Science.gov

Sample records for gas distribution pipe

  1. Trenchless rehabilitation: Which choice for gas distribution pipe replacement?

    SciTech Connect

    Kramer, S.R.; Gauthier, S.W.

    1995-01-01

    Replacement or rehabilitation of deteriorating gas piping currently relies largely on open-cut excavation or pipe insertion. Open-cut replacement is satisfactory for communities where adverse environmental impact can be tolerated and road closures and traffic delays are kept to a minimum. However, most of the systems in need of replacement/rehabilitation are in urban areas where environmental impact, traffic delays, and site restoration costs are costly. With these parameters in mind, the Gas Research Institute (GRI); and its member organizations designed a research program to test and evaluate promising trenchless technologies for potential use in gas distribution rehabilitation projects. The programs`s goals were to identify product strengths, weaknesses, cost, applications, and recognition of areas which needed modification or further development. During this research a significant amount of data were gathered. All rehabilitation systems maximize pipe capacity while minimizing surface disruptions. Cost savings realized by some of the participating utilities was significant. This is even more impressive when one considers that this was the first gas installation for some of the methods. A summary of advantages, disadvantages, and lessons learned from each process is shown on Tables 2--6. Comments listed are for field trials conducted and may not be accurate or applicable to other projects. A common limitation of all rehabilitation methods is lack of a complete system with appropriate tees, fittings, transition materials, and other connection devices.

  2. Study On Temperature Distribution In T Fittings - Polyethylene Natural Gas Pipes Assemblies

    NASA Astrophysics Data System (ADS)

    Avrigean, Eugen

    2015-09-01

    The present paper intends to approach theoretically and experimentally an important topic concerning the operational safety of the polyethylene pipes used in natural gas distribution. We discuss the influence of temperature in the high density polyethylene elbows during welding to the polyethylene pipes.

  3. Numerical Analysis on Effect of Areal Gas Distribution Pipe on Characteristics Inside COREX Shaft Furnace

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai

    2014-07-01

    In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.

  4. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  5. Heat pipe with hot gas reservoir

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1974-01-01

    Heat pipe can reverse itself with gas reservoir acting as evaporator, leading to rapid recovery from liquid in reservoir. Single layer of fine-mesh screen is included inside reservoir to assure uniform liquid distribution over hottest parts of internal surface until liquid is completely removed.

  6. New video probe sees gas pipe abnormalities

    SciTech Connect

    Swenson, P. )

    1992-04-01

    This paper reports that initial results indicate the PLS 3000 pipeline inspection system can significantly reduce the time and cost required to locate and repair leaks in low-pressure natural gas distribution system without interrupting the flow of gas. The system uses a sealed miniature color TV probe into live low-pressure piping to see the leak and other piping problems, such as water infiltration, pipe distortions, structural cracks, broken or misaligned service connections and the presence of foreign matter. The camera is housed in a sealed stainless steel probe that is 1.96-in in diameter and 5.7-in. long. It can travel up to 6000 linear ft in 3- 4- and 6-in piping from a single 3-ft by 5-ft excavation. The probe enters the pipe through a patented Easy Dual Access fitting. The fitting allows the technician to cut into the pipe, remove the coupon and insert the camera probe under sealed conditions. At the conclusion of the examination, the technician seals the access hole with a gasketed steel band clamp.

  7. Small, Untethered, Mobile Robots for Inspecting Gas Pipes

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2003-01-01

    Small, untethered mobile robots denoted gas-pipe explorers (GPEXs) have been proposed for inspecting the interiors of pipes used in the local distribution natural gas. The United States has network of gas-distribution pipes with a total length of approximately 109 m. These pipes are often made of iron and steel and some are more than 100 years old. As this network ages, there is a need to locate weaknesses that necessitate repair and/or preventive maintenance. The most common weaknesses are leaks and reductions in thickness, which are caused mostly by chemical reactions between the iron in the pipes and various substances in soil and groundwater. At present, mobile robots called pigs are used to inspect and clean the interiors of gas-transmission pipelines. Some carry magnetic-flux-leakage (MFL) sensors for measuring average wall thicknesses, some capture images, and some measure sizes and physical conditions. The operating ranges of pigs are limited to fairly straight sections of wide transmission- type (as distinguished from distribution- type) pipes: pigs are too large to negotiate such obstacles as bends with radii comparable to or smaller than pipe diameters, intrusions of other pipes at branch connections, and reductions in diameter at valves and meters. The GPEXs would be smaller and would be able to negotiate sharp bends and other obstacles that typically occur in gas-distribution pipes.

  8. Heat pipe gas combustion system endurance test for Stirling engine

    NASA Astrophysics Data System (ADS)

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc. has been developing a general purpose Heat Pipe Gas Combustion (HPGC) system suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator, and a film-cooled gas combustor. The principal component is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. Given here are the test results of the endurance tests run on a Gas Fired Stirling Engine (GFSE).

  9. Evaluation of cased and uncased gas distribution and transmission piping under railroads and highways, Phase 2. Annual report, November 1987

    SciTech Connect

    O'Rourke, T.D.; Stewart, H.E.; Ingraffea, A.R.; Nyman, K.J.; Crossley, C.W.

    1987-11-01

    A comprehensive methodology is being developed for evaluating stresses in natural gas pipelines at railroad and highway crossings. The methodology accounts for soil-structure interaction and the three-dimensional distribution of pipeline stresses. The methodology involves delineating field loads and geometries through detailed site observations and discussions with industry personnel, and using computer graphics to analyze pipeline stresses under the complex three-dimensional conditions which prevail in the field. Field experiments will be performed to substantiate the predicted pipeline stresses at railroad crossings. Guidelines will be developed for pipeline crossings acceptable to representatives of gas, railroad, and highway industries.

  10. Arterial gas occlusions in operating heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1975-01-01

    The effect of noncondensable gases on high performance arterial heat pipes has been investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, have been used to postulate stability criteria for arterial heat pipes. Experimental observations of gas occlusions were made using a stainless steel heat pipe equipped with viewing ports, and the working fluids methanol and ammonia with the gas additives helium, argon, and xenon. Observations were related to gas transport models.

  11. NIM gas controlled sodium heat pipe

    NASA Astrophysics Data System (ADS)

    Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.

    2013-09-01

    Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.

  12. Nashville Gas treads carefully to replace pipe

    SciTech Connect

    1997-06-01

    The private gas utility, Nashville Gas, was responsible for replacing damaged or inadequate 2- and 4-inch steel gas lines beneath Music City, USA. The line replacements required either size for size or upsizing. The first choice was directional drilling, which was quickly determined to be unpractical because of rocky soil conditions. The second option was open trenching. Undoubtedly, trenching would mean having to contend with angry residents and tourists, since gas lines ran beneath yards, mature trees, sidewalks, roadways, and railways. In addition to the negative social factors, trenching would require additional funds for substantial landscaping and pavement replacement. It at all possible, a no-dig alternative was desired. Nashville Gas found Grundomat piercing tools which create a bore, then pushes pipe back through it. These same tools can simultaneously pull in pipe. These tools were customized for the Nashville project.

  13. Hydrophobic liquid/gas separator for heat pipes

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1972-01-01

    Perforated nonwetting plug of material such as polytetrafluoroethylene is mounted in gas reservoir feed tube, preferably at end which extends into heat pipe condenser section, to prevent liquid from entering gas reservoir of passively controlled heat pipe.

  14. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  15. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas piping: Location. 154.910 Section 154.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  16. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  17. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  18. Spatial distribution of pipe collapses in Goodwin Creek Watershed, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion of soil pipes can induce pipe collapses that affect soil erosion process and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe co...

  19. Gas release driven dynamics in research reactors piping

    SciTech Connect

    Kolev, Nikolay Ivanov; Roloff-Bock, Iris; Schlicht, Gerhard

    2006-07-01

    Analysis of the physical and chemical processes of radiolysis gas production, air absorption, diffusion controlled gas release and transport in the coolant cleaning system of the research reactor FRM II, which is now being in routine power operation in Munich, Germany, lead to the following conclusions: 1) The steady state pressure distribution in the siphon pipe allows that the horizontal part of the siphon pipe is filled with air. The air is isolated by about 1 m water column from the main pipe of the coolant cleaning system (CCS). This is a stable steady state. It has two positive impacts on the normal operation of the CCS: (a) there is effectively no bypass flow; (b) The air can not be transported through the pipe and therefore no deterioration of the pump performance is expected from the function of the siphon pipe. 2) Radiolysis gas production for coolant, that initially does not contain dissolved air, does not lead to any problem for the system. The gases are dissolved in the coolant at 2.2 bar and are not released for pressures reduction to about 1 bar, which is the minimum pressure in the CCS. 3) Assuming hypothetically a radiolysis gas production for coolant, which initially does contain dissolved air close to its saturation, leads to gas slug formation and its transport up to the pump. This could reduce the pump head and could lead to distortion of the normal operation. Systematic measurement of the hydrogen in the primary system at 100% power indicated, that this state is not realized in the system. The observed H{sub 2} concentration was between 0.016 e-6 and 0.380 e-6 which is of no concern at all. (authors)

  20. 75 FR 19963 - Florida Gas Transmission Company, LLC; Transcontinental Gas Pipe Line Company, LLC; Florida Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Energy Regulatory Commission Florida Gas Transmission Company, LLC; Transcontinental Gas Pipe Line... Transcontinental Gas Pipe Line Company, LLC (Transco) in the above referenced dockets. The EA assesses the... pig launcher in Grand Bay, Alabama (MP 8.8); One new Over Pressure Protection Regulator Station...

  1. 77 FR 26534 - Northern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ..., Transcontinental Gas Pipe Line Company, LLC, Enterprise Field Services, LLC; Notice of Application Take notice that..., Transcontinental Gas Pipe Line Company, LLC, and Enterprise Field Services, LLC, filed an application in Docket No... Matagorda Island Areas in Federal offshore waters of Texas (MOPS Phase III Facilities). Any...

  2. A new model for gas/solid pipe flow

    SciTech Connect

    Wu, Bangxian; Chang, S.L.; Lottes, S.A.; Petrick, M.

    1995-12-31

    A new model of particle turbulent dispersion in vertical gas/solid pipe flow is presented in this paper. The essence of the model is to pay more attention to the active and discrete behavior of particles in the dispersion process in non-homogeneous turbulent vertical pipe flows using two-fluid approaches. In the new model, a non-gradient type of diffusion term is included in the expression of radial particle dispersion flux; the transport equation for particle turbulent kinetic energy (PTKE) is developed and solved for its distribution; the effect of intra-particle collision is considered for the generation and dissipation of PTKE; turbulence modulation due to particle presence is taken into account. Preliminary numerical results based on this new model are also presented in this paper.

  3. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    PubMed

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented. PMID:23307861

  4. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    PubMed

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-01

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. PMID:27244696

  5. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  6. Evolution of non-condensable gas in ammonia heat pipes

    NASA Technical Reports Server (NTRS)

    Richter, Robert

    1990-01-01

    Accumulation of noncondensible gas (NCG) has been observed in ammonia heat pipes. NCG has been found to be detrimental to the performance of heat pipes and can result in complete operational failure. A kinetic and thermodynamic analysis has been performed that evaluates the dissociation of ammonia under various conditions and predicts the amount of NCG present in heat pipes. The analysis indicates that the observed NCG in ammonia heat pipes can be attributed to the dissociation of ammonia into its constituents, hydrogen and nitrogen. It shows time and temperature to be the important parameters, in conjunction with the catalytic characteristic of the container material.

  7. Heat transfer during nonlinear gas oscillations in a pipe open at one end

    NASA Astrophysics Data System (ADS)

    Khalimov, G. G.; Galiullin, R. G.; Podymov, V. N.

    1983-02-01

    The results of an experimental study of heat transfer in a pipe open at one end in which gas oscillations are generated by a flat piston moving harmonically are presented. The oscillograms of pressure and velocity pulsations in those sections of the pipe that are near the linear and second nonlinear resonance provide evidence of pressure and velocity discontinuities. The frequency distributions of the velocity half-amplitudes and Nusselt numbers have a resonant character, and the resonant frequencies are coincident. Heat transfer in pipes open at one end under nonlinear pulsations with the generation of periodic shock waves is adequately described by a quasi-stationary theory with allowance for thermoacoustic effects.

  8. Startup analysis for a high temperature gas loaded heat pipe

    NASA Technical Reports Server (NTRS)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  9. 14. DETAIL OF CLEAN GAS MAIN (UPPER PIPE) AND ROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF CLEAN GAS MAIN (UPPER PIPE) AND ROUGH GAS MAIN FOR BLAST FURNACE No. 2 AT THE BASE OF HOT BLAST STOVES LOOKING EAST. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  11. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  12. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  13. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  14. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  15. Heat pipe temperature control utilizing a soluble gas absorption reservior

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1976-01-01

    A new gas-controlled heat pipe design is described which uses a liquid matrix reservior, or sponge, to replace the standard gas reservior. Reservior volume may be reduced by a factor of five to ten for certain gas-liquid combinations, while retaining the same level of temperature control. Experiments with ammonia, butane, and carbon dioxide control gases with methanol working fluid are discussed.

  16. Nonlinear gas oscillations in pipes. I - Theory.

    NASA Technical Reports Server (NTRS)

    Jimenez, J.

    1973-01-01

    The problem of forced acoustic oscillations in a pipe is studied theoretically. The oscillations are produced by a moving piston in one end of the pipe, while a variety of boundary conditions ranging from a completely closed to a completely open mouth at the other end are considered. The linear theory predicts large amplitudes near resonance and that nonlinear effects become crucially important. By expanding the equations of motion in a series in the Mach number, both the amplitude and waveform of the oscillation are predicted there. In both the open- and closed-end cases the need for shock waves in some range of parameters is found. The amplitude of the oscillation is different for the two cases, however, being proportional to the square root of the piston amplitude in the closed-end case and to the cube root for the open end.

  17. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    EPA Science Inventory

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  18. Imaging PVC gas pipes using 3-D GPR

    SciTech Connect

    Bradford, J.; Ramaswamy, M.; Peddy, C.

    1996-11-01

    Over the years, many enhancements have been made by the oil and gas industry to improve the quality of seismic images. The GPR project at GTRI borrows heavily from these technologies in order to produce 3-D GPR images of PVC gas pipes. As will be demonstrated, improvements in GPR data acquisition, 3-D processing and visualization schemes yield good images of PVC pipes in the subsurface. Data have been collected in cooperation with the local gas company and at a test facility in Texas. Surveys were conducted over both a metal pipe and PVC pipes of diameters ranging from {1/2} in. to 4 in. at depths from 1 ft to 3 ft in different soil conditions. The metal pipe produced very good reflections and was used to fine tune and optimize the processing run stream. It was found that the following steps significantly improve the overall image: (1) Statics for drift and topography compensation, (2) Deconvolution, (3) Filtering and automatic gain control, (4) Migration for focusing and resolution, and (5) Visualization optimization. The processing flow implemented is relatively straightforward, simple to execute and robust under varying conditions. Future work will include testing resolution limits, effects of soil conditions, and leak detection.

  19. Contamination of piped medical gas supply with water.

    PubMed

    Hay, H

    2000-08-01

    The failure of anaesthetic equipment as a result of maintenance is extremely rare. The ingress of water into the flowmeters of an anaesthetic machine from the piped medical air supply is reported and is possibly unique. The piped medical air supply was open to the atmosphere during maintenance. Water condensed in the gas pipeline and this was not noticed during subsequent testing. Water was seen leaking from the orthopaedic air tools used for surgery but was assumed to be from the autoclaving process. Later the same day, when medical air from the piped source was used as part of the gas mixture for a general anaesthetic, water was seen filling the barrel of the flowmeter air control valve. This could have had far-reaching and dangerous consequences for the patient, which were fortunately averted. PMID:10998035

  20. 75 FR 71105 - Transcontinental Gas Pipe Line Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Corporation; Notice of Application November 12, 2010. Take notice that on October 29, 2010, Transcontinental Gas Pipe Line Corporation...

  1. CFD analysis of gas explosions vented through relief pipes.

    PubMed

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization. PMID:16675106

  2. Fabrication Flaw Density and Distribution in Piping Weldments

    SciTech Connect

    Doctor, Steven R.

    2009-09-01

    The U.S. Nuclear Regulatory Commission supported the Pacific Northwest National Laboratory (PNNL) to develop empirical data on the density and distribution of fabrication flaws in nuclear reactor components. These data are needed to support probabilistic fracture mechanics calculations and studies on component structural integrity. PNNL performed nondestructive examination inspections and destructive testing on archived piping welds to determine the fabrication flaw size and distribution characteristics of the flaws in nuclear power plant piping weldments. Eight different processes and product forms in piping weldments were studied including wrought stainless steel and dissimilar metal weldments. Parametric analysis using an exponential fit was performed on the data. Results were created as a function of the through-wall size of the fabrication flaws as well as the length distribution. The results are compared and contrasted with those developed for reactor pressure vessel processes and product forms. The most significant findings were that the density of fabrication flaws versus through-wall size was higher in piping weldments than that for the reactor pressure vessel weldments, and the density of fabrication flaws versus through-wall size in both reactor pressure vessel weld repairs and piping weldments were greater than the density in the original weldments. Curves showing these distributions are presented.

  3. Nonlinear gas oscillations in pipes. II - Experiment

    NASA Technical Reports Server (NTRS)

    Sturtevant, B.

    1974-01-01

    The problem of forced acoustic oscillations in a pipe was experimentally investigated, taking into account the response of both open and closed tubes to near-resonant excitation by large amplitude oscillations of a piston at one end of the tube. Attention was given to the effect of the orifice area on shock waves. By comparing the experimental results with nonlinear theory, wave reflection coefficients of the orifice plates were determined at both closed-tube and open-tube resonant frequencies. This approach can even be used when the terminating elements are subjected to intense periodic pressure pulses.

  4. 78 FR 62343 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ...; ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on September 30, 2013, Transcontinental Gas Pipe Line Company, LLC... regarding this application should be directed to Bela Patel, Transcontinental Gas Pipe Line Company, LLC,...

  5. 77 FR 51793 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on August 8, 2012, Transcontinental Gas Pipe Line Company, LLC (Transco), filed in the above..., Director Rates & Regulatory, Transcontinental Gas Pipe Line Company, LLC, Post Office Box 1396, Houston,...

  6. 75 FR 74710 - Transcontinental Gas Pipe Line Company, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Filing November 24, 2010. Take notice that on November 18, 2010, Transcontinental Gas Pipe Line Company, LLC (Transco... and Regulatory, Transcontinental Gas Pipe Line Corporation, P.O. Box 1396, Houston, Texas...

  7. 77 FR 39699 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization Take notice that on June 13, 2012, Transcontinental Gas Pipe Line Company, LLC (Transco), Post... regarding this Application should be directed to Nan Miksovsky, Transcontinental Gas Pipe Line Company,...

  8. 78 FR 69846 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application On November 7, 2013, Transcontinental Gas Pipe Line Company, LLC (Transco) filed with the Federal Energy... & Regulatory at Transcontinental Gas Pipe Line Company, LLC, P.O. Box 1396, Houston, Texas 77251 or by...

  9. 76 FR 44903 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization Take notice that on June 30, 2011, Transcontinental Gas Pipe Line Company, LLC (Transco), Post... this application should be directed to Nan Miksovsky, Transcontinental Gas Pipe Line Company, LLC,...

  10. 76 FR 63916 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on September 29, 2011, Transcontinental Gas Pipe Line Company, LLC (Transco), P.O. Box 1396..., Transcontinental Gas Pipe Line Company, P.O. Box 1396, Houston, Texas 77251-1396, at (713) 215- 4015. Pursuant...

  11. 78 FR 2380 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on December 19, 2012, Transcontinental Gas Pipe Line Company, LLC (Transco), Post... Gas Pipe Line Company, LLC, P.O. Box 1396, Houston, Texas 77251, telephone no. (713) 215-2659,...

  12. 75 FR 81263 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application December 17, 2010. Take notice that on December 6, 2010, Transcontinental Gas Pipe Line Company, LLC (Transco..., Staff Regulatory Analyst, Transcontinental Gas Pipe Line Company, LLC, PO Box 1396, Houston, Texas...

  13. 77 FR 33213 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization Take notice that on May 17, 2012 Transcontinental Gas Pipe Line Company, LLC (Transco), Post... directed to Bela Patel, Transcontinental Gas Pipe Line Company, LLC, P.O. Box 1396, Houston, Texas...

  14. 75 FR 66751 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization October 22, 2010. Take notice that on October 14, 2010, Transcontinental Gas Pipe Line Company... directed to Nan Miksovsky, Transcontinental Gas Pipe Line Company, LLC, Post Office Box 1396,...

  15. 78 FR 24189 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on April 9, 2013, Transcontinental Gas Pipe Line Company, LLC (Transco), P.O. Box 1396... Ingrid Germany, Staff Analyst, Certificates & Tariffs, Transcontinental Gas Pipe Line Company, LLC,...

  16. 76 FR 29745 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization Take notice that on May 5, 2011 Transcontinental Gas Pipe Line Company, LLC (Transco), Post Office... prior notice should be directed to Nan Miksovsky, Transcontinental Gas Pipe Line Company, LLC, P.O....

  17. Flashback from waste gas incinerator into air supply piping

    SciTech Connect

    Anderson, S.E.; Dowell, A.M. III; Mynaugh, J.B. )

    1992-04-01

    A waste gas incinerator experienced a flashback with a pressure wave in the Suction Vent Gas (SVG) system. Extensive damage resulted to the SVG flame arrestor, SVG fan, SVG valves, and incinerator piping. There were no injuries. The primary cause of the incident is believed to have been a fuel rich SVG stream that was rapidly introduced into the incinerator creating a puff.' This puff' allowed flame from the natural gas ring burner to blow back into the windbox igniting the fuel rich SVG. The combustion of gas in the ducting then created a pressure wave that blew apart the flame arrestor and caused the remainder of the damage.

  18. Rejection of seamless pipe noise in magnetic flux leakage data obtained from gas pipeline inspection

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad; Udpa, Satish; Udpa, Lalita; Lord, William

    2000-05-01

    Natural gas is traditionally transmitted from production facilities to customer locations through a vast pipeline network. A major segment of this network employs seamless pipes. This is especially true for smaller diameter transmission and distribution lines. Manufacturing process associated with the production of seamless pipes contribute to a helical variation in the pipe along the axis. The deformation introduces an artifact in the data obtained from MFL inspection of these pipelines. This seamless pipe noise is usually correlated with signals generated by defects and other elements (joints, tees, etc.) in pipelines, and can therefore, mask their indications in MFL data. This warrants the need for methods to improve signal-to-noise ratio (SNR) in MFL data from seamless pipes. This paper presents a technique for detecting signals in MFL data from seamless pipes. The approach processes the data in various steps. First, a wavelet based denoising technique is applied to reduce the noise due to instrumentation and other sources. An adaptive filtering approach is then applied to reject seamless noise in the data. Since the inspection of pipelines typically generates vast amounts of data, it is imperative that the algorithm be computationally efficient. The processing method has to be robust in that it should be data independent. The approach described in this paper meet these criteria. Results from application of the approach to data from field tests are presented.

  19. Historic drawing. Oxygen Distribution Piping System, 1944. Photographic copy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic drawing. Oxygen Distribution Piping System, 1944. Photographic copy of original. Boston National Historical Park. Charlestown Navy Yard. BOSTS 13520, #631-1 - Charlestown Navy Yard, Oxygen Plant, Midway along northern boundary of Charlestown Navy Yard, on Little Mystic Channel, near junction of Eighteenth Street & Fourth Avenue, Boston, Suffolk County, MA

  20. Multiple complementary gas distribution assemblies

    DOEpatents

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  1. Spatial dose distribution in polymer pipes exposed to electron beam

    NASA Astrophysics Data System (ADS)

    Ponomarev, Alexander V.

    2016-01-01

    Non-uniform distribution of absorbed dose in cross-section of any polymeric pipe is caused by non-uniform thickness of polymer layer penetrated by unidirectional electron beam. The special computer program was created for a prompt estimation of dose non-uniformity in pipes subjected to an irradiation by 1-10 MeV electron beam. Irrespective of electron beam energy, the local doses absorbed in the bulk of a material can be calculated on the basis of the universal correlations offered in the work. Incomplete deceleration of electrons in shallow layers of a polymer was taken into account. Possibilities for wide variation of pipe sizes, polymer properties and irradiation modes were provided by the algorithm. Both the unilateral and multilateral irradiation can be simulated.

  2. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-10 Liquefied-petroleum-gas piping for heating and cooking. (a)...

  3. 77 FR 787 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on December 14, 2011, Transcontinental Gas Pipe Line Company, LLC (Transco), P.O. Box 1396... place and installing an equivalent length of thickerwalled pipe in a parallel trench; (3)...

  4. Gas distribution equipment in hydrogen service - Phase II

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Huang, H. D.

    1980-01-01

    The hydrogen permeability of three different types of commercially available natural gas polyethylene pipes was determined. Ring tensile tests were conducted on permeability-exposed and as-received samples. Hydrogen-methane leakage experiments were also performed. The results show no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow (through leaks) on the distribution of blends of hydrogen and methane. The data collected show that the polyethylene pipe is 4 to 6 times more permeable to hydrogen than to methane.

  5. Automated Gas Distribution System

    NASA Astrophysics Data System (ADS)

    Starke, Allen; Clark, Henry

    2012-10-01

    The cyclotron of Texas A&M University is one of the few and prized cyclotrons in the country. Behind the scenes of the cyclotron is a confusing, and dangerous setup of the ion sources that supplies the cyclotron with particles for acceleration. To use this machine there is a time consuming, and even wasteful step by step process of switching gases, purging, and other important features that must be done manually to keep the system functioning properly, while also trying to maintain the safety of the working environment. Developing a new gas distribution system to the ion source prevents many of the problems generated by the older manually setup process. This developed system can be controlled manually in an easier fashion than before, but like most of the technology and machines in the cyclotron now, is mainly operated based on software programming developed through graphical coding environment Labview. The automated gas distribution system provides multi-ports for a selection of different gases to decrease the amount of gas wasted through switching gases, and a port for the vacuum to decrease the amount of time spent purging the manifold. The Labview software makes the operation of the cyclotron and ion sources easier, and safer for anyone to use.

  6. The application of PIV to the study of unsteady gas dynamic flow within pipes and at pipe discontinuities

    NASA Astrophysics Data System (ADS)

    Thornhill, D.; Fleck, R.; Li, H.; Woods, J.

    2007-10-01

    This paper describes research using a pulse generator that provides discrete waves. The wave motion was recorded using a series of high speed pressure transducers and the ensuing movement of the gas particles within the pipes was recorded using digital PIV. Gas particle velocities of up to 250m/s were a regular occurrence and vortices of high angular velocity were a common problem with associated spin out of seed particles. Although flows were predominantly two dimensional, stereoscopic techniques were used to give optical access to otherwise inaccessible areas of flow. So far these techniques have been applied to the unsteady gas dynamic flow within plain pipes, at sudden expansions and contractions within pipes and at the end of a pipe open to the environment, both plain ended and when fitted with a bellmouth. Examples of all of these are presented in this paper.

  7. On the prediction of the phase distribution of bubbly flow in a horizontal pipe.

    PubMed

    Yeoh, G H; Cheung, Sherman C P; Tu, J Y

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  8. On the prediction of the phase distribution of bubbly flow in a horizontal pipe

    PubMed Central

    Yeoh, G.H.; Cheung, Sherman C.P.; Tu, J.Y.

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  9. Stokes flow in a pipe with distributed regions of slip

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Stone, Howard A.

    2002-11-01

    Steady pressure-driven Stokes flow in a circular pipe is investigated analytically in the case where the pipe surface contains periodically distributed transverse regions of zero surface shear stress. One physical motivation for this problem is the recent experimental observation of nanobubbles on smooth hydrophobic surfaces (Ishida et al. (2000) Langmuir vol. 16, Tyrrell and Attard (2001) Phys. Rev. Lett. vol. 87) while a second motivation is the possible presence of bubbles trapped on rough surfaces. The bubbles may provide a zero shear stress boundary condition for the flow and modify considerably the friction generated by the solid boundary. In the spirit of experimental studies probing apparent slip at solid surfaces, the effective slip length of the resulting macroscopic flow is evaluated numerically and asymptotically as a function of the relative width of the no-slip and no-shear stress regions and their distribution along the pipe. Comparison of the model with experimental studies of pressure-driven flow in capillaries and microchannels is made and a possible interpretation of the results is offered which is consistent with a large number of nano-size and micron-size bubbles coating the solid surface. Finally, an explanation for the seemingly paradoxical behavior of the measured slip length increasing with system size reported by Watanabe et al. (1999) (J. Fluid Mech. vol. 381) is proposed and the possibility of a shear-dependent effective slip length is suggested.

  10. 76 FR 51963 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on August 3, 2011, Transcontinental Gas Pipe Line Company, LLC (Tranco), Post Office Box 1396... this application may be directed to Ingrid Germany, Staff Regulatory Analyst, Transcontinental Gas...

  11. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  12. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  13. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  14. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.

    PubMed

    Al-Jasser, A O

    2007-01-01

    Water quality can deteriorate in the transmission and distribution system beyond the treatment plant. Minimizing the potential for biological regrowth can be attained by chlorinating the finished water. While flowing through pipes, the chlorine concentration decreases for different reasons. Reaction with the pipe material itself and the reaction with both the biofilm and tubercles formed on the pipe wall are known as pipe wall demand, which may vary with pipe parameters. The aim of this paper was to assess the impact of the service age of pipes on the effective chlorine wall decay constant. Three hundred and two pipe sections of different sizes and eight different pipe materials were collected and tested for their chlorine first-order wall decay constants. The results showed that pipe service age was an important factor that must not be ignored in some pipes such as cast iron, steel, cement-lined ductile iron (CLDI), and cement-lined cast iron (CLCI) pipes especially when the bulk decay is not significant relative to the wall decay. For the range of the 55 years of pipe service age used in this study, effective wall decay constants ranged from a decrease by -92% to an increase by +431% from the corresponding values in the recently installed pipes. The effect of service age on the effective wall decay constants was most evident in cast iron pipes, whereas steel pipes were less affected. Effective chlorine wall decay for CLCI and CLDI pipes was less affected by service age as compared to steel and cast iron pipes. Chlorine wall decay constants for PVC, uPVC, and polyethylene pipes were affected negatively by pipe service age and such effect was relatively small. PMID:17140619

  15. An investigation of computational modeling on phase distribution phenomena in vertical pipes

    SciTech Connect

    Bangxian Wu; Chang, S.L.; Lottes, S.A.

    1995-07-01

    A phase distribution phenomenon is observed in many gas/solid flows. An analysis of this phenomenon indicates that particle turbulence has a significant impact on the dispersion of particles in a vertical pipe flow. A new particle turbulent model has been developed to describe the phenomenon based on the inclusion of particle turbulence dynamics in transport equations. The main features of the model include an new transport equation of particle turbulent kinetic energy, a new expression of radial particle diffusion flux replacing Fick`s Law, and new turbulent viscosity correlation. The particle turbulent model was incorporated into a computational fluid dynamic code to predict particle dispersion in a vertical pipe flow. Preliminary results show the expected trend of particle accumulation near the wall.

  16. 75 FR 31430 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization May 27, 2010. Take notice that on May 24, 2010, Transcontinental Gas Pipe Line Company, LLC (Transco), Post Office Box...

  17. 78 FR 6089 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on January 7, 2013, Transcontinental Gas Pipe Line Company, LLC (Transco), Post...

  18. 77 FR 31000 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on May 14, 2012, Transcontinental Gas Pipe Line Company, LLC (Transco), P.O. Box ]...

  19. 78 FR 24190 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on April 9, 2013, Transcontinental Gas Pipe Line Company, LLC (Transco), Post Office Box...

  20. 75 FR 1051 - Transcontinental Gas Pipe Line Company, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Filing December 31, 2009. Take notice that on November 12, 2009, Transcontinental Gas Pipe Line Company, LLC...

  1. 78 FR 48154 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Application Take notice that on July 18, 2013, Transcontinental Gas Pipe Line Company, LLC (Transco), filed in Docket...

  2. 76 FR 40717 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an... by Transcontinental Gas Pipe Line Company, LLC (Transco) in Pennsylvania, New Jersey, and New York... day from Transco's Leidy Line in Pennsylvania and New Jersey to existing delivery points...

  3. 78 FR 33403 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an... facilities by Transcontinental Gas Pipe Line Company, LLC (Transco) in Pennsylvania, New Jersey, Maryland... points on Transco's Leidy Line in Pennsylvania to delivery points on Transco's mainline system as...

  4. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... piping for heating and cooking. (a) Leak tests as described in paragraph (b) of this section shall...

  5. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... piping for heating and cooking. (a) Leak tests as described in paragraph (b) of this section shall...

  6. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... piping for heating and cooking. (a) Leak tests as described in paragraph (b) of this section shall...

  7. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... piping for heating and cooking. (a) Leak tests as described in paragraph (b) of this section shall...

  8. Gas generation test data and life tests of low temperature heat pipes

    NASA Astrophysics Data System (ADS)

    Reyes, A. S.; Brown, J. R.; Chang, W. S.; Ponnappan, R.

    1990-06-01

    Functional life tests of thirty low-temperature heat pipes of different design, manufacture, fluid, and envelope combinations are continuing beyond 70,000 hours at Wright Research and Development Center. As originally configured by NASA Lewis Research Center, the intent of this research is to evaluate the commercial heat pipes for long-life applications in spacecraft. Aluminum and stainless steel heat pipes with ammonia, methanol, and refrigerant-21 are being tested in vacuum chambers at 60 C average operating temperature. Tests for gas indicate that considerable amount of noncondensibles accumulate in the aluminum/ammonia heat pipes compared to stainless steel/ammonia pipes. Serious performance deterioration has been observed in three pipes, while the remaining are functioning normally.

  9. Determination of thermodynamic gas parameters in branched pipes in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2014-08-01

    The paper presents theoretical and experimental results of calculation of basic gas parameters in the branched pipes. These parameters are required in one-dimensional computer models for prediction of non-steady gas flow in complicated multi-cylinder engine ducts. The gas flow near the junction is described with assumption of compressed and unsteady flow. Mathematical equations describing the gas flow are given in the paper on basis of mass, energy balance in the junction, pressure drop between pipes and conservation of energy in the section of supplied pipe. Equation systems enable to solve values of pressure, gas velocity, sound speed, density and concentration of gas components in every pipe connected to the joint. The different cases of the flow area are considered. The obtained parameters at the junction outflow are needed as initial values for calculation of unsteady gas flow in the outflow pipes. Verification of the method was conducted experimentally and pressure loss coefficients are given in the paper. Additionally by using Fluent program with high mesh density of the T-pipe junction the thermodynamic parameters (pressure, velocity, temperature) are compared with those obtained from 0D model. The model enables calculation the thermodynamic parameters of inflow and outflow systems in multi-cylinder IC engines in computer program.

  10. Investigation of arterial gas occlusions. [effect of noncondensable gases on high performance heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1974-01-01

    The effect of noncondensable gases on high-performance arterial heat pipes was investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate, and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, were used to postulate stability criteria for arterial heat pipes under isothermal and non-isothermal condensate flow conditions. A rigorous second-order gas-loaded heat pipe model, incorporating axial conduction and one-dimensional vapor transport, was produced and used for thermal and gas studies. A Freon-22 (CHCIF2) heat pipe was used with helium and xenon to validate modeling. With helium, experimental data compared well with theory. Unusual gas-control effects with xenon were attributed to high solubility.

  11. CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM

    EPA Science Inventory

    Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

  12. Cryogenic & Gas System Piping Pressure Tests (A Collection of PT Permits)

    SciTech Connect

    Rucinski, Russell A.; /Fermilab

    2002-08-22

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  13. Behavior of fast moving flow of compressible gas in cylindrical pipe in presence of cooling

    NASA Technical Reports Server (NTRS)

    Varshavsky, G A

    1951-01-01

    For compressible flow with friction in a cylindrical pipe the momentum, continuity, and heat-transfer equations are examined to determine whether an increase in Mach number ("thermal" Laval nozzle) is obtainable through heat conduction from the gas through the pipe walls. The analysis is based on the assumption that the wall temperature is negligibly small in comparison with the stagnation temperature of the gas. The analysis leads to a negative result. When the gas cooling is increased by also considering radiation to the wall, a limited region at high temperatures is obtained where Mach number increases were theoretically possible. Obtaining this condition practically is considered impossible.

  14. The use of aviation gas-liquid heat exchangers employing heat pipes

    NASA Astrophysics Data System (ADS)

    Baranov, Iu. F.; Lokai, N. V.; Khananov, R. I.

    The possibility of using gas-liquid heat-pipe exchangers in different systems of aviation engines is examined, and methods for calculating the characteristics of such heat exchangers are discussed. A program developed for calculating the static and dynamic characteristics of heat-pipe exchangers is described. The program, which consists of 13 modules, uses the finite difference method. The program includes modules for calculating the gravitational characteristics of heat pipes with and without a capillary structure; the vapor parameters are calculated in the one-dimensional formulation for the viscous and inertial components with allowance for compressibility.

  15. Investigation of Freeze and Thaw Cycles of a Gas-Charged Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Krimchansky, Alexander

    2012-01-01

    The traditional constant conductance heat pipes (CCHPs) currently used on most spacecraft run the risk of bursting the pipe when the working fluid is frozen and later thawed. One method to avoid pipe bursting is to use a gas-charged heat pipe (GCHP) that can sustain repeated freeze/thaw cycles. The construction of the GCHP is similar to that of the traditional CCHP except that a small amount of non-condensable gas (NCG) is introduced and a small length is added to the CCHP condenser to serve as the NCG reservoir. During the normal operation, the NCG is mostly confined to the reservoir, and the GCHP functions as a passive variable conductance heat pipe (VCHP). When the liquid begins to freeze in the condenser section, the NCG will expand to fill the central core of the heat pipe, and ice will be formed only in the grooves located on the inner surface of the heat pipe in a controlled fashion. The ice will not bridge the diameter of the heat pipe, thus avoiding the risk of pipe bursting during freeze/thaw cycles. A GCHP using ammonia as the working fluid was fabricated and then tested inside a thermal vacuum chamber. The GCHP demonstrated a heat transport capability of more than 200W at 298K as designed. Twenty-seven freeze/thaw cycles were conducted under various conditions where the evaporator temperature ranged from 163K to 253K and the condenser/reservoir temperatures ranged from 123K to 173K. In all tests, the GCHP restarted without any problem with heat loads between 10W and 100W. No performance degradation was noticed after 27 freeze/thaw cycles. The ability of the GCHP to sustain repeated freeze/thaw cycles was thus successfully demonstrated.

  16. User's manual for the TRW gaspipe 2 program: A vapor-gas front analysis program for heat pipes containing non-condensible gas

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

    1973-01-01

    A digital computer program for design and analysis of heat pipes which contain non-condensible gases, either for temperature control or to aid in start-up from the frozen state, is presented. Some of the calculations which are possible with the program are: (1) wall temperature profile along a gas-loaded heat pipe, (2) amount of gas loading necessary to obtain desired evaporator temperature at a desired heat load, (3) heat load versus evaporator temperature for a fixed amount of gas in the pipe, and (4) heat and mass transfer along the pipe, including the vapor-gas front region.

  17. Relationship between collapse history and ore distribution in Sage Breccia pipe, northwestern Arizona

    SciTech Connect

    Brown, N.A.; Mead, R.H.; McMurray, J.M. )

    1989-09-01

    The Sage pipe is similar to other collapse breccia pipes in northern Arizona which have their beginnings in cave systems in the Redwall Limestone. Stoping of successively younger units caused the upward propagation of the pipe and provided the pipe-filling breccia. The Sage pipe extends at least 2,500 ft (762 m) vertically; the horizontal dimensions range from 100 to 300 ft (30.5-91 m), depending on variations in the adjoining host stratigraphy. The composition and distribution of breccia facies suggest a complex collapse history and variability in the mechanics of collapse. Rock failure took place both by block stoping and by decementation of sandstone and siltstone followed by flow of unconsolidated grains. The resulting breccias range from matrix to fragment-dominated, to sand flow breccia resulting from flow of individual grains. Episodic secondary collapse or readjustment within the breccia pile complicated facies distribution. Paragenetic studies indicate multiple periods of mineralization at Sage resulting in enrichment in an extensive suite of elements. Ore-grade uranium mineralization extends vertically for nearly 700 ft (213 m). Lateral distribution of the ore is variable and is directly related to breccia facies distribution. In generally, the more permeable breccias tend to be the most highly mineralized. Fracture, intergranular, and interfragment permeability were important to mineral distribution. Breccia continuity or plumbing was also important to lateral and vertical mineral distribution.

  18. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    SciTech Connect

    David Cist; Alan Schutz

    2005-03-30

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  19. Standard specification for thermoplastic gas pressure pipe, tubing, and fittings. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.60 on Gas. The current edition was approved May 10, 1998 and published October 1998. It was originally published as D 2513-66. The last previous edition was D 2513-97.

  20. Corrosion in three-phase oil/water/gas slug flow in horizontal pipes

    SciTech Connect

    Zhou, X.; Jepson, W.P.

    1994-12-31

    A study of corrosion in the mixing zone at the front of slugs has been carried out in a 10 cm internal diameter, horizontal, three-phase flow system using a light condensate oil and saltwater as liquids and carbon dioxide as the gas phase. Visual observations show that stratified water layers are apparent at the bottom of the pipe at oil compositions up to 60%. Pulses of gas bubbles are formed at high Froude numbers which impinge on the lower surfaces of the pipe. The corrosion rate increased with an increase in Froude number. This is due to the increases in wall shear stress, turbulence, and gas present at the bottom of the pipe as the Froude number increases. The presence of gas at the bottom of the pipe has a significant effect on the corrosion rate. It provides an erosion component to the corrosion processes. The corrosion rate can be related to pressure drop across the slug but average wall shear stress does not seem to be appropriate.

  1. 78 FR 14788 - Transcontinental Gas Pipe Line Company, LLC; Notice of Availability of the Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Environmental Assessment for the Proposed Brandywine Creek Replacement Project The staff of the Federal Energy Regulatory Commission (FERC or Commission) has prepared an environmental assessment (EA) for the Brandywine Creek Replacement Project, proposed by Transcontinental Gas Pipe Line Company, LLC (Transco) in...

  2. 76 FR 37109 - Transcontinental Gas Pipe Line Company, LLC; Notice of Availability of the Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... per day to Transco's existing mainline system from the Clean Energy LNG import terminal currently... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Transcontinental Gas Pipe Line Company, LLC; Notice of Availability of...

  3. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. PMID:24675269

  4. The application and field experience of high strength 12% Cr centrifugally cast pipe for gas gathering system

    SciTech Connect

    Yoshitake, A.; Teraoka, M.; Torigoe, T.; Amako, S.

    1995-10-01

    Centrifugal cast method is one of the processes to provide high quality seamless pipe. The advantages of the process are (1) heavy wall pipe can be manufactured (2) relatively flexible in material selection for manufacturing pipe. For sweet corrosion environment caused by CO{sub 2} where carbon steels can not be used, centrifugally cast 12% Cr martensitic stainless steel pipes and fittings have been developed. One of the key factors of this material applied to pipeline is the weldability, especially high hardness of the welds or its heat affected zone which causes for brittle rupture as well as stress corrosion cracking of the pipeline. Cast 12% Cr pipe which has high strength with low hardness even at the weld joint has been developed. Besides of the development of straight pipe, several types of fittings have been developed. These pipes and fittings have been used for natural gas gathering lines and booster compression lines in sweet corrosion service.

  5. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    NASA Astrophysics Data System (ADS)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  6. The decay of chlorine associated with the pipe wall in water distribution systems.

    PubMed

    Hallam, N B; West, J R; Forster, C F; Powell, J C; Spencer, I

    2002-08-01

    Free chlorine decay rates in water distribution systems for bulk and wall demands should be modelled separately as they have different functional dependencies. Few good quality determinations of in situ wall demand have been made due to the difficulty of monitoring live systems and due to their complexity. Wall demands have been calculated from field measurements at 11 locations in a distribution system fed from a single source. A methodology for the laboratory determination has been evolved and shown to give results that are similar to the in situ results. Pipe materials were classified as either having high reactivity (unlined iron mains) or low reactivity (PVC, MDPE and cement-lined ductile iron). The results indicate that wall decay rates for the former are limited by chlorine transport and for the latter by pipe material characteristics. The wall decay rate is inversely related to initial chlorine concentration for low reactivity pipes. In general, water velocity increases wall decay rates though the statistical confidence is low for low reactivity pipes. A moderate biofilm coating did not influence the wall decay rate for low reactivity pipes. PMID:12230193

  7. Direct numerical simulations of gas-liquid annular flows in horizontal pipes: predictions of film height and mechanisms for film sustainment

    NASA Astrophysics Data System (ADS)

    McCaslin, Jeremy; Desjardins, Olivier

    2011-11-01

    Direct Steam Generation (DSG), a technology that uses parabolic solar reflectors to generate steam from water flowing through horizontal pipes located at the focal points of the reflectors, often requires an annular pipe flow in which the liquid is distributed as a thin film around the circumference of the pipe. The distribution of the gas-liquid interface for such flows (i.e. the thickness of the liquid film and the measure of liquid droplets entrained in the gas core) can have ramifications for both the optimized operation and economical design of DSG loops. In this work, a conservative finite difference scheme is used in conjunction with a state-of-the-art discontinuous Galerkin conservative level set methodology to simulate periodic sections of such flows. Under the assumption of a gas core-dominated flow, dimensional analysis suggests a theoretical basis that is presented for the prediction of flow ``annularity'' (i.e. contiguousness of the liquid film). Mechanisms for film sustainment such as wave propagation up the pipe walls and droplet entrainment and deposition are also numerically investigated for a variety of annular flows. This research was supported in part by the NSF through TeraGrid resources provided by the National Institute for Computational Sciences.

  8. IRON TUBERCULATION: PHYSIO-CHEMICAL CHARACTERIZATION OF A SINGLE PIPE FROM A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    The nature of iron tubercles inside unlined iron pipes of drinking water distribution systems are influenced by water quality and therefore susceptible to changes in water chemistry. The underlying assumption is that tubercles in a system have similar physio-chemical properties. ...

  9. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  10. Heat pipe cooled twin airfoil blade as an element for higher efficiency of longlife gas turbine

    NASA Astrophysics Data System (ADS)

    Majcen, M.; Sarunac, N.

    The present state of the art in gas turbine engines is closely tied to improvements in design techniques that have resulted, over the years, in a steady increase in operating temperatures. Higher firing temperatures are essential for development of smaller, lighter, more efficient engines. One possible way to meet aforesaid trend, a double gas turbine cycle based on heat pipe cooled twin airfoil blade is described in this paper. The basic and improved flow diagrams of the double gas turbine cycle, its performances, heat transfer analysis on, across and from twin airfoil blade and some calculated examples are presented.

  11. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. LOTH; GARY J. MORRIS; GEORGE M. PALMER; RICHARD GUILER

    2004-01-05

    The power point presentation for the Natural Gas Technologies II Conference held on February 8-11, 2004 in Phoenix AZ, published the presentations made at the conference, therefore required all presenters to submit their presentation prior to November 2003. However in the remainder of year, significant new test data became available which were incorporated in the actual presentation made at the Natural Gas Technologies II Conference. The 6th progress report presents the updated actual slide show used during the paper presentation by Richard Guiler.

  12. Gas distribution industry survey: Costs of installation, maintenance and repair, and operations, version 1. Topical report, December 1993-March 1995

    SciTech Connect

    Biederman, N.

    1996-05-01

    The U.S. natural gas distribution industry spends $40 - $45 billion each year to buy gas and deliver it to the customers and to expand and renew the distribution piping system. More than half of these expenditures are paid to suppliers and transporters of gas. The way in which the balance (nearly $18 billion) is spent is controlled by the local gas distribution companies. This research is aimed to provide a better understanding of how and why these costs are incurred. It is based on interviews with 24 gas distribution companies and the data collected on a wide variety of maintenance, installation, and operations activities.

  13. Temperature distributions in well-insulated and closed/nearly closed-ended vertical pipes

    SciTech Connect

    Coffield, R.D.; Antaki, G.A.

    1989-01-01

    Many different sized auxiliary lines are tied into the primary heat transport system piping of nuclear reactors and other similar types of systems. Often these lines are valve closed so that the contained fluid is either stagnant or flowing at low velocity due to free convection or small amounts of leakage (across valves). The characterization of the axial temperature distributions in these lines is important because of potential structural consequences to the pipe. For example, in addition to being required for determining basic thermal expansion allowances in piping networks, it is needed relative to other considerations such as thermal fatigue, which could occur due to leakage attaining a different temperature than that of the trunk line that it flows into. As would be anticipated, conditions that result in larger fluid temperature differences at a particular network juncture generally result in the more severe structural impact (e.g., thermal stratification/striping assessments become necessary). The purpose of this paper was to characterize some of the major phenomena that needed to be considered relative to predicting the range of temperature variations that can be experienced in the piping. The major emphases of these discussions are on vertical pipe orientation (either up or down).

  14. Failure mechanisms and lifetime prediction methodology for polybutylene pipe in water distribution system

    NASA Astrophysics Data System (ADS)

    Niu, Xiqun

    Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.

  15. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium

    NASA Astrophysics Data System (ADS)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2010-06-01

    Collapsible loess-derived soils are prone to soil piping erosion, where enlargement of macropores may lead to a subsurface pipe network and eventually to soil collapse and gully development. This study aims at understanding the main factors controlling spatial patterns of piping in loess-derived soils under a temperate climate. To map the spatial distribution of piping and identify the environmental controls on its distribution, a regional survey was carried out in a 236 km 2 study area in the Flemish Ardennes (Belgium). Orthophotos taken at optimal field conditions (winter) were analyzed to detect piping in open landscapes and ground thruthing was systematically done through field surveys. In total, 137 parcels having 560 collapsed pipes were mapped. Dimensions of the sinkholes and local slope gradient were measured in the field and topographical variables were derived from LiDAR data. Land use plays an important role as 97% of the sites with piping are found under pasture. The probability of piping increases rapidly on hillslopes with gradients exceeding 8% and with a concave profile and plan curvature, enhancing subsurface flow concentration. The zones with soil profiles on shallow loess over a relatively thin layer of homogeneous blue massive clays (Aalbeke Member) are most prone to piping. Soil characteristics are of less importance to explain piping occurrence. Furthermore, the topographical threshold line indicating the critical slope gradient for a given contributing drainage area was determined. This threshold line (negative power relation) is similar to the threshold line for shallow gully initiation.

  16. Construction and testing of a gas-loaded, passive-control, variable-conductance heat pipe

    NASA Technical Reports Server (NTRS)

    Depew, C. A.; Sauerbrey, W. J.; Benson, B. A.

    1973-01-01

    A methanol heat pipe using nitrogen gas for temperature control has been constructed and tested. The system was run over a power ratio of 15 (2 to 30 watts) with the heat source near ambient temperature and with the heat sink at a nominal value of 32 F. Control was obtained with a metal bellows gas reservoir which was actuated by an internal liquid-filled bellows. The liquid bellows was pressurized by expanding liquid methanol which was contained in an auxiliary reservoir in the evaporator heater block. It was demonstrated that the temperature variation of the heat source was reduced from 36 F for the heat pipe with no control to 7 F with the actuated bellows control.

  17. Influence of absorption on nonlinear vibrations of gas in a closed pipe

    SciTech Connect

    Galiullin, R.G.; Galiullina, E.R.; Permyakov, E.I.

    1995-12-01

    We consider dissipative mechanisms involved in resonance vibrations of gas in a closed pipe. Using analysis of a resonance curve as an example, we show the existence of four regimes differing in the mechanism of dissipation. We determine their boundaries, as well as lay a foundation for the procedures used to calculate the amplitude of vibrations within these intervals. Comparison of calculating formulas with experiments conducted by various authors is made.

  18. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  19. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  20. The influence of diameter ratio on the stress distribution around 90{degree} branch pipe connection due to internal pressure

    SciTech Connect

    Harsokoesoemo, D.; Santoso, G.

    1994-12-31

    Numerical stress calculation results of stress distribution around 90{degree} branch pipe connection due to internal pressure for several main and branch pipe diameter ratios using finite element program MECHANICA (RASNA) are presented in this paper. The calculation results are presented in two types of diagrams, one is in the form of stress versus its location on the main and branch pipe curves for 4 different diameter ratios and the other as stress concentration factor versus diameter ratios curves for the case d/t = D/T and t = T and for three pipe schedule number 40, 80 and 160.

  1. Analysis of temperature distribution in a pipe with inner mineral deposit

    NASA Astrophysics Data System (ADS)

    Joachimiak, Magda; Ciałkowski, Michał; Bartoszewicz, Jarosław

    2014-06-01

    The paper presents the results of calculations related to determination of temperature distributions in a steel pipe of a heat exchanger taking into account inner mineral deposits. Calculations have been carried out for silicate-based scale being characterized by a low heat transfer coefficient. Deposits of the lowest values of heat conduction coefficient are particularly impactful on the strength of thermally loaded elements. In the analysis the location of the thermocouple and the imperfection of its installation were taken into account. The paper presents the influence of determination accuracy of the heat flux on the pipe external wall on temperature distribution. The influence of the heat flux disturbance value on the thickness of deposit has also been analyzed.

  2. Study of the behavior of gas distribution equipment in hydrogen service, phase 2

    NASA Astrophysics Data System (ADS)

    Jasionowski, W. J.; Huang, H. D.

    1981-03-01

    The characteristics of gas distribution pipe in hydrogen service was studied. In experiments with three types of polyethylene natural gas piping, hydrogen permeation was found to be 4 to 6 times greater than methane permeation. Leakage experiments with methane/hydrogen blends showed no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow through leaks. Leak rates increased with increasing pressure and decreasing specific gravity. It is concluded that 13.7 x 10 to the 6th power SCF of natural gas could be lost annually in the U.S. by permeation; if hydrogen were distributed, the comparable loss would be 67.4 x 10 to the 6th power.

  3. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    SciTech Connect

    Minard, Kevin R.; Jacob, Rick E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Flow splitting at airway branches is still evident, however, and use of 3D vector flow mapping is shown to provide a quantitative view of pulmonary gas supply that highlights the correlation of airflow dynamics with lung structure.

  4. Vehicle tail pipe emissions. A comparison of natural gas and petrol injection

    SciTech Connect

    Bates, G.J.; Germano, S.

    1994-10-01

    Tests were undertaken with a Renault Express 1.4 litre converted to natural gas operation. The effect of cold starts at cold temperatures and vehicle weight on tail pipe emissions were investigated with petrol and natural gas operation over the FTP75 and the 91/441/EEC drive cycles. The results show that the emissions with natural gas are unaffected by cold temperature, unlike petrol emissions which are several times higher at -15{degree}-C than at 25{degree}-C. A crude simulation, accounting for the actual temperature, shows that the conversion of a significant quantity of light duty vehicles to natural gas operation could reduce the emissions of CO and HC by more than 90% in Switzerland. 15 refs., 17 figs., 8 tabs.

  5. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    PubMed Central

    Minard, Kevin R.; Jacob, Richard E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2013-01-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure. PMID:18667344

  6. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    SciTech Connect

    GJ Schuster, FA Simonen, SR Doctor

    2008-04-01

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

  7. Condensation heat transfer in rotating heat pipes in the presence of a non-condensable gas

    NASA Technical Reports Server (NTRS)

    Daniels, T. C.; Medwell, J. O.; Williams, R. J.

    1977-01-01

    An analysis of condensation problems in rotating heat pipes containing vapors with different concentrations of non-condensable gases is given. In situations such as this, temperature and concentration gradients are set up in the vapor-gas mixture. There is a transport of mass due to temperature gradients accompanied by an energy transport phenomena due to a concentration gradient. A Nusselt type analysis is not suited to this type of problem; however, a boundary layer type approach has successfully been used to analyze stationary condensation systems with non-condensable gases present. The present boundary layer analysis is presented for condensation processes on the inside of a rotating heat pipe in the presence of non-condensable gases.

  8. The measurement of gas-liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-04-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas-liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas-liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas-liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas-liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy.

  9. Experimental determination of the thickness of aluminum cascade pipes in the presence of UF6 gas during enrichment measurements

    NASA Astrophysics Data System (ADS)

    Lombardi, M. L.; Favalli, A.; Goda, J. M.; Ianakiev, K. D.; MacArthur, D. W.; Moss, C. E.

    2012-04-01

    We present a method of determining the wall thickness of a pipe in a Gas Centrifuge Enrichment Plant (GCEP) when an empty pipe measurement is not feasible. Our method uses an X-ray tube for transmission measurements and a lanthanum bromide (LaBr3) scintillation detector on the opposite side of the pipe. Two filters, molybdenum (K-edge 20.0 keV) and palladium (K-edge 24.35 keV) are used to transform the bremsstrahlung spectra produced by the X-ray tube into more useful, sharply peaked, spectra. The maximum energies of the peaks are determined by the K-edges of the filters. The attenuation properties of the uranium hexafluoride (UF6) gas allow us to determine wall thickness by looking at the ratio of selected regions of interest (ROIs) of the Mo and Pd transmitted spectra. While the attenuation factor at these two transmission energies in the UF6 gas is nearly equal, attenuation in the aluminum pipe wall at these two energies differs by a factor of about 60. This difference allows measurement of attenuation in the pipe independent of attenuation in the UF6 gas. Feasibility studies were performed using analytical calculations, and filter thicknesses were optimized. In order to experimentally validate our attenuation measurement method, a UF6 source with variable enrichment and pipe thickness was built. We describe the experimental procedure used to verify our previous calculations and present recent results.

  10. CORRELATION BETWEEN THE DAMAGE RATIOS OF WOODEN HOUSES AND WATER DISTRIBUTION PIPES AFTER THE SCENARIO TOKYO METROPOLITAN EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Maruyama, Yoshihisa; Yamazaki, Fumio

    This study estimated the damage ratios of wooden houses and water distribution pipes in Tokyo, Kanagawa, Saitama, and Chiba prefectures after the scenario Tokyo Metropolitan earthquake. Since the damage ratios were evaluated by common fragility functions, the amount of damage can be compared seamlessly for the areas around Tokyo Metropolis. This study also considers the correlations between the damage ratios of wooden houses and water distribution pipes with respect to the postal address areas (cho-cho-moku) along the Tokyo Bay. The areas associated with higher damage ratios of wooden houses and water pipes were detected and the delay of restoration work is anticipated in these areas.

  11. Calculation method of load distribution on pipe threaded connections under tension load

    NASA Astrophysics Data System (ADS)

    Chen, Shoujun; Gao, Lianxin; An, Qi

    2011-06-01

    This paper presents a new calculation method that can calculate the load distribution on pipe threaded connections under tension load. On the basis of elastic mechanics, the new method was developed by analyzing each thread tooth, and a new deformation and covariant equation by making a mechanics analysis on each thread tooth was obtained. Compared with the traditional method proposed by the previous references, the new deformation and covariant equation could be used to describe the relation between the previous and the next thread tooth. By applying the new method on the sample of P-110S pipe threaded connection, the obtained results show that the load on thread tooth mainly concentrates on the four or five threads engaged and the middle teeth were not utilized well to bear the loads. The model offers a new way to calculate the loads carried on the thread teeth under tension load.

  12. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  13. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  14. Pipe liners for corrosive high temperature oil and gas production applications

    SciTech Connect

    Mason, J.F.

    1997-08-01

    Polyamide-11 has been used for more than twenty years as the chemical and pressure barrier in flexible pipes used in offshore oil and gas production. Recently, polyamide-11 has been used to line and protect carbon steel pipelines carrying corrosive sour raw gas and condensates. The liner was inserted in the field using the well-known roller-box diameter reduction technique. It is being used successfully at temperatures that are not possible with conventional polyethylene liners. Until now, at temperatures above about 45 C only corrosion inhibition programs have proven to be effective in controlling the internal corrosion rates of carbon steel pipes carrying sour raw gas. There is a total of about six kilometers of polyamide-11 now installed in five pipelines located in central and northwestern Alberta, Canada, and operating at temperatures up to about 80 C. The installations and the properties of exposed and aged polyamide-11 liner are discussed. The chemical resistance and mechanical properties of the polyamide-11 that make this application possible are discussed in detail.

  15. Detection of Escherichia coli in Biofilms from Pipe Samples and Coupons in Drinking Water Distribution Networks▿

    PubMed Central

    Juhna, T.; Birzniece, D.; Larsson, S.; Zulenkovs, D.; Sharipo, A.; Azevedo, N. F.; Ménard-Szczebara, F.; Castagnet, S.; Féliers, C.; Keevil, C. W.

    2007-01-01

    Fluorescence in situ hybridization (FISH) was used for direct detection of Escherichia coli on pipe surfaces and coupons in drinking water distribution networks. Old cast iron main pipes were removed from water distribution networks in France, England, Portugal, and Latvia, and E. coli was analyzed in the biofilm. In addition, 44 flat coupons made of cast iron, polyvinyl chloride, or stainless steel were placed into and continuously exposed to water on 15 locations of 6 distribution networks in France and Latvia and examined after 1 to 6 months exposure to the drinking water. In order to increase the signal intensity, a peptide nucleic acid (PNA) 15-mer probe was used in the FISH screening for the presence or absence of E. coli on the surface of pipes and coupons, thus reducing occasional problems of autofluorescence and low fluorescence of the labeled bacteria. For comparison, cells were removed from the surfaces and examined with culture-based or enzymatic (detection of β-d-glucuronidase) methods. An additional verification was made by using PCR. Culture method indicated presence of E. coli in one of five pipes, whereas all pipes were positive with the FISH methods. E. coli was detected in 56% of the coupons using PNA FISH, but no E. coli was detected using culture or enzymatic methods. PCR analyses confirmed the presence of E. coli in samples that were negative according to culture-based and enzymatic methods. The viability of E. coli cells in the samples was demonstrated by the cell elongation after resuscitation in low-nutrient medium supplemented with pipemidic acid, suggesting that the cells were present in an active but nonculturable state, unable to grow on agar media. E. coli contributed to ca. 0.001 to 0.1% of the total bacterial number in the samples. The presence and number of E. coli did not correlate with any of physical and/or chemical characteristic of the drinking water (e.g., temperature, chlorine, or biodegradable organic matter concentration

  16. Examination of the CLIC drive beam pipe design for thermal distortion caused by distributed beam line

    SciTech Connect

    C. Johnson; K. Kloeppel

    1997-01-01

    Beam transport programs are widely used to estimate the distribution of power deposited in accelerator structures by particle beams, either intentionally as for targets or beam dumps or accidentally owing the beam loss incidents. While this is usually adequate for considerations of radiation safety, it does not reveal the expected temperature rise and its effect on structural integrity. To find this, thermal diffusion must be taken into account, requiring another step in the analysis. The method that has been proposed is to use the output of a transport program, perhaps modified, as input for a finite element analysis program that can solve the thermal diffusion equation. At Cern, the design of the CLIC beam pipe has been treated in this fashion. The power distribution produced in the walls by a distributed beam loss was found according to the widely-used electron shower code EGS4. The distribution of power density was then used to form the input for the finite element analysis pro gram ANSYS, which was able to find the expected temperature rise and the resulting thermal distortion. As a result of these studies, the beam pipe design can be modified to include features that will counteract such distortion.

  17. Numerical investigation of temperature distribution in an eroded bend pipe and prediction of erosion reduced thickness.

    PubMed

    Zhu, Hongjun; Feng, Guang; Wang, Qijun

    2014-01-01

    Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576

  18. Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness

    PubMed Central

    Zhu, Hongjun; Feng, Guang; Wang, Qijun

    2014-01-01

    Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576

  19. Development of acoustic flow instruments for solid/gas pipe flows

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.

    1986-05-01

    Two nonintrusive acoustic flow sensing techniques are reported. One technique, passive in nature, simply measures the bandpassed acoustic noise level produced by particle/particle and particle/wall collisions. The noise levels, given in true RMS voltages or in autocorrelations, show a linear relationship to particle velocity but increase with solid concentration. Therefore, the passive technique requires calibration and a separate measure of solid concentration before it can be used to monitor the particle velocity. The second technique is based on the active cross-correlation principle. It measures particle velocity directly by correlating flow-related signatures at two sensing stations. The velocity data obtained by this technique are compared with measurements by a radioactive-particle time-of-flight (TOF) method. A multiplier of 1.53 is required to bring the acoustic data into agreement with the radioactive TOF result. The difference may originate from the difference in flow fields where particles are detected. The radioactive method senses particles mainly in the turbulent region and essentially measures average particle velocity across the pipe, while the acoustic technique detects particles near the pipe wall, and so measures the particle velocity in the viscous sublayer. Both techniques were tested in flows of limestone and air and 1-mm glass beads and air at the Argonne National Laboratory Solid/Gas Test Facility (SGFTF). The test matrix covered solid velocities of 20 to 30 m/s in a 2-in. pipe and solid-to-gas loading ratios of 6 to 22. 37 refs., 19 figs., 4 tabs.

  20. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy

    PubMed Central

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064

  1. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy.

    PubMed

    Jiang, Yulin; Li, Bin; Chen, Jie

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064

  2. PGE distribution in deformed lherzolites of the Udachnaya kimberlite pipe (Yakutia)

    NASA Astrophysics Data System (ADS)

    Ilyina, O. V.; Tychkov, N. S.; Agashev, A. M.; Golovin, A. V.; Izokh, A. E.; Kozmenko, O. A.; Pokhilenko, N. P.

    2016-04-01

    The results of the first study of the PGE distribution in deformed lherzolites of the Udachnaya kimberlite pipe (Yakutia) are presented here. The complex character of evolution of the PGE composition in the Deformed lherzolites is assumed to be the result of silicate metasomatism. At the first stage, growth in the amount of clinopyroxene and garnet in the rock is accompanied by a decrease in the concentration of the compatible PGE (Os, Ir). During the final stage, the rock is enriched with incompatible PGE (Pt, Pd) and Re possible due to precipitation of submicron-sized particles of sulfides in the interstitial space of these mantle rocks.

  3. Simulation of external contamination into water distribution systems through defects in pipes

    NASA Astrophysics Data System (ADS)

    López, P. A.; Mora, J. J.; García, F. J.; López, G.

    2009-04-01

    Water quality can be defined as a set of properties (physical, biological and chemical) that determine its suitability for human use or for its role in the biosphere. In this contribution we focus on the possible impact on water distribution systems quality of external contaminant fluids entering through defects in pipes. The physical integrity of the distribution system is a primary barrier against the entry of external contaminants and the loss in quality of the treated drinking water, but this integrity can be broken. Deficiencies in physical and hydraulic integrity can lead into water losses, but also into the influx of contaminants through pipes walls, either through breaks coming from external subsoil waters, or via cross connections coming from sewerage or other facilities. These external contamination events (the so called pathogen intrusion phenomenon) can act as a source of income by introducing nutrients and sediments as well as decreasing disinfectant concentrations within the distribution system, thus resulting in a degradation of the distribution water quality. The objective of this contribution is to represent this pathogen intrusion phenomenon. The combination of presence of defects in the infrastructures (equipment failure), suppression and back-siphonage and lack of disinfection is the cause of propagation of contamination in the clean current of water. Intrusion of pathogenic microorganisms has been studied and registered even in well maintained services. Therefore, this situation can happen when negative pressure conditions are achieved in the systems combined with the presence of defects in pipes nearby the suppression. A simulation of the process by which the external fluids can come inside pipes across their defects in a steady-state situation will be considered, by using different techniques to get such a successful modeling, combining numerical and experimental simulations. The proposed modeling process is based on experimental and

  4. Simulation of external contamination into water distribution systems through defects in pipes

    NASA Astrophysics Data System (ADS)

    López, P. A.; Mora, J. J.; García, F. J.; López, G.

    2009-04-01

    Water quality can be defined as a set of properties (physical, biological and chemical) that determine its suitability for human use or for its role in the biosphere. In this contribution we focus on the possible impact on water distribution systems quality of external contaminant fluids entering through defects in pipes. The physical integrity of the distribution system is a primary barrier against the entry of external contaminants and the loss in quality of the treated drinking water, but this integrity can be broken. Deficiencies in physical and hydraulic integrity can lead into water losses, but also into the influx of contaminants through pipes walls, either through breaks coming from external subsoil waters, or via cross connections coming from sewerage or other facilities. These external contamination events (the so called pathogen intrusion phenomenon) can act as a source of income by introducing nutrients and sediments as well as decreasing disinfectant concentrations within the distribution system, thus resulting in a degradation of the distribution water quality. The objective of this contribution is to represent this pathogen intrusion phenomenon. The combination of presence of defects in the infrastructures (equipment failure), suppression and back-siphonage and lack of disinfection is the cause of propagation of contamination in the clean current of water. Intrusion of pathogenic microorganisms has been studied and registered even in well maintained services. Therefore, this situation can happen when negative pressure conditions are achieved in the systems combined with the presence of defects in pipes nearby the suppression. A simulation of the process by which the external fluids can come inside pipes across their defects in a steady-state situation will be considered, by using different techniques to get such a successful modeling, combining numerical and experimental simulations. The proposed modeling process is based on experimental and

  5. Rarefied gas flow into vacuum through a long circular pipe composed of two sections of different radii

    NASA Astrophysics Data System (ADS)

    Titarev, V. A.; Shakhov, E. M.

    2014-12-01

    The paper is devoted to the study of a rarefied gas flow through a composite circular pipe into vacuum. The pipe is made of two cylindrical sections of different diameters: narrower section is followed by the wider one (diverging configuration). The analysis is based on the direct numerical solution of the Boltzmann kinetic equation with the S-model collision integral. The results are presented for several length to radius ratios and a large range of Knudsen numbers. The main computed characteristic is the mass flow rate through the pipe. The dependence of the flow field on pipe's geometry and Knudsen number is established. Formation of special features of the flow, such as recirculation zones and a Mach disk, is studied.

  6. Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks.

    PubMed

    Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C; Christophi, Costas A; Skarlatos, Dimitrios; Vamvakousis, Vasilis; Kargaki, Sophia; Stephanou, Euripides G

    2015-02-15

    Gradually-changing shocks associated with potable water quality deficiencies are anticipated for urban drinking-water distribution systems (UDWDS). The impact of structural UDWDS features such as, the number of pipe leaking incidences on the formation of water trihalomethanes (THM) at the geocoded household level has never been studied before. The objectives were to: (i) characterize the distribution of water THM concentrations in households from two district-metered areas (DMAs) with contrasting UDWDS characteristics sampled in two seasons (summer and winter), and (ii) assess the within- and between-household, spatial variability of water THM accounting for UDWDS characteristics (household distance from chlorination tank and service pipe leaking incidences). A total of 383 tap water samples were collected from 193 households located in two DMAs within the UDWDS of Nicosia city, Cyprus, and analyzed for the four THM species. The higher intraclass correlation coefficient (ICC) values for water tribromomethane (TBM) (0.75) followed by trichloromethane (0.42) suggested that the two DMAs differed with respect to these analytes. On the other hand, the low ICC values for total THM levels between the two DMAs suggested a large variance between households. The effect of households nested under each DMA remained significant (p<0.05) for TBM (not for the rest of the THM species) in the multivariate mixed-effect models, even after inclusion of pipe network characteristics. Our results could find use by water utilities in overcoming techno-economic difficulties associated with the large spatiotemporal variability of THM, while accounting for the influence of UDWDS features at points of water use. PMID:25460936

  7. A theory for accelerated slow crack growth in medium-density polyethylene fuel-gas pipes

    SciTech Connect

    Chaoui, K.

    1989-01-01

    In the present work, a new testing procedure is developed for medium density polyethylene (MDPE) fuel gas pipes to produce brittle fracture at laboratory scale within a shorter period of time as compared to existing procedures. In the proposed procedure, the intrinsic resistance of (MDPE) pipes is studied under fatigue mode and ambient environment. Because of the lack of theoretical foundations in the existing procedures, brittle fracture in such structural components is addressed using the crack layer formalism in order to assess the controlling damage mechanisms and extract characteristic parameters representative of the phenomena occurring as a result of failure. It is found that crack propagation behavior is split into a brittle regime which extends up to half of the specimen width and a ductile regime which controls most of the second half. Damage analysis revealed that the brittle regime is led by a craze zone which becomes diffuse and larger as ductility increases. Crack and its surrounding damage are treated as a single macroscopic entity called a crack layer (CL). The portion where damage accumulates under the effects of the stress field at the crack tip is defined as the active zone. This zone is a major energy sink and thus, controls the crack propagation rate. The driving force and the instability conditions for CL propagation are commonly given in terms of the energy available and the energy required for propagation which is expressed as the product of the resistance moment R{sub 1} and the specific enthalpy of damage. In the present case, the analysis is limited to the brittle regime which is of a great interest in the long-term failure of MDPE pipes under service conditions. Also, the analysis uses the entire brittle fracture history to evaluate the resistance moment for the crazing mechanism and to extract the specific enthalpy of damage {Psi}*.

  8. The Galactic Dense Gas Distribution and Properties

    NASA Astrophysics Data System (ADS)

    Glenn, Jason

    2015-08-01

    As the nearest spiral galaxy, the Milky Way provides a foundation for understanding galactic astrophysics. However, our position within the Galactic plane makes it challenging to decipher the detailed disk structure. The Galactic distribution of dense gas is relatively poorly known; thus, it is difficult to assess models of galaxy evolution by comparison to the Milky Way. Furthermore, fundamental aspects of star formation remain unknown, such as why the stellar and star cluster initial mass functions appear to be ubiquitous.Sub/millimeter dust continuum surveys, coupled with molecular gas surveys, are revealing the 3D distribution and properties of dense, star-forming gas throughout the disk. Here we report on the use of BGPS and Hi-GAL. BGPS is a 1.1 mm survey of the 1st Galactic quadrant and some lines of sight in the 2nd quadrant, totalling 200 deg2. We developed a technique using the Galactic rotation curve to derive distance probability density functions (DPDFs) to molecular cloud structures identified with continuum surveys. DPDFs combine vLSR measures from dense gas tracers and 13CO with distance discriminators, such as 8 μm extinction, HI self absorption, and (l, b, vLSR) associations with objects of known distances. Typical uncertainties are σdist ≤ 1 kpc for 1,710 BGPS objects with well-constrained distances.From DPDFs we derived the dense gas distribution and the dense gas mass function. We find evidence for dense gas in and between putative spiral arms. A log-normal distribution describes the mass function, which ranges from cores to clouds, but is primarily comprised of clumps. High-mass power laws do not fit the entire data set well, although power-law behavior emerges for sources nearer than 6.5 kpc (α = 2.0±0.1) and for objects between 2 kpc and 10 kpc (α = 1.9±0.1). The power law indices are generally between those of GMC and the stellar IMF. We have begun to apply this approach to the Hi-GAL (70 - 500 μm). With coverage of the entire

  9. Epidemiology study of the use of asbestos-cement pipe for the distribution of drinking water in Escambia County, Florida.

    PubMed Central

    Millette, J R; Craun, G F; Stober, J A; Kraemer, D F; Tousignant, H G; Hildago, E; Duboise, R L; Benedict, J

    1983-01-01

    Cancer mortality for the population census tracts of Escambia County, FL, which use asbestos-cement (AC) pipe for public potable water distribution, was compared with cancer mortality data collected from census tracts in the same county where other types of piping materials are used. An analysis of covariance was run to test for differences in standard mortality ratios for seven cancer sites among three potential asbestos exposure groups based on AC pipe usage. Twelve variables representing nonexposure-related influences on disease rates were combined in four independent factors and used as covariates in these analyses. No evidence for an association between the use of AC pipe for carrying drinking water and deaths due to gastrointestinal and related cancers was found. The limitations on the sensitivity of the analysis are discussed. PMID:6559131

  10. Comparison of Two Potassium-Filled Gas-Controlled Heat Pipes

    NASA Astrophysics Data System (ADS)

    Bertiglia, F.; Iacomini, L.; Moro, F.; Merlone, A.

    2015-12-01

    Calibration by comparison of platinum resistance thermometers and thermocouples requires transfer media capable of providing very good short-term temperature uniformity and temperature stability over a wide temperature range. This paper describes and compares the performance of two potassium-filled gas-controlled heat pipes (GCHP) for operation over the range from 420° C to 900° C. One of the heat pipes has been in operation for more than 10 years having been operated at temperature for thousands of hours, while the other was commissioned in 2010 following recently developed improvements to both the design, assembly, and filling processes. It was found that the two devices, despite differences in age, structure, number of wells, and filling processes, realized the same temperatures within the measurement uncertainty. The results show that the potassium-filled GCHP provides a durable and high-quality transfer medium for performing thermometer calibrations with very low uncertainties, over the difficult high-temperature range from 420° C to 900° C.

  11. Study of quantification and distribution of explosive mixture in a confined space as a result of natural gas leak

    NASA Astrophysics Data System (ADS)

    Tulach, Aleš; Mynarz, Miroslav; Kozubková, Milada

    2014-03-01

    The contribution deals with quantification of natural gas leak from a domestic low pressure pipe to a confined space in relation to formation of explosive concentration. Within the experiments, amount of leak gas was determined considering the character of pipe damage. Leakage coefficients, natural gas expansion and time before reaching the lower explosive limit of a gas-air mixture were taken. Conducted experiments were then modelled using CFD software and the results were verified. In numerical model, several models of flow were used and afterwards following issues were analysed: leakage velocity, spatial distribution of the mixture in a confined space, formation of concentration at the lower explosive limit etc. This work should contribute to better understanding of propagation and distribution of gaseous fuel mixtures in confined spaces and thereby significantly reduce the risk of fires or explosions or prevent them.

  12. Measurement of gas distributions from PRS nozzles

    SciTech Connect

    Weber, B.V.; Stephanakis, S.J.; Commisso, R.J.; Fisher, A. Peterson, G.G.

    1997-05-01

    A high-sensitivity laser interferometer has been used to measure gas distributions from nozzles used in high-power plasma radiation source experiments. These measurements are important for determining experimental parameters and for modeling implosions. The integral of the gas density along the laser beam line of sight is measured as a function of time at one axial distance, z, and one radial displacement, r. The nozzle is moved to scan the (r,z) cross section. The measurements are Abel-inverted to compute the local density n(r,z,t). Several examples are shown to illustrate the technique. {copyright} {ital 1997 American Institute of Physics.}

  13. Measurement of gas distributions from PRS nozzles

    SciTech Connect

    Weber, B. V.; Stephanakis, S. J.; Commisso, R. J.; Fisher, A.; Peterson, G. G.

    1997-05-05

    A high-sensitivity laser interferometer has been used to measure gas distributions from nozzles used in high-power plasma radiation source experiments. These measurements are important for determining experimental parameters and for modeling implosions. The integral of the gas density along the laser beam line of sight is measured as a function of time at one axial distance, z, and one radial displacement, r. The nozzle is moved to scan the (r,z) cross section. The measurements are Abel-inverted to compute the local density n(r,z,t). Several examples are shown to illustrate the technique.

  14. GPR measurements for the distribution of thixotropic slurry behind segments in large diameter and long distance pipe-jacking construction

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Wu, Jiansheng; Xie, Xiongyao; Zeng, Chenchao

    2013-04-01

    It is very important to form an integrated ring of thixotropic slurry around the pipe segments to reduce resistance during large diameter and long distance pipe jacking. Furthermore, the integrated slurry ring between the pipe and the excavated soil can effectively reduce the soil disturbance caused by the pipes, and minimize ground settlement. It is necessary to real-time monitor the spatial distribution of the thixotripic slurry during jacking process. The traditional solution to estimate the outlines of slurry ring is the jacking load and the injecting pressure. If the jacking load increases, which means more slurry should be injected to reduce the jacking load. However, this solution couldn't provide the distribution of the slurry beneath pipe segments, and locate the zones which need to be injected enough slurry. Ground penetrating radar (GPR) has been successfully used to detect the thickness of the grouting behind the shield tunnel segments in last several years. An important factor is the dielectric difference between grouting and soil. Similarly, the interface between the liquid slurry with high relative electric permittivity and surrounding soil, should be recognized from GPR image due to the distinct dielectric difference. Here, GPR experiment has been conducted on a sewage pipe jacking engineering. The purpose of the survey is to evaluate the distribution of the thixotropic slurry through GPR image. In this sewage jacking engineering, the width and the thickness of each pipe segments is 200 cm and 30 cm, respectively. Considering the resolution and propagation range of radar wave, ground coupled bowtie antenna of 900 MHz frequency has been selected for GPR data acquisition. A series of circular GPR data have been collected along the inner surface of pipe segments. In addition, sampling of slurry has been performed on four different segments. The relative electric permittivity and conductivity of the thixotropic slurry have been measured by using time

  15. Application of Lumley's drag reduction model to two-phase gas-particle flow in a pipe

    SciTech Connect

    Han, K.S.; Chung, M.K.; Sung, H.J. )

    1991-03-01

    This paper discusses two-fluid model incorporated with Lumley's drag reduction model to analyze the mechanism of momentum transfer in the turbulent dilute gas-particle flow in a vertical pipe. The change of the effective viscous sublayer thickness by the presence of particles is modeled by Lumley's theoretical model. The numerical computations of the friction factor and the pressure drop in a fully developed pipe flow are in good agreement with the corresponding experimental data for an average particle size of 15 {mu}m. it is proved that Lumley's model is successful in predicting the correct reduction behavior of the drag in the gas-particle flows It has been confirmed that the effective viscous sublayer thickness for two-phase gas-particle flow is dependent on the particle relaxation time, Kolmogoroff time scale and the solids-gas loading ratio.

  16. Distribution of heat flux by working fluid in loop heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  17. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  18. Gas-liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe

    NASA Astrophysics Data System (ADS)

    Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan

    2016-03-01

    A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.

  19. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  20. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    PubMed

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile. PMID:26871016

  1. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China.

    PubMed

    Ren, Hongxing; Wang, Wei; Liu, Yan; Liu, Shuai; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Liu, Jingqing; Hu, Baolan

    2015-12-01

    Biofilms in drinking water distribution systems (DWDSs) could cause several types of problems, such as the deterioration of water quality, corrosion of pipe walls, and potential proliferation of opportunistic pathogens. In this study, ten biofilm samples from different pipe materials, including ductile cast iron pipe (DCIP), gray cast iron pipe (GCIP), galvanized steel pipe (GSP), stainless steel clad pipe (SSCP), and polyvinyl chloride (PVC), were collected from an actual DWDS to investigate the effect of pipe material on bacterial community. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the numbers of total bacteria and culturable heterotrophic bacteria from iron pipes were higher than that in PVC, while the numbers of Shigella and vibrios were low in biofilms from iron pipes. Bacterial community analysis showed that Hyphomicrobium or Desulfovibrio were the predominant microorganism in iron pipes, whereas Sphingomonas or Pseudomonas were dominant in other types of pipe. This study revealed differences in bacterial communities in biofilms among different pipe materials, and the results were useful for pipeline material selection in DWDSs. PMID:26311220

  2. Gas dynamic design of the pipe line compressor with 90% efficiency. Model test approval

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Rekstin, A.; Soldatova, K.

    2015-08-01

    Gas dynamic design of the pipe line compressor 32 MW was made for PAO SMPO (Sumy, Ukraine). The technical specification requires compressor efficiency of 90%. The customer offered favorable scheme - single-stage design with console impeller and axial inlet. The authors used the standard optimization methodology of 2D impellers. The original methodology of internal scroll profiling was used to minimize efficiency losses. Radically improved 5th version of the Universal modeling method computer programs was used for precise calculation of expected performances. The customer fulfilled model tests in a 1:2 scale. Tests confirmed the calculated parameters at the design point (maximum efficiency of 90%) and in the whole range of flow rates. As far as the authors know none of compressors have achieved such efficiency. The principles and methods of gas-dynamic design are presented below. The data of the 32 MW compressor presented by the customer in their report at the 16th International Compressor conference (September 2014, Saint- Petersburg) and later transferred to the authors.

  3. Estimation of Liquid Wall and Interfacial Shear Stress in Horizontal Stratified Gas-liquid Pipe Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yiping; Zhang, Hua; Wang, Jing

    2007-06-01

    A modified two-phase shear stress calculation method for pipe flow problems is explored. A force balance has been set up on the control volume of liquid phase to determine the interfacial friction factor by employing both the measured pressure gradient and liquid height. The gradient of height of liquid layer has been taken into account, which is suitable for the case where the interface may be smooth, rippled or wavy. The correlation of model indicates that the careful estimation for liquid-wall shear stress is necessary, and the assumption of a stationary liquid element is not applicable for the case of higher gas flow rates. The interfacial friction factor evaluated indirectly from experimental liquid height and pressure loss measurements, which are obtained in 50mm ID pipeline for air and water in cocurrent stratified flow, is used to achieve its correlation with the combination of characteristic parameters. The evaluation of new correlation has been conducted by the comparison of the predicted pressure drop with the experimental data. The performance of correlation depends on the form of the gas-liquid interface.

  4. Gas distribution and starbursts in shell galaxies

    NASA Technical Reports Server (NTRS)

    Weil, Melinda L.; Hernquist, Lars

    1993-01-01

    Detailed maps of most elliptical galaxies reveal that, whereas the greatest part of their luminous mass originates from a smooth distribution with a surface brightness approximated by a de Vaucouleurs law, a small percentage of their light is contributed by low surface brightness distortions termed 'fine structures'. The sharp-edged features called 'shells' are successfully reproduced by merger and infall models involving accretion from less massive companions. In this context, dwarf spheroidal and compact disk galaxies are likely progenitors of these stellar phenomena. However, it is probable that the sources of shell-forming material also contain significant amounts of gas. This component may play an important role in constraining the formation and evolution of shell galaxies. To investigate the effects of the gaseous component, numerical simulations were performed to study the tidal disruption of dwarf galaxies containing both gas and stars by more massive primaries, and the evolution of the ensuing debris. The calculations were performed with a hybrid N-body/hydrodynamics code. Collisionless matter is evolved using a conventional N-body technique and gas is treated using smoothed particle hydrodynamics in which self-gravitating fluid elements are represented as particles evolving according to Lagrangian hydrodynamic equations. An isothermal equation of state is employed so the gas remains at a temperature 104 K. Owing to the large mass ratio between the primary and companion, the primary is modeled as a rigid potential and the self-gravity of both galaxies is neglected.

  5. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  6. Investigation of factors affecting the accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution systems.

    PubMed

    Walter, Ryan K; Lin, Po-Hsun; Edwards, Marc; Richardson, Ruth E

    2011-04-01

    Plastic piping made of polyvinyl chloride (PVC), and chlorinated PVC (CPVC), is being increasingly used for drinking water distribution lines. Given the formulation of the material from vinyl chloride (VC), there has been concern that the VC (a confirmed human carcinogen) can leach from the plastic piping into drinking water. PVC/CPVC pipe reactors in the laboratory and tap samples collected from consumers homes (n = 15) revealed vinyl chloride accumulation in the tens of ng/L range after a few days and hundreds of ng/L after two years. While these levels did not exceed the EPA's maximum contaminant level (MCL) of 2 μg/L, many readings that simulated stagnation times in homes (overnight) exceeded the MCL-Goal of 0 μg/L. Considerable differences in VC levels were seen across different manufacturers, while aging and biofilm effects were generally small. Preliminary evidence suggests that VC may accumulate not only via chemical leaching from the plastic piping, but also as a disinfection byproduct (DBP) via a chlorine-dependent reaction. This is supported from studies with CPVC pipe reactors where chlorinated reactors accumulated more VC than dechlorinated reactors, copper pipe reactors that accumulated VC in chlorinated reactors and not in dechlorinated reactors, and field samples where VC levels were the same before and after flushing the lines where PVC/CPVC fittings were contributing. Free chlorine residual tests suggest that VC may be formed as a secondary, rather than primary, DBP. Further research and additional studies need to be conducted in order to elucidate reaction mechanisms and tease apart relative contributions of VC accumulation from PVC/CPVC piping and chlorine-dependent reactions. PMID:21420710

  7. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products

    SciTech Connect

    Gerke, Tammie L.; Scheckel, Kirk G.; Maynard, J. Barry

    2010-11-12

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 {micro}g L{sup -1}) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb{sub 5}(V{sup 5+}O{sub 4}){sub 3}Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based {mu}-XRF mapping and {mu}-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb{sub 5}(V{sup 5+}O{sub 4}){sub 3}Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg{sup -1}. We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg{sup -1}, as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 {micro}g L{sup -1} notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.

  8. Public health and pipe breaks in water distribution systems: analysis with internet search volume as a proxy.

    PubMed

    Shortridge, Julie E; Guikema, Seth D

    2014-04-15

    Drinking water distribution infrastructure has been identified as a factor in waterborne disease outbreaks and improved understanding of the public health risks associated with distribution system failures has been identified as a priority area for research. Pipe breaks may pose a risk, as their occurrence and repair can result in low or negative pressure, potentially allowing contamination of drinking water from adjacent soils. However, measuring this phenomenon is challenging because the most likely health impact is mild gastrointestinal (GI) illness, which is unlikely to result in a doctor or hospital visit. Here we present a novel method that uses data mining techniques and internet search volume to assess the relationship between pipe breaks and symptoms of GI illness in two U.S. cities. Weekly search volume for the terms diarrhea and vomiting was used as the response variable with the number of pipe breaks in each city as a covariate as well as additional covariates to control for seasonal patterns, search volume persistence, and other sources of GI illness. The fit and predictive accuracy of multiple regression and data mining techniques were compared, with the best performance obtained using random forest and bagged regression tree models. Pipe breaks were found to be an important and positively correlated predictor of internet search volume in multiple models in both cities, supporting previous investigations that indicated an increased risk of GI illness from distribution system disturbances. PMID:24495984

  9. Preliminary experiments with an electro-osmotic heat pipe laboratory model

    NASA Astrophysics Data System (ADS)

    Vandenassen, D.; Bunk, P. B.

    1983-04-01

    A laboratory model of an electro-osmotic heat pipe filled with ethanol was tested. The heat transport through the pipe and the temperature distribution along the pipe wall and the temperature difference across the pipe were measured. The heat pipe performed like a CCHP under wick limited operation conditions. Superheating of the ethanol in the evaporator caused relatively large variations of the heat transport. With the electro-osmotic pump in operation, the heat pipe showed a fast gas production and corrosion of the electrodes of the electro-osmotic pump, whereas no measurable effect on the heat transport was observed.

  10. Boundary element method applied to a gas-fired pin-fin-enhanced heat pipe

    SciTech Connect

    Andraka, C.E.; Knorovsky, G.A.; Drewien, C.A.

    1998-02-01

    The thermal conduction of a portion of an enhanced surface heat exchanger for a gas fired heat pipe solar receiver was modeled using the boundary element and finite element methods (BEM and FEM) to determine the effect of weld fillet size on performance of a stud welded pin fin. A process that could be utilized by others for designing the surface mesh on an object of interest, performing a conversion from the mesh into the input format utilized by the BEM code, obtaining output on the surface of the object, and displaying visual results was developed. It was determined that the weld fillet on the pin fin significantly enhanced the heat performance, improving the operating margin of the heat exchanger. The performance of the BEM program on the pin fin was measured (as computational time) and used as a performance comparison with the FEM model. Given similar surface element densities, the BEM method took longer to get a solution than the FEM method. The FEM method creates a sparse matrix that scales in storage and computation as the number of nodes (N), whereas the BEM method scales as N{sup 2} in storage and N{sup 3} in computation.

  11. Planning replacement of natural gas distribution systems under constraints on acceptable risk from explosions.

    PubMed

    Noonan, F

    1991-12-01

    Natural gas distribution systems in the United States were developed primarily in the first half of this century, utilizing materials such as cast iron and then steel. Over time, cast iron and steel pipe sections became weak from corrosion and are subject to failure which in turn can lead to explosions and possible injury and loss of life. Gas utilities maintain system integrity through repair-replacement programs where pipe sections are prioritized for replacement in any given year through cost-benefit analysis; however, the total annual amount to be budgeted for replacement is left to engineering judgment. This approach has left some utilities vulnerable to criticism that their current replacement rate on cast iron pipe is not great enough and that public safety is being compromised. This paper addresses the problem situation by formulating a linear programming replacement decision model which augments cost-benefit analysis with explicit constraints on acceptable risk to human life from fire/explosion. The model is illustrated for a hypothetical utility. PMID:1780504

  12. Frequencies of gas oscillations in a pipe with a concentrated heat source

    NASA Astrophysics Data System (ADS)

    Iovleva, O. V.; Larionov, V. M.; Semenova, E. V.

    2016-01-01

    It is known that the location of the heat source significantly affects the frequency of acoustic oscillations in the channels. The case of a step change in the sound speed is investigated. In this article, linear distribution of sound speed in hot gas is considered. The well-known equations are used to calculate frequencies of the gas oscillations. The analysis shows that the movement of the flame from the down up in an open tube causes a nonmonotonic change in the resonant frequency. The calculation results are in good agreement with the experimental data.

  13. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  14. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  15. Identification And Distribution Of Vanadinite (Pb5(V5+O4)3Cl) In Lead Pipe Corrosion By-Products

    EPA Science Inventory

    This study presents the first detailed look at vanadium (V) speciation in drinking water pipe corrosion scales. A pool of 34 scale layers from 15 lead or lead-lined pipes representing eight different municipal drinking water distribution systems in the Northeastern and Midwester...

  16. Inspiratory flow and intrapulmonary gas distribution

    SciTech Connect

    Rehder, K.; Knopp, T.J.; Brusasco, V.; Didier, E.P.

    1981-01-01

    The effect of flow of inspired gas on intrapulmonary gas distribution was examined by analysis of regional pulmonary /sup 133/Xe clearances and of total pulmonary /sup 133/Xe clearance measured at the mouth after equilibration of the lungs with /sup 133/Xe. Five awake healthy volunteers (24 to 40 yr of age) and another 5 healthy, anesthetized-paralyzed volunteers (26 to 28 yr of age) were studied while they were in the right lateral decubitus position. The awake subjects were studied at 3 inspiratory flows (0.4, 0.7, and 1.0 L/s) and the anesthetized-paralyzed subjects at 4 inspiratory flows (0.2, 0.5, 1.1, and 1.6 L/s). Interregional differences in /sup 133/Xe clearances along the vertical axis were significantly less during anesthesia-paralysis and mechanical ventilation than during spontaneous breathing in the awake state. No differences in the regional or total pulmonary /sup 133/Xe clearances were detected at these different flows in either of the two states, i.e., the difference between the awake and anesthetized-paralyzed states persisted.

  17. The effect of applying a pipe-joint lubricant to connect ductile iron pipe on off-flavors in drinking water distribution systems.

    PubMed

    Wiesenthal, K E; Amah, G; Lam, T; Suffet, I H

    2004-01-01

    This study was used to help define the contribution to taste and odor problems caused by the application of a pipe-joint lubricant to connect ductile iron pipe in drinking water distribution systems. Tyton Joint Lubricant (TJL) was studied. The lubricant produced odors that are continually oxidized by chlorine or oxygen. The mechanism of oxidative rancidity, one of the major causes of food spoilage is the apparent mechanism of oxidation. The odors produced by the lubricant were characterized by a Flavor Profile Analysis (FPA) panel as well as GC/MS and Sensory GC analysis. The most common odors perceived in the TJL water samples for the first six days were waxy/oily and soapy odors with a rancid oil, odor note. The waxy/oily and soapy odors decreased with time in the chlorine medium as the rancid oily odor note increased. Numerous aldehydes, ketones, alcohols and borneol compounds, produced from the lubricants, were tentatively identified and linked to the odors perceived by the FPA panel. PMID:15237630

  18. Statistical failure models for water distribution pipes - A review from a unified perspective.

    PubMed

    Scheidegger, Andreas; Leitão, João P; Scholten, Lisa

    2015-10-15

    This review describes and compares statistical failure models for water distribution pipes in a systematic way and from a unified perspective. The way the comparison is structured provides the information needed by scientists and practitioners to choose a suitable failure model for their specific needs. The models are presented in a novel framework consisting of: 1) Clarification of model assumptions. The models originally formulated in different mathematical forms are all presented as failure rate. This enables to see differences and similarities across the models. Furthermore, we present a new conceptual failure rate that an optimal model would represent and to which the failure rate of each model can be compared. 2) Specification of the detailed data assumptions required for unbiased model calibration covering the structure and completeness of the data. 3) Presentation of the different types of probabilistic predictions available for each model. Nine different models and their variations or further developments are presented in this review. For every model an overview of its applications published in scientific journals and the available software implementations is provided. The unified view provides guidance to model selection. Furthermore, the model comparison presented herein enables to identify areas where further research is needed. PMID:26162313

  19. Investigation of the causes for the measurement differences between the natural gas measurement systems of a gas distribution company and of a consumer

    NASA Astrophysics Data System (ADS)

    Kawakita, Kazuto; Silva Telles, Rubens

    2015-10-01

    This paper presents the methodology used, the checked items and the results obtained in an investigation carried out to identify the causes that generated substantial differences between the natural gas volumes measured by two measuring systems, one from a gas distribution company and another from its industrial consumer, both installed in series in a gas pipeline. The investigation showed that the measurement of the volume of gas performed by the gas distributor metering system was influenced by an erroneous measurement of the gas temperature since it was affected by a complex thermodynamic process involving cooling by the Joule-Thomson effect caused by a pressure reducing valve and heating by heat exchange through the pipe walls.

  20. Detection, integration and persistence of aeromonads in water distribution pipe biofilms.

    PubMed

    Bomo, A-M; Storey, M V; Ashbolt, N J

    2004-06-01

    The occurrence of Aeromonas spp. within biofilms formed on stainless steel (SS), unplasticized polyvinyl chloride (uPVC) and glass (GL) substrata was investigated in modified Robbins Devices (MRD) in potable (MRD-p) and recycled (MRD-r) water systems, a Biofilm Reactor (BR) and a laboratory-scale pipe loop (PL) receiving simulated recycled wastewater. No aeromonads were isolated from the MRD-p whereas 3-10% of SS and uPVC coupons (mean 3.85 CFU cm(-2) and 12.8 CFU cm(-2), respectively) were aeromonad-positive in the MRD-r. Aeromonads were isolated from six SS coupons (67%) (mean 63.4 CFU cm(-2)) and nine uPVC coupons (100%) (mean 6.50x 10(2) CFU cm(-2)) in the BR fed with recycled water and from all coupons (100%) in the simulated recycled water system (PL). Mean numbers of aeromonads on GL and SS coupons were 5.83 x 10(2) CFU cm(-2) and 8.73 x 10(2) CFU cm(-2), respectively. No isolate was of known human health significance (i.e. Aeromonas caviae, A. hydrophila or A. veronii), though they were confirmed as Aeromonas spp. by PCR and fluorescence in situ hybridization (FISH). Challenging the PL biofilms with a slug dose of A. hydrophila (ATCC 14715) showed that biofilm in the PL accumulated in the order of 10(3)-10(4) A. hydrophila cm(-2), the number of which decreased over time, though could not be explained in terms of conventional 1st order decay kinetics. A sub-population of FISH-positive A. hydrophila became established within the biofilm, thereby demonstrating their ability to incorporate and persist in biofilms formed within distribution pipe systems. A similar observation was not made for culturable aeromonads, though the exact human health significance of this remains unknown. These findings, however, further question the adequacy of culture-based techniques and their often anomalous discrepancy with direct techniques for the enumeration of bacterial pathogens in environmental samples. PMID:15387132

  1. Feasibility of leakage detection in lake pressure pipes using the Distributed Temperature Sensing Technology

    NASA Astrophysics Data System (ADS)

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2016-04-01

    This contribution describes a feasibility study carried out in the laboratory for the detection of leakages in lake pressure pipes using high-resolution fiber-optic temperature measurements (DTS). The usage of the DTS technology provides spatiotemporal high-resolution temperature measurements along a fibre optic cable. An opto-electrical device serves both as a light emitter as well as a spectrometer for measuring the scattering of light. The fiber optic cable serves as linear sensor. Measurements can be taken at a spatial resolution of up to 25 cm with a temperature accuracy of higher than 0.1 °C. The first warmer days after the winter stagnation provoke a temperature rise of superficial layers of lakes with barely stable temperature stratification. The warmer layer in the epilimnion differs 4 °C to 5 °C compared to the cold layers in the meta- or hypolimnion before water circulation in spring starts. The warmer water from the surface layer can be rinsed on the entire length of the pipe. Water intrudes at leakages by generating a slightly negative pressure in the pipe. This provokes a local temperature change, in case that the penetrating water (seawater) differs in temperature from the water pumped through the pipe. These temperature changes should be detectable and localized with a DTS cable introduced in the pipe. A laboratory experiment was carried out to determine feasibility as well as limits and problems of this methodology. A 6 m long pipe, submerged in a water tank at constant temperature, was rinsed with water 5-10 °C warmer than the water in the tank. Temperature measurements were taken continuously along the pipe. A negative pressure of 0.1 bar provoked the intrusion of colder water from the tank into the pipe through the leakages, resulting in local temperature changes. Experiments where conducted with different temperature gradients, leakage sizes, number of leaks as well as with different positioning of the DTS cable inside the pipe. Results

  2. Electrical Conduit Distributes Weld Gas Evenly

    NASA Technical Reports Server (NTRS)

    Ambrisco, D. P.

    1983-01-01

    Purge-gas distributor, made from flexible electrical conduit by drilling small holes along its length, provides even gas flow for welding. Flexible conduit adjusts to accomodate almost any shape and is used for gas coverage in other applications that previously needed formed and drilled solid tubing.

  3. Preliminary design concepts for an advanced gas distribution system. Task report, August 1989-August 1990

    SciTech Connect

    Lipinsky, E.S.; Hattery, G.R.; Newaz, G.

    1991-01-01

    Studies that were conducted in 1989 (GRI-89/0107.2) showed that the major problems that face the industry are third-party damage, locatability, and pipe supportability. These needs were translated into performance criteria for materials and designs of gas distribution system components. In Phase 2 to date, the performance criteria were refined and used as the basis for generation of concepts for materials and designs for enhancement of the gas distribution system. The screening criteria include long service life, damage tolerance, installation, and manufacturability. A scoring model that allows the criteria to have variable weights was applied to attain normalized scores and rankings for the concepts. The leading concepts include puncture-resistant polyethylene pipe via wrapping with an ultrahigh molecular weight polyethylene fabric or fiber, toughened thermoplastics (especially polyamides or acetal resin or polyester), thermoplastic fiber-reinforced thermoplastic resins, fiberglass-reinforced hose designs, and honeycomb-reinforced thermoplastic elastomer designs. Tentative research and development plans were developed for the leading concepts in which simple tests of manufacturability, impact resistance, and joinability are to be used to determine which concepts should be pursued further and which appear to have serious flaws.

  4. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  5. Status of a broadly distributed endangered species: results and implications of the second International Piping Plover Census

    USGS Publications Warehouse

    Plissner, Jonathan H.; Haig, Susan M.

    2000-01-01

    Methods for monitoring progress toward recovery goals are highly variable and may be problematic for endangered species that are mobile and widely distributed. Recovery objectives for Piping Plovers (Charadrius melodus) include attainment of minimum population sizes within specified recovery units, as determined by two U.S. and two Canadian recovery teams. To assess progress toward these goals, complete surveys of the species' winter and breeding ranges in Canada, the United States, Mexico, the Bahamas, and the Greater Antilles are conducted every 5 years. In 1996, 1200 biologists and volunteers participated in the second International Piping Plover Census, tallying 2515 wintering birds and 5913 adults (2668 breeding pairs) during the breeding census. Winter numbers were 27% lower than those of the first international census conducted in 1991, with substantially fewer wintering birds along the Gulf of Mexico and an overall increase in numbers along the Atlantic Coast. Large numbers of wintering plovers remain undetected. In 1996, the total number of breeding adults was 7.7% higher than in 1991. Regionally, breeding numbers were 31% higher along the Atlantic Coast and 20% higher in the small Great Lakes population, but declined by 5% in the U.S. Great Plains and the Canadian Prairie. Target recovery numbers were met only for Saskatchewan but were approached in Alberta and New England. The results suggest that Piping Plover distribution and habitat use in the U.S. Great Plains/Canadian Prairie region may shift dramatically with water conditions.

  6. Flooding characteristics of gas-liquid two-phase flow in a horizontal U bend pipe

    SciTech Connect

    Sakaguchi, T.; Hosokawa, S.; Fujii, Y.

    1995-09-01

    For next-generation nuclear reactors, hybrid safety systems which consist of active and passive safety systems have been planned. Steam generators with horizontal U bend pipelines will be used as one of the passive safety systems. It is required to clarify flow characteristics, especially the onset of flooding, in the horizontal U bend pipelines in order to examine their safety. Flooding in vertical pipes has been studied extensively. However, there is little study on flooding in the horizontal U bend pipelines. It is supposed that the onset of flooding in the horizontal U bend pipelines is different from that in vertical pipes. On the other hand, liquid is generated due to condensation of steam in pipes of the horizontal steam generators at the loss of coolant accident because the steam generators will be used as a condenser of a cooling system of steam from the reactor. It is necessary to simulate this situation by the supply of water at the middle of horizontal pipe. In the present paper, experiments were carried out using a horizontal U bend pipeline with a liquid supply section in the midway of pipeline. The onset of flooding in the horizontal U bend pipeline was measured. Effects of the length of horizontal pipe and the radius of U bend on the onset of flooding were discussed.

  7. Study of hydrodynamics and heat transfer in non-Newtonian liquid-gas two-phase flow in horizontal pipes

    SciTech Connect

    Deshpande, S.D.

    1985-01-01

    Non-Newtonian liquid-gas stratified flow data in 0.026- and 0.052-m-diameter pipes were obtained. Interfacial level gradients between the two phases were observed. The Heywood-Charles model is found to be valid for pseudoplastic liquid-gas uniform stratified flow. Two-phase drag reduction in non-Newtonian systems was not achieved as the transition to semi-slug flow occurred before the model criteria were reached. Interfacial liquid and gas shear stresses were compared. A new parameter ..sigma../sup 2/ is introduced which is a numerical indication of the interfacial level gradient. Two-phase drag reduction was experimentally observed in polymer solution-air plug-slug flow in 0.026- and 0.052-m-diameter pipes. The Hubbard-Dukler pressure drop model was extended to non-Newtonian systems. Reasonable agreement between the experiment and the model predictions is obtained. However, more work needs to be done in order to better understand the two-phase drag reduction phenomena. Liquid holdup correlations were developed for both Newtonian and non-Newtonian systems which successfully correlate the holdup over a wide range of parameters. The Petukhov correlation is found to be better than the Dittus-Boelter correlation in predicting the single-phase water heat-transfer coefficients.

  8. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  9. Natural Gas Hydrates: Occurrence, Distribution, and Detection

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Dillon, William P.

    We publish this volume at a time when there is a growing interest in gas hydrates and major expansion in international research efforts. The first recognition of natural gas hydrate on land in Arctic conditions was in the mid-1960s (by I. Makogon) and in the seabed environment only in the early 1970s, after natural seafloor gas hydrate was drilled on the Blake Ridge during Deep Sea Drilling Project Leg 11. Initial scientific investigations were slow to develop because the study of natural gas hydrates is unusually challenging. Gas hydrate exists in nature in conditions of temperature and pressure where human beings cannot survive, and if gas hydrate is transported from its region of stability to normal Earth-surface conditions, it dissociates. Thus, in contrast to most minerals, we cannot depend on drilled samples to provide accurate estimates of the amount of gas hydrate present. Even the heat and changes in chemistry (methane saturation, salinity, etc.) introduced by the drilling process affect the gas hydrate, independent of the changes brought about by moving a sample to the surface. Gas hydrate has been identified in nature generally by inference from indirect evidence in drilling data or by using remotely sensed indications, mostly from seismic data. Obviously, the established techniques ofgeologic analysis, which require direct observation and sampling, do not apply to gas hydrate studies, and controversy has surrounded many interpretations. Pressure/temperature conditions appropriate for the existence of gas hydrate occur over the greater part of the shallow subsurface of the Earth beneath the ocean at water depths exceeding about 500 m (shallower beneath colder Arctic seas) and on land beneath high-latitude permafrost. Gas hydrate actually will be present in such conditions, however, only where methane is present at high concentrations. In the Arctic, these methane concentrations are often associated with petroleum deposits, whereas at continental margins

  10. Diffused guides for distributed-feedback lasers

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1975-01-01

    Proposed waveguide is hollow cylindrical pipe. Inside channel surface is infused with gas or metal molecules, forming periodic cross sections along entire length. Light is scattered at periodic infusions, resulting in distributed feedback. Configuration is suited for capillary gas lasers.

  11. Mathematical models for quantifying eruption velocity in degassing pipes based on exsolution of a single gas and simultaneous exsolution of multiple gases

    NASA Astrophysics Data System (ADS)

    Leon, Arturo S.

    2016-09-01

    After the limnic eruptions at Nyos and Monoun in the 1980s, degassing pipes were installed to reduce the continuous increase of CO2 at the bottom of these lakes. The degassing system consists of a vertical pipe from the lake bottom to the surface and a small pump located near the top of the pipe, which raises water in the pipe up to a level where it becomes saturated with gas, which in turn leads to volume expansion and eruption. This paper describes two new mathematical models for predicting eruption velocity in degassing pipes based on exsolution of a single gas and the simultaneous exsolution of multiple gases. The models were applied to the degassing system of lakes Nyos and Monoun, which contain two main gases, namely CO2 and CH4. Because the volume proportion of CH4 is significant only in Lake Monoun, the Lake Nyos test case considered the CO2 gas only, while as the Lake Monoun test case considered the simultaneous exsolution of CO2 and CH4. Good agreement between the results of the models and observed data is found for both test cases. The results for the eruption in Lake Monoun considering the two main gases measured in this lake (CO2 and CH4) were found to have a better agreement with the measurements compared to the model results obtained considering the main gas only (CO2).

  12. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Lian, Z. W.

    1993-01-01

    The absolute and convective instability of a viscous liquid jet emanating into a viscous gas in a vertical pipe is analyzed in a parameter space spanned by the Reynolds number, the Froude number, the Weber number, the viscosity ratio, the density ratio, and the diameter ratio. The numerical results of the analysis are used to demonstrate that reduction in gravity tends to enhance the Rayleigh mode of convective instability which leads to the breakup of a liquid jet into drops of diameters comparable with the jet diameter. On the contrary, the Taylor mode of convective instability that leads to atomization is retarded at reduced gravity. The Rayleigh mode becomes absolutely unstable when the Reynolds number exceeds a critical value for a given set of the rest of the relevant parameters. The domain of absolute instability is significantly enlarged when the effect of gas viscosity is not neglected.

  13. Calculating the Optimum Angle of Filament-Wound Pipes in Natural Gas Transmission Pipelines Using Approximation Methods.

    PubMed

    Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram

    2013-04-01

    Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical. PMID:24891748

  14. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry.

    PubMed

    Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa

    2015-03-20

    The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics. PMID:25968543

  15. The anatomy of a pipe bomb explosion: measuring the mass and velocity distributions of container fragments.

    PubMed

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Improvised explosive devices such as pipe bombs are prevalent due to the availability of materials and ease of construction. However, little is known about how these devices actually explode, as few attempts to characterize fragmentation patterns have been attempted. In this study, seven devices composed of various pipe materials (PVC, black steel, and galvanized steel) and two energetic fillers (Pyrodex and Alliant Red Dot) were initiated and the explosions captured using high-speed videography. The video footage was used to calculate fragment velocities, which were represented as particle velocity vector maps. In addition, the fragments were weighed. The results demonstrate a correlation between the type of energetic filler and both the size and velocity of the fragments. Larger fragments were produced by Pyrodex filler indicating a less complete fragmentation, compared with smaller fragments produced by double-base smokeless powder. Additionally, higher fragment velocities were seen with Alliant Red Dot filler. PMID:24147889

  16. Development of a high-efficiency, gas-fired, heat pipe, warm-air heating system

    NASA Astrophysics Data System (ADS)

    Feldman, S.; Becker, F.

    1985-01-01

    With the introduction by Borg-Warner of the Heatpipe Furnace, one of the major goals of this program was achieved. This milestone was reached after a 105,000 Btu/hr, 85 percent efficient manufacturing prototype heat pipe furnace was designed, fabricated, and tested by Thermo Electron. Other prototype units of different capacities were also designed. The prototypes underwent extensive field testing and in-house accelerated life-cycle testing, indicating that they were reliable, safe, and cost-competitive. Specific issues like freeze protection and oil contamination were addressed. Two different prototype ultrahigh-efficiency condensing furnaces were designed, fabricated and tested. One approach utilized a fluorocarbon-filled heat pipe as a secondary-stage heat exchanger; the other used a plate finned tube coil as the heat exchanger.

  17. Feasibility of in situ lining rehabilitation of small diameter heat distribution pipe

    SciTech Connect

    Cardenas, H.E.; Hock, V.F.; Segan, E.G.

    1995-12-01

    Many pipeline rehabilitation methods are available for large pipe systems greater than 2 inches in diameter. For small internal systems with many lateral connections, the cost of these methods becomes exorbitant. This study examined the feasibility of an in situ lining rehabilitation concept for small pipelines that involves minimal surface preparation. This work addressed: testing and modification of candidate liner resins, hydraulic analysis of lining impact on pipe flow, and the life cycle cost comparison of applying a liner compared with typical plumbing maintenance practices. Analytical projections based on these analyses revealed a potential source of life cycle cost savings by applying this rehabilitation process to condensate return lines. A liner formulation involving Bisphenol-A and 1% silica addition exhibited sufficient high temperature immersion resistance to operate in a condensate return line. The mathematical liner impact model developed herein provides a qualitative representation of the liner impact on flow. Analytical findings derived from this model indicated that power savings are significantly dependent on pipe diameter and flow rate. A present worth, life cycle cost analysis revealed that if the cost of in situ rehabilitation is roughly 50% of replacement, the benefits may be revealed in terms of avoided operations, maintenance, and repair costs.

  18. Performance and reliability analysis of water distribution systems under cascading failures and the identification of crucial pipes.

    PubMed

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    As a mean of supplying water, Water distribution system (WDS) is one of the most important complex infrastructures. The stability and reliability are critical for urban activities. WDSs can be characterized by networks of multiple nodes (e.g. reservoirs and junctions) and interconnected by physical links (e.g. pipes). Instead of analyzing highest failure rate or highest betweenness, reliability of WDS is evaluated by introducing hydraulic analysis and cascading failures (conductive failure pattern) from complex network. The crucial pipes are identified eventually. The proposed methodology is illustrated by an example. The results show that the demand multiplier has a great influence on the peak of reliability and the persistent time of the cascading failures in its propagation in WDS. The time period when the system has the highest reliability is when the demand multiplier is less than 1. There is a threshold of tolerance parameter exists. When the tolerance parameter is less than the threshold, the time period with the highest system reliability does not meet minimum value of demand multiplier. The results indicate that the system reliability should be evaluated with the properties of WDS and the characteristics of cascading failures, so as to improve its ability of resisting disasters. PMID:24551102

  19. Gas distribution through injection manifolds in vacuum systems

    NASA Astrophysics Data System (ADS)

    Theil, Jeremy A.

    1995-03-01

    When injecting gas into a vacuum system, quite often the gas is distributed through a gas injection manifold. However, designs normally rely upon practical experience. By considering the manifold arrangement as a network of flow restrictions it is possible to optimize the distribution of gas throughout the manifold. The methodology for determining the flow distribution through the two simplest topologies of gas manifold, single- and double-opening manifolds from a single-gas injection point, is derived in this article. It is shown that the double-opening manifold topology tends to provide more uniform flow distribution than the single-opening manifold topology for similar conductance ratios. The results of this work include a summation formula for the single-opening manifold. In addition, guidelines for one type of tailored flow manifold are given. Finally, three basic design rules are presented: (1) use as few holes in the manifold as possible; (2) use a double opening manifold when possible; and (3) specify tube dimensions such that the tube/spray hole conductance ratio is maximized.

  20. Distribution of the background gas in the MITICA accelerator

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Dal Bello, S.; Serianni, G.; Sonato, P.

    2013-02-01

    MITICA is the ITER neutral beam test facility to be built in Padova for the generation of a 40A D- ion beam with a 16×5×16 array of 1280 beamlets accelerated to 1MV. The background gas pressure distribution and the particle flows inside MITICA accelerator are critical aspects for stripping losses, generation of secondary particles and beam non-uniformities. To keep the stripping losses in the extraction and acceleration stages reasonably low, the source pressure should be 0.3 Pa or less. The gas flow in MITICA accelerator is being studied using a 3D Finite Element code, named Avocado. The gas-wall interaction model is based on the cosine law, and the whole vacuum system geometry is represented by a view factor matrix based on surface discretization and gas property definitions. Pressure distribution and mutual fluxes are then solved linearly. In this paper the result of a numerical simulation is presented, showing the steady-state pressure distribution inside the accelerator when gas enters the system at room temperature. The accelerator model is limited to a horizontal slice 400 mm high (1/4 of the accelerator height). The pressure profile at solid walls and through the beamlet axis is obtained, allowing the evaluation and the discussion of the background gas distribution and nonuniformity. The particle flux at the inlet and outlet boundaries (namely the grounded grid apertures and the lateral conductances respectively) will be discussed.

  1. Ductile fracture propagation in gas pipelines - results of full scale burst tests of big diameter pipes

    SciTech Connect

    de Vito, A.; Morini, A.; Pozzi, A.; Bonomo, F.; Bramante, M.

    1981-01-01

    Full-scale burst tests have been conducted at Perdasdefogu station of 48- and 56-in. diameter pipes of grade X70 and X80; hoop stresses were between 317 and 385 N/sq mm and thicknesses between 17 and 20 m. Two types of materials have been examined and other aspects have been considered. Particular efforts have been devoted to deformation measured by strain gages. From results obtained, examined also using a new formula as a prevision arrest criterion, the following conclusions can be drawn: (1) behavior of Q.T. materials is not properly covered by current design criteria, related limit cv energy values predicting arrest appear in fact unsafe for Q.T. steels; (2) frozen backfill might play an important role in containing fracture; and (3) simple mechanical devices can act, if properly designed, as very efficient crack-arrestors. 10 references.

  2. A perspective on cost-effectiveness of greenhouse gas reduction solutions in water distribution systems

    NASA Astrophysics Data System (ADS)

    Hendrickson, Thomas P.; Horvath, Arpad

    2014-01-01

    Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from -130 to 35 t-1 CO2(eq). Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO2(eq)) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure.

  3. 78 FR 55072 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... will define the project-specific Area of Potential Effects (APE) in consultation with the SHPO as the project develops. On natural gas facility projects, the APE at a minimum encompasses all areas subject...

  4. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2011-05-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (<2 mm) and annelida. In total, 52 water samples were collected from fire hydrants at 31 locations, and two elevated tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was

  5. 40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Natural Gas Distribution W Table W Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas... for Natural Gas Distribution Natural gas distribution Emission factor (scf/hour/component)...

  6. Phase discrimination and object fitting to measure fibers distribution and orientation in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Dearing, Stella S.; Campolo, Marina; Capone, Alessandro; Soldati, Alfredo

    2013-01-01

    In this work, a methodology based on the analysis of single-camera, double-pulse PIV images is described and validated as a tool to characterize fiber-dispersed turbulent flows in large-scale facilities. The methodology consists of image pre-treatment (intensity adjustment, median filtering, threshold binarization and object identification by a recursive connection algorithm) and object-based phase discrimination used to generate two independent snapshots from one single image, one for the dispersed phase and one for the seeding. Snapshots are then processed to calculate the flow field using standard PIV techniques and to calculate fiber concentration and orientation statistics using an object-fitting procedure. The algorithm is tuned and validated by means of artificially generated images and proven to be robust against identified sources of error. The methodology is applied to experimental data collected from a fiber suspension in a turbulent pipe flow. Results show good qualitative agreement with experimental data from the literature and with in-house numerical data.

  7. Phase discrimination and object fitting to measure fibers distribution and orientation in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Dearing, Stella S.; Campolo, Marina; Capone, Alessandro; Soldati, Alfredo

    2012-12-01

    In this work, a methodology based on the analysis of single-camera, double-pulse PIV images is described and validated as a tool to characterize fiber-dispersed turbulent flows in large-scale facilities. The methodology consists of image pre-treatment (intensity adjustment, median filtering, threshold binarization and object identification by a recursive connection algorithm) and object-based phase discrimination used to generate two independent snapshots from one single image, one for the dispersed phase and one for the seeding. Snapshots are then processed to calculate the flow field using standard PIV techniques and to calculate fiber concentration and orientation statistics using an object-fitting procedure. The algorithm is tuned and validated by means of artificially generated images and proven to be robust against identified sources of error. The methodology is applied to experimental data collected from a fiber suspension in a turbulent pipe flow. Results show good qualitative agreement with experimental data from the literature and with in-house numerical data.

  8. Modeling flue pipes: Subsonic flow, lattice Boltzmann, and parallel distributed computers

    NASA Astrophysics Data System (ADS)

    Skordos, Panayotis A.

    1995-01-01

    The problem of simulating the hydrodynamics and the acoustic waves inside wind musical instruments such as the recorder the organ, and the flute is considered. The problem is attacked by developing suitable local-interaction algorithms and a parallel simulation system on a cluster of non-dedicated workstations. Physical measurements of the acoustic signal of various flue pipes show good agreement with the simulations. Previous attempts at this problem have been frustrated because the modeling of acoustic waves requires small integration time steps which make the simulation very compute-intensive. In addition, the simulation of subsonic viscous compressible flow at high Reynolds numbers is susceptible to slow-growing numerical instabilities which are triggered by high-frequency acoustic modes. The numerical instabilities are mitigated by employing suitable explicit algorithms: lattice Boltzmann method, compressible finite differences, and fourth-order artificial-viscosity filter. Further, a technique for accurate initial and boundary conditions for the lattice Boltzmann method is developed, and the second-order accuracy of the lattice Boltzmann method is demonstrated. The compute-intensive requirements are handled by developing a parallel simulation system on a cluster of non-dedicated workstations. The system achieves 80 percent parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. The system is built on UNIX and TCP/IP communication routines, and includes automatic process migration from busy hosts to free hosts.

  9. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  10. Decontaminating Aluminum/Ammonia Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1985-01-01

    Internal gas slugs reduced or eliminated. Manufacturing method increases efficiency of aluminum heat pipes in which ammonia is working fluid by insuring pipe filled with nearly pure charge of ammonia. In new process heat pipe initially closed with stainless-steel valve instead of weld so pipe put through several cycles of filling, purging, and accelerated aging.

  11. Assessing the Spatial Distribution of Perfluorooctanoic Acid Exposure via Public Drinking Water Pipes Using Geographic Information Systems

    PubMed Central

    Hoffman, Kate; Fletcher, Tony

    2013-01-01

    Objectives Geographic Information Systems (GIS) is a powerful tool for assessing exposure in epidemiologic studies. We used GIS to determine the geographic extent of contamination by perfluorooctanoic acid, C8 (PFOA) that was released into the environment from the DuPont Washington Works Facility located in Parkersburg, West Virginia. Methods Paper maps of pipe distribution networks were provided by six local public water districts participating in the community cross-sectional survey, the C8 Health Project. Residential histories were also collected in the survey and geocoded. We integrated the pipe networks and geocoded addresses to determine which addresses were serviced by one of the participating water districts. The GIS-based water district assignment was then compared to the participants' self-reported source of public drinking water. Results There were a total of 151,871 addresses provided by the 48,800 participants of the C8 Health Project that consented to geocoding. We were able to successfully geocode 139,067 (91.6%) addresses, and of these, 118,209 (85.0%) self-reported water sources were confirmed using the GIS-based method of water district assignment. Furthermore, the GIS-based method corrected 20,858 (15.0%) self-reported public drinking water sources. Over half (54%) the participants in the lowest GIS-based exposure group self-reported being in a higher exposed water district. Conclusions Not only were we able to correct erroneous self-reported water sources, we were also able to assign water districts to participants with unknown sources. Without the GIS-based method, the reliance on only self-reported data would have resulted in exposure misclassification. PMID:24010064

  12. Modeling Flue Pipes: Subsonic Flow, Lattice Boltzmann, and Parallel Distributed Computers.

    NASA Astrophysics Data System (ADS)

    Skordos, Panayotis A.

    1995-01-01

    The problem of simulating the hydrodynamics and the acoustic waves inside wind musical instruments such as the recorder, the organ, and the flute is considered. The problem is attacked by developing suitable local-interaction algorithms and a parallel simulation system on a cluster of non-dedicated workstations. Physical measurements of the acoustic signal of various flue pipes show good agreement with the simulations. Previous attempts at this problem have been frustrated because the modeling of acoustic waves requires small integration time steps which make the simulation very compute-intensive. In addition, the simulation of subsonic viscous compressible flow at high Reynolds numbers is susceptible to slow-growing numerical instabilities which are triggered by high-frequency acoustic modes. The numerical instabilities are mitigated by employing suitable explicit algorithms: lattice Boltzmann method, compressible finite differences, and fourth-order artificial -viscosity filter. Further, a technique for accurate initial and boundary conditions for the lattice Boltzmann method is developed, and the second-order accuracy of the lattice Boltzmann method is demonstrated. The compute-intensive requirements are handled by developing a parallel simulation system on a cluster of non-dedicated workstations. The system achieves 80% parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. The system is built on UNIX and TCP/IP communication routines, and includes automatic process migration from busy hosts to free hosts. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  13. Estimating Predictive Variance for Statistical Gas Distribution Modelling

    SciTech Connect

    Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo

    2009-05-23

    Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

  14. The Gas Distribution in the Outer Regions of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, L.; Gastaldello, F.

    2012-01-01

    Aims. We present our analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We have exploited the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius, We stacked the density profiles to detect a signal beyond T200 and measured the typical density and scatter in cluster outskirts. We also computed the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compared our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict density profiles that are too steep, whereas runs including additional physics and/ or treating gas clumping agree better with the observed gas distribution. We report high-confidence detection of a systematic difference between cool-core and non cool-core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only small differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the ENZO simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside

  15. The Gas Distribution in Galaxy Cluster Outer Regions

    NASA Technical Reports Server (NTRS)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Laue, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.

    2012-01-01

    Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster

  16. The molecular gas content of the Pipe Nebula. I. Direct evidence of outflow-generated turbulence in B59?

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Chrysostomou, A.; Peretto, N.; Fuller, G. A.; Matthews, B.; Schieven, G.; Davis, G. R.

    2012-07-01

    Context. Star forming regions may share many characteristics, but the specific interplay between gravity, magnetic fields, large-scale dynamics, and protostellar feedback will have an impact on the star formation history of each region. The importance of feedback from outflows is a particular subject to debate, as we are yet to understand the details of their impact on clouds and star formation. Aims: The Pipe Nebula is a nearby molecular cloud hosting the B59 region as its only active star-forming clump. This paper focuses on the global dynamics of B59, its temperature structure, and its outflowing gas, with the goal of revealing the local and global impact of the protostellar outflows. Methods: Using HARP at the James Clerk Maxwell Telescope, we have mapped the B59 region in the J = 3 → 2 transition of 12CO to study the kinematics and energetics of the outflows, and the same transitions of 13CO and C18O to study the overall dynamics of the ambient cloud, the physical properties of the gas, and the hierarchical structure of the region. Results: The B59 region has a total of ~30 M⊙ of cold and quiescent material, mostly gravitationally bound, with narrow line widths throughout. Such low levels of turbulence in the non-star-forming regions within B59 are indicative of the intrinsic initial conditions of the cloud. On the other hand, close to the protostars the impact of the outflows is observed as a localised increase of both C18O line widths from ~0.3 km s-1 to ~1 km s-1, and 13CO excitation temperatures by ~2-3 K. The impact of the outflows is also evident in the low column density material which shows signs of being shaped by the outflow bow shocks as they pierce their way out of the cloud. Much of this structure is readily apparent in a dendrogram analysis of the cloud and demonstrates that when decomposing clouds using such techniques a careful interpretation of the results is needed. Conclusions: The low mass of B59 together with its intrinsically

  17. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    PubMed

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. PMID:24859195

  18. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  19. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Dong, Feng

    2014-04-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  20. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  1. Application of Entropy Concept for Shear Stress Distribution in Laminar Pipe Flow

    NASA Astrophysics Data System (ADS)

    Choo, Yeon Moon; Choo, Tai Ho; Jung, Donghwi; Seon, Yun Gwan; Kim, Joong Hoon

    2016-04-01

    In the river fluid mechanics, shear stress is calculated from frictional force caused by viscosity and fluctuating velocity. Traditional shear stress distribution equations have been widely used because of their simplicity. However, they have a critical limitation of requiring energy gradient which is generally difficult to estimate in practice. Especially, measuring velocity/velocity gradient on the boundary layer is difficult in practice. It requires point velocity throughout the entire cross section to calculate velocity gradient. This study proposes shear stress distribution equations for laminar flow based on entropy theory using mean velocity and entropy coefficient. The proposed equations are demonstrated and compared with measured shear stress distribution using Nikuradse's data. Results showed that the coefficient of determination is around 0.99 indicating that the proposed method well describes the true shear stress distribution. Therefore, it was proved that shear stress distribution can be easily and accurately estimated by using the proposed equations. (This research was supported by a gran(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean Government)

  2. A scaling law of radial gas distribution in disk galaxies

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1990-01-01

    Based on the idea that local conditions within a galactic disk largely determine the region's evolution time scale, researchers built a theoretical model to take into account molecular cloud and star formations in the disk evolution process. Despite some variations that may be caused by spiral arms and central bulge masses, they found that many late-type galaxies show consistency with the model in their radial atomic and molecular gas profiles. In particular, researchers propose that a scaling law be used to generalize the gas distribution characteristics. This scaling law may be useful in helping to understand the observed gas contents in many galaxies. Their model assumes an exponential mass distribution with disk radius. Most of the mass are in atomic gas state at the beginning of the evolution. Molecular clouds form through a modified Schmidt Law which takes into account gravitational instabilities in a possible three-phase structure of diffuse interstellar medium (McKee and Ostriker, 1977; Balbus and Cowie, 1985); whereas star formation proceeds presumably unaffected by the environmental conditions outside of molecular clouds (Young, 1987). In such a model both atomic and molecular gas profiles in a typical galactic disk (as a result of the evolution) can be fitted simultaneously by adjusting the efficiency constants. Galaxies of different sizes and masses, on the other hand, can be compared with the model by simply scaling their characteristic length scales and shifting their radial ranges to match the assumed disk total mass profile sigma tot(r).

  3. Mineralogical and Molecular Microbial Characterization of a Lead Pipe Removed from a Drinking Water Distribution System

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (US EPA) Lead and Copper Rule established an action level for lead of 0.0 15 mg/L in a 1 liter first draw sample at the consumer's tap. Lead corrosion and solubility in drinking water distribution systems are largely controlled by the fo...

  4. THE OCCURRENCE OF CONTAMINANT ACCUMULATION IN LEAD PIPE SCALES FROM DOMESTIC DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Previous work has shown that contaminants, such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could result in elevated levels at consumers’ taps, and current monitoring practices d...

  5. The Adsorption of Arsenic on Iron Pipes in Water Distribution Systems

    EPA Science Inventory

    In order to remain compliant with the U.S. EPA’s Lead and Copper rule, it is pivotal to understand the relationship between factors affecting lead release in drinking water distribution systems. Lead solids were synthesized in cell experiments using a pH range of 6-11 with both 1...

  6. Trans-Sahara pipe line would deliver Nigeria gas to Europe

    SciTech Connect

    Muenzler, M.H.

    1983-11-01

    Bechtel has made an in-house study of a natural gas transmission line extending from Nigeria to the Mediterranean and then on into Europe. Based upon the analysis, the pipeline project appears sufficiently viable to warrant further study. Perhaps the single most important element in design of pipelines crossing international borders is the political aspects involved in constructing, owning, and operating the line. These considerations not only effect the location of the pipeline, the manner of financing and ownership, but also whether the line will be constructed. The line crosses several international boundaries, depending upon the route selected. Each route crosses Niger. Case A crosses Algeria and into Tunisia where it ultimately would cross the Strait of Sicily into Italy. Case B crosses the Niger- Algerian border and then traverses Algeria to the Mediterranean where it is planned to connect to the Segamo pipeline and to link with the pipeline network in Spain. Case C crosses the countries of Niger, Mali, Mauritania, and into Morocco, and ultimately crosses the Mediterranean Sea close to the Strait of Gibraltar. Nigeria has proven natural gas reserves estimated to range from 2.5 to 4 trillion cu m (38 to 140 tcf).

  7. Development of 230-kV high-pressure, gas-filled, pipe-type cable system: Model test program phase

    SciTech Connect

    Silver, D.A. )

    1990-09-01

    The objective of this project was the development of a 230 kV high-pressure gas-filled (HPGF) pipe-type cable employing paper or laminate of paper-polypropylene-paper (PPP) insulation pressurized with N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas. Heretofore, HPGF pipe-type cables have been restricted to 138 kV ratings due to technical difficulties in achieving higher voltage ratings. In view of the high cost of manufacturing and testing a large number of full size cables, cable models with 2 mm (80 mils) and 2.5 mm (100 mils) wall thicknesses of insulation enclosed in a test fixture capable of withstanding a test pressure of 2070 kPa (300 psig) and high electrical stresses were employed for dissipation factor versus voltage measurements and for ac and impulse breakdown tests at rated and emergency operating temperatures. In addition, a 36 cm (14 in) full wall cable model enclosed in a pressure vessel was utilized for transient pressure response tests. The results of this investigation attest tot he technical feasibility of the design and manufacture of a 230 kV HPGF pipe-type cable employing paper or PPP insulation pressurized with 100% N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas for operation under normal and 100 hour emergency conditions at conductor temperatures of 85{degree} and 105{degree}C, respectively. The manufacture of a full size PPP insulated cable pressurized with a blend of 15% SF{sub 6}/85% N{sub 2} gas employing pre-impregnated PPP insulating tapes and an annular conductor based on the design stresses defined in this report is recommended for laboratory evaluation and extended life tests. 11 refs., 45 figs., 11 tabs.

  8. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  9. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3). PMID:17905489

  10. DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS

    SciTech Connect

    Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.

    2012-03-01

    We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.

  11. Heat pipe experiment on SPAS 01

    NASA Astrophysics Data System (ADS)

    Kock, H.; Kreeb, H.; Savage, C.

    1986-08-01

    The second flight of Challenger carried a heat pipe experiment, designed to measure the performance of constant conductance heat pipe diodes over a period of 16 hr. The experiment platform and the flight results on variable conductance heat pipe housekeeping radiators, including the temperature distribution at these heat pipe versus experiment time are presented. All equipment is shown to be space qualified.

  12. Multiobjective optimization of water distribution systems accounting for economic cost, hydraulic reliability, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Wu, Wenyan; Maier, Holger R.; Simpson, Angus R.

    2013-03-01

    In this paper, three objectives are considered for the optimization of water distribution systems (WDSs): the traditional objectives of minimizing economic cost and maximizing hydraulic reliability and the recently proposed objective of minimizing greenhouse gas (GHG) emissions. It is particularly important to include the GHG minimization objective for WDSs involving pumping into storages or water transmission systems (WTSs), as these systems are the main contributors of GHG emissions in the water industry. In order to better understand the nature of tradeoffs among these three objectives, the shape of the solution space and the location of the Pareto-optimal front in the solution space are investigated for WTSs and WDSs that include pumping into storages, and the implications of the interaction between the three objectives are explored from a practical design perspective. Through three case studies, it is found that the solution space is a U-shaped curve rather than a surface, as the tradeoffs among the three objectives are dominated by the hydraulic reliability objective. The Pareto-optimal front of real-world systems is often located at the "elbow" section and lower "arm" of the solution space (i.e., the U-shaped curve), indicating that it is more economic to increase the hydraulic reliability of these systems by increasing pipe capacity (i.e., pipe diameter) compared to increasing pumping power. Solutions having the same GHG emission level but different cost-reliability tradeoffs often exist. Therefore, the final decision needs to be made in conjunction with expert knowledge and the specific budget and reliability requirements of the system.

  13. Modeling natural gas market volatility using GARCH with different distributions

    NASA Astrophysics Data System (ADS)

    Lv, Xiaodong; Shan, Xian

    2013-11-01

    In this paper, we model natural gas market volatility using GARCH-class models with long memory and fat-tail distributions. First, we forecast price volatilities of spot and futures prices. Our evidence shows that none of the models can consistently outperform others across different criteria of loss functions. We can obtain greater forecasting accuracy by taking the stylized fact of fat-tail distributions into account. Second, we forecast volatility of basis defined as the price differential between spot and futures. Our evidence shows that nonlinear GARCH-class models with asymmetric effects have the greatest forecasting accuracy. Finally, we investigate the source of forecasting loss of models. Our findings based on a detrending moving average indicate that GARCH models cannot capture multifractality in natural gas markets. This may be the plausible explanation for the source of model forecasting losses.

  14. Distribution of the Molecular Gas Around SN 1572

    NASA Astrophysics Data System (ADS)

    Cai, Zhi-Yong; Yang, Ji; Lu, Deng-Rong

    2009-10-01

    The early-stage structure and evolution of a supernova remnant (SNR) depends largely on its ambient interstellar medium, so the interstellar medium becomes the valid probe for investigating the evolution of SNRs. We have observed the 12CO ( J = 1 - 0) line emission around the remnant of SN 1572 with the 13.7m millimeter-wave telescope at the Qinghai Station of PMO, in order to investigate the distribution of the CO molecular gas around SN 1572 and provide some observational basis for studying the relationship of SN 1572 with its ambient molecular gas and the evolution of this SNR. The observed result indicates that the molecular gas in the velocity range of V LSR = -69˜ -58 km/s is associated with SN 1572, and this velocity component comes from a large-scale molecular cloud. The molecular gas is distributed along the periphery of the radio shell, continually but not uniformly, and forms a semi-closed molecular shell around the SNR. The enhanced emission exists in its whole eastern half, especially the CO emission is strongest on the northeastern edge. At the emission peak position, the spectral line exhibits a broadened velocity feature (>5 km/s). Combining with available observations in the optical, infrared, X-ray and other wavebands, it is demonstrated that the fast shock wave and ejecta are expanding into the molecular gas on the northeastern edge, and interacting with the dense gas. This interaction will have an important influence on the future evolution of SN 1572.

  15. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  16. The Distribution of Molecular Gas around SN 1572

    NASA Astrophysics Data System (ADS)

    Cai, Z. Y.; Yang, J.; Lu, D. R.

    2009-04-01

    The structure and evolution of a supernova remnant depends largely upon ambient interstellar medium,so the interstellar medium can be the valid probe of investigating the evolution of SNRs. We have observed the 12CO line emission around the SN 1572 with 13.7m millimeter-wave telescope at Qinghai Station of PMO, in order to reveal distribution features of velocity and density in small scale. It is shown that the CO molecular gas with the velocity of -69 ~ -61km s - 1 is correlated with SN 1572, and the gas surrounds the SN 1572 along the edge of radio shell with the morphology of open shell. Enhanced emission of 12CO line extends along the northeastern boundary. The spectrum of shocked gas has more than 5km s-1 half-width of velocity. Comparing X-ray, infrared and optical observation data, it indicates that fast blast wave and ejecta are expanding into a dense gas toward the northeast direction and interacting with this part of molecular gas.

  17. Truncated shifted pareto distribution in assessing size distribution of oil and gas fields

    SciTech Connect

    Houghton, J.C.

    1988-11-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a J-shape, and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment.

  18. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    USGS Publications Warehouse

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  19. ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    2003-03-31

    Anomalously pressured gas (APG) assets, typically called ''basin-center'' gas accumulations, represent either an underdeveloped or undeveloped energy resource in the Rocky Mountain Laramide Basins (RMLB). Historically, the exploitation of these gas resources has proven to be very difficult and costly. In this topical report, an improved exploration strategy is outlined in conjunction with a more detailed description of new diagnostic techniques that more efficiently detect anomalously pressured, gas-charged domains. The ability to delineate gas-charged domains occurring below a regional velocity inversion surface allows operators to significantly reduce risk in the search for APG resources. The Wind River Basin was chosen for this demonstration because of the convergence of public data availability (i.e., thousands of mud logs and DSTs and 2400 mi of 2-D seismic lines); the evolution of new diagnostic techniques; a 175 digital sonic log suite; a regional stratigraphic framework; and corporate interest. In the exploration scheme discussed in this topical report, the basinwide gas distribution is determined in the following steps: (1) A detailed velocity model is established from sonic logs, 2-D seismic lines, and, if available, 3-D seismic data. In constructing the seismic interval velocity field, automatic picking technology using continuous, statistically-derived interval velocity selection, as well as conventional graphical interactive methodologies are utilized. (2) Next, the ideal regional velocity/depth function is removed from the observed sonic or seismic velocity/depth profile. The constructed ideal regional velocity/depth function is the velocity/depth trend resulting from the progressive burial of a rock/fluid system of constant rock/fluid composition, with all other factors remaining constant. (3) The removal of the ideal regional velocity/depth function isolates the anomalously slow velocities and allows the evaluation of (a) the regional velocity

  20. Constraints on Subsurface gas and gas Hydrate Distribution in a Gulf of Mexico Mound

    NASA Astrophysics Data System (ADS)

    Wood, W. T.; Hutchinson, D.; Hart, P.; Snyder, F.; Voss, C.; Dutta, N.; Muller, L.; Lee, M.; Gardner, J.; Dugan, B.; Ruppel, C.; Coffin, R.; Evans, R.; Jones, E.

    2003-12-01

    The Gulf of Mexico is well known for seafloor methane hydrate accumulations associated with hydrocarbon seeps, but the distribution of free gas, gas in solution and gas hydrate below the mounds is poorly known. Numerical simulation of fluid flow and analyses of industry 3-D seismic data (reprocessed for higher resolution in the shallow sediments), and high resolution seismic data recently acquired by the USGS provide some constraints on the distribution of these phases via their significantly different effect on seismic returns. Below an 8 m high, 300 m diameter mound at 1300 m water depth in Atwater Valley lease block 14, lies a convex upward, bell-shaped, subsurface reflection. The reflection can be modeled quite closely as a reflection from the base of hydrate stability (top of gas here) perturbed from about 300 to 45 m below the seafloor by localized, upward fluid and heat flux. The flow modeling therefore predicts free gas much higher below the mound than away from the mound. This is confirmed in the USGS data by a push down of 24 percent on a reflection passing below the perturbation, suggesting a velocity below the mound of less than 1400 m/s, indicative of at least some free gas. A strong upward perturbation to the base of the hydrate stability zone significantly constrains the volume available for methane hydrate formation below the seafloor, potentially impacting volume estimates of methane hydrate below seafloor mounds.

  1. Distributed Fiber Optic Gas Sensing for Harsh Environment

    SciTech Connect

    Juntao Wu

    2008-03-14

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The

  2. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  3. Distribution of Faint Atomic Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta; Yun, Min Su; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Zhu, Guangtun; Braatz, James A.

    2015-10-01

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25‧ × 25‧ (140–650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast–southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.

  4. Sour gas distribution in the Amudaria Basin, Central Asia

    SciTech Connect

    Marina, D.; Ivlev, A.; Shkutnik, E.

    1995-08-01

    The Amudaria Basin is the main sour-gas bearing region in Central Asia. In this region, sour gases occur in Upper Jurassic carbonate-reservoir rocks as well as in terrigenous rocks of Cretareous age, but the Upper Jurassic sulfate-carbonate complex is the main sour-gas bearing and producing complex. The chemical and isotopic composition of fluids in Upper Jurassic rocks show that sulfate reduction is the main process responsible for sour gas formation in the central part of the basin, where Kimmeridgian-Tithonian evaporites occur. The H{sub 2}S content of gases varies widely (0 to 10 percent by volume), even within similar carbonate traps located close to one another in the same temperature zone. Analyses of sour-gas distribution and composition in fluids in these areas indicate the main factors which control the variation of H{sub 2}S content in Upper Jurassic hydrocarbon pools in the same temperature zones. These factors include (1) the carbonate sediment facies type (shelf, barrier reef, deep water facies), and (2) within the same facies, the characteristics of traps and pools (tight, gentle, structural, phase-type, etc). The most favorable conditions for H{sub 2}S accumulation occur in hydrocarbon pools confined to the barrier reef flat and the parts of the shelf closest to it. The least favorable conditions are in pools confined to local reefs or carbonate build-ups located within the deep-water facies zone. These results are important for the prediction of H{sub 2}S in hydrocarbon pools. In most cases, H{sub 2}S in the Cretaceous complex is epigenetic. With the exception of Central Karakum zone H{sub 2}S distribution in this complex depends on the distribution and composition of Upper Jurassic evaporites.

  5. Heat pipes for spacecraft temperature control: An assessment of the state-of-the-art. [gas, vapor, liquid, and voltage control

    NASA Technical Reports Server (NTRS)

    Groll, M.; Kirkpatrick, J. P.

    1976-01-01

    Spacecraft applications that require the efficient cooling of high-powered components, the precise temperature control of sensitive electronic and optical components, and the protection of cooled components from temporary, adverse environmental conditions are increasing. Heat pipes using gas, vapor, liquid, or voltage control to provide variable conductance or diode thermal behavior have been and are continuing to be developed to meet increasingly difficult requirements. The various control techniques are critically evaluated using characteristic features and properties, including heat transport capability, volume and mass requirements, complexity and ease of fabrication, reliability, and control characteristics. As a result, advantages and disadvantages of specific approaches are derived and discussed. Using four development levels, the state-of-the-art of the various heat pipe temperature control techniques is assessed.

  6. Prediction of Residual Stress Distributions in Welded Sections of P92 Pipes with Small Diameter and Thick Wall based on 3D Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei

    2015-05-01

    This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.

  7. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  8. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  9. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  10. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping to independent tanks. 153.281 Section 153.281... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an...

  11. 46 CFR 153.294 - Marking of piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Marking of piping systems. 153.294 Section 153.294... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.294 Marking of piping systems. (a) Each cargo piping...

  12. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping to independent tanks. 153.281 Section 153.281... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an...

  13. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  14. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  15. 78 FR 41398 - SourceGas Distribution LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Energy Regulatory Commission SourceGas Distribution LLC; Notice of Filing Take notice that on June 27, 2013, SourceGas Distribution LLC (SourceGas) filed a Rate Election and revised Statement of Operating... and 284.224). SourceGas proposes to revise its fuel reimbursement quantity percentage to reflect...

  16. 78 FR 56685 - SourceGas Distribution LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Energy Regulatory Commission SourceGas Distribution LLC; Notice of Application Take notice that on August 27, 2013, SourceGas Distribution LLC (SourceGas), 600 12th Street, Suite 300, Golden, Colorado 80401, filed in Docket No. CP13-540-000 an application pursuant to section 7(f) of the Natural Gas Act...

  17. Clouds and trace gas distributions during TRACE-P

    NASA Astrophysics Data System (ADS)

    Crawford, J.; Olson, J.; Davis, D.; Chen, G.; Barrick, J.; Shetter, R.; Lefer, B.; Jordan, C.; Anderson, B.; Clarke, A.; Sachse, G.; Blake, D.; Singh, H.; Sandolm, S.; Tan, D.; Kondo, Y.; Avery, M.; Flocke, F.; Eisele, F.; Mauldin, L.; Zondlo, M.; Brune, W.; Harder, H.; Martinez, M.; Talbot, R.; Bandy, A.; Thornton, D.

    2003-11-01

    This paper addresses the question: To what extent do trace gas distributions correspond to cloudiness? Observations taken during NASA's TRACE-P experiment indicate that there can be statistically significant differences in trace gas concentrations between clear-sky and cloudy areas. During the TRACE-P mission, frontal outflow of Asian emissions from the Pacific Rim to the western, North Pacific was sampled by NASA's DC-8 and P-3B aircraft. On several occasions, enhanced CO mixing ratios were observed in and around frontal clouds. A more detailed analysis of trace gas distributions revealed CO enhancements of 30% in the lower free troposphere (1-5 km) for cloudy regions as compared to clear areas. These enhancements exist within clouds as well as above and below clouds. In the upper free troposphere (5-11 km), overall enhancement in CO of 15% was observed although enhancements are mainly restricted to observations within clouds. These in-cloud observations were enhanced by factors of 1.5 to 2 over clear air data. Similar enhancements were seen for many other anthropogenic tracers. By contrast, distributions for O3 revealed no clear differences between cloudy and clear regions suggesting that other influences (e.g., stratosphere-troposphere exchange) might complicate any correspondence with local cloudiness. Expected cloud influences on oxidation chemistry were evident in enhanced OH concentrations above clouds and depressed OH below clouds. These findings are particularly relevant to current and future satellite investigations of the troposphere. Understanding the potential biases created by the inability to probe cloudy regions will improve the interpretation of regional and globally averaged satellite observations.

  18. Comparison of Multi Disk Exponential Gas Distribution vs. Single Disk

    NASA Astrophysics Data System (ADS)

    Rao, Erica; O'Brien, James

    2013-04-01

    In fitting galactic rotation curves to data, most standard theories make use of a single exponential disk approximation of the gas distribution to account for the HI synthesis data observed at various radio telescope facilities. We take a sample of surface brightness profiles from The HI Nearby Galaxy Survey (THINGS), and apply both single disk exponentials and Multi-Disk exponentials, and use these various models to see how the modelling procedure changes the Newtonian prediction of the mass of the galaxy. Since the missing mass problem has not been fully explained in large spiral galaxies, different modelling procedures could account for some of the missing matter.

  19. Momentum distribution function of the electron gas at metallic densities

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Yasuhara, H.

    1991-10-01

    The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.

  20. Characterization of industrial waste from a natural gas distribution company and management strategies: a case study of the East Azerbaijan Gas Company (Iran).

    PubMed

    Taghipour, Hassan; Aslhashemi, Ahmad; Assadi, Mohammad; Khodaei, Firoz; Mardangahi, Baharak; Mosaferi, Mohammad; Roshani, Babak

    2012-10-01

    Although a fundamental prerequisite for the successful implementation of any waste management plan is the availability of sufficient and accurate data, there are few available studies regarding the characterization and management of gas distribution company waste (GDCW). This study aimed to characterize the industrial waste generated by the East Azerbaijan Gas Distribution Company (EAGDC) and to present environmental management strategies. The EAGDC serves 57 cities and 821 villages with a total population of more than 2.5 million as well as numerous industrial units. The methodology of this study was based on a checklist of data collected from each zone of the company, site visits (observation), and quantity and quality analysis according to the formal data available from different zones. The results indicate that more than 35 different kinds of industrial solid waste are generated in different industrial installations. The most important types of generated waste include empty barrels (including mercaptans, diesel fuel, deionized waters and oil), faulty gas meters and regulators, a variety of industrial oils, sleeves, filter elements and faulty pipes, valves and fittings. The results indicated that, currently, GDCW is generally handled and disposed of with domestic waste, deposited in companies' installation yards and stores or, sometimes, recycled through non-scientific approaches that can create health risks to the public and the environment, even though most of the GDCW was determined to be recyclable or reusable materials. This study concludes that gas distribution companies must pay more attention to source reduction, recycling and reusing of waste to preserve natural resources, landfill space and the environment. PMID:22683949

  1. Direct Energy Exchange Enhancement in Distributed Injection Light Gas Launchers

    SciTech Connect

    Alger, T W; Finucane, R G; Hall, J P; Penetrante, B M; Uphaus, T M

    2000-04-06

    It is not widely acknowledged or appreciated that conventional, two-stage light-gas launchers do not efficiently apply their high breech pressures to the design intent: accelerating the projectile. Our objective in this project was to carry out the analysis, design, construction, and testing of a new class of launchers that will address this limitation. Our particular application is to expand the pressure range of the conventional, two-stage gas launcher to overlap and validate the pressure regimes previously attainable only with shock waves generated by nuclear explosions, lasers, or multistage conventional explosions. That is, these launchers would have the capability to conduct--in a laboratory setting--high-velocity-impact, equation-of-state (EOS) measurements at up to 2-TPa (20 Mbar) pressure levels in high-Z materials. Our design entailed a new class of distributed-injection, gas-dynamic launchers that are designed to use a boat-tail projectile to overcome the fundamental gas-expansion phenomena known as escape velocity (the Riemann limit). Our program included analytical, numerical, and experimental studies of the fast gas release flow technique that is central to the success of our approach. The analyses led us to believe that, in a typical configuration, the pressure will be effectively applied to the projectile in a time short relative to its few-microsecond traverse time; the experimental program we conducted during FY1999 supported these estimates. In addition, our program revealed dramatic increased efficiency in this process that was previously unknown to the launcher community. The most fundamental practical restrictions on the performance of any gas launcher are the ability of the launcher to (1) contain pressure in a reservoir, and (2) effectively apply that pressure to the base of a moving projectile. Our gas-release test-fixture experiments showed that our design was capable of applying nearly twice the pressure to the projectile that is

  2. A novel radial anode layer ion source for inner wall pipe coating and materials modification—Hydrogenated diamond-like carbon coatings from butane gas

    NASA Astrophysics Data System (ADS)

    Murmu, Peter P.; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min-1. Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp3 bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  3. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    PubMed

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time. PMID:25173323

  4. Distribution of non-breeding great lakes piping plovers (Charadrius melodus) along Atlantic and Gulf of Mexico coastlines: Ten years of band sightings

    USGS Publications Warehouse

    Stucker, J.H.; Cuthbert, F.J.; Winn, Brad; Noel, B.L.; Maddock, S.B.; Leary, P.R.; Cordes, J.; Wemmer, L.C.

    2010-01-01

    In 1993, a mark-recapture effort was initiated to band annually all Great Lakes Piping Plover nesting adults and offspring. With voluntary reporting by observers, >430 sightings of 154 individually-marked Great Lakes banded birds were documented on the wintering grounds during 19952005. This paper reports non-breeding distribution and site-fidelity and identifies Critical Habitat units used by this population during the winter. Information obtained through banded bird sightings indicates that the winter range of Great Lakes Piping Plovers extends from North Carolina to Texas, and the Bahamas, with the majority (75%) of reported individuals wintering in Georgia and Florida. About 95% of sightings were near or within federally-designated winter Critical Habitat for Piping Plovers. Within season (52%) and between-year (62%) site fidelity was documented for resightings within 3.5 km of initial sighting. Although breeding pairs do not winter in close association, there is some evidence to suggest that offspring winter closer to the male rather than the female parent (P-value = 0.03), and adult males and females appear to exhibit latitudinal segregation (P-value < 0.001). Females reach the winter grounds before males, arriving in July and staying through April (???9 months) or 75% of the annual cycle. The study is the first to identify winter distribution for the Great Lakes Piping Plover population. The significant proportion of the annual cycle spent on the wintering grounds emphasizes the importance of habitat protection during the non-breeding season for this federally-listed population.

  5. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-01-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  6. Method of fabricating an integral gas seal for fuel cell gas distribution assemblies

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1988-03-22

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  7. Integral gas seal for fuel cell gas distribution assemblies and method of fabrication

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1985-03-19

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  8. Natural gas: Formation of hydrates -- Transportation

    SciTech Connect

    Bhaskara Rao, B.K.

    1998-07-01

    The significant growth of Natural gas based industries in India and elsewhere obviously forced the industry to hunt for new fields and sources. This has naturally led to the phenomenal growth of gas networks. The transportation of gas over thousands of kilometers through caprious ambient conditions requires a great effort. Many difficulties such as condensation of light liquids (NGLS), choking of lines due to formation of hydrates, improper distribution of gas into branches are experienced during pipe line transportation of Natural gas. The thermodynamic conditions suitable for formation of solid hydrates have been derived depending upon the constituents of natural gas. Further effects of branching in pipe line transportation have been discussed.

  9. NASA Glenn Steady-State Heat Pipe Code Users Manual, DOS Input. Version 2

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.

    2000-01-01

    The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.

  10. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. THIS FRENCH-MADE CASTING MACHINE MAKES 4, 6, 8, 10, AND 12 INCH PIPE. THE MACHINE CAN MAKE 48 EIGHT INCH PIPE AN HOUR AND UP TO 60 FOUR INCH PIPE PER HOUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  11. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  12. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carbon dioxide or other inert gas shall be used for this test. (2) The piping from the cylinders to the..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-15 Piping. (a) The piping, valves,...

  13. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect

    Rasmussen B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25

  14. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  15. Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    SciTech Connect

    Susan Burkett; Hagen Schempf

    2006-01-31

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and

  16. Van der Waals and ideal gas models for compressibility by means of pressure in pneumatic pipes from 1 to 100 Lpm.

    PubMed

    Mugruza Vassallo, Carlos

    2004-01-01

    The general aim is to develop a Venturi flow sensor for the inspiration line to be used in mechanical ventilation. This work is an advance for the development and construction of this sensor and to explain some of its characteristics in mechanical ventilation. The Mach number in this sensor grows with the pipe diameter, but it is less than 0.3 to diameters higher than 3mm, and according to the traditional bibliography it can be used as incompressible fluid for the design. For this reason the simulations were done between 2:1 and 6:1 to simulation pressures from 15 to 16.5 Psi (mechanical ventilation range). The results of these simulations are: it needs to consider the gas compressibility levels for Mach numbers smaller than 0.3 because the error of flow measure can be between 5 and 15% for the pattern of ideal gas and enter 7.5 to 20% for the Van Der Waals model above the incompressibility pattern, and these results were used for the construction of the small reduction the Venturi's pipe from 3 to 78 Lpm, taken from absolute pressure to complete the norm ISO9360. PMID:17272118

  17. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  18. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  19. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  20. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  1. 78 FR 6318 - SourceGas Distribution LLC; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission SourceGas Distribution LLC; Notice of Petition for Rate Approval Take notice that on January 15, 2013, SourceGas Distribution LLC (SourceGas) filed a rate election pursuant...

  2. 77 FR 28374 - SourceGas Distribution LLC; Notice of Compliance Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission SourceGas Distribution LLC; Notice of Compliance Filing Take notice that on April 30, 2012, SourceGas Distribution LLC (SourceGas) filed a revised Statement of Operating...

  3. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  4. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  5. Phenomena associated with bench and thermal-vacuum testing of super conductors - Heat pipes.

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Test failures of heat pipes occur when the functional performance is unable to match the expected design limits or when the power applied to the heat pipe (in the form of heat) is distributed unevenly through the system, yielding a large thermal gradient. When a thermal gradient larger than expected is measured, it normally occurs in the evaporator or condenser sections of the pipe. Common causes include evaporator overheating, condenser dropout, noncondensable gas formation, surge and partial recovery of evaporator temperatures, masking of thermal profiles, and simple malfunctions due to leaks and mechanical failures or flaws. Examples of each of these phenomena are described along with corresponding failure analyses and corrective measures.

  6. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  7. Engineered coating systems protect meters, station piping

    SciTech Connect

    Not Available

    1986-03-01

    This paper describes how the Gas Division of the Colorado Springs, Colorado Department of Public Utilities has cut the frequency of painting exposed pipe, valves and associated equipment at the five gate metering stations, as well as distribution stations within the city and manifold stations where natural gas is distributed to nearby Ft. Carson and the U.S. Air Force Academy. Because of tourism in these areas, the city is very conscious of the appearance it presents. The Gas Division selected New Color Horizons coatings made by the Rust-Oleum Corp. They have cut down on maintenance costs and their facilities still have an excellent appearance. Greater coating durability was obtained through a system consisting of shop-applied enamel finish and a color-matched fast-drying aerosol spray coating to resist corrosion and the elements.

  8. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    PubMed

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. PMID:26138354

  9. Development of colorless distributed combustion for gas turbine application

    NASA Astrophysics Data System (ADS)

    Arghode, Vaibhav Kumar

    Colorless Distributed Combustion (CDC) is investigated for gas turbine engine application due to its benefit for ultra-low pollutant emission, improved pattern factor, low noise emission, stable combustion and low pressure drop, alleviation of combustion instabilities and increased life of turbine blades with less air cooling requirements. The CDC is characterized by discrete and direct injection of fuel and air at high velocity and the reaction zone is stabilized due to controlled aerodynamics inside the combustor and wider (radially) shear layer mixing. Mixing between the injected air and product gases to form hot and diluted oxidant is required followed by rapid mixing with the fuel. This results in distributed reaction zone instead of a concentrated flame front as observed in conventional diffusion flames and hence, to avoid hot spot regions and provide reduced NOx and CO emissions. The focus of this dissertation is to develop and demonstrate CDC for application to stationary gas turbine combustors which generally operate at thermal intensity of 15MW/m3-atm. However, higher thermal intensity is desirable to reduce hardware costs due to smaller weight and volume of the combustors. Design of high thermal intensity CDC combustor requires careful control of critical parameters, such as, gas recirculation, fuel/oxidizer mixing and residence time characteristics via careful selection of different air and fuel injection configurations to achieve desirable combustion characteristics. This dissertation examines sequential development of low emission colorless distributed combustor operating from thermal intensity of 5MW/m3-atm up to 198MW/m3-atm. Initially, various fuel and air injection configurations were investigated at a low thermal intensity of 5MW/m 3-atm. Further investigations were performed for a simpler combustor having single air and fuel injection ports for medium thermal intensity range of 28-57MW/m3-atm. Among the flow configurations investigated, reverse

  10. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  11. Piping Analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Burns & McDonnell provide architectural and engineering services in planning, design and construction of a wide range of projects all over the world. In design analysis, company regularly uses COSMIC computer programs. In computer testing piping design of a power plant, company uses Pipe Flexibility Analysis Program (MEL-21) to analyze stresses due to weight, temperature, and pressure found in proposed piping systems. Individual flow rates are put into the computer, then computer calculates the pressure drop existing across each component; if needed, design corrections or adjustments can be made and rechecked.

  12. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  13. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  14. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga

    2007-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler. Reduction of pipe diameter after dynamic loading and explosive welding was ˜2%.

  15. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  16. A Lagrangian view of stratospheric trace gas distributions

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Sparling, L. C.; Jackman, C. H.; Fleming, E. L.

    2000-01-01

    As a result of photochemistry, some relationship between the stratospheric age of air or mean age and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount for long-lived tracers, developed within a Lagrangian framework. Although the photochemical loss depends not only on the age of the parcel but also on its path, we show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer distribution. Using this relationship, tracer-tracer correlations can be interpreted as the result of mixing which connects parts of the "single-path photochemistry curve," a universal path-independent curve that describes the photochemical loss in terms of the total photon exposure. This geometric interpretation of mixing gives rise to constraints on trace gas correlation curves as can be seen in the atmospheric trace molecule spectroscopy observations.

  17. Blimp Robot for Three-Dimensional Gas Distribution Mapping in Indoor Environment

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroshi

    2009-05-01

    Mobile robots equipped with gas sensors can be used for automated measurement tasks including odor trail following, gas source localization, and gas distribution mapping. This article reports on the development of a blimp robot for mapping three-dimensional gas distribution in indoor environments. The blimp robot is programmed to fly randomly so that its trajectory covers everywhere in the given indoor environment. The blimp is equipped with gas sensors to measure gas concentrations and an ultrasonic sonar to measure the height from the floor. The measured data are transmitted to an external PC via a wireless communication module. At the same time, a camera placed on the floor takes a picture of the blimp, and its location is recorded with the gas sensor responses. The experimental results indicate that the blimp robot is effective in mapping three-dimensional gas concentration distribution in indoor environments.

  18. 46 CFR 153.283 - Valving for cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo piping. 153.283 Section 153.283... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.283 Valving for cargo piping. (a) Except as described in...

  19. 46 CFR 153.283 - Valving for cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Valving for cargo piping. 153.283 Section 153.283... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.283 Valving for cargo piping. (a) Except as described in...

  20. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  1. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  2. Use of a GIS-based hybrid artificial neural network to prioritize the order of pipe replacement in a water distribution network.

    PubMed

    Ho, Cheng-I; Lin, Min-Der; Lo, Shang-Lien

    2010-07-01

    A methodology based on the integration of a seismic-based artificial neural network (ANN) model and a geographic information system (GIS) to assess water leakage and to prioritize pipeline replacement is developed in this work. Qualified pipeline break-event data derived from the Taiwan Water Corporation Pipeline Leakage Repair Management System were analyzed. "Pipe diameter," "pipe material," and "the number of magnitude-3( + ) earthquakes" were employed as the input factors of ANN, while "the number of monthly breaks" was used for the prediction output. This study is the first attempt to manipulate earthquake data in the break-event ANN prediction model. Spatial distribution of the pipeline break-event data was analyzed and visualized by GIS. Through this, the users can swiftly figure out the hotspots of the leakage areas. A northeastern township in Taiwan, frequently affected by earthquakes, is chosen as the case study. Compared to the traditional processes for determining the priorities of pipeline replacement, the methodology developed is more effective and efficient. Likewise, the methodology can overcome the difficulty of prioritizing pipeline replacement even in situations where the break-event records are unavailable. PMID:19468847

  3. Gas and dust hydrodynamical simulations of massive lopsided transition discs - I. Gas distribution

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Baruteau, Clément

    2016-06-01

    Motivated by lopsided structures observed in some massive transition discs, we have carried out 2D numerical simulations to study vortex structure in massive discs, including the effects of disc self-gravity and the indirect force which is due to the displacement of the central star from the barycentre of the system by the lopsided structure. When only the indirect force is included, we confirm the finding by Mittal & Chiang that the vortex becomes stronger and can be more than two pressure scale heights wide, as long as the disc-to-star mass ratio is ≳1 per cent. Such wide vortices can excite strong density waves in the disc and therefore migrate inwards rapidly. However, when disc self-gravity is also considered in simulations, self-gravity plays a more prominent role on the vortex structure. We confirm that when the disc Toomre Q parameter is smaller than π/(2h), where h is the disc's aspect ratio, the vortices are significantly weakened and their inward migration slows down dramatically. Most importantly, when the disc is massive enough (e.g. Q ˜ 3), we find that the lopsided gas structure orbits around the star at a speed significantly slower than the local Keplerian speed. This sub-Keplerian pattern speed can lead to the concentration of dust particles at a radius beyond the lopsided gas structure (as shown in Paper II). Overall, disc self-gravity regulates the vortex structure in massive discs and the radial shift between the gas and dust distributions in vortices within massive discs may be probed by future observations.

  4. Heat Pipe Technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  5. 77 FR 34123 - Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... published on December 4, 2009, (74 FR 63906). The rule required that operators of gas distribution pipelines... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Public Meeting on Integrity... jointly sponsoring a public meeting on Implementing Integrity Management of Gas Distribution...

  6. 77 FR 10490 - SourceGas Distribution LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission SourceGas Distribution LLC; Notice of Filing Take notice that on February 14, 2012, SourceGas Distribution LLC submitted a revised baseline filing of their Statement of...

  7. 78 FR 13661 - National Fuel Gas Distribution Corporation; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Gas Distribution Corporation; Notice of Petition for Rate Approval Take notice that on February 12, 2013, National Fuel Gas Distribution Corporation filed...

  8. 75 FR 51032 - National Fuel Gas Distribution Corporation; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Gas Distribution Corporation; Notice of Baseline Filing August 12, 2010. Take notice that on August 10, 2010, National fuel Gas Distribution Corporation submitted...

  9. How is Order 636 affecting the gas distribution industry

    SciTech Connect

    Margossian, K.M. )

    1993-12-01

    This paper is part of a six part series on how interstate gas pipelines have been affected by Order 636. These papers are written in an interview format with different individuals representing the pipeline, natural gas, utility, and regulatory side of this new regulation. The issues deal with how it has affected these industries; how the relationships have changed between suppliers, marketers, distributors, etc.; the risks now involved in marketing, shipping, and buying gas products; and new technology developments have resulted to comply with the new regulations. This paper is an interview with Kenneth M. Magossian, president and chief operating officer of Commonwealth Gas Co. and Hopkinton LNG Corp.

  10. The comparative characteristic of PGE distribution in the mantle xenoliths of the Udachnaya pipe (Siberian craton) from the deformed and granular peridotites and eclogites.

    NASA Astrophysics Data System (ADS)

    Ilyina, Olga; Pokhilenko, Lyudmila; Agashev, Aleksey; Tychkov, Nikolay; Surgutanova, Evgenia

    2016-04-01

    We report the first data of PGE distribution in the unusually fresh deformed peridotites, granular peridotites and eclogites from the Udachnaya pipe. Mantle xenoliths from the Udachnaya pipe have different origin, structure and chemical composition and represent comprehensive depths in the Siberian craton. Equilibration temperatures and pressures for Udachnaya deformed and granular peridotites are 1250-1400° C and 5,7 - 7 GPa and 750 - 1250 ° C i 3,5 - 6 GPa, respectively [1]. Equilibration temperatures and pressure estimated for eclogites ranged from 1245 to 1320 ° C and 6 - 6,5 GPa [2]. We assume that the silphides are the main host mineral of PGE in our rocks [3]. The sulphides from eclogites have a narrow range and little concentration of compatible elements (Ir+Ru from 0,002 to 0,144 ppb) in contrast to incompatible PGE (Pt+Pd from 0,001 to 23,24 ppb). Ir show good positive correlation with major elements (CaO+Al2O3). Pt and Pd have no correlation with these elements. There is a good positive correlation between PGE and Fe2O3. Thus, PGE in eclogites are not controlled by silica components and belong to iron phase enrichment. The same situation is observed in granular peridotites. The sulphides in these rocks are not identified, but there is a good correlation of Fe2O3 with PGE in the whole-rock. And PGE show negative correlation with major elements (CaO+ Al2O3). The sulphides were identified in two samples of the deformed peridotite. Chondrite normalized PGE concentrations in the sulphides are three orders higher than that in the deformed peridotites whole-rock. But the pattern shapes is similar. The distribution of PGE in the deformed peridotites generally corresponds to that in granular peridotites of the Udachnaya pipe and xenoliths from Lesotho [4]. However, in contrast with broad range concentrations PGE in the granular peridotites of the Udachnaya pipe ((0,0003 - 0,02) × chondritic), the deformed peridotites show nearly flat pattern from Os to Pt (~0

  11. Mapping Temperatures On Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gunnerson, Fred S.; Thorncroft, Glen E.

    1993-01-01

    Paints containing thermochromic liquid crystals (TLC's) used to map temperatures on heat pipes and thermosyphons. Color of thermally sensitive TLC coat changes reversibly upon heating or cooling. Each distinct color indicates particular temperature. Transient and steady-state isotherms become visible as colored bands. Positions and movements of bands yield information about startup transients, steady-state operation, cooler regions containing noncondensible gas, and other phenomena relevant to performance of heat pipe.

  12. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    NASA Technical Reports Server (NTRS)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  13. Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems: Phase 1 and 2 feasibility study, conceptual design, and prototype development

    NASA Astrophysics Data System (ADS)

    Carroll, Steven; Fowler, Thomas; Peters, Edward; Power, Wendy; Reed, Michael

    1994-01-01

    The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies; Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system.The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements): a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

  14. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  15. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  16. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  17. The distribution of warm ionized gas in NGC 891

    NASA Technical Reports Server (NTRS)

    Rand, Richard J.; Kulkarni, Shrinivas R.; Hester, J. Jeff

    1990-01-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals.

  18. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  19. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  20. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  1. COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION

    EPA Science Inventory

    The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

  2. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  3. Abrasion resistance of linings in filament wound composite pipe

    SciTech Connect

    Hall, S.C.

    1999-07-01

    Fiberglass filament wound composite pipe has numerous industrial applications including transportation of petroleum and natural gas. Its corrosion resistance is well known but it can be susceptible to abrasion and erosion when it is used to transport slurries or dry gas containing sand particles. However, composite pipe can be manufactured integrally with abrasion resistant linings which protect the pipe from abrasion and erosion and increase its life. Laboratory investigations were performed to determine the effect of abrasive flows through polyurea-lined and unlined glass-reinforced epoxy (GRE) pipe, ultra-high molecular weight (UHMW) polyethylene (PE) pipe, and unlined steel pipe. Results are provided for the abrasion resistance, chemical resistance, adhesion strength, elongation, tensile strength, impact resistance and hardness of selected linings. The abrasion resistance of polyurea-lined composite pipe proved to be almost as resistant to abrasion and erosion as unlined steel pipe without the electrochemical corrosion associated with steel pipe.

  4. Optimal Capacity and Location Assessment of Natural Gas Fired Distributed Generation in Residential Areas

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah My

    With ever increasing use of natural gas to generate electricity, installed natural gas fired microturbines are found in residential areas to generate electricity locally. This research work discusses a generalized methodology for assessing optimal capacity and locations for installing natural gas fired microturbines in a distribution residential network. The overall objective is to place microturbines to minimize the system power loss occurring in the electrical distribution network; in such a way that the electric feeder does not need any up-gradation. The IEEE 123 Node Test Feeder is selected as the test bed for validating the developed methodology. Three-phase unbalanced electric power flow is run in OpenDSS through COM server, and the gas distribution network is analyzed using GASWorkS. The continual sensitivity analysis methodology is developed to select multiple DG locations and annual simulation is run to minimize annual average losses. The proposed placement of microturbines must be feasible in the gas distribution network and should not result into gas pipeline reinforcement. The corresponding gas distribution network is developed in GASWorkS software, and nodal pressures of the gas system are checked for various cases to investigate if the existing gas distribution network can accommodate the penetration of selected microturbines. The results indicate the optimal locations suitable to place microturbines and capacity that can be accommodated by the system, based on the consideration of overall minimum annual average losses as well as the guarantee of nodal pressure provided by the gas distribution network. The proposed method is generalized and can be used for any IEEE test feeder or an actual residential distribution network.

  5. Tectonic Controls on Gas Hydrate Distribution off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Chi, W. C.; Jegen, M. D.; Muff, S.; Hölz, S.; Lebas, E.; Sommer, M.; Lin, S.; Liu, C. S.; Lin, A. T.; Klaucke, I.; Klaeschen, D.; Chen, L.; Kunath, P.; McIntosh, K. D.; Feseker, T.

    2015-12-01

    The northern part of the South China Sea is characterized by wide-spread occurrence of bottom simulating reflectors (BSR), indicating the presence of marine gas hydrates. Because the area covers both the tectonically inactive passive margin and the northern termination of the Manila Trench subduction zone while sediment input is broadly similar, this area provides an excellent opportunity to study the influence of tectonic processes on the dynamics of gas hydrate systems. Long-offset multi-channel seismic data show that movement along thrust faults and blind thrust faults caused anticlinal ridges on the active margin, while faults are absent on the passive margin. This coincides with high-hydrate saturations derived from ocean bottom seismometer data and controlled source electromagnetic data, and conspicuous high-amplitude reflections in P-Cable 3D seismic data above the BSR in the anticlinal ridges of the active margin. On the contrary, all geophysical evidence for the passive margin points to normal- to low-hydrate saturations. Geochemical analysis of gas samples collected at seep sites on the active margin show methane with heavy δ13C isotope composition, while gas collected on the passive margin shows highly depleted (light) carbon isotope composition. Thus, we interpret the passive margin as a typical gas hydrate province fuelled by biogenic production of methane and the active margin gas hydrate system as a system that is fuelled not only by biogenic gas production but also by additional advection of thermogenic methane from the subduction system. The location of the highest gas hydrate saturations in the hanging wall next to the thrust faults suggests that the thrust faults represent pathways for the migration of methane. Our findings suggest that the most promising gas hydrate occurrences for exploitation of gas hydrate as an energy source may be found in the core of the active margin roll over anticlines immediately above the BSR and that high

  6. A SIMPLE PHYSICAL MODEL FOR THE GAS DISTRIBUTION IN GALAXY CLUSTERS

    SciTech Connect

    Patej, Anna; Loeb, Abraham

    2015-01-01

    The dominant baryonic component of galaxy clusters is hot gas whose distribution is commonly probed through X-ray emission arising from thermal bremsstrahlung. The density profile thus obtained has been traditionally modeled with a β-profile, a simple function with only three parameters. However, this model is known to be insufficient for characterizing the range of cluster gas distributions and attempts to rectify this shortcoming typically introduce additional parameters to increase the fitting flexibility. We use cosmological and physical considerations to obtain a family of profiles for the gas with fewer parameters than the β-model but which better accounts for observed gas profiles over wide radial intervals.

  7. Small turbines in distributed utility application: Natural gas pressure supply requirements

    SciTech Connect

    Goldstein, H.L.

    1996-05-01

    Implementing distributed utility can strengthen the local distribution system and help avoid or delay the expense of upgrading transformers and feeders. The gas turbine-generator set is an attractive option based on its low front-end capital cost, reliable performance at unmanned stations, and environmental performance characteristics. This report assesses gas turbine utilization issues from a perspective of fuel supply pressure requirements and discusses both cost and operational factors. A primary operational consideration for siting gas turbines on the electric distribution system is whether the local gas distribution company can supply gas at the required pressure. Currently available gas turbine engines require gas supply pressures of at least 150 pounds per square inch gauge, more typically, 250 to 350 psig. Few LDCs maintain line pressure in excess of 125 psig. One option for meeting the gas pressure requirements is to upgrade or extend an existing pipeline and connect that pipeline to a high-pressure supply source, such as an interstate transmission line. However, constructing new pipeline is expensive, and the small volume of gas required by the turbine for the application offers little incentive for the LDC to provide this service. Another way to meet gas pressure requirements is to boost the compression of the fuel gas at the gas turbine site. Fuel gas booster compressors are readily available as stand-alone units and can satisfactorily increase the supply pressure to meet the turbine engine requirement. However, the life-cycle costs of this equipment are not inconsequential, and maintenance and reliability issues for boosters in this application are questionable and require further study. These factors may make the gas turbine option a less attractive solution in DU applications than first indicated by just the $/kW capital cost. On the other hand, for some applications other DU technologies, such as photovoltaics, may be the more attractive option.

  8. Trailing Shield For Welding On Pipes

    NASA Technical Reports Server (NTRS)

    Coby, John B., Jr.; Gangl, Kenneth J.

    1991-01-01

    Trailing shield ensures layer of inert gas covers hot, newly formed bead between two tubes or pipes joined by plasma arc welding. Inert gas protects weld bead from oxidation by air until cooler and less vulnerable to oxidation. Intended for use on nickel-base alloy pipes, on which weld beads remain hot enough to oxidize after primary inert-gas purge from welding-torch cup has passed.

  9. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  10. The distribution of warm ionized gas in NGC 891

    SciTech Connect

    Rand, R.J.; Kulkarni, S.R.; Hester, J.J. Infrared Processing and Analysis Center, Pasadena, CA )

    1990-03-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals. 19 refs.

  11. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  12. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-12-31

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  13. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    SciTech Connect

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  14. Just fracking: a distributive environmental justice analysis of unconventional gas development in Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Clough, Emily; Bell, Derek

    2016-02-01

    This letter presents a distributive environmental justice analysis of unconventional gas development in the area of Pennsylvania lying over the Marcellus Shale, the largest shale gas formation in play in the United States. The extraction of shale gas using unconventional wells, which are hydraulically fractured (fracking), has increased dramatically since 2005. As the number of wells has grown, so have concerns about the potential public health effects on nearby communities. These concerns make shale gas development an environmental justice issue. This letter examines whether the hazards associated with proximity to wells and the economic benefits of shale gas production are fairly distributed. We distinguish two types of distributive environmental justice: traditional and benefit sharing. We ask the traditional question: are there a disproportionate number of minority or low-income residents in areas near to unconventional wells in Pennsylvania? However, we extend this analysis in two ways: we examine income distribution and level of education; and we compare before and after shale gas development. This contributes to discussions of benefit sharing by showing how the income distribution of the population has changed. We use a binary dasymetric technique to remap the data from the 2000 US Census and the 2009-2013 American Communities Survey and combine that data with a buffer containment analysis of unconventional wells to compare the characteristics of the population living nearer to unconventional wells with those further away before and after shale gas development. Our analysis indicates that there is no evidence of traditional distributive environmental injustice: there is not a disproportionate number of minority or low-income residents in areas near to unconventional wells. However, our analysis is consistent with the claim that there is benefit sharing distributive environmental injustice: the income distribution of the population nearer to shale gas wells

  15. Continuous distributions of specific ventilation recovered from inert gas washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.; Evans, J. W.; Jalowayski, A. A.

    1978-01-01

    A new technique is described for recovering continuous distributions of ventilation as a function of tidal ventilation/volume ratio from the nitrogen washout. The analysis yields a continuous distribution of ventilation as a function of tidal ventilation/volume ratio represented as fractional ventilations of 50 compartments plus dead space. The procedure was verified by recovering known distributions from data to which noise had been added. Using an apparatus to control the subject's tidal volume and FRC, mixed expired N2 data gave the following results: (a) the distributions of young, normal subjects were narrow and unimodal; (b) those of subjects over age 40 were broader with more poorly ventilated units; (c) patients with pulmonary disease of all descriptions showed enlarged dead space; (d) patients with cystic fibrosis showed multimodal distributions with the bulk of the ventilation going to overventilated units; and (e) patients with obstructive lung disease fell into several classes, three of which are illustrated.

  16. Spatial concentration distribution model for short-range continuous gas leakage of small amount

    NASA Astrophysics Data System (ADS)

    Wang, Meirong; Wang, Lingxue; Li, Jiakun; Long, Yunting; Gao, Yue

    2012-06-01

    Passive infrared gas imaging systems have been utilized in the equipment leak detection and repair in chemical manufacturers and petroleum refineries. The detection performance mainly relates to the sensitivity of infrared detector, optical depth of gas, atmospheric transmission, wind speed, and so on. Based on our knowledge, the spatial concentration distribution of continuously leaking gas plays an important part in leak detection. Several computational model of gas diffusion were proposed by researchers, such as Gaussian model, BM model, Sutton model and FEM3 model. But these models focus on calculating a large scale gas concentration distribution for a great amount of gas leaks above over 100- meter height, and not applicable to assess detection limit of a gas imaging system in short range. In this paper, a wind tunnel experiment is designed. Under different leaking rate and wind speed, concentration in different spatial positions is measured by portable gas detectors. Through analyzing the experimental data, the two parameters σy(x) and σz (x) that determine the plume dispersion in Gaussian model are adjusted to produce the best curve fit to the gas concentration data. Then a concentration distribution model for small mount gas leakage in short range is established. Various gases, ethylene and methane are used to testify this model.

  17. Observed oil and gas field size distributions: a consequence of the discovery process and prices of oil and gas

    SciTech Connect

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-11-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.

  18. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  19. Atomic Gas Distribution in HCG31 and HCG92

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta; Yun, M.; Verdes-Montenegro, L.; Heckman, T. M.; Zhu, G.

    2014-01-01

    We present Green Bank Telescope (GBT) 5x5 grid observations surrounding the actively star forming groups Hickson Compact Group, HCG 31 and HCG 92. We find that the total HI content of the groups are 2x10^10 and 2.5x10^10 solar masses respectively. The HI in HCG31 is mostly associated with the central region, however, there is a faint extension of the order of 10^9 solar masses of gas toward the southeast direction detected at the GBT pointing centered at a distance of 185 kpc from the group center. The velocity range of the HI is similar to the HI in the central pixel indicating its kinematic link to the gas in the center of the group. HCG 92 shows strong HI emission at a position of a pointing 4' offset from the center. The ``HI-wing" at velocities 6350-6500 km/s (Borthakur et al. 2010) were found to be confined to a few pointings adjacent to the peak suggesting that the wing as is localized and not extended. However, this must be gas stripped due to interactions and are dynamically connected to the Arc-N (Williams et al. 2002). We comment on the survival of the gas from the ionizing photons of the metagalactic ultraviolet background and those produced by the starburst. The implication of the existence of an HI rich environments surrounding the starbursts support the possibility of continued and future star formation in these groups.

  20. Painting a Picture of Gas Hydrate Distribution with Thermal Images

    SciTech Connect

    Weinberger, Jill L.; Brown, Kevin M.; Long, Philip E.

    2005-02-25

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, the entire gas hydrate stability zone was sampled in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space of 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs.

  1. Electrohydrodynamic heat pipe research

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1973-01-01

    Experimental and theoretical applications to electrohydrodynamic heat pipe (EHDHP) research are presented. Two problems in the research which are discussed are the prediction of the effective thermal conductance of an EHDHP with threaded grooves for fluid distribution to the evaporator of an EHDHP. Hydrodynamic equations are included along with a discussion of boundary conditions and burn-out conditions. A discussion of the theoretical and experimental results is presented.

  2. Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography.

    PubMed

    Das, Shyamal C; Larson, Ian; Morton, David A V; Stewart, Peter J

    2011-01-18

    This Letter reports a technique of measuring polar surface energy distributions of lactose using inverse gas chromatography (IGC). The significance of this study is that the total surface energy distributions can now be characterized by combining the already known dispersive surface energy distribution with polar surface energy distribution determined in this study. The polar surface energy was calculated from the specific free energies for surface interactions with a monopolar basic probe, ethyl acetate, and a monopolar acidic probe, dichloromethane. PMID:21174410

  3. Explosive welding of pipes

    NASA Astrophysics Data System (ADS)

    Drennov, O.; Burtseva, O.; Kitin, A.

    2006-08-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  4. 78 FR 34703 - Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report AGENCY: Pipeline and Hazardous Materials Safety... the Paperwork Reduction Act of 1995, the Pipeline and Hazardous Materials Safety Administration...

  5. Comparing two micrometeorological techniques for estimating trace gas emissions from distributed sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring trace gas emission from distributed sources such as treatment lagoons, treatment wetlands, land spread of manure, and feedlots requires micrometeorological methods. In this study, we tested the accuracy of two relatively new micrometeorological techniques, vertical radial plume mapping (VR...

  6. Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient.

    PubMed

    Winkel, Anders; Visser, Eric J W; Colmer, Timothy D; Brodersen, Klaus P; Voesenek, Laurentius A C J; Sand-Jensen, Kaj; Pedersen, Ole

    2016-07-01

    Traits for survival during flooding of terrestrial plants include stimulation or inhibition of shoot elongation, aerenchyma formation and efficient gas exchange. Leaf gas films form on superhydrophobic cuticles during submergence and enhance underwater gas exchange. The main hypothesis tested was that the presence of leaf gas films influences the distribution of plant species along a natural flood gradient. We conducted laboratory experiments and field observations on species distributed along a natural flood gradient. We measured presence or absence of leaf gas films and specific leaf area of 95 species. We also measured, gas film retention time during submergence and underwater net photosynthesis and dark respiration of 25 target species. The presence of a leaf gas film was inversely correlated to flood frequency and duration and reached a maximum value of 80% of the species in the rarely flooded locations. This relationship was primarily driven by grasses that all, independently of their field location along the flood gradient, possess gas films when submerged. Although the present study and earlier experiments have shown that leaf gas films enhance gas exchange of submerged plants, the ability of species to form leaf gas films did not show the hypothesized relationship with species composition along the flood gradient. PMID:26846194

  7. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  8. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meet 49 CFR 195.248. (c) The transfer manifold of each liquid transfer line and of each vapor return... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Piping systems. 127.1101 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping...

  9. Controls on the distribution of oil, gas, and gas-condensate pools in the Timan-Pechora basin

    SciTech Connect

    Bogatsky, V.; Pankratov, J. )

    1993-09-01

    The distribution of hydrocarbon pool in the Timan Pechora basin is controlled by various aspects of the geological structure and stratigraphy. Oil pools are confined to tectonically stable areas, and there are often stratigraphically trapped (Omra-Lizha saddle in the Izhma Pechora basin, Khoreyyer depression). Structures in more active tectonic areas (Pechora-Kolva aulacogen and Ukhta-Izhma swell) usually contain complex accumulations of oil, gas, and condensate. The mixed character of these pools proves their multistaged origin involving further gas charge during stages of increased subsidence in the kitchen areas and degassing of oil during later stages of uplift. However, active tectonics led not only to gas-cap development but also, in places, to complete loss of hydrocarbons at the surface. The Varandey Adzhva zone is an example, with its considerable volume of heavy and medium-heavy oils. In the Ural foredeep basins, older oil and gas accumulations at the outer edge and on transverse uplifts were enriched later by gas generated from deeply buried formation the axial part of the orogenic trough and its eastern border. Younger fold structures contain gas and gas-condensate pools charged by gas generated in both orogenic and preorogenic formations and by residual oils re-migrated from preorogenic accumulations that once existed in the pericratonic region.

  10. Edge seal for a porous gas distribution plate of a fuel cell

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Singh, Rajindar

    1984-01-01

    In an improved seal for a gas distribution plate of a fuel cell, a groove is provided extending along an edge of the plate. A member of resinous material is arranged within the groove and a paste comprising an immobilized acid is arranged surrounding the member and substantially filling the groove. The seal, which is impervious to the gas being distributed, is resistant to deterioration by the electrolyte of the cell.

  11. Measurements of gas hydrate formation probability distributions on a quasi-free water droplet

    NASA Astrophysics Data System (ADS)

    Maeda, Nobuo

    2014-06-01

    A High Pressure Automated Lag Time Apparatus (HP-ALTA) can measure gas hydrate formation probability distributions from water in a glass sample cell. In an HP-ALTA gas hydrate formation originates near the edges of the sample cell and gas hydrate films subsequently grow across the water-guest gas interface. It would ideally be desirable to be able to measure gas hydrate formation probability distributions of a single water droplet or mist that is freely levitating in a guest gas, but this is technically challenging. The next best option is to let a water droplet sit on top of a denser, immiscible, inert, and wall-wetting hydrophobic liquid to avoid contact of a water droplet with the solid walls. Here we report the development of a second generation HP-ALTA which can measure gas hydrate formation probability distributions of a water droplet which sits on a perfluorocarbon oil in a container that is coated with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane. It was found that the gas hydrate formation probability distributions of such a quasi-free water droplet were significantly lower than those of water in a glass sample cell.

  12. Measurements of gas hydrate formation probability distributions on a quasi-free water droplet.

    PubMed

    Maeda, Nobuo

    2014-06-01

    A High Pressure Automated Lag Time Apparatus (HP-ALTA) can measure gas hydrate formation probability distributions from water in a glass sample cell. In an HP-ALTA gas hydrate formation originates near the edges of the sample cell and gas hydrate films subsequently grow across the water-guest gas interface. It would ideally be desirable to be able to measure gas hydrate formation probability distributions of a single water droplet or mist that is freely levitating in a guest gas, but this is technically challenging. The next best option is to let a water droplet sit on top of a denser, immiscible, inert, and wall-wetting hydrophobic liquid to avoid contact of a water droplet with the solid walls. Here we report the development of a second generation HP-ALTA which can measure gas hydrate formation probability distributions of a water droplet which sits on a perfluorocarbon oil in a container that is coated with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane. It was found that the gas hydrate formation probability distributions of such a quasi-free water droplet were significantly lower than those of water in a glass sample cell. PMID:24985860

  13. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments.

    PubMed

    Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G

    2016-06-01

    Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks. PMID:27023280

  14. Impact of Higher Natural Gas Prices on Local Distribution Companies and Residential Customers

    EIA Publications

    2007-01-01

    This report examines some of the problems faced by natural gas consumers as a result of increasing heating bills in recent years and problems associated with larger amounts of uncollectible revenue and lower throughput for the local distribution companies (LDCs) supplying the natural gas.

  15. A numerical study of liquid film distribution in wet natural gas pipelines

    NASA Astrophysics Data System (ADS)

    Gao, X. Q.; Zhao, Y. L.; Xu, W. W.; Guan, X. R.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The software of FLUENT was used to simulate the gas-liquid turbulent flow in wet natural gas pipeline of the Puguang gas field. The RNG k- ɛ model was used to simulate the turbulent flow, the Mixture model was used to simulate gas-liquid mixed phase, and the Eulerian wall film model was used to simulate the formation and development of liquid film. The gas phase flow field characteristics, the distribution of the axial and circumferential film thickness, and the droplet distribution in the pipeline were studied when the gas Reynolds number is 7.72 × 106(10.8m/s). The results can be concluded as followed: Liquid film distributes unevenly along the circumferential direction and mostly distributes under the pipeline wall because of gravity. The impact of the dean vortex and centrifugal force in the straight section can also influence the liquid film distribution. The wall shear stress distributions in horizontal straight pipeline is concerned with liquid membrane volatility, and consistent with the film volatility period, the wall shear stress reached the maximum value in a certain position of wave front. The influence of the wall shear stress on the film fluctuation in inclined pipeline is weakened by gravity and other factors.

  16. Data from the 2006 International Piping Plover Census

    USGS Publications Warehouse

    Elliott-Smith, Elise; Haig, Susan M.; Powers, Brandi M.

    2009-01-01

    This report presents the results of the 2006 International Census of Piping Plovers (Charadrius melodus). Two sets of tabular data are reported: one for distribution and abundance of wintering Piping Plovers, the other for distribution and abundance of breeding Piping Plovers. The winter census resulted in the observation of 3,884 Piping Plovers at 546 sites. The breeding census resulted in the observation of 8,092 adult piping plovers at 1,925 sites. An appendix provides census reports for each location surveyed. This report was prepared to meet an immediate need of the U.S. Fish and Wildlife Service for census data for Piping Plovers.

  17. 46 CFR 34.25-15 - Piping-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements of subchapter F (Marine Engineering) of this chapter. (b) Distribution piping shall be of materials resistant to corrosion, except that steel or iron pipe may be used if inside corrosion...

  18. 46 CFR 34.25-15 - Piping-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements of subchapter F (Marine Engineering) of this chapter. (b) Distribution piping shall be of materials resistant to corrosion, except that steel or iron pipe may be used if inside corrosion...

  19. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such as...

  20. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  1. The Occurrence of Contaminant Accumulation in Lead Pipe Scales from Domestic Drinking Water Distribution Systems-ABSTRACT

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers’ taps. The current regulatory...

  2. Effect of Changing Treatment Disinfectants on the Microbiology of Distributed Water and Pipe Biofilm Communities using Conventional and Metagenomic Approaches

    EPA Science Inventory

    The purpose of this research was to add to our knowledge of chlorine and monochloramine disinfectants, with regards to effects on the microbial communities in distribution systems. A whole metagenome-based approach using sophisticated molecular tools (e.g., next generation sequen...

  3. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  4. 46 CFR 154.310 - Cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... piping systems, except where an interconnection to inert gas or purge piping is required by § 154.901(a... draining, venting, or purging interbarrier and hold spaces; (f) Connect into the cargo containment system... system; and (2) Pipes for draining, venting, or purging interbarrier and hold spaces. (g) Be inboard...

  5. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  6. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  7. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    SciTech Connect

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  8. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    SciTech Connect

    Simion, G.P.; VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B.; Bulmahn, K.D.

    1993-06-01

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement.

  9. Importance of Pore Size Distribution of Fine-grained Sediments on Gas Hydrate Equilibrium

    NASA Astrophysics Data System (ADS)

    Kwon, T. H.; Kim, H. S.; Cho, G. C.; Park, T. H.

    2015-12-01

    Gas hydrates have been considered as a new source of natural gases. For the gas hydrate production, the gas hydrate reservoir should be depressurized below the equilibrium pressure of gas hydrates. Therefore, it is important to predict the equilibrium of gas hydrates in the reservoir conditions because it can be affected by the pore size of the host sediments due to the capillary effect. In this study, gas hydrates were synthesized in fine-grained sediment samples including a pure silt sample and a natural clayey silt sample cored from a hydrate occurrence region in Ulleung Basin, East Sea, offshore Korea. Pore size distributions of the samples were obtained by the nitrogen adsorption and desorption test and the mercury intrusion porosimetry. The equilibrium curve of gas hydrates in the fine-grained sediments were found to be significantly influenced by the clay fraction and the corresponding small pores (>50 nm in diameter). For the clayey silt sample, the equilibrium pressure was higher by ~1.4 MPa than the bulk equilibrium pressure. In most cases of oceanic gas hydrate reservoirs, sandy layers are found interbedded with fine-grained sediment layers while gas hydrates are intensively accumulated in the sandy layers. Our experiment results reveal the inhibition effect of fine-grained sediments against gas hydrate formation, in which greater driving forces (e.g., higher pressure or lower temperature) are required during natural gas migration. Therefore, gas hydrate distribution in interbedded layers of sandy and fine-grained sediments can be explained by such capillary effect induced by the pore size distribution of host sediments.

  10. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis.

    PubMed

    Landi, Brian J; Raffaelle, Ryne P

    2007-03-01

    We report on the utility of modifying the carrier gas dynamics during laser vaporization synthesis to alter the single wall carbon nanotube (SWNT) chiral distribution. SWNTs produced from an Alexandrite laser using conventional Ni/Co catalysts demonstrate marked differences in chiral distributions due to effects of helium gas and reactor chamber pressure, in comparison to conventional subambient pressures and argon gas. Optical absorption and Raman spectroscopies confirm that the SWNT diameter distribution decreases under higher pressure and with helium gas as opposed to argon. Fluorescence mapping of the raw soots in sodium dodecylbenzene sulfonate (SDBS)-D2O was used to estimate the relative (n, m)-SWNT content of the semiconducting types. A predominance of type II structures for each synthesis condition was observed. The distribution of SWNT chiral angles was observed to shift away from near-armchair configurations under higher pressure and with helium gas. These results illustrate the importance of gas type and pressure on the condensation/cooling rate, which allows for synthesis of specific SWNT chiral distributions. PMID:17450850

  11. Density probability distribution functions of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2008-10-01

    In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  12. 46 CFR 95.15-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... other inert gas shall be used for this test. (2) The piping from the cylinders to the stop valves in the... spaces such as emergency generator rooms, lamp lockers, etc., may be tested by blowing out the...

  13. 46 CFR 95.15-15 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... other inert gas shall be used for this test. (2) The piping from the cylinders to the stop valves in the... spaces such as emergency generator rooms, lamp lockers, etc., may be tested by blowing out the...

  14. Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems. Phase 1 and 2 feasibility study, conceptual design, and prototype development. Final report, March 1991-July 1993

    SciTech Connect

    Carroll, S.; Fowler, T.; Peters, E.; Power, W.; Reed, M.

    1994-01-05

    The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies, Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system. The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements); a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

  15. Airflow, gas deposition, and lesion distribution in the nasal passages

    SciTech Connect

    Morgan, K.T.; Monticello, T.M. )

    1990-04-01

    The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and blood and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials. 61 references.

  16. The gas distribution in the high-redshift cluster MS 1054-0321

    NASA Astrophysics Data System (ADS)

    Mirakhor, M. S.; Birkinshaw, M.

    2016-04-01

    We investigate the gas mass distribution in the high-redshift cluster MS 1054-0321 using Chandra X-ray and One Centimetre Receiver array Sunyaev-Zel'dovich (SZ) effect data. We use a superposition of offset β-type models to describe the composite structure of MS 1054-0321. We find gas mass fractions f_{gas}^{X {-}ray} = 0.087_{-0.001}^{+0.005} and f_{gas}^SZ=0.094_{-0.001}^{+0.003} for the (main) eastern component of MS 1054-0321 using X-ray or SZ data, but f_{gas}^{X {-}ray}=0.030_{-0.014}^{+0.010} for the western component. The gas mass fraction for the eastern component is in agreement with some results reported in the literature, but inconsistent with the cosmic baryon fraction. The low-gas mass fraction for the western component is likely to be a consequence of gas stripping during the ongoing merger. The gas mass fraction of the integrated system is 0.060_{-0.009}^{+0.004}: we suggest that the missing baryons from the western component are present as hot diffuse gas which is poorly represented in existing X-ray images. The missing gas could appear in sensitive SZ maps.

  17. Spatial distribution of venous gas emboli in the lungs.

    PubMed

    Souders, J E; Doshier, J B; Polissar, N L; Hlastala, M P

    1999-11-01

    The distribution of gaseous pulmonary emboli is presumed to be determined by their buoyancy. We hypothesized that regional pulmonary blood flow may also influence their distribution. Therefore, pulmonary blood flow was measured in supine, anesthetized dogs with use of 15-microm fluorescent microspheres at baseline and during N(2) embolism. The animals were killed, and the lungs were excised, air-dried, and diced into approximately 2-cm(3) pieces with weights and spatial coordinates recorded. Embolism was defined as a >10% flow decrease relative to baseline. Vertically, the incidence of embolism increased substantially by 6 +/- 1% per additional centimeter in height compared with baseline (P = 0.0003). Embolism also increased radially by 3 +/- 1%/cm from the hilum (P = 0.002). There was a weaker but statistically significant increase in embolism to pieces with greater baseline flow, 9 +/- 2% for every 1. 0 increase in relative baseline flow (P = 0.008). We conclude that the distribution of gaseous emboli is influenced by buoyancy and flow dynamics within the pulmonary vasculature. PMID:10562640

  18. Spatial distribution of venous gas emboli in the lungs

    NASA Technical Reports Server (NTRS)

    Souders, J. E.; Doshier, J. B.; Polissar, N. L.; Hlastala, M. P.

    1999-01-01

    The distribution of gaseous pulmonary emboli is presumed to be determined by their buoyancy. We hypothesized that regional pulmonary blood flow may also influence their distribution. Therefore, pulmonary blood flow was measured in supine, anesthetized dogs with use of 15-microm fluorescent microspheres at baseline and during N(2) embolism. The animals were killed, and the lungs were excised, air-dried, and diced into approximately 2-cm(3) pieces with weights and spatial coordinates recorded. Embolism was defined as a >10% flow decrease relative to baseline. Vertically, the incidence of embolism increased substantially by 6 +/- 1% per additional centimeter in height compared with baseline (P = 0.0003). Embolism also increased radially by 3 +/- 1%/cm from the hilum (P = 0.002). There was a weaker but statistically significant increase in embolism to pieces with greater baseline flow, 9 +/- 2% for every 1. 0 increase in relative baseline flow (P = 0.008). We conclude that the distribution of gaseous emboli is influenced by buoyancy and flow dynamics within the pulmonary vasculature.

  19. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  20. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  1. Gas hydrate distribution identified from wireline logging data and seismic data in the Pearl River Mouth Basin,northern slope of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, S.; Yang, S.

    2012-12-01

    Wireline logging data acquired during China's first gas hydrate drilling expedition (GMGS-1) in April-June of 2007 and seismic data indicate the occurrences of gas hydrate above the base of gas hydrate stability (BGHS). Bottom simulating reflectors (BSRs) are widespread in the drilling zone, predominantly occurring beneath the ridges of migrating submarine canyons. Higher P-wave velocities and higher resistivity above BGHS at sites SH3, SH2 and SH7 indicate the presence of gas hydrate in the thickness range from 10 to 25 meters below seafloor. However, the measured compressional (P-wave) velocities at site SH3 show there are three abnormal P-wave velocities zones above the BGHS, which are lower than those of water-saturated sediments, indicating the presence of free gas in the pore space. The P-wave velocities drop as low as 1.0 m/s at the depth of 125 m. While the recovered core at 100 bars degassed show that methane was under unsaturated. Below the BSR, seismic data show enhanced reflections and the P-impedances have lower values, which inferred these reflections to be caused by free gas. To determine whether the low well-log P-wave velocity is caused by in-situ gas, synthetic seismograms were generated using the measured well-log P-wave velocity and calculated assuming water-saturated in the pore space. Comparing the surface seismic data with synthetic seismograms suggests that low P-wave velocities are likely caused by migrating gas due to borehole drilling. Three dimensional (3D) multi-channel seismic (MCS) data, inverted P-wave velocity, and RMS amplitude are used to study the detailed distribution and occurrences of the BSR and associated with the migration of gas in this basin. Three types of BSR and amplitude anomalies zones are identified from 3D seismic data. Gas hydrate in this basin are linked to and associated with gas accumulation below gas hydrate stability zone, which has a closerelationship with focused fluid flow features such as gas chimneys

  2. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  3. Diverless system connects 20-in. Togi gas line

    SciTech Connect

    Varvin, K. ); Pedersen, K. )

    1992-01-01

    Norske Hydro has successfully developed and tested a diverless pull-in and connection system for the Troll Oseberg gas injection project (Togi) in the North Sea. This paper describes the system which has proven to be fast, efficient and reversible, at any sequence of pipe connecting operations. The Togi project involved installation of five subsea gas wells at 1,000-ft water depths. Subsea wells were drilled through a six-slot template which serves as a foundation for the gas manifold, a 20-in. gas line, and a pipe bundle carrying hydraulic fluid, methanol and electric distribution systems.

  4. Distribution of a nonstationary electron beam in a dense gas

    SciTech Connect

    Sklyarov, Y.M.; Shelepin, L.A.; Syts'ko, Y.L.

    1986-11-01

    The problem of the temporal and spatial dependences of the parameters of the action of a modulated fast-electron beam on a dense gas is posed on the basis of the transport equation. The problem is simplified by making it nondimensional and by transforming to the Fokker-Planck approximation. A Green's function formalism is developed for this problem and is used to express the solution of the general nonstationary problem in the form of a convolution of a nonstationary boundary flow with a stationary Green's function. The use of the derived equation is illustrated using as an example the solution of a problem with the simplest stationary Green's function corresponding to the ''straight-ahead'' approximation. This approximation is used to consider a general relativistic case with model scattering cross sections. The methods and results of a numerical computer solution of the nonstationary problem of electron retardation in the upper layer of the atmosphere are surveyed.

  5. Thermal stress analysis of wrapped pipes in steady temperature state

    SciTech Connect

    Kawaguchi, Kouji; Sawa, Toshiyuki

    1995-11-01

    Thermal stress distributions of wrapped pipes subjected to heat loading are analyzed using an axisymmetrical theory of elasticity. The wrapped pipes consist of two finite hollow pipes of dissimilar material. In the numerical calculations, the effects of the thermal expansion coefficient and Young`s modulus on the interface thermal stress distributions are investigated. The residual thermal stress distributions are examined in the case of alumina-metal wrapped pipes. Experiments on the strains were conducted. It is found that the interface thermal stresses increase with an increase of the ratios of the thermal expansion coefficient and of Young`s modulus between the inner and the outer pipes. Moreover, it is demonstrated that the residual thermal stress in the case of alumina-metal wrapped pipes decreases as Young`s modulus of the outer pipe decreases and the thermal expansion coefficient of the outer pipe increases. The analytical results show good agreement with the experiments.

  6. The relations between natural gas hydrate distribution and structure on Muli basin Qinghai province

    NASA Astrophysics Data System (ADS)

    Yu, C.; Li, Y.; Lu, Z.; Luo, S.; Qu, C.; Tan, S.; Zhang, P.

    2014-12-01

    The Muli area is located in a depression area which between middle Qilian and south Qilian tectonic elements. The natural gas hydrate stratum belongs the Jurassic series coal formation stratum, the main lithological character clamps the purple mudstone, the siltstone, the fine grain sandstone and the black charcoal mudstone for the green gray. The plutonic metamorphism is primarily deterioration function of the Muli area coal, is advantageous in forming the coal-bed gas. Cretaceous system, the Paleogene System and Neogene System mainly include the fine grain red clastic rock and clay stone. The distribution of Quaternary is widespread. The ice water - proluvial and glacier deposit are primarily depositional mode. The Qilian Montanan Muli permafrost area has the good gas source condition (Youhai Zhu 2006) and rich water resources. It is advantage to forming the natural gas hydrate. The natural gas hydrate is one kind of new latent energy, widely distributes in the mainland marginal sea bottom settlings and land permanent tundra. Through researching the area the structure ,the deposition carries on the analysis and responds the characteristic analysis simulation in the rock physics analysis and the seismic in the foundation, and then the reflected seismic data carried by tectonic analysis processing and the AVO characteristic analysis processing reveal that the research area existence natural gas hydrate (already by drilling confirmation) and the natural gas hydrate distribution and the structure relations is extremely close. In the structure development area, the fault and the crevasse crack growing, the natural gas hydrate distribution characteristic is obvious (this is also confirmed the storing space of natural gas hydrate in this area is mainly crevasse crack). This conclusion also agree with the actual drilling result. The research prove that the distribution of natural gas hydrate in this area is mainly controlled by structure control. The possibility of fault

  7. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  8. Pressure and flow distribution in internal gas manifolds of a fuel-cell stack

    NASA Astrophysics Data System (ADS)

    Koh, Joon-Ho; Seo, Hai-Kyung; Lee, Choong Gon; Yoo, Young-Sung; Lim, Hee Chun

    Gas-flow dynamics in internal gas manifolds of a fuel-cell stack are analyzed to investigate overall pressure variation and flow distribution. Different gas-flow patterns are considered in this analysis. Gas-flow through gas channels of each cell is modeled by means of Darcy's law where permeability should be determined on an experimental basis. Gas-flow in manifolds is modeled from the macroscopic mechanical energy balance with pressure-loss by wall friction and geometrical effects. A systematic algorithm to solve the proposed flow model is suggested to calculate pressure and flow distribution in fuel-cell stacks. Calculation is done for a 100-cell molten carbonate fuel-cell stack with internal manifolds. The results show that the pressure-loss by wall friction is negligible compared with the pressure recovery in inlet manifolds or loss in outlet manifolds due to mass dividing or combining flow at manifold-cell junctions. A more significant effect on manifold pressure possibly arises from the geometrical manifold structure which depends on the manifold size and shape. The geometrical effect is approximated from pressure-loss coefficients of several types of fittings and valves. The overall pressure and flow distribution is significantly affected by the value of the geometrical pressure-loss coefficient. It is also found that the flow in manifolds is mostly turbulent in the 100-cell stack and this way result in an uneven flow distribution when the stack manifold is incorrectly, designed.

  9. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  10. Hydrogen-resistant heat pipes for bimodal reactors

    NASA Astrophysics Data System (ADS)

    North, Mark T.; Anderson, William G.

    1997-01-01

    A sodium heat pipe that is tolerant of hydrogen permeation was developed for bimodal space power applications. Hydrogen permeation out of the heat pipe is enhanced by using a condenser design with a re-entrant annular gas cavity and an array of small diameter, thin-walled tubes to increase the permeation area. An experimental heat pipe with a nickel envelope was fabricated and tested. The heat pipe operated between 993K and 1073K, using sodium as the working fluid. During steady-state operation, hydrogen gas was injected into the heat pipe. The response of the heat pipe was monitored while the hydrogen permeated out of the heat pipe in the condenser section. For each of the tests run, the hydrogen gas was removed from the heat pipe in approximately 5 to 10 minutes. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work.

  11. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2004-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  12. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari, Gerard T. Pittard

    2004-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M Kothari; Gerard T. Pittard

    2004-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera

  14. A Lagrangian View of Stratospheric Trace Gas Distributions

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.

  15. Light Pipe Thermophotovoltaics (LTPV)

    NASA Astrophysics Data System (ADS)

    Chubb, Donald L.

    2007-02-01

    In a conventional thermophotovoltaic (TPV) energy converter the radiation from the emitter to the photovoltaic (PV) array is transmitted in a vacuum or air where the index of refraction, n = 1. The intensity of the radiation is proportional to n2. Therefore, the incident intensity on the PV array could be greatly increase if the medium between the emitter and the PV array had n > 1. This light pipe TPV (LTPV) concept was introduced by The Quantum Group at the Third National Renewable Energy Laboratory (NREL) TPV Conference in 1997. This paper presents a theoretical analysis of the LTPV concept. The solution of the one-dimensional energy equation that includes both thermal conduction and radiation yields the temperature distribution through the light pipe. Applying the analysis to a zinc selenide (ZnSe) light pipe yielded the following result. For an emitter temperature of 1000K the convertible radiation(photon energy >PV bandgap energy) that reaches the photovoltaic(PV) cell is 1 W/cm2. At the same emitter temperature, a conventional TPV converter would have 1/8 W/cm2 of convertible radiation. Thus, the LTPV concept makes possible lower temperature operation than current TPV converters.

  16. A global survey of the distribution of free gas in marine sediments

    NASA Astrophysics Data System (ADS)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  17. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  18. The gas distribution of comet Halley and its relation to the nucleus rotation

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Trout, Anthony P.

    1994-01-01

    We used a set of spatially resolved spectra of comet Halley to explore whether the gas distribution profile could be inverted to yield information on the rotation of the comet. The data were obtained both pre- and post-perihelion. The pre-perihelion data showed reasonable symmetry and so were used to define the lifetimes against photodissociation of the various molecules. These lifetimes were then used to define the lifetimes against photodissociation of the various molecules. These lifetimes were then used along with a nonsteady-state vectorial model to fit the post-perihelion gas distribution profiles. The resulting molecular lightcurves are compared with the photometric lightcurves of Schlicher et al. (1990) to show that the rotational information is encoded in the observed gas distribution within the coma. The molecular lightcurves can differentiate between the preferred Schlicher et al. average period and the period they find for the same time interval as the spectra.

  19. Effects of strong magnetic fields on the electron distribution and magnetisability of rare gas atoms

    NASA Astrophysics Data System (ADS)

    Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2004-12-01

    Strong uniform static magnetic fields compress the electronic distribution of rare gas atoms and cause a 'spindle effect', which can be illustrated by plotting charge-density functions which depend quadratically on the flux density of the applied field. The fourth rank hypermagnetisabilities of He, Ne, Ar and Kr are predicted to have small positive values. Accordingly, the diamagnetism of rare gas atoms diminishes by a very little amount in the presence of intense magnetic field.

  20. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals

    PubMed Central

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  1. Evolution of bubble size distribution from gas blowout in shallow water

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; Lee, Kenneth; King, Thomas; Loney, Norman; Geng, Xiaolong

    2016-03-01

    Gas is often emanated from the sea bed during a subsea oil and gas blowout. The size of a gas bubble changes due to gas dissolution in the ambient water and expansion as a result of a decrease in water pressure during the rise. It is important to understand the fate and transport of gas bubbles for the purpose of environmental and safety concerns. In this paper, we used the numerical model, VDROP-J to simulate gas formation in jet/plume upon release, and dissolution and expansion while bubble rising during a relatively shallow subsea gas blowout. The model predictions were an excellent match to the experimental data. Then a gas dissolution and expansion module was included in the VDROP-J model to predict the fate and transport of methane bubbles rising due to a blowout through a 0.10 m vertical orifice. The numerical results indicated that gas bubbles would increase the mixing energy in released jets, especially at small distances and large distances from the orifice. This means that models that predict the bubble size distribution (BSD) should account for this additional mixing energy. It was also found that only bubbles of certain sizes would reach the water surfaces; small bubbles dissolve fast in the water column, while the size of the large bubbles decreases. This resulted in a BSD that was bimodal near the orifice, and then became unimodal.

  2. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals.

    PubMed

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO(2), suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  3. Full-spectrum k-distribution look-up table for nonhomogeneous gas-soot mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Chaojun; Modest, Michael F.; He, Boshu

    2016-06-01

    Full-spectrum k-distribution (FSK) look-up tables provide great accuracy combined with outstanding numerical efficiency for the evaluation of radiative transfer in nonhomogeneous gaseous media. However, previously published tables cannot be used for gas-soot mixtures that are found in most combustion scenarios since it is impossible to assemble k-distributions for a gas mixed with nongray absorbing particles from gas-only full-spectrum k-distributions. Consequently, a new FSK look-up table has been constructed by optimizing the previous table recently published by the authors and then adding one soot volume fraction to this optimized table. Two steps comprise the optimization scheme: (1) direct calculation of the nongray stretching factors (a-values) using the k-distributions (k-values) rather than tabulating them; (2) deletion of unnecessary mole fractions at many thermodynamic states. Results show that after optimization, the size of the new table is reduced from 5 GB (including the k-values and the a-values for gases only) to 3.2 GB (including the k-values for both gases and soot) while both accuracy and efficiency remain the same. Two scaled flames are used to validate the new table. It is shown that the new table gives results of excellent accuracy for those benchmark results together with cheap computational cost for both gas mixtures and gas-soot mixtures.

  4. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    EPA Science Inventory

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  5. Process for forming integral edge seals in porous gas distribution plates utilizing a vibratory means

    NASA Technical Reports Server (NTRS)

    Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)

    1988-01-01

    A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.

  6. Method for visualizing gas temperature distributions around hypersonic vehicles by using electric discharge

    NASA Astrophysics Data System (ADS)

    Nishio, Masatomi

    1993-06-01

    A method for visualizing qualitative gas temperature distributions around hypersonic vehicles by taking a photograph of the electric discharge is proposed. A gas temperature distribution over a slightly blunted wedge is visualized using the electric discharge generated by a pair of point-line electrodes. A hypersonic tunnel used for the experiment is characterized by Mach 10, a freestream duration of 10 ms, and a stagnation temperature of the tunnel barrel of 1000 K. It is concluded that the photograph shows a radiation spectrum contrast near the model surface, from which a temperature layer is seen.

  7. Distribution of gas-oil-bitumen shows in the Yakutian diamond province

    SciTech Connect

    Kravtsov, A.I.; Ivanov, V.A.; Bobrov, V.A.; Kropotova, O.I.

    1981-10-01

    The combination of carbon-bearing compounds in the kimberlite pipes may be divided into distinct geochemical groups, genetically associated with exogenic or endogenic geological processes. In analyzing the isotope composition of diamonds from eclogite and kimberlite, graphite in concentrated form from eclogite and ultrabasic inclusions in kimberlite, and postmagmaic carbonic acid from the matrix of kimberlite, it was established that these compounds have a distinctive endogenic nature. The isotope composition of the limestones of marine origin has been determined by the isotope-exchange reation /sup 13/CO/sub 2/ (gas) + /sup 12/CO/sub 3/ (solution) reverse arrow..-->.. /sup 12/CO/sub 2/ (gas) + /sup 13/CO/sub 3/ (solution), which is rigidly associated with temperature of sedimentation and has controlled the ''heavy'' isotope composition of these rocks. The isotope composition of the bitumens has not yet enabled us to resolve the problem of the origin of the bitumen shows (biogenic or abiogenic). However, the similarity of the isotope composition of bitumens examined from various bitumen shows indicates identical thermodynamic conditions of formation.

  8. Inert gas a-A differences: a direct reflection of V/Q distribution.

    PubMed

    Neufeld, G R; Williams, J J; Klineberg, P L; Marshall, B E

    1978-02-01

    A computer model was developed to study the relationship between ventilation-to-perfusion (V/Q) mismatch and the development of inert gas arterial-to-alveolar partial pressure differences (a-A differences). Increasing inhomogeneity of V/Q ratio is revealed directly as an increase in the a-A difference of each gas. The quantitative relationships between the Q vs. V/Q distribution and the fractional a-A difference solubility plot (a-A difference plot) were studied and described. These studies demonstrated that for log normally distributed V/Q ratios, the area under the a-A difference plot is linearly related to the log variance of the V/Q distribution and can be estimated directly from the values obtained from six gases. The maximum a-A difference occurs for a gas whose solubility is numerically equal to the mean V/Q. The effects of departure from log normality and multimodality are discussed. We conclude from these studies that quantitative information regarding the degree of inhomogeneity of V/Q for log normal distribution is available from direct calculations of inert gas retention and excretion data. Qualitative information is also available indicating the departure from log normality and the region toward which the distribution is skewed. PMID:204618

  9. Ultrasonic pipe assessment

    SciTech Connect

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  10. Shield For Flexible Pipe

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  11. Short cracks in piping and piping welds

    SciTech Connect

    Wilkowski, G.M.; Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Krishnaswamy, P.; Landow, M.; Marschall, C.W.; Rahman, S.; Scott, P. )

    1992-04-01

    This is the second semiannual report of the US Nuclear Regulatory Commission's Short Cracks in Piping and Piping Welds research program. The program began in March 1990 and will extend for 4 years. The intent of this program is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break analyses or in-service flaw evaluations. Only quasi-static loading rates are evaluated since the NRC's International Piping Integrity Research Group (IPIRG) program is evaluating the effects of seismic loading rates on cracked piping systems. Progress for through-wall-cracked pipe involved (1) conducting a 28-inch diameter stainless steel SAW and 4-inch diameter French TP316 experiments, (2) conducting a matrix of FEM analyses to determine GE/EPRI functions for short TWC pipe, (3) comparison of uncracked pipe maximum moments to various analyses and FEM solutions, (4) development of a J-estimation scheme that includes the strength of both the weld and base metals. Progress for surface-cracked pipe involved (1) conducting two experiments on 6-inch diameter pipe with d/t = 0.5 and {Theta}/{pi} = 0.25 cracks, (2) comparisons of the pipe experiments to Net-Section-Collapse predictions, and (3) modification of the SC.TNP and SC.TKP J-estimation schemes to include external surface cracks.

  12. Bulk-density distributions of solids in the freeboard of a gas-solid fluidized bed

    SciTech Connect

    Shen, B.C.; Fan, L.T.; Walawender, W.P.

    1995-05-01

    The freeboard region above the bubbling zone of a gas-solid fluidized bed provides the space not only for the disengagement of particles but also for additional contact and reaction between the particles and gas. The flow pattern and behavior of particles as well as their bulk-density distribution in the freeboard have a significant impact on the efficiency of fluidization. The results of numerous previous experimental studies indicate that the bulk density of solids essentially decreases exponentially as a function of the height of the freeboard. In the present work, this distribution has been obtained by first derived the Fokker-Planck equation from the linearized equation of motion of a single particle and then transforming this Fokker-Planck equation into that for the bulk-density distribution of solids. Its simplification to the one-dimensional case readily gives rise to an exponential distribution and agrees well with the available experimental data.

  13. Numerical Simulation and Experimental Investigation of Residual Stresses in the Circumferential Butt GTAW of Incoloy 800H Pipes

    NASA Astrophysics Data System (ADS)

    Purmohamad, H.; Kermanpur, A.; Shamanian, M.

    2010-02-01

    The residual stresses developed during the circumferential butt gas tungsten arc welding (GTAW) process of Incoloy 800H pipes were simulated using the finite element method. A decoupled thermostructural model was developed in three dimensions. The element birth and death technique was used for the addition of filler material in the weld pool. The Goldak double ellipsoidal model was used to simulate the distribution of arc heat during welding. The plastic behavior of the material was described by Von Mises yield function and the bilinear kinematics hardening was assumed. To validate the thermostructural model, both temperature and residual stress distributions within the pipes were measured using thermocouples and strain gages, respectively. Good agreements were found between the experimental and simulation results. The model was then used to predict distribution of residual stresses during the GTAW of Incoloy 800H pipes and to study effects of process parameters on the residual stresses.

  14. The chemical evolution of Dwarf Galaxies with galactic winds - the role of mass and gas distribution

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Recchi, Simone

    2015-08-01

    Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies (DGs), due to their shallower potential wells, are assumed to be more vulnera-ble to these energetic processes. Metal loss through galactic winds is also commonly invoked to explain the low metal content of DGs.Our main aim in this presentation is to show that galactic mass cannot be the only pa-rameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simula-tions of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to lose metals more easily than roundish ones. Consequently, also the final element abundances attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly pro-duced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shal-lower potential wells) more easily develop large-scale outflows; therefore, the fraction of lost metals tends to be higher.Another important issue is that the invoked mechanism to transform central cusps to cored dark-matter distributions by baryon loss due to strong galactic winds cannot work in general, must be critically tested, and should be clearly discernible by the chemical evolution of DGs.

  15. Warm molecular gas temperature distribution in six local infrared bright Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Spinoglio, Luigi; van der Werf, Paul P.; Piqueras López, Javier

    2014-06-01

    We simultaneously analyze the spectral line energy distributions (SLEDs) of CO and H2 of six local luminous infrared (IR) Seyfert galaxies. For the CO SLEDs, we used new Herschel/SPIRE FTS data (from J = 4-3 to J = 13-12) and ground-based observations for the lower-J CO transitions. The H2 SLEDs were constructed using archival mid-IR Spitzer/IRS and near-IR VLT/SINFONI data for the rotational and ro-vibrational H2 transitions, respectively. In total, the SLEDs contain 26 transitions with upper level energies between 5 and 15 000 K. A single, constant density, model (nH2 ~ 104.5-6 cm-3) with a broken power-law temperature distribution reproduces well both the CO and H2 SLEDs. The power-law indices are β1 ~ 1-3 for warm molecular gas (20 Kgas (T> 100 K). We show that the steeper temperature distribution (higher β) for hot molecular gas can be explained by shocks and photodissociation region (PDR) models; however, the exact β values are not reproduced by PDR or shock models alone and a combination of both is needed. We find that the three major mergers among our targets have shallower temperature distributions for warm molecular gas than the other three spiral galaxies. This can be explained by a higher relative contribution of shock excitation, with respect to PDR excitation, for the warm molecular gas in these mergers. For only one of the mergers, IRASF 05189-2524, the shallower H2 temperature distribution differs from that of the spiral galaxies. The presence of a bright active galactic nucleus in this source might explain the warmer molecular gas observed. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Limit analysis of pipe clamps

    SciTech Connect

    Flanders, H.E. Jr.

    1990-01-01

    The Service Level D (faulted) load capacity of a conventional three-bolt pipe-clamp based upon the limit analysis method is presented. The load distribution, plastic hinge locations, and collapse load are developed for the lower bound limit load method. The results of the limit analysis are compared with the manufacturer's rated loads. 3 refs.

  17. Pipe Leak Detection Technology Development

    EPA Science Inventory

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  18. "I inject less as I have easier access to pipes": injecting, and sharing of crack-smoking materials, decline as safer crack-smoking resources are distributed.

    PubMed

    Leonard, Lynne; DeRubeis, Emily; Pelude, Linda; Medd, Emily; Birkett, Nick; Seto, Joyce

    2008-06-01

    Among injection drug users (IDUs) in Ottawa, the capital of Canada, prevalence rates of HIV (20.6 percent) and hepatitis C HCV (75.8 percent) are among the highest in Canada. Recent research evidence suggests the potential for HCV and HIV transmission through the multi-person use of crack-smoking implements. On the basis of this scientific evidence, in April 2005, Ottawa's needle exchange programme (NEP) commenced distributing glass stems, rubber mouthpieces, brass screens, chopsticks, lip balm and chewing gum to reduce the harms associated with smoking crack. This study aims to evaluate the impact of this initiative on a variety of HCV- and HIV-related risk practices. Active, street-recruited IDUs who also smoked crack consented to personal interviews and provided saliva samples for HCV and HIV testing at four time points: 6-months pre-implementation (N=112), 1-month (N=114), 6-months (N=157) and 12-months (N=167) post-implementation. Descriptive and univariate analyses were completed. Following implementation of the initiative, a significant decrease in injecting was observed. Pre-implementation, 96 percent of IDUs reported injecting in the month prior to the interview compared with 84 percent in the 1-month, and 78 percent in the 6- and 12-month post-implementation interviews (p<.01). Conversely, approximately one-quarter of participants at both the 6- and 12-month post-implementation evaluation points reported that they were smoking crack more frequently since the availability of clean equipment--25 and 29 percent, respectively. In addition to a shift to a less harmful method of drug ingestion, HCV- and HIV-related risks associated with this method were reduced. Among crack-smoking IDUs sharing pipes, the proportion sharing "every time" declined from 37 percent in the 6-month pre-implementation stage, to 31 percent in the 1-month, 12 percent in the 6-month and 13 percent in the 12-month post-implementation stages (p<.01). Since distributing safer crack

  19. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  20. Fractal analysis of the dark matter and gas distributions in the Mare-Nostrum universe

    SciTech Connect

    Gaite, José

    2010-03-01

    We develop a method of multifractal analysis of N-body cosmological simulations that improves on the customary counts-in-cells method by taking special care of the effects of discreteness and large scale homogeneity. The analysis of the Mare-Nostrum simulation with our method provides strong evidence of self-similar multifractal distributions of dark matter and gas, with a halo mass function that is of Press-Schechter type but has a power-law exponent -2, as corresponds to a multifractal. Furthermore, our analysis shows that the dark matter and gas distributions are indistinguishable as multifractals. To determine if there is any gas biasing, we calculate the cross-correlation coefficient, with negative but inconclusive results. Hence, we develop an effective Bayesian analysis connected with information theory, which clearly demonstrates that the gas is biased in a long range of scales, up to the scale of homogeneity. However, entropic measures related to the Bayesian analysis show that this gas bias is small (in a precise sense) and is such that the fractal singularities of both distributions coincide and are identical. We conclude that this common multifractal cosmic web structure is determined by the dynamics and is independent of the initial conditions.

  1. Sedimentological control on saturation distribution in Arctic gas-hydrate-bearing sands

    NASA Astrophysics Data System (ADS)

    Behseresht, Javad; Bryant, Steven L.

    2012-08-01

    A mechanistic model is proposed to predict/explain hydrate saturation distribution in “converted free gas” hydrate reservoirs in sub-permafrost formations in the Arctic. This 1-D model assumes that a gas column accumulates and subsequently is converted to hydrate. The processes considered are the volume change during hydrate formation and consequent fluid phase transport within the column, the descent of the base of gas hydrate stability zone through the column, and sedimentological variations with depth. Crucially, the latter enable disconnection of the gas column during hydrate formation, which leads to substantial variation in hydrate saturation distribution. One form of variation observed in Arctic hydrate reservoirs is that zones of very low hydrate saturations are interspersed abruptly between zones of large hydrate saturations. The model was applied to data from Mount Elbert well, a gas hydrate stratigraphic test well drilled in the Milne Point area of the Alaska North Slope. The model is consistent with observations from the well log and interpretations of seismic anomalies in the area. The model also predicts that a considerable amount of fluid (of order one pore volume of gaseous and/or aqueous phases) must migrate within or into the gas column during hydrate formation. This paper offers the first explanatory model of its kind that addresses “converted free gas reservoirs” from a new angle: the effect of volume change during hydrate formation combined with capillary entry pressure variation versus depth.

  2. Continuous distributions of ventilation and gas conductance to perfusion in the lungs.

    PubMed

    Yamaguchi, K; Kawai, A; Mori, M; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1990-01-01

    Theoretical analysis and experimental observations were conducted to establish a method allowing to demonstrate the characteristics of distribution of ventilation (VA) as well as of diffusive conductance (G) to perfusion (Q) in the lungs. O2, CO2 and CO binding to hemoglobin molecules within the erythrocyte together with six inert gases including SF6, ethane, cyclopropane, halothane, diethyl ether and acetone, of varied solubility in blood and different diffusivity in lung tissue, were used as indicator gases. 15 patients with interstitial pneumonia of unknown etiology, placed in the supine position, were given a mixture of 21% O2 and 0.1% CO in N2 as the inspired gas and saline containing appropriate amount of the six inert gases was infused via an antecubital vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken through catheters inserted into the femoral and pulmonary artery. The concentrations of the indicator gases in the samples were measured by gas chromatography, with electrodes or with the Scholander gas analyzer. Assuming that the mass transfer efficiency of a given indicator gas at each gas exchange unit would be limited by VA/Q and G/Q ratios, the data obtained from the human subjects were analyzed in terms of a lung model having 20 units along the VA/Q and G/Q axes, respectively. The numerical analysis including the procedure of simultaneous Bohr integration for O2, CO2 and CO in a pulmonary capillary and the method of weighted least-squares combined with constrained optimization permitted the data to be transformed into a virtually continuous distribution of Q against VA/Q and G/Q axes. The numerical procedure was strictly tested using various artificial distributions of VA/Q and G/Q ratios, showing that it could characterize the distributions containing up to at least two modes on VA/Q-G/Q field with a substantial accuracy. Analytical results

  3. Natural gas distribution system leak pinpointing survey. Final report, October 1993-November 1994

    SciTech Connect

    Kinast, J.A.; Kostro, J.H.; Huebler, J.E.; Tamosaitis, V.

    1995-03-01

    The purpose of this effort was to conduct a survey of the top 100 natural gas distribution companies in the United States to collect information about their leak pinpointing procedures and ascertain what, if any, R&D is needed to improve their leak pinpointing operations

  4. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... final rule published December 4, 2009 (74 FR 63906), is correctly revised from February 2, 2010, to... INFORMATION: In FR Doc. E9-28467 appearing on page 63906 in the Federal Register of Friday, December 4, 2009...: Integrity Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and...

  5. 78 FR 10261 - Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Privacy Act Statement in the Federal Register published on April 11, 2000, (65 FR 19477) or visit http... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report AGENCY: Pipeline and Hazardous Materials...

  6. Ecosystem Warming Affects Vertical Distribution of Leaf Gas Exchange Properties and Water Relations of Spring Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...

  7. Gas Chromatographic Verification of a Mathematical Model: Product Distribution Following Methanolysis Reactions.

    ERIC Educational Resources Information Center

    Lam, R. B.; And Others

    1983-01-01

    Investigated application of binomial statistics to equilibrium distribution of ester systems by employing gas chromatography to verify the mathematical model used. Discusses model development and experimental techniques, indicating the model enables a straightforward extension to symmetrical polyfunctional esters and presents a mathematical basis…

  8. New Maps of the 3-D Distribution of Cold and Warm Interstellar Gas within 500pc

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Lallement, R.; Vergely, J.

    2006-12-01

    We present preliminary maps of the 3-D spatial distribution of cold (T <1000K) neutral and warm (T 5000K) partially ionized interstellar gas as traced by the NaI and CaII absorption lines observed towards stars with distances < 500pc from the Sun. These maps have been constructed from high-resolution (R 80,000) spectral data collected towards 1600 sight-lines, with the 3-D local gas density distribution being calculated from an inversion of the derived column density values. Our new maps, which trace the gas density within a 1kpc 3-D data cube surrounding the Sun, clearly show the neutral boundaries to several interstellar cavities that surround our own Local Bubble region (e.g. Loop I) and also reveal several adjacent interstellar tunnels and chimneys. Our final goal is to obtain maps based on 2000 interstellar sight-line measurements, and these data will be a valuable tool in solving several anomalies linked to the distribution of local gas such as the puzzling distribution of D-to-H values as measured within 1kpc by the NASA FUSE satellite.

  9. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  10. Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks

    NASA Astrophysics Data System (ADS)

    Boersma, R. J.; Sammes, N. M.

    In internally manifolded fuel-cell stacks, there is a non-uniform gas flow distribution along the height of the system. To gain an insight into this distribution an analytical model has been developed. In the model, the stack is viewed as a network of hydraulic resistances. Some of these resistances are constant, while some depend upon the gas velocity and can be determined from the literature. The model consists of equations for the network with counter-current flow in the manifold channels. Only the most important resistances are included, i.e., the resistances due to splitting and combining the flows in the manifold channels, and the resistance in the gas channels of the active cell area. The ratio between the average flow and the flow in the upper cell can be solved from the model. In this manner, a very useful tool for separatorplate design is obtained.

  11. Difficulty accessing crack pipes and crack pipe sharing among people who use drugs in Vancouver, Canada

    PubMed Central

    2011-01-01

    Background Crack pipe sharing can increase health risks among people who use drugs, yet the reasons for sharing these pipes have not been well described. Therefore, we sought to identify the prevalence and correlates of crack pipe sharing among a community-recruited sample of people who use illicit drugs in Vancouver, a setting where crack pipes are provided at low or no cost. Findings Data for this study were derived from two prospective cohorts of people who use drugs: the Vancouver Injection Drug Users Study (VIDUS) and the AIDS Care Cohort to evaluate Exposure to Survival Services (ACCESS). Multivariate logistic regression was used to identify factors independently associated with crack pipe sharing. Among 503 crack users, 238 (47.3%) participants reported having shared a crack pipe in the previous six months. Having acquired a mouthpiece in the last six months (adjusted odds ratio [AOR] = 1.91; 95% confidence interval [CI]: 1.31 - 2.79) and difficulty finding new pipes (AOR = 2.19; 95%CI: 1.42 - 3.37) were positively associated with pipe sharing. Binge drug use (AOR = 1.39; 95%CI: 0.96 - 2.02) was marginally associated with sharing pipes. Discussion There was a high prevalence of crack pipe sharing in a setting where crack pipes are distributed at low or no cost. Difficulty accessing crack pipes was independently and positively associated with this behavior. These findings suggest that additional efforts are needed to discourage crack pipe sharing as well as increase access to crack pipes. PMID:22208877

  12. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  13. Quality assurance of glass fiber reinforced piping systems

    SciTech Connect

    Ende, C.A.M. van den; Bruijn, J.C.M. de

    1997-12-01

    Resin based glass fiber reinforced plastic piping systems have been in use for over 30 years in a variety of industrial purposes, e.g. cooling and potable water, crude oil, gas, etc. Glass fiber reinforced piping systems have considerable advantages over alternative materials for piping systems. This is mainly due to their high corrosion resistance. The use of GRP pipes is limited due to the lack of quality assurance. As with other piping systems the joint is the weakest point. The paper describes the effort made towards a better quality control and understanding of the failure through determination of acceptance criteria and development of nondestructive testing methods for adhesively bounded joints.

  14. Development of a jet pump-assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  15. Probing Milky Way's hot gas halo density distribution using the dispersion measure of pulsars

    NASA Astrophysics Data System (ADS)

    Zhezher, Ya. V.; Nugaev, E. Ya.; Rubtsov, G. I.

    2016-03-01

    A number of recent studies indicates a significant amount of ionized gas in a form of the hot gas halo around the Milky Way. The halo extends over the region of 100 kpc and may be acountable for the missing baryon mass. In this paper we calculate the contribution of the proposed halo to the dispersion measure (DM) of the pulsars. The Navarro, Frenk, and White (NFW), Maller and Bullock (MB), and Feldmann, Hooper, and Gnedin (FHG) density distibutions are considered for the gas halo. The data set includes pulsars with the distance known independently from the DM, e.g., pulsars in globular clusters, LMC, SMC and pulsars with known parallax. The results exclude the NFW distribution for the hot gas, while the more realisticMB and FHG models are compatible with the observed dispersion measure.

  16. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  17. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  18. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  19. Jet pump assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  20. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  1. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  2. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  3. Lead Water Pipes and Infant Mortality at the Turn of the Twentieth Century

    ERIC Educational Resources Information Center

    Troesken, Werner

    2008-01-01

    In 1897, about half of all American municipalities used lead pipes to distribute water. Employing data from Massachusetts, this paper compares infant death rates in cities that used lead water pipes to rates in cities that used nonlead pipes. In the average town in 1900, the use of lead pipes increased infant mortality by 25 to 50 percent.…

  4. Heat Pipe Technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  5. Improved thermoplastic materials for offshore flexible pipes

    SciTech Connect

    Dawans, F.; Jarrin, J.; Hardy, J.

    1988-08-01

    Long-term aging tests representative of field operating conditions have been conducted on various thermoplastic materials proposed for the inner tube of flexible pipes for offshore drilling and production applications. In particular, experimental data are provided about the changes of the mechanical properties of selected thermoplastic materials owing to optimized formulation when the pipes are exposed over time to crude oil in the presence of gas and water.

  6. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  7. Distribution and controls on gas hydrate in the ocean-floor environment

    SciTech Connect

    Dillon, W.P.

    1995-12-31

    Methane hydrate, a crystalline solid that is formed of water and gas molecules, is widespread in oceanic sediments. It occurs at water depths that exceed 300 to 500 m and in a zone that commonly extends from the sea floor, down several hundred meters - the base of the zone is limited by increased temperature. To determine factors that control gas hydrate concentration, we have mapped its distribution off the U.S. Atlantic coast using acoustic remote-sensing methods. Most natural gas hydrate is formed from biogenic methane, and therefore it is concentrated where there is a rapid accumulation of organic detritus and also where there is a rapid accumulation of sediments (which protect detritus from oxidation). When hydrate fills the pore space of sediment, it can reduce permeability and create a gas trap. Such trapping of gas beneath hydrate may cause the formation of the most concentrated hydrate deposits, perhaps because the gas that is held in the trap can slowly diffuse upwards or migrate through faults. Hydrate-sealed traps are formed by hills on the sea floor, by dipping strata, or by salt(?) domes. Off the southeastern United States, a small area (only 3000 km{sup 2}) beneath a ridge formed by rapidly-deposited sediments appears to contain a volume of methane in hydrate that is equivalent to {approximately}30 times the U.S. annual consumption of gas. The breakdown of hydrate can cause submarine landslides by converting the hydrate to gas plus water and generating a rise of pore pressure. Conversely, sea-floor landslides can cause breakdown of hydrate by reducing the pressure in sediments. These interacting processes may cause cascading slides, which would result in breakdown of hydrate and release of methane to the atmosphere. This addition of methane to the global greenhouse would significantly influence climate. Gas hydrate in sea-floor sediments is potentially significant to climate, energy resources, and sea-floor stability.

  8. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    USGS Publications Warehouse

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  9. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Carlson, Kenneth H

    2014-01-01

    Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field. PMID:24456231

  10. Estimation of Biogenic Gas Distribution in a Northern Peatland Using Surface and Borehole Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.; Reeve, A.

    2005-05-01

    A combination of borehole and surface ground penetrating radar (GPR), time domain reflectometry (TDR) and direct gas sampling was performed to detect biogenic gas accumulation areas in Caribou Bog, a multi-unit peatland in central Maine (Orono). Areas of electromagnetic (EM) signal scattering (or shadow zones, similar to those reported with the seismic reflection method) observed in the surface GPR coincide with sampled zones of high CH4 and CO2 concentration. Shadow zones also correlate with areas of high EM wave velocity detected in zero offset profiles (ZOP) conducted with the borehole GPR, and with areas of low water content inferred with TDR. Application of the Complex Refractive Index Model (CRIM) to the EM wave velocities implies that the anomalous high velocity zones results from a volumetric gas content of 7% and 10% for a peat soil porosity of 91% and 94% respectively. In the absence of gas, the CRIM model predicts a porosity value of only 84% to reach the maximum EM wave velocity recorded, a value not supported by our peat porosity measurements in the laboratory and inconsistent with the high porosity of peat recorded by others. Strong reflectors detected with the surface GPR are interpreted as confining layers acting as biogenic gas traps and inducing overpressurized biogenic gas pockets as postulated by others. Spatial gas distribution and volumetric gas content can be roughly estimated considering the areas affected by EM wave blanking. These findings also have implications for the monitoring of temporal behavior of biogenic gas emissions to the atmosphere from peatlands.

  11. Search for a Lorentz invariant velocity distribution of a relativistic gas

    NASA Astrophysics Data System (ADS)

    Curado, Evaldo M. F.; Germani, Felipe T. L.; Soares, Ivano Damião

    2016-02-01

    We examine the problem of the relativistic velocity distribution in a 1-dim relativistic gas in thermal equilibrium. We use numerical simulations of the relativistic molecular dynamics for a gas with two components, light and heavy particles. However in order to obtain the numerical data our treatment distinguishes two approaches in the construction of the histograms for the same relativistic molecular dynamic simulations. The first, largely considered in the literature, consists in constructing histograms with constant bins in the velocity variable and the second consists in constructing histograms with constant bins in the rapidity variable which yields Lorentz invariant histograms, contrary to the first approach. For histograms with constant bins in the velocity variable the numerical data are fitted accurately by the Jüttner distribution which is also not Lorentz invariant. On the other hand, the numerical data obtained from histograms constructed with constant bins in the rapidity variable, which are Lorentz invariant, are accurately fitted by a Lorentz invariant distribution whose derivation is discussed in this paper. The histograms thus constructed are not fitted by the Jütter distribution (as they should not). Our derivation is based on the special theory of relativity, the central limit theorem and the Lobachevsky structure of the velocity space of the theory, where the rapidity variable plays a crucial role. For v2 /c2 ≪ 1 and 1 / β ≡kB T /m0c2 ≪ 1 the distribution tends to the Maxwell-Boltzmann distribution.

  12. 77 FR 5472 - Pipeline Safety: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... FR 72666). The ANPRM sought public comment on several issues related to expanding the use of EFVs in...: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to Applications Other Than Single-Family... Safety: Expanding the Use of Excess Flow Valves (EFVs) in Gas Distribution Systems to Applications...

  13. Computer Program For Variable-Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.

    1992-01-01

    VCHPDA provides accurate mathematical models of transient as well as steady-state performance of variable-conductance heat pipes over wide range of operating conditions. Applies to heat pipes with either cold, wicked or hot, nonwicked gas reservoirs and uses ideal-gas law and "flat-front" (negligible vapor diffusion) gas theory. Calculates length of gas-blocked region and temperature of vapor in active portion of heat pipe by solving set of nonlinear equations for conservation of energy and mass. Written in FORTRAN 77.

  14. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  15. Glass heat pipe evacuated tube solar collector

    SciTech Connect

    McConnell, R.D.; Vansant, J.H.

    1984-10-02

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  16. Analysis of swarm coefficients in a gas for bi-modal electron energy distribution model

    NASA Astrophysics Data System (ADS)

    Govinda-Raju, Gorur

    2015-03-01

    Cross sections for collision between electrons and neutrals in a gas discharge are essential for theoretical and computational developments. They are also required to interpret and analyze the results of experimental studies on swarm parameters namely drift velocity, characteristic energy, and ionization and attachment coefficients. The cross sections and swarm coefficients are interconnected through the most important electron energy distribution function. The traditional method of solving the Boltzmann equation numerically yields the required distribution (EEDF). However there are many situations where a simpler approach is desirable for deriving the energy distribution analytically. Energy distribution in non-uniform electric fields, in crossed electric and magnetic fields, breakdown in mixtures of gases for electrical power or plasma applications, calculation of longitudinal diffusion coefficients are examples. In other studies the swarm parameters are employed to derive the cross sections in an unfolding procedure that also involves the energy distribution function. Application of Boltzmann solution method, though more rigorous, consumes enormous efforts in time and technical expertise. In an attempt to provide a simpler method the present author has previously suggested a bimodal electron energy distribution in gases. In this paper the author has generalized the idea of bi-modal energy distribution by considering a model gas with representative cross sections and adopted numerical methods for greater accuracy. The parameters considered are the nature of the two distributions, their relative ratio, and the dependence of cross sections on electron energy. A new method for determining the combination of distributions has been shown to be adequate for calculation of swarm parameters. The results for argon are shown to yield very good agreement with available experimental and theoretical values.

  17. Fee electricity - a new headache for the gas industry

    SciTech Connect

    Allen, R.

    1980-01-01

    Stray current from underground primary electric cables and electric grounds can occasionally cause unusually high voltages at certain points along gas-distribution systems. Because of the parallel paths and many sources of stray neutral currents, the circuitry and voltage drops are complex. Washington Power's experience shows that (1) bare gas pipe systems remain relatively free of neutral currents because they are grounded along their entire length, (2) plastic and coated-steel pipe systems pick up stray neutral currents through holidays, bare valves, etc., and develop hazardous voltages because the steel pipe or the tracer wire of the plastic pipe is insulated from the soil, (3) pipeline voltages occur in areas having very high soil resistivities because of the poor return circuit for neutral currents back to the electric substation, and (4) the pipelines most distant from the substation experience the highest voltages because those areas contain the greatest imbalance of primary currents.

  18. Central Appalachian basin natural gas database: distribution, composition, and origin of natural gases

    USGS Publications Warehouse

    Román Colón, Yomayra A.; Ruppert, Leslie F.

    2015-01-01

    The U.S. Geological Survey (USGS) has compiled a database consisting of three worksheets of central Appalachian basin natural gas analyses and isotopic compositions from published and unpublished sources of 1,282 gas samples from Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The database includes field and reservoir names, well and State identification number, selected geologic reservoir properties, and the composition of natural gases (methane; ethane; propane; butane, iso-butane [i-butane]; normal butane [n-butane]; iso-pentane [i-pentane]; normal pentane [n-pentane]; cyclohexane, and hexanes). In the first worksheet, location and American Petroleum Institute (API) numbers from public or published sources are provided for 1,231 of the 1,282 gas samples. A second worksheet of 186 gas samples was compiled from published sources and augmented with public location information and contains carbon, hydrogen, and nitrogen isotopic measurements of natural gas. The third worksheet is a key for all abbreviations in the database. The database can be used to better constrain the stratigraphic distribution, composition, and origin of natural gas in the central Appalachian basin.

  19. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  20. Attenuation characteristics of nonlinear pressure waves propagating in pipes

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1974-01-01

    A series of experiments was conducted to investigate temporal and spatial velocity distributions of fluid flow in 3-in. open-end pipes of various lengths up to 210 ft, produced by the propagation of nonlinear pressure waves of various intensities. Velocity profiles across each of five sections along the pipes were measured as a function of time with the use of hot-film and hot-wire anemometers for two pressure waves produced by a piston. Peculiar configurations of the velocity profiles across the pipe section were noted, which are uncommon for steady pipe flow. Theoretical consideration was given to this phenomenon of higher velocity near the pipe wall for qualitative confirmation. Experimentally time-dependent velocity distributions along the pipe axis were compared with one-dimensional theoretical results obtained by the method of characteristics with or without diffusion term for the purpose of determining the attenuation characteristics of the nonlinear wave propagation in the pipes.

  1. A dynamical model for the distribution of dark matter and gas in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Rasia, Elena; Tormen, Giuseppe; Moscardini, Lauro

    2004-06-01

    Using the results of an extended set of high-resolution non-radiative hydrodynamic simulations of galaxy clusters, we obtain simple analytic formulae for the dark matter and hot gas distribution, in the spherical approximation. Starting from the dark matter phase-space radial density distribution, we derive fits for the dark matter density, velocity dispersion and velocity anisotropy. We use these models to test the dynamical equilibrium hypothesis through the Jeans equation: we find that this is satisfied to good accuracy by our simulated clusters inside their virial radii. This result also shows that our fits constitute a self-consistent dynamical model for these systems. We then extend our analysis to the hot gas component, obtaining analytic fits for the gas density, temperature and velocity structure, with no further hypothesis on the gas dynamical status or state equation. Gas and dark matter show similar density profiles down to ~0.06Rv (with Rv the virial radius), while at smaller radii the gas flattens, producing a central core. Gas temperatures are almost isothermal out to roughly 0.2 Rv, then steeply decrease, reaching at the virial radius a value almost a factor of 2 lower. We find that the gas is not at rest inside Rv: velocity dispersions are increasing functions of the radius, motions are isotropic to slightly tangential, and contribute non-negligibly to the total pressure support. We test this model using a generalization of the hydrostatic equilibrium equation, where the gas motion is properly taken into account. Again we find that the fits provide an accurate description of the system: the hot gas is in equilibrium and is a good tracer of the overall cluster potential if all terms (density, temperature and velocity) are taken into account, while simpler assumptions cause systematic mass underestimates. In particular, we find that using the so-called β-model underestimates the true cluster mass by up to 50 per cent at large radii. We also find

  2. Distribution and Mass of Diffuse and Dense CO Gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Heyer, Mark; Brunt, Christopher M.; Clark, Paul; Klessen, Ralf; Shetty, Rahul

    2016-02-01

    Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star-forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital for understanding the relation between molecular gas and star formation. We examine the Galactic distribution of two CO-emitting gas components, a high column density component detected in 13CO and 12CO, and a low column density component detected in 12CO, but not in 13CO. The “diffuse” and “dense” components are identified using a combination of smoothing, masking, and erosion/dilation procedures, making use of three large-scale 12CO and 13CO surveys of the inner and outer Milky Way. The diffuse component, which globally represents 25% (1.5 × 108M⊙) of the total molecular gas mass (6.5 × {10}8 M⊙), is more extended perpendicular to the Galactic plane. The fraction of diffuse gas increases from ˜10%-20% at a galactocentric radius of 3-4 kpc to 50% at 15 kpc, and increases with decreasing surface density. In the inner Galaxy, a yet denser component traced by CS emission represents 14% of the total molecular gas mass traced by 12CO emission. Only 14% of the molecular gas mass traced by 12CO emission is identified as part of molecular clouds in 13CO surveys by cloud identification algorithms. This study indicates that CO emission not only traces star-forming clouds, but also a significant diffuse molecular ISM component.

  3. Altitude Investigation of Gas Temperature Distribution at Turbine of Three Similar Axial-Flow Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Prince, W.R.; Schulze, F.W.

    1952-01-01

    An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as

  4. Particle multiplicity distributions: Connections with a Feynman-Wilson gas and a Ginzburg-Landau theory

    NASA Astrophysics Data System (ADS)

    Mekjian, A. Z.

    2002-01-01

    Particle yields and fluctuations are studied in a general framework based on a cycle class picture in a Feynman path integral approach. Various cases such as the disoriented chiral condensate distribution, a negative binomial distribution, partially coherent state emission, and field emission from Lorentzian line shapes are discussed. Generalizations based on these important specific cases are developed. Connections of the cycle class picture with other approaches based on combinants, cumulants, hierarchical models, and clan variables are presented for the specific and general cases. A relation to a Feynman-Wilson gas and to the Ginzburg-Landau model are discussed.

  5. Three-Dimensional Statistical Gas Distribution Mapping in an Uncontrolled Indoor Environment

    SciTech Connect

    Reggente, Matteo; Lilienthal, Achim J.

    2009-05-23

    In this paper we present a statistical method to build three-dimensional gas distribution maps (3D-DM). The proposed mapping technique uses kernel extrapolation with a tri-variate Gaussian kernel that models the likelihood that a reading represents the concentration distribution at a distant location in the three dimensions. The method is evaluated using a mobile robot equipped with three 'e-noses' mounted at different heights. Initial experiments in an uncontrolled indoor environment are presented and evaluated with respect to the ability of the 3D map, computed from the lower and upper nose, to predict the map from the middle nose.

  6. Heat pipe flight experiments

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1973-01-01

    OAO 3 heat pipe flight experiments to check out weightlessness behavior are reported. Tested were a hollow channel screen system with helical grooves, a heat pipe with a wicking system of horizontal grooves, and a spiral artery pipe with multichannel fluid return to the evaporator. Flight experiment data proved that all heat pipe geometries containing wicking systems provided uninterrupted fluid return to the condensators during weightlessness and sufficient cooling for isothermalizing optical instruments onboard OAO.

  7. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    SciTech Connect

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but the alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.

  8. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  9. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  10. Gas hydrate and P-Wave Velocity Distribution in the Yaquina Basin at the Peruvian margin

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; Gajewski, D.; Grobys, J.; Kukowski, N.; Netzeband, G.; Wagner, M.; Bialas, J.

    2003-04-01

    The lower boundary of the methane hydrate stability zone in continental margin sediments is often marked by a strong, phase reversed reflection subparallel to the seafloor, called the bottom simulating reflector (BSR). High resolution multichannel seismic (MCS) data from the Yaquina Basin offshore Peru at 8 deg S show a BSR that is varying laterally in amplitude as well as in continuity. The amplitudes of the reflections above the BSR also vary with the appearance of the BSR. Where the BSR is strong, the reflections above it are weaker compared to areas where the BSR is weak. And although the strong part of the BSR is underlain immediately by strong reflections, reflections several hundred meters beneath the BSR appear weaker than those where the BSR is weak. This variation indicates significant heterogeneity in the distribution of gas and gas hydrate in this area. Chemoherms observed at the Yaquina Basin sea floor indicate the presence of free gas in the sediments up to the seafloor. The presence of gas and gas hydrate within the sediment sequence significantly influences the P-wave velocity in the affected layers. Therefore a detailed analysis of velocity variations enables to understand the apparently different conditions for the formation of gas hydrate along the BSR and the migration paths of the free gas. Ocean bottom seismometer (OBS) data from profiles coincident with the MCS data can provide such detailed velocity depth information. Velocity analysis from OBS data included 2D-ray tracing and 1D-interval-velocity analysis by means of DIX-inversion. In order to find a trade-off between vertical resolution and minimization of errors caused by the sensitivity of the DIX' formula to velocity variations in thin layers, the data have undergone a Kirchhoff wave-equation datuming and adjacent coherence filtering was applied to the data to eliminate the one sided travel path through the water column of the OBS-observations. The derived velocity structure confirms

  11. Towards an in-situ measurement of wave velocity in buried plastic water distribution pipes for the purposes of leak location

    NASA Astrophysics Data System (ADS)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Dray, Simon; Whitfield, Stuart; Paschoalini, Amarildo T.

    2015-12-01

    Water companies are under constant pressure to ensure that water leakage is kept to a minimum. Leak noise correlators are often used to help find and locate leaks. These devices correlate acoustic or vibration signals from sensors which are placed either side the location of a suspected leak. The peak in the cross-correlation function of the measured signals gives the time difference between the arrival times of the leak noise at the sensors. To convert the time delay into a distance, the speed at which the leak noise propagates along the pipe (wave-speed) needs to be known. Often, this is estimated from historical wave-speed data measured on other pipes obtained at various times and under various conditions, or it is estimated from tables which are calculated using simple formula. Usually, the wave-speed is not measured directly at the time of the correlation measurement and is therefore potentially a source of significant error in the localisation of the leak. In this paper, a new method of measuring the wave-speed in-situ in the presence of a leak, that is robust and simple, is explored. Experiments were conducted on a bespoke large scale buried pipe test-rig, in which a leak was also induced in the pipe between the measurement positions to simulate a condition that is likely to occur in practice. It is shown that even in conditions where the signal to noise ratio is very poor, the wave-speed estimate calculated using the new method is less than 5% different from the best estimate of 387 m s-1.

  12. Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip

    NASA Technical Reports Server (NTRS)

    Azad, Gm S.; Han, Je-Chin; Teng, Shuye; Boyle, Robert J.

    2000-01-01

    Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1 x 10(exp 6). The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 % and 9.7% at the cascade inlet. Static pressure measurements are made in the mid-span and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip beat transfer coefficient distribution. Heat transfer coefficient also increases about 15-20% along the leakage flow path at higher turbulence intensity level of 9.7% over 6.1 %.

  13. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.

    1993-01-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  14. DETERMINING ALL GAS PROPERTIES IN GALAXY CLUSTERS FROM THE DARK MATTER DISTRIBUTION ALONE

    SciTech Connect

    Frederiksen, Teddy F.; Hansen, Steen H.; Host, Ole; Roncadelli, Marco

    2009-08-01

    We demonstrate that all properties of the hot X-ray emitting gas in galaxy clusters are completely determined by the underlying dark matter (DM) structure. Apart from the standard conditions of spherical symmetry and hydrostatic equilibrium for the gas, our proof is based on the Jeans equation for the DM and two simple relations which have recently emerged from numerical simulations: the equality of the gas and DM temperatures, and the almost linear relation between the DM velocity anisotropy profile and its density slope. For DM distributions described by the Navarro-Frenk-White or the Sersic profiles, the resulting gas density profile, the gas-to-total-mass ratio profile, and the entropy profile are all in good agreement with X-ray observations. All these profiles are derived using zero free parameters. Our result allows us to predict the X-ray luminosity profile of a cluster in terms of its DM content alone. As a consequence, a new strategy becomes available to constrain the DM morphology in galaxy clusters from X-ray observations. Our results can also be used as a practical tool for creating initial conditions for realistic cosmological structures to be used in numerical simulations.

  15. Mobile Methane Measurements of Natural Gas Distribution and End-use Emissions in Indianapolis

    NASA Astrophysics Data System (ADS)

    Lamb, B. K.; Roscioli, J. R.; Floerchinger, C. R.; Herndon, S. C.; Ferrara, T.

    2015-12-01

    Indianapolis is the site of the INFLUX program to investigate greenhouse gas emissions from a large metropolitan area. A key question in INFLUX is the relative contributions of methane emissions from the local gas distribution system in comparison to biogenic sources, such as the wastewater treatment system and landfills, and of end use emissions from furnaces and other combustion devices downstream of customer gas meters. During February and March, 2015, the Aerodyne van was used to measure methane, ethane, CO2 and other trace gases during mobile sampling traverses through a number of urban and suburban Indianapolis neighborhoods. Signatures of distinct natural gas emissions, biogenic emissions, and combustion emissions were observed in small plumes. In a number of cases, these sources were identified as manhole covers in city streets, where nearby leaks can seep into the local wastewater system. Quantification of ethane and methane from 45 manholes reveal that some had emissions that were clearly biogenic while others had a distinct natural gas signature. This paper describes the results from the analysis of these mobile data in the context of the current Indianapolis methane emission inventory.

  16. Evaluation of commercially-available spacecraft-type heat pipes

    NASA Technical Reports Server (NTRS)

    Kaufman, W. B.; Tower, L. K.

    1978-01-01

    As part of an effort to develop reliable, cost effective spacecraft thermal control heat pipes, life tests on 30 commercially available heat pipes in 10 groups of different design and material combinations were conducted. Results for seven groups were reported herein. Materials are aluminum and stainless steel, and working fluids are methanol and ammonia. The formation of noncondensible gas was observed for times exceeding 11,000 hours. The heat transport capacities of the pipes were also determined.

  17. Schlieren System For Flow Studies In Round Glass Pipes

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Rhodes, David B.; Jones, Stephen B.

    1990-01-01

    In schlieren system for studying flow of gas in transparent pipe of circular cross section, cylindrical lenses placed on opposite sides of pipe compensate for refraction caused by wall of pipe. Enables direct visualization of such phenomena as laminar or turbulent flow, shock waves, vortexes, and flow separations in systems having inherently cylindrical geometry; potentially unreliable extrapolations from results in flat-sided test cells no longer necessary.

  18. WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Ly{alpha} ABSORBERS

    SciTech Connect

    Yoon, Joo Heon; Putman, Mary E.; Bryan, Greg L.; Thom, Christopher; Chen, Hsiao-Wen

    2012-08-01

    The first systematic study of the warm gas (T = 10{sup 4-5} K) distribution across a galaxy cluster is presented using multiple background QSOs in and around the Virgo Cluster. We detect 25 Ly{alpha} absorbers (N{sub HI} = 10{sup 13.1-15.4} cm{sup -2}) in the Virgo velocity range toward 9 of 12 QSO sightlines observed with the Cosmic Origin Spectrograph, with a cluster impact parameter range of 0.36-1.65 Mpc (0.23-1.05 R{sub vir}). Including 18 Ly{alpha} absorbers previously detected by STIS or GHRS toward 7 of 11 background QSOs in and around the Virgo Cluster, we establish a sample of 43 absorbers toward a total of 23 background probes for studying the incidence of Ly{alpha} absorbers in and around the Virgo Cluster. With these absorbers, we find (1) warm gas is predominantly in the outskirts of the cluster and avoids the X-ray-detected hot intracluster medium (ICM). Also, Ly{alpha} absorption strength increases with cluster impact parameter. (2) Ly{alpha}-absorbing warm gas traces cold H I-emitting gas in the substructures of the Virgo Cluster. (3) Including the absorbers associated with the surrounding substructures, the warm gas covering fraction (100% for N{sub HI} > 10{sup 13.1} cm{sup -2}) is in agreement with cosmological simulations. We speculate that the observed warm gas is part of large-scale gas flows feeding the cluster both in the ICM and galaxies.

  19. Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell

    DOEpatents

    Kaufman, Arthur; Werth, John

    1986-01-01

    A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.

  20. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    PubMed Central

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  1. Investigation of bubbles in arterial heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1972-01-01

    The behavior of gas occlusions in arterial heat pipes has been studied experimentally and theoretically. Specifically, the gas-liquid system properties, solubility and diffusivity, have been measured from -50 to 100 C for helium and argon in ammonia, Freon-21 (CHC12F), and methanol. Properties values obtained were then used to experimentally test models for gas venting from a heat pipe artery under isothermal conditions (i.e., no-heat flow), although the models, as developed, are also applicable to heat pipes operated at power, with some minor modifications. Preliminary calculations indicated arterial bubbles in a stagnant pipe require from minutes to days to collapse and vent. It has been found experimentally that a gas bubble entrapped within an artery structure has a very long lifetime in many credible situations. This lifetime has an approximately inverse exponential dependence on temperature, and is generally considerably longer for helium than for argon. The models postulated for venting under static conditions were in general quantitative agreement with experimental data. Factors of primary importance in governing bubble stability are artery diameter, artery wall thickness, noncondensible gas partial pressure, and the property group (the Ostwald solubility coefficient multiplied by the gas/liquid diffusivity).

  2. Development of heat transfer method for non-intrusive pressure measurement in natural gas pipelines

    SciTech Connect

    Brown, S.T.; Holderbaum, G.S.; Philips, D.B.; Stulen, F.B.; Eberle, A.C.

    1994-12-31

    A method for non-intrusive measurement of internal pressures in flowing and non-flowing natural gas distribution pipelines has been developed. The method is based on temperature changes observed at various locations on the outside wall of the pipe in response to a circumferential band of heat applied to it. Because of the complex flow patterns in the pipe, the pressure-related phenomena induce second-order effects on the heat transfer to the gas or liquid in the pipeline. Experimental results from both laboratory and field measurements have been compared with predictions from TEMPEST, a computation fluid dynamics (CFD) model, to aid in understanding the flow characteristics. In this method, a 2.5-in. band or ring heater device placed around the outer circumference of the pipe is used to apply that to the outer wall of the pipe. The effect of heat input ranging from 250 to 1,000 watts has been evaluated for pipe diameters ranging from 4 in. to 12 in. The expected range of Reynolds numbers spans the laminar, transitional, and turbulent flow regimes, thus adding significant complexity to the problem. Results have shown that a heater power of about 1,000 watts for flowing gas and 250 watts for non-flowing gas enables an acceptable estimate of pressures for most cases. The method can be used to effectively determine whether a pipe is filled with gas or liquid. It can also indicate whether the gas is flowing or static. For flowing gas, upstream-to-downstream and top-to-bottom temperature differences at the surface of the pipe are jointly used to determine gas flow rate and pressure. For no-flow conditions, the upstream-to-downstream temperature difference is zero, and pressures ranging from 0 to 150 psig can be differentiated solely by the temperatures along the outside wall of the pipe.

  3. Distribution Integrity Management Plant (DIMP)

    SciTech Connect

    Gonzales, Jerome F.

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records

  4. Intensity Distribution of Laser Induced Plasma Generated at Different Ambient Gas Preassure

    NASA Astrophysics Data System (ADS)

    Sarmiento, Rafael; Cabanzo, Rafael; Mejia-Ospino, Enrique

    2008-04-01

    In this work, intensity distributions of laser induced plasmas have been measured by emission with two-dimensional spatial resolution and temporal resolution. The plasmas have been generated on the surfaces of steel samples at different pressures of air and argon, in the ranges from l*10-6 to 680 Torr. We compare the features of the intensity spatial and temporal distribution in the two ambient studied here. We observed that the maxima values of intensity are obtained when the pressure is maxima. The features of intensity distribution show a significant change with the ambient and gas pressure. Also, we have measured how change the size of the plasma plume with the pressure at two different ambient.

  5. Reliability Estimation for Double Containment Piping

    SciTech Connect

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  6. Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Ballone, P.

    1994-07-01

    The properties of the three-dimensional uniform electron gas in the Fermi liquid regime are analyzed using variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo methods. Our study extends those of Ceperley [Phys. Rev. B 18, 3126 (1978)] and Ceperley and Alder [Phys. Rev. Lett. 45, 566 (1980)] to larger system sizes with improved statistics and, more importantly, to partial spin polarization. The density range 0.8<=rs<=10, which is the most relevant for density functional computations, is studied in detail. We analyze the size dependence of the simulation results and present an extended set of correlation energies extrapolated to the thermodynamic limit. Using the VMC method we analyze the spin dependence of the correlation energy, and we compare our results to several interpolation formulas used in density functional calculations. We summarize our results by a simple interpolation formula. In addition, we present results for the radial distribution function, the structure factor, the momentum distribution, and triplet correlation functions, and we discuss the comparison with many-body semianalytic theories.

  7. Gas Puff Radiation Performance As a Function of Radial Mass Distribution

    NASA Astrophysics Data System (ADS)

    Coleman, Philip L.; Krishnan, Mahadevan; Prasad, Rahul; Qi, Niansheng; Waisman, Eduardo; Failor, B. H.; Levine, J. S.; Sze, H.

    2002-12-01

    The basic concept of a z-pinch, that JxB forces implode a shell of mass, creating a hot dense plasma on-axis, is coming under closer scrutiny. Wire arrays may start with an initial cold mass in a near "ideal" shell, but in fact they appear to develop complex radial mass distributions well before the final x-ray output [1,2]. We consider here the situation for gas puff z-pinches. While the ideal of a gas "shell" has been the nominal objective for many years, detailed measurements of gas flow show that nozzles used for plasma radiation sources (PRS) also have complex radial distributions. In particular, there are significant data [3] showing that the best x-ray yield comes from the least shell-like distributions. Recent experiments on the Double Eagle generator with argon have further enhanced this view [4]. For those tests with a double "shell" nozzle, there was a factor of almost 4 increase in yield when the relative mass (outer:inner) in the two shells was changed from 2:1 to less than 1:1. We suggest the following explanation. A configuration with most of its mass at large radii is subject to severe disruption by instabilities during the implosion. A more continuous radial mass distribution with dρ/dr < 0 may mitigate instability development (via the "snowplow stabilization" [5] mechanism) and thus enhance the thermalization of the kinetic energy of the imploding mass. In addition, the appropriate balance of outer to inner mass maximizes the formation of a strong shock in the core of the pinch that heats the plasma and leads to x-ray emission.

  8. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  9. Variable-Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.

    1986-01-01

    In response to need to accurately and efficiently predict performance of variable-conductance heat pipes (VCHP's) incorporated in spacecraft thermalcontrol systems, computer code VCHPDA developed to interact with thermal analyzer programs such as SINDA (Systems Improved Numerical Differencing Analyzer). Calculates length of gas-blocked region and vapor temperature in active portion. Advantages of VCHPDA over prior programs improved accuracy, unconditional stability, and increased efficiency of solution resulting from novel approach and use of state-of-the-art numerical techniques for solving VCHP mathematical model. Code valuable tool in design and evaluation of advanced thermal-control systems using variable-conductance heat pipes. Written in FORTRAN IV for use on CDC 600 computers.

  10. Sonic limitations and startup problems of heat pipes

    NASA Technical Reports Server (NTRS)

    Deverall, J. E.; Kemme, J. E.; Florschuetz, L. W.

    1972-01-01

    Introduction of small amounts of inert, noncombustible gas aids startup in certain types of heat pipes. When the heat pipe is closely coupled to the heat sink, the startup system must be designed to bring the heat sink on-line slowly.

  11. Baryonic distributions in galaxy dark matter haloes - I. New observations of neutral and ionized gas kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-07-01

    We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  12. Baryonic Distributions in Galaxy Dark Matter Haloes I: New Observations of Neutral and Ionized Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-04-01

    We present a combination of new and archival neutral hydrogen (HI) observations and new ionized gas spectroscopic observations for sixteen galaxies in the statistically representative EDGES kinematic sample. HI rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The HI rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in twelve galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  13. A trace gas sensor using near infrared distributed feedback laser at 1654 nm

    NASA Astrophysics Data System (ADS)

    Li, Bin; He, Qi-Xin; Liu, Hui-Fang; Wang, Yi-Ding

    2015-08-01

    A cost-effective compact instrument for high-stable and sensitive detection of methane (CH4) based on the tunable diode laser absorption spectroscopy technique was experimentally demonstrated. A distributed feedback laser modulated at 1654 nm and two InGaAs photodiodes were deployed in this instrument. The laser was driven by the self-developed temperature and current controller. Spectrum measurements show that the center wavelength of the laser is stable and linearly controlled. Meanwhile, a self-developed digital lock-in amplifier was developed for the extraction of harmonics (1f, 2f) of the gas absorption signal. Experiments of gas detection were carried out to investigate the sensor performance. Firstly, the relation between gas concentration and 1f and 2f harmonics was measured and the relation curve was plotted for calibration. Then, results of accuracy test in different concentrations show that the maximum relative detection error is less than 5.6% in the range 0%-100%. Keeping the other experimental parameters constant, gas samples of 5% concentration was detected during a period of 8 h. The maximum detection error is less than 2.8%, suggesting good detection stability. The sensor can also be applied to field measurement of other gases by adopting lasers at relative wavelength.

  14. Particle size distribution effects in an irradiated turbulent gas-particle mixture

    NASA Astrophysics Data System (ADS)

    Rahmani, Mona; Geraci, Gianluca; Iaccarino, Gianluca; Mani, Ali

    2015-11-01

    The effects of particle size distribution on thermodynamic and hydrodynamic behavior of solid particle solar receivers, that involve a turbulent mixture of gas and particles in a radiation environment, are investigated, using DNS with point particles. The turbulent flow is seeded with monodisperse and polydisperse particles, where the mass loading and total frontal area of particles are matched between the two systems. The results show that the variability of the Stokes number for polydisperse particles can significantly influence the particle clustering, and consequently the thermal performance of the system. In all cases studied, the preferential concentration is less pronounced for polydisperse as opposed to monodisperse particles. This reduced preferential concentration results in less heating of the particles, but more efficient energy release to the gas phase. Due to their different clustering patterns, polydisperse particles influence the Taylor scale of the flow in the turbulent gas phase. Polydispersity also implies variable thermodynamic and hydrodynamic properties of the particles. Our results show that the thermal behavior of the system with polydisperse particles is set by the integral measures for particle and gas momentum and thermal relaxation times.

  15. Integrated resource planning for local gas distribution companies: A critical review of regulatory policy issues

    SciTech Connect

    Harunuzzaman, M.; Islam, M.

    1994-08-01

    According to the report, public utility commissions (PUCs) are increasingly adopting, or considering the adoption of integrated resource planning (IRP) for local gas distribution companies (LDCs). The Energy Policy Act of 1992 (EPAct) requires PUCs to consider IRP for gas LDCs. This study has two major objectives: (1) to help PUCs develop appropriate regulatory approaches with regard to IRP for gas LDCs; and (2) to help PUCs respond to the EPAct directive. The study finds that it is appropriate for PUCs to pursue energy efficiency within the traditional regulatory framework of minimizing private costs of energy production and delivery; and PUCs should play a limited role in addressing environmental externalities. The study also finds that in promoting energy efficiency, PUCs should pursue policies that are incentive-based, procompetitive, and sensitive to rate impacts. The study evaluates a number of traditional and nontraditional ratemaking mechanisms on the basis of cost minimization, energy efficiency, competitiveness, and other criteria. The mechanisms evaluated include direct recovery of DSM expenses, lost revenue adjustments for DSM options, revenue decoupling mechanisms, sharing of DSM cost savings, performance-based rate of return for DSM, provision of DSM as a separate service, deregulation of DSM service, price caps, and deregulation of the noncore gas market. The study concludes with general recommendations for regulatory approaches and ratemaking mechanisms that PUCs may wish to consider in advancing IRP objectives.

  16. Environmental Impact of a Tritium Extraction System Small Pipe Break by the Atmospheric Modelling of Elemental Tritium Gas transport with Flexpart

    NASA Astrophysics Data System (ADS)

    Castro, Paloma; Ardao, Jose; Velarde, Marta; Xiberta, Jorge; Sedano, Luis

    2014-05-01

    In the case of a little Tritium-Extraction-System (TES) pipe break (with critical failure of a fuelling line), the tritium source term has not yet been determined in the frame of European Test Blanket Systems, as Design Basis Accident (DBA) but it is expected to be in the order of a few grams. In this critical scenario acute modeling of environmental tritium transport forms (HT and HTO) for the assessment of fusion facilities dosimetric impact appears as of major interest. This paper considers different term releases of tritium-forms to the atmosphere from ITER which has experienced a frequent failure of a fueling line, due the little TES pipe break affecting a Helium-Cooled-Lithium-Lead Test-Blanket-Module. In case of 24.3 g of tritium were released from the broken fuelling-line directly into the gallery found only 0.5 g was released to the environment, assuming a little rupture in the TES piping located in the Port Cell. In this paper we assume a hypothetical daily release of one gram of tritium in HT and HTO forms. The daily failure is taken just in order to evaluate different meteorological scenarios or weather conditions. The FLEXPART working model simulates the tritium forms dispersion and environmental impact out of the complex ITER-tokamak (and its safeguards) of selected environmental patterns both inland and in-sea using ECMWF/FLEXPART model. We explore specific values of this ratio at different levels. We examine the influence of meteorological conditions of the tritium behavior during 48 hours after the release. For this purpose we have FLEXPART version 9.2 numerical weather model which is useful to follow real-time releases of tritium at low levels of the boundary layer to provide an approximation of tritium cloud behavior ranging from 3 to 48 hours.

  17. 65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL MAST IN LOWER LEFT CORNER; PIPES TO LAUNCHER IN UPPER LEFT CORNER; PIPES TO FLAME BUCKET IN LOWER RIGHT CORNER OF PHOTOGRAPH. POTABLE WATER PIPING IN UPPER RIGHT CORNER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Effect of solids concentration distribution on the flue gas desulfurization process

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Changhe Chen; Xuchang Xu

    2006-06-15

    A dry flue gas desulfurization (FGD) process at 600-800{sup o}C was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. Various fresh sorbent distribution types and internal structures were modeled numerically to investigate their effect on the gas-solid flow and sulfate reaction characteristics. Experimental results show that, after the fresh sorbent supply was stopped, the desulfurization efficiency declined rapidly even though the sorbent recirculation was maintained. Therefore, the fresh sorbent is the main contributor to the desulfurization process and the primary effect of the recirculated sorbent was to evenly distribute the fresh sorbent and to prolong the sorbent particle residence time. The numerical results demonstrate that the desulfurization efficiency varied greatly for the various fresh sorbent bottom injection methods. The desulfurization efficiency of the bottom-even injection method was 1.5 times that of the bottom two-sided injection method. Internal structures effectively improved the fresh sorbent solids concentration distribution and the desulfurization efficiency. Optimized internal structures increased the desulfurization efficiency of the bottom two-sided injection method by 46%, so that it was very close to that of the bottom-even injection method with only a 4.6% difference. 16 refs., 6 figs., 2 tabs.

  19. Systematic Studies of the Gas Humidification Effects on Spatial PEMFC Performance Distributions

    SciTech Connect

    Reshetenko, T. V.; Bender, G.; Bethune, K.; Rocheleau, R.

    2012-05-01

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance along the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.

  20. Effect of solids concentration distribution on the flue gas desulfurization process.

    PubMed

    Zhang, Jie; You, Changfu; Qi, Haiying; Chen, Changhe; Xu, Xuchang

    2006-06-15

    A dry flue gas desulfurization (FGD) process at 600-800 degrees C was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. Various fresh sorbent distribution types and internal structures were modeled numerically to investigate their effect on the gas-solid flow and sulfate reaction characteristics. Experimental results show that, after the fresh sorbent supply was stopped, the desulfurization efficiency declined rapidly even though the sorbent recirculation was maintained. Therefore, the fresh sorbent is the main contributor to the desulfurization process and the primary effect of the recirculated sorbent was to evenly distribute the fresh sorbent and to prolong the sorbent particle residence time. The numerical results demonstrate thatthe desulfurization efficiency varied greatly for the various fresh sorbent bottom injection methods. The desulfurization efficiency of the bottom-even injection method was 1.5 times that of the bottom two-sided injection method. Internal structures effectively improved the fresh sorbent solids concentration distribution and the desulfurization efficiency. Optimized internal structures increased the desulfurization efficiency of the bottom two-sided injection method by 46%, so that it was very close to that of the bottom-even injection method with only a 4.6% difference. PMID:16830575