily to enhanced activation of the muscle. Distension activation decreased with increasing constriction. Utilization of the force-generating capacity of the arteries either remained unchanged at 20-30% or, in one experiment, increased slightly when constriction against a transmural pressure of 60 mmHg was increased from 20 to 75% of maximal by raising the noradrenaline concentration. When the transmural pressure was 90 mmHg, the 35-55% utilization of the force-generating capacity either remained constant or fell as constriction was increased. Most of the force-generating capacity was available for counteracting the distension of moderately constricted arteries (less than 40% of maximal) produced by a 60-90 mmHg jump. More than 78% of the maximum capacity was used in attempting to overcome the distension when it was maintained by computer-controlled increases in transmural pressure. The moderate constrictions were produced with noradrenaline concentrations which were 500-10,000 times lower than that used to maximally activate the arteries. The rabbit ear artery possesses a powerful, distension-sensitive mechanism that acts to minimize diameter changes initiated by transmural pressure jumps. The diameter of the active artery was determined by a combination of

  15. Renal clearance studies of effect of left atrial distension in the dog.

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.; Discala, V. A.

    1972-01-01

    Investigation of the water diuresis of left atrial distension in 16 dogs on the basis of clearance studies employing hydration, chronic and acute salt loading, deoxycorticosterone (DOCA) in excess, and distal tubular nephron blockade with diuretics. The diuresis was found in hydrated and salt-loaded dogs and was independent of DOCA and presumed renin depletion. It was not found in five dogs after distal tubular blockade. No significant reproducible saluresis was ever documented. The water diuresis was always stopped by exogenous vasopressin (seven dogs). Antidiuretic hormone inhibition with distal tubular nephron water permeability changes appears to be the sole mechanism of the diuresis of left atrial distension in the dog.

  16. Spontaneous intradural disc herniation with focal distension of the subarachnoid space in a dog

    PubMed Central

    Barnoon, Itai; Chai, Orit; Srugo, Itai; Peeri, Dana; Konstantin, Lilach; Brenner, Ori; Shamir, Merav H.

    2012-01-01

    Myelo-computed tomography of a paraparetic 14-year-old dog revealed subarachnoid distension with an intradural filling defect above the T13–L1 disc space. T12–L1 hemilaminectomy followed by durotomy allowed removal of a large piece of degenerated disc material that compressed the spinal parenchyma. Full return to function was achieved 10 days post-surgery. The distension was likely secondary to the intradural herniation, and is a rare and distinct finding. PMID:23633713

  17. Experimental technique to investigate the interstellar gas - Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Lind, D. L.; Geiss, J.; Buehler, F.; Eugster, O.

    1993-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils to collect neutral interstellar gas particles. These particles penetrate the solar system due to their motion relative to the sun. Thus, it was possible to entrap them in the collecting foils along with precipitating magnetospheric and perhaps some ambient atmospheric particles. For the entire duration of the Long Duration Exposure Facility mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectrometric analysis of the noble gas component of these particles, we have detected the isotopes of He-3, He-4, Ne-20, and Ne-22. In the foil analyses carried out so far, we find a distribution of particle arrival directions which shows that a significant part of the trapped particles are indeed interstellar atoms. The analysis needed to subtract the competing fluxes of magnetospheric and atmospheric particles is still in progress.

  18. Large Volume Injection Techniques in Capillary Gas Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large volume injection (LVI) is a prerequisite of modern gas chromatographic (GC) analysis, especially when trace sample components have to be determined at very low concentration levels. Injection of larger than usual sample volumes increases sensitivity and/or reduces (or even eliminates) the need...

  19. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    SciTech Connect

    Maxwell, D.P.; Richardson, C.F.

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  20. Pulse pressure waveform estimation using distension profiling with contactless optical probe.

    PubMed

    Pereira, Tânia; Santos, Inês; Oliveira, Tatiana; Vaz, Pedro; Pereira, Telmo; Santos, Helder; Pereira, Helena; Correia, Carlos; Cardoso, João

    2014-11-01

    The pulse pressure waveform has, for long, been known as a fundamental biomedical signal and its analysis is recognized as a non-invasive, simple, and resourceful technique for the assessment of arterial vessels condition observed in several diseases. In the current paper, waveforms from non-invasive optical probe that measures carotid artery distension profiles are compared with the waveforms of the pulse pressure acquired by intra-arterial catheter invasive measurement in the ascending aorta. Measurements were performed in a study population of 16 patients who had undergone cardiac catheterization. The hemodynamic parameters: area under the curve (AUC), the area during systole (AS) and the area during diastole (AD), their ratio (AD/AS) and the ejection time index (ETI), from invasive and non-invasive measurements were compared. The results show that the pressure waveforms obtained by the two methods are similar, with 13% of mean value of the root mean square error (RMSE). Moreover, the correlation coefficient demonstrates the strong correlation. The comparison between the AUCs allows the assessment of the differences between the phases of the cardiac cycle. In the systolic period the waveforms are almost equal, evidencing greatest clinical relevance during this period. Slight differences are found in diastole, probably due to the structural arterial differences. The optical probe has lower variability than the invasive system (13% vs 16%). This study validates the capability of acquiring the arterial pulse waveform with a non-invasive method, using a non-contact optical probe at the carotid site with residual differences from the aortic invasive measurements. PMID:25169470

  1. Solvent-free microextraction techniques in gas chromatography.

    PubMed

    Laaks, Jens; Jochmann, Maik A; Schmidt, Torsten C

    2012-01-01

    Microextraction techniques represent a major part of modern sample preparation in the analysis of organic micropollutants. This article provides a short overview of recent developments in solvent-free microextraction techniques. From the first open-tubular trap techniques in the mid-1980s to recent packed-needle devices, different implementations of in-needle packings for microextraction are discussed with their characteristic benefits, shortcomings and possible sampling modes. Special emphasis is placed on methods providing full automation and solvent exclusion. In this context, in-tube extraction and the needle trap are discussed, with an overview of current research on new sorbent materials, together with the requirements for more efficient method development. PMID:22057686

  2. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  3. G tolerance vis-à-vis pressure-distension and pressure-flow relationships of leg arteries.

    PubMed

    Eiken, Ola; Mekjavic, Igor; Sundblad, Patrik; Kölegård, Roger

    2012-10-01

    During increased gravitoinertial (G) load in the head-to-foot direction, pressures in dependent vascular beds are commonly raised to levels capable of distending precapillary vessels, which, in turn, may reduce arterial pressure, and hence compromise the capacity to withstand G load (G tolerance). We hypothesized that distensibility in precapillary leg vessels would be lower in a group of subjects possessing high G tolerance (H; n = 7; relaxed G tolerance = 6.6 ± 0.8 G) than in a group with low G tolerance (L; n = 8; G tolerance = 3.9 ± 0.3 G). The groups were matched with regard to gender, age, weight, height, and resting arterial pressure. Arterial pressure-distension and pressure-flow experiments were performed with the subject supine in a pressure chamber with a lower leg protruding to the outside. Increased intravascular pressure in the blood vessels of the outside leg was accomplished by stepwise increasing chamber pressure to 240 mmHg. Diameter and flow in the posterior tibial artery were measured by ultrasonographic/Doppler techniques. Pressure-induced increments in arterial diameter and flow were more pronounced (p < 0.03) in the L (14.1 ± 4.2% and 32 ± 21 ml/min respectively) than in the H (1.7 ± 5.0% and 1.6 ± 25 ml/min) group, and the pressure thresholds at which these increments commenced were lower (by 52 and 48 mmHg, respectively) in the L than in the H group (p < 0.04). Negative correlations were observed between G tolerance and the increments in diameter and flow (p < 0.02). Thus, the wall stiffness of precapillary leg vessels is greater in individuals with high relaxed G tolerance; whether a causal relationship exists remains to be established. PMID:22350358

  4. Comparing two micrometeorological techniques for estimating trace gas emissions from distributed sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring trace gas emission from distributed sources such as treatment lagoons, treatment wetlands, land spread of manure, and feedlots requires micrometeorological methods. In this study, we tested the accuracy of two relatively new micrometeorological techniques, vertical radial plume mapping (VR...

  5. Cooling techniques for gas turbine airfoils: A survey

    NASA Astrophysics Data System (ADS)

    Metzger, D. E.

    1985-09-01

    A brief general background discussion of turbine heat transfer and cooling with compressor discharge air is given. Specific reference is made to a selection of current research areas for gas turbine engine cooling, including blade tip heat transfer, heat transfer in serpentine passages, multiple jet array impingement, heat transfer in pin fin arrays, disk heat transfer, and film cooling. An overview of various experimental methods used to acquire heat transfer data is also given, with an emphasis on newer methods used to acquire detailed local convection heat transfer information.

  6. Distension of the uterus induces HspB1 expression in rat uterine smooth muscle.

    PubMed

    White, B G; MacPhee, D J

    2011-11-01

    The uterine musculature, or myometrium, demonstrates tremendous plasticity during pregnancy under the influences of the endocrine environment and mechanical stresses. Expression of the small stress protein heat shock protein B1 (HspB1) has been reported to increase dramatically during late pregnancy, a period marked by myometrial hypertrophy caused by fetal growth-induced uterine distension. Thus, using unilaterally pregnant rat models and ovariectomized nonpregnant rats with uteri containing laminaria tents to induce uterine distension, we examined the effect of uterine distension on myometrial HspB1 expression. In unilaterally pregnant rats, HspB1 mRNA and Ser(15)-phosphorylated HspB1 (pSer(15) HspB1) protein expression were significantly elevated in distended gravid uterine horns at days 19 and 23 (labor) of gestation compared with nongravid horns. Similarly, pSer(15) HspB1 protein in situ was only readily detectable in the distended horns compared with the nongravid horns at days 19 and 23; however, pSer(15) HspB1 was primarily detectable in situ at day 19 in membrane-associated regions, while it had primarily a cytoplasmic localization in myometrial cells at day 23. HspB1 mRNA and pSer(15) HspB1 protein expression were also markedly increased in ovariectomized nonpregnant rat myometrium distended for 24 h with laminaria tents compared with empty horns. Therefore, uterine distension plays a major role in the stimulation of myometrial HspB1 expression, and increased expression of this small stress protein could be a mechanoadaptive response to the increasing uterine distension that occurs during pregnancy. PMID:21900647

  7. Assessment of local pulse wave velocity in arteries using 2D distension waveforms.

    PubMed

    Meinders, J M; Kornet, L; Brands, P J; Hoeks, A P

    2001-10-01

    The reciprocal of the arterial pulse wave velocity contains crucial information about the mechanical characteristics of the arterial wall but is difficult to assess noninvasively in vivo. In this paper, a new method to assess local pulse wave velocity (PWV) is presented. To this end, multiple adjacent distension waveforms are determined simultaneously along a short arterial segment, using a single 2D-vessel wall tracking system with a high frame rate (651 Hz). Each B-mode image consists of 16 echo lines spanning a total width of 15.86 mm. Dedicated software has been developed to extract the end-diastolic diameter from the B-mode image and the distension waveforms from the underlying radiofrequency (rf) information for each echo-line. The PWV is obtained by determining the ratio of the temporal and spatial gradient of adjacent distension velocity waveforms. The proposed method is verified in a phantom and in the common carotid artery (CCA) of humans. Phantom experiments show a high concordance between the PWV obtained from 2D distension velocity waveforms (4.21 +/- 0.02 m/s) and the PWV determined using two pressure catheters (4.26 +/- 0.02 m/s). Assuming linear spatial gradients, the PWV can also be obtained in vivo for CCA and averages to 5.5 +/- 1.5 m/s (intersubject variation, n = 23), which compares well to values found in literature. Furthermore, intrasubject PWV compares well with those calculated using the Bramwell-Hill equation. It can be concluded that the PWV can be obtained from the spatial and temporal gradient if the spatial gradient is linear over the observed length of the artery, i.e. the artery should be homogenous in diameter and distension and the influence of reflections must be small. PMID:12051275

  8. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  9. Offshore Adriatic marginal gas fields: An approach to the technique of reservoir development

    SciTech Connect

    Montanari, A.; Bolelli, V.; Piccoli, G.

    1986-01-01

    The application of accelerated gas blowdown and wire line techniques in reservoir development and exploitation is presented for an off-shore Adriatic marginal gas field. The approach discussed in this paper utilizes selective completion, very low reserves/production ratio, sequential production, Through Tubing Bridge Plug and Through Tubing Perforation techniques to avoid the use of costly workover rigs and to allow economically convenient exploitation of a structure which otherwise would have been abandoned.

  10. Right internal jugular vein distensibility appears to be a surrogate marker for inferior vena cava vein distensibility for evaluating fluid responsiveness

    PubMed Central

    Broilo, Fabiano; Meregalli, Andre; Friedman, Gilberto

    2015-01-01

    Objective To investigate whether the respiratory variation of the inferior vena cava diameter (∆DIVC) and right internal jugular vein diameter (∆DRIJ) are correlated in mechanically ventilated patients. Methods This study was a prospective clinical analysis in an intensive care unit at a university hospital. Thirty-nine mechanically ventilated patients with hemodynamic instability were included. ∆DIVC and ∆DRIJ were assessed by echography. Vein distensibility was calculated as the ratio of (A) Dmax - Dmin/Dmin and (B) Dmax - Dmin/ mean of Dmax - Dmin and expressed as a percentage. Results ∆DIVC and ∆DRIJ were correlated by both methods: (A) r = 0.34, p = 0.04 and (B) r = 0.51, p = 0.001. Using 18% for ∆DIVC, indicating fluid responsiveness by method (A), 16 patients were responders and 35 measurements showed agreement (weighted Kappa = 0.80). The area under the ROC curve was 0.951 (95%CI 0.830 - 0.993; cutoff = 18.92). Using 12% for ∆DIVC, indicating fluid responsiveness by method (B), 14 patients were responders and 32 measurements showed agreement (weighted Kappa = 0.65). The area under the ROC curve was 0.903 (95%CI 0.765 - 0.973; cut-off value = 11.86). Conclusion The respiratory variation of the inferior vena cava and the right internal jugular veins are correlated and showed significant agreement. Evaluation of right internal jugular vein distensibility appears to be a surrogate marker for inferior vena cava vein distensibility for evaluating fluid responsiveness. PMID:26465243

  11. Validity of using backward Lagrangian Stochastic technique in measuring trace gas emission from treatment lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the accuracy of measuring trace gas emission from treatment lagoons using backward Lagrangian stochastic (bLs) technique. The bLs technique was originally developed for relatively homogeneous terrains without any obstacles causing significant windflow disturbance. The errors ass...

  12. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  13. Evaluation of venous distension device: potential aid for intravenous cannulation.

    PubMed

    Hedges, J R; Weinshenker, E; Dirksing, R

    1986-05-01

    A device designed to augment venous filling by applying a vacuum to the upper extremity during tourniquet application was evaluated. Ten healthy adult male volunteers with clinical normovolemia were studied for changes in forearm volume and dorsal hand vein turgor during use of an elastic tubing tourniquet, a blood pressure cuff tourniquet, and a vacuum-assisted cuff tourniquet. Use of the device for 30 seconds was not associated with petechia formation and resulted in a significant increase in venous turgor, as measured by an ophthalmologic tonometer, in comparison to the other tourniquet techniques (P less than .005). Use for 60 seconds was associated with mild to moderate subjective discomfort in all volunteers and petechiae in all nine white volunteers. All petechiae resolved in three days. Venous engorgement as reflected by volume displacement was significantly greater for the vacuum device and blood pressure cuff tourniquet combination than other techniques at 30 and 60 seconds of tourniquet application (P less than .005). Brief application of a vacuum to the arm during tourniquet use increases venous turgor and engorgement in normovolemic volunteers. PMID:3963533

  14. Atrial distension of isolated rabbit hearts and release of atrial natriuretic factor

    SciTech Connect

    Synhorst, D.P.; Gutkowska, J. Clinical Research Institute of Montreal, Quebec )

    1988-08-01

    Interventions that increase atrial pressures in humans or laboratory animals release atrial natriuretic factor (ANF) into the circulation. The authors studied the relation between distension of the right or left atrium and release of ANF in retrograde-perfused isolated rabbit hearts. A fluid-filled balloon within the right or left atrium was inflated to a mean pressure of 5, 10, 15, or 20 mmHg, and ANF in the cardiac effluent was measured by radioimmunoassay. The slope of the regression line relating ANF release to atrial distending pressure was steeper for the left than right atrium, indicating that, at comparable increases in mean pressures, the left atrium releases more ANF than does the right atrium. Left atrial tissue concentration ANF was greater than right atrial. In contrast to previous studies showing right atrial dominance in rats, the left atria of isolated, perfused rabbit hearts contain more ANF and release more in response to atrial distension.

  15. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  16. Vigorous physical activity and carotid distensibility in young and mid-aged adults.

    PubMed

    Huynh, Quan L; Blizzard, Christopher L; Raitakari, Olli; Sharman, James E; Magnussen, Costan G; Dwyer, Terence; Juonala, Markus; Kähönen, Mika; Venn, Alison J

    2015-05-01

    Although physical activity (PA) improves arterial distensibility, it is unclear which type of activity is most beneficial. We aimed to examine the association of different types of PA with carotid distensibility (CD) and the mechanisms involved. Data included 4503 Australians and Finns aged 26-45 years. Physical activity was measured by pedometers and was self-reported. CD was measured using ultrasound. Other measurements included resting heart rate (RHR), cardiorespiratory fitness (CRF), blood pressure, biomarkers and anthropometry. Steps/day were correlated with RHR (Australian men r = -0.10, women r = - 0.14; Finnish men r = -0.15, women r = -0.11; P<0.01), CRF and biochemical markers, but not with CD. Self-reported vigorous leisure-time activity was more strongly correlated with RHR (Australian men r = -0.23, women r = -0.19; Finnish men r = -0.20, women r = -0.13; P < 0.001) and CRF, and was correlated with CD (Australian men r = 0.07; Finnish men r = 0.07, women r = 0.08; P < 0.05). This relationship of vigorous leisure-time activity with CD was mediated by RHR independently of potential confounders. In summary, vigorous leisure-time PA but not total or less intensive PA was associated with arterial distensibility in young to mid-aged adults. Promotion of vigorous PA is therefore recommended among this population. RHR was a key intermediary factor explaining the relationship between vigorous PA and arterial distensibility. PMID:25693850

  17. Reduction of lung distensibility in acromegaly after suppression of growth hormone hypersecretion.

    PubMed

    García-Río, F; Pino, J M; Díez, J J; Ruíz, A; Villasante, C; Villamor, J

    2001-09-01

    Whether the growth of the lungs in acromegaly is due to alveolar hypertrophy or alveolar hyperplasia is a subject of debate. To discriminate these hypotheses, we compared pulmonary distensibility and diffusing capacity among 11 patients with active acromegaly and 11 matched control subjects, evaluating the response of pulmonary distensibility and diffusing capacity to suppression of growth hormone (GH) hypersecretion. We performed lineal and exponential analyses of quasistatic pressure-volume curves. Patients with active acromegaly had a greater TLC, lung compliance, and shape constant, K, than did normal subjects. We found no significant differences between the study groups in carbon monoxide diffusing capacity or diffusing capacity per unit of alveolar volume. After treatment, patients with inactive acromegaly showed a reduced TLC (6.95 +/- 1.40 [mean +/- SD] L versus 6.35 +/- 1.23 L), reduced lung compliance (3.61 +/- 0.90 L/kPa versus 2.36 +/- 0.79 L/ kPa), reduced K coefficient (2.62 +/- 0.65 kPa(-)(1) versus 1.35 +/- 0.40 kPa(-)(1)), and increased maximal recoil pressure (1.74 +/- 0.38 kPa versus 2.28 +/- 0.25 kPa). We conclude that the increased lung distensibility with normal diffusion capacity demonstrated in patients with active acromegaly, which was partly reversible after suppression of GH hypersecretion, suggests that lung growth in acromegaly may result from an increase in alveolar size. PMID:11549545

  18. Submucosal reflexes: distension-evoked ion transport in the guinea pig distal colon.

    PubMed

    Frieling, T; Wood, J D; Cooke, H J

    1992-07-01

    Muscle-stripped segments of distal colon from guinea pigs were mounted in modified flux chambers to determine the effect of distension on mucosal secretion. Ion secretion was monitored as changes in short-circuit current (Isc). Distending forces were pressure gradients established by controlled reduction in liquid volume of the submucosal compartment of the chamber. Volume removal for 10 s or 5 min evoked a monophasic or biphasic increase in Isc, which returned to baseline within 5-20 min. The amplitude of the response correlated with the volume removed and was reduced by bumetanide and Cl-free solutions but not by tetraethylammonium or amiloride. Tetrodotoxin and atropine also suppressed the response. Neither the nicotinic receptor antagonist mecamylamine, the 5-hydroxytryptamine3 (5-HT3) receptor antagonist ICS 205-930, or the prostaglandin synthesis inhibitor piroxicam altered the response. Addition of prostaglandin D2 to the submucosal bath significantly enhanced the response. The results suggest that distension of the colon evokes anion secretion by activation of reflex circuits with cholinergic neurons and muscarinic synapses. Prostaglandins and 5-hydroxytryptamine acting at 5-HT3 receptors appear not to be signal substances in the reflex pathway, which evokes the secretory response to distension. PMID:1636721

  19. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans.

    PubMed

    Cui, Jian; McQuillan, Patrick M; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2012-08-15

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects. PMID:22707559

  20. Developing Repair Materials for Stress Urinary Incontinence to Withstand Dynamic Distension

    PubMed Central

    Hillary, Christopher J.; Roman, Sabiniano; Bullock, Anthony J.; Green, Nicola H; Chapple, Christopher R.; MacNeil, Sheila

    2016-01-01

    Background Polypropylene mesh used as a mid-urethral sling is associated with severe clinical complications in a significant minority of patients. Current in vitro mechanical testing shows that polypropylene responds inadequately to mechanical distension and is also poor at supporting cell proliferation. Aims and Objectives Our objective therefore is to produce materials with more appropriate mechanical properties for use as a sling material but which can also support cell integration. Methods Scaffolds of two polyurethanes (PU), poly-L-lactic acid (PLA) and co-polymers of the two were produced by electrospinning. Mechanical properties of materials were assessed and compared to polypropylene. The interaction of adipose derived stem cells (ADSC) with the scaffolds was also assessed. Uniaxial tensiometry of scaffolds was performed before and after seven days of cyclical distension. Cell penetration (using DAPI and a fluorescent red cell tracker dye), viability (AlamarBlue assay) and total collagen production (Sirius red assay) were measured for ADSC cultured on scaffolds. Results Polypropylene was stronger than polyurethanes and PLA. However, polypropylene mesh deformed plastically after 7 days of sustained cyclical distention, while polyurethanes maintained their elasticity. Scaffolds of PU containing PLA were weaker and stiffer than PU or polypropylene but were significantly better than PU scaffolds alone at supporting ADSC. Conclusions Therefore, prolonged mechanical distension in vitro causes polypropylene to fail. Materials with more appropriate mechanical properties for use as sling materials can be produced using PU. Combining PLA with PU greatly improves interaction of cells with this material. PMID:26981860

  1. Absolutely Exponential Stability and Temperature Control for Gas Chromatograph System Under Dwell Time Switching Techniques.

    PubMed

    Sun, Xi-Ming; Wang, Xue-Fang; Tan, Ying; Wang, Xiao-Liang; Wang, Wei

    2016-06-01

    This paper provides a design strategy for temperature control of the gas chromatograph. Usually gas chromatograph is modeled by a simple first order system with a time-delay, and a proportion integration (PI) controller is widely used to regulate the output of the gas chromatograph to the desired temperature. As the characteristics of the gas chromatograph varies at the different temperature range, the single-model based PI controller cannot work well when output temperature varies from one range to another. Moreover, the presence of various disturbance will further deteriorate the performance. In order to improve the accuracy of the temperature control, multiple models are used at the different temperature ranges. With a PI controller designed for each model accordingly, a delay-dependent switching control scheme using the dwell time technique is proposed to ensure the absolute exponential stability of the closed loop. Experiment results demonstrate the effectiveness of the proposed switching technique. PMID:26316283

  2. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.

  3. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    PubMed

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results. PMID:23869066

  4. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development. PMID:26695777

  5. Esophagogastric junction distensibility measurements during Heller myotomy and POEM for achalasia predict postoperative symptomatic outcomes

    PubMed Central

    Teitelbaum, Ezra N.; Soper, Nathaniel J.; Pandolfino, John E.; Kahrilas, Peter J.; Hirano, Ikuo; Boris, Lubomyr; Nicodème, Frédéric; Lin, Zhiyue; Hungness, Eric S.

    2015-01-01

    Background The functional lumen imaging probe (FLIP) is a novel diagnostic tool that can be used to measure esophagogastric junction (EGJ) distensibility. In this study we performed intraoperative FLIP measurements during laparoscopic Heller myotomy (LHM) and peroral esophageal myotomy (POEM) for treatment of achalasia and evaluated the relationship between EGJ distensibility and postoperative symptoms. Methods Distensibility index (DI) (defined as the minimum cross-sectional area at the EGJ divided by distensive pressure) was measured with FLIP at two time points during LHM and POEM: 1) at baseline after induction of anesthesia, and 2) after operation completion. Results Measurements were performed in 20 patients undergoing LHM and 36 undergoing POEM. Both operations resulted in an increase in DI, although this increase was larger with POEM (7±3.1 vs. 5.1±3.4mm2/mmHg, p<.05). The two patients (both LHM) with the smallest increases in DI (1 and 1.6mm2/mmHg) both had persistent symptoms postoperatively and, overall, LHM patients with larger increases in DI had lower postoperative Eckardt scores. In the POEM group, there was no correlation between change in DI and symptoms; however, all POEM patients experienced an increase in DI of >3mm2/mmHg. When all patients were divided into thirds based on final DI, none in the lowest DI group (<6mm2/mmHg) had symptoms suggestive of reflux (i.e., GerdQ score >7), as compared with 20% in the middle third (6–9mm2/mmHg) and 36% in the highest third (>9mm2/mmHg). Patients within an “ideal” final DI range (4.5–8.5 mm2/mmHg) had optimal symptomatic outcomes (i.e. Eckardt≤1 and GerdQ≤7) in 88% of cases, compared with 47% in those with a final DI above or below that range (p<.05). Conclusions Intraoperative EGJ distensibility measurements with FLIP were predictive of postoperative symptomatic outcomes. These results provide initial evidence that FLIP has the potential to act as a useful calibration tool during operations

  6. Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats.

    PubMed

    Okumura, Toshikatsu; Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Miyagishi, Saori; Ohhira, Masumi

    2016-03-15

    We have recently demonstrated that orexin acts centrally through the brain orexin 1 receptors to induce an antinociceptive action against colonic distension in conscious rats. Adenosine signaling is capable of inducing an antinociceptive action against somatic pain; however, the association between changes in the adenosinergic system and visceral pain perception has not been investigated. In the present study, we hypothesized that the adenosinergic system may be involved in visceral nociception, and thus, adenosine signaling may mediate orexin-induced visceral antinociception. Visceral sensation was evaluated based on the colonic distension-induced abdominal withdrawal reflex (AWR) in conscious rats. Subcutaneous (0.04-0.2mg/rat) or intracisternal (0.8-4μg/rat) injection of N(6)-cyclopentyladenosine (CPA), an adenosine A1 receptor (A1R) agonist, increased the threshold volume of colonic distension-induced AWR in a dose-dependent manner, thereby suggesting that CPA acts centrally in the brain to induce an antinociceptive action against colonic distension. Pretreatment with theophylline, an adenosine antagonist, or 1,3-dipropyl-8-cyclopentylxanthine, an A1R antagonist, subcutaneously injected potently blocked the centrally injected CPA- or orexin-A-induced antinociceptive action against colonic distension. These results suggest that adenosinergic signaling via A1Rs in the brain induces visceral antinociception and that adenosinergic signaling is involved in the central orexin-induced antinociceptive action against colonic distension. PMID:26944127

  7. Growth of In-Sb Fine Particles by Flowing-Gas Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Iwama, Saburo; Mihama, Kazuhiro

    Fine particles of the In-Sb system were prepared by the FGE technique (flowing-gas evaporation technique). The characteristic of the technique is that the formation of the vapor zone and particle growth zone along the flow of inert gas can be controlled by the inert-gas species and the flow velocity. From single-source evaporations, In fine islands grown on the amorphous carbon in the metal vapor zone showed a fiber structure with [111] and [001] fiber axes. In the particle growth zone In fine particles were formed, showing very frequently a characteristic contrast in them due to a lattice defect. Sb fine particles showed amorphous structure. These results may be attributed to the enhanced quenching effect of the FGE technique, already observed in the ordinary gas-evaporation technique. By coevaporation of In and Sb, granular film grew in the metal vapor zone, and fine particles were formed in the particle growth zone. The crystal structure was assigned to be the zincblende type including the wurtzite type of intermetallic compound InSb.

  8. [A Detection Technique for Gas Concentration Based on the Spectral Line Shape Function].

    PubMed

    Zhou, Mo; Yang, Bing-chu; Tao, Shao-hua

    2015-04-01

    The methods that can rapidly and precisely measure concentrations of various gases have extensive applications in the fields such as air quality analysis, environmental pollution detection, and so on. The gas detection method based on the tunable laser absorption spectroscopy is considered a promising technique. For the infrared spectrum detection techniques, the line shape function of an absorption spectrum of a gas is an important parameter in qualitative and quantitative analysis of a gas. Specifically, how to obtain the line shape function of an absorption spectrum of a gas quickly and accurately is a key problem in the gas detection fields. In this paper we analyzed several existing line shape functions and proposed a method to calculate precisely the line shape function of a gas, and investigated the relation between the gas concentration and the peak value of a line shape function. Then we experimentally measured the absorption spectra of an acetylene gas in the wavelength range of 1,515-1,545 nm with a tunable laser source and a built-in spectrometer. With Lambert-Beer law we calculated the peak values of the line shape function of the gas at the given frequencies, and obtained a fitting curve for the line shape function in the whole waveband by using a computer program. Comparing the measured results with the calculated results of the Voigt function, we found that there was a deviation-between the experimental results and the calculated results. And we found that the measured concentration of the acetylene gas by using the fitting curve of the line shape function was more accurate and compatible with the actual situation. Hence, the empirical formula for the line shape function obtained from the experimental results would be more suitable for the concentration measurement of a gas. As the fitting curve for the line shape function of the acetylene gas has been deduced from the experiment, the corresponding peak values of the spectral lines can be

  9. Gas analysis within remote porous targets using LIDAR multi-scatter techniques

    NASA Astrophysics Data System (ADS)

    Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.

    2008-11-01

    Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

  10. Contribution of multiple inert gas elimination technique to pulmonary medicine. 1. Principles and information content of the multiple inert gas elimination technique.

    PubMed Central

    Roca, J.; Wagner, P. D.

    1994-01-01

    This introductory review summarises four different aspects of the multiple inert gas elimination technique (MIGET). Firstly, the historical background that facilitated, in the mid 1970s, the development of the MIGET as a tool to obtain more information about the entire spectrum of VA/Q distribution in the lung by measuring the exchange of six gases of different solubility in trace concentrations. Its principle is based on the observation that the retention (or excretion) of any gas is dependent on the solubility (lambda) of that gas and the VA/Q distribution. A second major aspect is the analysis of the information content and limitations of the technique. During the last 15 years a substantial amount of clinical research using the MIGET has been generated by several groups around the world. The technique has been shown to be adequate in understanding the mechanisms of hypoxaemia in different forms of pulmonary disease and the effects of therapeutic interventions, but also in separately determining the quantitative role of each extrapulmonary factor on systemic arterial PO2 when they change between two conditions of MIGET measurement. This information will be extensively reviewed in the forthcoming articles of this series. Next, the different modalities of the MIGET, practical considerations involved in the measurements and the guidelines for quality control have been indicated. Finally, a section has been devoted to the analysis of available data in healthy subjects under different conditions. The lack of systematic information on the VA/Q distributions of older healthy subjects is emphasised, since it will be required to fully understand the changes brought about by diseases that affect the older population. PMID:8091330

  11. Measuring gas emissions from animal waste lagoons with an inverse-dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques due to non-ideal conditions such as trees and crops surrounding the lagoons, and short fetch to establish equilibrated microclimate conditions within the water bo...

  12. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the U.S. Environmental Protection Agency (USEPA) posted a ground-based optical remote sensing method on its website called OTM 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to c...

  13. Interferometric technique for determining the energy deposition in gas-flow nuclear-pumped lasers

    SciTech Connect

    Pikulev, A A

    2001-06-30

    An interference technique is developed for determining the energy deposition in gas-flow lasers pumped by uranium fission fragments. It is shown that four types of interference patterns may be formed. Algorithms are presented for determining the type of interference and for enumerating the maxima in interference pattern. (lasers, active media)

  14. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  15. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions.

    PubMed

    Doyon, Anke; Kracht, Daniela; Bayazit, Aysun K; Deveci, Murat; Duzova, Ali; Krmar, Rafael T; Litwin, Mieczyslaw; Niemirska, Anna; Oguz, Berna; Schmidt, Bernhard M W; Sözeri, Betul; Querfeld, Uwe; Melk, Anette; Schaefer, Franz; Wühl, Elke

    2013-09-01

    Carotid intima-media thickness (cIMT) and carotid artery distensibility are reliable screening methods for vascular alterations and the assessment of cardiovascular risk in adult and pediatric cohorts. We sought to establish an international reference data set for the childhood and adolescence period and explore the impact of developmental changes in body dimensions and blood pressure (BP) on carotid wall thickness and elasticity. cIMT, the distensibility coefficient, the incremental modulus of elasticity, and the stiffness index β were assessed in 1155 children aged 6 to 18 years and sex-specific reference charts normalized to age or height were constructed from 1051 nonobese and nonhypertensive children. The role of body dimensions, BP, and family history, as well as the association between cIMT and distensibility, was investigated. cIMT increased and distensibility decreased with age, height, body mass index, and BP. A significant sex difference was apparent from the age of 15 years. Age- and height-normalized cIMT and distensibility values differed in children who are short or tall for their age. By stepwise multivariate analysis, standardized systolic BP and body mass index were independently positively associated with cIMT SD scores (SDS). Systolic BP SDS independently predicted all distensibility measures. Distensibility coefficient SDS was negatively and β SDS positively associated with cIMT SDS, whereas incremental modulus of elasticity was independent of cIMT. Morphological and functional aspects of the common carotid artery are particularly influenced by age, body dimensions, and BP. The reference charts established in this study allow to accurately compare vascular phenotypes of children with chronic conditions with those of healthy children. PMID:23817494

  16. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  17. An effusive molecular beam technique for studies of polyatomic gas-surface reactivity and energy transfer

    NASA Astrophysics Data System (ADS)

    Cushing, G. W.; Navin, J. K.; Valadez, L.; Johánek, V.; Harrison, I.

    2011-04-01

    An effusive molecular beam technique is described to measure alkane dissociative sticking coefficients, S(Tg, Ts; ϑ), on metal surfaces for which the impinging gas temperature, Tg, and surface temperature, Ts, can be independently varied, along with the angle of incidence, ϑ, of the impinging gas. Effusive beam experiments with Tg = Ts = T allow for determination of angle-resolved dissociative sticking coefficients, S(T; ϑ), which when averaged over the cos (ϑ)/π angular distribution appropriate to the impinging flux from a thermal ambient gas yield the thermal dissociative sticking coefficient, S(T). Nonequilibrium S(Tg, Ts; ϑ) measurements for which Tg ≠ Ts provide additional opportunities to characterize the transition state and gas-surface energy transfer at reactive energies. A resistively heated effusive molecular beam doser controls the Tg of the impinging gas striking the surface. The flux of molecules striking the surface from the effusive beam is determined from knowledge of the dosing geometry, chamber pressure, and pumping speed. Separate experiments with a calibrated leak serve to fix the chamber pumping speed. Postdosing Auger electron spectroscopy is used to measure the carbon of the alkyl radical reaction product that is deposited on the surface as a result of alkane dissociative sticking. As implemented in a typical ultrahigh vacuum chamber for surface analysis, the technique has provided access to a dynamic range of roughly 6 orders of magnitude in the initial dissociative sticking coefficient for small alkanes on Pt(111).

  18. Measuring Buffer-Gas Pressure in Sealed Glass Cells: An Assessment of the KSK Technique.

    PubMed

    Driskell, Travis; Huang, Michael; Camparo, James

    2016-07-01

    In alkali rf-discharge lamps used for optical pumping in atomic clocks and magnetometers, a buffer-gas (Kr or Xe) allows electrons to extract energy from an rf-field, and these energized electrons eventually produce alkali resonant light. Contrary to naïve intuition, rf-discharge lamps can lose their noble-gas buffer over time. Recently, we began a long-term experimental program to better understand the mechanism of noble-gas loss in rf-discharge lamps, and needed a nondestructive means of measuring buffer-gas pressure changes in sealed glass cells. For this purpose, we settled on the Kazantsev, Smirnova, and Khutorshchikov (KSK) technique, which is based on inferring buffer-gas pressure from the collision shift of an alkali ground-state hyperfine transition frequency νhfs. Here, we discuss the basic KSK technique and two modifications that we have implemented for its improvement: use of a diode laser for optical pumping, and extrapolation of νhfs to zero magnetic field. Testing our system's long-term performance with a very low pressure reference cell (i.e., 3.3 torr Xe), we find a reproducibility of 0.2% and an absolute accuracy of 5%. Further, our systematic drift is less than 1 mtorr/month. PMID:26529755

  19. Role of the gas flow parameters on the uniformity of films produced by PECVD technique

    SciTech Connect

    Martins, R.; Macarico, A.; Ferreira, I.; Fortunato, E.

    1997-07-01

    The aim of this work is to present an analytical model able to interpret the experimental data of the dependence of film's uniformity on the discharge pressure, gas flow and temperature used during the production of thin films by the plasma enhancement chemical vapor deposition technique, under optimized electrode's geometry and electric field distribution. To do so, the gas flow is considered to be quasi-incompressible and inviscous leading to the establishment of the electro-fluid-mechanics equations able to interpret the film's uniformity over the substrate area, when the discharge process takes place in the low power regime.

  20. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  1. Unusual well control techniques pay off. [Well drilling techniques in the Elgin gas condensate field, North Sea

    SciTech Connect

    Idelovici, J.L.

    1993-07-01

    Well control and completion operations were seriously complicated by an unusual pressure phenomena encountered while drilling an appraisal well through Jurassic sandstones in a high-pressure, high-temperature (HPHT), gas and condensate field located in the United Kingdom continental shelf. The HPHT sandstone reservoir is located in the Upper Jurassic Franklin formation. Unorthodox well-control techniques were used because it was determined that the abnormally high pressure was generated by a mechanical reaction of the rock under the effect of heavy mud and equivalent circulating density, rather than by entry into the wellbore of formation fluids. This paper reviews the complex drilling fluid control procedures which had to be utilized to maintain an open bore hole during drilling.

  2. Stress and strain analysis of contractions during ramp distension in partially obstructed guinea pig jejunal segments

    PubMed Central

    Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans

    2011-01-01

    Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7, and 14 days, respectively. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH2O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young’s modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young’s modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller. PMID:21632056

  3. Development of an in situ calibration technique for combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Wynveen, R. A.; Lance, N., Jr.; Lantz, J. B.

    1977-01-01

    This paper describes the development of an in situ calibration procedure for combustible gas detectors (CGD). The CGD will be a necessary device for future space vehicles as many subsystems in the Environmental Control/Life Support System utilize or produce hydrogen (H2) gas. Existing calibration techniques are time-consuming and require support equipment such as an environmental chamber and calibration gas supply. The in situ calibration procedure involves utilization of a water vapor electrolysis cell for the automatic in situ generation of a H2/air calibration mixture within the flame arrestor of the CGD. The development effort concluded with the successful demonstration of in situ span calibrations of a CGD.

  4. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment.

    PubMed

    Poursamar, S Ali; Hatami, Javad; Lehner, Alexander N; da Silva, Cláudia L; Ferreira, Frederico Castelo; Antunes, A P M

    2015-03-01

    The current study presents an effective and simple strategy to obtain stable porous scaffolds from gelatin via a gas foaming method. The technique exploits the intrinsic foaming ability of gelatin in the presence of CO2 to obtain a porous structure stabilised with glutaraldehyde. The produced scaffolds were characterised using physical and mechanical characterisation methods. The results showed that gas foaming may allow the tailoring of the 3-dimensional structure of the scaffolds with an interconnected porous structure. To assess the effectiveness of the preparation method in mitigating the potential cytotoxicity risk of using glutaraldehyde as a crosslinker, direct and in-direct cytotoxicity assays were performed at different concentrations of glutaraldehyde. The results indicate the potential of the gas foaming method, in the preparation of viable tissue engineering scaffolds. PMID:25579897

  5. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  6. Fabrication of uniformly cell-laden porous scaffolds using a gas-in-liquid templating technique.

    PubMed

    Takei, Takayuki; Aokawa, Ryuta; Shigemitsu, Takamasa; Kawakami, Koei; Yoshida, Masahiro

    2015-11-01

    Design of porous scaffolds in tissue engineering field was challenging. Uniform immobilization of cells in the scaffolds with high porosity was essential for homogeneous tissue formation. The present study was aimed at fabricating uniformly cell-laden porous scaffolds with porosity >74% using the gas-in-liquid foam templating technique. To this end, we used gelatin, microbial transglutaminase and argon gas as a scaffold material, cross-linker of the protein and porogen of scaffold, respectively. We confirmed that a porosity of >74% could be achieved by increasing the gas volume delivered to a gelatin solution. Pore size in the scaffold could be controlled by stirring speed, stirring time and the pore size of the filter through which the gas passed. The foaming technique enabled us to uniformly immobilize a human hepatoblastoma cell line in scaffold. Engraftment efficiency of the cell line entrapped within the scaffold in nude mice was higher than that of cells in free-form. These results showed that the uniformly cell-laden porous scaffolds were promising for tissue engineering. PMID:25912452

  7. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  8. High rate concentration measurement of molecular gas mixtures using a spatial detection technique

    NASA Astrophysics Data System (ADS)

    Loriot, V.; Hertz, E.; Lavorel, B.; Faucher, O.

    2010-05-01

    Concentration measurement in molecular gas mixtures using a snapshot spatial imaging technique is reported. The approach consists of measuring the birefringence of the molecular sample when field-free alignment takes place, each molecular component producing a signal with an amplitude depending on the molecular density. The concentration measurement is obtained on a single-shot basis by probing the time-varying birefringence through femtosecond time-resolved optical polarigraphy (FTOP). The relevance of the method is assessed in air.

  9. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. PMID:26388365

  10. Towards the development of rapid screening techniques for shale gas core properties

    NASA Astrophysics Data System (ADS)

    Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert

    2013-04-01

    Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content

  11. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    SciTech Connect

    Perko, Z.; Gilli, L.; Lathouwers, D.; Kloosterman, J. L.

    2013-07-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)

  12. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    PubMed

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  13. Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2002-02-01

    Optical spectroscopy provides powerful means for studying geophysical gas emissions. An extensive research program in this field has been performed by Swedish researchers in collaboration with European partners during the last 10 years, and a review of the activities and results is given. The techniques suitable for geophysical gas monitoring include the differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), diode laser spectroscopy and gas correlation imaging. Field experiments regarding atomic mercury emissions from geothermal fields were performed with a mobile lidar laboratory in Iceland and in Italy. The atomic mercury concentrations and fluxes from mercury mines were also determined at Abbadia S. Salvatore (Italy) and Almadén (Spain). The volcanic emissions of sulfur dioxide were studied in four ship-borne campaigns concerning the three Italian volcanoes Mt. Etna, Stromboli and Vulcano. Comparisons between the results from the DIAL and passive techniques (DOAS and correlation spectroscopy) were performed. Infrared spectroscopy for geophysical applications is now being developed and will also be discussed.

  14. New seismic reflection techniques applied to gas recognition in the Rharb Basin, Morocco

    SciTech Connect

    Jabour, H.; Dakki, M. )

    1994-07-01

    The Rharb basin in Morocco is a Tertiary foreland filled by clastic series during the Miocene and Pliocene. This terrigenous influx, derived from the prerif to the northeast and the Meseta to the south, is characterized by a sandy episode during much of the Messinian and the Tortonian. The sand deposits were probably related to the uplift and major erosion of a part of the prerif during the sliding of an olistostrome (prerif nappe). Although most of the wells drilled in the basin have encountered biogenic gas accumulations, the problem still facing exploration in the area is seismic resolution and thin-bed tuning analysis. Recent studies using high seismic resolution techniques have permitted the authors to gain a deep insight into the stratigraphy and depositional environment of the thin sand reservoirs and their fluid content. AVO stratigraphy, inversion of seismic traces into acoustic impedance traces and seismic attributes calculation, and computing provide a remarkable example of the possibilities of depicting the lateral and vertical evolution of reservoir facies and localizing biogenic gas accumulations. Out of five recent exploratory wells drilled based on this new technique, three encountered gas-bearing sands with economic potential. Fifty-three amplitude anomalies have been identified and await processing.

  15. [Application of near-infrared absorption spectrum scanning techniques in gas quantitative measurement].

    PubMed

    Ding, Hui; Liang, Jian-Qi; Cui, Jun-Hong; Wu, Xiang-Nan; Li, Xian-Li

    2010-03-01

    A practical gas sensing system utilizing absorption spectrum scanning techniques was developed. Using the narrow-band transmission of a fiber tunable filter (TOF) and wavelength modulation technique, the so-called cross-sensing effects of the traditional spectrum absorption based gas sensor were reduced effectively and thus the target gas was detected sensitively and selectively. In order to reduce the effects of nonlinearity of TOF on the measurement results and improve the system stability in operation, the reflection spectrum of a reference FBG was monitored and employed to control the modulation region and center of TOF wavelength precisely. Moreover, a kind of weak signal detecting circuits was developed to detect the weak response signal of the system with high sensitivity. The properties of the proposed system were demonstrated experimentally by detection of acetylene. Approximate linear relationships between the system responses and the input acetylene concentrations were demonstrated by experiments. The minimum detectable acetylene of 5 x 10(-6), with signal-noise ratio of 3, was also achieved by experiments. PMID:20496683

  16. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  17. Model for vocalization by a bird with distensible vocal cavity and open beak.

    PubMed

    Fletcher, Neville H; Riede, Tobias; Suthers, Roderick A

    2006-02-01

    Some birds make use of a distensible oral cavity to produce nearly pure-tone song. Songbirds such as the Northern cardinal (Cardinalis cardinalis) have a muscularly distended oropharyngeal-esophageal cavity between the top of the trachea and the open beak. The present paper analyzes the acoustics of this vocal system. It is shown that the resonance of the oropharyngeal-esophageal cavity, vented through the beak, introduces a dominant peak in the radiation efficiency, the frequency of which can be adjusted by varying the volume of the cavity, the beak gape, and perhaps the position of the tongue in the mouth. To produce nearly pure-tone song, the bird adjusts the frequency of this peak to coincide with the fundamental of the syringeal oscillation. The present paper provides the acoustical analysis underlying this behavior. PMID:16521762

  18. Esophagogastric junction distensibility measurements during hydraulic dilation therapy in achalasia patients.

    PubMed

    Kappelle, Wouter F W; Bogte, Auke; Siersema, Peter D

    2016-02-01

    Increasing evidence suggests that esophagogastric junction (EGJ) distensibility is predictive of long-term clinical success after achalasia treatment. A new commercially available hydraulic dilation balloon is capable of measuring EGJ opening diameters whilst simultaneously dilating the EGJ. Deployed alongside the endoscope under direct visualization, it is used for dilation of the lower esophageal sphincter in patients with achalasia. Impedance measurement electrodes are incorporated in the catheter shaft in the dilation balloon, which allows measuring the diameter of the EGJ and displaying it in real time before, during and after dilation. This obviates the need for fluoroscopy during the dilation procedure. The extent of recoil of the EGJ after dilation potentially provides a measurement that could be incorporated into a clinical rule for predicting therapeutic success after dilation. PMID:26679629

  19. Nitric oxide synthase promotes distension-induced tracheal venular leukocyte adherence.

    PubMed

    Moldobaeva, Aigul; Rentsendorj, Otgonchimeg; Jenkins, John; Wagner, Elizabeth M

    2014-01-01

    The process of leukocyte recruitment to the airways in real time has not been extensively studied, yet airway inflammation persists as a major contributor to lung pathology. We showed previously in vivo, that neutrophils are recruited acutely to the large airways after periods of airway distension imposed by the application of positive end-expiratory pressure (PEEP). Given extensive literature implicating products of nitric oxide synthase (NOS) in lung injury after ventilatory over-distension, we questioned whether similar mechanisms exist in airway post-capillary venules. Yet, endothelial nitric oxide has been shown to be largely anti-inflammatory in other systemic venules. Using intravital microscopy to visualize post-capillary tracheal venules in anesthetized, ventilated mice, the number of adherent leukocytes was significantly decreased in eNOS-/- mice under baseline conditions (2±1 cell/60 min observation) vs wild type (WT) C57BL/6 mice (7±2 cells). After exposure to PEEP (8 cmH2O for 1 min; 5 times), adherent cells increased significantly (29±5 cells) in WT mice while eNOS-/- mice demonstrated a significantly decreased number of adherent cells (11±4 cells) after PEEP. A similar response was seen when thrombin was used as the pro-inflammatory stimulus. In addition, mouse tracheal venular endothelial cells studied in vitro after exposure to cyclic stretch (18% elongation) or thrombin both demonstrated increased p-selectin expression that was significantly attenuated by NG-nitro-L-arginine methyl ester, N-acetylcysteine amide (NACA) and excess BH4. In vivo treatment with the ROS inhibitor NACA or co-factor BH4 abolished completely the PEEP-induced leukocyte adherence. These results suggest that pro-inflammatory stimuli cause leukocyte recruitment to tracheal endothelium in part due to eNOS uncoupling. PMID:25181540

  20. Nitric Oxide Synthase Promotes Distension-Induced Tracheal Venular Leukocyte Adherence

    PubMed Central

    Moldobaeva, Aigul; Rentsendorj, Otgonchimeg; Jenkins, John; Wagner, Elizabeth M.

    2014-01-01

    The process of leukocyte recruitment to the airways in real time has not been extensively studied, yet airway inflammation persists as a major contributor to lung pathology. We showed previously in vivo, that neutrophils are recruited acutely to the large airways after periods of airway distension imposed by the application of positive end-expiratory pressure (PEEP). Given extensive literature implicating products of nitric oxide synthase (NOS) in lung injury after ventilatory over-distension, we questioned whether similar mechanisms exist in airway post-capillary venules. Yet, endothelial nitric oxide has been shown to be largely anti-inflammatory in other systemic venules. Using intravital microscopy to visualize post-capillary tracheal venules in anesthetized, ventilated mice, the number of adherent leukocytes was significantly decreased in eNOS-/- mice under baseline conditions (2±1 cell/60 min observation) vs wild type (WT) C57BL/6 mice (7±2 cells). After exposure to PEEP (8 cmH2O for 1 min; 5 times), adherent cells increased significantly (29±5 cells) in WT mice while eNOS-/- mice demonstrated a significantly decreased number of adherent cells (11±4 cells) after PEEP. A similar response was seen when thrombin was used as the pro-inflammatory stimulus. In addition, mouse tracheal venular endothelial cells studied in vitro after exposure to cyclic stretch (18% elongation) or thrombin both demonstrated increased p-selectin expression that was significantly attenuated by NG-nitro-L-arginine methyl ester, N-acetylcysteine amide (NACA) and excess BH4. In vivo treatment with the ROS inhibitor NACA or co-factor BH4 abolished completely the PEEP-induced leukocyte adherence. These results suggest that pro-inflammatory stimuli cause leukocyte recruitment to tracheal endothelium in part due to eNOS uncoupling. PMID:25181540

  1. Daily assessment of arterial distensibility in a pediatric population before and after smoking cessation

    PubMed Central

    Bassareo, Pier Paolo; Fanos, Vassilios; Crisafulli, Antonio; Mercuro, Giuseppe

    2014-01-01

    OBJECTIVES: Cigarette smoking is an important modifiable cardiovascular risk factor associated with increased stiffness of the large arteries in adulthood. This study aimed to 1) evaluate arterial distensibility and echocardiographic measures in adolescent smokers before and after participation in a successful smoking cessation program and to 2) compare the findings obtained with data from a control population of healthy non-smokers. METHODS: A total of 31 young smoking subjects (58.1% male; range: 11-18 years old; mean: 16.5±1.4 years old; mean tobacco consumption: 2.6±0.6 years) were examined before commencing and after taking part for at least 1 year in a smoking cessation program (mean: 1.4±0.3 years). Arterial stiffness was measured using the previously validated QKd100-60 method. Twenty-four-hour ambulatory blood pressure monitoring and transthoracic echocardiography were also performed. RESULTS: (Smokers before abuse cessation vs. smokers after abuse cessation) systolic blood pressure: p<0.004; diastolic blood pressure: p<0.02; mean blood pressure: p<0.01; QKd100-60 value: 183±5 vs. 196±3 msec, p<0.009; p = ns for all echocardiographic parameters. (Smokers after abuse cessation vs. controls) systolic blood pressure: p<0.01; diastolic blood pressure: p<0.03; mean blood pressure: p<0.02; QKd100-60 value: 196±3 vs. 203±2 msec, p<0.04; p<0.02, p<0.01, and p<0.05 for the interventricular septum, posterior wall, and left ventricular mass, respectively. CONCLUSIONS: Despite successful participation in a smoking cessation program, arterial distensibility improved but did not normalize. This finding underlines the presence of the harmful effect of arterial rigidity in these individuals, despite their having quit smoking and their young ages, thus resulting in the subsequent need for a lengthy follow-up period. PMID:24714828

  2. The seismic method in the search for oil and gas: Current techniques and future developments

    SciTech Connect

    Berkhout, A.J.

    1986-08-01

    In applying seismic echo techniques to oil and gas exploration, the underground is ''illuminated'' from the surface by acoustic waves. The incident wavefield is reflected at the geologic layer boundaries and is registered at the surface, yielding detailed information on earth's upper structure. An important aspect of the seismic method is that an unprocessed seismic image does not represent the actual picture. Each reflection has been distorted during its propagation through earth. These distortions have to be corrected before an accurate picture can be developed. This is in most cases accomplished by ''seismic inversion.'' In this paper, current seismic techniques for oil and gas search, and their further development, are reviewed, with emphasis on seismic inversion. It is shown that important new developments in theory, software, and hardware have yielded significant improvements in wave theory solutions. Most research results presented are general and apply equally well to other echo technique applications, such as ultrasonic medical imaging, nondestructive testing, acoustic microscopy, sonar, and ground radar.

  3. Techniques for Equation-of-State Measurements on a Three-Stage Light-Gas Gun

    SciTech Connect

    REINHART,WILLIAM D.; CHHABILDAS,LALIT C.; THORNHILL,T.G.

    2000-09-14

    Understanding high pressure behavior materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. Until recently the highest-pressure states in materials have been achieved from impact loading techniques from two-stage light gas guns with velocity limitations of approximately 81cm/s. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 kds. The determination of equation-of-state (EOS) and thermodynamic states of materials in the regimes of extreme high pressures is now attainable utilizing the three-stage launcher. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology. The design and test methodologies used to determine Hugoniot states are described in this paper.

  4. An acoustic levitation technique for the study of nonlinear oscillations of gas bubbles in liquids

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Crum, L. A.

    1983-08-01

    A technique of acoustic levitation was developed for the study of individual gas bubbles in a liquid. Isopropyl alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the acoustic pressure antinode of an acoustic wave in the range of 20-22 kHz. Measurements were made of the levitation number as a function of the normalized radius of the bubbles. The levitation number is the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient. These values were then compared to a nonlinear theory. Results were very much in agreement except for the region near the n=2 harmonic. An explanation for the discrepancy between theory and experiment appears to lie in the polytropic exponent associated with the gas in the interior of the bubble.

  5. Investigation of a novel passivation technique for gas atomized magnesium powders

    NASA Astrophysics Data System (ADS)

    Steinmetz, Andrew Douglas

    Gas atomized magnesium powders are critical for the production of a wide variety of flares, tracer projectiles, and other munitions for the United States military, along with a growing number of applications in both alloying and powder metallurgy. Gas atomization of magnesium is performed by numerous companies worldwide, but represents a single point failure within the United States as there is only one domestic producer. These powders are pyrophoric and must be handled carefully and kept dry at all times. Recent studies have explored the ability of certain fluorine containing cover gases to protect molten magnesium in casting operations from excessive vaporization and burning by modifying the native oxide (MgO) through interaction with these gas atmospheres. The present study sought to adapt this melt protection strategy for use as an in-situ passivation technique that could be employed to form a protective reaction film during gas atomization of magnesium powders. This fluorinated oxide shell was intended to provide superior coverage and adherence to the underlying metal, which may improve the ability of powders to resist ignition at elevated temperatures and during powder handling. Two candidate gases were tested in this research, SF6 and NF3, and reaction films of both were produced on miniature melt samples in a controlled environment and characterized using auger electron spectroscopy and x-ray photoelectron spectroscopy. Ultimately, SF6 was chosen to conduct a small scale magnesium atomization experiment for verification of the fluorination reaction and to experimentally test the ignition temperature of these coated particles compared to other magnesium powders available today. This novel passivation technique was found to be far superior to magnesium's native oxide at resisting ignition and, thus, to reduce the hazard associated with handling and transport of magnesium powders for defense applications. If fully commercialized, this passivation method also

  6. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  7. Evaluation of corrosion testing techniques for selection of corrosion resistant alloys for sour gas service

    SciTech Connect

    Bhavsar, R.B.; Hibner, E.L.

    1996-08-01

    Slow strain rate (SSR) and C-ring stress corrosion cracking (SCC) tests have historically been used to screen alloys for sour gas environments. The relevance of these testing techniques in predicting actual field corrosion behavior was evaluated for age-hardenable nickel base alloy 925 (UNS N09925) and alloy 718 (UNS N07718). While SSR testing provides an acceptable accelerated screening tool for ranking alloys in sour oil field environments, C-ring SCC testing ranks alloys higher in sour environments than SSR testing.

  8. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-09-01

    Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample. PMID:27526093

  9. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    DOE PAGESBeta

    Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. Asmore » a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less

  10. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    SciTech Connect

    Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.

  11. NOTE: Investigation of a copper etching technique to fabricate metallic gas diffusion media

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Yuan; Prasad, Ajay K.; Advani, Suresh G.

    2006-11-01

    A new fabrication technique based on etching is employed to convert a copper foil into a porous structure with an array of micron size pores. The motivation stems from the need to develop a more efficient and controllable gas diffusion medium for fuel cell applications. The influence of mask shape, mask width and etching time was investigated experimentally. A correlation to predict trench width with etching time was derived; normalizing by mask width allows one to collapse the data. The etching rates to obtain micro-scale features, which are of the order of 1 2 µm min 1, are mainly dominated by the mask width due to mass-transport resistance. It is possible to control the pore dimensions, porosity and pore size distributions with this technique.

  12. Studying gas-sheared liquid film in horizontal rectangular duct with laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2013-11-01

    High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).

  13. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  14. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H[sub 2]O[sub 2], and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H[sub 2]O[sub 2] injection as an oxygenation technique.

  15. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H{sub 2}O{sub 2}, and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H{sub 2}O{sub 2} injection as an oxygenation technique.

  16. Use of tracer gas technique for industrial exhaust hood efficiency evaluation--where to sample?

    PubMed

    Hampl, V; Niemelä, R; Shulman, S; Bartley, D L

    1986-05-01

    A tracer gas technique using sulfur hexafluoride (SF6) was developed for the evaluation of industrial exhaust hood efficiency. In addition to other parameters, accuracy of this method depends on proper location of the sampling probe. The sampling probe should be located in the duct at a minimum distance from the investigated hood where the SF6 is dispersed uniformly across the duct cross section. To determine the minimum sampling distance, the SF6 dispersion in the duct in fully developed turbulent flow was studied at four duct configurations frequently found in industry: straight duct, straight duct-side branch, straight duct-one elbow, and straight duct-two elbows combinations. Based on the established SF6 dispersion factor, the minimum sampling distances were determined as follows: for straight duct, at least 50 duct diameters; for straight duct-side branch combination, at least 25 duct diameters; for straight duct-one elbow combination, 7 duct diameters; and for straight duct-two elbow combination, 4 duct diameters. Sampling at (or beyond) these distances minimizes the error caused by the non-homogeneous dispersion of SF6 in the duct and contributes to the accuracy of the tracer gas technique. PMID:3717012

  17. RESOLVE Survey Photometry and Volume-limited Calibration of the Photometric Gas Fractions Technique

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

    2015-09-01

    We present custom-processed ultraviolet, optical, and near-infrared photometry for the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and RESOLVE-B). RESOLVE is complete down to baryonic mass ˜ {10}9.1-9.3 {M}⊙ , probing the upper end of the dwarf galaxy regime. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and employs multiple flux extrapolation routines to estimate systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar mass estimates based on our optimized photometry with the nearly complete H i mass census for RESOLVE-A, we create new z = 0 volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals versus potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a “modified color” from planar fits to G/S as a function of both color and axial ratio. In the complete galaxy population, upper limits on G/S bias linear and planar fits. We therefore model the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies. These distributions have two-component structure in the red color regime. Finally, we use the RESOLVE-B 21 cm census to test several PGF calibrations, finding that most systematically under- or overestimate gas masses, but the full probability density method performs well.

  18. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  19. EVALUATION OF THE BASIC GC/MS (GAS CHROMATOGRAPHIC/MASS SPECTROMETRIC) COMPUTER ANALYSIS TECHNIQUE FOR POLLUTANT ANALYSIS

    EPA Science Inventory

    The basic gas chromatographic/mass spectrometric/computer technique for the analysis of vapor-phase organic compounds collected on a solid sorbent was evaluated. Emphasis was placed on the assessment of performance and improvement in techniques in the following areas: (1) wide-bo...

  20. Comparison of microbial and sorbed soil gas surgace geochemical techniques with seismic surveys from the Southern Altiplano, Bolivia

    SciTech Connect

    Aranibar, O.R.; Tucker, J.D.; Hiltzman, D.C.

    1995-12-31

    Yacimientos Petroliferos Fiscales Bolivianos (YPFB) undertook a large seismic evaluation in the southern Altiplano, Bolivia in 1994. As an additional layer of information, sorbed soil gas and Microbial Oil Survey Technique (MOST) geochemical surveys were conducted to evaluate the hydrocarbon microseepage potential. The Wara Sara Prospect had 387 sorbed soil gas samples, collected from one meter depth, and 539 shallow soil microbial samples, collected from 15 to 20 centimeter depth. The sorbed soil gas samples were collected every 500 meters and microbial samples every 250 meters along geochemical traverses spaced 1 km apart. The presence of anmalous hydrocarbon microseepage is indicated by (1) a single hydrocarbon source identified by gas crossplots, (2) the high gas values with a broad range, (3) the high overall gas average, (4) the clusters of elevated samples, and (5) the right hand skewed data distributions.

  1. Unusual high Bs for Fe-based amorphous powders produced by a gas-atomization technique

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Bito, M.; Kageyama, J.; Shimizu, Y.; Abe, M.; Makino, A.

    2016-05-01

    Fe-based alloy powders with a high Fe content of about 81 at.% were produced by a gas-atomization technique. Powders of Fe81Si1.9B5.7P11.4 (at.%) alloy showed a good glass forming ability and exhibited unusual high saturation magnetic flux density of 1.57 T. The core-loss property at a frequency of 100 kHz for the compacted core made of the Fe81Si1.9B5.7P11.4 powder is evaluated to be less than 500 kW/m3 under a maximum induction of 100 mT. Moreover, good DC-superposition characteristic of the core was also confirmed. These results suggest that the present Fe-based alloy powder is promising for low-loss magnetic-core materials and expected to contribute in miniaturization of electric parts in the near future.

  2. Interferometric technique for the calibration of the helium gas jet spectrum

    NASA Astrophysics Data System (ADS)

    Sands, R. R.; Scott, W. R.; Ehrenfeuchter, P. A.

    An interferometric technique is described for making absolute measurements of the frequency spectrum of the stress waves produced in an Al cylinder by an He jet which is a candidate for calibration instrument for acoustic emission (AE) NDE. A stabilized heterodyne interferometer (SHI) is employed to measure the surface displacements in the face of the Al cylinder opposite the He jet. The measured waveforms were analyzed by Fourier transformations and stored for comparisons with previous findings by McBride (1976). The gas jet, although lacking the characteristics of a white broadband noise spectrum, was found to be reproducible. The spectrum was determined to be controlled by the Al cylinder, implying that alternate, tailored spectra that includes white noise could be obtained with an appropriate choice of materials.

  3. Techniques for the protection of gas-insulated substation to cable interfaces

    SciTech Connect

    Fujimoto, N.; Croall, S.J.; Foty, S.M. )

    1988-10-01

    Line-to-ground faults in gas-insulated substations (GIS) generate fast nanosecond risetime transients which cause sparkovers across the insulated flange of high pressure oil filled cable/GIS interfaces. The ionized path formed by the sparkovers creates a low-impedance path for power frequency fault current, resulting in flange damage with potentially serious consequences. Various techniques for protecting the insulating flange from such damage are investigated and discussed, both in terms of new designs and in terms of retrofits for existing installations. In order to be effective, each protection scheme must adequately deal with the fast transients generated by breakdown in the GIS. As the frequencies of these transients are 1 to 2 orders of magnitude higher than for ''conventional'' power system transients, special considerations are necessary in the protection scheme chosen.

  4. Application of a new multiple fracturing technique to enhance gas production in Devonian shale

    SciTech Connect

    Cuderman, J.F.

    1984-01-01

    A new multiple fracturing technology has been applied in stimulating a Devonian shale gas well. In this new technique, propellants are used to obtain controlled pressurization of the wellbore to produce multiple fractures. The pressurization is controlled by suitable choice of propellants having different burn rates. The pressure risetime is the most important parameter governing fracture behavior. Methods are presented for specifying both the risetime and propellants to achieve it for Devonian shales. The Devonian shale stimulation was conducted in a 1040 m deep well in Meigs Co., Ohio. The experimental installation and hardware used are described together with results which include an increase in production from 190 m/sup 3//day to 623 m/sup 3//day. 7 references, 5 figures, 1 table.

  5. Modulation techniques and applications in comprehensive two-dimensional gas chromatography (GC x GC).

    PubMed

    Pursch, Matthias; Sun, Kefu; Winniford, Bill; Cortes, Hernan; Weber, Andy; McCabe, Terry; Luong, Jim

    2002-07-01

    More than a decade after Phillips' first published work this article reviews recent developments in comprehensive two-dimensional gas chromatography (GC x GC). Special attention is devoted to the further development and diversity of modulation devices. These include heated sweepers, cryofocused modulators, and a variety of diaphragm valve-switching strategies. It is demonstrated that all modulation approaches can be very well suited to GC x GC, depending on the particular application. Diaphragm-valve modulation is very powerful for volatile organic compounds. Slotted heater and cryofocused modulation are preferred for samples that contain non-volatile components. Applications ranging from petroleum to environmental and biological samples are illustrated. Extension of the technique to GC x GC-mass spectrometry (MS) is also discussed and trends for future research activity are pointed out. PMID:12172670

  6. Simulation Based on Negative ion pair Techniques of Electric propulsion In Satellite Mission Using Chlorine Gas

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    R.Bakkiyaraj,Assistant professor,Government college of Engineering ,Bargur,Tamilnadu. *C.Sathiyavel, PG Student and Department of Aeronautical Engineering/Branch of Avionics, PSN college of Engineering and Technology,Tirunelveli,India. Abstract: Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of repulsive between negative ions with low electric power and high efficiency. A Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a cl- ion, it releases energy of 349 kJ/mol or 3.6 eV/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The distance between negative ions pair is important for the evaluation of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of ions is related to the ion beam current. Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense grids and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with low electric power for simulating the ion propulsion rocket system

  7. Effects of Wall Distensibility in Hemodynamic Simulations of an Arteriovenous Fistula

    PubMed Central

    McGah, Patrick M.; Leotta, Daniel F.; Beach, Kirk W.; Aliseda, Alberto

    2013-01-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis patients suffering from end-stage renal disease. It has long been hypothesized that the rapid blood vessel remodeling occurring after fistula creation is in part a process to restore the mechanical stresses to some preferred level, i.e. mechanical homeostasis. The current study presents fluid-structure interaction (FSI) simulations of a patient-specific model of a mature arteriovenous fistula reconstructed from 3D ultrasound scans. The FSI results are compared with previously published data of the same model but with rigid walls. Ultrasound-derived wall motion measurements are also used to validate the FSI simulations of the wall motion. Very large time-averaged shear stresses, 10–15 Pa, are calculated at the fistula anastomosis in the FSI simulations, values which are much larger than what is typically thought to be the normal homeostatic shear stress in the peripheral vasculature. Although this result is systematically lower by as much as 50% compared to the analogous rigid-walled simulations, the inclusion of distensible vessel walls in hemodynamic simulations does not reduce the high anastomotic shear stresses to “normal” values. Therefore, rigid-walled analyses may be acceptable for identifying high shear regions of arteriovenous fistulae. PMID:24037281

  8. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. PMID:27095271

  9. Technique for harvesting unicellular algae using colloidal gas aphrons. [Chlorella vulgaris

    SciTech Connect

    Honeycutt, S.S.; Wallis, D.A.; Sebba, F.

    1983-01-01

    A novel technique using colloidal gas aphron (CGA) dispersions has been investigated for harvesting Chlorella vulgaris, a unicellular green algae, from dilute suspension. CGA are very small gas bubbles, on the order of 25 ..mu..m in diameter, that are each encapsulated in an aqueous shell of surfactant solution. The process is based on the technology of CGA flotation, which involves the formation of algae-bubble complexes and their subsequent flotation to the surface. At neutral pH, the efficiency of algae removal was maximized when a cationic surfactant (lauryl pyridinium chloride) was used for CGA generation. At pH 10, both the cationic and anionic (sodium dodecyl benzene sulfonate) CGA dispersions yielded comparable removals. Addition of small quantities of alum (to 10/sup -4/M) improved removals using the cationic CGA, and at pH 10 this combination yielded the maximum removals that were achieved: 52.1% removal after a single application of CGA dispersion (1 to 1, dispersion to sample volume ratio), and 89.2% removal after an additional application. 12 references, 1 figure, 2 tables.

  10. Development of a technique for mercury speciation and quantification using gas chromatography/mass spectrometry

    SciTech Connect

    Barshick, S.A.; Barshick, C.M.; Britt, P.F.; Vance, M.A.; Duckworth, D.C.

    1997-07-01

    One element of concern to DOE is mercury. Mercury was used extensively at the DOE facilities in Oak Ridge, Tennessee from 1950 to 1963 in the process of making lithium deuteride, a component of nuclear weapons. Although both the inorganic and organometallic forms of mercury are toxic to humans, the organic compounds are often more toxic. Since the toxicity of mercury is a function of its chemical form, an understanding of the interactions between commercially discharged mercury, naturally occurring mercury, and the environment in which they are present is vital. In this report, the authors have been investigating gas chromatography/mass spectrometry (GC/MS) for the analysis of both the organometallic and inorganic forms of mercury in the same environmental sample (e.g., solutions, soils, and sludges). Although gas chromatography is the classical technique for analyzing organic molecules, (e.g., organometallic compounds) little has been done on the analysis of inorganic compounds. In a previous publication, the authors described how a solid phase microextraction (SPME) fiber could be used to sample organomercurials from aqueous samples. An alkylation reaction was then carried out to transform chemically mercury nitrate into dimethylmercury; subsequent GC/MS analysis of this compound permitted quantification of the inorganic constituent. Subsequently, several different alkylation reagents have been synthesized that methylate any inorganic mercury compound to methylmercury iodide. Here, the authors report results on alkylation reaction time and the effect of pH on the population of the product.

  11. Experimental technique for observing free oscillation of a spherical gas bubble in highly viscous liquids.

    NASA Astrophysics Data System (ADS)

    Nakajima, Takehiro; Ando, Keita

    2015-11-01

    An experimental technique is developed to observe free oscillations of a spherical gas bubble in highly viscous liquids. It is demonstrated that focusing a nanosecond laser pulse of wavelength 532 nm and energy up to 1.5 mJ leads to the formation of a spherical gaseous bubble, not a vaporous bubble (quickly condensed back to the liquid), whose equilibrium radius is up to 200 microns in glycerin saturated with gases at room temperature. The subsequent free oscillations of the spherical gas bubble is visualized using a high-speed camera. Since the oscillation periods are short enough to ignore bubble translation under gravity and mass transfer out of the bubble, the observed bubble dynamics can be compared to nonlinear and linearized Reyleigh-Plesset-type calculations that account for heat conduction and acoustic radiation as well as the liquid viscosity. In this presentation, we report on the measurements with varying the viscosity and comparisons to the theory to quantify damping mechanisms in the bubble dynamics.

  12. Moomba Lower Daralingie Beds (LDB) gas storage project: Reservoir management using a novel numerical simulation technique

    SciTech Connect

    Jamal, F.G.

    1994-12-31

    Engineers managing underground gas storage projects are often faced with challenges involving gas migration, inventory variance, gas quality and inventory-pressures. This paper discusses a unique underground gas storage project where sales gas and ethane are stored in two different but communicating regions of the same reservoir. A commercially available reservoir simulator was used to model the fluid flow behavior in this reservoir, hence, providing a tool for better management and use of the existing gas storage facilities.

  13. Monitoring the convergence and the stability of high-pressure gas storage cavities by echometric techniques

    SciTech Connect

    Denzau, H.; Erhardt, S.; Wierczeyco, E.

    1988-01-01

    To demonstrate the stability of high-pressure gas storage cavities and to monitor cavity convergence, a fully computerized echometric sonar technique was developed in the early eighties. Cavity surveys made by this technique at regular intervals in accordance with requirements imposed by mining authorities are necessary to monitor the stability of cavities as well as to predict cavity life and the effect of cavity convergence on the surface. Unlike conventional methods determining overall cavity closure, the new echometric sonar method allows the calculation of convergence as a function of depth by an intercomparison of data from different surveys. The first operation in the interpretation process is a numerical comparison of the data of vertical and horizontal cross-sections of two successive surveys. This operation will identify changes in the shape of a cavity which may occur if the cavity is leached in a steep-sloped salt dome. Following a verification of the computerized interpretation of the data, the volume of fall is calculated and cross-checked against the volume of rock deposited on the bottom of the cavity.

  14. Alternative Techniques for Injecting Massive Quantities of Gas for Plasma Disruption Mitigation

    SciTech Connect

    Combs, Stephen Kirk; Meitner, Steven J; Caughman, John B; Commaux, Nicolas JC; Fehling, Dan T; Foust, Charles R; Jernigan, Thomas C; McGill, James M; Parks, P. B.; Rasmussen, David A

    2010-01-01

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing closecoupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D, with preliminary experiments already carried out. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  15. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  16. Increased carotid intima-media thickness and reduced distensibility in human class III obesity: independent and differential influences of adiposity and blood pressure on the vasculature.

    PubMed

    Moore, Xiao L; Michell, Danielle; Lee, Sabrina; Skilton, Michael R; Nair, Rajesh; Dixon, John B; Dart, Anthony M; Chin-Dusting, Jaye

    2013-01-01

    Carotid intima-media-thickness (cIMT) and carotid distensibility (distensibility), structural and functional properties of carotid arteries respectively, are early markers, as well as strong predictors of cardiovascular disease (CVD). The characteristic of these two parameters in individuals with BMI>40.0 kg/m(2) (Class III obesity), however, are largely unknown. The present study was designed to document cIMT and distensibility in this population and to relate these to other factors with established association with CVD in obesity. The study included 96 subjects (65 with BMI>40.0 kg/m(2) and 31, age- and gender-matched, with BMI of 18.5 to 30.0 kg/m(2)). cIMT and distensibility were measured by non-invasive high resolution ultrasonography, circulatory CD133(+)/KDR(+) angiogenic cells and endothelial microparticles (EMP) by flow cytometry, and plasma levels of adipokines, growth factors and cytokines by Luminex immunoassay kits. The study results demonstrated increased cIMT (0.62±0.11 mm vs. 0.54±0.08 mm, P = 0.0002) and reduced distensibility (22.52±10.79 10(-3)kpa(-1)vs. 29.91±12.37 10(-3)kpa(-1), P<0.05) in individuals with BMI>40.0 kg/m(2). Both cIMT and distensibility were significantly associated with traditional CVD risk factors, adiposity/adipokines and inflammatory markers but had no association with circulating angiogenic cells. We also demonstrated, for the first time, elevated plasma EMP levels in individuals with BMI>40.0 kg/m(2). In conclusion, cIMT is increased and distensibility reduced in Class III obesity with the changes predominantly related to conventional CVD risk factors present in this condition, demonstrating that both cIMT and distensibility remain as CVD markers in Class III obesity. PMID:23342053

  17. Increased Carotid Intima-Media Thickness and Reduced Distensibility in Human Class III Obesity: Independent and Differential Influences of Adiposity and Blood Pressure on the Vasculature

    PubMed Central

    Moore, Xiao L.; Michell, Danielle; Lee, Sabrina; Skilton, Michael R.; Nair, Rajesh; Dixon, John B.; Dart, Anthony M.; Chin-Dusting, Jaye

    2013-01-01

    Carotid intima-media-thickness (cIMT) and carotid distensibility (distensibility), structural and functional properties of carotid arteries respectively, are early markers, as well as strong predictors of cardiovascular disease (CVD). The characteristic of these two parameters in individuals with BMI>40.0 kg/m2 (Class III obesity), however, are largely unknown. The present study was designed to document cIMT and distensibility in this population and to relate these to other factors with established association with CVD in obesity. The study included 96 subjects (65 with BMI>40.0 kg/m2 and 31, age- and gender-matched, with BMI of 18.5 to 30.0 kg/m2). cIMT and distensibility were measured by non-invasive high resolution ultrasonography, circulatory CD133+/KDR+ angiogenic cells and endothelial microparticles (EMP) by flow cytometry, and plasma levels of adipokines, growth factors and cytokines by Luminex immunoassay kits. The study results demonstrated increased cIMT (0.62±0.11 mm vs. 0.54±0.08 mm, P = 0.0002) and reduced distensibility (22.52±10.79 10−3kpa−1 vs. 29.91±12.37 10−3kpa−1, P<0.05) in individuals with BMI>40.0 kg/m2. Both cIMT and distensibility were significantly associated with traditional CVD risk factors, adiposity/adipokines and inflammatory markers but had no association with circulating angiogenic cells. We also demonstrated, for the first time, elevated plasma EMP levels in individuals with BMI>40.0 kg/m2. In conclusion, cIMT is increased and distensibility reduced in Class III obesity with the changes predominantly related to conventional CVD risk factors present in this condition, demonstrating that both cIMT and distensibility remain as CVD markers in Class III obesity. PMID:23342053

  18. Innovations in high-pressure liquid injection technique for gas chromatography: pressurized liquid injection system.

    PubMed

    Luong, Jim; Gras, Ronda; Tymko, Richard

    2003-01-01

    In gas chromatography (GC), highly volatile liquefied hydrocarbons are commonly injected using devices such as high-pressure syringes, piston valves, liquid rotary sampling valves, or vaporizing regulators. Although these techniques are adequate in some cases, there are known deficiencies. A new generation of sampling valve has been recently innovated and commercialized. Some of the highlights of the pressurized liquid injection system (PLIS) include compact size, the capability to directly couple to an injection port without the need for preinjection vaporization and transfer lines, and sample sizes ranging from 0.2 to 2.0 micro L. Although the valve has a specification of helium leak-free rating of 82.7 bar (1200 psig), the valve passes a hydrostatic pressure test of up to 414 bar (6000 psig). In the unheated version of PLIS, vaporization of solutes occur mainly because of the sheering effect of carrier gas in combination with thermal energy drawn from an injection port or a heated adaptor. This was found to be adequate for solutes with high to medium volatility of up to nC14 hydrocarbon. A higher molecular weight range of up to nC44 hydrocarbon can be achieved with the implementation of a heated version of PLIS, in which the channel of the shaft can be resistively heated at a rate of up to 400 degrees C/s. With its first introduction in May 2002, PLIS has gained acceptance amongst practitioners in GC because it addresses a key unarticulated need in sample introduction/enrichment and by specifically targeting many deficiencies encountered in contemporary high-pressure injection devices. In this paper, the design and performance of the various valve systems of PLIS, as well as industrial chromatographic applications, is presented. PMID:14629794

  19. Effect of nonsteroidal anti-inflammatory drugs on colorectal distension-induced visceral pain

    PubMed Central

    Baskın, Veysel; Bilge, S. Sırrı; Bozkurt, Ayhan; Akyüz, Bahar; Ağrı, Arzu Erdal; Güzel, Hasan; İlkaya, Fatih

    2016-01-01

    Objectives: To investigate nonsteroidal anti-inflammatory drugs effectiveness in colorectal distension (CRD)-induced visceral pain model. Materials and Methods: Male Sprague–Dawley (250–300 g) rats were anesthetized with ketamine (50 mg/kg, intraperitoneally [i.p.]) and chlorpromazine (25 mg/kg, i.p.). Two bipolar Teflon-coated Ni/Cr wire electrodes (80-M diameter) were placed in the abdominal external oblique muscle for the recording of electromyography. Jugular vein catheter was placed for the administration of drugs. CRD method was applied to evaluate of visceral pain. All drugs (paracetamol, meloxicam, metamizole, and dexketoprofen) administered intravenously. Results: Paracetamol 200, 400, and 600 mg/kg did not change the visceromotor response (VMR) when compare with the control group. Meloxicam 2 and 4 mg/kg showed no effect but at doses of 6 mg/kg meloxicam significantly ([51.9 ± 6.4%] [P < 0.001]) decreased VMR compared with the control group. Metamizole 200 mg/kg did not change responses but dose of 400 and 600 mg/kg metamizole reduced VMR. Dexketoprofen 2 and 4 mg/kg did not cause a change in VMR but 6 mg/kg dose significantly reduced response compared with the control group ([43.9 ± 3.9%, 36.8 ± 2.8%, 34.8 ± 2.5%, 42.1 ± 4.8%, 40.7 ± 3.5%, 36.4 ± 2.7%, and 26.1 ± 2.2%]; from 10 min to 70 min, respectively, [P < 0.05]). Conclusion: Metamizole, dexketoprofen and meloxicam show antinociceptive effect with different duration of action on CRD-induced visceral pain model. This condition can be explained due to different chemical structures and different mechanisms which play a role in modulation of pain. PMID:27114637

  20. Use of the gas-filled-magnet technique for particle identification at low energies

    SciTech Connect

    Rehm, K.K.; Jiang, C.L.; Paul, M.

    1995-08-01

    Reaction studies of interest to astrophysics with radioactive ion beams will be done mainly in inverse reaction kinematics, i.e., heavy particles bombarding a hydrogen target. The low energy of the outgoing heavy reaction products makes particle identification with respect to mass and nuclear charge a major challenge. For the planned {sup 18}F(p,{alpha}) experiment one expects five different types of particles in the outgoing channels: {sup 18}F and {sup 18}O (from elastic scattering of {sup 18}F and {sup 18}O on {sup 12}C), {sup 15}O and {sup 15}N (from the {sup 18}F and {sup 18}O induced (p,{alpha}) reactions) and {sup 12}C recoils from the polypropylene target. While mass determination can be achieved easily by time-of-flight (TOF) measurements, a determination of the nuclear charge presents a challenge, especially if the energy of the particles is below 500 keV/u. We studied the gas-filled magnet technique for Z-identification of light ions between Z = 6-9. In a gas-filled magnet the particles move with an average charge state {bar q} which in one parameterization is given by {bar q} = Z ln(avZ{sup {alpha}})/ln(bZ{sup {beta}}) where Z is the nuclear charge of the ions and v their velocity. Introducing into the expression for the magnetic rigidity B{rho} = mv/{bar q} results in a Z dependence of B{rho} which is valid to very low velocities. As a magnet we used the Enge split-pole spectrograph which was filled with nitrogen gas at a pressure of 0.5 Torr. The particles were detected in the focal plane with a 50 x 10 cm{sup 2} parallel-grid-avalanche counter which measured TOF and magnetic rigidity. The mass and Z separation was tested with {sup 13}C and {sup 18}O beams at energies of about 600 keV/u and recoil particles ranging from {sup 12}C to {sup 19}F. The Z-separation obtained at these energies was {triangle}Z/Z = 0.28 which is sufficient to separate individual elements for Z < 10.

  1. Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique.

    PubMed

    Calabrò, S; Moniello, G; Piccolo, V; Bovera, F; Infascelli, F; Tudisco, R; Cutrignelli, M I

    2008-06-01

    An in vitro trial was conducted to investigate the effect of different inoculum sources (buffalo vs. cattle) on rumen fermentation and degradability. Incubations were carried out using rumen fluid obtained from buffalo or cattle fed the same diet [60% grass hay and 40% concentrate; 18 kg dry matter (DM)/day]. The fermentation kinetics of eight feeds commonly used in ruminant nutrition (alfalfa hay, barley meal, beet pulp, corn meal and silage, ryegrass hay and silage and soya bean meal s.e.) were studied with the in vitro gas production technique and rumen fermentation parameters (substrate disappearance, pH and volatile fatty acids production) were determined after 120 h of incubation. The linear relationship indicates that the microbial metabolic pathways of the two inocula for all the substrates were qualitatively similar, albeit often quantitatively different. In this in vitro study, a significant influence of rumen inoculum (buffalo vs. cow) on fermentation and degradability of the examined substrates was found. The differences in buffalo and cattle rumen fermentation can be explained with a different microbial activity of the two ruminant species, because of different amount of microbial population or microbial population constituted by different species of bacteria and protozoa. PMID:18477317

  2. Determination of water in hydrogen chloride gas by a condensation technique

    SciTech Connect

    Flaherty, E.; Herold, C.; Murray, D.; Thompson, S.R.

    1986-07-01

    The determination of trace amounts of water in gaseous hydrogen chloride has been of considerable interest to manufacturers of semiconductor materials. Many different methods have been postulated in the detection of water in hydrogen chloride, including Karl Fischer titrations, infrared spectrometric techniques, and gravimetric procedures using desiccants. Despite varying degrees of success at high-moisture concentration ranges, 1000 ppm (v/v) and up, these methods become tedious and unreliable for measuring water in hydrogen chloride in the 1-1000 ppm range. We have found a method for moisture in hydrogen chloride, analogous to dew point determinations used for inert gases, that is rapid and reproducible. A calibration curve of parts per million (v/v) water in hydrogen chloride vs. condensation temperature was constructed by dynamically blending a low part per million moisture balance nitrogen standard with dried hydrogen chloride gas. In addition, variation of the condensation temperature was monitored as the dried hydrogen chloride was diluted with dried gaseous nitrogen.

  3. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques

    SciTech Connect

    Mastalerz, Maria; He, Lilin; Melnichenko, Yuri B; Rupp, John A

    2012-01-01

    Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

  4. Structural, morphological and gas sensing study of palladium doped tin oxide nanoparticles synthesized via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Singh, Davender; Kundu, Virender Singh; Maan, A. S.

    2015-11-01

    In this article pure and Pd-doped SnO2 (Pd:SnO2) nanoparticles with various mol% Pd have been synthesized by hydrothermal technique. To characterize the morphology, crystallinity, and structure of the SnO2 and Pd:SnO2 X-ray diffraction (XRD) and scanning electron microscope (SEM) studies were used. XRD analysis reveal that all nanoparticles of different doping concentration are highly polycrystalline in nature. Pd-doped SnO2 crystals existed mainly as tetragonal rutile structure. The particle size of the nanoparticles was calculated by using the Scherrer formula and was found in the range of 8-27 nm. The SEM images of the studied nanoparticles confirms the existence of very small, homogeneously distributed, spherical and extremely crystalline nanoparticles. EDX analysis confirms the presence of palladium. The Fourier transform infrared spectroscopy (FTIR) study confirmed the formation of Sn-O phase and hydrous nature of the pure and Pd-doped SnO2 nanoparticles. The gas sensing response of SnO2 and Pd:SnO2 nanoparticles was studied towards different reducing gases at different operating temperatures. Among all samples under study, 0.20% Pd-doped SnO2 exhibits best response towards different gases. 0.20% Pd-doped SnO2 shows maximum response 88% to ethanol, 80% to CO and 78% to H2 at concentration of 100 ppm respectively at different operating temperature within the measurement limit.

  5. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  6. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi

    2005-05-01

    A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity-temperature sensor, SO 2 electrochemical sensor, CO 2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (˜5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10-30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H 2O, CO 2, and SO 2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H 2S and H 2.

  7. Study on Indirect Measuring Technology of EAF Steelmaking Decarburization Rate by Off-gas Analysis Technique in Hot State Experiment

    NASA Astrophysics Data System (ADS)

    Dong, Kai; Liu, Wenjuan; Zhu, Rong

    2015-10-01

    In this paper, measurement method of EAF Steelmaking decarburization rate is studied. Because of the fuel gas blown and air mixed, the composition of hot temperature off-gas is measurand unreally, and the flow rate is unknown too, the direct measurement of EAF decarburization rate by furnace gas analysis is unrealized. Firstly, the off-gas generation process is discussed. After that, dynamic concentration of CO2, CO, and O2 in off-gas and EAF oxygen supply rate are monitored in real time. Finally, the concentration and volume flow rate of off-gas are obtained to measure the EAF decarburization rate indirectly. The results of the hot state experiments show that the decarburization rate in oxidization step can reach up to about 0.53 mol/s, and the forecasting carbon concentration is 1.14% corresponding to the average carbon concentration (1.43%) in finial metal samples. The measurement of decarburization rate by off-gas analysis technique can be reasonable in EAF production process.

  8. Chemometric Profile of Root Extracts of Rhodiola imbricata Edgew. with Hyphenated Gas Chromatography Mass Spectrometric Technique

    PubMed Central

    Tayade, Amol B.; Dhar, Priyanka; Kumar, Jatinder; Sharma, Manu; Chauhan, Rajinder S.; Chaurasia, Om P.; Srivastava, Ravi B.

    2013-01-01

    Rhodiola imbricata Edgew. (Rose root or Arctic root or Golden root or Shrolo), belonging to the family Crassulaceae, is an important food crop and medicinal plant in the Indian trans-Himalayan cold desert. Chemometric profile of the n-hexane, chloroform, dichloroethane, ethyl acetate, methanol, and 60% ethanol root extracts of R. imbricata were performed by hyphenated gas chromatography mass spectrometry (GC/MS) technique. GC/MS analysis was carried out using Thermo Finnigan PolarisQ Ion Trap GC/MS MS system comprising of an AS2000 liquid autosampler. Interpretation on mass spectrum of GC/MS was done using the NIST/EPA/NIH Mass Spectral Database, with NIST MS search program v.2.0g. Chemometric profile of root extracts revealed the presence of 63 phyto-chemotypes, among them, 1-pentacosanol; stigmast-5-en-3-ol, (3β,24S); 1-teracosanol; 1-henteracontanol; 17-pentatriacontene; 13-tetradecen-1-ol acetate; methyl tri-butyl ammonium chloride; bis(2-ethylhexyl) phthalate; 7,8-dimethylbenzocyclooctene; ethyl linoleate; 3-methoxy-5-methylphenol; hexadecanoic acid; camphor; 1,3-dimethoxybenzene; thujone; 1,3-benzenediol, 5-pentadecyl; benzenemethanol, 3-hydroxy, 5-methoxy; cholest-4-ene-3,6-dione; dodecanoic acid, 3-hydroxy; octadecane, 1-chloro; ethanone, 1-(4-hydroxyphenyl); α-tocopherol; ascaridole; campesterol; 1-dotriacontane; heptadecane, 9-hexyl were found to be present in major amount. Eventually, in the present study we have found phytosterols, terpenoids, fatty acids, fatty acid esters, alkyl halides, phenols, alcohols, ethers, alkanes, and alkenes as the major group of phyto-chemotypes in the different root extracts of R. imbricata. All these compounds identified by GC/MS analysis were further investigated for their biological activities and it was found that they possess a diverse range of positive pharmacological actions. In future, isolation of individual phyto-chemotypes and subjecting them to biological activity will definitely prove fruitful results in

  9. Visualization and velocity measurement of unsteady flow in a gas generator using cold-flow technique

    NASA Astrophysics Data System (ADS)

    Kuppa, Subrahmanyam

    1990-08-01

    Modeling of internal flow fields with hot, compressible fluids and sometimes combustion using cold flow techniques is discussed. The flow in a gas generator was modeled using cold air. The experimental set up was designed and fabricated to simulate the unsteady flow with different configurations of inlet tubes. Tests were run for flow visualization and measurement of axial velocity at different frequencies ranging from 5 to 12 Hz. Flow visualization showed that the incoming flow was a complex jet flow confined to a cylindrical enclosure, while the outgoing flow resembled the venting of a pressurized vessel. The pictures show a complex flow pattern due to the angling of the jet towards the wall for the bent tube configurations and straightened flows with straight tube and other configurations with straighteners. Velocity measurements were made at an inlet Re of 8.1 x 10(exp 4) based on maximum velocity and inlet diameter. Phase averaged mean velocities were observed to be well defined during charging and diminished during venting inside the cylinder. For the straight tube inlet comparison with a steady flow measurement of sudden expansion flow showed a qualitative similarity of the mean axial velocity distribution and centerline velocity decay during the charging phases. For the bent tube inlet case the contour plots showed the flow tendency towards the wall. Two cells were seen in the contours for the 8 and 12 Hz cases. The deviation of the point of occurrence of maximum velocity in a radial profile was found to be about 6.5 degrees. Entrance velocity profiles showed symmetry for the straight tube inlet but were skewed for the bent tube inlet. Contour plots of the phase averaged axial turbulence intensity for bent tube cases showed higher values in the core and near the wall in the region of impingement. Axial turbulence intensity measured for the straight tube case showed features as observed in an axisymmetric sudden expansion flow.

  10. An extended proximal esophageal myotomy is necessary to normalize EGJ distensibility during Heller myotomy for achalasia, but not POEM

    PubMed Central

    Teitelbaum, Ezra N.; Soper, Nathaniel J.; Pandolfino, John E.; Kahrilas, Peter J.; Boris, Lubomyr; Nicodème, Frédéric; Lin, Zhiyue; Hungness, Eric S.

    2015-01-01

    Background For laparoscopic Heller myotomy (LHM), the optimal myotomy length proximal to the esophagogastric junction (EGJ) is unknown. In this study, we used a functional lumen imaging probe (FLIP) to measure EGJ distensibility changes resulting from variable proximal myotomy lengths during LHM and peroral esophageal myotomy (POEM). Methods Distensibility index (DI) (defined as the minimum cross-sectional area at the EGJ divided by pressure) was measured with FLIP after each operative step. During LHM and POEM, each patient’s myotomy was performed in two stages: first, a myotomy ablating only the EGJ complex was created (EGJ-M), extending from 2cm proximal to the EGJ, to 3cm distal to it. Next, the myotomy was lengthened 4cm further cephalad to create an extended proximal myotomy (EP-M). Results Measurements were performed in 12 patients undergoing LHM and 19 undergoing POEM. LHM resulted in an overall increase in DI (1.6 ±1 vs. 6.3 ±3.4 mm2/mmHg, p<.001). Creation of an EGJ-M resulted in a small increase (1.6 to 2.3 mm2/mmHg, p<.01) and extension to an EP-M resulted in a larger increase (2.3 to 4.9 mm2/mmHg, p<.001). This effect was consistent, with 11 (92%) patients experiencing a larger increase after EP-M than after EGJ-M. Fundoplication resulted in a decrease in DI and deinsufflation an increase. POEM resulted in an increase in DI (1.3 ±1 vs. 9.2 ±3.9 mm2/mmHg, p<.001). Both creation of the submucosal tunnel and performing an EGJ-M increased DI, whereas lengthening of the myotomy to an EP-M had no additional effect. POEM resulted in a larger overall increase from baseline than LHM (7.9 ±3.5 vs. 4.7 ±3.3 mm2/mmHg, p<.05). Conclusions During LHM, an extended proximal myotomy was necessary to normalize distensibility, whereas during POEM, a myotomy confined to the EGJ complex was sufficient. In this cohort, POEM resulted in a larger overall increase in EGJ distensibility. PMID:24853854

  11. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  12. Measurement techniques investigated for detection of hydrogen chloride gas in ambient air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1976-01-01

    Nine basic techniques are discussed, ranging from concentration (parts per million) to dosage only (parts per million-seconds) measurement techniques. Data for each technique include lower detection limit, response time, instrument status, and in some cases, specificity. Several techniques discussed can detect ambient hydrogen chloride concentrations below 1 part per million with a response time of seconds.

  13. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats.

    PubMed

    Okumura, Toshikatsu; Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Miyagishi, Saori; Ohhira, Masumi

    2016-02-01

    Levodopa possesses antinociceptive actions against several somatic pain conditions. However, we do not know at this moment whether levodopa is also effective to visceral pain. The present study was therefore performed to clarify whether levodopa is effective to visceral pain and its mechanisms. Visceral sensation was evaluated by colonic distension-induced abdominal withdrawal reflex (AWR) in conscious rats. Subcutaneously (80 mg/rat) or intracisternally (2.5 μg/rat) administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain. PMID:26883457

  14. Pore Scale and Continuum Modeling for Gas Flow Pattern obtained by Multi-Scale Optical Imaging Technique

    NASA Astrophysics Data System (ADS)

    Lazik, D.; Samani, S.; Geistlinger, H.

    2008-12-01

    A multi-scale optical imaging technique was developed allowing for the 2D observation of two phase flow in porous media at two different scales simultaneously: Using two coupled camera systems a 2D flow cell (0.5 x 0.5 m²) is recorded entirely at the bench scale and at the pore scale with a spatial resolution of 0.5 mm and 0.01 mm respectively. The technique is applied to study channelized gas flow in saturated 0.5mm glass beads. We analyze the phase distribution at the pore scale and derive a pixel-based method for the measurement of saturation at the larger scale. Pore-Scale-Models: Both a grain-size- and flow rate-dependent transition are observed in the gas flow pattern. Standard quasi-static criteria do not explain the experimental results, since they do not take into account the competition between stabilizing friction forces and destabilizing capillary and gravitational forces. Conceptualizing the steady state tortuous gas flow as core-annular flow and applying Hagen-Poiseuille flow for a straight capillary, we propose a flow rate and grain-size-dependent stability criterion (coherence condition) that accounts for the experimental results. Continuum Scale Models: The main objective of this paper is to test the validity of the continuum approach for two-fluid flow for macroscopic homogeneous media. Using a reasonable log-normal distribution of capillary radii that led to a matrix potential that fits the experimental steady-state capillary pressure, the continuum model (TOUGH2) was able to describe the functional form of the dynamical gas volume, an integral flow property, as a function of the flow rate for the 0.5mm glass beads. On the other hand, the continuum model fails to describe the spatial-temporal distribution of the gas flow. For the first time, we were able to quantify the plateau-like gas distribution using optical tomography. This result is in strong contradiction to the Gaussian-like distribution obtained from the continuum model. Both

  15. Influence of gas microsensor mounting technique on its temperature time constant

    NASA Astrophysics Data System (ADS)

    Maziarz, Wojciech; Pisarkiewicz, Tadeusz

    2006-10-01

    Metal oxide semiconductor gas sensors with modulated working temperature should reveal small thermal time constant in comparison to the time constants of chemical reactions between gas atmosphere and sensitive layer. In such case analyzed sensor response is dominated with specific phenomena originated from these reactions. A way the sensors are mounted has big influence on the sensor thermal time constants. In experiments authors used gas sensors with ceramic and micromachined silicon substrates glued to the case or suspended on thin wires. Although mechanical stability and durability of glued sensors are better, the lower power consumption and lower time constants are possible with sensors mounted using thin wires.

  16. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem® F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem® is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  17. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  18. Correlation between the dielectric constant and porosity of nanoporous silica thin films deposited by the gas evaporation technique

    NASA Astrophysics Data System (ADS)

    Si, J. J.; Ono, H.; Uchida, K.; Nozaki, S.; Morisaki, H.; Itoh, N.

    2001-11-01

    Nanoporous silica thin films with low dielectric constants were deposited by gas evaporation of SiO2 nanoparticles in an argon atmosphere. With increasing gas pressure during the evaporation, the dielectric constant decreases, while the porosity increases. The correlation between the dielectric constant and porosity is well modeled by a serial connection of two capacitors, one with air and the other with SiO2 as the dielectric medium. This suggests that the dielectric constant of the nanoporous silica thin film using the gas evaporation technique is more effectively lowered by forming "uniformly" distributed voids of closed gaps than those of the nanoporous silica films with pores extending from the back to front surface. Therefore, the former nanoporous silica thin film requires less porosity to obtain a low dielectric constant and is regarded as an ideal low-k material.

  19. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  20. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  1. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  2. Simplified soil-gas sensing techniques for plume mapping and remediation monitoring

    SciTech Connect

    Kampbell, D.H.; Wilson, J.T.; Ostendorf, D.W.

    1991-01-01

    Soil gas measurements were taken in a beach sand matrix of the unsaturated zone above a ground water plume contaminated from a spill near 35,000 gallons of aviation gasoline. The soil gas sampling and analysis strategy provided required information for mapping the plume and vertical profile measurements with a minimal expenditure of resources and work time. Analysis of a calibration gas and replicate sampling showed that the apparatus used gave reasonably correct soil gas contituent measurements. Boundaries of the plume were defined and a hot spot was located downgradient from the original spill location. Elevated carbon dioxide above the contaminated capillary fringe indicated microbial respiration activity. A biodegradation model developed from the vertical profile data predicted very low oxygen at the water table and little or no loss of hydrocarbon emissions to the atmosphere.

  3. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    PubMed

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety. PMID:25333593

  4. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  5. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Bohlke, Johnkarl F.; Harvey, Judson W.; Busenberg, Eurybiades; Tobias, Craig R.

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  6. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, C.R.; Böhlke, J.K.; Harvey, J.W.; Busenberg, E.

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF 6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF 6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  7. Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Asai, N.; Kataura, H.; Achiba, Y.

    2007-07-01

    The formation of single-wall carbon nanotubes (SWNTs) by using laser vaporization technique in different ambient gas atmosphere was investigated. SWNTs were prepared with Rh/Pd (1.2/1.2 atom%)-carbon composite rod in Ar and nitrogen gas atmosphere, respectively. Raman spectra of raw carbon materials including SWNTs and photoluminescence mapping of dispersed SWNTs in a surfactant solution demonstrate that the diameter distribution of SWNTs prepared in Ar atmosphere is narrower than those obtained by using CVD technique (e.g. HiPco nanotube), even when the ambient temperature is as high as 1150 ?C. It was also found that nitrogen atmosphere gives wider diameter distribution of SWNTs than that obtained with Ar atmosphere. Furthermore, the relative yield of fullerenes (obtained as byproducts) is investigated by using HPLC (high-performance liquid chromatography) technique. It was found that the relative yield of higher fullerenes becomes lower, when nitrogen is used as an ambient gas atmosphere. Based on these experimental findings, a plausible formation mechanism of SWNTs is discussed.

  8. Investigation into the determination of trimethylarsine in natural gas and its partitioning into gas and condensate phases using (cryotrapping)/gas chromatography coupled to inductively coupled plasma mass spectrometry and liquid/solid sorption techniques

    NASA Astrophysics Data System (ADS)

    Krupp, E. M.; Johnson, C.; Rechsteiner, C.; Moir, M.; Leong, D.; Feldmann, J.

    2007-09-01

    Speciation of trialkylated arsenic compunds in natural gas, pressurized and stable condensate samples from the same gas well was performed using (Cryotrapping) Gas Chromatography-Inductively Coupled Plasma Mass Spectrometry. The major species in all phases investigated was found to be trimethylarsine with a highest concentration of 17.8 ng/L (As) in the gas phase and 33.2 μg/L (As) in the stable condensate phase. The highest amount of trimethylarsine (121 μg/L (As)) was found in the pressurized condensate, along with trace amounts of non-identified higher alkylated arsines. Volatile arsenic species in natural gas and its related products cause concern with regards to environment, safety, occupational health and gas processing. Therefore, interest lies in a fast and simple field method for the determination of volatile arsenicals. Here, we use simple liquid and solid sorption techniques, namely absorption in silver nitrate solution and adsorption on silver nitrate impregnated silica gel tubes followed by total arsenic determination as a promising tool for field monitoring of volatile arsenicals in natural gas and gas condensates. Preliminary results obtained for the sorption-based methods show that around 70% of the arsenic is determined with these methods in comparison to volatile arsenic determination using GC-ICP-MS. Furthermore, an inter-laboratory- and inter-method comparison was performed using silver nitrate impregnated silica tubes on 14 different gas samples with concentrations varying from below 1 to 1000 μg As/m 3 natural gas. The results obtained from the two laboratories differ in a range of 10 to 60%, but agree within the order of magnitude, which is satisfactory for our purposes.

  9. Measuring Humidity in Methane and Natural Gas with a Microwave Technique

    NASA Astrophysics Data System (ADS)

    Gavioso, R. M.; Madonna Ripa, D.; Benyon, R.; Gallegos, J. G.; Perez-Sanz, F.; Corbellini, S.; Avila, S.; Benito, A. M.

    2014-04-01

    The results of microwave measurements with a quasi-spherical resonator in humid methane samples realized under laboratory conditions at the Istituto Nazionale di Ricerca Metrologica (INRiM) and under industrial conditions in a natural gas sample made available at the facilities of the Technical Manager of the Spanish Gas System and main supplier of natural gas in Spain (ENAGAS) are reported. Measurements at INRiM included vapor phase and condensation tests on methane samples prepared with amount fractions of water between 600 ppm and 5000 ppm at temperatures between 273 K and 295 K and pressures between 150 kPa and 1 MPa. ENAGAS measurements were performed at ambient temperature, 750 kPa on natural gas sampled from the pipeline and successively humidified at amount fractions of water between 140 ppm and 250 ppm for completeness of the comparison with several humidity sensors and instrumentation based on different technologies. To enhance the sensitivity of the microwave method at low humidity, an experimental procedure based on the relative comparison of the dielectric permittivity of the humid gas sample before and after being subject to a chemical drying process was conceived and implemented. The uncertainty budget and the final sensitivity of this procedure are discussed.

  10. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz; K.E. Brown

    2003-02-01

    There are four primary goals of contract DE-FG26-99FT40703: (1) We seek to better understand how and why two damage mechanisms--(1) inorganic precipitants, and (2) hydrocarbons and organic residues, occur at the reservoir/wellbore interface in gas storage wells. (2) We plan on testing potential prevention and remediation strategies related to these two damage mechanisms in the laboratory. (3) We expect to demonstrate in the field, cost-effective prevention and remediation strategies that laboratory testing deems viable. (4) We will investigate new technology for the gas storage industry that will provide operators with a cost effective method to reduce non-darcy turbulent flow effects on flow rate. For the above damage mechanisms, our research efforts will demonstrate the diagnostic technique for determining the damage mechanisms associated with lost deliverability as well as demonstrate and evaluate the remedial techniques in the laboratory setting and in actual gas storage reservoirs. We plan on accomplishing the above goals by performing extensive lab analyses of rotary sidewall cores taken from at least two wells, testing potential remediation strategies in the lab, and demonstrating in the field the applicability of the proposed remediation treatments. The benefits from this work will be quantified from this study and extrapolated to the entire storage industry. The technology and project results will be transferred to the industry through DOE dissemination and through the industry service companies that work on gas storage wells. Achieving these goals will enable the underground gas storage industry to more cost-effectively mitigate declining deliverability in their storage fields. Work completed to date includes the following: (1) Solicited potential participants from the gas storage industry; (2) Selected one participant experiencing damage from inorganic precipitates; (3) Developed laboratory testing procedures; (4) Collected cores from National Fuel Gas

  11. Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure.

    PubMed

    Huang, Li; Xia, Lanyan; Ge, Xiaoxue; Jing, Hengye; Dong, Wenbo; Hou, Huiqi

    2012-06-01

    In this paper, H(2)S in gas stream was successfully decomposed at atmospheric pressure by dielectric barrier discharge plasma and VUV-UV radiation from a combined plasma photolysis reactor (CDBD). In comparison with DBD, CDBD enhanced H(2)S removal efficiency significantly at the same applied voltage, inlet H(2)S concentration and gas residence time. H(2)S removal efficiency was determined as a function of Kr pressure, applied voltage, inlet H(2)S concentration, and gas residence time. H(2)S removal efficiency could reach as high as 93% at inlet H(2)S concentration of 27.1 mg m(-3), residence time of 0.4 s, and applied voltage of 7.5 kV. The main products were discerned as H(2)O and SO(4)(2-) based on FTIR and IC analysis. PMID:22436586

  12. Development and trial of microwave techniques for measurement of multiphase flow of oil, water and gas

    SciTech Connect

    Ashton, S.L.; Cutmore, N.G.; Roach, G.J.; Watt, J.S.; Zastawny, H.W.; McEwan, A.J.

    1994-12-31

    A prototype microwave and gamma-ray MFM has been developed for measurement of oil, water and gas flowrates on production pipelines and has been successfully trialed at the Thevenard island oil production facility. The microwave and gamma-ray MFM determined the oil and water flow rates with errors of 5.4 and 5.9% relative respectively for the wide range of wells and flow conditions during the trial period. A prototype non-intrusive microwave MFM is being developed for measurement of oil, water and gas flow rates on production pipelines. The microwave MFM will be trialed on the West Kingfish platform in Bass Strait in late 1994.

  13. A novel ultrasound technique to study the biomechanics of the human esophagus in vivo.

    PubMed

    Takeda, Torahiko; Kassab, Ghassan; Liu, Jianmin; Puckett, James L; Mittal, Rishi R; Mittal, Ravinder K

    2002-05-01

    The objectives of this study were to validate a novel ultrasound technique and to use it to study the circumferential stress-strain properties of the human esophagus in vivo. A manometric catheter equipped with a high-compliance bag and a high-frequency intraluminal ultrasonography probe was used to record esophageal pressure and images. Validation studies were performed in vitro followed by in vivo studies in healthy human subjects. Esophageal distensions were performed with either an isovolumic (5-20 ml of water) or with an isobaric (10-60 mmHg) technique. Sustained distension was also performed for 3 min in each subject. The circumferential wall stress and strain were calculated. In vitro studies indicate that the ultrasound technique can make measurements of the esophageal wall with an accuracy of 0.01 mm. The in vivo studies provide the necessary data to compute the Kirchhoff's stress, Green's strain, and Young's elastic modulus during esophageal distensions. The stress-strain relationship revealed a linear shape, the slope of which corresponds to the Young's modulus. During sustained distensions, we found dynamic changes of stress and strain during the period of distension. We describe and validate a novel ultrasound technique that allows measurement of biomechanical properties of the esophagus in vivo in humans. PMID:11960775

  14. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    SciTech Connect

    Hooper, David A; Henkel, James J; Whitaker, Michael

    2012-01-01

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  15. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  16. Investigation Of A Mercury Speciation Technique For Flue Gas Desulfurization Materials

    EPA Science Inventory

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to bene...

  17. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified. PMID:15246418

  18. Coating integrity survey using DC voltage gradient technique at Korea Gas Corporation

    SciTech Connect

    Cho, Y.B.; Park, K.W.; Jeon, K.S.; Song, H.S.; Won, D.S.; Lee, S.M.; Kho, Y.T.

    1996-12-31

    The reliability and applicability of various coating defect detecting techniques are investigated utilizing mock pipe. It is shown that both close interval potential survey and dc voltage gradient methods are impertinent as field techniques: They require considerable cathodic polarization in order to effectively locate the coating defects. DC voltage gradient with current interruption technique is recommended as a viable field method in that it is able to precisely locate the defects irrespective of CP condition. Utilizing the method field survey was undertaken for the KGC`s pipeline of 120 km and 106 assumed defects were located.

  19. A new technique for measuring gas conversion factors for hydrocarbon mass flowmeters

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R.

    1983-01-01

    A technique for measuring calibration conversion factors for hydrocarbon mass flowmeters was developed. It was applied to a widely used type of commercial thermal mass flowmeter for hydrocarbon gases. The values of conversion factors for two common hydrocarbons measured using this technique are in good agreement with the empirical values cited by the manufacturer. Similar agreements can be expected for all other hydrocarbons. The technique is based on Nernst theorem for matching the partial pressure of oxygen in the combustion product gases with that in normal air. It is simple, quick and relatively safe--particularly for toxic/poisonous hydrocarbons.

  20. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  1. Estimating fermentation characteristics and nutritive value of ensiled and dried pomegranate seeds for ruminants using in vitro gas production technique

    PubMed Central

    Taher-Maddah, M.; Maheri-Sis, N.; Salamatdoustnobar, R.; Ahmadzadeh, A.

    2012-01-01

    The purpose of this study was to determine the chemical composition and estimation of fermentation characteristics and nutritive value of ensiled and dried pomegranate seeds using in vitro gas production technique. Samples were collected, mixed, processed (ensiled and dried) and incubated in vitro with rumen liquor taken from three fistulated Iranian native (Taleshi) steers at 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h. The results showed that ensiling lead to significant increase in gas production of pomegranate seeds at all incubation times. The gas volume at 24 h incubation, were 25.76 and 17.91 ml/200mg DM for ensiled and dried pomegranate seeds, respectively. The gas production rate (c) also was significantly higher for ensiled groups than dried (0.0930 vs. 0.0643 ml/h). The organic matter digestibility (OMD), metabolizable energy (ME), net energy for lactation (NEL) and short chain fatty acids (SCFA) of ensiled pomegranate seeds were significantly higher than that of dried samples (43.15%, 6.37 MJ/kg DM, 4.43 MJ/kg DM, 0.5553 mmol for ensiled samples vs. 34.62%, 5.10 MJ/kg DM, 3.56 MJ/kg DM, 0.3680 mmol for dried samples, respectively). It can be concluded that ensiling increases the nutritive value of pomegranate seeds. PMID:26623290

  2. A transient liquid crystal thermography technique for gas turbine heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Ekkad, Srinath V.; Han, Je-Chin

    2000-07-01

    This paper presents in detail the transient liquid crystal technique for convective heat transfer measurements. A historical perspective on the active development of liquid crystal techniques for convective heat transfer measurement is also presented. The experimental technique involves using a thermochromic liquid crystal coating on the test surface. The colour change time of the coating at every pixel location on the heat transfer surface during a transient test is measured using an image processing system. The heat transfer coefficients are calculated from the measured time responses of these thermochromic coatings. This technique has been used for turbine blade internal coolant passage heat transfer measurements as well as turbine blade film cooling heat transfer measurements. Results can be obtained on complex geometry surfaces if visually accessible. Some heat transfer results for experiments with jet impingement, internal cooling channels with ribs, flow over simulated TBC spallation, flat plate film cooling, cylindrical leading edge and turbine blade film cooling are presented for demonstration.

  3. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques)

    PubMed Central

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p < 0.05) gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements. PMID:25568691

  4. Laser Frequency Stabilization for Coherent Lidar Applications using Novel All-Fiber Gas Reference Cell Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.

    2008-01-01

    Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.

  5. Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique.

    PubMed

    Karanikolos, Georgios N; Alexandridis, Paschalis; Itskos, Grigorios; Petrou, Athos; Mountziaris, T J

    2004-02-01

    A scalable method for controlled synthesis of luminescent compound semiconductor nanocrystals (quantum dots) using microemulsion-gas contacting at room temperature is reported. The technique exploits the dispersed phase of a microemulsion to form numerous identical nanoreactors. ZnSe quantum dots were synthesized by reacting hydrogen selenide gas with diethylzinc dissolved in the heptane nanodroplets of a microemulsion formed by self-assembly of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) amphiphilic block copolymer in formamide. A single nanocrystal is grown in each nanodroplet, thus allowing good control of particle size by manipulation of the initial diethylzinc concentration in the heptane. The ZnSe nanocrystals exhibit size-dependent luminescence and excellent photostability. PMID:15773072

  6. Solid phase micro extraction - A new technique coupled with gas chromatograph for chloroethene analysis from aqueous samples

    SciTech Connect

    Xu, N.; Sewell, G.W.

    1996-10-01

    Once the chloroethenes (tetrachloroethene and trichloroethene) contamination occurs in the subsurface environment, they tend to retain and form a Pollution plum in the aquifer because of their recalcitrance to aerobic oxidation. Currently, the most promising bioremediation method for chlorinated compounds is through anaerobic reductive biotransformation, in which each chlorine is replaced by a hydrogen. To study the biodegradation process, it is essential to monitor tetrachloroethene and its degradation daughter products frequently. An analytical method has been modified for chloroethene analysis by gas chromatography. Solid Phase Micro Extraction technique has been used to extract aqueous sample onto a fiber and then to desorb the sample directly into a gas chromatograph injection port. The total run time is less than 17 minutes.

  7. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  8. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  9. multiplex gas chromatography: A novel analytical technique for future planetary studies

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Carle, G. C.; Phillips, J. B.

    1986-01-01

    Determination of molecular species comprised of the biogenic elements in the atmospheres of planets and moons of the solar system is one the foremost requirements of the exobiologist studying chemical evolution and the origin of life. Multiplex chromatography is a technique where many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data are then reduced using mathematical techniques such as cross correlation or Fourier Transforms. To demonstrate the utility of this technique for future solar system exploration, chemical modulators were developed. Several advantages were realized from this technique in combination with these modulators: improvement in detection limits of several orders of magnitude, improvement in the analysis of complex mixtures by selectively modulating some of the components present in the sample, increase in the number of analyses that can be conducted in a given period of time, and reduction in the amount of expendables needed to run an analysis. In order to apply this technique in a real application, methane in ambient air was monitored continuously over a period of one week. By using ambient air as its own carrier all expendables beyond power were eliminated.

  10. Application of capillary gas chromatography mass spectrometry/computer techniques to synoptic survey of organic material in bed sediment

    USGS Publications Warehouse

    Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.

    1981-01-01

    A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.

  11. Investigation of 2D-Trace Gas Field Reconstruction Techniques From Tomographic AMAX-DOAS Measurements

    NASA Astrophysics Data System (ADS)

    Laepple, T.; Heue, K.; Friedeburg, C. V.; Wang, P.; Knab, V.; Pundt, I.

    2002-12-01

    Tomographic-Differential-Optical-Absorption-Spectroscopy (Tom-DOAS) is a new application of the DOAS method designed to measure 2-3-dimensional concentration fields of different trace gases (e.g. NO2, HCHO, Ozone) in the troposphere. Numerical reconstruction techniques are used to obtain spatially resolved data from the slant column densities provided by DOAS instruments. We discuss the detection of emission plumes by AMAX (Airborne Multi AXis) DOAS Systems which measure sunlight by telescopes pointing in different directions. 2D distributions are reconstructed from slant columns by using airmass factor matrices and inversion techniques. We discuss possibilities and limitations of this technique gained with the use of simulated test fields. Therefore the effect of the parameter choice (e.g. flight track, algorithm changes) and measurement errors is investigated. Further, first results from the Partenavia aircraft measurements over Milano (Italy) during the European FORMAT campaign will be presented.

  12. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  13. The German collaborative project SUGAR Utilization of a natural treasure - Developing innovative techniques for the exploration and production of natural gas from hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Haeckel, M.; Bialas, J.; Wallmann, K. J.

    2009-12-01

    Gas hydrates occur in nature at all active and passive continental margins as well as in permafrost regions, and vast amounts of natural gas are bound in those deposits. Geologists estimate that twice as much carbon is bound in gas hydrates than in any other fossil fuel reservoir, such as gas, oil and coal. Hence, natural gas hydrates represent a huge potential energy resource that, in addition, could be utilized in a CO2-neutral and therefore environmentally friendly manner. However, the utilization of this natural treasure is not as easy as the conventional production of oil or natural gas and calls for new and innovative techniques. In the framework of the large-scale collaborative research project SUGAR (Submarine Deposits of Gas Hydrates - Exploration, Production and Transportation), we aim to produce gas from methane hydrates and to sequester carbon dioxide from power plants and other industrial sources as CO2 hydrates in the same host sediments. Thus, the SUGAR project addresses two of the most pressing and challenging topics of our time: development of alternative energy strategies and greenhouse gas mitigation techniques. The SUGAR project is funded by two federal German ministries and the German industry for an initial period of three years. In the framework of this project new technologies starting from gas hydrate exploration techniques over drilling technologies and innovative gas production methods to CO2 storage in gas hydrates and gas transportation technologies will be developed and tested. Beside the performance of experiments, numerical simulation studies will generate data regarding the methane production and CO2 sequestration in the natural environment. Reservoir modelling with respect to gas hydrate formation and development of migration pathways complete the project. This contribution will give detailed information about the planned project parts and first results with focus on the production methods.

  14. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    NASA Technical Reports Server (NTRS)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  15. A Gas Dynamics Method Based on The Spectral Deferred Corrections (SDC) Time Integration Technique and The Piecewise Parabolic Method (PPM)

    SciTech Connect

    Samet Y. Kadioglu

    2011-12-01

    We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM framework is used to define edge averaged quantities which are then used to evaluate numerical flux functions. The SDC technique is used to integrate solution in time. This kind of approach was first taken by Anita et al in [17]. However, [17] is problematic when it is implemented to certain shock problems. Here we propose significant improvements to [17]. The method is fourth order (both in space and time) for smooth flows, and provides highly resolved discontinuous solutions. We tested the method by solving variety of problems. Results indicate that the fourth order of accuracy in both space and time has been achieved when the flow is smooth. Results also demonstrate the shock capturing ability of the method.

  16. Estimation of gas permeability of a zeolite membrane, based on a molecular simulation technique and permeation model

    SciTech Connect

    Suzuki, Shigejirou; Takaba, Hiromitsu; Yamaguchi, Takeo; Nakao, Shinichi

    2000-03-09

    A method for estimating gas permeability through a zeolite membrane, using a molecular simulation technique and a theoretical permeation model, is presented. The estimate of permeability is derived from a combination of an absorption isotherm and self-diffusion coefficient based on the adsorption-diffusion model. The adsorption isotherm and self-diffusion coefficients needed for the estimation were calculated using conventional Monte Carlo and molecular dynamics simulations. The calculated self-diffusion coefficient was converted to the mutual diffusion coefficient and the permeability estimated using the Fickian equation. The method was applied to the prediction of permeabilities of methane and ethylene in silicalite at 301 K. Calculated permeabilities were larger than the experimental values by more than an order of magnitude. However, the anisotropic permeability was consistent with the experimental data and the results obtained using a grand canonical ensemble molecular dynamics technique (Pohl et al., Mol.Phys. 1996, 89(6), 1725--1731).

  17. Viability of Applying Curie Point Pyrolysis/Gas Chromatography Techniques for Characterization of Ammonium Perchlorate Based Propellants

    SciTech Connect

    BARNETT, JAMES L.; MONTOYA, BERTHA M.

    2002-07-01

    Curie Point pyrolysis-gas chromatography was investigated for use as a tool for characterization of aged ammonium perchlorate based composite propellants (1). Successful application of the technique will support the surveillance program for the Explosives Materials and Subsystems Department (1). Propellant samples were prepared by separating the propellant into reacted (oxidated) and unreacted zones. The experimental design included the determination of system reliability followed by, reproducibility, sample preparation and analysis of pyrolysis products. Polystyrene was used to verify the reliability of the system and showed good reproducibility. Application of the technique showed high variation in the data. Modifications to sample preparation did not enhance the reproducibility. It was determined that the high concentration of ammonium perchlorate in the propellant matrix was compromising the repeatability of the analysis.

  18. A high-resolution numerical technique for inviscid gas-dynamic problems with weak solutions

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1982-01-01

    The shock resolution of Harten's (1982) second-order explicit method for one-dimensional hyperbolic conservation laws is investigated for a two-dimensional gas-dynamic problem. The possible extension to a high resolution implicit method for both one- and two-dimensional problems is also investigated. Applications of Harten's method to the quasi-one-dimensional nozzle problem with two nozzle shapes (divergent and convergent-divergent) and the two-dimensional shock-reflection problem resulted in high shock resolution steady-state numerical solutions.

  19. Experiences with a new soil gas technique for detecting petroleum pollution

    SciTech Connect

    Mazac, O.; Landa, I.; Rohde, J.R.; Kelly, W.E.; Blaha, J.H.

    1996-12-31

    This paper presents field experiences obtained with a new technology for detecting petroleum pollution in soil and ground water based on in situ determination of hydrocarbon concentrations in soil air. Ecoprobe is a new soil gas device from RS-Dynamics in the Czech Republic. The rugged waterproof device is equipped with a built-in computer-controlled semiconductor sensor. Three case histories are presented that demonstrate the use of the equipment under typical conditions. Two case histories present the use of the device under typical field conditions; the third case history compares results from the Ecoprobe and a commercial photoionization detector (PID) device.

  20. Production of ultra clean gas-atomized powder by the plasma heated tundish technique

    SciTech Connect

    Tingskog, T.A.; Andersson, V.

    1996-12-31

    The paper describes the improvements in cleanliness for different types of gas atomized powders produced by holding the melt in a Plasma Heated Tundish (PHT) before atomization. The cleanliness is measured on Hot Isostatically Pressed (HIP) or extruded samples. Significant improvements in slag levels and material properties have been achieved. On extruded powder metallurgy stainless steel and nickel alloy tubes, the rejection rate in ultra-sonic testing was reduced drastically. Tool steels and high speed steels have greatly improved ductility and bend strength.

  1. Investigation of solid polymer electrolyte gas sensor with different electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Strzelczyk, A.; Jasinski, G.; Chachulski, B.

    2016-01-01

    In this work solid polymer electrolyte (SPE) amperometric sulphur dioxide sensor is investigated. Nafion was used as a membrane electrode and 1M sulphuric acid as an internal electrolyte. Sensor response to sulphur dioxide was measured. Besides traditional constant voltage amperometry also different electrochemical techniques were used. Results obtained by these methods are compared.

  2. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  3. Gas Chromatographic-Mass Spectrometric Analysis of Volatiles Obtained by Four Different Techniques from Salvia rosifolia Sm. and Evaluation for Biological Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile constituents from the aerial parts of Salvia rosifolia Sm. (Lamiaceae), endemic to Turkey, were obtained by four different isolation techniques and then analyzed by gas chromatography (GC/FID) and gas chromatography – mass spectrometry (GC/MS) methods. Also in scope of the present work, the...

  4. Calculational technique to predict combustible gas generation in sealed radioactive waste containers

    SciTech Connect

    Flaherty, J.E.; Fujita, A.; Deltete, C.P.; Quinn, G.J.

    1986-05-01

    Certain forms of nuclear waste, when subjected to ionizing radiation, produce combustible mixtures of gases. The production of these gases in sealed radioactive waste containers represents a significant safety concern for the handling, shipment and storage of waste. The US Nuclear Regulatory Commission (NRC) acted on this safety concern in September 1984 by publishing an information notice requiring waste generators to demonstrate, by tests or measurements, that combustible mixtures of gases are not present in radioactive waste shipments; otherwise the waste must be vented within 10 days of shipping. A task force, formed by the Edison Electric Institute to evaluate these NRC requirements, developed a calculational method to quantify hydrogen gas generation in sealed containers. This report presents the calculational method along with comparisons to actual measured hydrogen concentrations from EPICOR II liners, vented during their preparation for shipment. As a result of this, the NRC recently altered certain waste shipment Certificates-Of-Compliance to allow calculations, as well as tests and measurements, as acceptable means of determining combustible gas concentration. This modification was due in part to work described herein.

  5. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.

    PubMed

    Chen, Qiang; Li, Weihua; Wu, Jiangtao

    2014-01-01

    A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. PMID:23809902

  6. Isotopic and Geochemical Investigation of Two Distinct Mars Analog Environments Using Evolved Gas Techniques in Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer Claire; Mcadam, Amy Catherine; Ten Kate, Inge L.; Bish, David L.; Blake, David F.; Morris, Richard V.; Bowden, Roxane; Fogel, Marilyn L.; Glamoclija, Mihaela; Mahaffy, Paul R.; Steele, Andrew; Amundsen, Hans E. F.

    2013-01-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASErelated research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis- Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.

  7. Isotopic and geochemical investigation of two distinct Mars analog environments using evolved gas techniques in Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Stern, Jennifer C.; McAdam, Amy C.; Ten Kate, Inge L.; Bish, David L.; Blake, David F.; Morris, Richard V.; Bowden, Roxane; Fogel, Marilyn L.; Glamoclija, Mihaela; Mahaffy, Paul R.; Steele, Andrew; Amundsen, Hans E. F.

    2013-06-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.

  8. Separation of heavy metals from salts in multicomponent gas by a two-stage dust collection technique.

    PubMed

    Okada, Takashi; Nishimoto, Kaoru

    2013-06-15

    A Pb and Zn separation method from salts (Na, K, and Cl) in a simulated multicomponent gas generated by the incineration fly ash melting is studied. The heavy metals are separated using a two-stage dust collection technique. A standard reagents mixture is volatilized by heating in a lab-scale reactor to generate the simulated multicomponent gas. The volatilized salts in the gas are condensed and collected by a filter at a high temperature (600-800 °C), allowing Pb and Zn to pass through the filter as gaseous species. The gaseous heavy metals are condensed by lowering their temperature to 100 °C and collected. The metal separation is promoted by elevating the temperature used in the first-stage dust collection to 800 °C and maintaining a reductive atmosphere in the reactor. Subsequently, a sequential chemical extraction is performed on the obtained materials to evaluate the metals leaching characteristics from the materials. In the separated salts to be landfilled, a portion of toxic metals such as Pb, Cd, As, and Cr remain as water-soluble compounds. The separated Pb and Zn, to be extracted and recovered with precipitation for the metal enrichment, can be extracted using water, acid (pH 3), or CH₃COONH₄ solution (1M). PMID:23611806

  9. CdS QDs-chitosan microcapsules with stimuli-responsive property generated by gas-liquid microfluidic technique.

    PubMed

    Chen, Yanjun; Yao, Rongyi; Wang, Yifeng; Chen, Ming; Qiu, Tong; Zhang, Chaocan

    2015-01-01

    This article describes a straightforward gas-liquid microfluidic approach to generate uniform-sized chitosan microcapsules containing CdS quantum dots (QDs). CdS QDs are encapsulated into the liquid-core of the microcapsules. The sizes of the microcapsules can be conveniently controlled by gas flow rate. QDs-chitosan microcapsules show good fluorescent stability in water, and exhibit fluorescent responses to chemical environmental stimuli. α-Cyclodextrin (α-CD) causes the microcapsules to deform and even collapse. More interestingly, α-CD induces obvious changes on the fluorescent color of the microcapsules. However, β-cyclodextrin (β-CD) has little influence on the shape and fluorescent color of the microcapsules. Based on the results of scanning electron microscopy, the possible mechanism about the effects of α-CD on the chitosan microcapsules is analyzed. These stimuli-responsive microcapsules are low-cost and easy to be prepared by gas-liquid microfluidic technique, and can be applied as a potential micro-detector to chemicals, such as CDs. PMID:25460598

  10. Studying gas-sheared liquid film in horizontal rectangular duct with LIF technique: droplets deposition and bubbles entrapment

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2014-11-01

    High-speed laser-induced fluorescence technique is applied to study gas-sheared liquid film in horizontal rectangular duct (width 161 mm). Instantaneous distributions of film thickness over an area of 50*20 mm are obtained with frequency 10 kHz and spatial resolution 40 μm. The technique is also able to detect droplets entrained from film surface and gas bubbles entrapped by the liquid film. We focus on deposition of droplets onto film surface and dynamics of bubbles. Three scenarios of droplet impact are observed: 1) formation of a cavern, which is similar to well-known process of normal droplet impact onto still liquid surface; 2) ``ploughing,'' when droplet is sinking over long distance; 3) ``bouncing,'' when droplet survives the impact. The first scenario is often accompanied by entrainment of secondary droplets; the second by entrapment of air bubbles. Numerous impact events are quantitatively analyzed. Parameters of the impacting droplet, the film surface before the impact, the evolution of surface perturbation due to impact and the outcome of the impact (droplets or bubbles) are measured. Space-time trajectories of individual bubbles have also been obtained, including velocity, size and concentration inside the disturbance waves and in the base film region. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  11. Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows

    NASA Technical Reports Server (NTRS)

    Hiller, B.; Mcdaniel, J. C.; Rea, E. C., Jr.; Hanson, R. K.

    1983-01-01

    A nonintrusive optical technique is reported for multiple-point velocity measurements in subsonic flows. The technique is based on the detection of fluorescence from a Doppler-shifted absorption line of seeded iodine molecules excited at a laser frequency fixed in the wing of the line. Counterpropagating laser sheets are used to illuminate the flow, in the present case a nitrogen round jet, thereby eliminating the need for an unshifted reference signal. The fluorescence is detected simultaneously at 10,000 points in a plane of the flow using a 100 x 100 element photodiode-array camera. The velocity at each point is computed from four successive camera frames, each recorded with a different beam direction. The measured mean velocities between 5 and 50 m/sec agree well with data from the literature.

  12. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique].

    PubMed

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-03-01

    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology. PMID:25208369

  13. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    NASA Astrophysics Data System (ADS)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca F.; Johnson, Darren J.; Neubauer, Scott C.; Raynie, Richard C.

    2016-06-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 yr-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 yr-1 resulted from net CH4 emissions and the remaining 171 g C m-2 yr-1 resulted from net CO2 emissions. In contrast, -290 g C m2 yr-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 yr-1 emitted as CH4 and -337 g C m-2 yr-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  14. Investigation of entrainment and thermal properties of a cryogenic dense-gas cloud using optical measurement techniques.

    PubMed

    Kunsch, J P; Rösgen, T

    2006-09-01

    Cryogenic dense-gas clouds have been investigated in a heavy-gas channel under controlled source and ambient conditions. Advantage is taken from new, non-intrusive optical measurement techniques (e.g. image correlation velocimetry, ICV, and background oriented Schlieren, BOS) providing detailed pictures of the temperature and velocity field in relevant regions of the cloud. The ice particles in the cloud, formed by nucleation, represent a natural seeding to be used as tracers, which have the advantage of behaving passively. Two layers can be identified in a cryogenic gas cloud: a lower cold layer, which is visible due to the presence of ice particles, and an invisible upper layer, where the ice particles have melted, mostly due to heat addition by air entrainment into the upper layer. A two-layer model has been applied to a generic element of the cloud, where detailed experimental data regarding velocity and temperature are available. Thermal- and dilution behaviour can be interpreted by means of the model which is presented in detail. A global entrainment parameter is deduced allowing a simple comparison with existing experimental information obtained by other traditional experimental techniques. The numerical values of the present entrainment parameter agree well with the correlations proposed by other authors. Thermal effects, such as heat transfer from the ground, appear to be very important. In addition, the visible height of the cloud can be predicted in relative good agreement with the experimental observations, by means of a thermal balance including the phase transition of the ice particles. PMID:16621256

  15. Developing soil gas and 222Rn entry potentials for substructure surfaces and assessing 222Rn control diagnostic techniques.

    PubMed

    Turk, B H; Harrison, J; Prill, R J; Sextro, R G

    1990-10-01

    Research-based procedures for characterizing the causes of elevated indoor 222Rn levels and guiding the selection of an appropriate control technique were evaluated at seven New Jersey houses. Procedures such as thorough visual inspections, blower door air leakage tests, pressure field mapping, subsurface vacuum extension tests, sampling of 222Rn concentrations throughout the substructure, and measurements of the additional depressurization caused by various appliances all were found to furnish important information to the mitigation contractor or researcher. An analysis of data from these and other diagnostic techniques performed at the seven houses also indicated: (1) regions of very high permeability existed directly adjacent to the exterior of substructure walls and floors; (2) the additional substructure depressurization caused by operation of forced-air furnaces and attic exhaust fans could exceed 1 Pascal; (3) 222Rn concentrations below basement slabs and slabs-on-grade adjoining below grade basement walls were approximately seven times higher than those within block wall cavities; and (4) air leakage areas of crawlspace and basement ceilings were quite large, ranging up to 0.15 m2. The pressure field mapping tests identified the areas surrounding the substructure that were well coupled to the indoors. Using flow, pressure difference, and 222Rn concentration data, indices of soil gas entry potential and 222Rn entry potential were developed to indicate the areas of the substructure that may have high entry rates of soil gas and 222Rn, respectively. These indices could be helpful for quantifying the relative resistance to soil gas movement of substructure surfaces and surrounding soils and for determining the placement of 222Rn control systems. PMID:2398009

  16. The NPE gas tracer test and the development of on-site inspection techniques

    SciTech Connect

    Carrigan, Charles; Heinle, Ray; Zucca, J. J.

    1995-04-13

    Tracer gases emplaced in or near the detonation cavity of the 1-kiloton NonProliferation Event required 1.5 and 13.5 months for sulfur hexaflouride and helium-3, respectively, to reach the surface of Rainier Mesa from an emplacement depth of 400 meters. The sites that first produced tracer gases are those located in known faults and fractures. Numerical modeling suggests that transport to the surface is accomplished within this time frame through atmospheric pumping along high permeability pathways such as fractures. The difference in travel time between the two tracers is due to differences in gas diffusivity and can also be explained by our numerical modeling. 2 refs, 3 figs

  17. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    PubMed

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. PMID:27041295

  18. Growth of CdTe smoke particles prepared by gas evaporation technique

    NASA Astrophysics Data System (ADS)

    Kaito, Chihiro; Fujita, Kazuo; Shiojiri, Makoto

    1983-07-01

    CdTe smoke particles prepared by evaporating CdTe powder in Ar gas were studied by electron microscopy. The zinc-blende particles were formed in an atmosphere of Ar containing an excess Te vapor. The wurtzite particles were formed in an atmosphere of Ar containing an excess of Cd vapor. The lattice images of the CdTe crystal particles prepared by evaporating CdTe powder showed that the particles were composed of pure CdTe crystal. Tetrapod crystals with the wurtzite structure and with the zinc-blende structure grew from nuclei which have been identified to have the zinc-blende structure. A thin layer skin-like mechanism was observed on the particles formed by the excess Te vapor.

  19. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    PubMed

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar

  20. Barostat or Dynamic Balloon Distention Test: Which Technique is Best Suited for Esophageal Sensory Testing?

    PubMed Central

    Remes-Troche, Jose M.; Attaluri, Ashok; Chahal, Premjit; Rao, Satish S.C.

    2014-01-01

    Background Esophageal sensation is commonly assessed by barostat-assisted balloon distension (BBD) or dynamic balloon distension (DBD) technique, but their relative merits are unknown. Our aim was to compare the usefulness and tolerability of both techniques. Methods Sixteen healthy volunteers (M/F= 6/10) randomly underwent graded esophageal balloon distensions, using either BBD (n=8) or DBD (n=8). BBD was performed by placing a 5 cm long highly compliant balloon attached to a barostat, and DBD by placing a 5 cm long balloon attached to a leveling container. Intermittent phasic balloon distensions were performed in increments of 6 mm Hg. Sensory thresholds and biomechanical properties were assessed and compared. Key Results Sensory thresholds for first perception (mean ± SD; 21 ± 6 vs. 21.2 ± 5, mm Hg, p=0.9), discomfort (38 ± 8 vs. 35 ± 9, p=0.5), and pain (44 ± 4 vs. 45 ± 3, p=0.7) were similar with BBD and DBD techniques. However, more subjects tolerated DBD (7/8, 88%) when compared to BBD (4/8, 50 %). Forceful expulsion of balloon into stomach (n=4), pulling around the mouth (n=4), chest discomfort (n=2) and retching (n=2) were overlapping reasons for intolerance with BBD. Esophageal wall distensibility was similar with both techniques. Conclusions Both techniques provided comparable data on biomechanical properties. However, DBD was better tolerated than BBD for evaluation of esophageal sensation. Hence, we recommend DBD for performing esophageal balloon distension test. PMID:22168228

  1. A smog chamber comparison of a microfluidic derivatization measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques

    NASA Astrophysics Data System (ADS)

    Pang, X.; Lewis, A. C.; Richard, A.; Baeza-Romero, M. T.; Adams, T. J.; Ball, S. M.; Daniels, M. J. S.; Goodall, I. C. A.; Monks, P. S.; Peppe, S.; Ródenas García, M.; Sánchez, P.; Muñoz, A.

    2013-06-01

    A microfluidic lab-on-a-chip derivatization technique has been developed to measure part per billion volume (ppbV) mixing ratios of gaseous glyoxal (GLY) and methylglyoxal (MGLY), and the method compared with other techniques in a smog chamber experiment. The method uses o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) as a derivatization reagent and a microfabricated planar glass micro-reactor comprising an inlet, gas and fluid splitting and combining channels, mixing junctions, and a heated capillary reaction microchannel. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor result in a fast and highly efficient derivatization reaction, generating an effluent stream ready for direct introduction to a gas chromatograph-mass spectrometer (GC-MS). A linear response for GLY was observed over a calibration range 0.7 to 400 ppbV, and for MGLY of 1.2 to 300 ppbV, when derivatized under optimal reaction conditions. The method detection limits (MDLs) were 80 pptV and 200 pptV for GLY and MGLY respectively, calculated as 3 times the standard deviation of the S/N of the blank sample chromatograms. These MDLs are below or close to typical concentrations in clean ambient air. The feasibility of the technique was assessed by applying the methodology under controlled conditions to quantify of α-dicarbonyls formed during the photo-oxidation of isoprene in a large scale outdoor atmospheric simulation chamber (EUPHORE). Good general agreement was seen between microfluidic measurements and Fourier Transform Infra Red (FTIR), Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) and a detailed photochemical chamber box modelling calculation for both GLY and MGLY. Less good agreement was found with Proton-Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) and Solid Phase Microextraction (SPME) derivatization methods for MGLY measurement.

  2. Heat transfer analysis in rotating gas turbine components - Experimental techniques and non-intrusive diagnostics

    NASA Astrophysics Data System (ADS)

    Wittig, S.

    Measurement techniques which can be applied for the determination of heat transfer coefficients in rotating components of turbomachines are illustrated, using specific examples from the heat transfer research at the Institute for Thermal Turbomachinery at the University of Karlsruhe. The following topics are presented in detail: the effect of wakes on the mean heat transfer of an air foil; some aspects of the influence of rotation on the heat transfer in labyrinth seals; analysis of the local heat transfer downstream of a jet in a cross flow using an IR camera; and the measurement of local heat transfer coefficients in turbine disk cavities with liquid crystals.

  3. Challenges to Laser-Based Imaging Techniques in Gas Turbine Combustor Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.; Hicks, Yolanda R.

    1998-01-01

    Increasingly severe constraints on emissions, noise and fuel efficiency must be met by the next generation of commercial aircraft powerplants. At NASA Lewis Research Center (LeRC) a cooperative research effort with industry is underway to design and test combustors that will meet these requirements. To accomplish these tasks, it is necessary to gain both a detailed understanding of the combustion processes and a precise knowledge of combustor and combustor sub-component performance at close to actual conditions. To that end, researchers at LeRC are engaged in a comprehensive diagnostic investigation of high pressure reacting flowfields that duplicate conditions expected within the actual engine combustors. Unique, optically accessible flame-tubes and sector rig combustors, designed especially for these tests. afford the opportunity to probe these flowfields with the most advanced, laser-based optical diagnostic techniques. However, these same techniques, tested and proven on comparatively simple bench-top gaseous flame burners, encounter numerous restrictions and challenges when applied in these facilities. These include high pressures and temperatures, large flow rates, liquid fuels, remote testing, and carbon or other material deposits on combustor windows. Results are shown that document the success and versatility of these nonintrusive optical diagnostics despite the challenges to their implementation in realistic systems.

  4. Investigation of a mercury speciation technique for flue gas desulfurization materials.

    PubMed

    Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R

    2009-08-01

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. PMID:19728491

  5. Investigation of a mercury speciation technique for flue gas desulfurization materials

    SciTech Connect

    Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R.

    2009-08-15

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

  6. Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Singh, Davender; Kundu, Virender Singh; Maan, A. S.

    2016-07-01

    The pure and Zn-doped SnO2 nanoparticles were prepared successfully by hydrothermal route on large scale having different doping concentration of zinc from 0 to 0.20%. The calcined nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for structural and morphological studies. XRD analyses reveal that the nanoparticles of these doping concentrations are polycrystalline in nature and existed as tetragonal rutile structure, SEM study of images confirms the existence of very small, homogeneously distributed, and spherical nanoparticles. The particles size of the nanoparticles was calculated by Scherrer formula and was found in the range of 9-21 nm. The presence of dopant (i.e. zinc) and formation of Sn-O phase and hydrous nature of Zn-doped SnO2 nanoparticles are confirmed by EDX and FTIR study. The gas sensing properties of pure and Zn-doped SnO2 nanoparticles were investigated for various concentrations of methanol, ethanol and acetone at different operating temperatures and it has been found that with doping concentration of zinc (x = 0.20%) shows the maximum response 78% to methanol, 65% to ethanol and 62% to acetone respectively at different operating temperature within the measurement limit for a concentration of 100 ppm of each gases.

  7. Measuring emissions from oil and natural gas well pads using the mobile flux plane technique.

    PubMed

    Rella, Chris W; Tsai, Tracy R; Botkin, Connor G; Crosson, Eric R; Steele, David

    2015-04-01

    We present a study of methane emissions from oil and gas producing well pad facilities in the Barnett Shale region of Texas, measured using an innovative ground-based mobile flux plane (MFP) measurement system, as part of the Barnett Coordinated Campaign.1 Using only public roads, we measured the emissions from nearly 200 well pads over 2 weeks in October 2013. The population of measured well pads is split into well pads with detectable emissions (N = 115) and those with emissions below the detection limit of the MFP instrument (N = 67). For those well pads with nonzero emissions, the distribution was highly skewed, with a geometric mean of 0.63 kg/h, a geometric standard deviation of 4.2, and an arithmetic mean of 1.72 kg/h. Including the population of nonemitting well pads, we find that the arithmetic mean of the well pads sampled in this study is 1.1 kg/h. This distribution implies that 50% of the emissions is due to the 6.6% highest emitting well pads, and 80% of the emissions is from the 22% highest emitting well pads. PMID:25806837

  8. Characterization of Atypical Off-Flavor Compounds in Natural Cork Stoppers by Multidimensional Gas Chromatographic Techniques.

    PubMed

    Slabizki, Petra; Fischer, Claus; Legrum, Charlotte; Schmarr, Hans-Georg

    2015-09-01

    Natural cork stoppers with sensory deviations other than the typical cork taint were subgrouped according to their sensory descriptions and compared with unaffected control cork stoppers. The assessment of purge and trap extracts obtained from corresponding cork soaks was performed by heart-cut multidimensional gas chromatography-olfactometry (MDGC-O). The identification of compounds responsible for atypical cork taint detected in MDGC-O was further supported with additional multidimensional GC analysis in combination with mass spectrometric detection. Geosmin and 2-methylisoborneol were mainly found in cork stoppers described as moldy and cellarlike; 3-isopropyl-2-methoxypyrazine and 3-isobutyl-2-methoxypyrazine were found in cork stoppers described with green attributes. Across all cork subgroups, the impact compound for typical cork taint, 2,4,6-trichloroanisole (TCA), was present and is therefore a good marker for cork taint in general. Another potent aroma compound, 3,5-dimethyl-2-methoxypyrazine (MDMP), was also detected in each subgroup, obviously playing an important role with regard to the atypical cork taint. Sensory deviations possibly affecting the wine could be generated by MDMP and its presence should thus be monitored in routine quality control. PMID:26257078

  9. A novel ultrasound based technique for classifying gas bubble sizes in liquids

    NASA Astrophysics Data System (ADS)

    Hussein, Walid; Salman Khan, Muhammad; Zamorano, Juan; Espic, Felipe; Becerra Yoma, Nestor

    2014-12-01

    Characterizing gas bubbles in liquids is crucial to many biomedical, environmental and industrial applications. In this paper a novel method is proposed for the classification of bubble sizes using ultrasound analysis, which is widely acknowledged for being non-invasive, non-contact and inexpensive. This classification is based on 2D templates, i.e. the average spectrum of events representing the trace of bubbles when they cross an ultrasound field. The 2D patterns are obtained by capturing ultrasound signals reflected by bubbles. Frequency-domain based features are analyzed that provide discrimination between bubble sizes. These features are then fed to an artificial neural network, which is designed and trained to classify bubble sizes. The benefits of the proposed method are that it facilitates the processing of multiple bubbles simultaneously, the issues concerning masking interference among bubbles are potentially reduced and using a single sinusoidal component makes the transmitter-receiver electronics relatively simpler. Results from three bubble sizes indicate that the proposed scheme can achieve an accuracy in their classification that is as high as 99%.

  10. Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.

    PubMed

    Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel

    2014-01-01

    The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range. PMID:24983611

  11. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  12. Techniques for obtaining detailed heat transfer coefficient measurements within gas turbine blade and vane cooling passages

    NASA Astrophysics Data System (ADS)

    Clifford, R. J.; Jones, T. V.; Dunnne, S. T.

    1983-03-01

    Techniques developed jointly by Rolls-Royce Bristol and Oxford University for determining detailed heat transfer distributions inside turbine blade and vane cooling passages are reviewed. Use is made of a low temperature phase change paint to map the heat flux distributions within models of the cooling passages; the paints change from an opaque coating to a clear liquid at a well-defined melting point. In this way the surface temperature history of a model subjected to transient convective heating is recorded. The heat transfer coefficient distribution is deduced from this history using a transient conduction analysis within the model. Results are presented on detailed heat transfer coefficient distributions within a variety of cooling passages; and data obtained from a comprehensive study of a typical engine multipass cooling geometry are examined.

  13. Determination of Synthetic Cathinones in Urine Using Gas Chromatography-Mass Spectrometry Techniques.

    PubMed

    Hong, Wei-Yin; Ko, Ya-Chun; Lin, Mei-Chih; Wang, Po-Yu; Chen, Yu-Pen; Chiueh, Lih-Ching; Shih, Daniel Yang-Chih; Chou, Hsiu-Kuan; Cheng, Hwei-Fang

    2016-01-01

    In recent years, the abuse of synthetic cathinones has increased considerably. This study proposes a method, based on gas chromatography/mass spectrometry (GC-MS), to analyze and quantify six synthetic cathinones in urine samples: mephedrone (4-MMC), methylone (bk-MDMA), butylone, ethylone, pentylone and methylenedioxypyrovalerone (MDPV). In our procedure, the urine samples undergo solid-phase extraction (SPE) and derivatization prior to injection into the GC-MS device. Separation is performed using a HP-5MS capillary column. The use of selective ion monitoring (SIM mode) makes it is good sensitivity in this method, and the entire analysis process is within 18 min. In addition, the proposed method maintains linearity in the calibration curve from 50 to 2,000 ng/mL (r(2) > 0.995). The limit of detection of this method is 5 ng/mL, with the exception of MDPV (20 ng/mL); the limit of quantification is 20 ng/mL, with the exception of MDPV (50 ng/mL). In testing, the extraction performance of SPE was between 82.34 and 104.46%. Precision and accuracy results were satisfactory <15%. The proposed method was applied to six real urine samples, one of which was found to contain 4-MMC and bk-MDMA. Our results demonstrate the efficacy of the proposed method in the identification of synthetic cathinones in urine, with regard to the limits of detection and quantification. This method is highly repeatable and accurate. PMID:26410364

  14. The effect of rock type, grain size, sorting, permeability, and moisture on measurements of radon in soil gas: A comparison of two measurement techniques

    USGS Publications Warehouse

    Gundersen, L.C.S.

    1992-01-01

    Soil surveys of radon conducted in the Coastal Plain of New Jersey, Alabama and Texas indicate that soil composition and grain size exert the strongest control on the concentration of radon measured. Soil-gas radon was measured in-situ using two techniques; one developed by G. Michael REIMER of the U.S. Geological Survey; the other developed by Rogers and Associates Engineering Corp. for use by the Environmental Protection Agency. The Reimer technique acquires a small-volume, grab sample of soil gas, whereas the Rogers and Associates technique acquires a large-volume, flow-through sample of soil gas. The two techniques yield similar radon concentrations in well-sorted sands, but do not correlate as well for poorly sorted soils and clays.

  15. Determination of PASHs by various analytical techniques based on gas chromatography-mass spectrometry: application to a biodesulfurization process.

    PubMed

    Mezcua, Milagros; Fernández-Alba, Amadeo R; Boltes, Karina; Alonso Del Aguila, Raul; Leton, Pedro; Rodríguez, Antonio; García-Calvo, Eloy

    2008-06-15

    Polycyclic aromatic sulphur heterocyclic (PASH) compounds, such as dibenzothiophene (DBT) and alkylated derivatives are used as model compounds in biodesulfurization processes. The development of these processes is focused on the reduction of the concentration of sulphur in gasoline and gas-oil [D.J. Monticello, Curr. Opin. Biotechnol. 11 (2000) 540], in order to meet European Union and United States directives. The evaluation of biodesulfurization processes requires the development of adequate analytical techniques, allowing the identification of any transformation products generated. The identification of intermediates and final products permits the evaluation of the degradation process. In this work, seven sulfurated compounds and one non-sulfurated compound have been selected to develop an extraction method and to compare the sensitivity and identification capabilities of three different gas chromatography ionization modes. The selected compounds are: dibenzothiophene (DBT), 4-methyl-dibenzothiophene (4-m-DBT), 4,6-dimethyl-dibenzothiophene (4,6-dm-DBT) and 4,6 diethyl-dibenzothiophene (4,6 de-DBT), all of which can be used as model compounds in biodesulfurization processes; as well as dibenzothiophene sulfoxide (DBTO(2)), dibenzothiophene sulfone (DBTO) and 2-(2-hydroxybiphenyl)-benzenesulfinate (HBPS), which are intermediate products in biodesulfurization processes of DBT [ A. Alcon, V.E. Santos, A.B. Martín, P. Yustos, F. García-Ochoa, Biochem. Eng. J. 26 (2005) 168]. Furthermore, a non-sulfurated compound, 2-hydroxybiphenyl (2-HBP), has also been selected as it is the final product in the biodesulfurization process of DBT [A. Alcon, V.E. Santos, A.B. Martín, P. Yustos, F. García-Ochoa. Biochem. Eng. J. 26 (2005) 168]. Since, typically, biodesulfurization reactions take place in a biphasic medium, two extraction methods have been developed: a liquid-liquid extraction method for the watery phase and a solid phase extraction method for the organic phase

  16. Improvement of distension and mural visualization of bowel loops using neutral oral contrasts in abdominal computed tomography

    PubMed Central

    Hashemi, Jahanbakhsh; Davoudi, Yasmin; Taghavi, Mina; Pezeshki Rad, Masoud; Moghadam, Amien Mahajeri

    2014-01-01

    AIM: To assess and compare the image quality of 4% sorbitol and diluted iodine 2% (positive oral contrast agent) in abdomino-pelvic multi-detector computed tomography. METHODS: Two-hundred patients, referred to the Radiology Department of a central educational hospital for multi-detector row abdominal-pelvic computed tomography, were randomly divided into two groups: the first group received 1500 mL of 4% sorbitol solution as a neutral contrast agent, while in the second group 1500 mL of meglumin solution as a positive contrast agent was administered in a one-way randomized prospective study. The results were independently reviewed by two radiologists. Luminal distension and mural thickness and mucosal enhancement were compared between the two groups. Statistical analysis of the results was performed by Statistical Package for the Social Sciences software version 16 and the Mann-Whitney test at a confidence level of 95%. RESULTS: Use of neutral oral contrast agent significantly improved visualization of the small bowel wall thickness and mural appearance in comparison with administration of positive contrast agent (P < 0.01). In patients who received sorbitol, the small bowel showed better distention compared with those who received iodine solution as a positive contrast agent (P < 0.05). CONCLUSION: The results of the study demonstrated that oral administration of sorbitol solution allows better luminal distention and visualization of mural features than iodine solution as a positive contrast agent. PMID:25550995

  17. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity. PMID:26656865

  18. Quantitative determination of polycyclic aromatic hydrocarbon adducts to deoxyribonucleic acid using GC/MS (gas chromatography/mass spectrometry) techniques

    SciTech Connect

    Bean, R.M.; Thomas, B.L.; Chess, E.K.; Pavlovich, J.G.; Springer, D.L.

    1988-02-01

    A direct, specific mass spectrometric method useful for determination of polycyclic aromatic adducts has been developed. Our experiments indicated that overall recoveries from the acid hydrolysis, isolation and derivatization steps will be about 50%. It is apparent that a method even for BaP adducts is not yet complete. The methods described in this paper are provided in detail. Other derivatization techniques are needed that are selective and quantitative, and that will enhance the singal in the mass spectrometer to improve instrument selectivity and sensitivity. In addition to improvements in instrument sensitivity and gas chromatography column performance, there is a great need for procedures for rigorous documentation of organic analytical methods at the picogram level. 12 refs., 2 tabs.

  19. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  20. Comparison of Techniques for Non-Intrusive Fuel Drop Size Measurements in a Subscale Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.

    1999-01-01

    In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.

  1. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  2. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. PMID:25403494

  3. Removal Dynamics of Nitric Oxide (NO) Pollutant Gas by Pulse-Discharged Plasma Technique

    PubMed Central

    Zhang, Lianshui; Wang, Xiaojun; Lai, Weidong; Cheng, Xueliang; Zhao, Kuifang

    2014-01-01

    Nonthermal plasma technique has drawn extensive attentions for removal of air pollutants such as NOx and SO2. The NO removal mechanism in pulse discharged plasma is discussed in this paper. Emission spectra diagnosis indicates that the higher the discharge voltage is, the more the NO are removed and transformed into O, N, N2, NO2, and so forth. Plasma electron temperature Te is ranged from 6400 K at 2.4 kV discharge voltage to 9500 K at 4.8 kV. After establishing a zero-dimensional chemical reaction kinetic model, the major reaction paths are clarified as the electron collision dissociation of NO into N and O during discharge and followed by single substitution of N on NO to form N2 during and after discharge, compared with the small fraction of NO2 formed by oxidizing NO. The reaction directions can be adjusted by N2 additive, and the optimal N2/NO mixing ratio is 2 : 1. Such a ratio not only compensates the disadvantage of electron competitive consumption by the mixed N2, but also heightens the total NO removal extent through accelerating the NO oxidization process. PMID:24737985

  4. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  5. Use of Immunohistochemistry Techniques in Patients Exposed to Sulphur Mustard Gas

    PubMed Central

    Ghanei, Mostafa; Chilosi, Marco; Mohammad Hosseini Akbari, Hassan; Motiei-Langroudi, Rouzbeh; Harandi, Ali Amini; Shamsaei, Hassan; Bahadori, Moslem; Tazelaar, Henry D.

    2011-01-01

    We performed a pathologic study with further using an immunohistochemical technique (using anti-p63 and anti-CK5) on tissues obtained by open lung biopsy from 18 patients with previous exposure to sulphur mustard (SM) as case group and 8 unexposed patients (control group). The most frequent pathologic diagnosis was constrictive bronchiolitis (44.4%), followed by respiratory (22.2%) and chronic cellular bronchiolitis (16.7%) in the case group, and hypersensitivity bronchiolitis (50%) in the control group. The pathologic diagnoses were significantly different in the case and control groups (P = 0.042). In slides stained by anti-p63 and anti-CK5, the percent of stained cells and the mean number of epithelial cells were lower in the case group in comparison to the control group. This difference was significant for the mean number of cells stained by anti-CK5 (P = 0.042). Furthermore, there was a significant correlation between pathologic diagnosis and total number of cells and mean number of cells stained with anti-p63 and anti-CK5 (P  value = 0.002, <0.001, 0.044). These results suggest that constrictive bronchiolitis may be the major pathologic consequence of exposure to SM. Moreover, decrease of p63 in respiratory tissues affected by SM may suggest the lack of regenerative capacity in these patients. PMID:21776342

  6. Airborne eddy correlation gas flux measurements - Design criteria for optical techniques

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Sachse, Glen W.; Anderson, Bruce E.

    1993-01-01

    Although several methods exist for the determination of the flux of an atmospheric species, the airborne eddy correlation method has the advantage of providing direct flux measurements that are representative of regional spatial domains. The design criteria pertinent to the construction of chemical instrumentation suitable for use in airborne eddy correlation flux measurements are discussed. A brief overview of the advantages and limitations of the current instrumentation used to obtain flux measurements for CO, CH4, O3, CO2, and water vapor are given. The intended height of the measurement within the convective boundary layer is also shown to be an important design criteria. The sensitivity, or resolution, which is required in the measurement of a scalar species to obtain an adequate species flux measurement is discussed. The relationship between the species flux resolution and the more commonly stated instrumental resolution is developed and it is shown that the standard error of the flux estimate is a complicated function of the atmospheric variability and the averaging time that is used. The use of the recently proposed intermittent sampling method to determine the species flux is examined. The application of this technique may provide an opportunity to expand the suite of trace gases for which direct flux measurements are possible.

  7. Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique

    PubMed Central

    Anantasook, N.; Wanapat, M.

    2012-01-01

    The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6×4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected NH3-N and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and CH4 production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology. PMID:25049570

  8. Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique.

    PubMed

    Anantasook, N; Wanapat, M

    2012-03-01

    The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6×4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected NH3-N and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and CH4 production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology. PMID:25049570

  9. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    SciTech Connect

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Dux, R.; Pütterich, T.; Viezzer, E.; Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  10. The estimation of ruminal protein degradation parameters of various feeds using in vitro modified gas production technique.

    PubMed

    Falahatizow, J; Danesh Mesgaran, M; Vakili, A R; Tahmasbi, A M; Nazari, M R

    2015-01-01

    This study was conducted to determine in vitro crude protein degradation (IVDP) parameters and effective crude protein degradability (EPD) of various feeds using the modified in vitro gas production (GP) technique. Feed samples were alfalfa hay, soybean meal, soybean, rapeseed meal, sunflower meal and fish meal. Rumen fluid was collected before the morning feeding from four rumen fistulated lambs (49.4 ± 3.5 kg, body weight). Approximately 90 ml of buffered rumen fluid (BRF), 400 mg of feed samples and carbohydrates (maltose, xylose and starch) at four concentrations (100, 200, 300, and 400 mg) were added to screw-cap bottles. Gas production (ml) and ammonia nitrogen concentration (mg) in each bottle were measured at 4, 8, 12, 16, 24, and 30 h post incubation and IVDP was calculated via estimated intercept of linear regression between GP (as main variable, X) and ammonia nitrogen (as dependent variable, Y) using the linear regression procedure. Feed, time and feed × time interaction had significant effect on IVDP (P<0.001). Estimated EPD values at the outflow rate of 0.06/h for alfalfa hay, soybean meal, soybean, rapeseed meal, sunflower meal and fish meal were 0.56, 0.77, 0.59, 0.45, 0.50 and 0.38, respectively. PMID:27175150

  11. Analyses of movement and contact of two nucleated cells using a gas-driven micropipette aspiration technique.

    PubMed

    Yang, Hao; Tong, Chunfang; Fu, Changliang; Xu, Yanhong; Liu, Xiaofeng; Chen, Qin; Zhang, Yan; Lü, Shouqin; Li, Ning; Long, Mian

    2016-01-01

    Adhesion between two nucleated cells undergoes specific significances in immune responses and tumor metastasis since cellular adhesive molecules usually express on two apposed cell membranes. However, quantification of the interactions between two nucleated cells is still challenging in microvasculature. Here distinct cell systems were used, including three types of human cells (Jurkat cell or PMN vs. MDA-MB-231 cell) and two kinds of murine native cells (PMN vs. liver sinusoidal endothelial cell). Cell movement, compression to, and relaxation from the counterpart cell were quantified using an in-house developed gas-driven micropipette aspiration technique (GDMAT). This assay is robust to quantify this process since cell movement and contact inside a pipette are independent of the repeated test cycles. Measured approaching or retraction velocity follows well a normal distribution, which is independent on the cycle period. Contact area or duration also fits a Gaussian distribution and moreover contact duration is linearly correlated with the cycle period. Cell movement is positively related to gas flux but negatively associated to medium viscosity. Cell adhesion tends to reach an equilibrium state with increase of cycle period or contact duration. These results further the understanding in the dynamics of cell movement and contact in microvasculature. PMID:26631492

  12. Identification of nitroaromatics in diesel exhaust particulate using gas chromatography/negative ion chemical ionization mass spectrometry and other techniques

    SciTech Connect

    Newton, D.L.; Erickson, M.D.; Tomer, K.B.; Pellizzari, E.D.; Gentry, P.

    1982-04-01

    A series of nitroaromatic compounds were identified in diesel exhaust particulate extract. Isomers of nitroanthracene (and/or nitrophenanthrene) and nitropyrene (and/or nitrofluoranthene) were unequivocally identified. Alkyl homologues of nitroanthracene through C/sub 3/-alkyl-nitroanthracene were tentatively identified. In addition, a C/sub 18/H/sub 11/NO/sub 2/ isomer was tentatively identified. The nitro-substituted polynuclear aromatic hydrocarbons (PAHs) were found in two fractions of diesel exhaust particulate extract collected from a low-pressure liquid chromatography (LPLC) column. One of the two fractions containing nitroaromatic constitutents accounted for a large percentage of the mutagenicity of the crude particulate extract. Initial identification were made by using high-resolution gas chromatography/electron impact mass spectrometry/computer (GC/EIMS) and negative ion chemical ionization mass specrometry/computer (GC/NICIMS). These identifications were confirmed by direct probe high-resolution mass spectrometry (HRMS) and gas chromatography/Fourier transform infrared spectrometry (GC/FT IR). The relative merit of each analytical technique for the determination of nitroaromatics is discussed with emphasis on the usefulness of GC/NICIMS as a means of analyzing for nitro-substituted PAHs.

  13. The estimation of ruminal protein degradation parameters of various feeds using in vitro modified gas production technique

    PubMed Central

    Falahatizow, J.; Danesh Mesgaran, M.; Vakili, A. R.; Tahmasbi, A. M.; Nazari, M. R.

    2015-01-01

    This study was conducted to determine in vitro crude protein degradation (IVDP) parameters and effective crude protein degradability (EPD) of various feeds using the modified in vitro gas production (GP) technique. Feed samples were alfalfa hay, soybean meal, soybean, rapeseed meal, sunflower meal and fish meal. Rumen fluid was collected before the morning feeding from four rumen fistulated lambs (49.4 ± 3.5 kg, body weight). Approximately 90 ml of buffered rumen fluid (BRF), 400 mg of feed samples and carbohydrates (maltose, xylose and starch) at four concentrations (100, 200, 300, and 400 mg) were added to screw-cap bottles. Gas production (ml) and ammonia nitrogen concentration (mg) in each bottle were measured at 4, 8, 12, 16, 24, and 30 h post incubation and IVDP was calculated via estimated intercept of linear regression between GP (as main variable, X) and ammonia nitrogen (as dependent variable, Y) using the linear regression procedure. Feed, time and feed × time interaction had significant effect on IVDP (P<0.001). Estimated EPD values at the outflow rate of 0.06/h for alfalfa hay, soybean meal, soybean, rapeseed meal, sunflower meal and fish meal were 0.56, 0.77, 0.59, 0.45, 0.50 and 0.38, respectively. PMID:27175150

  14. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  15. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Huang, Ying-Xue; Huang, Ting-Jyun; Chen, Yong-Shen; Wang, Chieh-Heng; Wang, Jia-Lin

    2016-09-01

    This study presents a novel application based on the Deans-switch cutting technique to characterize the thermal-desorption (TD) properties for gas chromatographic (GC) analysis of ambient volatile organic compounds (VOCs). Flash-heating of the sorbent bed at high temperatures to desorb trapped VOCs to GC may easily produce severe asymmetric or tailing GC peaks affecting resolution and sensitivity if care is not taken to optimize the TD conditions. The TD peak without GC separation was first examined for the quality of the TD peak by analyzing a standard gas mixture from C2 to C12 at ppb level. The Deans switch was later applied in two different stages. First, it was used to cut the trailing tail of the TD peak, which, although significantly improved the GC peak symmetry, led to more loss of the higher boiling compounds than the low boiling ones, thus suggesting compound discrimination. Subsequently, the Deans switch was used to dissect the TD peak into six 30s slices in series, and an uneven distribution in composition between the slices were found. A progressive decrease in low boiling compounds and increase in higher boiling ones across the slices indicated severe inhomogeneity in the TD profile. This finding provided a clear evidence to answer the discrimination problem found with the tail cutting approach to improve peak symmetry. Through the use of the innovated slicing method based on the Deans-switch cutting technique, optimization of TD injection for highly resolved, symmetric and non-discriminated GC peaks can now be more quantitatively assessed and guided. PMID:27492597

  16. [Effect of adrenergic beta blockers on hemodynamics, diastolic relaxation and distensibility of left-ventricular myocardium in patients with ischemic heart disease].

    PubMed

    Moroz, V A; Gladchenko, A R; Latoguz, I K; Khimenko, P L

    1991-01-01

    Altogether 32 patients were investigated by catheterization of the left ventricular cavity with volume loading of 76% solution of verographin++ administered at 0.65 ml per kg body mass. beta-blockade with preliminary i.v. administration of 5 mg obsidan or 10 mg cordanum was shown to improve myocardial diastolic function as a result of improved myocardial distensibility in CHD patients. PMID:1673730

  17. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    USGS Publications Warehouse

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  18. Caerulein and morphine in a model of visceral pain. Effects on the hypotensive response to renal pelvis distension in the rat.

    PubMed

    Brasch, H; Zetler, G

    1982-05-01

    In pentobarbital-anaesthetized rats (60 mg/kg, i.p.) renal pelvis distension with a pressure of 80 cm H2O caused a decline in mean arterial blood pressure. This pressure response, which disappeared rapidly after cessation of the distension, was used to study the effects of analgesic drugs known to be effective in renal colic pain in man. Morphine (0.75 and 1 mg/kg, s.c.) and the decapeptide caerulein (1.6, 4 and 8 microgram/kg, s.c.) abolished the pressure response. The effects of the largest doses lasted for at least 30 min. Ineffective in this respect were (a) desulphated caerulein (40 microgram/kg, s.c.) and (b) additional doses of pentobarbital (20 and 40 mg/kg, s.c.). This shows (a) the importance of the sulphated tyrosine (known from previous studies on central effects) and (b) the missing influence of the depth of anaesthesia. Naloxone (0.5 mg/kg, s.c.) abolished the effect of morphine (1 mg/kg, s.c.) but failed to influence that of caerulein (8 microgram/kg, s.c.). Even a fourfold dose of naloxone (2 mg/kg, s.c.) did not weaken the effect of caerulein. Naloxone, per se, was ineffective. These results suggest different mechanisms of the present effects of morphine and caerulein. It appears that renal pelvis distension in the anaesthetized rat can serve as a model of renal colic. PMID:7110376

  19. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey

    2004-12-01

    The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can

  20. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  1. Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers.

    PubMed

    Matatagui, D; Fernández, M J; Fontecha, J; Sayago, I; Gràcia, I; Cané, C; Horrillo, M C; Santos, J P

    2014-03-01

    The electrospinning technique has allowed that very different materials are deposited as sensitive layers on Love-wave devices forming a low cost and successful sensor array. Their excellent sensitivity, good linearity and short response time are reported in this paper. Several materials have been used to produce the nanofibers: polymers as Polyvinyl alcohol (PVA), Polyvinylpyrrolidone (PVP) and Polystirene (PS); composites with polymers as PVA+SnCl4; combined polymers as PS+Poly(styrene-alt-maleic anhydride) (PS+PSMA) and metal oxides (SnO2). In order to test the array, well-known chemical warfare agent simulants (CWAs) have been chosen among the volatile organic compounds due to their importance in the security field. Very low concentrations of these compounds have been detected by the array, such as 0.2 ppm of DMMP, a simulant of sarin nerve gas, and 1 ppm of DPGME, a simulant of nitrogen mustard. Additionally, the CWA simulants used in the experiment have been discriminated and classified using pattern recognition techniques, such as principal component analysis and artificial neural networks. PMID:24468389

  2. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  3. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique.

    PubMed

    Zhang, Zhirong; Pang, Tao; Yang, Yang; Xia, Hua; Cui, Xiaojuan; Sun, Pengshuai; Wu, Bian; Wang, Yu; Sigrist, Markus W; Dong, Fengzhong

    2016-05-16

    We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions. PMID:27409967

  4. At high cardiac output, diesel exhaust exposure increases pulmonary vascular resistance and decreases distensibility of pulmonary resistive vessels.

    PubMed

    Wauters, Aurélien; Vicenzi, Marco; De Becker, Benjamin; Riga, Jean-Philippe; Esmaeilzadeh, Fatemeh; Faoro, Vitalie; Vachiéry, Jean-Luc; van de Borne, Philippe; Argacha, Jean-François

    2015-12-15

    Air pollution has recently been associated with the development of acute decompensated heart failure, but the underlying biological mechanisms remain unclear. A pulmonary vasoconstrictor effect of air pollution, combined with its systemic effects, may precipitate decompensated heart failure. The aim of the present study was to investigate the effects of acute exposure to diesel exhaust (DE) on pulmonary vascular resistance (PVR) under resting and stress conditions but also to determine whether air pollution may potentiate acquired pulmonary hypertension. Eighteen healthy male volunteers were exposed to ambient air (AA) or dilute DE with a particulate matter of <2.5 μm concentration of 300 μg/m(3) for 2 h in a randomized, crossover study design. The effects of DE on PVR, on the coefficient of distensibilty of pulmonary vessels (α), and on right and left ventricular function were evaluated at rest (n = 18), during dobutamine stress echocardiography (n = 10), and during exercise stress echocardiography performed in hypoxia (n = 8). Serum endothelin-1 and fractional exhaled nitric oxide were also measured. At rest, exposure to DE did not affect PVR. During dobutamine stress, the slope of the mean pulmonary artery pressure-cardiac output relationship increased from 2.8 ± 0.5 mmHg · min · l (-1) in AA to 3.9 ± 0.5 mmHg · min · l (-1) in DE (P < 0.05) and the α coefficient decreased from 0.96 ± 0.15 to 0.64 ± 0.12%/mmHg (P < 0.01). DE did not further enhance the hypoxia-related upper shift of the mean pulmonary artery pressure-cardiac output relationship. Exposure to DE did not affect serum endothelin-1 concentration or fractional exhaled nitric oxide. In conclusion, acute exposure to DE increased pulmonary vasomotor tone by decreasing the distensibility of pulmonary resistive vessels at high cardiac output. PMID:26497960

  5. Short- and Long-Term Prognostic Implications of Jugular Venous Distension in Patients Hospitalized With Acute Heart Failure.

    PubMed

    Chernomordik, Fernando; Berkovitch, Anat; Schwammenthal, Ehud; Goldenberg, Ilan; Rott, David; Arbel, Yaron; Elis, Avishai; Klempfner, Robert

    2016-07-15

    The present study was designed to assess the role of jugular venous distension (JVD) as a predictor of short- and long-term mortality in a "real-life" setting. The independent association between the presence of admission JVD and the 30-day, 1- and 10-year mortality was assessed among 2,212 patients hospitalized with acute heart failure (HF) who were enrolled in the Heart Failure Survey in Israel (2003). Independent predictors of JVD finding in study patients included: the presence of significant hyponatremia (odds ratio [OR] 1.48; p = 0.03), reduced left ventricular ejection fraction ([LVEF] OR 1.24; p = 0.03), anemia (OR 1.3; p = 0.01), New York Heart Association III to IV (OR 1.34; p <0.01) and age >75 years (OR 1.32; p = 0.01). The presence of JVD versus its absence at the time of HF hospitalization was associated with increased 30-day mortality (7.2% vs 4.9%, respectively; p = 0.02), 1-year (33% vs 28%, respectively; p <0.001), and greater 10-year mortality (91.8% vs 87.2%, respectively; p <0.001). Consistently, interaction term analysis demonstrated that the presence of JVD at the time of the index HF hospitalization was independently associated with a significant increased risk for 10-year mortality, with a more pronounced effect among younger patients, patients with reduced LVEF, preserved renal function, and chronic HF. In conclusion, in patients admitted with HF, JVD is associated with specific risk factors and is independently associated with increased risk of both short- and long-term mortality. These findings can be used for improved risk assessment and management of this high-risk population. PMID:27287063

  6. Effect of Bladder Distension on Dose Distribution of Intracavitary Brachytherapy for Cervical Cancer: Three-Dimensional Computed Tomography Plan Evaluation

    SciTech Connect

    Cengiz, Mustafa Guerdalli, Salih; Selek, Ugur; Yildiz, Ferah; Saglam, Yuecel; Ozyar, Enis; Atahan, I. Lale

    2008-02-01

    Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question.

  7. Simulation Based on Ion-Ion Plasma Techniques of Electric propulsion In Mars Mission Using Chlorine Gas

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    Abstract:The recently(Nov-5/2013) launched Mangalyan by the Indian space Research Organization (ISRO) to Mars orbit with Mankalyan contained by small liquid engine(MMH+N2O4).This will take long time to reach the Mars orbit that is around the 9 Months. Bi-Propellant rocket system has good thrust but low specific impulse and velocity. In future we need a rocket with good high specific impulse and high velocity of rocket system, to reduce the trip time to Mars. Electric propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because this needs low propellant, Design thrust range is 1.5 N with high efficiency. An ion - ion pair of Electric propulsion rocket system is proposed in this work. Ion-Ion(positive ion- negative ion) Based Rocket system consists of three parts 1.The negative ionization stage with electro negative propellant 2. Ion-Ion plasma formation and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negative gas are produced by adding up the gas, such as chlorine with electron emitted from an Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 3.6eV. The negative ion density becomes several orders of magnitude larger than that of the electrons, hence forming ion-ion (positive ion - negative ion) plasma at the periphery of the discharge. The distance between ion- ions is important for the evaluate the rocket thrust and it also that the distance is determined by the exhaust velocity of the propellant. Accelerate the ion-ion plasma to a high velocity in the thrust vector direction via electron gun and the exhaust of ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we

  8. Low Temperature Cathodoluminescence Spectroscopy of Amorphous Aluminum Nitride Nanoparticles doped with Erbium, synthesized using Inert Gas Condensation Technique

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha; Wang, Jingzhou; Wojciech, Jadwisienczak; Kordesch, Martin

    2015-03-01

    Free standing Aluminum Nitride Nanoparticles (NPs) doped in situwith Erbium (AlN:Er), ranging from 3-30nm in size, were synthesized using a vapor phase deposition technique known as Inert Gas Condensation (IGC). Amorphous behavior of these NPs was inferred from the wide-angle X-ray spectroscopy studies. Raman spectra analysis for these AlN:Er NPs showed characteristic peaks for A1(TO) and E2(high) phonon modes of AlN. Detailed structural characterization of these Er doped AlN NPs will be carried out using a High-Resolution TEM, results of which will be included in my talk. Low temperature Cathodoluminescence (CL) measurements were carried out for these a-AlN:Er NPs. The corresponding Er+3 ion emission peaks were compared to the CL emission spectra obtained for a-AlN:Er thin films, and for commercially obtained Erbium-Oxide NPs. These spectroscopic results will be discussed in detail. I will also present the CL results obtained for in-air and in-nitrogen atmosphere annealed a-AlN:Er NPs. In addition to this, I will illustrate how these Er doped NPs can be used as nano-scale temperature sensors. The SNOM help provided by Prof. Hugh Richardson is gratefully acknowledged.

  9. Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness.

    PubMed

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T; Correa, Alessandra A; Alves, William F; Leite, Fábio L; Herrmann, Paulo S P

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  10. Low-Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness

    PubMed Central

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T.; Correa, Alessandra A.; Alves, William F.; Leite, Fábio L.; Herrmann, Paulo S. P.

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  11. Comparison of gas chromatography/mass spectrometry and immunoassay techniques on concentrations of atrazine in storm runoff

    USGS Publications Warehouse

    Lydy, M.J.; Carter, D.S.; Crawford, C.G.

    1996-01-01

    Gas chromatography/mass spectrometry (GC/MS) and enzyme linked immunosorbent assay (ELISA) techniques were used to measure concentrations of dissolved atrazine in 149 surface-water samples. Samples were collected during May 1992-September 1993 near the mouth of the White River (Indiana) and in two small tributaries of the river. GC/MS was performed on a Hewlett- Packard 5971A with electron impact ionization and selected ion monitoring of filtered water samples extracted by C-18 solid phase extraction: ELISA was performed with a magnetic-particle-based assay with photometric analysis. ELISA results compared reasonably well to GC/MS measurements at concentrations below the Maximum Contaminant Level for drinking water set by the U.S. Environmental Protection Agency (3.0 ??g/L), but a systematic negative bias was observed at higher concentrations. When higher concentration samples were diluted into the linear range of calibration, the relation improved. A slight positive bias was seen in all of the ELISA data compared to the GC/MS results, and the bias could be partially explained by correcting the ELISA data for cross reactivity with other triazine herbicides. The highest concentrations of atrazine were found during the first major runoff event after the atrazine was applied. Concentrations decreased throughout the rest of the sampling period even though large runoff events occurred during this time, indicating that most atrazine loading to surface waters in the study area occurs within a few weeks after application.

  12. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    NASA Astrophysics Data System (ADS)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-12-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the ^{13}{C}_2{H}_2 P(16) (ν _1 + ν _3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal the hollow-core fiber with easy light coupling, showing negligible pressure increase over two months. The locked laser shows a fractional frequency instability below 8 × 10^{-12} for an averaging time up to 104 s. The lock-point repeatability over one month is 2.6 × 10^{-11}, corresponding to a standard deviation of 5.3 kHz. The system is also assembled in a more compact and easy-to-use configuration ( Plug&Play), showing comparable performance with previously published work. The real portability of this technology is proved by shipping the system to a collaborating laboratory, showing unchanged performance after the return.

  13. Study of the Behaviors of Gunshot Residues from Spent Cartridges by Headspace Solid-Phase Microextraction-Gas Chromatographic Techniques.

    PubMed

    Chang, Kah Haw; Yew, Chong Hooi; Abdullah, Ahmad Fahmi Lim

    2015-07-01

    Gunshot residues, produced after shooting activity, have acquired their importance in analysis due to the notoriety of firearms-related crimes. In this study, solid-phase microextraction was performed to extract the headspace composition of spent cartridges using 85-μm polyacrylate fiber at 66°C for 21 min. Organic compounds, that is, naphthalene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, diphenylamine, and dibutyl phthalate were detected and analyzed by gas chromatography-flame ionization detection technique. Evaluation of chromatograms for diphenylamine, dibutyl phthalate, and naphthalene indicates the period after a gunshot was discharged, whether it was 1 days, 2-4 days, <5 days, 10 days, 20 days, or more than 30 days ago. This study revealed the potential effects of environmental factors such as occasional wind blow and direct sunlight on the estimation of time after spent cartridges were discharged. In conclusion, we proposed reliable alternative in analyzing the headspace composition of spent cartridges in a simulated crime scene. PMID:25771708

  14. Evaluation of advanced separation techniques for application to flue gas cleanup processes for the simultaneous removal of sulfur dioxide and nitrogen oxides

    SciTech Connect

    Walker, R.J.; Drummond, C.J.; Ekmann, J.M.

    1985-05-01

    Thirteen advanced separation techniques were reviewed in detail for application to flue gas cleanup processes. Of these, the three most promising for application to systems for simultaneous removal of sulfur dioxide and nitrogen oxides from flue gas are solvent extraction, electrodialysis, and inverse thermal phase separation. Gas separation membranes would also be promising if a membrane could be developed that would be selective for SO/sub 2/ and NO/sub x/. Specific utility or industrial systems incorporating some of these processes are suggested. Preliminary estimates of annual revenue requirements for three gas-separation-membrane flue gas cleanup systems and an electrodialysis system are compared with an estimate for a limestone system with selective catalytic reduction. In addition, fourteen wet simultaneous SO/sub 2//NO/sub x/ flue gas cleanup processes that have progressed beyond bench scale were reviewed for possible modification to incorporate advanced separation techniques. It appeared that in processes where modifications were possible, either such modification would result in marginal improvement, or the process would no longer be recognizable.

  15. Evaluation of advanced separation techniques for application to flue gas cleanup processes for the simultaneous removal of sulfur dioxide and nitrogen oxides

    SciTech Connect

    Walker, R.J.; Drummond, C.J.; Ekmann, J.M.

    1985-06-01

    Thirteen advanced separation techniques were reviewed in detail for application to flue gas cleanup processes. Of these, the three most promising for application to systems for simultaneous removal of sulfur dioxide and nitrogen oxides from flue gas are solvent extraction, electrodialysis, and inverse thermal phase separation. Gas separation membranes would also be promising if a membrane could be developed that would be selective for SO/sub 2/ and NO/sub x/. Specific utility or industrial systems incorporating some of these processes are suggested. Preliminary estimates of annual revenue requirements for three gas-separation-membrane flue gas cleanup systems and an electrodialysis system are compared with an estimate for a limestone system with selective catalytic reduction. In addition, fourteen wet simultaneous SO/sub 2//NO/sub x/ flue gas cleanup processes that have progressed beyond bench scale were reviewed for possible modification to incorporate advanced separation techniques. It appeared that in processes where modifications were possible, either such modification would result in marginal improvement, or the process would no longer be recognizable. 147 refs., 10 figs., 9 tabs.

  16. Effects of sensor location and the atmospheric stability on the accuracy of an inverse-dispersion technique for lagoon gas emission measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...

  17. Sample Processing technique onboard ExoMars (MOMA) to analyze organic compounds by Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team

    2011-12-01

    With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence

  18. Predictive Value of Carotid Distensibility Coefficient for Cardiovascular Diseases and All-Cause Mortality: A Meta-Analysis

    PubMed Central

    Yuan, Chuang; Wang, Jing; Ying, Michael

    2016-01-01

    Aims The aim of the present study is to determine the pooled predictive value of carotid distensibility coefficient (DC) for cardiovascular (CV) diseases and all-cause mortality. Background Arterial stiffness is associated with future CV events. Aortic pulse wave velocity is a commonly used predictor for CV diseases and all-cause mortality; however, its assessment requires specific devices and is not always applicable in all patients. In addition to the aortic artery, the carotid artery is also susceptible to atherosclerosis, and is highly accessible because of the surficial property. Thus, carotid DC, which indicates the intrinsic local stiffness of the carotid artery and may be determined using ultrasound and magnetic resonance imaging, is of interest for the prediction. However, the role of carotid DC in the prediction of CV diseases and all-cause mortality has not been thoroughly characterized, and the pooled predictive value of carotid DC remains unclear. Methods A meta-analysis, which included 11 longitudinal studies with 20361 subjects, was performed. Results Carotid DC significantly predicted future total CV events, CV mortality and all-cause mortality. The pooled risk ratios (RRs) of CV events, CV mortality and all-cause mortality were 1.19 (1.06–1.35, 95%CI, 9 studies with 18993 subjects), 1.09 (1.01–1.18, 95%CI, 2 studies with 2550 subjects) and 1.65 (1.15–2.37, 95%CI, 6 studies with 3619 subjects), respectively, for the subjects who had the lowest quartile of DC compared with their counterparts who had higher quartiles. For CV events, CV mortality and all-cause mortality, a decrease in DC of 1 SD increased the risk by 13%, 6% and 41% respectively, whereas a decrease in DC of 1 unit increased the risk by 3%, 1% and 6% respectively. Conclusions Carotid DC is a significant predictor of future CV diseases and all-cause mortality, which may facilitate the identification of high-risk patients for the early diagnosis and prompt treatment of CV diseases

  19. Evaluating of scale-up methodologies of gas-solid spouted beds for coating TRISO nuclear fuel particles using advanced measurement techniques

    NASA Astrophysics Data System (ADS)

    Ali, Neven Y.

    The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.

  20. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  1. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Krishnamurthy, R. V.

    1998-03-01

    Seasonal concentrations and δ13C of dissolved inorganic carbon (DIC) in a river-tributary system in Kalamazoo, southwest Michigan, USA, have been measured using a modified gas evolution technique. The technique makes use of evacuated glass septum tubes pre-loaded with phosphoric acid and a magnetic stir bar. Water samples are injected into these septum tubes in the field, which eliminates problems associated with CO 2 loss/gain during sample storage and transfer to the vacuum line during DIC extraction. Using this technique, a precision of 1% and 0.1‰ can be achieved for DIC concentrations and δ13C DIC measurements, respectively. As this technique provides reliable measurements of DIC concentrations and carbon isotope ratios, it was used to evaluate the processes that control DIC in the river-tributary system. Results of DIC concentration and δ13C DIC measurements of water samples from the river-tributary system show that the DIC pool is mostly dominated by groundwater. The DIC concentrations and δ13C DIC are within the ranges measured for the most isotopically evolved groundwater in this region. Seasonal variations superimposed on the baseline values are attributed to secondary processes such as CO 2 invasion from the atmosphere, enhanced recharge from lakes and biological activities of photosynthesis, respiration, and decay. With the onset of spring, there is a concurrent increase in the DIC concentration and δ13C DIC of these streams. A simultaneous increase in concentration and 13C enrichment of the riverine DIC pool is consistent with CO 2 invasion and recharge from lakes. During the summer, biological activity is the predominant control on shifts in the DIC pool. Although photosynthesis, respiration and decay occur during this time, decreases in the DIC concentration and increases in the 13C DIC indicates CO 2 removal from the pool by photosynthesis. In the late summer-early fall, photosynthesis declines and respiration and decay cause an increase in

  2. Mutually supportive use of stable isotope and gas chromatography techniques to understand ecohydrological interactions in dryland environments

    NASA Astrophysics Data System (ADS)

    Puttock, A.; Brazier, R. E.; Dungait, J. A. J.; Bol, R.; Dixon, E. R.; Macleod, C. J. A.

    2012-04-01

    Many drylands globally are experiencing extensive vegetation change. In the semi-arid Southwestern United States, this change is characterised by the encroachment of woody vegetation into environments previously dominated by grassland (Van Auken. 2009). The transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al. 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events and resulting water and sediment fluxes over six bounded plots with different vegetation coverage at the Sevilleta National Wildlife Refuge, New Mexico, USA. The experiment takes advantage of a shift in the photosynthetic pathway of dominant vegetation from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentate). This allows for the utilisation of natural abundance tracing techniques, specifically stable 13C isotope and gas chromatography lipid biomarker analyses. Results collected during the 2010 and 2011 monsoon seasons will be presented, using biogeochemical signatures, to trace and partition fluvial soil organic matter and carbon fluxes during runoff generating rainfall events. Results show that biogeochemical signatures specific to individual plant species can be used to define the provenance of carbon, quantifying whether more Pinus edulis-Juniperus monosperma derived carbon is mobilised from the upland plots, or whether more Larrea tridentata carbon is lost when compared to bouteloa eripoda losses in the lowlands. Results also show that biogeochemical signatures vary with event characteristics, raising the possibility of using these tracing

  3. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  4. Continuous monitoring of soil gas efflux with Forced Diffusion (FD) chamber technique in a tundra ecosystem, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, S. J.; Lee, B. Y.

    2015-12-01

    Continuous measurements of soil carbon dioxide (CO2) efflux provide essential information about the soil carbon budget in response to an abruptly changing climate at Arctic and Subarctic scales. The Forced Diffusion (FD) chamber technique has a gas permeable membrane, which passively regulates the mixing of atmosphere and soil air in the chamber, in place of the active pumping system inside a regular dynamics efflux chamber system (Risk et al., 2011). Here the system has been modified the sampling routine to eliminate the problem of sensor drift. After that, we deployed the FD chamber system in a tundra ecosystem over the discontinuous permafrost regime of Council, Alaska. The representative understory plants are tussock (17 %), lichen (32 %), and moss (51 %), within a 40 נ40 m plot at an interval of five meters (81 points total) for efflux-measurement by dynamic chamber. The FD chamber monitored soil CO2 efflux from moss, lichen, and tussock regimes at an interval of 30 min during the growing season of 2015. As the results, mean soil CO2 effluxes in sphagnum moss, lichen, and tussock were 1.98 ± 1.10 (coefficient of variance: 55.8 %), 3.34 ± 0.84 (CV: 25.0 %), and 5.32 ± 1.48 (CV: 27.8 %) gCO2/m2/d, respectively. The difference between the 30-min efflux interval and the average efflux of three 10-min intervals is not significant for sphagnum (n = 196), lichen (n = 918), and tussock (n = 918) under a 95 % confidence level. The deploying interval was then set to 30 min and synchronized with eddy covariance tower data. During the deployment period of 2015, soil CO2 efflux over moss, lichen, and tussock using the FD chamber system were 44 ± 24, 73 ± 18, and 117 ± 33 gCO2/m2/period, respectively. Using the dynamic chamber, mean ecosystem respiration (Re) ranges for moss, lichen, and tussock were 2.2-2.6, 1.8-2.0, and 3.3-3.6 gCO2/m2/d, respectively, during June and July of 2015. These techniques provide the representativeness of spatiotemporal variation of soil

  5. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.

    PubMed

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2016-01-01

    The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources. PMID:26386446

  6. Estimating regional greenhouse gas fluxes: An uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes de...

  7. [Gasless laparoscopic cholecystectomy. Our experience with 130 cases compared with 450 cases treated with the CO2 technique].

    PubMed

    Bossuto, E; Bonatti, L; Schieroni, R; Villata, E; Bacino, A; Galliano, R; Lorenzini, L; Borello, G; Butera, F; Massaioli, N

    2000-04-01

    Alongside the technique based on the creation of an abdominal cavity for surgery following the introduction of gas (usually CO2) into the peritoneal cavity, a new method has been developed. This involves the use of an atraumatic mechanical lifting device connected to the same abdominal wall (gasless laparoscopy). The authors report a technique that uses an inflatable cushion inserted into the abdomen through a periumbilical incision. The cushion is connected to an external motorized hydraulic jack fixed to the operating table, fitted with an electric motor and friction gear. Between May 1991 and June 1998, 580 patients underwent laparoscopic cholecystectomy. Since December 1995 a total of 130 patients have undergone surgery using gasless laparoscopy. Shoulder pain and pain in the upper abdominal quadrant were no longer reported; pain was present in 70% of the patients operated using the CO2 technique. There was also a marked reduction in the anesthesiological risks, above all in elderly patients with cardiopulmonary insufficiency. Surgical manoeuvres are made easier owing to the possibility of using traditional surgical instruments. Washing and continuous aspiration allow a good control of intraoperative hemostasis, and reduce the phenomenon of lens misting without the risk of losing pneumoperitoneum. Less visibility of the surgical field was reported, particularly in obese patients, above all because of the reduced diaphragmatic distension and the lack of displacement of the intestinal loops. In the authors' opinion the gasless technique is suitable above all in patients affected by cardiopulmonary disorders in whom hypercapnia might represent a significant operating risk. PMID:10859952

  8. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  9. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique: in vitro evaluation.

    PubMed

    Meka, Lingam; Kesavan, Bhaskar; Chinnala, Krishna Mohan; Vobalaboina, Venkateswarlu; Yamsani, Madhusudan Rao

    2008-01-01

    A gastro retentive floating drug delivery system with multiple-unit minitab's based on gas formation technique was developed in order to prolong the gastric residence time and to increase the overall bioavailability of the drug. The system consists of the drug-containing core units prepared by direct compression process, which are coated with three successive layers of an inner seal coat, effervescent layer (sodium bicarbonate) and an outer gas-entrapped polymeric membrane of an polymethacrylates (Eudragit RL30D, RS30D, and combinations of them). Only the system using Eudragit RL30D and combination of them as a gas-entrapped polymeric membrane could float. The time to float decreased as amount of the effervescent agent increased and coating level of gas-entrapped polymeric membrane decreased. The optimum system floated completely within 3 min and maintained the buoyancy over a period of 12 h. The drug release was controlled and linear with the square root of time. Increasing coating level of gas-entrapped polymeric membrane decreased the drug release. Both the rapid floating and the controlled release properties were achieved in the multiple-unit floating drug delivery system developed in this present study. The analysis of the parameter dissolution data after storage at 40 degrees C and 75% RH for 3 months showed, no significant change indicating the two dissolution profiles were considered to be similar (f2 value is more than 50). PMID:18459051

  10. [Preparation technique of S2OF10 gas standard sample and determination method of the trace S2OF10 in SF6].

    PubMed

    Wang, L; Wang, J

    1999-09-01

    In this paper a series of methods and techniques for the S2OF10 standard sample preparation and quantitative determination are presented. They are, the preparation of S2OF10 by preparative chromatography with adsorption/thermal desorption, the standard sample of S2OF10 gas prepared by exponential dilution and the gas chromatography/flame photometric detector(GC/FPD) determination of trace S2OF10 from an SF6 sample with quantitative calibration factor. Especially, the S2OF10 gas from a used SF6 sample was directly separated and concentrated through a U-adsorbent-tube packed with 300 mg of Porasil A in a cold trap (-63 degrees C) with liquid-nitrogen and chloroform. Then it was purified by preparative-GC and to be injected into a preparative system of standard gas sample. In the meantime, the S2OF10 gas obtained was confirmed by the methods of GC/FPD, infrared spectrophotometer(IR) and gas chromatography/mass spectrometer(GC/MS) separately. The sub-ppm(by volume) level of the S2OF10 and SF6 mixture samples were prepared by use of the exponential dilution system. The GC/FPD experimental results showed that the detection linear range of S2OF10 gas concentration was 0.80 x 10(-6)-2.60 x 10(-4) (volume fraction) and the quantitative calibration factor of the S2OF10 was 0.197 based on SF6. The determination errors of quantitative calibration factor were 1.8%-20% and S2OF10 recovery of the adsorption/thermal desorption was 98.2% (n = 9) and its relative standard deviation was 6.2%. In addition, the results also showed that it is a simple and rapid method with good linearity and reproducibility. PMID:12552882

  11. Measurement techniques in gas-phase tropospheric chemistry: A selective view of the past, present, and future

    SciTech Connect

    Roscoe, H.K.

    1997-05-16

    Measurements of trace gases and photolysis rates in the troposphere are essential for understanding photochemical smog and global environmental change. Chemical measurement techniques have progressed enormously since the first regular observations of tropospheric ozone in the 19th century. In contrast, by the 1940s spectroscopic measurements were already of a quality that would have allowed the use of modern analysis techniques to reduce interference between gases, although such techniques were not applied at the time. Today, chemical and spectroscopic techniques complement each other on a wide range of platforms. The boundaries between spectroscopic techniques will retreat as more Fourier transform spectrometers are used at visible wavelengths and as wide-band lidars are extended, and combining chemical techniques will allow detection of more trace gases with better sensitivity. Other future developments will focus on smaller, lighter instruments to take advantage of new platforms such as unmanned aircraft and to improve the effectiveness of urban sampling. 74 refs., 4 figs., 1 tab.

  12. PIGC™ - A low cost fugitive emissions and methane detection system using advanced gas filter correlation techniques for local and wide area monitoring

    NASA Astrophysics Data System (ADS)

    Lachance, R. L.; Gordley, L. L.; Marshall, B. T.; Fisher, J.; Paxton, G.; Gubeli, J. F.

    2015-12-01

    Currently there is no efficient and affordable way to monitor gas releases over small to large areas. We have demonstrated the ability to accurately measure key greenhouse and pollutant gasses with low cost solar observations using the breakthrough sensor technology called the "Pupil Imaging Gas Correlation", PIGC™, which provides size and complexity reduction while providing exceptional resolution and coverage for various gas sensing applications. It is a practical implementation of the well-known Gas Filter Correlation Radiometry (GFCR) technique used for the HALOE and MOPITT satellite instruments that were flown on successful NASA missions in the early 2000s. This strong space heritage brings performance and reliability to the ground instrument design. A methane (CH4) abundance sensitivity of 0.5% or better of ambient column with uncooled microbolometers has been demonstrated with 1 second direct solar observations. These under $10 k sensors can be deployed in precisely balanced autonomous grids to monitor the flow of chosen gasses, and infer their source locations. Measureable gases include CH4, 13CO2, N2O, NO, NH3, CO, H2S, HCN, HCl, HF, HDO and others. A single instrument operates in a dual operation mode, at no additional cost, for continuous (real-time 24/7) local area perimeter monitoring for the detection of leaks for safety & security needs, looking at an artificial light source (for example a simple 60 W light bulb placed 100 m away), while simultaneously allowing solar observation for quasi-continuous wide area total atmospheric column scanning (3-D) for environmental monitoring (fixed and mobile configurations). The second mode of operation continuously quantifies the concentration and flux of specific gases over different ground locations, determined the amount of targeted gas being released from the area or getting into the area from outside locations, allowing better tracking of plumes and identification of sources. This paper reviews the

  13. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study

    PubMed Central

    2011-01-01

    Background Arterial stiffness is considered as an independent predictor of cardiovascular mortality, and is increasingly used in clinical practice. This study aimed at evaluating the consistency of the automated estimation of regional and local aortic stiffness indices from cardiovascular magnetic resonance (CMR) data. Results Forty-six healthy subjects underwent carotid-femoral pulse wave velocity measurements (CF_PWV) by applanation tonometry and CMR with steady-state free-precession and phase contrast acquisitions at the level of the aortic arch. These data were used for the automated evaluation of the aortic arch pulse wave velocity (Arch_PWV), and the ascending aorta distensibility (AA_Distc, AA_Distb), which were estimated from ascending aorta strain (AA_Strain) combined with either carotid or brachial pulse pressure. The local ascending aorta pulse wave velocity AA_PWVc and AA_PWVb were estimated respectively from these carotid and brachial derived distensibility indices according to the Bramwell-Hill theoretical model, and were compared with the Arch_PWV. In addition, a reproducibility analysis of AA_PWV measurement and its comparison with the standard CF_PWV was performed. Characterization according to the Bramwell-Hill equation resulted in good correlations between Arch_PWV and both local distensibility indices AA_Distc (r = 0.71, p < 0.001) and AA_Distb (r = 0.60, p < 0.001); and between Arch_PWV and both theoretical local indices AA_PWVc (r = 0.78, p < 0.001) and AA_PWVb (r = 0.78, p < 0.001). Furthermore, the Arch_PWV was well related to CF_PWV (r = 0.69, p < 0.001) and its estimation was highly reproducible (inter-operator variability: 7.1%). Conclusions The present work confirmed the consistency and robustness of the regional index Arch_PWV and the local indices AA_Distc and AA_Distb according to the theoretical model, as well as to the well established measurement of CF_PWV, demonstrating the relevance of the regional and local CMR indices. PMID

  14. A Microscale Technique for Gas Chromatography-Mass Spectrometry Measurements of Picogram Amounts of Indole-3-Acetic Acid in Plant Tissues.

    PubMed Central

    Edlund, A.; Eklof, S.; Sundberg, B.; Moritz, T.; Sandberg, G.

    1995-01-01

    A microscale technique has been developed for routine quantifications of picogram amounts of indole-3-acetic acid (IAA) in plant tissues by combined gas chromatography-mass spectrometry. Low- and high-resolution selected-ion-monitoring and selected-reaction-monitoring mass spectrometry techniques were compared for selectivity and precision. The best selectivity was obtained with selected-reaction-monitoring analysis, and 1-mg samples containing 500 fg of IAA could be analyzed accurately with this method. This technique was used to investigate the IAA distribution pattern along the longitudinal axis of tobacco (Nicotiana tabacum [L.]) leaves. In young, developing leaves an increase of endogenous IAA from the leaf tip to the base of the leaf was observed, whereas the level of IAA was uniform along this axis in mature leaves. PMID:12228526

  15. Laser technique in management of laryngomalacia

    NASA Astrophysics Data System (ADS)

    Shah, Udayan K.; McGuirt, William F., Jr.; Wetmore, Ralph F.; Healy, Gerald B.

    1998-07-01

    Laryngomalacia is the most common cause of newborn stridor. Management can usually be accomplished without surgery. When surgery is necessary, the carbon dioxide (CO2) laser plays an essential role in enabling precise, hemostatic dissection. The authors present their application of the CO2 laser with microspot control for laser correction of laryngomalacia, with emphasis upon the use of the Boston University suspension system to achieve external suspension of the larynx and the bivalved laryngoscope to achieve tissue distension. Review of indications, technique and results is shared to detail the utility of the CO2 laser in supraglottoplasty.

  16. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. PMID:25452581

  17. Aortic distensibility is reduced during intense lower body negative pressure and is related to low frequency power of systolic blood pressure.

    PubMed

    Phillips, Aaron A; Bredin, Shannon S D; Cote, Anita T; Drury, C Taylor; Warburton, Darren E R

    2013-03-01

    As sympathetic activity approximately doubles during intense lower body negative pressure (LBNP) of -60 mmHg or greater, we examined the relationship between surrogate markers of sympathetic activation and central arterial distensibility during severe LBNP. Eight participants were exposed to progressive 8-min stages of LBNP of increasing intensity (-20, -40, -60, and -80 mmHg), while recording carotid-femoral pulse wave velocity (cPWV), stroke volume (SV), heart rate, and beat-by-beat blood pressure. The spectral power of low frequency oscillations in SBP (SBP(LF)) was used as a surrogate indicator of sympathetically modulated vasomotor modulation. Total arterial compliance (C) was calculated as C = SV/pulse pressure. Both cPWV and C were compared between baseline, 50 % of the maximally tolerated LBNP stage (LBNP(50)), and the maximum fully tolerated stage of LBNP (LBNP(max)). No change in mean arterial pressure (MAP) occurred over LBNP. An increase in cPWV (6.5 ± 2.2; 7.2 ± 1.4; 9.0 ± 2.5 m/s; P = 0.004) occurred during LBNP(max). Over progressive LBNP, SBP(LF) increased (8.5 ± 4.6; 9.3 ± 5.8; 16.1 ± 12.9 mmHg(2); P = 0.04) and C decreased significantly (18.3 ± 6.8; 14.3 ± 4.1; 11.6 ± 4.8 ml/mmHg × 10; P = 0.03). The mean correlation (r) between cPWV and SBP(LF) was 0.9 ± 0.03 (95 % CI 0.79-0.99). Severe LBNP increased central stiffness and reduced total arterial compliance. It appears that increased sympathetic vasomotor tone during LBNP is associated with reduced aortic distensibility in the absence of changes in MAP. PMID:22971725

  18. Effect of support materials on supported platinum catalyst prepared using a supercritical fluid deposition technique and their catalytic performance for hydrogen-rich gas production from lignocellulosic biomass.

    PubMed

    Kaya, Burçak; Irmak, Sibel; Hesenov, Arif; Erbatur, Oktay; Erkey, Can

    2012-11-01

    A number of supported Pt catalysts have been prepared by supercritical carbon dioxide deposition technique using various supports. The reduction of Pt precursor to metal performed by heat treatment under nitrogen flow. The prepared catalysts were evaluated for gasification of wheat straw biomass hydrolysates and glucose solution for hydrogen-rich gas production. The activities of the catalysts were highly affected by distribution, amount and particle sizes of platinum on the support. In general carbon-based supported Pt catalysts exhibited better catalytic activity compared to other supports to be used. Compared to biomass hydrolysate feed, gasification of glucose always resulted in higher volume of gas mixture, however, hydrogen selectivity was decreased in all catalyst except multi-walled carbon nanotube. The deposition of Pt particles inner side of that support makes the large organic substrates inaccessible to reach and react with those metal particles. PMID:22939187

  19. Data acquisition techniques for exploiting the uniqueness of the time-of-flight mass spectrometer: Application to sampling pulsed gas systems

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1980-01-01

    Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.

  20. Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Bartnik, A.; Jarocki, R.; Fok, T.; Wegrzyński, Ł.; Kostecki, J.; Szczurek, M.; Jabczyński, J.; Fiedorowicz, H.

    2014-10-01

    We present our recent results of a formation and characterization of plasma channels in elongated krypton and xenon gas puff targets. The study of their formation and temporal expansion was carried out using a combination of a soft X-ray radiography (shadowgraphy) and pinhole camera imaging. Two high-energy short laser pulses were used to produce the channels. When a pumping laser pulse was shaped into a line focus, using cylindrical and spherical lenses, the channels were not produced because much smaller energy density was deposited in the gas puff target. However, when a point focus was obtained, using just a spherical lens, the plasma channels appeared. The channels were up to 9 mm in length, had a quite uniform density profile, and expanded in time with velocities of about 2 cm/μs.

  1. Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique

    SciTech Connect

    Wachulak, P. W. Bartnik, A.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.; Kostecki, J.; Szczurek, M.; Jabczyński, J.; Fiedorowicz, H.

    2014-10-15

    We present our recent results of a formation and characterization of plasma channels in elongated krypton and xenon gas puff targets. The study of their formation and temporal expansion was carried out using a combination of a soft X-ray radiography (shadowgraphy) and pinhole camera imaging. Two high-energy short laser pulses were used to produce the channels. When a pumping laser pulse was shaped into a line focus, using cylindrical and spherical lenses, the channels were not produced because much smaller energy density was deposited in the gas puff target. However, when a point focus was obtained, using just a spherical lens, the plasma channels appeared. The channels were up to 9 mm in length, had a quite uniform density profile, and expanded in time with velocities of about 2 cm/μs.

  2. Gas chromatographic techniques for the analysis of hydrocarbons in low-rank coal liquefaction products. Part II. Instrumental aspects

    SciTech Connect

    Raynie, D.E.; Farnum, S.A.; Potts, Y.R.

    1984-01-01

    Two long Continuous Processing Unit (CPU) runs were carried out to: (1) study the effect of two different start-up solvents on the composition of the recycle product; and (2) thoroughly characterize any change caused by the start-up solvent during the recycle process. Capillary gas chromatography has been chosen as the major analytical tool in these line-out studies of coal liquefaction products. Initial separations of distillate oils from CPU passes were carried out by the silical gel chromatographic method previously reported. The resulting hydrocarbon fractions were combined into four groups for gas chromatographic analysis. The four groups were chromatographed against the appropriate calibration mixture. Some components of the distillate oil were identified but not quantified due to insufficient amounts of some standards. Over 300 samples also necessitated the use of up to 30 components in a calibration standard. Resulting chromatograms showed near-ideal peak shapes. Peak areas were integrated, ratioed to the internal standard and compared to the appropriate calibration curve. Components were identified by comparing retention times and were confirmed by gas chromatography/mass spectroscopy. Parameters such as threshold, peak width, and baseline construction mode were adjusted for optimum sensitivity. For valid comparisons to be made conditions were carefully reproduced. Although chromatography is not often thought of as an exact science, chromatographic systems can be optimized for a given analytical situation. In this case, we have successfully used capillary gas chromatography for the automated identification and quantification of up to 30 species in a single coal liquefaction fraction. We have quantified 87 compounds in the distillate oil. This method may also serve as the basis for analysis of other complex samples.

  3. The effect of the granulometric composition of a hydroxyapatite powder on the structure and phase composition of coatings deposited by the detonation gas spraying technique

    NASA Astrophysics Data System (ADS)

    Popova, A. A.; Yakovlev, V. I.; Legostaeva, E. V.; Sitnikov, A. A.; Sharkeev, Yu. P.

    2013-04-01

    The granulometric composition of a hydroxyapatite powder has been investigated. The initial powder has been classified into particle size ranges (0.1-10, 10-20, 20-30, and 50-300 μm). Coatings prepared from a hydroxyapatite powder of different size have been deposited by the detonation gas spraying technique. The structure and phase composition of the coatings have been studied. Changing the initial granulometric composition of the powder mixture is shown to provide control over the sprayed surface roughness.

  4. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    PubMed Central

    Reddy, Y. Ramana; Kumari, N. Nalini; Monika, T.; Sridhar, K.

    2016-01-01

    Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep. PMID:27397985

  5. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique

    PubMed Central

    Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-01-01

    •OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836

  6. INNOVATIVE SENSING TECHNIQUES FOR MONITORING AND MEASURING SELECTED DIOXINS, FURANS, AND POLYCYCLIC AROMATIC HYDROCARBONS IN STACK GAS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has determined the need to develop in-situ continuous or semi-continuous emissions monitoring (GEM) techniques for assessing dioxin, furan, and polycyclic aromatic hydrocarbon (PAH) emissions from municipal solid waste (MSW) incinera...

  7. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure.

    PubMed

    Takáts, Zoltán; Wiseman, Justin M; Gologan, Bogdan; Cooks, R Graham

    2004-07-15

    Electrosonic spray ionization (ESSI), a variant on electrospray ionization (ESI), employs a traditional micro ESI source with supersonic nebulizing gas. The high linear velocity of the nebulizing gas provides efficient pneumatic spraying of the charged liquid sample. The variable electrostatic potential can be tuned to allow efficient and gentle ionization. This ionization method is successfully applied to aqueous solutions of various proteins at neutral pH, and its performance is compared to that of the nanospray and micro ESI techniques. Evidence for efficient desolvation during ESSI is provided by the fact that the peak widths for various multiply charged protein ions are an order of magnitude narrower than those for nanospray. Narrow charge-state distributions compared to other ESI techniques are observed also; for most of the proteins studied, more than 90% of the protein ions can be accumulated in one charge state using ESSI when optimizing conditions. The fact that the abundant charge state is normally as low or lower than that recorded by ESI or nanospray indicates that folded protein ions are generated. The sensitivity of the ionization technique to high salt concentrations is comparable to that of nanospray, but ESSI is considerably less sensitive to high concentrations of organic additives such as glycerol or 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris base). Noncovalent complexes are observed in the case of myoglobin, protein kinase A/ATP complex, and other proteins. The extent of dissociation of protein ions in ESSI is comparable to or even smaller than that in the case of nanospray, emphasizing the gentle nature of the method. The unique features of ESSI are ascribed to very efficient spraying and the low internal energy supplied to the ions. Evidence is provided that the method is capable of generating fully desolvated protein ions at atmospheric pressure. This allows the technique to be used for the study of ion-molecule reactions at atmospheric

  8. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  9. Development and evaluation of gappy-POD as a data reconstruction technique for noisy PIV measurements in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Saini, Pankaj; Arndt, Christoph M.; Steinberg, Adam M.

    2016-07-01

    Low signal-to-noise in particle image velocimetry (PIV) measurements in systems such as high pressure gas turbine combustors can result in significant data gaps that negatively affect subsequent analysis. Here, gappy proper orthogonal decomposition (GPOD) is evaluated as a method of filling such missing data. Four GPOD methods are studied, including a new method that utilizes a median filter (MF) to adaptively select whether a local missing data point is updated after each iteration. These methods also are compared against local Kriging interpolation. The GPOD methods are tested using PIV data without missing vectors that were obtained in atmospheric pressure swirl flames. Parameters studied include the turbulence intensity, amount of missing data, and the amount of noise in the valid data. Two criteria to check for GPOD convergence also were investigated. The MF method filled in the missing data with the lowest error across all parameters tested, with approximately one-third the computational cost of Kriging. Furthermore, the accuracy of MF GPOD was relatively insensitive to the quality of the convergence criterion. Therefore, compared to the three other GPOD methods and Kriging interpolation, the MF GPOD method is an effective method for filling missing data in PIV measurements in the studied gas turbine combustor flows.

  10. Determination of calcium stearate in polyolefin samples by gas chromatographic technique after performing dispersive liquid-liquid microextraction.

    PubMed

    Ranji, Ali; Ghorbani Ravandi, Mahboobeh; Farajzadeh, Mir Ali

    2008-05-01

    In this study, a gas chromatographic method is presented for the determination of calcium stearate after its conversion to stearic acid in a polymeric matrix. A solution of hydrochloric acid in 2-propanol is used as an extracting solvent of calcium stearate and its converter to stearic acid. For stearic acid preconcentration before its injection to a separation system, a recently presented extraction method, dispersive liquid-liquid microextraction, using carbon tetrachloride as an extracting solvent is used. Finally, 1 microL of the organic phase collected at the bottom of a conical test tube after centrifuging is injected into a gas chromatograph (GC) for quantification. This method has a relatively broad linear dynamic range (50 - 2000 mg/L) with a limit of detection (LOD) of 15 mg/L for stearic acid in solution. The LOD of the proposed method in a polymeric sample using 10 mg of polymer is 60 ppm as calcium stearate. Some effective parameters, such as the time and temperature of heating, the concentration of hydrochloric acid and the volume of distilled water, were studied. PMID:18469468

  11. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-03-15

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  12. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity.

    PubMed

    Ozek, Gulmira; Demirci, Fatih; Ozek, Temel; Tabanca, Nurhayat; Wedge, David E; Khan, Shabana I; Başer, Kemal Hüsnü Can; Duran, Ahmet; Hamzaoglu, Ergin

    2010-01-29

    Four different isolation techniques, conventional hydrodistillation (HD), microwave-assisted hydrodistillation (MWHD), microdistillation (MD) and micro-steam distillation-solid-phase microextraction (MSD-SPME), have been used to analyze the volatile constituents from the aerial parts of Salvia rosifolia Sm. by gas chromatography and gas chromatography coupled to mass spectrometry. HD and MWHD techniques produced quantitatively (yield, 0.39% and 0.40%) and qualitatively (aromatic profile) similar essential oils. alpha-Pinene (15.7-34.8%), 1,8-cineole (16.6-25.1%), beta-pinene (6.7-13.5%), beta-caryophyllene (1.4-5.0%) and caryophyllene oxide (1.4-4.4%) were identified as major constituents of this Turkish endemic species. Besides, the hydrodistilled oil of S. rosifolia was evaluated for antibacterial, antifungal, anticancer, antioxidant and cytotoxic activities. The hydrodistilled oil of S. rosifolia showed antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) with a MIC value of 125microg/mL. Other human pathogenic microorganisms (Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Salmonella typhimurium, Staphylococcus epidermidis, Candida albicans) were also inhibited within a moderate range (MIC=125-1000microg/mL). Antifungal activity of the oil was also observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. No cytotoxicity was observed for S. rosifolia oil up to 25mg/mL against malignant melanoma, epidermal, ductal and ovary carcinoma. PMID:20015509

  13. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  14. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  15. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung. PMID:23998948

  16. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.

    PubMed

    Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J

    2013-09-15

    We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum. PMID:24104822

  17. Strategies and methodologies to develop techniques for computer-assisted analysis of gas phase formation during altitude decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Hall, W. A.

    1993-01-01

    It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.

  18. Estimating regional greenhouse gas fluxes: an uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lee, X.; Griffis, T. J.; Baker, J. M.; Xiao, W.

    2014-10-01

    Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate regional-scale GHG fluxes and evaluate the GHG fluxes derived from bottom-up approaches. We first applied the eddy covariance, equilibrium, inverse modeling (CarbonTracker), and flux aggregation methods using 3 years of carbon dioxide (CO2) measurements on a 244 m tall tower in the upper Midwest, USA. We then applied the equilibrium method for estimating CH4 and N2O fluxes with 1-month high-frequency CH4 and N2O gradient measurements on the tall tower and 1-year concentration measurements on a nearby tall tower, and evaluated the uncertainties of this application. The results indicate that (1) the flux aggregation, eddy covariance, the equilibrium method, and the CarbonTracker product all gave similar seasonal patterns of the regional CO2 flux (105-106 km2, but that the equilibrium method underestimated the July CO2 flux by 52-69%. (2) The annual budget varied among these methods from -54 to -131 g C-CO2 m-2 yr-1, indicating a large uncertainty in the annual CO2 flux estimation. (3) The regional CH4 and N2O emissions according to a top-down method were at least 6 and 2 times higher than the emissions from a bottom-up inventory (Emission Database for Global Atmospheric Research), respectively. (4) The global warming potentials of the CH4 and N2O emissions were equal in magnitude to the cooling benefit of the regional CO2 uptake. The regional GHG budget, including both biological and anthropogenic origins, is estimated at 7 ± 160 g CO2 equivalent m-2 yr-1.

  19. Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

    PubMed Central

    Polyorach, S.; Wanapat, M.; Cherdthong, A.

    2014-01-01

    The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a 2×5 factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and C3 while C2, C2:C3 and CH4 production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, C3 and NH3-N, but decreasing the C2, C2:C3 and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F

  20. Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique.

    PubMed

    Polyorach, S; Wanapat, M; Cherdthong, A

    2014-01-01

    The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a 2×5 factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and C3 while C2, C2:C3 and CH4 production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, C3 and NH3-N, but decreasing the C2, C2:C3 and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F

  1. Adaptive Image-Guided Radiotherapy (IGRT) Eliminates the Risk of Biochemical Failure Caused by the Bias of Rectal Distension in Prostate Cancer Treatment Planning: Clinical Evidence

    SciTech Connect

    Park, Sean S.; Yan Di; McGrath, Samuel; Dilworth, Joshua T.; Liang Jian; Ye Hong; Krauss, Daniel J.; Martinez, Alvaro A.; Kestin, Larry L.

    2012-07-01

    Purpose: Rectal distension has been shown to decrease the probability of biochemical control. Adaptive image-guided radiotherapy (IGRT) corrects for target position and volume variations, reducing the risk of biochemical failure while yielding acceptable rates of gastrointestinal (GI)/genitourinary (GU) toxicities. Methods and Materials: Between 1998 and 2006, 962 patients were treated with computed tomography (CT)-based offline adaptive IGRT. Patients were stratified into low (n = 400) vs. intermediate/high (n = 562) National Comprehensive Cancer Network (NCCN) risk groups. Target motion was assessed with daily CT during the first week. Electronic portal imaging device (EPID) was used to measure daily setup error. Patient-specific confidence-limited planning target volumes (cl-PTV) were then constructed, reducing the standard PTV and compensating for geometric variation of the target and setup errors. Rectal volume (RV), cross-sectional area (CSA), and rectal volume from the seminal vesicles to the inferior prostate (SVP) were assessed on the planning CT. The impact of these volumetric parameters on 5-year biochemical control (BC) and chronic Grades {>=}2 and 3 GU and GI toxicity were examined. Results: Median follow-up was 5.5 years. Median minimum dose covering cl-PTV was 75.6 Gy. Median values for RV, CSA, and SVP were 82.8 cm{sup 3}, 5.6 cm{sup 2}, and 53.3 cm{sup 3}, respectively. The 5-year BC was 89% for the entire group: 96% for low risk and 83% for intermediate/high risk (p < 0.001). No statistically significant differences in BC were seen with stratification by RV, CSA, and SVP in quartiles. Maximum chronic Grades {>=}2 and 3 GI toxicities were 21.2% and 2.9%, respectively. Respective values for GU toxicities were 15.5% and 4.3%. No differences in GI or GU toxicities were noted when patients were stratified by RV. Conclusions: Incorporation of adaptive IGRT reduces the risk of geometric miss and results in excellent biochemical control that is

  2. Activation of corticotropin-releasing factor neurons and microglia in paraventricular nucleus precipitates visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Yu, Le; Chen, Zi-Yang; Zhu, Jun-Sheng; Hua, Rong; Qin, Xia; Cao, Jun-Li; Zhang, Yong-Mei

    2016-07-01

    Visceral hypersensitivity is a major contributor to irritable bowel syndrome and other disorders with visceral pain. Substantial evidence has established that glial activation and neuro-glial interaction play a key role in the establishment and maintenance of visceral hypersensitivity. We recently demonstrated that activation of spinal microglial toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor κB (NF-κB) signaling facilitated the development of visceral hypersensitivity in a rat model developed by neonatal and adult colorectal distensions (CRDs). Hypothalamic paraventricular nucleus (PVN) plays a pivotal role in the pathogenesis of chronic pain. In this study, we examined the mechanism by which microglia and neurons in PVN establish and maintain visceral hypersensitivity and the involvement of TLR4 signaling. Visceral hypersensitivity was precipitated by adult colorectal distension (CRD) only in rats that experienced neonatal CRDs. Visceral hypersensitivity was associated with an increase in the expression of c-fos, corticotropin-releasing factor (CRF) protein and mRNA in PVN, which could be prevented by intra-PVN infusion of lidocaine or small interfering RNA targeting the CRF gene. These results suggest PVN CRF neurons modulate visceral hypersensitivity. Adult CRD induced an increase in the expression of Iba-1 (a microglial marker), TLR4 protein, and its downstream effectors MyD88, NF-κB, as well as proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) only in rats that experienced neonatal CRDs. Intra-PVN infusion of minocycline, a nonselective microglial inhibitor, attenuated the hyperactivity of TLR4 signaling cascade, microglial activation, and visceral hypersensitivity. Taken together, these data suggest that neonatal CRDs induce a glial activation in PVN. Adult CRD potentiates the glial and CRF neuronal activity, and precipitates visceral hypersensitivity and pain. TLR4 signaling and

  3. Heat transfer measurements in an annular cascade of transonic gas turbine blades using the transient liquid crystal technique

    SciTech Connect

    Martinez-Botas, R.F.; Lock, G.D.; Jones, T.V.

    1995-07-01

    Heat transfer measurements have been made in the Oxford University Cold Heat transfer Tunnel employing the transient liquid crystal technique. Complete contours of that transfer coefficient have been obtained on the aerofoil surfaces of a large annular cascade of high-pressure nozzle guide vanes (mean blade diameter of 1.11 m and axial chord of 0.0664 m). The measurements are made at engine representative Mach and Reynolds numbers (exit Mach number 0.96 and Reynolds number 2.0 {times} 10{sup 6}). A novel mechanisms used to isolate five preheated blades in the annulus before an unheated flow of air passes over the vanes, creating a step change, in heat transfer. The surfaces of interest are coated with narrow-band thermochromic liquid crystals and the color crystal change is recorded during the run with a miniature CCD video camera. The heat transfer coefficient is obtained by solving the one-dimensional heat transfer equation for all the points of interest. This paper will describe the experimental technique and present results of heat transfer and flow visualization.

  4. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  5. Identification of potential antioxidant compounds in the essential oil of thyme by gas chromatography with mass spectrometry and multivariate calibration techniques.

    PubMed

    Masoum, Saeed; Mehran, Mehdi; Ghaheri, Salehe

    2015-02-01

    Thyme species are used in traditional medicine throughout the world and are known for their antiseptic, antispasmodic, and antitussive properties. Also, antioxidant activity is one of the interesting properties of thyme essential oil. In this research, we aim to identify peaks potentially responsible for the antioxidant activity of thyme oil from chromatographic fingerprints. Therefore, the chemical compositions of hydrodistilled essential oil of thyme species from different regions were analyzed by gas chromatography with mass spectrometry and antioxidant activities of essential oils were measured by a 1,1-diphenyl-2-picrylhydrazyl radical scavenging test. Several linear multivariate calibration techniques with different preprocessing methods were applied to the chromatograms of thyme essential oils to indicate the peaks responsible for the antioxidant activity. These techniques were applied on data both before and after alignment of chromatograms with correlation optimized warping. In this study, orthogonal projection to latent structures model was found to be a good technique to indicate the potential antioxidant active compounds in the thyme oil due to its simplicity and repeatability. PMID:25403421

  6. Sublimation extraction coupled with gas chromatography-mass spectrometry: A new technique for future in situ analyses of purines and pyrimidines on Mars

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Cleaves, H. J.; Buch, A.; Schubert, M.; Aubrey, A.; Bada, J. L.; Mahaffy, P. R.

    2006-12-01

    We have developed a sublimation technique coupled with chemical derivatization and gas chromatography mass spectrometry (GC-MS) to detect nucleobases and other volatile organic compounds derived from bacteria in Mars analog materials. To demonstrate this technique, a sample of serpentine inoculated with Escherichia coli ( E. coli) cells was heated to 500 °C for several seconds under Martian ambient pressure. The sublimate was collected on a cold finger, then derivatized and analyzed by GC-MS. We found that adenine, cytosine, thymine and uracil were the most abundant molecules detected in the sublimed E. coli extract by GC-MS. In addition, nucleobases were also detected in sublimed extracts of a deep-sea sediment sample, seawater, and soil collected from the Atacama Desert in Chile after heating the samples under the same conditions. Our results indicate that nucleobases can be easily isolated directly from natural samples using sublimation and then detected by GC-MS after chemical derivatization. The sublimation-based extraction technique is one approach that should be considered for use by future in situ instruments designed to detect organic compounds relevant to life in the Martian regolith.

  7. Rarefied gas dynamics: Theoretical and computational techniques; International Symposium, 16th, Pasadena, CA, July 10-16, 1988, Technical Papers

    SciTech Connect

    Muntz, E.P.; Weaver, D.P.; Campbell, D.H.

    1989-01-01

    Among the areas covered are kinetic theory, discrete kinetic theory, direct simulations, numerical techniques, and flowfields. The topics discussed include various problems for the Boltzman equation, such as initial and boundary values, the collision integral, and stationary flows. Discrete-velocity gases, molecular dynamics calculations of transport properties, and multispeed cellular automation are among the topics discussed within the framework of the discrete kinetic theory. Attention is given to numerical methods in rarefied gasdynamics, statistical fluctuations in Monte Carlo calculations, and rarefield normal shocks. Emphasis is placed on numerical solutions for the Boltzman equation, as well as on Monte Carlo solutions. Three-dimensional flows, hypersonic flows, transitional flows, and wake flows are also analyzed.

  8. Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography.

    PubMed

    Abedi, Abdol-Samad; Mohammadi, Abdorreza; Azadniya, Ebrahim; Mortazavian, Amir Mohammad; Khaksar, Ramin

    2014-01-01

    A rapid and reliable method for direct determination of sorbic and benzoic acids in milk products was developed by dispersive liquid-liquid microextraction (DLLME) and gas chromatography with flame ionisation detector (GC-FID). A response surface methodology (RSM) based on a central composite design (CCD) was applied for optimisation of the main variables, such as volume of extraction and dispersive solvents, pH and salt effect. The primary extraction of sorbic and benzoic acids were performed in 8 mL NaOH (0.1 M) in a closed-vessel system. Carrez solutions (potassium hexaferrocyanide and zinc acetate) were used for protein sedimentation. The best simultaneous extraction efficiency was identified using acetone and 1-octanal as dispersive and extraction solvents, respectively. For DLLME, central composite design resulted in the optimised values of microextraction parameters as follows: 475 µL of dispersive and 60 µL of extraction solvents, 2 g NaCl at pH 2.5. Under optimum conditions, the calibration curve was linear over the range 0.1-50 μg mL(-1) and the square of correlation coefficient (R(2)) was 0.9992 for sorbic acid and 0.9994 for benzoic acid. Relative standard deviation (RSD %) was 6.1% and 3.1% (n = 5) for sorbic and benzoic acids, respectively. Limits of detection were 150 ng g(-1) for sorbic acid and 140 ng g(-1) for benzoic acid and recoveries were 88% and 103.7% respectively. Good reproducibility (RSD %), short extraction time and no matrix interference were advantages of the proposed method which was successfully applied to the determination of sorbic and benzoic acids in milk products. PMID:24397823

  9. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm.

    PubMed

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C₆H₆), toluene (C₇H₈), formaldehyde (CH₂O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms' applications in all E-nose application areas. PMID

  10. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric datasets

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-01-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modeling in order, ultimately, to identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least squares-discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Furthermore, a holistic view of results across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidized gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be

  11. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-07-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i

  12. Synthesis and characterization of nano-structured molybdenum-iron intermetallics by gas-solid reaction technique

    NASA Astrophysics Data System (ADS)

    El-Geassy, A. A.; Seetheraman, S.

    2016-03-01

    Ammonium molybdate and ferrous oxalate were used for the synthesis of nano-structured Mo-Fe intermetallics. Co-precipitation technique was applied to produce Mo/Fe precursors containing 58/42, 72/28 and 30/70 mass% respectively. The different phases formed were identified by XRD. The macro- and microstructures were microscopically examined by Reflected Light Microscope (RLM) and Scanning Electron Microscope (SEM) coupled with Electron Dispersion Spectroscopy (EDS). TG-DTA-DSC technique was applied to follow up the behavior of precursors up to 900oC (10K/min.). Endothermic peaks were detected at 97.8, 196.9 and 392.7oC due to the decomposition reactions to produce MoO3 and Fe2O3. The exothermic peak resulted at 427.8oC is due to the solid state reaction between these oxides to form Fe2(MoO4)3. Precursors were isothermally reduced at 600-850oC in a flow of purified H2 and the O2-weight loss from the reduction reactions was continuously recorded as a function of time. The isothermal reduction behavior of precursors was investigated. The structures of reduced products and the different phases formed were investigated and correlated with the reduction conditions. At >60% reduction extents, Fe2(MoO4)3] phase was first reduced to Fe2MoO3O8 before the formation of FeMo, while FeMoO4 and MoO2 were reduced to FeMo and Mo. In precursors containing higher content of Fe2O3, FeMo, Fe3Mo and Fe phases were produced. The visual observation of reduced samples showed that the volume was gradually shrinking with rise in temperature up to 800oC and beyond which a measurable swelling was observed reaching about 170% at 900oC.

  13. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    SciTech Connect

    Ismail, A. H.; Jafaar, M. S.

    2011-07-01

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reports had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)

  14. ULTRASOUND-GUIDED INJECTIONS IN HORSES WITH CRANIOVENTRAL DISTENSION OF THE COXOFEMORAL JOINT CAPSULE: FEASIBILITY FOR A CRANIOVENTRAL APPROACH.

    PubMed

    Whitcomb, Mary Beth; Vaughan, Betsy; Katzman, Scott; Hersman, Jake

    2016-03-01

    Intrasynovial access to the equine coxofemoral joint (CFJ) is inherently challenging. Blind injection techniques rely upon inconsistently palpable landmarks, and ultrasound guidance requires expertise for needle placement into the coxofemoral articulation. Aspiration is recommended to confirm intrasynovial placement and avoid sciatic nerve anesthesia. The aim of this observational, descriptive, retrospective study was to evaluate the feasibility for an alternative ultrasound-guided approach in horses with cranioventral distention of the CFJ identified during pelvic ultrasound. Thirteen horses with cranioventral CFJ distention, including 12 with severe pathology, were recruited from 2009 to 2014. Seven were excluded as they were not injected or underwent ultrasound-guided injection using a dorsal approach. The remaining six horses underwent a total of nine injections into the cranioventral recess. With the exception of one foal, all were aged horses (15-29 years) of varying breeds and uses, with prominent lameness due to subluxation (three), luxation (two), and severe osteoarthritis (one). The cranioventral recess was imaged adjacent to the proximal femur using a low-frequency curvilinear transducer placed ventral to the cranial joint margins. Using aseptic technique, spinal needles were placed cranial to the transducer and advanced caudomedially into the distended cranioventral recess. Synovial fluid was retrieved in all cases with one needle placement. Findings indicated that, when distended, ultrasound-guided access to the cranioventral CFJ recess is a feasible alternative approach and may reduce the potential for extra-synovial placement. Distention in this sample of horses was accompanied by severe pathology, also supporting the use of this approach for therapeutic interventions. PMID:26748616

  15. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

    PubMed

    Liao, Tingting; Wang, Rui; Zheng, Xunhua; Sun, Yang; Butterbach-Bahl, Klaus; Chen, Nuo

    2013-11-01

    The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification. PMID:24184044

  16. Synergistic Effects of a Combination of Cr2O3-Functionalization and UV-Irradiation Techniques on the Ethanol Gas Sensing Performance of ZnO Nanorod Gas Sensors.

    PubMed

    Park, Sunghoon; Sun, Gun-Joo; Jin, Changhyun; Kim, Hyoun Woo; Lee, Sangmin; Lee, Chongmu

    2016-02-01

    There have been very few studies on the effects of combining two or more techniques on the sensing performance of nanostructured sensors. Cr2O3-functionalized ZnO nanorods were synthesized using carbothermal synthesis involving the thermal evaporation of a mixture of ZnO and graphite powders followed by a solvothermal process for Cr2O3-functionalization. The ethanol gas-sensing properties of multinetworked pristine and Cr2O3-functionalized ZnO nanorod sensors under UV illumination were examined to determine the effects of combining Cr2O3-ZnO heterostructure formation and UV irradiation on the gas-sensing properties of ZnO nanorods. The responses of the pristine and Cr2O3-functionalized ZnO nanorod sensors to 200 ppm of ethanol at room temperature by UV illumination at 2.2 mW/cm(2) were increased by 3.8 and 7.7 times, respectively. The Cr2O3-functionalized ZnO nanorod sensor also showed faster response/recovery and better selectivity than those of the pristine ZnO nanorod sensor at the same ethanol concentration. This result suggests that a combination heterostructure formation and UV irradiation had a synergistic effect on the gas-sensing properties of the sensor. The synergistic effect might be attributed to the catalytic activity of Cr2O3 for ethanol oxidation as well as to the increased change in conduction channel width accompanying adsorption and desorption of ethanol under UV illumination due to the presence of Cr2O3 nanoparticles in the Cr2O3-functionalized ZnO nanorod sensor. PMID:26751000

  17. Theoretical approach for enhanced mass transfer effects in duct flue gas desulfurization processes. Topical report for Task 4, Novel techniques

    SciTech Connect

    Jozewicz, Wojciech; Rochelle, G.T.

    1991-09-17

    Novel techniques designed for the enhancement of Ca(OH){sub 2} utilization in dry-sorbent injection (DSI) and duct-spray drying (DSD) were investigated in the Long Time Differential Reactor (LTDR), Short Time Differential Reactor (STDR), and 50-cfm pilot plant. At 2000-ppm SO{sub 2} and 60 percent relative humidity, the presence of up to 30-percent initial free moisture significantly increased sorbent reactivity with SO{sub 2}, compared to sorbent with equilibrium amount of moisture. The conversion decreased when the initial free moisture increased beyond 30--50 percent. The initial free moisture content and corresponding level of maximum sorbent conversion with SO{sub 2} varied with the surface area of the sorbent. Sorbent moisture capacity tests indicated that agglomeration of damp calcium silicate sorbent was a function of sorbent pore volume. Critical moisture content was increasing with specific surface area. Very little improvement in SO{sub 2} removal was obtained by DSI recycle operation downstream of humidification. Significant enhancement was achieved by DSI recycle upstream of humidification. Grinding of DSI solids with and without fly ash resulted in significant increase of surface area and pore volume and resulting reactivity with SO{sub 2}. Organic buffer additives were tested as potential enhancement of Ca(OH){sub 2} utilization during the DSD process. Bench-scale results suggested that organic acids should be effective additives to enhance SO{sub 2} in slurry if SO{sub 2} absorption was controlled significantly by liquid film resistance. Pilot-plant tests did not demonstrate significant enhancement of Ca(OH){sub 2} conversion during spray drying as a result of buffer additives. Grinding of simulated DSD solids resulted in significant enhancement of Ca(OH){sub 2} reactivity with SO{sub 2}.

  18. Investigation of the characteristics of biofilms grown in gas-phase biofilters with and without ozone injection by CLSM technique.

    PubMed

    Saingam, Prakit; Xi, Jinying; Xu, Yang; Hu, Hong-Ying

    2016-02-01

    Recently, ozone injection technique was developed as a novel biomass control method to reduce bed clogging in biofilters treating volatile organic compounds (VOCs). However, the effects of ozone on the characteristics of biofilms are still unknown. In this study, two identical lab-scale biofilters treating gaseous toluene were operated in parallel except that one was continuously injected with 200 mg/m(3) ozone. Four glass slides were placed inside each biofilter on day 57 and then were taken out sequentially after 1, 2, 4, and 6 weeks of cultivation. The biofilms grown on the glass slides were stained by the ViaGram™ Red + Bacterial Gram Stain and Viability Kit and observed through the confocal laser scanning microscopy (CLSM). According to the CLSM images of 1, 2, and 4 weeks, the ozonated biofilm was significantly thinner than the control biofilm, which demonstrated that ozone could effectively control the biomass in the biofilter. For the biofilter without ozone injection, the ratios of viable cells (0.51~0.89) and the ratios of Gram-positive bacteria (0.22~0.57) both decreased within 4 weeks of cultivation. The CLSM image analysis results also demonstrated that a continuous injection of 200 mg/m(3) ozone was able to significantly enhance the ratio of viable cells to 0.77~0.97 and allow the dominance of Gram-positive bacteria in the biofilms with the ratio 0.46~0.88 instead of Gram-negative bacteria. For the 6-week samples, the biofilm thickness of the control system was reduced significantly which indicated the detachment of accumulated biofilms might occur in the samples without ozone. PMID:26536873

  19. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  20. Multiclass pesticide analysis in fruit-based baby food: A comparative study of sample preparation techniques previous to gas chromatography-mass spectrometry.

    PubMed

    Petrarca, Mateus H; Fernandes, José O; Godoy, Helena T; Cunha, Sara C

    2016-12-01

    With the aim to develop a new gas chromatography-mass spectrometry method to analyze 24 pesticide residues in baby foods at the level imposed by established regulation two simple, rapid and environmental-friendly sample preparation techniques based on QuEChERS (quick, easy, cheap, effective, robust and safe) were compared - QuEChERS with dispersive liquid-liquid microextraction (DLLME) and QuEChERS with dispersive solid-phase extraction (d-SPE). Both sample preparation techniques achieved suitable performance criteria, including selectivity, linearity, acceptable recovery (70-120%) and precision (⩽20%). A higher enrichment factor was observed for DLLME and consequently better limits of detection and quantification were obtained. Nevertheless, d-SPE provided a more effective removal of matrix co-extractives from extracts than DLLME, which contributed to lower matrix effects. Twenty-two commercial fruit-based baby food samples were analyzed by the developed method, being procymidone detected in one sample at a level above the legal limit established by EU. PMID:27374564

  1. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  2. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children

    PubMed Central

    Achar, Shreepathi Krishna; Sagar, Maddani Shanmukhappa; Shetty, Ranjan; Kini, Gurudas; Samanth, Jyothi; Nayak, Chaitra; Madhu, Vidya; Shetty, Thara

    2016-01-01

    Background and Aims: Dynamic parameters such as the respiratory variation in aortic flow peak velocity (ΔVpeak) and inferior vena cava distensibility index (dIVC) are accurate indices of fluid responsiveness in adults. Little is known about their utility in children. We studied the ability of these indices to predict fluid responsiveness in anaesthetised and mechanically ventilated children. Methods: This prospective study was conducted in 42 children aged between one to 14 years scheduled for elective surgery under general endotracheal anaesthesia. Mechanical ventilation was initiated with a tidal volume of 10 ml/kg. ΔVpeak, dIVC and stroke volume index (SVI) were measured before and after volume expansion (VE) with 10 ml/kg of crystalloid using transthoracic echocardiography. Patients were considered to be responders (R) and non-responders (NR) when SVI increased to either ≥15% or <15% after VE. ΔVpeak and dIVC were analysed between R and NR. Results: The best cut-off value for ΔVpeak as defined by the receiver operator characteristics (ROC) curve analysis was 12.2%, for which sensitivity, specificity, positive predictive value and negative predictive value were 100%, 94%, 96% and 100%, respectively, the area under the curve was 0.975. The best cut-off value for dIVC as defined by the ROC curve analysis was 23.5%, for which sensitivity, specificity, positive predictive value and negative predictive value were 91%, 89%, 91% and 89%, respectively, the area under the curve was 0.95. Conclusion: ΔVpeak and dIVC are reliable indices of fluid responsiveness in children. PMID:27013751

  3. Is serotonin in enteric nerves required for distension-evoked peristalsis and propulsion of content in guinea-pig distal colon?

    PubMed

    Sia, T C; Flack, N; Robinson, L; Kyloh, M; Nicholas, S J; Brookes, S J; Wattchow, D A; Dinning, P; Oliver, J; Spencer, N J

    2013-06-14

    Recent studies have shown genetic deletion of the gene that synthesizes 5-HT in enteric neurons (tryptophan hydroxylase-2, Tph-2) leads to a reduction in intestinal transit. However, deletion of the Tph-2 gene also leads to major developmental changes in enteric ganglia, which could also explain changes in intestinal transit. We sought to investigate this further by acutely depleting serotonin from enteric neurons over a 24-h period, without the confounding influences induced by genetic manipulation. Guinea-pigs were injected with reserpine 24h prior to euthanasia. Video-imaging and spatio-temporal mapping was used to record peristalsis evoked by natural fecal pellets, or slow infusion of intraluminal fluid. Immunohistochemical staining for 5-HT was used to detect the presence of serotonin in the myenteric plexus. It was found that endogenous 5-HT was always detected in myenteric ganglia of control animals, but never in guinea-pigs treated with reserpine. Interestingly, peristalsis was still reliably evoked by either intraluminal fluid, or fecal pellets in reserpine-treated animals that also had their entire mucosa and submucosal plexus removed. In these 5-HT depleted animals, there was no change in the frequency of peristalsis or force generated during peristalsis. In control animals, or reserpine treated animals, high concentrations (up to 10 μM) of ondansetron and SDZ-205-557, or granisetron and SDZ-205-557 had no effect on peristalsis. In summary, acute depletion of serotonin from enteric nerves does not prevent distension-evoked peristalsis, nor propulsion of luminal content. Also, we found no evidence that 5-HT3 and 5-HT4 receptor activation is required for peristalsis, or propulsion of contents to occur. Taken together, we suggest that the intrinsic mechanisms that generate peristalsis and entrain propagation along the isolated guinea-pig distal colon are independent of 5-HT in enteric neurons or the mucosa, and do not require the activation of 5-HT3 or 5

  4. Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2015-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulphur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulphur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometers at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. Due to the lack of analytical approaches for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr etc.) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their specificationtheir species and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study, the first application of a 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated gas diffusion denuder (Huang and Hoffmann, 2008) on volcanic gases proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (Br2 and BrO(H)), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with bromine gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Choosing a flow rate of 500 mL-min-1 and a denuder length of 0.5 m a nearly quantitative collection efficiency was achieved. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography

  5. Dispersive solid-phase extraction as a simplified clean-up technique for biological sample extracts. Determination of polybrominated diphenyl ethers by gas chromatography-tandem mass spectrometry.

    PubMed

    Fontana, Ariel R; Camargo, Alejandra; Martinez, Luis D; Altamirano, Jorgelina C

    2011-05-01

    Dispersive solid-phase extraction (DSPE) is proposed for the first time as a simplified, fast and low cost clean-up technique of biological sample extracts for polybrominated diphenyl ethers (PBDEs) determination. The combination of a traditional extraction technique, such as ultrasound-assisted leaching (USAL) with DSPE was successfully applied for sample preparation prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. The analytes were first extracted from 1g homogenized sample in n-hexane:dichloromethane (8:2) by applying USAL technique and further cleaned-up using DSPE with 0.20 g C(18)-silica as sorbent material. Different solvent mixtures, sorbent type and amount, and lipid digestion procedures were evaluated in terms of clean-up and extraction efficiency. Under optimum conditions, the method detection limits (MDLs) for PBDEs, calculated as three times the signal-to-noise ratio (S/N) were within the range 9-44 pg g(-1) wet weight. The calibration graphs were linear within the concentration range of 53-500,000 pg g(-1), 66-500,000 pg g(-1), 89-500,000 pg g(-1) and 151-500,000 pg g(-1) for BDE-47, BDE-100, BDE-99 and BDE-153, respectively; and the coefficient of determination (r(2)) exceeded 0.9992 for all analytes. The proposed methodology was compared with a reference solid-phase extraction technique. The applicability of the methodology for the screening of PBDEs has been demonstrated by analyzing spiked and real samples of biological nature (fish, egg and chicken) with different lipid content as well as reference material (WELL-WMF-01). Recovery values ranged between 75% and 114% and the measured concentrations in certified material showed a reasonable agreement with the certified ones. BDE-47, BDE-100 and BDE-99 were quantified in three of the seven analyzed samples and the concentrations ranged between 91 and 140 pg g(-1). In addition, this work is the first description of PBDEs detected in fish of Argentinean environment. PMID

  6. Technical note: Can the sulfur hexafluoride tracer gas technique be used to accurately measure enteric methane production from ruminally cannulated cattle?

    PubMed

    Beauchemin, K A; Coates, T; Farr, B; McGinn, S M

    2012-08-01

    An experiment was conducted to determine whether using ruminally cannulated cattle affects the estimate of enteric methane (CH(4)) emissions when using the sulfur hexafluoride (SF(6)) tracer technique with samples taken from a head canister. Eleven beef cattle were surgically fitted with several types of ruminal cannula (2C, 3C, 3C+washer, 9C; Bar Diamond, Parma, ID). The 2C and 3C models (outer and inner flanges with opposite curvature) had medium to high leakage, whereas the 9C models (outer and inner flanges with the same curvature) provided minimum to moderate leakage of gas. A total of 48 cow-day measurements were conducted. For each animal, a permeation tube containing sulfur hexafluoride (SF(6)) was placed in the rumen, and a sample of air from around the nose and mouth was drawn through tubing into an evacuated canister (head canister). A second sample of air was collected from outside the rumen near the cannula into another canister (cannula canister). Background concentrations were also monitored. The methane (CH(4)) emission was estimated from the daily CH(4) and SF(6) concentrations in the head canister (uncorrected). The permeation SF(6) release rate was then partitioned based on the proportion of the SF(6) concentration measured in the head vs. the cannula canister. The CH(4) emissions at each site were calculated using the two release rates and the two CH(4):SF(6) concentration ratios. The head and cannula emissions were summed to obtain the total emission (corrected). The difference (corrected - uncorrected) in CH4 emission was attributed to the differences in CH(4):SF(6) ratio at the 2 exit locations. The proportions of CH(4) and SF(6) recovered at the head were greater (P < 0.001) for the 9C cannulas (64% and 66%) compared with the other cannulas, which were similar (P > 0.05; 2C, 6% and 4%; 3C, 17% and 15%; 3C+washer, 19% and 14%). Uncorrected CH(4) emissions were ± 10% of corrected emissions for 53% of the cow-day measurements. Only when more

  7. Intercomparison between gas-chromatography and long-path UV DOAS techniques for the measurement of benzene and toluene in urban atmospheres

    NASA Astrophysics Data System (ADS)

    Allegrini, Ivo; Febo, Antonio

    1995-05-01

    An intercomparison between DOAS and gas-chromatographic techniques for the measurement of the concentration of benzene and toluene in the air has been carried out in Milan, Italy during the winter of 1994. Measurements of the natural radioactivity due to Radon have been carried out for a direct description of the mixing properties of the atmosphere. The temporal trend of primary pollutants, including hydrocarbons, follow, as expected, that of radioactivity. The results show that large discrepancies between the two methods have to be associated with the stratification of the atmosphere caused by ground based inversions. Scatter plots of GC against DOAS data show acceptable agreements, while the nature of observed offsets in DOAS system need further investigation. The results also show that the measurements are self consistent as they fit the physio-chemical evolution of atmospheric pollution at the site of sampling. In addition, data obtained from DOAS may be used to describe the evaluation of vertical mixing through the ratio toluene/benzene. Data on this new and important aspect are also presented.

  8. Successful field evaluation of the efficiency of a gas gravity drainage process by applying recent developments in Sponge coring technique in a major oil field

    SciTech Connect

    Durandeau, M.; El-Emam, M.; Anis, A.H.; Fanti, G.

    1995-11-01

    This paper describes the application and integration of new technologies and recent developments in Sponge coring and presents the methodology used to carry out successfully the various phases of well designed Sponge coring project, including the coring phase, the on-site measurements and the full evaluation of the Sponge core samples. A field case is presented where a Sponge coring project was accomplished to obtain accurate fluids distribution and evaluate the gas gravity drainage efficiency in one of the Arab D sub-reservoirs of a major oil field offshore Abu Dhabi. A Sponge coring technology team was created to optimize the methodology used during Sponge coring an minimize the uncertainties which persisted on some of the previous operations. The effectiveness of the technique is discussed, with comparison to open hole logs and SCAL data. Realistic petrophysical parameters were obtained from non-invaded, native-state core samples. The effective oil saturation obtained from the Sponge core analysis results showed that the gravity segregation mechanism has been very active and efficient to recover the oil in the reservoir.

  9. Gas chromatographic techniques for the analysis of hydrocarbons in low-rank coal liquefaction products. Part I. Treatment of the data

    SciTech Connect

    Potts, Y.R.; Farnum, S.A.; Raynie, D.R.

    1984-01-01

    The project that provided the impetus for this research involved the conversion of coal into refinable oils. The goals of the project were two-fold. First was to study the effects of two very different start-up solvents on the composition of the coal liquefaction product at line-out. Second was to characterize the changes that occurred during the line-out process. A major effort was on the analysis of the hydrocarbons oils by capillary gas chromatography. The distillate oil samples were first separated by silica gel column chromatography into 11 fractions to simplify the complex mixtures. Fractions were combined into four groups so that similar polarities resulted: (1) alkanes; (2) light aromatics; (3) di, tri, and tetra aromatics; and (4) heavy aromatics. Calibration standards, containing up to 30 standard compounds, were prepared and diluted to several different concentrations. An aliquot of the appropriate internal standard was added to each calibration standard as well as to the diluted column fractions. Because the relative response of the internal standard may vary at different concentrations, it was important that the same amount be added every time. To calibrate the GC, the calibration standard dilutions were each injected twice and run with the same temperature program as the samples to be analyzed. There are some limitations to this technique which are linked. 3 references, 1 figure.

  10. Structural characterization and X-ray analysis by Williamson-Hall method for Erbium doped Aluminum Nitride nanoparticles, synthesized using inert gas condensation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Corbett, Joseph P.; Jadwisienczak, Wojciech M.; Kordesch, Martin E.

    2016-05-01

    We have synthesized AlN nanoparticles (NPs) doped in-situ with Er (AlN:Er) using inert gas condensation technique. Using x-ray diffraction (XRD) peak broadening analysis with the Williamson-Hall (W-H) Uniform Deformation Model (UDM) the crystallite size of the NPs and the strain in NPs were found to be 80±38 nm and 3.07×10-3±0.9×10-3 respectively. In comparison, using the Debye-Scherrer's (DS) formula, we have inferred that the crystallite size of the NPs was 23±6 nm and the average strain was 4.3×10-3±0.4×10-3. The scanning electron microscopy images show that the NPs are spherical and have an average diameter of ∼300 nm. The crystallite size is smaller than the size of the NPs revealing their polycrystalline behavior. In addition, the NPs strain, stress and energy density were also calculated using W-H analysis combined with the Uniform Deformation Stress Model (UDSM) and the Uniform Deformation Energy Density Model (UDEDM). Suggested by the spherical geometry and polycrystalline nature of the AlN NPs, the strain computed from UDM, UDSM and UDEDM were in agreement confirming an isotropic mechanical nature of the particle. Luminescence measurements revealed the temperature dependence of the optical emission of the Er3+ ions, confirming the use of AlN:Er NPs for nano-scale temperature sensing.

  11. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Federal Lands - A Field Evaluation At Big South Fork National River And Recreation Area, Scott County, Tennessee

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2000-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands so that sites may be prioritized for further, more formal assessment or remediation. These techniques should allow the field investigator to extend the assessment beyond the surface disturbances documented by simple observation and mapping using field-portable instruments and expendable materials that provide real-time data. The principal contaminants of current concern are hydrocarbons, produced water, and naturally occurring radioactive materials (NORM). Field investigators can examine sites for the impacts of hydrocarbon releases using a photoionization detector (PID) and a soil auger. Volatile organic carbon (VOC) in soil gases in an open auger hole or in the head space of a bagged and gently warmed auger soil sample can be measured by the PID. This allows detection of hydrocarbon movement in the shallow subsurface away from areas of obvious oil-stained soils or oil in pits at a production site. Similarly, a field conductivity meter and chloride titration strips can be used to measure salts in water and soil samples at distances well beyond areas of surface salt scarring. Use of a soil auger allows detection of saline subsoils in areas where salts may be flushed from the surface soil layers. Finally, a microRmeter detects the presence of naturally occurring radioactive materials (NORM) in equipment and soils. NORM often goes undetected at many sites although regulations limiting NORM in equipment and soils are being promulgated in several States and are being considered by the USEPA. With each technique, background sampling should be done for comparison with impacted areas. The authors examined sites in the Big South Fork National River and Recreation Area in November of 1999. A pit at one site at the edge of the flood plain of a small stream had received crude oil releases from a nearby tank. Auger holes down

  12. A nitro-arginine derivative of trimebutine (NO2-Arg-Trim) attenuates pain induced by colorectal distension in conscious rats.

    PubMed

    Distrutti, Eleonora; Mencarelli, Andrea; Renga, Barbara; Caliendo, Giuseppe; Santagada, Vincenzo; Severino, Beatrice; Fiorucci, Stefano

    2009-05-01

    Irritable bowel syndrome (IBS) is characterized by dysfunction of the afferent pathways that may lead to visceral hypersensitivity. Trimebutine is a weak opioid receptor agonist used in the treatment of IBS. We report on the effects of a novel derivative in which trimebutine has been salified with nitro-arginine(NO2-Arg-Trim), in modulating nociception to colorectal distension (CRD) in intact and post-colitis rats,an animal model that mimics some features of IBS. Colorectal sensitivity and pain were assessed by measuring the abdominal withdrawal score (AWR) during CRD. Healthy rats were treated with vehicle,trimebutine (10 mg/kg i.p.) or NO2-Arg-Trim (4, 8 and 16 mg/kg i.p.). Post-colitis, allodynic rats were investigated 4 weeks after colitis induction. Treating healthy rats with NO2-Arg-Trim resulted in a dose-dependent attenuation of CRD-induced nociception and in an inhibition of CRD-induced overexpression of spinal cFOS mRNA. NO2-Arg-Trim-induced antinociception was reversed by the opioid receptor antagonist naloxone and by the NO synthase-cGMP pathway inhibitor methylene blue, while L-NAME had no effect.The antinociceptive effect of NO2-Arg-Trim was maintained in a rodent model of post-inflammatory allodynia. In this setting,NO2-Arg-Trim but not trimebutine, significantly down-regulated the spinal cFOS mRNA expression and increased blood concentrations of NO2 +NO3. Moreover, the expression of several genes involved in inflammation and pain, as IL-1beta, TNFalpha, COX2 and iNOS, was up-regulated in colonic tissue from post-colitis rats and NO2-Arg-Trim, but not trimebutine, effectively reversed this effect. In summary, these data suggest that NO2-Arg-Trim inhibits nociception induced by CRD in both healthy and post-colitis, allodynic rats. The NO2-arginine moiety interacts with the opioid agonist trimebutine to potentiate its analgesic activity. This study provides evidence that NO2-arginine derivative of trimebutine might have beneficial effect in the

  13. Comparison of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study and conventional contrast radiographic colostography in children with anorectal malformation

    PubMed Central

    Ekwunife, Okechukwu Hyginus; Umeh, Eric Okechukwu; Ugwu, Jideofor Okechukwu; Ebubedike, Uzoamaka Rufina; Okoli, Chinedu Christian; Modekwe, Victor Ifeanyichukwu; Elendu, Kelechi Collins

    2016-01-01

    Background: In children with high and intermediate anorectal malformation, distal colostography is an important investigation done to determine the relationship between the position of the rectal pouch and the probable site of the neo-anus as well as the presence or absence of a fistula. Conventionally, this is done using contrast with fluoroscopy or still X-ray imaging. This, however, has the challenges of irradiation, availability and affordability, especially in developing countries. This study compared the accuracy of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study (SCDS) with conventional contrast distal colostography (CCDC) in the determination of the precise location of the distal rectal pouch and in detecting the presence and site of fistulous communication between the rectum and the urogenital tract was studied. Materials and Methods: Trans-perineal ultrasound-guided pressure augmented SCDS, CCDC and intra-operative measurements were done sequentially for qualified infants with anorectal malformation and colostomy. Pouch skin distance and presence or absence of recto urinary or genital fistula was measured prospectively in each case. Statistical significance was inferred at P-value of <0.01. Results: There were thirteen infants, 9 males and 4 females. The age at onset of investigation ranged from 2 to 12 months with a median value of 9 months. Using paired t-test at a confidence interval of 95%, the P value when SCDS values are compared with CCDC is 0.19; and 0.06 when SCDS was compared with intra-operative measurements. Hence, there is no statistical difference as P > 0.01. On its ability to detect presence or absence of a fistula: SCDS had a sensitivity of 50.0%, specificity of 100.0%, accuracy of 69.2%, negative predictive value of fistulas of 55.6% and a positive predictive value of fistulas of 100.0%. Conclusion: Ultrasound-guided pressure augmented SCDS can safely and reliably be used to assess the distal colonic

  14. Techniques for Elastic Properties Measurements of Partial Molten Rocks, Hydrous Minerals and Melts in Gas Pressure Vessels and Multi-Anvil Devices

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Roetzler, K.; Schilling, F. R.; Wehber, M.; Lathe, C.

    2008-12-01

    The interpretation of highly resolved seismic data from Earth's deep interior require measurements of the physical properties of Earth materials under experimental simulated mantle conditions. For deep crustal to uppermost mantle conditions high performance gas pressure vessels enable a virtually unrestricted optimization of the measuring configurations for high p-T-conditions [1]. Exhumed high pressure rocks can be used as representative samples. The paper presents transient measurements of elastic wave velocities for granulite facies rocks under partial melting conditions. Despite the compact natural rock samples as a result of long-term experiments exceeding pressures of 1.5 GPa and temperatures of 1,000°C newly-formed garnets, orthopyroxenes and potash feldspars could be found in the samples after the experiments. Discovering the huge water storage capacity of nominally anhydrous minerals (NAMs) under high pressure conditions dramatically changed our image of state and dynamics of Earth's deep interior [2]. The simulation of these in situ conditions require using of diamond anvil cells (DAC) and multi-anvil devices (MAD) as well as mostly synthetical samples. MADs are more limited in pressure, but provide sample volumes 3 to 7 orders of magnitude bigger. They offer small and even adjustable temperature gradients over the whole sample. The bigger samples make anisotropy and structural effects in complex systems accessible for measurements in principle. Using ultrasonic interferometry the measurement of both elastic wave velocities have no limits for opaque and encapsulated samples. Using the 6 to 8 anvils of a MAD as buffers allow the simultaneous recording of acoustic emissions from different directions of space and consequently the localization of the spikes during ongoing phase transitions and dehydration. The recent development of deformation-DIA MADs (D-DIA) make not only deformation measurements under simulated mantle conditions possible, but also the

  15. Profiling of urinary testosterone and luteinizing hormone in exercise-stressed male athletes, using gas chromatography-mass spectrometry and enzyme immunoassay techniques.

    PubMed

    Yap, B K; Kazlauskas, R; Elghazi, K; Johnston, G A; Weatherby, R P

    1996-12-01

    Knowledge of the effects of episodic or short-term exercise-stress on endogenous testosterone and luteinizing hormone levels still remains fragmentary and inconclusive. In this study, an approach based on the absolute concentrations of urinary total testosterone (T), luteinizing hormone (LH) and the T/LH concentration ratios, was used to profile short-term exercise-stress responses in healthy drug-free male athletes. Testosterone and luteinizing hormone concentrations were measured using gas chromatography-mass spectrometry (GC-MS) and microparticle enzyme immunoassay (MEIA) techniques, respectively. Stress profiles derived from exercise-stress at VO2max, 68.1% VO2max and 51.6% VO2max were plotted using the concentrations of T, LH and the ratios of T/LH found under non-stressed and stressed conditions. Significant changes in LH concentrations (p < 0.005) and T/LH ratios (p < 0.005) levels were observed between the pre-stress and post-exercise conditions during acute exercise-stress at VO2max but the T concentration did not show any marked change relative to the non-stressed condition. Whilst exercise-stress appeared to reduce the change in T concentrations between the pre- and post-exercise states compared to that in the non-stressed control condition, the change in LH concentrations showed a moderate increase at submaximal oxygen uptake values. The stress profiles derived from this study facilitated an assessment of the relationship between the endogenous T, LH and T/LH ratio stress-responses over a short period of applied exercise-stress. PMID:9001959

  16. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine.

    PubMed

    Desfontaine, Vincent; Nováková, Lucie; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-06-17

    This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents. PMID:27185056

  17. Regional alveolar pressure during periodic flow. Dual manifestations of gas inertia.

    PubMed Central

    Allen, J L; Frantz, I D; Fredberg, J J

    1985-01-01

    We measured pressure excursions at the airway opening and at the alveoli (PA) as well as measured the regional distribution of PA during forced oscillations of six excised dog lungs while frequency (f[2-32 Hz]), tidal volume (VT [5-80 ml]), and mean transpulmonary pressure (PL [25, 10, and 6 cm H2O]) were varied. PA's were measured in four alveolar capsules glued to the pleura of different lobes. The apex-to-base ratio of PA's was used as an index of the distribution of dynamic lung distension. At low f, there was slight preferential distension of the lung base which was independent of VT, but at higher f, preferential distension of the lung apex was found when VT's were small, whereas preferential distension of the lung base was found when VT's approached or exceeded dead space. These VT-related changes in distribution at high frequencies seem to depend upon the branching geometry of the central airways and the relative importance of convective momentum flux vs. unsteady inertia of gas residing therein, which, in this study, we showed to be proportional to the ratio VT/VD*, where VD* is an index of dead space. Furthermore, they imply substantial alteration in the distribution of ventilation during high frequency ventilation as f, VT, and PL vary. The data also indicate that alveolar and airway opening pressure costs per unit flow delivered at the airway opening exhibit weakly nonlinear behavior and that resonant amplification of PA's, which has been described previously for the case of very small VT's, persists but is damped as VT's approach dead space values. PMID:4031066

  18. One-step multiple component isolation from the oil of Crinitaria tatarica (Less) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  19. The Effect of Nitrogen Gas Flow Rate on the Properties of TiN-COATED High-Speed Steel (hss) Using Cathodic Arc Evaporation Physical Vapor Deposition (pvd) Technique

    NASA Astrophysics Data System (ADS)

    Mubarak, Ali; Hamzah, Esah Binti; Mohd Toff, Mohd Radzi Hj.; Hashim, Abdul Hakim Bin

    Cathodic arc evaporation (CAE) is a widely-used technique for generating highly ionized plasma from which hard and wear resistant physical vapor deposition (PVD) coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as "macroparticles." In present study, titanium nitride (TiN) coatings on high-speed steel (HSS) coupons were produced with a cathodic arc evaporation technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN-coated HSS coupons. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD) with glazing incidence angle (GIA) technique, scratch tester, hardness testing machine, surface roughness tester, and atomic force microscope (AFM). An increase in the nitrogen gas flow rate showed decrease in the formation of macro-droplets in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Surface roughness decreased with an increase in nitrogen gas flow rate but was higher than the uncoated polished sample. Microhardness of TiN-coated HSS coupons showed more than two times increase in hardness than the uncoated one. Scratch tester results showed good adhesion between the coating material and substrate. Considerable improvement in the properties of TiN-deposited thin films was achieved by the strict control of all operational steps.

  20. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results. PMID:25353885

  1. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    NASA Astrophysics Data System (ADS)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium

  2. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air

  3. Data reduction analysis and application technique development for atmospheric trace gas constituents derived from remote sensors on satellite or airborne platforms

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1981-01-01

    The applicability of the gas filter correlation radiometer (GFCR) to the measurement of tropospheric carbon monoxide gas was investigated. An assessment of the GFRC measurement system to a regional measurement program was conducted through extensive aircraft flight-testing of several versions of the GFRC. Investigative work in the following areas is described: flight test planning and coordination, acquisition of verifying CO measurements, determination and acquisition of supporting meteorological data requirements, and development of supporting computational software.

  4. Determination of C1-C5 alkyl nitrates in rain, snow, white frost, lake, and tap water by a combined codistillation head-space gas chromatography technique. Determination of Henry's law constants by head-space GC.

    PubMed

    Hauff, K; Fischer, R G; Ballschmiter, K

    1998-12-01

    Alkyl nitrates with a chain length up to five carbon atoms have been determined in snow, white frost, and surface water. The samples were taken in the vicinity of Ulm, Germany, a region in central Europe. The determination of C1-C5-alkyl nitrates in water samples was achieved with a new water codistillation enrichment technique directly coupled with on-column head-space gas chromatography. The concentrations of the short chain alkyl nitrates in the different forms of wet deposition range from 89 ng L-1 for 1-propyl nitrate down to 35 ng L-1 for 1-pentyl nitrate. C1-C5-alkyl nitrates in wet depositions were also directly determined by static head-space gas chromatography. Gas-water partition coefficients KGW (Henry's law constant H) were determined by head-space gas chromatography and secondly by calculating the Henry's law constant by the ratio of vapor pressure to water solubility. The gas-water partition constants (dimensionless) or Henry's law constants range from KGW = 0.038 (H = 93 Pa m3 mol-1) for 1-propyl nitrate up to KGW = 0.122 (H = 302 Pa m3 mol-1) for 2-pentyl nitrate. PMID:9839394

  5. On the importance of steady-state isotopic techniques for the investigation of the mechanism of the reverse water-gas-shift reaction.

    PubMed

    Tibiletti, Daniele; Goguet, Alexandre; Meunier, Frederic C; Breen, John P; Burch, Robbie

    2004-07-21

    The formation and reactivity of surface intermediates in the reverse water-gas-shift reaction on a Pt/CeO2 catalyst are critically dependent on the reaction conditions so that conclusions regarding the reaction mechanism cannot be inferred using ex operando conditions. PMID:15263955

  6. Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques

    USGS Publications Warehouse

    Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.

    2012-01-01

    The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).

  7. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto

    2016-06-01

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  8. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-01

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT. PMID:25090138

  9. Water quality studied in areas of unconventional oil and gas development, including areas where hydraulic fracturing techniques are used, in the United States

    USGS Publications Warehouse

    Susong, David D.; Gallegos, Tanya J.; Oelsner, Gretchen P.

    2012-01-01

    The U.S. Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis is hosting an interdisciplinary working group of USGS scientists to conduct a temporal and spatial analysis of surface-water and groundwater quality in areas of unconventional oil and gas development. The analysis uses existing national and regional datasets to describe water quality, evaluate water-quality changes over time where there are sufficient data, and evaluate spatial and temporal data gaps.

  10. Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

    PubMed Central

    Seresinhe, T.; Madushika, S. A. C.; Seresinhe, Y.; Lal, P. K.; Ørskov, E. R.

    2012-01-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra×G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it’s highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra×G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental

  11. Comparative study of two extraction techniques to obtain representative aroma extracts for being analysed by gas chromatography-olfactometry: application to roasted pistachio aroma.

    PubMed

    Aceña, Laura; Vera, Luciano; Guasch, Josep; Busto, Olga; Mestres, Montserrat

    2010-12-01

    This research paper presents a comparative study of two different extraction and concentration techniques to obtain representative pistachio aroma extracts: the traditional direct solvent extraction (DSE) followed by high-vacuum transfer (HVT) and the headspace solid-phase microextraction (HS-SPME). The results showed that, although both techniques provide accurate information about the aromatic composition that will be perceived by the consumer, the precision in terms of within-day repeatability and between-days repeatability (intermediate precision) of the chromatographic areas presented better values for HS-SPME than for DSE-HVT. Moreover the solvent-free HS-SPME allows the extraction of more odour-active regions, requires very little sample handling and shorter time for sampling. PMID:21035808

  12. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    USGS Publications Warehouse

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  13. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection.

    PubMed

    Machado, Maria Elisabete; Fontanive, Fernando Cappelli; de Oliveira, José Vladimir; Caramão, Elina Bastos; Zini, Cláudia Alcaraz

    2011-11-01

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO(x) gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC × GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC × GC. PMID:21743984

  14. Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol gel technique

    NASA Astrophysics Data System (ADS)

    Dong, Qun; Su, Huilan; Zhang, Di; Zhang, Fangying

    2006-08-01

    A facile and versatile method is reported to fabricate the interwoven tubular hierarchy of SnO2 films using a biotemplate eggshell membrane (ESM) combined sol-gel approach. In order to promote the crystallization of SnO2 films, calcination is necessary and can adjust the size of the building units in the range 2.8-26 nm. Under the direction of ESM biomacromolecules, SnO2 nanocrystallites come into being and assemble into nanotubes, and further pattern porous hierarchical meshworks to faithfully retain the morphology of natural ESM. The sensor performance of as-prepared biomorphic SnO2 was measured for ethanol, liquefied petroleum gas (LPG), H2S, and gasoline. It is found that the SnO2 hierarchical films obtained have a good selectivity for LPG with a working temperature above 300 °C while for ethanol below 270 °C.

  15. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. PMID:23948441

  16. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  17. Longitudinal displacement of the carotid wall and cardiovascular risk factors: associations with aging, adiposity, blood pressure and periodontal disease independent of cross-sectional distensibility and intima-media thickness.

    PubMed

    Zahnd, Guillaume; Vray, Didier; Sérusclat, André; Alibay, Djhianne; Bartold, Mark; Brown, Alex; Durand, Marion; Jamieson, Lisa M; Kapellas, Kostas; Maple-Brown, Louise J; O'Dea, Kerin; Moulin, Philippe; Celermajer, David S; Skilton, Michael R

    2012-10-01

    The recently discovered longitudinal displacement of the common carotid arterial wall (i.e., the motion along the same plane as the blood flow), may be associated with incident cardiovascular events and represents a novel and relevant clinical information. At present, there have only been a few studies that have been conducted to investigate this longitudinal movement. We propose here a method to assess noninvasively the wall bi-dimensional (two-dimensional [2-D], cross-sectional and longitudinal) motion and present an original approach that combines a robust speckle tracking scheme to guidance by minimal path contours segmentation. Our method is well suited to large clinical population studies as it does not necessitate strong imaging prerequisites. The aim of this study is to describe the association between the longitudinal displacement of the carotid arterial wall and cardiovascular risk factors, among which periodontal disease. Some 126 Indigenous Australians with periodontal disease, an emerging risk factor, and 27 healthy age- and sex-matched non-indigenous control subjects had high-resolution ultrasound scans of the common carotid artery. Carotid intima-media thickness and arterial wall 2-D motion were then assessed using our method in ultrasound B-mode sequences. Carotid longitudinal displacement was markedly lower in the periodontal disease group than the control group (geometric mean (IQR): 0.15 mm (0.13) vs. 0.42 mm (0.30), respectively; p < 0.0001), independent of cardiovascular risk factors, cross-sectional distensibility and carotid intima-media thickness (p < 0.0001). A multivariable model indicated that the strongest correlates of carotid longitudinal displacement in adults with periodontal disease were age (β-coefficient = -.235, p = .03), waist (β-coefficient = -.357, p = 0.001), and pulse pressure (β-coefficient = .175, p = 0.07), independent of other cardiovascular risk factors, cross-sectional distensibility and pulse wave velocity. Carotid

  18. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane. PMID:17850804

  19. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    NASA Astrophysics Data System (ADS)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  20. Comparative study of different clean-up techniques for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with electron capture detection.

    PubMed

    Muhamad, Halimah; Zainudin, Badrul Hisyam; Abu Bakar, Nor Kartini

    2012-10-15

    Solid phase extraction (SPE) and dispersive solid-phase extraction (d-SPE) were compared and evaluated for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with an electron capture detector (GC-ECD). Several SPE sorbents such as graphitised carbon black (GCB), primary secondary amine (PSA), C(18), silica, and florisil were tested in order to minimise fat residues. The results show that mixed sorbents using GCB and PSA obtained cleaner extracts than a single GCB and PSA sorbents. The average recoveries obtained for each pesticide ranged between 81% and 114% at five fortification levels with the relative standard deviation of less than 7% in all cases. The limits of detection for these pesticides were ranged between 0.025 and 0.05 μg/g. The proposed method was applied successfully for the residue determination of both λ-cyhalothrin and cypermethrin in crude palm oil samples obtained from local mills throughout Malaysia. PMID:23442715

  1. Effect of changes in intra-abdominal pressure on diameter, cross-sectional area, and distensibility of the lower esophageal sphincter of healthy dogs as determined by use of an endoscopic functional luminal imaging probe.

    PubMed

    Mayhew, Philipp D; Pitt, Kathryn A; Steffey, Michele A; Culp, William T N; Kass, Philip H; Marks, Stanley L

    2016-08-01

    OBJECTIVE To evaluate the effect of intra-abdominal pressure (IAP) on morphology and compliance of the lower esophageal sphincter (LES) by use of impedance planimetry in healthy dogs and to quantify the effect of changes in IAP. ANIMALS 7 healthy, purpose-bred sexually intact male hound-cross dogs. PROCEDURES Dogs were anesthetized, and cross-sectional area (CSA), minimal diameter (MD), LES length, LES volume, and distensibility index (DI) of the LES were evaluated by use of an endoscopic functional luminal imaging probe. For each dog, measurements were obtained before (baseline) and after creation of a pneumoperitoneum at an IAP of 4, 8, and 15 mm Hg. Order of the IAPs was determined by use of a randomization software program. RESULTS CSA and MD at 4 and 8 mm Hg were not significantly different from baseline measurements; however, CSA and MD at 15 mm Hg were both significantly greater than baseline measurements. The LES length and LES volume did not differ significantly from baseline measurements at any IAP. The DI differed inconsistently from the baseline measurement but was not substantially affected by IAP. CONCLUSIONS AND CLINICAL RELEVANCE Pneumoperitoneum created with an IAP of 4 or 8 mm Hg did not significantly alter LES morphology in healthy dogs. Pneumoperitoneum at an IAP of 15 mm Hg caused a significant increase in CSA and MD of the LES. Compliance of the LES as measured by the DI was not greatly altered by pneumoperitoneum at an IAP of up to 15 mm Hg. PMID:27463542

  2. Gas chromatography in space

    NASA Technical Reports Server (NTRS)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  3. Denuder sampling techniques for the determination of gas-phase carbonyl compounds: a comparison and characterisation of in situ and ex situ derivatisation methods.

    PubMed

    Kahnt, Ariane; Iinuma, Yoshiteru; Böge, Olaf; Mutzel, Anke; Herrmann, Hartmut

    2011-05-15

    Two denuder sampling techniques have been compared for the analysis of gaseous carbonyl compounds. One type of denuder was coated with XAD-4 resin and the other type of denuder was coated with XAD-4 and 2,4-dinitrophenylhydrazine (DNPH) to derivatise gaseous carbonyl compounds to their hydrazone forms simultaneously. A detailed protocol for the denuder coating procedure is described. The collection efficiency under dry (RH <3%) and humid conditions (RH 50%) as well as filter positive artefacts were evaluated. The XAD-4/DNPH coated denuders showed significantly less break-through potential and hence collection than the XAD-4-only coated denuders. The performance of the XAD-4/DNPH denuder was better under humid conditions with no detected break-through for hydroxyacetone, methacrolein, methylglyoxal, campholenic aldehyde and nopinone. Calibration experiments were performed in a simulation chamber and carbonyl-hydrazone concentrations determined in the extracts of both the denuder types were related to the mixing ratios of gaseous carbonyl compounds in the chamber to overcome losses and errors associating with the denuder sampling, extraction and sample preparation. The application of on-tube conversion for the XAD-4/DNPH denuders resulted in higher R(2) values than the XAD-4 denuder, ranging up to 0.991 for nopinone. The XAD-4-only coated denuders showed acceptable calibration curves only for lower vapour pressure carbonyl compounds though larger relative standard deviations (RSD) were observed. Carbonyl compounds that were formed during the oxidation of nopinone were collected using the XAD-4/DNPH denuders. The results showed that the denuder sampling device was able to provide reproducible nopinone mixing ratios that remained in the chamber after about 1h of the oxidation. One isomer of oxo-nopinones was tentatively identified from off-line HPLC/(-)ESI-TOFMS analysis. Based on the TOFMS response of the nopinone-DNPH derivative, the oxo-nopinone molar yield of 0.7

  4. Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.

    PubMed

    Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F

    2015-04-01

    The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or

  5. Use of Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometric Detection and Random Forest Pattern Recognition Techniques for Classifying Chemical Threat Agents and Detecting Chemical Attribution Signatures.

    PubMed

    Strozier, Erich D; Mooney, Douglas D; Friedenberg, David A; Klupinski, Theodore P; Triplett, Cheryl A

    2016-07-19

    In this proof of concept study, chemical threat agent (CTA) samples were classified to their sources with accuracies of 87-100% by applying a random forest statistical pattern recognition technique to analytical data acquired by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-TOFMS). Three organophosphate pesticides, chlorpyrifos, dichlorvos, and dicrotophos, were used as the model CTAs, with data collected for 4-6 sources per CTA and 7-10 replicate analyses per source. The analytical data were also evaluated to determine tentatively identified chemical attribution signatures for the CTAs by comparing samples from different sources according to either the presence/absence of peaks or the relative responses of peaks. These results demonstrate that GC × GC-TOFMS analysis in combination with a random forest technique can be useful in sample classification and signature identification for pesticides. Furthermore, the results suggest that this combination of analytical chemistry and statistical approaches can be applied to forensic analysis of other chemicals for similar purposes. PMID:27295356

  6. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  7. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, F.; Ullah, S.; Stott, A.

    2015-08-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  8. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  9. Which bowel preparation is best? Comparison of a high-fibre diet leaflet, daily microenema and no preparation in prostate cancer patients treated with radical radiotherapy to assess the effect on planned target volume shifts due to rectal distension

    PubMed Central

    Zarkar, A; Southgate, E; Nightingale, P; Webster, G

    2013-01-01

    Objective: We evaluated and compared a high-fibre diet leaflet, daily microenema and no preparation to establish how best to achieve consistent bowel preparation in prostate cancer patients being treated with radical radiotherapy. Methods: 3 cohorts of 10 patients had different dietary interventions: no bowel preparation, high-fibre diet information leaflet and daily microenemas. The available cone beam CT (CBCT) scans of each patient were used to quantify interfractional changes in rectal distension (measured using average cross-sectional area—CSA), prostate shifts relative to bony anatomy compared with that at CT planning scan and rates of geometric miss (i.e. shifts of ≥5 mm). 85 CBCT scans were available in the pre-leaflet cohort, 89 scans in the post-leaflet, and 89 scans in the post-enema group. Results: Mean rectal CSA in the post-enema group was reduced compared with both pre-leaflet (p=0.010) and post-leaflet values (p=0.031). The magnitude of observed mean prostate shifts was significantly reduced in the post-enema group compared with the pre-leaflet group (p=0.014). The proportion of scans showing geometric miss (i.e. shift >5 mm) in the post-enema group (31%) was significantly lower than in the pre-leaflet (62%, p<0.001) or post-leaflet groups (56%, p<0.001). Conclusion: This study indicates microenema to be an effective measure to achieve reduction in rectal CSA, prostate shift and reduce geometric miss of ≥5 mm. A further prospective randomised study is advocated to validate the results. Advances in knowledge: The use of microenema is effective in reducing prostate shift and rectal CSA, consequently decreasing the incidence of geographical miss. PMID:23995876

  10. PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment.

    PubMed

    Zheng, Xin; Yang, Yi; Liu, Min; Yu, Yingpeng; Zhou, John L; Li, Donghao

    2016-07-01

    A novel cleanup technique termed as gas purge-microsyringe extraction (GP-MSE) was evaluated and applied for polycyclic aromatic hydrocarbon (PAH) determination in road dust samples. A total of 68 road dust samples covering almost the entire Shanghai area were analyzed for 16 priority PAHs using gas chromatography-mass spectrometry. The results indicate that the total PAH concentrations over the investigated sites ranged from 1.04μg/g to 134.02μg/g dw with an average of 13.84μg/g. High-molecular-weight compounds (4-6 rings PAHs) were significantly dominant in the total mass of PAHs, and accounted for 77.85% to 93.62%. Diagnostic ratio analysis showed that the road dust PAHs were mainly from the mixture of petroleum and biomass/coal combustions. Principal component analysis in conjunction with multiple linear regression indicated that the two major origins of road dust PAHs were vehicular emissions and biomass/fossil fuel combustions, which contributed 66.7% and 18.8% to the total road dust PAH burden, respectively. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 0.16μg/g to 24.47μg/g. The six highly carcinogenic PAH species (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) accounted for 98.57% of the total BaPeq concentration. Thus, the toxicity of PAHs in road dust was highly associated with high-molecular-weight compounds. PMID:27037890

  11. Modified Technique For Chemisorption Measurements

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Brown, Kenneth G.; Schryer, Jacqueline

    1989-01-01

    In measurements of chemisorption of CO on Pt/SnO2 catalyst observed that if small numbers of relatively large volumes of adsorbate gas are passed through sample, very little removal of CO detected. In these cases little or no CO has been chemisorbed on Pt/SnO2. Technique of using large number of small volumes of adsorbate gas to measure chemisorption applicable to many gas/material combinations other than CO on Pt/SnO2. Volume used chosen so that at least 10 percent of adsorbate gas removed during each exposure.

  12. Application of linear multivariate calibration techniques to identify the peaks responsible for the antioxidant activity of Satureja hortensis L. and Oliveria decumbens Vent. essential oils by gas chromatography-mass spectrometry.

    PubMed

    Samadi, Naser; Masoum, Saeed; Mehrara, Bahare; Hosseini, Hossein

    2015-09-15

    Satureja hortensis L. and Oliveria decumbens Vent. are known for their diverse effects in drug therapy and traditional medicine. One of the most interesting properties of their essential oils is good antioxidant activity. In this paper, essential oils of aerial parts of S. hortensis L. and O. decumbens Vent. from different regions were obtained by hydrodistillation and were analyzed by gas chromatography-mass spectrometry (GC-MS). Essential oils were tested for their free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to identify the peaks potentially responsible for the antioxidant activity from chromatographic fingerprints by numerous linear multivariate calibration techniques. Because of its simplicity and high repeatability, orthogonal projection to latent structures (OPLS) model had the best performance in indicating the potential antioxidant compounds in S. hortensis L. and O. decumbens Vent. essential oils. In this study, P-cymene, carvacrol and β-bisabolene for S. hortensis L. and P-cymene, Ç-terpinen, thymol, carvacrol, and 1,3-benzodioxole, 4-methoxy-6-(2-propenyl) for O. decumbens Vent. are suggested as the potentially antioxidant compounds. PMID:26262598

  13. Gas Interference in Sucker Rod Pump

    NASA Astrophysics Data System (ADS)

    Samad, Abdus

    2010-10-01

    Commonly used artificial lift or dewatering system is sucker rod pump and gas interference of the pump is the biggest issue in the oil and gas industry. Gas lock or fluid pound problems occur due to the gas interference when the pump has partially or completely unfilled plunger barrel. There are several techniques available in the form of patents to solve these problems but those techniques have positive as well as negative aspects. Some of the designs rely on the leakage and some of the designs rely on the mechanical arrangements etc to break the gas lock. The present article compares the existing gas interference handling techniques.

  14. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  15. Development of a new Laser Photofragmentation/Fluorescent Assay by Gas Expansion (LP/FAGE) technique for the quantification of tropospheric nitrous acid (HONO) at low parts-per-trillion mixing ratios

    NASA Astrophysics Data System (ADS)

    Mielke, L. H.; Lew, M.; Bottorff, B.; Berke, A.; Raff, J. D.; Stevens, P. S.; Dusanter, S.

    2013-12-01

    Determining the full oxidative capacity of the atmosphere is vital to understanding the production of secondary pollutants such as ozone and secondary organic aerosols and for regulating the lifetime of pollutants leading to climate change. The hydroxyl radical is the primary oxidant of volatile organic compounds (VOCs) in the troposphere. Nocturnal nitrous acid (HONO) is an important radical reservoir species and releases OH upon photolysis the next morning. In addition, recent studies have indicated higher than expected mixing ratios of HONO in the daytime. As daytime HONO mixing ratios usually maximize at only a couple hundred part-per-trillion, it is important to have a technique that is accurate, sensitive, and precise. Here we outline an instrumental technique called Laser Photofragmention/Fluorescent Assay by Gas Expansion (LP/FAGE). Ambient air is drawn through an inlet composed of a 1' diameter metal disk with a 0.025' cylindrically bored hole where it undergoes expansion into a cell held at ~3 torr. Fiber coupled laser emission (YILF: 355 nm, 2.2 W) induces photofragmentation of HONO to OH and NO whereby the OH is quantified by the FAGE technique using a fiber coupled 308 nm (6 mW) laser emission. The 355 nm and 308 nm emission are single pass, collinear, and separated only by the time delay of the pulses. To differentiate ambient OH from HONO-generated-OH, a shutter is used to block the 355 nm laser emission for a given period of time. Fluorescence from OH vs. fluorescence from interfering species can be differentiated by scanning on and off a specific rovibronic feature in the OH absorbance spectra. In this presentation we outline the instrumental technique, including its calibration in which effluent from an HCl permeation device is humidified and passed over a bed of sodium nitrate coated glass beads. The calibrator output is varied from 1 to several tens of parts-per-billions (ppb) and is detected using a chemiluminescence NOx analyzer. The

  16. Remote Raman measurement techniques

    NASA Astrophysics Data System (ADS)

    Leonard, D. A.

    1981-02-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  17. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  18. Remote Raman Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Leonard, Donald A.

    1981-02-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  19. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  20. Ozone flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1981-01-01

    Flow visualization techniques using ozone for tracing gas flows are proposed whereby ozone is detected through its strong absorption of ultraviolet light, which is easily made visible with fluorescent materials, or through its reaction with nitric oxide to form excited nitrogen dioxide, which in relaxing emits detectable light. It is shown that response speeds in the kHz range are possible with an ultraviolet detection system for initial ozone concentrations of about 1%.

  1. A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Tuomi, M.

    2012-12-01

    Context. Several M dwarfs are targets of systematical monitoring in searches for Doppler signals caused by low-mass exoplanet companions. As a result, an emerging population of high-multiplicity planetary systems around low-mass stars are being detected as well. Aims: We optimize classic data analysis methods and develop new ones to enhance the sensitivity towards lower amplitude planets in high-multiplicity systems. We apply these methods to the public HARPS observations of GJ 676A, a nearby and relatively quiet M dwarf with one reported gas giant companion. Methods: We rederived Doppler measurements from public HARPS spectra using the recently developed template matching method (HARPS-TERRA software). We used refined versions of periodograms to assess the presence of additional low-mass companions. We also analysed the same dataset with Bayesian statistics tools and compared the performance of both approaches. Results: We confirm the already reported massive gas giant candidate and a long period trend in the Doppler measurements. In addition to that, we find very secure evidence in favour of two new candidates in close-in orbits and masses in the super-Earth mass regime. Also, the increased time-span of the observations allows the detection of curvature in the long-period trend. suggesting the presence of a massive outer companion whose nature is still unclear. Conclusions: Despite the increased sensitivity of our new periodogram tools, we find that Bayesian methods are significantly more sensitive and reliable in the early detection of candidate signals, but more work is needed to quantify their robustness against false positives. While hardware development is important in increasing the Doppler precision, development of data analysis techniques can help to reveal new results from existing data sets with significantly fewer resources. This new system holds the record of minimum-mass range (from Msini ~ 4.5 M ⊕ to 5 Mjup) and period range (from P ~ 3.6 days to

  2. Halogen speciation in volcanic plumes - Development of compact denuder sampling techniques with in-situ derivatization followed by gas chromatography-mass spectrometry and their application at Mt. Etna, Mt. Nyiragongo and Mt. Nyamulagira in 2015.

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2016-04-01

    products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography-mass spectrometry gives a limit of detection below 1 ng of bromine. The method was applied in 2015 on volcanic gas plumes at Mt. Etna (Italy), Mt. Nyiragongo and Mt. Nyamulagira (DR Congo) giving reactive bromine mixing ratios from 0.3 ppb (Nyiragongo) up to 22 ppb (Etna, NEC). Compared with total halogen data derived by alkaline trap sampling (Raschig-tube) and ion-chromatography analysis the reactive bromine mixing ratios allow the investigation of the conversion of HBr into reactive species due to plume chemistry with progressing plume age. The new method will be described in detail and the first results on the reactive halogen to total halogen output will be discussed (for bromine and chlorine) and compared to earlier volcanic plume chemistry model studies. References Bobrowski, N. and G. Giuffrida: Bromine monoxide / sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006-2009. Solid Earth, 3, 433-445, 2012 Bobrowski, N., R. von Glasow, A. Aiuppa, S. Inguaggiato, I. Louban, O. W. Ibrahim and U. Platt: Reactive halogen chemistry in volcanic plumes. J. Geophys. Res., 112, 2007 Donovan A., V. Tsanev, C. Oppenheimer and M. Edmonds: Reactive halogens (BrO and OClO) detected in the plume of Soufrière Hills Volcano during an eruption hiatus. Geochem. Geophys. Geosyst., 15, 3346-3363, 2014 Rüdiger, J., N. Bobrowski, T. Hoffmann (2015), Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes (EGU2015-2392-2), EGU General Assembly 2015

  3. One-step multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by preparative capillary gas with characterization by spectroscopic and spectrometric techniques and evaluation of biological activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  4. The tube esophagram: a technique for obtaining a detailed double-contrast examination of the esophagus.

    PubMed

    Levine, M S; Kressel, H Y; Laufer, I; Herlinger, H; Goren, R

    1984-02-01

    Although double-contrast esophagography is capable of delineating fine surface morphologic detail in the esophagus, it is not possible to obtain an optimal examination on all patients. Tube esophagography is a complementary technique that can provide a more detailed double-contrast examination of the esophagus. This procedure was performed on 45 patients in whom the routine double-contrast study was inconclusive. The tube esophagram contributed significantly to the radiologic evaluation in 33 cases, providing additional information in 23 and actually altering the final radiologic diagnosis in 10. The tube esophagram was particularly useful in depicting the distal esophagus when the initial double-contrast study was suboptimal due to inadequate distension and/or barium pooling that obscured mucosal detail in this region. The tube esophagram is a valuable adjunctive procedure that can lead to a more definitive radiologic diagnosis when the routine double-contrast examination is inconclusive. PMID:6607593

  5. Stapedectomy technique.

    PubMed

    House, J W

    1993-06-01

    This article reviews the evolution of the author's stapedectomy technique from total footplate removal with single loop wire prosthesis and Gelfoam seal to small fenestra stapedectomy with platinum ribbon piston prosthesis and blood seal. The author concludes that the microdrill is effective, safe, and cost effective for performing this procedure. Since using this technique, the author has had no cases of sensorineural hearing loss and few complaints of dizziness or vertigo. PMID:8341570

  6. Spatial Techniques

    NASA Astrophysics Data System (ADS)

    Jabeur, Nafaa; Sahli, Nabil

    The environment, including the Earth and the immense space, is recognized to be the main source of useful information for human beings. During several decades, the acquisition of data from this environment was constrained by tools and techniques with limited capabilities. However, thanks to continuous technological advances,spatial data are available in huge quantities for different applications. The technological advances have been achieved in terms of hardware and software as well. They are allowing for better accuracy and availability, which in turn improves the quality and quantity of useful knowledge that can be extracted from the environment. They have been applied to geography, resulting in geospatial techniques. Applied to both science and technology, geospatial techniques resulted in areas of expertise, such as land surveying, cartography, navigation, remote sensing, Geographic Infor-mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved quickly with advances in computing, satellite technology and a growing demand to understand our global environment. In this chapter, we will discuss three important techniques that are widely used in spatial data acquisition and analysis: GPS and remote sensing techniques that are used to collect spatial data and a GIS that is used to store, manipulate, analyze, and visualize spatial data. Later in this book, we will discuss the techniques that are currently available for spatial knowledge discovery.

  7. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  8. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper

  9. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  10. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  11. Laser-induced gas vortices.

    PubMed

    Steinitz, Uri; Prior, Yehiam; Averbukh, Ilya Sh

    2012-07-20

    Recently, several femtosecond-laser techniques have demonstrated molecular excitation to high rotational states with a preferred sense of rotation. We consider collisional relaxation in a dense gas of such unidirectionally rotating molecules, and suggest that due to angular momentum conservation, collisions lead to the generation of macroscopic vortex gas flows. This argument is supported using the Direct Simulation Monte Carlo method, followed by a computational gas-dynamic analysis. PMID:22861845

  12. Gas gangrene

    MedlinePlus

    Tissue infection - Clostridial; Gangrene - gas; Myonecrosis; Clostridial infection of tissues; Necrotizing soft tissue infection ... Gas gangrene is most often caused by bacteria called Clostridium perfringens. It also can be caused by ...

  13. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  14. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  15. Tracer Technique

    NASA Astrophysics Data System (ADS)

    Haba, H.; Motomura, S.; Kamino, S.; Enomoto, S.

    In radioactive tracer technique, radioactive nuclides are used to follow the behavior of elements or chemical species in chemical and other processes. This is realized by means of radioactivity measurement. In 1913, Hevesy and Paneth succeeded in determining the extremely low solubility of lead salts by using naturally occurring 210Pb as a radioactive tracer. As various radioactive nuclides became artificially available, this technique has been widely employed in studies of chemical equilibrium and reactions as well as in chemical analysis. It is also an essential technique in biochemical, biological, medical, geological, and environmental studies. Medical diagnosis and industrial process control are the fields of its most important practical application. In this chapter, fundamental ideas concerning radioactive tracers will be described followed by their application with typical examples. Detailed description on their application to life sciences and medicine is given in Vol. 4.

  16. Pulse waveform analysis of arterial compliance: relation to other techniques, age, and metabolic variables.

    PubMed

    Resnick, L M; Militianu, D; Cunnings, A J; Pipe, J G; Evelhoch, J L; Soulen, R L; Lester, M A

    2000-12-01

    To assess the physiologic and clinical relevance of newer noninvasive measures of vascular compliance, computerized arterial pulse waveform analysis (CAPWA) of the radial pulse was used to calculate two components of compliance, C1 (capacitive) and C2 (oscillatory or reflective), in 87 normotensive (N1BP, n = 20), untreated hypertensive (HiBP, n = 21), and treated hypertensive (HiBP-Rx, n = 46) subjects. These values were compared with two other indices of compliance, the ratio of stroke volume to pulse pressure (SV/PP) and magnetic resonance imaging (MRI)-based aortic distensibility; and were also correlated with demographic and biochemical values. The HiBP subjects displayed lower C1 (1.34 +/- 0.09 v. 1.70 +/- 0.11 mL/mm Hg, significance [sig] = .05) and C2 (0.031 +/- 0.003 v 0.073 +/- 0.02 mL/mm Hg, sig = .005) than N1BP subjects. This was not true for C1 (1.64 +/- 0.08 mL/mm Hg) and C2 (0.052 +/- 0.005 mL/mm Hg) values in HiBP-Rx subjects. The C1 (r = 0.917, P < .0001) and C2 (r = 0.677, P < .0001) were both closely related to SV/PP, whereas C1 (r = 0.748, P = .002), but not C2, was significantly related to MRI-determined aortic distensibility. Among other factors measured, age exerted a strong negative influence on both C1 (r = -0.696, P < .0001) and C2 (r = -0.611, P < .0001) compliance components. Positive correlations were observed between C1 (r = 0.863, P = .006), aortic distensibility (r = 0.597, P = .19) and 24-h urinary sodium excretion, and between C1- and MR spectroscopy-determined in situ skeletal muscle intracellular free magnesium (r = 0.827, P = .006), whereas C2 was inversely related to MRI-determined abdominal visceral fat area (r = -0.512, P = .042) and fasting blood glucose (r = -0.846, P = .001). Altogether, the close correspondence between CAPWA, other compliance techniques, and known cardiovascular risk factors suggests the clinical relevance of CAPWA in the assessment of altered vascular function in hypertension. PMID:11130766

  17. Miscellaneous Techniques

    NASA Astrophysics Data System (ADS)

    Jha, Shyam N.

    Nondestructive way of determining the food quality is the need of the hour. Till now major methods such as colour measurements and their modeling; machine vision systems; X-ray, CT and MRI; NIR spectroscopy; electronic nose and tongue; and ultrasonic technology have been discussed in detail. These techniques, in general, are considered to be sophisticated and costly, and therefore probably are not being adopted as fast as it should be. I am however of the reverse opinion. While going through these techniques, it has been seen that majority of quality parameters have been measured and correlated with the signals obtained using different equipment.

  18. Multicomponent analysis using established techniques

    NASA Astrophysics Data System (ADS)

    Dillehay, David L.

    1991-04-01

    Recent environmental concerns have greatly increased the need, application and scope of real-time continuous emission monitoring systems. New techniques like Fourier Transform Infrared have been applied with limited success for this application. However, the use of well-tried and established techniques (Gas Filter Correlation and Single Beam Dual Wavelength) combined with sophisticated microprocessor technology have produced reliable monitoring systems with increased measurement accuracy.

  19. Gas transfer - A gas tension method for studying equilibration across a gas-water interface

    NASA Astrophysics Data System (ADS)

    Anderson, Meredith L.; Johnson, Bruce D.

    1992-11-01

    New strategies are required in the study of gas exchange under energetic and changeable conditions where current techniques are limited, especially in their ability to represent the contribution of injected bubbles. We have developed a gas tension device (GTD) that uses a solid-state differential pressure sensor to make continuous in situ measurements of the difference between pressure of dissolved gas (gas tension, for succinctness) and pressure of gas in the gas phase above a water parcel. This information allows the determination of the rate of approach to a dynamic equilibrium and of the degree of water phase saturation at steady state. The method is demonstrated in the lab by following the invasion of CO2 into seawater with bubble injection. The GTD introduces a new and versatile measurement method for the study of gas transfer across air-water interfaces, one which avoids many of the sampling and bias problems of traditional approaches.

  20. Titration Techniques

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jerrold J.; Houston Jetzer, Kelly; Patani, Néha; Zimmerman, John; Zweerink, Gerald

    1995-07-01

    Significant attention is paid to the proper technique for reading a meniscus. Video shows meniscus-viewing techniques for colorless and dark liquids and the consequences of not reading a meniscus at eye level. Lessons are provided on approaching the end point, focusing on end point colors produced via different commonly used indicators. The concept of a titration curve is illustrated by means of a pH meter. Carefully recorded images of the entire range of meniscus values in a buret, pipet, and graduated cylinder are included so that you can show your students, in lecture or pre-lab discussion, any meniscus and discuss how to read the buret properly. These buret meniscus values are very carefully recorded at the rate of one video frame per hundredth of a milliliter, so that an image showing any given meniscus value can be obtained. These images can be easily incorporated into a computer-based multimedia environment for testing or meniscus-reading exercises. Two of the authors have used this technique and found the exercise to be very well received by their students. Video on side two shows nearly 100 "bloopers", demonstrating both the right way and wrong ways to do tasks associated with titration. This material can be used in a variety of situations: to show students the correct way to do something; to test students by asking them "What is this person doing wrong?"; or to develop multimedia, computer-based lessons. The contents of Titration Techniques are listed below: Side 1 Titration: what it is. A simple titration; Acid-base titration animation; A brief redox titration; Redox titration animation; A complete acid-base titration. Titration techniques. Hand technique variations; Stopcock; Using a buret to measure liquid volumes; Wait before reading meniscus; Dirty and clean burets; Read meniscus at eye level (see Fig. 1); Meniscus viewing techniques--light colored liquids; Meniscus viewing techniques--dark liquids; Using a magnetic stirrer; Rough titration

  1. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  2. Remote Leak Detection: Indirect Thermal Technique

    NASA Technical Reports Server (NTRS)

    Clements, Sandra

    2002-01-01

    Remote sensing technologies are being considered for efficient, low cost gas leak detection. Eleven specific techniques have been identified for further study and evaluation of several of these is underway. The Indirect Thermal Technique is one of the techniques that is being explored. For this technique, an infrared camera is used to detect the temperature change of a pipe or fitting at the site of a gas leak. This temperature change is caused by the change in temperature of the gas expanding from the leak site. During the 10-week NFFP program, the theory behind the technique was further developed, experiments were performed to determine the conditions for which the technique might be viable, and a proof-of-concept system was developed and tested in the laboratory.

  3. Recent development in chromatographic techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromatographic techniques play a significant role in the determination of analytes in complex matrices, separating individual sample components prior to their detection. In the analysis of contaminants and chemical residues in foods, gas chromatography (GC) and liquid chromatography (LC) are two m...

  4. Selected microgravity combustion diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Greenberg, Paul S.

    1993-01-01

    During FY 1989-1992, several diagnostic techniques for studying microgravity combustion have moved from the laboratory to use in reduced-gravity facilities. This paper discusses current instrumentation for rainbow schlieren deflectometry and thermophoretic sampling of soot from gas jet diffusion flames.

  5. Western Gas Sands Subprogram

    SciTech Connect

    Not Available

    1983-12-01

    The Western Gas Sands Subprogram (WGSS) is a multidisciplinary research effort within the US Department of Energy program on Unconventional Gas Recovery. The subprogram, managed by DOE's Morgantown Energy Technology Center, is directed towards the development of tight (very low permeability) lenticular gas sands in the western United States. The purpose of the subprogram is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. The subprogram has two broad goals: (1) to reduce the uncertainty of the reservoir production potential and (2) to improve the extraction technology. With input from the gas industry, universities, and geologic and engineering consulting firms, the WGSS was broadened to include more fundamental research and development. Consequently, for the last five years it has focused on improving diagnostic instrumentation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of the three priority basins containing tight sands and selected by DOE as research targets have also been pursued as part of this new effort. To date, the following tentative conclusions have evolved: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than conventional gas deposits. Nineteen western geologic basins and trends containing significant amounts of tight gas have been identified. Gas resources in the priority geologic basins are Piceance Basin, 49 tcf., Uinta Basin, 20 tcf., and Greater Green River Basin, 136 tcf. The presence of natural micro-fractures within the production zone of a reservoir and the effective propped length of hydraulically-induced fractures are the critical parameters for successful development of tight sand resources. 8 figures.

  6. Western gas sands

    SciTech Connect

    Not Available

    1985-03-01

    The purpose of this research is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. Two broad research goals have been defined: (1) reducing the uncertainty of the reservoir production potential, and (2) improving the extraction technology. These goals are being pursued by conducting research and encouraging industrial efforts in developing the necessary technology, including: (1) providing fundamental research into the nature of tight, lenticular gas sands and the technologies for diagnosing and developing them: (2) developing and verifying the technology for effective gas production; and (3) promoting the transfer of research products and technology advances to the gas industry in usable forms. The focus of the research for the last several years has been improving diagnostic instrumentation for reservoir and stimulation performance evaluation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of three basins containing tight lenticular sands, which were selected by DOE as priority research targets, have also been pursued as part of this new effort. To date, the following tentative conclusions have been formed: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than that of conventional gas deposits. Nineteen western geologic basins and trends containing significant volumes of tight gas have been identified. Gas resources in the priority geologic basins have been estimated - Piceance Basin 49 Tcf.; Greater Green River Basin, 136 Tcf.; Uinta Basin, 20 Tcf. Presence of natural micro-fractures within a reservoir and the effective propped length of hydraulically induced fratures are the critical parameters for successful development of tight sand resources. Stimulation technology at the present time is insufficient to efficiently recover gas from lenticular tight reservoirs. 8 figs., 3 tabs.

  7. Gas Blowing: Mass Transfer in Gas and Melt

    NASA Astrophysics Data System (ADS)

    Sortland, Øyvind Sunde; Tangstad, Merete

    2014-09-01

    Metallurgical routes for solar grade silicon production are being developed as alternatives to chemical processes for their potential to achieve cost reductions, increased production volume, and reduced environmental and safety concerns. An important challenge in the development of metallurgical routes relates to the higher impurity concentrations in the silicon product, particularly for boron and other elements that are not efficiently segregated in solidification techniques. The reactive gas refining process is studied for its potential to remove boron below the solar grade silicon target concentration in a single step by blowing steam and hydrogen gas jets onto the melt surface. Boron in a silicon melt is extracted to HBO gas in parallel to active oxidation of silicon. The literature is not unified regarding the rate determining step in this process. Relevant theories and equations for gas blowing in induction furnaces are combined and used to explain mass transfer in experiments. Mass transfer in the melt and gas is investigated by comparing resistance and induction heating of the melt, and varying gas flow rate, crucible diameter, diameter of the gas lance, and the position of the gas lance above the melt surface. The rate of boron removal is found to increase with increasing gas flow rate and crucible diameter. A relatively high fraction of the reactive gas is utilized in the process, and supply of steam in the bulk gas is the only identified rate determining step.

  8. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  9. Slip length measurement of gas flow.

    PubMed

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-16

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas. PMID:27505860

  10. Slip length measurement of gas flow

    NASA Astrophysics Data System (ADS)

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-01

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.

  11. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  12. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  13. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. [Tracheostomy techniques].

    PubMed

    Mieth, M; Schellhaaß, A; Hüttner, F J; Larmann, J; Weigand, M A; Büchler, M W

    2016-01-01

    Due to the comprehensive establishment of modern techniques, tracheostomy has become a routine procedure in intensive care units (ICU). The negative effects of prolonged translaryngeal intubation on the laryngeal and tracheal mucosa up to tracheal stenosis can be reduced by tracheostomy. Furthermore, long-term ventilation is facilitated; however, there is no clear evidence on the optimal timing of tracheostomy in critically ill patients. The specific indications and contraindications of surgical as well as percutaneous tracheostomy must be strictly observed for a safe and successful intervention. Exchanging the tracheostomy tube may lead to potentially dangerous situations especially after percutaneous tracheostomy. A standardized and structured approach is therefore recommended. PMID:26643155

  15. Separation techniques.

    PubMed

    Duke, T

    1998-10-01

    The past two years have seen continued development of capillary electrophoresis methods. The separation performance of flowable sieving media now equals, and in some respects exceeds, that provided by gels. The application of microfabrication techniques to separation science is gaining pace. There is a continuing trend towards miniaturization and integration of separation with preparative or analytical steps. Innovative separation methods based on microfabrication technology include electrophoresis in purpose-designed molecular sieves, dielectric, trapping using microelectrodes, and force-free motion in Brownian ratchets. PMID:9818184

  16. Retained gas inventory comparison

    SciTech Connect

    BARTON, W.B.

    1999-05-18

    Gas volume data derived from four different analytical methods were collected and analyzed for comparison to volumes originally used in the technical basis for the Basis for Interim Operations (BIO). The original volumes came from Hodgson (1996) listed in the reference section of this document. Hodgson (1996) screened all 177 single and double-shell tanks for the presence of trapped gas in waste via two analytical methods: Surface Level Rise (SLR), and Barometric Pressure Effect (BPE). More recent gas volume projections have been calculated using different analytical techniques along with updates to the parameters used as input to the SLR and BPE models. Gas volumes derived from new analytical instruments include those as measured by the Void Fraction Instrument (VFI) and Retained Gas Sampler (RGS). The results of this comparison demonstrate that the original retained gas volumes of Hodgson (1996) used as a technical basis in developing the BIO were conservative, and were conservative from a safety analysis standpoint. These results represent only comparisons to the original reported volumes using the limited set of newly acquired data that is available.

  17. Modeling the influence of the pulmonary pressure-volume curve on gas exchange.

    PubMed

    Smith, Bram; Rees, Stephen; Tvorup, Jan; Christensen, Casper; Andreassen, Steen

    2005-01-01

    Current models of lung mechanics and gas exchange act independently to simulate variations in pressure-volume (PV) and ventilation-perfusion (V/Q) properties in the lungs respectively. However, changes in ventilator pressures can cause alveoli recruitment, collapse or over-distension causing V/Q changes in the lungs that are unaccounted for in these models. A compartmental model of the lungs is presented that is based on a physiological interpretation of lung function and simulates each alveolus individually. By combining this model with currently available lung mechanics and gas exchange models, the effect of changing ventilator settings on gas exchange could be simulated. The model is shown to simulate experimentally measured static PV data from an ARDS patient with an accuracy equivalent to that achieved by the sigmoid function. It could enable quantification of variations in V/Q in the lungs and also gives estimates of other physiological lung properties such as lung density and alveoli compliance. The alveoli model offers a physiologically relevant method of simulating the PV relationship in the lungs and its influence of gas exchange. PMID:17282708

  18. The CARIBU gas catcher

    NASA Astrophysics Data System (ADS)

    Savard, G.; Levand, A. F.; Zabransky, B. J.

    2016-06-01

    The CARIBU upgrade of the ATLAS facility provides radioactive beams of neutron-rich isotopes for experiments at low and Coulomb barrier energies. It creates these beam using a large RF gas catcher that collects and cools fission fragments from an intense 252 Cf fission source and transforms them into a low-emittance monoenergetic beam. This beam can then be purified, reaccelerated and delivered to experiments. This technique is fast and universal, providing access to all fission fragment species independently of their chemical properties. The CARIBU gas catcher has been built to operate at high ionization density and in the presence of the contamination from the source. A brief overview of the CARIBU concept is given below, together with a more detailed description of the CARIBU gas catcher and the performance it has now achieved.

  19. Multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  20. New techniques

    NASA Astrophysics Data System (ADS)

    Pisacane, V. L.

    1983-04-01

    Equipment, operations, calibration, and accuracy of existing positioning, geodetic, and gravimetric equipment are explored. Radio navigation and positioning systems now include OMEGA, LORAN, VOR, DME, TACAN, and LONAR. Dedicated positioning satellites comprise the Transit and Navstar systems, with positioning accuracies of 8 m available with the GPS. Missile tracking, particularly for submarine launched rockets, is accomplished with the Satrack satellite, which furnishes position and velocity accuracy to within 40 ft and 0.08 ft/sec, respectively. VLBI techniques permit sighting of astronomical objects to obtain 20 cm accuracy for pole positioning and 1 m/sec for earth rotation speeds. Methods have been devised to use portable equipment which compensates for refraction when using lasers and masers in ranging trials. NASA has established a fixed and mobile global laser tracking network to provide a ranging accuracy of 100 cm when employed with satellite and lunar reflectors. Lasers are also used for terrain contouring, aircraft ranging, and satellite altimetry. A free-fall gravimeter has been developed which involves dropping one reflector of a two-beam Michelson interferometer, yielding an accuracy of 10 microgal. It is noted that new standards are needed for the NASA Deep Space Network.

  1. Natural Gas

    NASA Astrophysics Data System (ADS)

    Maddox, Robert N.; Moshfeghian, Mahmood; Ldol, James D.; Johannes, Arland H.

    Natural gas is a naturally occurring mixture of simple hydrocarbons and nonhydrocarbons that exists as a gas at ordinary pressures and temperatures. In the raw state, as produced from the earth, natural gas consists principally of methane (CH4) and ethane (C2H4), with fractional amounts of propane (C3H8), butane (C4H10), and other hydrocarbons, pentane (C5H12) and heavier. Occasionally, small traces of light aromatic hydrocarbons such as benzene and toluene may also be present.

  2. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  3. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.

  4. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  5. Gas - flatulence

    MedlinePlus

    ... foods that are hard to digest, such as fiber. Sometimes, adding more fiber into your diet can cause temporary gas. Your ... your diet changed recently? Have you increased the fiber in your diet? How fast do you eat, ...

  6. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  7. Ambient air contamination: Characterization and detection techniques

    NASA Technical Reports Server (NTRS)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  8. Ion plating technique improves thin film deposition

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1968-01-01

    Ion plating technique keeps the substrate surface clean until the film is deposited, allows extensive diffusion and chemical reaction, and joins insoluble or incompatible materials. The technique involves the deposition of ions on the substrate surface while it is being bombarded with inert gas ions.

  9. Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sulfur hexafluoride tracer technique (SF**6) is a commonly used method for measuring CH**4 enteric emissions in ruminants. Studies using SF**6 have shown large variation in CH**4 emissions data, inconsistencies in CH**4 emissions across studies, and potential methodological errors. Therefore, th...

  10. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  11. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  12. Radon assay and purification techniques

    SciTech Connect

    Simgen, Hardy

    2013-08-08

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  13. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  14. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility >35×106 cm2/V s in AlGaAs/GaAs quantum wells grown by MBE

    NASA Astrophysics Data System (ADS)

    Gardner, Geoffrey C.; Fallahi, Saeed; Watson, John D.; Manfra, Michael J.

    2016-05-01

    We provide evidence that gallium purity is the primary impediment to attainment of ultra-high mobility in a two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures grown by molecular beam epitaxy (MBE). The purity of gallium can be enhanced dramatically by in-situ high temperature outgassing within an operating MBE. Based on analysis of data from an initial growth campaign in a new MBE system and modifications employed for a 2nd growth campaign, we have produced 2DEGs with low temperature mobility μ in excess of 35×106 cm2/V s at density n=3.0×1011/cm2 and μ=18×106 cm2/V s at n=1.1×1011/cm2. Our 2nd campaign data indicate that gallium purity remains the factor currently limiting μ<40×106 cm2/V s. We describe strategies to overcome this limitation.

  15. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  16. Removal of a sex toy under general anaesthesia using a bimanual-technique and Magill’s forceps: A case report

    PubMed Central

    Obinwa, Obinna; Robertson, Ian; Stokes, Maurice

    2015-01-01

    Introduction Phallic objects may cause large bowel obstruction if not promptly removed. A bi-manual technique with the aid of a Magill’s forceps is presented here. Presentation of case A 68-year-old man presented to the emergency department with severe lower abdominal discomfort, distension and inability to pass urine, flatus or bowel motions. He had inserted a phallic object in the rectum 10 hours prior to presentation and had been unable to remove same. Abdominal examination was remarkable for distension with tenderness also elicited suprapubically and in the left iliac fossa. The foreign body was barely palpable per rectum. Plain radiographs showed prominent left-sided colonic segments. Following the trial of a manual attempt at removal in the emergency department, a decision was made to remove this under anaesthesia due to worsening symptoms. The phallic object was successfully removed under general anaesthesia using bi-manual manipulation assisted by a pair of Magill’s forceps. Discussion The method of removal of phallic objects varies from one individual case to another. In the presence of obstruction, a quick decision must be made for removal under general anaesthesia and the patient will also need to be consented for laparotomy. Previous literature described a “cork-in-bottle” technique using myomectomy screws as well as use of single-incision laparoscopic surgery (SILS) ports for removal of phallic objects. Conclusion Extraction of phallic objects requires ingenuity. We describe another minimally invasive technique of removal that adds to the literature, thereby limiting the need for laparotomy and open removal of foreign bodies. PMID:26322821

  17. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.

  18. Retained gas sampler interface volume

    SciTech Connect

    Cannon, N.S.

    1997-10-01

    The maximum Retained Gas Sampler (RGS) interface volume was determined; this volume can trap contamination gases during the sampling process. A new technique (helium backfill) for eliminating contamination gases from the RGS sampler interface volume is described, and verification testing reported. Also demonstrated was that RGS data obtained prior to the introduction of the new helium backfill technique can be compensated for air contamination using the measured oxygen concentration and normal air composition.

  19. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  20. Gas gangrene

    MedlinePlus

    ... of shock. Tests that may be done include: Tissue and fluid cultures to test for bacteria including clostridial species Blood culture to determine the bacteria causing the infection Gram ... X-ray , CT scan, or MRI of the area may show gas in the tissues.