These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Evaporation system and method for gas jet deposition of thin film materials  

DOEpatents

A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

Schmitt, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

1994-01-01

2

Evaporation system and method for gas jet deposition of thin film materials  

DOEpatents

A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

Schmitt, J.J.; Halpern, B.L.

1994-10-18

3

Method of evaporation  

NASA Technical Reports Server (NTRS)

Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

Dufresne, Eugene R.

1987-01-01

4

On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow  

NASA Technical Reports Server (NTRS)

An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

Miller, R. S.; Bellan, J.

1997-01-01

5

Apparatus and method for evaporator defrosting  

DOEpatents

An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN); Domitrovic, Ronald E. (Knoxville, TN)

2001-01-01

6

Measurements of the evaporation coefficient of water based on molecular gas dynamics  

NASA Astrophysics Data System (ADS)

We propose a novel method for measuring the evaporation coefficient of water using a sound-resonaiice experiment based on the theory of molecular gas dynamics. The evaporation coefficient is one of the parameters contained in the kinetic boundary condition. The evaporation coefficient of water is determined according to the pressure amplitude of the resonant sound wave in a cylindrical space bounded by a sound source and a vapor-liquid interface. The use of the sound wave enables us to conduct the experiment in a weak nonequilibrium state. By comparing the pressure amplitude with the results from a linear acoustic theory, including the effect of the evaporation coefficient on the amplitude variation, we demonstrate that the evaporation coefficient of water is approximately 1.0 near 300 K.

Nakamura, Shigeto; Yano, Takeru

2014-12-01

7

New findings about the complementary relationship-based evaporation estimation methods  

E-print Network

New findings about the complementary relationship- based evaporation estimation methods Jozsef KEYWORDS Complementary relationship; Advection­Aridity model; Areal evaporation; Potential evaporation; Apparent potential evaporation; Wet environment evaporation; Evapotranspiration Summary A novel approach

Szilagyi, Jozsef

8

Infiltration and evaporation of small hydrocarbon spills at gas stations  

NASA Astrophysics Data System (ADS)

Small gasoline spills frequently occur at gasoline dispensing stations. We have developed a mathematical model to estimate both the amount of gasoline that infiltrates into the concrete underneath the dispensing stations and the amount of gasoline that evaporates into the typically turbulent atmosphere. Our model shows that the fraction of infiltrated gasoline can exceed the fraction that evaporates from the sessile droplets. Infiltrated gasoline then evaporates and is slowly released to the atmosphere via slow diffusive transport in pores. Tentative experiments show that our theoretical approach captures observed experimental trends. Predictions based on independently estimated model parameters roughly describe the experimental data, except for the very slow vapor release at the end of Stage II evaporation. Our study suggests that, over the lifespan of a gas station, concrete pads underneath gas dispensing stations accumulate significant amounts of gasoline, which could eventually break through into underlying soil and groundwater. Our model also shows that lifetimes of spilled gasoline droplets on concrete surfaces are on the order of minutes or longer. Therefore contamination can be carried away by foot traffic or precipitation runoff. Regulations and guidelines typically do not address subsurface and surface contaminations due to chronic small gasoline spills, even though these spills could result in non-negligible human exposure to toxic and carcinogenic gasoline compounds.

Hilpert, Markus; Breysse, Patrick N.

2014-12-01

9

Thermal Evaporation of Gas from X-ray Clusters  

E-print Network

A fraction of the thermal protons in the outer envelope of an X-ray cluster have velocities that exceed the local escape speed from the cluster gravitational potential. The Coulomb mean-free-path of these protons is larger than the virial radius of the cluster at temperatures >2.5 keV. The resulting leakage of suprathermal particles generates a collisionless shock in neighboring voids and fills them with heat and magnetic fields. The momentum flux of suprathermal particles cannot be confined by magnetic tension at the typical field strength in the periphery of cluster halos (evaporation could drain up to a tenth of the cluster gas at its virial temperature. The evaporated fraction could increase dramatically if additional heat is deposited into the gas by cluster mergers, active galactic nuclei or supernovae. Thermal evaporation is not included in existing cosmological simulations since they are based on the fluid approximation. Measurements of the baryon mass fraction in the outer envelopes of hot clusters (through their Sunyaev-Zel'dovich effect or X-ray emission) can be used to empirically constrain their evaporation rate.

Abraham Loeb

2006-09-18

10

Evaporation  

NSDL National Science Digital Library

This three-part activity consists of an activity that groups of learners develop themselves, a given procedure, and an optional demonstration. First, learners discuss examples of evaporation and then design and conduct their own test to find out whether heating water has an effect on the rate of evaporation. While waiting for their results, learners conduct another evaporation activity using single drops of water on 2 paper towels, one of which is heated. The optional demonstration compares the rate of evaporation of hot and cold water using a sensitive scale or balance. In each of these experiences with evaporation, learners will identify variables, consider how to best control them, and use their observations to conclude that heating water increases the rate of evaporation.

2012-04-06

11

EVAPORATION OF CAI LIQUIDS INTO SOLAR GAS. A. V. , L. Grossman1,2  

E-print Network

EVAPORATION OF CAI LIQUIDS INTO SOLAR GAS. A. V. Fedkin1 , L. Grossman1,2 and S. B. Simon1 , 1 chemical compositions of hypothetical high-temperature condensate assemblages upon melting and evaporation-like liquids evaporating into more general gas compositions. In this work, we assume that a CAI precursor

Grossman, Lawrence

12

Evaporation and Condensation of Large Droplets in the Presence of Inert Admixtures Containing Soluble Gas  

E-print Network

Evaporation and Condensation of Large Droplets in the Presence of Inert Admixtures Containing the mutual influence of heat and mass transfer during gas absorption and evaporation or condensation transfer during gas absorption by liquid droplets and during droplets evaporation and va- por condensation

Elperin, Tov

13

COMPONENT LOSS DURING EVAPORATION-RECONSTITUTION OF ORGANIC ENVIRONMENTAL SAMPLES FOR GAS CHROMATOGRAPHIC ANALYSIS  

EPA Science Inventory

Standard and sample solutions stored in borosilicate sample vials were allowed to evaporate to dryness at room temperature. The solutions were analyzed by gas chromatography-flame ionization detection before evaporation and after reconstitution to the original volume to determine...

14

Chemical Potential Jump During Evaporation of a Bose Gas with Variable Molecular Collision Frequency  

NASA Astrophysics Data System (ADS)

Evaporation of a binary mixture is considered for the case when the evaporating component is a Bose gas. An analytical solution of the problem of the chemical potential jump of a Bose gas is obtained for the case when the molecular collision frequency of the evaporating component is a variable quantity. The dependence of the coefficient of the chemical potential jump on the evaporation coefficient is investigated. The concentration of the evaporating component is assumed to be much less than that of the carrier gas. A graphical study of the coefficient of the chemical potential jump is presented.

Bedrikova, E. A.; Latyshev, A. V.

2014-09-01

15

Multilayer composite material and method for evaporative cooling  

NASA Technical Reports Server (NTRS)

A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

Buckley, Theresa M. (Inventor)

2002-01-01

16

Method and apparatus for flash evaporation of liquids  

DOEpatents

A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, D.

1984-01-01

17

Method and apparatus for flash evaporation of liquids  

DOEpatents

A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, Desikan (Lakewood, CO)

1984-01-01

18

Flow dynamics of gas-solid fluidized beds with evaporative liquid injection  

Microsoft Academic Search

The electrical capacitance tomography (ECT) with neural network multi-criteria image reconstruction technique (NN-MOIRT) is developed for real time imaging of a gas-solid fluidized bed using FCC particles with evaporative liquid injection. Some aspects of the fundamental characteristics of the gas-solid flow with evaporative liquid injection, including real time and time averaged cross-sectional solids concentration distributions, the cross-sectional solids concentration fluctuations

Bing Du; W. Warsito; Liang-Shih Fan

2006-01-01

19

An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure  

Microsoft Academic Search

Fine particles of various metals (Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Sn, Au, Pb and Bi) were prepared by evaporation in argon gas at low pressure. The evaporation was carried out in an ordinary vacuum evaporation unit using a tungsten wire basket heater, after introducing the gas into the vacuum chamber. The average particle size

Kazuo Kimoto; Yoshihiro Kamiya; Minoru Nonoyama; Ryozi Uyeda

1963-01-01

20

Likelihood ratio methods for forensic comparison of evaporated gasoline residues.  

PubMed

In the investigation of arson, evidence connecting a suspect to the fire scene may be obtained by comparing the composition of ignitable liquid residues found at the crime scene to ignitable liquids found in possession of the suspect. Interpreting the result of such a comparison is hampered by processes at the crime scene that result in evaporation, matrix interference, and microbial degradation of the ignitable liquid. Most commonly, gasoline is used as a fire accelerant in arson. In the current scientific literature on gasoline comparison, classification studies are reported for unevaporated and evaporated gasoline residues. In these studies the goal is to discriminate between samples of several sources of gasoline, based on a chemical analysis. While in classification studies the focus is on discrimination of gasolines, for forensic purposes a likelihood ratio approach is more relevant. In this work, a first step is made towards the ultimate goal of obtaining numerical values for the strength of evidence for the inference of identity of source in gasoline comparisons. Three likelihood ratio methods are presented for the comparison of evaporated gasoline residues (up to 75% weight loss under laboratory conditions). Two methods based on distance functions and one multivariate method were developed. The performance of the three methods is characterized by rates of misleading evidence, an analysis of the calibration and an information theoretical analysis. The three methods show strong improvement of discrimination as compared with a completely uninformative method. The two distance functions perform better than the multivariate method, in terms of discrimination and rates of misleading evidence. PMID:25498926

Vergeer, P; Bolck, A; Peschier, L J C; Berger, C E H; Hendrikse, J N

2014-12-01

21

Evaporation of iodine-containing off-gas scrubber solution  

DOEpatents

Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

Partridge, J.A.; Bosuego, G.P.

1980-07-14

22

An evaporation estimation method based on the coupled 2-D turbulent heat and vapor transport equations  

E-print Network

An evaporation estimation method based on the coupled 2-D turbulent heat and vapor transport conditions and constant energy available at the evaporating surface yields a simple equation (i.e., the wet data, monthly, warm-season evaporation rates were estimated for five rectangular regions across

Szilagyi, Jozsef

23

A Penalty-Evaporation Heuristic in a Decomposition Method for the Maximum Clique Problem  

E-print Network

A Penalty-Evaporation Heuristic in a Decomposition Method for the Maximum Clique Problem by Patrick of penalty and evaporation. At each itera- tion, some vertex i is inserted into the current solution (always in the solution again during the next iterations. This penalty is gradually evaporating to allow vertices

Gendron, Bernard

24

Utility of PenmanMonteith, PriestleyTaylor, reference evapotranspiration, and pan evaporation methods to estimate  

E-print Network

Utility of Penman­Monteith, Priestley­Taylor, reference evapotranspiration, and pan evaporation (ET0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site

25

Simulation and Optimization of Evaporative Gas Turbine with Chemical Absorption for Carbon Dioxide Capture  

Microsoft Academic Search

This article studied the integration of an evaporative gas turbine (EvGT) cycle with chemical absorption for CO2 capture. Two systems of EvGT cycle without CO2 capture and EvGT cycle with CO2 capture were simulated and optimized. The impacts of key parameters such as the water\\/air ratio (W\\/A), the stripper pressure, and the flue-gas condensing temperature were studied regarding the electrical

H. Li; S. Flores; Y. Hu; J. Yan

2009-01-01

26

Integration of Evaporative Gas Turbine with Oxy-Fuel Combustion for Carbon Dioxide Capture  

Microsoft Academic Search

This paper studied the integration of Evaporative Gas Turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture. The impact of key parameters on system electrical efficiency, such as the oxygen purity, Water\\/Gas ratio (W\\/G) has been investigated concerning thermal efficiency. The performance of dry recycle and wet recycle also has be analyzed and compared. Simulation results shows that: (1) 97%

Y. Hu; H. Li; J. Yan

2010-01-01

27

Synthesis and characterization of indium tin oxide (ITO) nanoparticle using gas evaporation process  

Microsoft Academic Search

In this paper, indium tin oxide (ITO) nanoparticle was synthesized by gas evaporation process, and its physical properties\\u000a such as particle size, specific surface area, crystal structure, and composition ratio according to the heat-treating conditions\\u000a were investigated to optimize them. The source material was charged in a chamber with vacuum circumstance of 110?5 torr, and the oxygen gas was supplied

Sung-Jei Hong; Jeong-In Han

2006-01-01

28

Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods  

NASA Astrophysics Data System (ADS)

The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

Leeper, R. D.; Kochendorfer, J.

2014-12-01

29

Comparison of Total Evaporation (TE) and Direct Total Evaporation (DTE) methods in TIMS by using NBL CRMs  

NASA Astrophysics Data System (ADS)

The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.

Haszbek, Altug; Mathew, Kattathu; Wegener, Michael

2013-04-01

30

Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire  

USGS Publications Warehouse

Evaporation was determined by the energy-budget method for Mirror Lake during the open water periods of 1982-1987. For all years, evaporation rates were low in spring and fall and highest during the summer. However, the times of highest evaporation rates varied during the 6 yr. Evaporation reached maximum rates in July for three of the years, in June for two of the years, and in August for one of the years. The highest evaporation rate during the 6-yr study was 0.46 cm d-1 during 27 May-4 June 1986 and 15-21 July 1987. Solar radiation and atmospheric radiation input to the lake and long-wave radiation emitted from the lake were by far the largest energy fluxes to and from the lake and had the greatest effect on evaporation rates. Energy advected to and from the lake by precipitation, surface water, and ground water had little effect on evaporation rates. In the energy-budget method, average evaporation rates are determined for energy-budget periods, which are bounded by the dates of thermal surveys of the lake. Our study compared evaporation rates calculated for short periods, usually ???1 week, with evaporation rates calculated for longer periods, usually ???2 weeks. The results indicated that the shorter periods showed more variability in evaporation rates, but seasonal patterns, with few exceptions, were similar.

Winter, T.C.; Buso, D.C.; Rosenberry, D.O.; Likens, G.E.; Sturrock, A.M., Jr.; Mau, D.P.

2003-01-01

31

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27

32

Gas scrubber and method  

Microsoft Academic Search

Apparatus and method for scrubbing gases such as flue gases by subjecting the gases to a shower of gas scrubbing solid particulate material is disclosed. The scrubbing is desirably effected in a downwardly extending passage leading from the top of a stack from which flue gases are diverted into the top of the passage. The aggregate mass of the solid

Johnson

1981-01-01

33

Trace gas exchange above the floor of a deciduous forest. 1. Evaporation and CO sub 2 efflux  

SciTech Connect

The eddy correlation method has great potential for directly measuring trace gas fluxes at the floor of a forest canopy, but a thorough validation study has not been yet conducted. Another appeal of the eddy correlation method is its ability to study processes that regulate and modulate gas exchange between the soil/litter complex and the atmosphere that cannot be probed with chambers. In this paper, the authors report on eddy correlation measurements of water vapor, sensible heat, and carbon dioxide exchange that were made at the floor of a deciduous forest. The validity of the eddy correlation method to measure the emission of water vapor and CO{sub 2} from a deciduous forest floor is demonstrated by the ability to close the surface energy budget during periods that meet the requirements of the technique. Water vapor fluxes from a dry forest floor are strongly influenced by large-scale turbulent events that penetrate deep into the canopy. The frequency of these turbulent events prevents equilibrium evaporation rates from being achieved because the dynamic time constant for water vapor exchange is longer. Consequently, maximal evaporation rates are capped to rates defined by the product of the driving potential of the atmosphere and the surface conductance. On the other hand, evaporation from a wet forest floor proceeds at rates reaching or exceeding equilibrium evaporation and are highly correlated with static pressure fluctuations. CO{sub 2} efflux rates are governed by litter and soil temperature, as expected. But the authors also find a significant correlation between static pressure fluctuations and soil/litter CO{sub 2} exchange rates.

Baldocchi, D.D.; Meyers, T.P. (NOAA Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN (USA))

1991-04-20

34

Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.  

PubMed

Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 ?m droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment. PMID:25325555

Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

2014-01-01

35

Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods  

NASA Astrophysics Data System (ADS)

Evaporation plays an important role in many technical applications including beam-based additive manufacturing processes, such as selective electron beam or selective laser melting (SEBM/SLM). In this paper, we describe an evaporation model which we employ within the framework of a two-dimensional free surface lattice Boltzmann method. With this method, we solve the hydrodynamics as well as thermodynamics of the molten material taking into account the mass and energy losses due to evaporation and the recoil pressure acting on the melt pool. Validation of the numerical model is performed by measuring maximum melt depths and evaporative losses in samples of pure titanium and Ti-6Al-4V molten by an electron beam. Finally, the model is applied to create processing maps for an SEBM process. The results predict that the penetration depth of the electron beam, which is a function of the acceleration voltage, has a significant influence on evaporation effects.

Klassen, Alexander; Scharowsky, Thorsten; Krner, Carolin

2014-07-01

36

Performance Comparison on the Evaporative Gas Turbine Cycles Combined with Different CO2Capture Options  

Microsoft Academic Search

This article studied the integration of CO2 capture with evaporative gas turbine (EvGT) cycles. Two CO2 capture technologies are involved: MEA-based (monoethanolamine-based) chemical-absorption capture and O2\\/CO2 recycle combustion capture. Based on them, three system configurations were analyzed: (1) EvGT cycle without CO2 capture, (2) EvGT cycle with chemical-absorption capture, and (3) EvGT cycle with O2\\/CO2 recycle combustion capture. Simulation results

H. Li; J. Yan

2009-01-01

37

Sound Propagation in Gas-Vapor-Droplet Suspensions with Evaporation and Nonlinear Particle Relaxation  

NASA Technical Reports Server (NTRS)

The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.

Kandula, Max

2012-01-01

38

Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid ow simulations  

E-print Network

. For gas temperatures at and above the boiling point, large deviations are found between the various model predictions are made for single-component droplets of benzene, decane, heptane, hexane and water identically for low evaporation rates at gas temperatures signi®cantly lower than the boiling temperature

Miller, Richard S.

39

Waste flue gas desulfurizing method  

Microsoft Academic Search

A waste flue gas desulfurizing method is described in which a waste flue gas containing sulfurous acid gas is contacted directly with sea-water, whereby the sulfurous acid gas is absorbed in the sea-water and concurrently sulfites are formed in the sea-water by the reaction between the sulfurous acid ions and metal ions present in the sea-water, and then the carbonic

K. Otani; T. Sawa; O. Kuroda; F. Nakajima; T. Iijima

1978-01-01

40

Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO2 efflux  

Microsoft Academic Search

The eddy correlation method has great potential for directly measuring trace gas fluxes at the floor of a forest canopy, but a thorough validation study has not been yet conducted. Another appeal of the eddy correlation method is its ability to study processes that regulate and modulate gas exchange between the soil\\/litter complex and the atmosphere that cannot be probed

Dennis D. Baldocchi; Tilden P. Meyers

1991-01-01

41

Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA  

USGS Publications Warehouse

Few detailed evaporation studies exist for small lakes or reservoirs in mountainous settings. A detailed evaporation study was conducted at Mirror Lake, a 0.15 km2 lake in New Hampshire, northeastern USA, as part of a long-term investigation of lake hydrology. Evaporation was determined using 14 alternate evaporation methods during six open-water seasons and compared with values from the Bowen-ratio energy-budget (BREB) method, considered the standard. Values from the Priestley-Taylor, deBruin-Keijman, and Penman methods compared most favorably with BREB-determined values. Differences from BREB values averaged 0.19, 0.27, and 0.20 mm d-1, respectively, and results were within 20% of BREB values during more than 90% of the 37 monthly comparison periods. All three methods require measurement of net radiation, air temperature, change in heat stored in the lake, and vapor pressure, making them relatively data intensive. Several of the methods had substantial bias when compared with BREB values and were subsequently modified to eliminate bias. Methods that rely only on measurement of air temperature, or air temperature and solar radiation, were relatively cost-effective options for measuring evaporation at this small New England lake, outperforming some methods that require measurement of a greater number of variables. It is likely that the atmosphere above Mirror Lake was affected by occasional formation of separation eddies on the lee side of nearby high terrain, although those influences do not appear to be significant to measured evaporation from the lake when averaged over monthly periods. ?? 2007 Elsevier B.V. All rights reserved.

Rosenberry, D.O.; Winter, T.C.; Buso, D.C.; Likens, G.E.

2007-01-01

42

Development and testing of a method for efficient simulation of evaporation from a seepage face  

SciTech Connect

Evaporation from the surface of a porous medium is a complex process, governed by interplay between (1) coupled liquid and vapor flow in the porous medium, and (2) relative humidity, temperature, and aerodynamic conditions in the surrounding air. In order to avoid the computational expense of explicitly simulating liquid, gas, and heat flow in the porous medium (and the possible further expense of simulating the flow of water vapor in the atmosphere), evaporative potentials can be treated in a simplified manner within a model where liquid is the only active phase. In the case of limited air mixing, evaporation can be approximated as a diffusion process with a linear vapor-concentration gradient. We have incorporated a simplified scheme into the EOS9 module of iTOUGH2 to represent evaporation as isothermal Fickian diffusion. This is notable because the EOS9 module solves a single equation describing saturated and unsaturated flow, i.e., phase transitions and vapor flow are not explicitly simulated. The new approach was applied to three simple problems and the results were compared to those obtained with analytical solutions or the EOS4 module, which explicitly considers advective and diffusive vapor flow. Where vapor flow within the porous medium can be neglected, this new scheme represents significant improvement over the computational expense of explicitly simulating liquid, gas, and heat flow, while providing an adequate reproduction of the overall hydrologic system. The scheme is set up to allow parallel flow of liquid and vapor, so that evaporation from an actively seeping face can be simulated. In addition, dynamic relative humidity boundary conditions can be simulated using standard iTOUGH2 features.

Ahlers, C. Fredrik; Ghezzehei, Teamrat; Finsterle, Stefan

2003-05-12

43

Video-taped sample evaporation in hot chambers simulating gas chromatography split\\/splitless injectors  

Microsoft Academic Search

The processes in devices imitating vaporising injectors were visualised and video-taped using perylene as a fluorescent marker for non-evaporated samples. The observations in the context of thermospray injection are summarised. Partial evaporation inside the needle turns the solvent into a propellant which nebulises the sample liquid at the needle exit. Evaporation in the vaporising chamber occurs from fine droplets suspended

Koni Grob; Maurus Biedermann

2000-01-01

44

Annatto Polymeric Microparticles: Natural Product Encapsulation by the Emulsion-Solvent Evaporation Method  

ERIC Educational Resources Information Center

In this experiment, the extract from annatto seeds was encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles by the emulsion-solvent evaporation method. The particles were washed and centrifuged to remove excess stabilizer and then freeze-dried. The main compound of annatto seeds, bixin, has antioxidant properties as well

Teixeira, Zaine; Duran, Nelson; Guterres, Silvia S.

2008-01-01

45

Investigations to predict and reduce the evaporation rate of the residual brine is salt caverns used for gas storage  

NASA Astrophysics Data System (ADS)

Tensides were tested for their ability to reduce the evaporation rate of residual brine in salt caverns used for gas storage. Fatty alcohols with more than 20 CH2 groups and perfluorinated alcohols with more than 12 CF 2 groups prove especially useful. The formation of a solid salt crust on the initially free brine surface is due to the incorporation of alkaline Earth ions. After its completion, the solid salt crust enormously reduces the evaporation rate of the underlying brine. It is found that by the use of different tensides, crust formation can be either enhanced of retarded at will.

Petrick, H. J.; Cammenga, H. K.; Herz, D.

1981-12-01

46

Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas  

USGS Publications Warehouse

Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 73 percent of the months. Use of the unmodified USWB method is appealing because it means estimates of average daily reservoir evaporation can be made from air temperature, relative humidity, wind speed, and solar radiation data collected from remote weather stations without the need to develop site-specific coefficients from historical pan data. Site-specific coefficients would need to be developed for the modified version of the Hamon method.

Harwell, Glenn R.

2012-01-01

47

Full evaporation dynamic headspace and gas chromatography-mass spectrometry for uniform enrichment of odor compounds in aqueous samples.  

PubMed

A method for analysis of a wide range of odor compounds in aqueous samples at sub-ng mL? to ?g mL? levels was developed by full evaporation dynamic headspace (FEDHS) and gas chromatography-mass spectrometry (GC-MS). Compared to conventional DHS and headspace solid phase microextraction (HS-SPME), FEDHS provides more uniform enrichment over the entire polarity range for odor compounds in aqueous samples. FEDHS at 80C using 3 L of purge gas allows complete vaporization of 100 ?L of an aqueous sample, and trapping and drying it in an adsorbent packed tube, while providing high recoveries (85-103%) of the 18 model odor compounds (water solubility at 25C: log0.54-5.65 mg L?, vapor pressure at 25C: 0.011-3.2 mm Hg) and leaving most of the low volatile matrix behind. The FEDHS-GC-MS method showed good linearity (r>0.9909) and high sensitivity (limit of detection: 0.21-5.2 ng mL?) for the model compounds even with the scan mode in the conventional MS. The feasibility and benefit of the method was demonstrated with analyses of key odor compounds including hydrophilic and less volatile characteristics in beverages (whiskey and green tea). In a single malt whiskey sample, phenolic compounds including vanillin could be determined in the range of 0.92-5.1 ?g mL? (RSD<7.4%, n=6). For a Japanese green tea sample, 48 compounds including 19 potent odorants were positively identified from only 100 ?L of sample. Heat-induced artifact formation for potent odorants was also examined and the proposed method does not affect the additional formation of thermally generated compounds. Eighteen compounds including 12 potent odorants (e.g. coumarin, furaneol, indole, maltol, and pyrazine congeners) were determined in the range of 0.21-110 ng mL? (RSD<10%, n=6). PMID:22542289

Ochiai, Nobuo; Sasamoto, Kikuo; Hoffmann, Andreas; Okanoya, Kazunori

2012-06-01

48

A comparison of methods for estimating open-water evaporation in small wetlands  

USGS Publications Warehouse

We compared evaporation measurements from a floating pan, land pan, chamber, and the Priestley-Taylor (PT) equation. Floating pan, land pan, and meteorological data were collected from June 6 to July 21, 2005, at a small wetland in the Canadian River alluvium in central Oklahoma, USA. Evaporation measured with the floating pan compared favorably to 12h chamber measurements. Differences between chamber and floating pan rates ranged from ?0.2 to 0.3mm, mean of 0.1mm. The difference between chamber and land pan rates ranged from 0.8 to 2.0mm, mean of 1.5mm. The mean chamber-to-floating pan ratio was 0.97 and the mean chamber-to-land pan ratio was 0.73. The chamber-to-floating pan ratio of 0.97 indicates the use of a floating pan to measure evaporation in small limited-fetch water bodies is an appropriate and accurate method for the site investigated. One-sided Paired t-Tests indicate daily floating pan rates were significantly less than land pan and PT rates. A two-sided Paired t-Test indicated there was no significant difference between land pan and PT values. The PT equation tends to overestimate evaporation during times when the air is of low drying power and tends to underestimate as drying power increases.

Masoner, Jason R.; Stannard, David I.

2010-01-01

49

Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part I: Effect of Partial Fuel Vaporization on Spray Combustion  

Microsoft Academic Search

\\u000a This work aims at investigating the impact of the interaction between evaporation process and combustion on spray combustion\\u000a characteristics in gas turbine combustion chambers. It is subdivided into two parts. The first part studies how the evaporation\\u000a process affects the behavior of partially pre-vaporized spray combustion. The second part attempts to answer the question\\u000a how the fuel evaporation process behaves

Amsini Sadiki; W. Ahmadi; Mouldi Chrigui; J. Janicka

50

Gas-evaporation in low-gravity field (cogelation mechanism of metal vapors) (M-14)  

NASA Technical Reports Server (NTRS)

When metal and alloy compounds are heated and vaporized in a rare gas such as helium, argon, or xenon, the vaporized substances diffused in the rare gas are supersaturated resulting in a smoke of fine particles of the material congealing as snow or fog. The gas vaporizing method is a fine particle generation method. Though the method has a variety of applications, the material vapor flow is disturbed by gravitational convection on Earth. The inability to elucidate the fine particle generation mechanism results in an obstruction to improving the method to mass production levels. As no convection occurs in microgravity in space, the fine particle generation mechanism influenced only by diffusion can be investigated. Investigators expect that excellent particles with homogeneous diameter distribution can be obtained. Experiment data and facts will assist in improving efficiency, quality, and scale or production processes including element processes such as vaporization, diffusion, and condensation. The objective of this experiment is to obtain important information related to the mechanism of particle formation in the gas atmosphere (smoke particles) and the production of submicron powders of extremely uniform size.

Wada, N.

1993-01-01

51

Stability studies of biodegradable polymersomes prepared by emulsion solvent evaporation method  

Microsoft Academic Search

Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(D,L-lactide), were synthesized\\u000a by ring-opening polymerization for preparing polymer vesicles (polymersomes). Emulsion solvent evaporation method was used\\u000a to fabricate the polymersomes. Scanning electron microscope (SEM) images confirmed that polymersomes have a hollow structure\\u000a inside. Confocal laser microscope and optical microscope were also used to verify the hollow structure of polymersomes.

Yuhan Lee; Jae-Byum Chang; Hong Kee Kim; Tae Gwan Park

2006-01-01

52

Infrared-optical properties of gas-evaporated gold blacks Evidence for anomalous conduction on fractal structures  

Microsoft Academic Search

It is shown that the far-infrared absorption in gas-evaporated gold blacks, which was measured by Harris et al. (1948) exhibits all the features expected for anomalous conduction on fractal structures and therefore constitutes a confirmation of current theory. The frequency-dependent optical conductivity of the gold blacks conforms to the powder law rho varies as exp 0.7 sigma below the relaxation

G. A. Niklasson; C. T. Granqvist

1986-01-01

53

SiO(x) nanoparticles synthesized by an evaporation and condensation process using induction melting of silicon and gas injection.  

PubMed

SiO(x) nanoparticles were synthesized using a specially designed induction melting system equipped with a segmented graphite crucible. The graphite crucible with the segmented wall was the key to enhancing the evaporation rate due to the increase of the evaporation area and convection of the silicon melt. Injection of the gas mixture of oxygen (O2) and argon (Ar) on silicon (Si) melt caused the formation of SiO(x) nanoparticles. The evaporated SiO(x) nanoparticles were then cooled and condensed in a process chamber. The effects of the O2/Ar ratio in the injection gas on the microstructures of the SiO(x) nanoparticles were then investigated. Synthesized SiO(x) nanoparticles were proven to be of a homogeneous amorphous phase with average diameters of 30-35 nm. The microstructures were independent from the O2/Ar ratio of the injected gas. However, x increased from 1.36 to 1.84 as the O2/Ar ratio increased. The purity of the synthesized nanoparticles was about 99.9%. SiO(x) nanoparticles could be applied as the active anode material in a lithium (Li) ion secondary battery. PMID:23858929

Jang, Bo Yun; Lee, Jin Seok; Kim, Joon Soo

2013-05-01

54

Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.  

PubMed

Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 ?g/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). PMID:24103808

Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

2013-11-01

55

Coupled water and heat flow in laboratory evaporation experiments and its effects on soil hydraulic properties estimated by the simplified evaporation method  

NASA Astrophysics Data System (ADS)

The prediction of water fluxes in the field requires an accurate determination of soil hydraulic parameters which define the soil water retention and hydraulic conductivity function. The evaporation method has become a standard tool to quickly and reliably determine soil hydraulic properties in the wet to medium pressure head range. Recently, the method has profited from a significant improvement of soil sensors and data evaluation methods. In most cases, the data obtained from a transient evaporation experiment are evaluated using simplifying assumptions, like the ones implicit to Schindler's or Wind's methods. In the past, the effect of these simplifications on the identification of hydraulic properties has been investigated and found to be relatively minor. These studies were based on the evaluation of computer-generated data which were created by numerical modeling of the evaporation process with the Richards equation, i.e. by assuming isothermal liquid flow. Since evaporation from bare soil will always lead to loss of energy, the assumption of constant temperature is questionable. In addition, the effects of thermal and vapor fluxes on simplified evaluation methods have so far hardly been investigated. In this contribution we analyze the effects of (1) coupled heat and water flow and (2) temperature effects on physical parameters. We firstly generated data by a numerical model which solves the coupled heat and water flow problem first derived by Philip and de Vries, and then used these data as source for the estimation of hydraulic properties with the evaluation methods of Schindler and Wind. The virtual realities covered different atmospheric forcings like changing wind speed and varying incoming shortwave radiation. The objective of this study was to identify under which atmospheric conditions, for which soil textures, and in which pressure head range the simplified evaluation methods lead to unbiased estimates of the soil hydraulic properties.

Iden, Sascha C.; Blcher, Johanna; Diamantopoulos, Efstathios; Durner, Wolfgang

2014-05-01

56

Method and apparatus for fuel gas moisturization and heating  

DOEpatents

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01

57

Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract  

EPA Science Inventory

Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

58

Standard test method for existent gum in fuels by jet evaporation  

SciTech Connect

This method covers determination of the existent gum in motor gasoline and aircraft fuels at the time of test. Provisions are made for the determination of the unwashed gum content of motor gasoline. Summary of method: a measured quantity of fuel is evaporated under controlled conditions of temperature and flow of air or steam. For aviation gasoline and aircraft turbine fuel, the resulting residue is weighed and reported as milligrams per 100 mL. For motor gasoline, the residue is weighed before and after extracting with n-heptane and the results reported as milligrams per 100 mL.

Not Available

1980-01-01

59

Atmospheric pressure matrix-assisted laser desorption ionization as a plume diagnostic tool in laser evaporation methods  

E-print Network

Atmospheric pressure matrix-assisted laser desorption ionization as a plume diagnostic tool introduced analytical method, atmospheric pressure matrix-assisted laser desorption ionization (AP- MALDI write; Atmospheric pressure MALDI; Laser evaporation; Plume diagnostics 1. Introduction Diagnostics

Vertes, Akos

60

Template evaporation method for controlling anatase nanocrystal size in ordered macroporous TiO2.  

PubMed

The importance of pure-phase titanium oxide materials as catalysts, sensors, and photonic band-gap materials has been growing steadily. Recently, more attention has been focused on nanostructured titanium oxide showing controlled and periodic porosity on a nanometric scale. The nanocrystal size control of porous nanostructured titanium oxide in an anatase form is a crucial step for the organic template method. Simple template removal by evaporation in an inert atmosphere is reported in this article and compared with the calcination technique usually reported in the literature. The proposed method allows the formation of a double-porous (macro and meso) anatase phase. We demonstrate that it highly preserves the macropore order into a titanium oxide material and induces narrowly dispersed mesopores by controlling the nano-crystal size that is kept around 6 nm. For the proposed method, polystyrene beads are particularly suitable as templates, being evaporated in the temperature range of anatase existence. The final high surface area makes the materials appealing for applications as photocatalysts or sensors. PMID:15935368

Dionigi, Chiara; Calestani, Gianluca; Ferraroni, Tiziano; Ruani, Giampiero; Liotta, Leonarda F; Migliori, Andrea; Nozar, Petr; Palles, Dimitros

2005-10-01

61

Uranium and Calcium Isotope Ratio Measurements using the Modified Total Evaporation Method in TIMS  

NASA Astrophysics Data System (ADS)

A new version of the "modified total evaporation" (MTE) method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS), with high analytical performance and designed in a more user-friendly and routinely applicable way, is described in detail. It is mainly being used for nuclear safeguards measurements of U and Pu and nuclear metrology, but can readily be applied to other scientific tasks in geochemistry, e.g. for Sr, Nd and Ca, as well. The development of the MTE method was organized in collaboration of several "key nuclear mass spectrometry laboratories", namely the New Brunswick Laboratory (NBL), the Institute for Transuranium Elements (ITU), the Safeguards Analytical Laboratory (now Safeguards Analytical Services, SGAS) of the International Atomic Energy Agency (IAEA) and the Institute for Reference Materials and Measurements (IRMM), with IRMM taking the leading role. The manufacturer of the TRITON TIMS instrument, Thermo Fisher Scientific, integrated this method into the software of the instrument. The development has now reached its goal to become a user-friendly and routinely useable method for uranium isotope ratio measurements with high precision and accuracy. Due to the use of the total evaporation (TE) method the measurement of the "major" uranium isotope ratio 235U/238U is routinely being performed with a precision of 0.01% to 0.02%. The use of a (certified) reference material measured under comparable conditions is emphasized to achieve an accuracy at a level of 0.02% - depending on the stated uncertainty of the certified value of the reference material. In contrast to the total evaporation method (TE), in the MTE method the total evaporation sequence is interrupted on a regular basis to allow for correction for background from peak tailing, internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, and ion source re-focusing. Therefore, the most significant improvement using the MTE method is in the analytical performance achieved for the "minor" ratios 234U/238U and 236U/238U. The MTE method is now routinely used at all collaborating laboratories and possibly more in the future. Additional applications for the MTE method, e.g. to take advantage of the good external precision in combination with the possibilities of internal background and detector calibrations or mass jumps between different cup configurations, are presented as well. One interesting application concerns new absolute isotope ratio measurements for Ca with an unprecedented level of accuracy. This is important because up to now most reported Ca isotope data are only calculated as relative deviations from a standard like NIST-SRM 915. Using the MTE method measurements on new gravimetrically prepared Ca isotope mixtures were performed. A significantly improved level of accuracy at the level of about 0.02% for both the 42Ca/40Ca and 44Ca/40Ca ratios was obtained.

Richter, S.; Kuehn, H.; Berglund, M.; Hennessy, C.

2010-12-01

62

Q. J. R. Meteorol. Soc. (1997), 123,pp. 2187-2213 A method to determine the amounts of cloud-top radiative and evaporative  

E-print Network

-top radiative and evaporative cooling in a stratocumulus-toppedboundary layer By QINGQIU SHAO'*,DAVID A. RANDALL the issues is the relative importance of the effects of cloud-top radiative and evaporative cooling and mixing-line analysis, a new method to quantitatively determine the radiative and evaporative cooling

Randall, David A.

63

Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?  

PubMed

This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use. PMID:21669906

Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmr, Ingvar

2011-08-01

64

Kinetic boundary layers in gas mixtures: Systems described by nonlinearly coupled kinetic and hydrodynamic equations and applications to droplet condensation and evaporation  

SciTech Connect

The authors consider a mixture of heavy vapor molecules and a light carrier gas surrounding a liquid droplet. The vapor is described by a variant of the Klein-Kramers equation; the gas is described by the Navier-Stokes equations; the droplet acts as a heat source due to the released heat of condensation. The exchange of momentum and energy between the constituents of the mixture is taken into account by force terms in the kinetic equation and source terms in the Navier-Stokes equations. These are chosen to obtain maximal agreement with the irreversible thermodynamics of a gas mixture. The structure of the kinetic boundary layer around the sphere is determined from the self-consistent solution of this set of coupled equations with appropriate boundary conditions at the surface of the sphere. The kinetic equation is rewritten as a set of coupled moment equations. A complete set of solutions of these moment equations is constructed by numerical integration inward from the region far away from the droplet, where the background inhomogeneities are small. A technique developed earlier is used to deal with the numerical instability of the moment equations. The solutions obtained for given temperature and pressure profiles in the gas are then combined linearly such that they obey the boundary conditions at the droplet surface; from this solution source terms for the Navier-Stokes equation of the gas are constructed and used to determine improved temperature and pressure profiles for the background gas. For not too large temperature differneces between the droplet and the gas at infinity, self-consistency is reached after a few iterations. The method is applied to the condensation of droplets from a supersaturated vapor as well as to strong evaporation of droplets under the influence of an external heat source, where corrections of up to 40% are obtained.

Widder, M.E.; Titulaer, U.M. (Johannes-Kepler-Universitaet Linz (Austria))

1993-03-01

65

Evaluation of the energy budget method of determining evaporation at Williams Lake, Minnesota, using alternative instrumentation and study approaches  

USGS Publications Warehouse

Best estimates of evaporation were determined by the energy budget method using optimum sensors and optimum placement of sensors. For most of the data substitutions that affected the Bowen ratio, new values of evaporation differed little from best estimates. The three data substitution methods that caused the largest deviations from the best evaporation estimates were (1) using changes in the daily average surface water temperature as an indicator of the lake heat storage term, (2) using shortwave radiation, air temperature, and atmospheric vapor pressure data from a site 110 km away, and (3) using an analog surface water temperature probe. Recalculations based on these data substitutions resulted in differences from the best estimates as much as 89%, 21% and 10%, respectively. The data substitution method that provided evaporation values that most closely matched the best estimates was measurement of the lake heat storage term at one location in the lake, rather than at 16 locations. Evaporation values resulting from this substitution method usually were within 2% of the best estimates. -from Authors

Rosenberry, D.O.; Sturrock, A.M.; Winter, T.C.

1993-01-01

66

Evaporation of stationary alcohol layer in minichannel under air flow  

NASA Astrophysics Data System (ADS)

This paper presents experimental investigation of effect of the gas flow rate moving parallel to the stationary liquid layer on the evaporation rate under the conditions of formation of a stable plane "liquid-gas" interface. The average evaporation flow rate of liquid layer (ethanol) by the gas flow (air) has been calculated using two independent methods. Obtained results have been compared with previously published data.

Afanasyev, Ilya; Orlova, Evgenija; Feoktistov, Dmitriy

2015-01-01

67

Optical Properties of CdS Nanobelts and Nanosaws Synthesized by Thermal Evaporation Method  

NASA Astrophysics Data System (ADS)

By a simple one-step H2-assisted thermal evaporation method, high quality CdS nanostructures have been successfully fabricated on Au coated Si substrates in large scale. The as-synthesized CdS nanostructures consisted of sword-like nanobelts and toothed nanosaws with a single-crystal hexagonal wurtzite structure. The deposition temperature played an important role in determining the size and morphology of the CdS nanostructures. A combination of vapor-liquid-solid and vapor-solid growth mechanisms were proposed to interpret the formation of CdS nanostructures. Photoluminescence measurement indicated that the nanobelts and nanosaws have a prominent green emission at about 512 nm, which is the band-to-band emission of CdS. The waveguide characteristics of both types of CdS nanostructures were observed and discussed.

Peng, Zhi-wei; Zou, Bing-suo

2012-04-01

68

Catalyst free growth of ZnO nanorods by thermal evaporation method  

SciTech Connect

In this work, we report catalyst free growth of ZnO nanorods on n-Si substrate by a low cost thermal evaporation method. The surface morphology, chemical composition and crystalline structure of ZnO nanorods have been determined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) spectroscopy respectively. It is found that, the as -deposited ZnO seed layer reduces lattice mismatching between ZnO and Si from 40.3 to 0.28%, therefore enhances the subsequent growth and crystalline quality of ZnO nanorods on Si substrate. The present methodology is simple, cost effective and highly applicable for synthesis of ZnO nanorods for optoelectronics applications.

Somvanshi, Divya; Jit, S. [Centre for Research in Microelectronics (CRME), Department of Electronics Engineering Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh-221005 (India)

2013-06-03

69

Method for the evaporation of a liquid solution using mechanical compression  

SciTech Connect

A liquid solution is passed through a multi-stage evaporation plant while using recirculated vapor, fed through a mechanical compressor in order to increase the pressure and temperature of the vapor. The plant comprises a number of evaporators connected in series and split up into a plurality of groups, which comprise a decreasing number of evaporators; as seen in the flow direction-the vapor being fed in parallel, streams through said groups.

Eversdijk, B.P.

1984-02-28

70

Group evaporation  

NASA Technical Reports Server (NTRS)

Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

Shen, Hayley H.

1991-01-01

71

Alternative Methods for the Reduction of Evaporation: Practical Exercises for the Science Classroom  

ERIC Educational Resources Information Center

Across the world, freshwater is valued as the most critically important natural resource, as it is required to sustain the cycle of life. Evaporation is one of the primary environmental processes that can reduce the amount of quality water available for use in industrial, agricultural and household applications. The effect of evaporation becomes

Schouten, Peter; Putland, Sam; Lemckert, Charles J.; Parisi, Alfio V.; Downs, Nathan

2012-01-01

72

Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation  

NASA Technical Reports Server (NTRS)

The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

Kandula, Max

2012-01-01

73

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?  

PubMed Central

We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (?1.68REarth) and Kepler-10b (?1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017AU and Kepler-10b at 0.01684AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a Hot Neptune nor a Hot Uranus-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.

2011-01-01

74

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?  

PubMed

We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (?1.68REarth) and Kepler-10b (?1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017AU and Kepler-10b at 0.01684AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J

2011-10-01

75

A comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods  

USGS Publications Warehouse

Concurrent short-term measurements of evaporation from a shallow lake, using eddy correlation and energy budget methods, indicate that sensible and latent heat flux between lake and atmosphere, and energy storage in the lake, may vary considerably across the lake. Measuring net radiation with a net radiometer on the lake appeared to be more accurate than measuring incoming radiation nearby and modeling outgoing radiation. Short-term agreement between the two evaporation measurements was obtained by using an energy storage term that was weighted to account for the area-of-influence of the eddy correlation sensors. Relatively short bursts of evaporation were indicated by the eddy correlation sensors shortly after midnight on two of three occasions. ?? 1991.

Stannard, D.I.; Rosenberry, D.O.

1991-01-01

76

A Method to Infer Interception Evaporation Using Eddy Covariance Measurements: Application Over an Eastern Amazon Old-growth Rain Forest  

Microsoft Academic Search

We develop a general methodology to estimate rainfall interception using eddy covariance data that are available at a large number of worldwide flux tower sites. This method is then demonstrated using data from an old-growth rain forest site in the eastern Amazon. The approach is to estimate the 'excess' evaporation that occurs during and following individual precipitation events, using baseline

M. J. Czikowsky; D. R. Fitzjarrald; R. K. Sakai; O. Moraes; O. Acevedo; L. E. Medeiros

2009-01-01

77

Study of n-ZnO/ p-SiNW heterostructures grown by thermal evaporation method  

NASA Astrophysics Data System (ADS)

Recently SiNW (silicon nanowire) based devices have attracted great attention in the development of novel nanoelectronic devices due to their unique one-dimensional nature and associated electrical and optical properties compared to bulk silicon. In this work, n-type ZnO (Zinc Oxide) nanowire (NW) thin film was grown on p-type SiNW (silicon nanowire) arrays by simple and cost effective thermal evaporation method to obtain an n-ZnONW/ p-SiNW based heterojunction diode without using any seed layer. The SiNW arrays used for the growth of ZnONWs were developed on a p-Si wafer by using the electroless etching method. The large area ohmic contacts at top and bottom of the structure were fabricated by depositing silver and aluminium respectively. The SEM and XRD data demonstrate a good crystalline quality of the ZnONWs grown on the SiNWs. The current-voltage characteristics of the nanowire-based heterostructure device show the non-ideal diode characteristics with a high current rectification ratio of 190 and a low leakage current of 1.8610-8 A.

Hazra, Purnima; Jit, S.

2013-06-01

78

Improved physicochemical characteristics of artemisinin-nicotinamide solid dispersions by solvent evaporation and freeze dried methods.  

PubMed

Artemisinin (ARMN) is a drug of choice against drug-resistant malaria especially due to Plasmodium falciparum. Being poorly soluble in water, its solid dispersions with nicotinamide (NA) were prepared at various drug-carrier ratios (1:1, 1:4, 1:6, 1:8, 1:10) by solvent evaporation and freeze drying methods. These solid dispersions were characterized by differential scanning calorimetery (DSC), fourier transform infrared spectroscopy (FTIR), X-ray diffraction patterns (XRD), phase solubility and dissolution studies. Artemisinin and nicotinamide both were found completely crystalline as shown by their XRD patterns. Physical mixtures (PMs) showed decreased intensity in their XRD patterns while solid dispersions by solvent evaporation method (SLVPs) exhibited displaced angles and decreased intensity whereas freeze dried solid dispersions (FDSDs) showed least number of peaks having low intensity and maximum displaced angles. DSC thermograms of drug-carrier ratios at 1:1-1:4 showed lower melting temperature than artemisinin and nicotinamide in all preparations. Endothermic temperature of artemisinin in PMs and SLVPs increased with rise of nicotinamide content upto 1:6 ratio followed by decline. All samples showed crystallization temperature below the artemisinin except drug-carrier ratio 1:6 of PMs while ?H value was minimum at this ratio. FDSDs produced lowest endothermic temperature than corresponding PMs and SLVPs. SLVPs exhibited band shifting in both functional and fingerprint region compared to respective PMs as exhibited by their FTIR spectra. FDSDs and SLVPs showed different nature of bonding among artemisinin and nicotinamide. FDSDs produced strongest CONH(2) bonding followed by SLVPs and PMs respectively. PMs produced significantly higher aqueous solubility and rate of dissolution as compared to artemisinin alone. SLVPs exhibited improved solubility and dissolution profile corresponding to PMs. FDSDs showed highest release rate and aqueous solubility followed by SLVPs and PMs at all ratios. PMs and SLVPs showed their highest dissolution profile at 1:6 drug-carrier ratio followed by gradual decrease while FDSDs progressed in dissolution rate with increase of nicotinamide content successively upto maximum at 1:10 ratio. PMID:22459476

Ansari, Muhammad Tayyab; Pervez, Humayun; Shehzad, Muhammad Tariq; Mahmood, Zahid; Razi, Muhammad Tahir; Ranjha, Nazar Muhammad; Khanum, Nuzhat

2012-04-01

79

GLIMM'S METHOD FOR GAS DYNAMICS  

E-print Network

stratified random sampling, Figure 9 Diagonal Reimann problem 3.2 computed using Glimm's method,method with, respectively, a random sampling sequence, a stratifiedstratified random sampling. On the other hand, comparing di erence methods

Colella, Phillip

2013-01-01

80

GLIMM'S METHOD FOR GAS DYNAMICS  

E-print Network

A Survey of Several Finite Difference Methods for Systems ofa conservative finite difference method; the method we usemethod used for computing such solutions has been to solve a set of finite difference

Colella, Phillip

2013-01-01

81

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOEpatents

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02

82

Alternative methods for the reduction of evaporation: practical exercises for the science classroom  

NASA Astrophysics Data System (ADS)

Across the world, freshwater is valued as the most critically important natural resource, as it is required to sustain the cycle of life. Evaporation is one of the primary environmental processes that can reduce the amount of quality water available for use in industrial, agricultural and household applications. The effect of evaporation becomes intensified especially during conditions of drought, particularly in traditionally arid and semi-arid regions, such as those seen in a number of countries over the past ten years. In order to safeguard against the influence of droughts and to save water from being lost to the evaporative process, numerous water saving mechanisms have been developed and tested over the past century. Two of the most successful and widely used mechanisms have included floating hard covers and chemical film monolayers. This article describes a laboratory based project developed for senior high school and first year university classes, which has been designed to introduce students to the concepts of evaporation, evaporation modelling and water loss mitigation. Specifically, these ideas are delivered by simulating the large scale deployment of both monolayers and floating hard covers on a small water tank under numerous user defined atmospheric and hydrodynamic conditions, including varying surface wind speeds and underwater bubble plumes set to changing flow rates.

Schouten, Peter; Putland, Sam; Lemckert, Charles J.; Parisi, Alfio V.; Downs, Nathan

2012-03-01

83

Gas sensitive materials for gas detection and method of making  

DOEpatents

A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

2012-12-25

84

Gas sensitive materials for gas detection and methods of making  

DOEpatents

A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

2014-07-15

85

Time-dependent Marangoni-Bnard instability of an evaporating binary-liquid layer including gas transients  

NASA Astrophysics Data System (ADS)

We are here concerned with Bnard instabilities in a horizontal layer of a binary liquid, considering as a working example the case of an aqueous solution of ethanol with a mass fraction of 0.1. Both the solvent and the solute evaporate into air (the latter being insoluble in the liquid). The system is externally constrained by imposing fixed "ambient" pressure, humidity, and temperature values at a certain effective transfer distance above the liquid-gas interface, while the ambient temperature is also imposed at the impermeable rigid bottom of the liquid layer. Fully transient and horizontally homogeneous solutions for the reference state, resulting from an instantaneous exposure of the liquid layer to ambient air, are first calculated. Then, the linear stability of these solutions is studied using the frozen-time approach, leading to critical (monotonic marginal stability) curves in the parameter plane spanned by the liquid layer thickness and the elapsed time after initial contact. This is achieved for different ratios of the liquid and gas thicknesses, and in particular yields critical times after which instability sets in (for given thicknesses of both phases). Conversely, the analysis also predicts a critical thickness of the liquid layer below which no instability ever occurs. The nature of such critical thickness is explained in detail in terms of mass fraction profiles in both phases, as it indeed appears that the most important mechanism for instability onset is the solutal Marangoni one. Importantly, as compared to the result obtained previously under the quasi-steady assumption in the gas phase [H. Machrafi, A. Rednikov, P. Colinet, and P. C. Dauby, Eur. Phys. J. Spec. Top. 192, 71 (2011)], 10.1140/epjst/e2011-01361-y, it is shown that relaxing this assumption may yield essentially lower values of the critical liquid thickness, especially for large gas-to-liquid thickness ratios. A good-working analytical model is developed for the description of such delicate transient effects in the gas. The analysis reveals that the system considered in this paper is generally highly unstable, the instability setting in even for very small times and liquid thicknesses.

Machrafi, H.; Rednikov, A.; Colinet, P.; Dauby, P. C.

2013-08-01

86

Instrumentation for measuring lake and reservoir evaporation by the energy-budget and mass-transfer methods  

USGS Publications Warehouse

Instrumentation currently used by the U.S. Geological Survey in studies of lake and reservoir evaporation is described in this paper. This instrumentation is used for the measurement of solar and terrestrial energy necessary to apply the mass-transfer or energy budget methods. The energy budget requires a quantative determination of all form of energy entering or leaving the lake as well as determination of the change in storage of energy within the lake. (USGS)

Sturrock, A.M., Jr.

1985-01-01

87

Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)  

Microsoft Academic Search

Interference between operation parameters among the different evaporators makes the desirable control of MEAC hard to realize. A novel control strategy is herein proposed. The suction pressure was taken as the controlled variable to modulate the speed of its compressor, and at the same time, the room air temperatures were taken to regulate the openings of individual electronic expansion valves

Chen Wu; Zhou Xingxi; Deng Shiming

2005-01-01

88

Exploring Evaporation  

NSDL National Science Digital Library

Students learn what evaporation is and how various factors--time, heat, surface area, and wind--affect it. They also discover that water does not always evaporate at the same rate and saltwater leaves something behind when it evaporates. Finally, students a

Eichinger, John

2009-05-15

89

Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods  

NASA Astrophysics Data System (ADS)

Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

2014-12-01

90

Synthesis and field emission properties of ZnO nanoneedle arrays grown at low temperatures via a thermal evaporation method  

NASA Astrophysics Data System (ADS)

We have developed a straightforward and simple strategy for large-scale growth of well-aligned ZnO nanoneedles via a thermal evaporation method. XRD and SAED patterns of nanoneedles can be indexed to hexagonal ZnO with wurtzite structure. Room temperature photoluminescence analysis showed a strong ultra violet emission at 365 nm and a broad deep level visible emission at 472 nm. The growth mechanism of the nanoneedles has been investigated by SEM and the lower pressure of both evaporated zinc and oxygen flux would favor the nucleation of the finer nanowires from those previously formed high coverage spots. The field emission current density of ZnO nanoneedles sharply reached ~0.048 mA/cm2 at a field of 3.1 V/m.

Liang, F.; Zou, C. W.; Xie, W.; Xue, S. W.

2014-07-01

91

Acetone and ethanol solid-state gas sensors based on TiO 2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation  

Microsoft Academic Search

Matrix assisted pulsed laser evaporation (MAPLE) is a new promising laser-based technique thought for polymer or biomaterial thin films deposition. In this work, the MAPLE technique has been used for the deposition of titania (TiO2) nanoparticle thin films to be used for gas sensor applications. For this purpose, an aqueous solution of TiO2 nanoparticles, synthesized by a novel chemical route,

R. Rella; J. Spadavecchia; M. G. Manera; S. Capone; A. Taurino; M. Martino; A. P. Caricato; T. Tunno

2007-01-01

92

RPC gas recovery by open loop method  

NASA Astrophysics Data System (ADS)

RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S 2F 10 produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF 6 is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 C followed by wet scrubbing.

Joshi, Avinash; Kalmani, S. D.; Mondal, N. K.; Satyanarayana, B.

2009-05-01

93

A laser photoionization method for the study of the CdS evaporation kinetics  

NASA Astrophysics Data System (ADS)

The evaporation rates and saturation vapor pressures of cadmium sulfide and pure metallic cadmium are measured in the temperature ranges 585 950 K and 350 535 K, respectively, using laser resonance multistep photoionization. It is shown that CdS thermally dissociates into Cd atoms and S2 molecules. The study is carried out in the framework of a scheme proposed earlier for photoionization of cadmium atoms. The measured minimum vapor pressure of pure cadmium is 10-11 Torr.

Adzhimambetov, R. R.; Muzhdabaev, I. Sh.; Tursunov, A. T.; Khalilov, . .; Khamraev, Kh. S.

2003-01-01

94

Insight into the molecular mechanism of water evaporation via the finite temperature string method  

PubMed Central

The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one OH bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process. PMID:23574252

Musolino, Nicholas; Trout, Bernhardt L.

2013-01-01

95

Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source  

SciTech Connect

This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

2014-03-05

96

Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM  

NASA Astrophysics Data System (ADS)

We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of ?-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed ?-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating ?-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the observed SOA formation. During the early stage of the SOA formation the wall deposited particles and walls themselves serve as a SOA sink from the air to the walls. However, at the end of smog chamber experiments the semi-volatile SOA material may start to evaporate from the chamber walls. With these three model applications, we demonstrate that several poorly quantified processes, i.e. mass transport limitations within the particle phase, oligomerization, heterogeneous oxidation, organic salt formation, and chamber wall effects can have substantial influence on the SOA formation, lifetime, chemical and physical particle properties, and their evolution. In order to constrain the uncertainties related to these processes, future experiments are needed where as many of the influential variables as possible are varied. ADCHAM can be a valuable model tool in the design and analysis of such experiments.

Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

2014-01-01

97

Methods for certifying test gas mixtures  

Microsoft Academic Search

The most common colorimetric method of determining small concentrations of oxygen (from 0.001 to 1% by volume) is based on the conversion of monovalent copper ions into bivalent ions by oxidation with the oxygen contained in the analyzed gas. Bivalent copper ions form with ammonia a blue-colored compound. The intensity of coloring thus obtained is compared with the coloring of

. M. Malkova; T. L. Radovskaya; M. P. Belozerova; Z. T. Berestneva

1963-01-01

98

Method for designing gas tag compositions  

DOEpatents

For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

Gross, Kenny C. (1433 Carriage La., Bolingbrook, IL 60440)

1995-01-01

99

Witnessing Evaporation  

NSDL National Science Digital Library

The engineers at Splash Engineering (the students) have been commissioned by Thirsty County to conduct a study of evaporation and transpiration in their region. During one week, students observe and measure (by weight) the ongoing evaporation of water in pans set up with different variables, and then assess what factors may affect evaporation. Variables include adding to the water an amount of soil and an amount of soil with growing plants.

Integrated Teaching And Learning Program

100

Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer  

E-print Network

1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

American Society for Testing and Materials. Philadelphia

2007-01-01

101

Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration  

USGS Publications Warehouse

Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

Sumner, D.M.; Jacobs, J.M.

2005-01-01

102

Conversion method for gas streams containing hydrocarbons  

DOEpatents

An apparatus and a method of using the apparatus are provided for converting a gas stream containing hydrocarbons to a reaction product containing effluent molecules having at least one carbon atom, having at least one interior surface and at least one exterior surface, a first electrode and a second electrode with the first and second electrodes being selectively movable in relation to each other and positioned within the housing so as to be spatially disposed a predetermined distance from each other, a plasma discharge generator between the first and second electrodes, gas stream introducer and a collector for collecting the reaction product effluent produced by the reaction of the gas stream containing hydrocarbons with the plasma discharge between the first and second electrodes.

Mallinson, Richard G. (Norman, OK); Lobban, Lance (Norman, OK); Liu, Chang-jun (Tianjin, CN)

2000-01-01

103

Evaporative light scattering detection based HPLC method for the determination of polysorbate 80 in therapeutic protein formulations.  

PubMed

An evaporative light scattering detection (ELSD) based high-performance liquid chromatography (HPLC) method is developed for the determination of polysorbate 80 (tween 80) in therapeutic protein formulations. The method is simple and overcomes the difficulties associated with specificity and sensitivity. The method is suitable for the quantitation of polysorbate 80 in the usual formulation range (0.01-0.1%) as well as in trace amounts ?13 g/mL. The analysis is based on the removal of protein first by solid-phase extraction using Oasis HLB cartridges followed by HPLC analysis using Inertsil ODS-3 C 18 column (4.6150 mm, 5 m) using reversed-phase conditions. The detector response changes exponentially with an increase in polysorbate concentration. A very good linear fit of log ELSD response against log polysorbate 80 concentration is observed. The specificity, sensitivity, precision, and accuracy of the method are suitable for the quantitation of polysorbate 80 in protein formulations. PMID:22291052

Nayak, Vikram S; Tan, Zhijun; Ihnat, Peter M; Russell, Reb J; Grace, Michael J

2012-01-01

104

Nuclear Instruments and Methods in Physics Research A 551 (2005) 330338 A high-efficiency compact setup to study evaporation  

E-print Network

setup to study evaporation residues formed in reactions induced by low-intensity radioactive ion beams Available online 22 July 2005 Abstract A setup for measuring cross-sections of evaporation residues produced on lighter-mass targets. The system as presented here has been optimized to study evaporation residues from

105

A simple method to make an electrical connection between ZnO microwire and substrate through nanoscale metal evaporation  

NASA Astrophysics Data System (ADS)

We developed a simple method to make an electrical connection with nanoscale electrodes on microscale wire using suspended Poly(methyl methacrylate) (PMMA) strings. Less than 90 nm height of Ti/Au made a complete electrical connection on the ZnO microwires of which diameter is around 2 ?m. A cross linked PMMA string was bridged between ZnO microwire and substrate for making good electrical connection. The contact resistance of ZnO microwire fabricated by this method was much lower than that of device fabricated by standard E-beam lithography and evaporation. This fabrication method is readily extendible to prepare nano scale electrodes on various micro sized materials and serves as a pathway for studying their mesoscopic transport phenomena.

Kim, Hakseong; Lee, Jinkyung; Yun, Hoyeol; Lee, Sang Wook

2013-03-01

106

Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM  

SciTech Connect

We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of ?-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

2014-08-11

107

Children's understanding of changes of state involving the gas state, Part 2: Evaporation and condensation below boiling point  

Microsoft Academic Search

Deriving from a three?year longitudinal study which explored the development of children's concept of a substance (ages 11 to 14), part 2 of this paper (see Johnson 1998b) reports findings in relation to evaporation at room temperature and condensation of atmospheric water vapour. Part one had reported findings in relation to boiling water and the development of pupils understanding of

Philip Johnson

1998-01-01

108

An effect of oxygen content on ZnS:TbOF green color thin film electroluminescent devices prepared by electron-beam evaporation method  

NASA Astrophysics Data System (ADS)

A systematic experimental investigation on an effect of oxygen content on the electroluminescence (EL) performance has been made on ZnS:TbOF EL devices prepared by electron-beam (EB) evaporation method. The results show that doping of oxygen with a high oxygen concentration of 3.5 mol% at 3 mol% Tb improves luminance. X-ray diffraction studies have identified an improvement in the phosphor layer crystallinity with increasing oxygen content. Through these experimental trials, it has been clarified that doping of oxygen is an effective method for an improvement in luminance on the EL devices prepared by EB evaporation method as well as those prepared by sputtering method.

Noma, M.; Hosomi, S.; Sohn, S. H.; Hamakawa, Y.

1992-02-01

109

Method for operating a flue gas desulfurization  

SciTech Connect

A method of operating a flue gas desulfurization with a steam power plant heated with fossil fuels. The sulfur dioxide contained in the flue gas is removed in a wash tower by means of an excess of milk of lime or limestone, and the resulting sulfite is oxidized with air at a low ph-value into calcium sulfate. The non-converted milk of lime or limestone is neutralized at least partially by an addition of acid waste waters from a complete desalination plant for the supply water, and/or by an addition of acid condensate from the flue or chimney of the steam power plant. An installation for carrying out the method of the present invention includes a wash tower having flue gas flowing therethrough, an oxidation tower having air flowing therethrough, milk of lime or limestone supply into the wash tower, and a delivery device for the wash liquid in the wash tower and in the oxidation tower, with the device having a pump for liquid drawn off from the sump of the wash tower. The sump of the wash tower is connected with a supply line for acid waste water from a complete desalination plant, and/or with a supply line for acid condensate from the chimney or flue of the steam power plant.

Karger, R.; Weinzierl, K.

1983-02-01

110

Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM  

NASA Astrophysics Data System (ADS)

We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of ?-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed ?-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating ?-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds onto wall-deposited particles or directly onto the Teflon chamber walls of smog chambers can have a profound influence on the observed SOA formation. During the early stage of the SOA formation the wall-deposited particles and walls themselves serve as an SOA sink from the air to the walls. However, at the end of smog chamber experiments the semi-volatile SOA material may start to evaporate from the chamber walls. With these four model applications, we demonstrate that several poorly quantified processes (i.e. mass transport limitations within the particle phase, oligomerization, heterogeneous oxidation, organic salt formation, and chamber wall effects) can have a substantial influence on the SOA formation, lifetime, chemical and physical particle properties, and their evolution. In order to constrain the uncertainties related to these processes, future experiments are needed in which as many of the influential variables as possible are varied. ADCHAM can be a valuable model tool in the design and analysis of such experiments.

Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

2014-08-01

111

II. EvaporationII. Evaporation Vaporization  

E-print Network

II. EvaporationII. Evaporation Vaporization (mtorr) cm Line-of-sight transport Liu, UCD Phy250-1, 2011, NanoFab #12;Evaporation SourceEvaporation Source & compatibility #12;Evaporation SourceEvaporation Source Electron-beamInduction Electron-beamInduction Liu, UCD

Liu, Kai

112

Method for controlling gas metal arc welding  

DOEpatents

The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

Smartt, Herschel B. (Idaho Falls, ID); Einerson, Carolyn J. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

1989-01-01

113

Method for controlling gas metal arc welding  

DOEpatents

The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

1987-08-10

114

Observation of room temperature ferromagnetism in ZnTe:Cr films grown onto glass substrate by thermal evaporation method  

NASA Astrophysics Data System (ADS)

ZnTe and ZnTe:Cr films were prepared onto glass substrates using thermal evaporation method. Structural properties of the prepared samples were analyzed using X-ray diffractometer, and the presence of ZnCrTe phase was identified along with poor crystallinity. Composition analysis was done using XPS and the Cr content in the film was found to be 0.05 atomic percent. Transmittance spectra were recorded using UV-Vis spectrophotometer. The valence state of Cr in ZnTe:Cr film is determined to be +2 using electron spin resonance (ESR) spectroscopy. Magnetic moment data as a function of magnetic field were recorded using Superconducting Quantum Interference Device (SQUID) magnetometer at temperatures 5, 77 and 300 K. The results showed minority ferromagnetic behavior even at room temperature. Magnetic domains were observed using Magnetic Force Microscopy and the average value of domain size is 3.7 nm.

Soundararajan, D.; Mangalaraj, D.; Nataraj, D.; Dorosinskii, L.; Santoyo-Salazar, J.

2009-03-01

115

Cylinder Fragmentation Using Gas Gun Methods  

NASA Astrophysics Data System (ADS)

An experimental technique for investigating fracture and fragmentation characteristics of materials has been developed for use on the gas guns. In this method the candidate material is in the cylindrical form. This technique involves the precision alignment of the candidate cylinder, and symmetric impact of a stationary cylinder plug with the moving projectile from the gun. This test method allows the study of cylinder fragmentation in a laboratory environment under well-controlled loading conditions. In this presentation, results of several experiments on Aermet steel will be presented. The fragmentation toughness of the material can be estimated through knowledge of the material strain-rate and mean fragment size derived from the statistical distribution of the fragments. The values for fragmentation toughness will be compared with those obtained from other experimental methods such as explosives loading or ball on plate impact methods. Future developments and directions in test geometry, test methods and diagnostics will also be reported. This work was supported by the U. S. Department of Energy under contract DE-AC04-94AL85000.

Thornhill, Tom; Reinhart, William; Chhabildas, Lalit; Grady, Dennis; Wilson, Leonard

2001-06-01

116

The dynamics of water evaporation from partially  

E-print Network

The dynamics of water evaporation from partially solvated Cytochrome c in the gas phase Michal Z of evaporation of water from biological macromolecules is important for the understanding of electrospray mass from solutions of, for example, proteins. Then evaporation of the solvent leads to dry protein ions

Elber, Ron

117

Compressed natural gas dryer system and method of operation  

SciTech Connect

A method is described of compressing and drying a gas comprising the steps of: supplying a compressor with gas from a source; compressing the gas; collecting water from the gas with a regenerative dryer; regenerating the dryer by removing collected water from said dryer; and delivering the collected water to the source such that no collected water is supplied to the compressor.

Henderson, T.D.; Henderson, C.A.

1993-08-10

118

Method for gas-metal arc deposition  

DOEpatents

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

Buhrmaster, Carol L. (Corning, NY); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1990-01-01

119

Method for gas-metal arc deposition  

DOEpatents

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

1990-11-13

120

Evaporative Cooler  

NSDL National Science Digital Library

Explore the concept of evaporative cooling through a hands-on experiment. Use a wet cloth and fan to model an air-conditioner and use temperature and relative humidity sensors to collect data. Then digitally plot the data using graphs in the activity. In an optional extension, make your own modifications to improve the cooler's efficiency.

Consortium, The C.

2011-12-12

121

Evaporating firewalls  

NASA Astrophysics Data System (ADS)

In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

Van Raamsdonk, Mark

2014-11-01

122

Effects of hydrogen gas injection on the properties of SiO x nanoparticles synthesized by using an evaporation and condensation process  

NASA Astrophysics Data System (ADS)

SiO x nanoparticles were synthesized by using an evaporation and condensation process involving induction melting of silicon (Si) chunks followed by the injection of a H2/Ar mixed gas into the melt. In particular, this research studied the effects of hydrogen gas on the nanoparticles' microstructural and electrochemical properties, etc. During the microstructural analysis, regardless of H2 content, all the nanoparticles were observed to have random shapes; their average particle sizes were 30 35 nm. However, a crystalline Si phase, even though it was a small amount, was formed when H2/Ar gas was injected. From the X-ray photoelectron spectroscopy (XPS) analysis, the amount of the SiO2 phase in SiO x decreased when the H2/Ar gas ratio was higher than 1.0 vol.%. Injected hydrogen produced a Si-H network in SiO x , and the Si-H concentration was independent of the amount of injected gas. Consequently, due to hydrogen incorporation, not only was a crystalline Si phase formed, but also the amount of the SiO2 phase decreased. In addition, Si-H bonds were formed in the nanoparticles. The crystalline Si phase and the relatively small amount of the SiO2 phase resulted in an enhancement of the Li-ion capacity when those nanoparticles were applied as an anode material for a Li-ion battery. Furthermore, cycle performance was improved even when hydrogen was incorporated. For the sample synthesized with 5.0-vol.% H2/Ar gas, the discharge capacity and the columbic efficiency at the 21 st cycle were 889.1 mAhg-1 and 95.0%, respectively.

Jun, Young-Sik; Jang, Bo-Yun; Kim, Joon-Soo; Lee, Jin-Seok; Choi, Chul-Hee; Han, Moon-Hee

2013-02-01

123

Vacuum flash evaporated polymer composites  

DOEpatents

A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

Affinito, J.D.; Gross, M.E.

1997-10-28

124

Analysis of the climate variability on Lake Nasser evaporation based on the Bowen ratio energy budget method.  

PubMed

Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity. PMID:23424853

Elsawwaf, Mohamed; Willems, Patrick

2012-04-01

125

A new method using evaporation for high-resolution measurements of soil thermal conductivity at changing water contents  

NASA Astrophysics Data System (ADS)

The thermal conductivity of soils is a key parameter to know if their use as heat source or sink is planned. It is required to calculate the efficiency of ground-source heat pump systems in combination with soil heat exchangers. Apart from geothermal energy, soil thermal conductivity is essential to estimate the ampacity for buried power cables. The effective thermal conductivity of saturated and unsaturated soils, as a function of water transport, water vapour transport and heat conduction, mainly depends on the soil water content, its bulk density and texture. The major objectives of this study are (i) to describe the thermal conductivity of soil samples with a non-steady state measurement at changing water contents and for different bulk densities. Based on that it is (ii) tested if available soil thermal conductivity models are able to describe the measured data for the whole range of water contents. The new method allows a continuous measurement of thermal conductivity for soil from full water saturation to air-dryness. Thermal conductivity is measured with a thermal needle probe in predefined time intervals while the change of water content is controlled by evaporation. To relate the measured thermal conductivity to the current volumetric water content, the decrease in weight of the sample, due to evaporation, is logged with a lab scale. Soil texture of the 11 soil substrates tested in this study range between coarse sand and silty clay. To evaluate the impact of the bulk density on heat transport processes, thermal conductivity at 20C was measured at 1.5g/cm3; 1.7g/cm3 and 1.9g/cm3 for each soil substrate. The results correspond well to literature values used to describe heat transport in soils. Due to the high-resolution and non-destructive measurements, the specific effects of the soil texture and bulk density on thermal conductivity could be proved. Decreasing water contents resulted in a non-linear decline of the thermal conductivity for all samples. Especially for coarse textured soils a rapid decrease of the thermal conductivity was observed, when the volumetric water content drops under a critical level. Higher bulk densities increased the heat transport parameters for soil samples with the same texture. This effect becomes significant at high water saturations. The method used in this study allows easy to use non-steady state measurements of the soil thermal conductivity with a high data resolution and for continuously decreasing water contents. In further studies these measured data will be used to enhance existing pedotransfer functions and models and improve the prediction of soil thermal properties for application-oriented requirements.

Markert, A.; Trinks, S.; Facklam, M.; Wessolek, G.

2012-04-01

126

Kinetic approach to the evaporation and condensation problem  

NASA Technical Reports Server (NTRS)

In the paper, the Boltzmann equation governing the evaporation and condensation phenomena is solved by the Monte Carlo method. Based on the kinetic theory of gas the role of the non-equilibrium Knudsen layer and the growth of the hydrodynamic region outside the layer as time proceeds are simulated. Results show two possible types of transient developments in the vapor phase. The effects of the molecular absorption coefficient of the phase surface are examined. Except in the case of very strong evaporation the kinematic effects of binary collisions among vapor molecules on the mass flux rate are not serious. The limiting case of the quasi-steady evaporation and the maximal value of the evaporation rate are obtained.

Murakami, M.; Oshima, K.

1974-01-01

127

Method and apparatus for manufacturing gas tags  

DOEpatents

For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

Gross, K.C.; Laug, M.T.

1996-12-17

128

Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation.  

PubMed

The efficiency of azeotropic distillation and oven evaporation techniques for trace determination of water in oils has recently been questioned by the National Institute of Standards and Technology (NIST), on the basis of measurements of the residual water found after the extraction step. The results were obtained by volumetric Karl Fischer (KF) titration in a medium containing a large excess of chloroform (> or = 65%), a proposed prerequisite to ensure complete release of water from the oil matrix. In this work, the extent of this residual water was studied by means of a direct zero-current potentiometric technique using a KF medium containing more than 80% chloroform, which is well above the concentration recommended by NIST. A procedure is described that makes it possible to correct the results for dilution errors as well as for chemical interference effects caused by the oil matrix. The corrected values were found to be in the range of 0.6-1.5 ppm, which should be compared with the 12-34 ppm (uncorrected values) reported by NIST for the same oils. From this, it is concluded that the volumetric KF method used by NIST gives results that are much too high. PMID:12659179

Larsson, William; Jalbert, Jocelyn; Gilbert, Roland; Cedergren, Anders

2003-03-15

129

JV TASK 7-FIELD APPLICATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS FOR THE TREATMENT OF NATURAL GAS PRODUCED WATER IN WYOMING  

SciTech Connect

The freeze-thaw/evaporation (FTE{reg_sign}) process treats oil and gas produced water so that the water can be beneficially used. The FTE{reg_sign} process is the coupling of evaporation and freeze-crystallization, and in climates where subfreezing temperatures seasonally occur, this coupling improves process economics compared to evaporation alone. An added benefit of the process is that water of a quality suited for a variety of beneficial uses is produced. The evolution, from concept to successful commercial deployment, of the FTE{reg_sign} process for the treatment of natural gas produced water has now been completed. In this document, the histories of two individual commercial deployments of the FTE{reg_sign} process are discussed. In Wyoming, as in many other states, the permitting and regulation of oil and gas produced water disposal and/or treatment facilities depend upon the legal relationship between owners of the facility and the owners of wells from which the water is produced. An ''owner-operated'' facility is regulated by the Wyoming Oil and Gas Conservation Commission (WOGCC) and is defined as an entity which only processes water which comes from the wells in fields of which they have an equity interest. However, if a facility processes water from wells in which the owners of the facility have no equity interest, the facility is considered a ''commercial'' facility and is permitted and regulated by the Wyoming Department of Environmental Quality. For this reason, of the two commercial FTE{reg_sign} process deployments discussed in this document, one is related to an ''owner-operated'' facility, and the other relates to a ''commercial'' facility. Case 1 summarizes the permitting, design, construction, operation, and performance of the FTE{reg_sign} process at an ''owner-operated'' facility located in the Jonah Field of southwestern Wyoming. This facility was originally owned by the McMurry Oil Company and was later purchased by the Alberta Energy Company (now EnCana). Case 2 summarizes the permitting, design, construction, operation, and performance at a ''commercial'' FTE{reg_sign} facility located in the Great Divide Basin of south central Wyoming. Permits required for the construction and operation of each facility are described in detail. The respective qualities of each feed water, treated water, and concentrate stream are presented along with the relative yields of treated water and concentrate at each facility. Treated water from the owner-operated facility has been beneficially used in drilling and dust abatement, and treated water from the commercial facility has been used for dust abatement, construction, and land application. The permitting requirements and evaluation of beneficial use of the water at each facility are discussed. The results of this research confirm that the FTE{reg_sign} process is economic at a commercial-scale for the treatment and disposal of natural gas produced water in Wyoming. Further, the treated water produced from the process is of a quality suitable for beneficial uses such as irrigation, drilling mix, wildlife or livestock watering, and/or dust abatement on local roads.

James A. Sorensen; John Boysen; Deidre Boysen; Tim Larson

2002-10-01

130

Application research of price discrimination method in natural gas pricing  

Microsoft Academic Search

The natural gas industry is an important industry which involves the national economy and the people's livelihood. There is great significance for introducing the investment and expanding the market to research natural gas pricing. From the regulated economics analysis, this paper has presented some problems existing in natural gas price formulation in China. Moreover, there are many methods on pricing

Chen Shao-gang; Xue Feng

2009-01-01

131

Control method for mixed refrigerant based natural gas liquefier  

Microsoft Academic Search

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by

Kenneth J. Kountz; Patrick M. Bishop

2003-01-01

132

Sensitivity enhancement of nanostructured SnO2 gas sensors fabricated using the glancing angle deposition method.  

PubMed

0.5 wt.% Pd-catalyzed SnO2 thin-film gas sensors with microstructures controlled on a nanometer scale were fabricated by an e-beam evaporator using the glancing angle deposition (GAD) method. After annealing at 500 degrees C for 1 h, the sensors produced were polycrystalline with a nanoporous, tilted columnar microstructure. The gas-sensing properties of these SnO2 sensors were measured in the concentration range of 1 to 5 ppm NO2 at 250 degrees C and of 10 to 50 ppm C2H5OH at 400 degrees C, respectively. The sensors fabricated by e-beam evaporation in combination with the GAD method showed much higher sensitivities than normally prepared sensors and exhibited rapid response times. The gas sensitivity (S = R(gas)/R(air)) of the SnO2 sensor using the GAD method was 43.4 for 5 ppm NO2 and 0.08 for 10 ppm C2H5OH, respectively. These sensors showed excellent sensitivities compared to the normal thin film sensors (S = 2 for 5 ppm NO2 and 0.92 for 10 ppm C2H5OH). We consider that the nanostructured sensors produced using the GAD process could be used to detect various gases emitted by automobiles and industrial installations. PMID:23763153

Gwon, Hyo Jin; Moon, Hi Gyu; Jang, Ho Won; Yoon, Seok-Jin; Yoo, Kwang Soo

2013-04-01

133

Effect of gas flow swirling on coating deposition by the cold gas-dynamic spray method  

NASA Astrophysics Data System (ADS)

The effect of gas flow swirling on the process of coating deposition onto a target by the cold gas-dynamic spray method is studied experimentally and numerically. Flow swirling is found to change the gas flow field and to reduce the gas flow rate under typical conditions of cold gas-dynamic spray. In a non-swirled flow, the shape of the deposited spot is similar to a sharp cone. In contrast, the deposited spot in a swirled flow is shaped as a crater without particles at the center of this crater. It is found that this effect is caused by centrifugal forces acting on particles in a swirled gas flow.

Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

2012-03-01

134

Full evaporation dynamic headspace in combination with selectable one-dimensional/two-dimensional gas chromatography-mass spectrometry for the determination of suspected fragrance allergens in cosmetic products.  

PubMed

Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible. PMID:22342208

Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank

2012-09-14

135

Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.  

PubMed

Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 ?m, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 2.11 and 22.7 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase. PMID:24283703

Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

2013-12-18

136

Asymptotic Behavior of Rotating Rarefied Gases with Evaporation and Condensation  

E-print Network

Asymptotic Behavior of Rotating Rarefied Gases with Evaporation and Condensation Liliana M. G of the cylindrical Couette flow problem for a rarefied rotating gas with evaporation and condensation is studied when difference of the evaporating gas; (ii) the angular velocity difference of the cylinders; and (iii

Sharipov, Felix

137

Lattice gas methods for computational aeroacoustics  

NASA Technical Reports Server (NTRS)

This paper presents the lattice gas solution to the category 1 problems of the ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics. The first and second problems were solved for Delta t = Delta x = 1, and additionally the second problem was solved for Delta t = 1/4 and Delta x = 1/2. The results are striking: even for these large time and space grids the lattice gas numerical solutions are almost indistinguishable from the analytical solutions. A simple bug in the Mathematica code was found in the solutions submitted for comparison, and the comparison plots shown at the end of this volume show the bug. An Appendix to the present paper shows an example lattice gas solution with and without the bug.

Sparrow, Victor W.

1995-01-01

138

Flue gas desulfurization method and apparatus  

DOEpatents

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-09-29

139

Flue gas desulfurization method and apparatus  

DOEpatents

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-08-18

140

Flue gas desulfurization method and apparatus  

DOEpatents

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, OH)

1998-09-29

141

Flue gas desulfurization method and apparatus  

DOEpatents

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, Stark County, OH)

1998-08-18

142

The dependence of bulk evaporation coefficients on air-water interfacial conditions as determined by the isotopic method  

Microsoft Academic Search

The analysis of the natural distribution of deuterium and oxygen 18 in moisture inside the turbulent boundary layer developed above a water surface makes possible the investigation of the mechanism of evaporation. The distribution of isotopes in water vapor allows the calculation of the relative contributions of molecular and turbulent transfer to the total mass transport (Merlivat and Coantic, 1975).

Liliane Merlivat

1978-01-01

143

Evaluation of two gas-dilution methods for instrument calibration  

NASA Technical Reports Server (NTRS)

Two gas dilution methods were evaluated for use in the calibration of analytical instruments used in air pollution studies. A dual isotope fluorescence carbon monoxide analyzer was used as the transfer standard. The methods are not new but some modifications are described. The rotary injection gas dilution method was found to be more accurate than the closed loop method. Results by the two methods differed by 5 percent. This could not be accounted for by the random errors in the measurements. The methods avoid the problems associated with pressurized cylinders. Both methods have merit and have found a place in instrument calibration work.

Evans, A., Jr.

1977-01-01

144

Evaporation from partially covered water surfaces  

Microsoft Academic Search

Evaporative losses from large water bodies may exceed 20% of water used in irrigated agriculture, with losses from reservoirs estimated at 50% of storage capacity. Prominent among proposed methods to curtail these evaporative losses are various forms of partial covers placed over water surfaces. Studies show that evaporation through perforated covers and from partially covered water surfaces exhibit nonlinear behavior,

S. Assouline; K. Narkis; D. Or

2010-01-01

145

DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)  

SciTech Connect

The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.

Stone, M

2005-04-30

146

Method for nonlinear optimization for gas tagging and other systems  

DOEpatents

A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

Chen, Ting (Chicago, IL); Gross, Kenny C. (Bolingbrook, IL); Wegerich, Stephan (Glendale Heights, IL)

1998-01-01

147

Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor  

DOEpatents

A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

Wyatt, Douglas E. (Aiken, SC)

2001-01-01

148

Endwall Treatment and Method for Gas Turbine  

NASA Technical Reports Server (NTRS)

An endwall treatment for a gas turbine engine having at least one rotor blade extending from a rotatable hub and a casing circumferentially surrounding the rotor and the hub, the endwall treatment including, an inlet formed in an endwall of the gas turbine engine adapted to ingest fluid from a region of a higher-pressure fluid, an outlet formed in the endwall and located in a region of lower pressure than the inlet, wherein the inlet and the outlet are in a fluid communication with each other, the outlet being adapted to inject the fluid from the inlet in the region of lower pressure, and wherein the outlet is at least partially circumferentially offset relative to the inlet.

Hathaway, Michael D. (Inventor); Strazisar, Anthony J. (Inventor); Suder, Kenneth L. (Inventor)

2006-01-01

149

Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM)  

PubMed Central

Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (?leaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity11-14. We present a simple method for simultaneous determination of Kleaf and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol m-2 s-1) is reached, gs is determined by dividing by vapor pressure deficit, and Kleaf by dividing by the water potential driving force determined using a pressure chamber (Kleaf= E /- ??leaf, MPa)15. This method can be used to assess Kleaf responses to different irradiances and the vulnerability of Kleaf to dehydration14,16,17. PMID:23299126

Sack, Lawren; Scoffoni, Christine

2012-01-01

150

System and method for producing substitute natural gas from coal  

DOEpatents

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07

151

Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment.  

PubMed

Pseudoephedrine HCl, a highly water-soluble drug, was entrapped within poly (methyl methacrylate) microspheres by a water/oil/water emulsification-solvent evaporation method. An aqueous drug solution was emulsified into a solution of the polymer in methylene chloride, followed by emulsification of this primary emulsion into an external aqueous phase to form a water/oil/water emulsion. The middle organic phase separated the internal drug-containing aqueous phase from the continuous phase. Microspheres were formed after solvent evaporation and polymer precipitation. The drug content of the microspheres increased with increasing theoretical drug loading, increasing amounts of organic solvent, polymer and polymeric stabilizer, and decreased with increasing stirring time, increasing pH of the continuous phase and increased volume of the internal and external aqueous phase. PMID:2384837

Alex, R; Bodmeier, R

1990-01-01

152

Characterization of sulfur compounds in whisky by full evaporation dynamic headspace and selectable one-dimensional/two-dimensional retention time locked gas chromatography-mass spectrometry with simultaneous element-specific detection.  

PubMed

A method is described for characterization of sulfur compounds in unaged and aged whisky. The method is based on full evaporation dynamic headspace (FEDHS) of 100 ?L of whisky samples followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) retention-time-locked (RTL) gas chromatography (GC)-mass spectrometry (MS) with simultaneous element-specific detection using a sulfur chemiluminescence detector (SCD) and a nitrogen chemiluminescence detector (NCD). Sequential heart-cuts of the 16 sulfur fractions were used to identify each individual sulfur compound in the unaged whisky. Twenty sulfur compounds were positively identified by a MS library search, linear retention indices (LRI), and formula identification using MS calibration software. Additionally eight formulas were also identified for unknown sulfur compounds. Simultaneous heart-cuts of the 16 sulfur fractions were used to produce the (2)D RTL GC-SCD chromatograms for principal component analysis. PCA of the (2)D RTL GC-SCD data clearly demonstrated the difference between unaged and aged whisky, as well as two different whisky samples. Fourteen sulfur compounds could be characterized as key sulfur compounds responsible for the changes in the aging step and/or the difference between two kinds of whisky samples. The determined values of the key sulfur compounds were in the range of 0.3-210 ng mL(-1) (RSD: 0.37-12%, n=3). PMID:23182286

Ochiai, Nobuo; Sasamoto, Kikuo; MacNamara, Kevin

2012-12-28

153

Evaporation Rate on Tungsten  

E-print Network

Cesium Evaporation Rate on Tungsten Photocathodes Ameerah Jabr-Hamdan Introduction Motivation Research Objective Experiments Results Conclusions Cesium Evaporation Rate on Tungsten Photocathodes supported by IREAP, with funding from NSF and ONR #12;Cesium Evaporation Rate on Tungsten Photocathodes

Anlage, Steven

154

Effects of fuel evaporation on the octane number of methanol-gasoline blended fuels  

SciTech Connect

A procedure is described to estimate the influence of end-gas temperature on Octane Number. Blending methanol with gasoline is known to cause a disproportionate increase in Research Octane Number, and this is found to correlate well with the evaporative cooling characteristics of these blends. The Motor Octane Number test eliminates evaporative effects, and the difference between the two test methods is evaluated in terms of evaporative cooling. It is concluded that the high heat of vaporization of methanol is largely responsible for the excellent RON performance of methanol-gasoline blended fuels. 17 refs., 11 refs., 2 tabs.

Moran, D.P. [Univ. of Capetown (South Africa)

1994-10-01

155

Method and apparatus for off-gas composition sensing  

DOEpatents

An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

Ottesen, David Keith (Livermore, CA); Allendorf, Sarah Williams (Fremont, CA); Hubbard, Gary Lee (Richmond, CA); Rosenberg, David Ezechiel (Columbia, MD)

1999-01-01

156

An investigation of longwall gob gas behavior and control methods  

SciTech Connect

The National Inst. for Occupational Safety and Health (NIOSH) has initiated the use of a tracer gas in field studies to characterize geologic and mining factors influencing the migration of longwall gob gas. Three studies have been conducted using sulfur hexafluoride (SF{sub 6}) at a coal mine in the Northern Appalachian Basin operating in the Pittsburgh Coalbed. Eight underground tracer gas releases and one gob gas venthole release are summarized. The results indicate that the gas flow in the bleeder network and in the interior regions of longwall panel gobs do not strongly interact and that the negative pressure provided by gob gas venthole exhausters is very significant in maintaining this behavior. The data also show that ventilation practices employed in a large multi-panel gob area are functioning in accordance with the intent of the engineering design, a fact which would be difficult to evaluate using conventional mine ventilation measurement methods.

Schatzel, S.J.; Diamond, W.P.; Garcia, F.; LaScola, J.C.; McCall, F.E.; Jeran, P.W.; Mucho, T.P.

1999-07-01

157

CONDENSATION AND EVAPORATION FOR THERMALLY UNEQUILIBRATED PHASES  

E-print Network

CONDENSATION AND EVAPORATION FOR THERMALLY UNEQUILIBRATED PHASES R. A. Marcus1 , A. V. Fedkin2-K) equation for the rate of condensation of a gas or evaporation of a solid or liquid is used for systems, Tg, differs from that of the condensed phase, Ts . Here, we modify the H-K equation for this case

Grossman, Lawrence

158

Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions  

NASA Astrophysics Data System (ADS)

During the first half of August 2002, a sequence of extreme precipitation episodes affected many regions of central and southern Europe, culminating in one of the most severe flooding events ever experienced along sections of the river Elbe and its tributaries. In this paper, the synoptic meteorological situation during the primary flooding event, 11-13 August 2002, and its recent background is illustrated and discussed. Then, backward trajectory modelling of water vapour transport is employed to determine the sources and transport pathways of the moisture which rained out during the event. The Lagrangian trajectory model FLEXTRA is used together with high resolution operational meteorological analyses from the ECMWF to track a very large number of trajectories, initialized in a dense three-dimensional grid array over the extreme rainfall region. Specific humidity changes along each trajectory are mapped out to yield source-receptor relationships between evaporation and subsequent precipitation for the event. Regions of significant surface evaporation of moisture which later rained out were determined to be parts of the Aegean and Ligurian Seas during the initial stages of the event, while strong evaporation from eastern European land surfaces and from the Black Sea became dominant later on. The method also provides precipitation estimates based solely on specific humidity changes along Lagrangian airmass trajectories, which can be compared to ECMWF model forecast precipitation estimates.

James, P.; Stohl, A.; Spichtinger, N.; Eckhardt, S.; Forster, C.

2004-11-01

159

Method for making a lightweight bipolar metal-gas battery  

Microsoft Academic Search

A method is described for constructing a multi-cell bipolar metal-gas battery stack, in which a metal and a primary gas are reactants. The method consists of: fabricating a dielectric frame generally in the shape of a hollowed-out prism having inner width and inner length dimensions defining the common width and the common length of each stacked cell; placing, within the

G. vanOmmering; C. W. Koehler

1986-01-01

160

Development of comprehensive numerical schemes for predicting evaporating gas-droplets flow processes of a liquid-fueled combustor  

NASA Technical Reports Server (NTRS)

An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.

Chen, C. P.

1990-01-01

161

Method for making hydrogen rich gas from hydrocarbon fuel  

DOEpatents

A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

1999-07-27

162

A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method  

PubMed Central

Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness. PMID:24772020

Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

2014-01-01

163

Application of phospholipid complex technique to improve the dissolution and pharmacokinetic of probucol by solvent-evaporation and co-grinding methods.  

PubMed

To enhance the aqueous solubility and thus oral bioavailability of a poorly water-soluble drug, probucol (PB), probucol-phospholipid complex (PB-PC) was formulated by solvent-evaporation or co-grinding methods. The complexes were characterized by differential scanning calorimetry (DSC), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), solubility, oil-water partition coefficient and in vitro dissolution. The DSC, IR and PXRD data confirmed the formation of phospholipid complex. Furthermore, the results indicated hydrogen bond formation between PB and PC molecules play an important role in the formation of PB-PC without the formation of a new compound. The water solubility of PB in the complexes was improved from 0.005 to 17.76 or 1.65 ?g/mL (by solvent-evaporation or co-grinding methods respectively). As a result of it, the improved dissolution was shown in the prepared complexes. The PB-PC complexes by both solvent-evaporation and co-grinding methods exhibited higher peak plasma concentration (16,625.7 or 5343.3 vs. 2628.4 ng mL(-1)), increased AUC0-48 h (145,863.2 or 77,477.0 vs. 34,435.9 ng mL(-1)h) when compared with the commercial product, suggesting improved bioavailability of the drug. The study therefore suggests that the phospholipid complexes have possibilities in enhancing the therapeutic efficacy of PB which may be due to its improved aqueous solubility, dissolution behavior and thus bioavailability. PMID:25108049

Guo, Bei; Liu, Hongzhuo; Li, Yun; Zhao, Juanhang; Yang, Dan; Wang, Xianglin; Zhang, Tianhong

2014-10-20

164

EVALUATION OF STATIONARY SOURCE PARTICULATE MEASUREMENT METHODS. VOLUME III. GAS TEMPERATURE CONTROL DURING METHOD 5 SAMPLING  

EPA Science Inventory

A study was conducted to measure changes in gas temperature along the length of a Method 5 sampling train due to variations in stack gas temperature, sampling rate, filter box temperature and method for controlling the probe heating element. For each run condition, temperatures w...

165

Portable brine evaporator unit, process, and system  

DOEpatents

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07

166

Method for eliminating gas blocking in electrokinetic pumping systems  

DOEpatents

A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

Arnold, Don W. (Livermore, CA); Paul, Phillip H. (Livermore, CA); Schoeniger, Joseph S. (Oakland, CA)

2001-09-11

167

Modeling evaporation of sessile drops with moving contact lines.  

PubMed

We consider evaporation of pure liquid drops on a thermally conductive substrate. Two commonly used evaporative models are considered: one that concentrates on the liquid phase in determining the evaporative flux and the other one that centers on the gas-vapor phase. A single governing equation for the evolution of drop thickness, including both models, is developed. We show how the derived governing equation can be used to predict which evaporation model is appropriate for different considered experimental conditions. PMID:19256894

Murisic, N; Kondic, L

2008-12-01

168

Reservoir evaporation in central Colorado  

USGS Publications Warehouse

Evaporation losses from seven reservoirs operated by the Denver Water Department in central Colorado were determined during various periods from 1974 to 1980. The reservoirs studies were Ralston, Cheesman, Antero, Williams Fork, Elevenmile Canyon, Dillon, and Gross. Energy-budget and mass-transfer methods were used to determine evaporation. Class-A pan data also were collected at each reservoir. The energy-budget method was the most accurate of the methods used to determine evaporation. At Ralston, Cheesman, Antero, and Williams Fork Reservoirs the energy-budget method was used to calibrate the mass-transfer coefficients. Calibrated coefficients already were available for Elevenmile Canyon, Dillon, and Gross Reservoirs. Using the calibrated coefficients, long-term mass-transfer evaporation rates were determined. Annual evaporation values were not determined because the instrumentation was not operated for the entire open-water season. Class-A pan data were used to determine pan coefficients for each season at each reservoir. The coefficients varied from season to season and between reservoirs, and the seasonal values ranged from 0.29 to 1.05. (USGS)

Spahr, N.E.; Ruddy, B.C.

1983-01-01

169

Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications  

NASA Technical Reports Server (NTRS)

A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

2009-01-01

170

Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property  

NASA Astrophysics Data System (ADS)

Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

2012-09-01

171

Method for treating a nuclear process off-gas stream  

DOEpatents

Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

1984-01-01

172

78 FR 19605 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category...Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category...operators of facilities subject to the petroleum and natural gas systems source...

2013-04-02

173

Controllable synthesis, characterization, and growth mechanism of hollow ZnxCd1-xS spheres generated by a one-step thermal evaporation method  

NASA Astrophysics Data System (ADS)

Novel hollow ZnxCd1-xS spheres that are uniform in size are synthesized through the one-step thermal evaporation of a mixture of Zn and CdS powder. From an X-ray diffraction (XRD) study, the hexagonal wurtzite phase of ZnxCd1-xS is verified, and the Zn mole fraction (x) is determined to be 0.09. According to the experimental results, we propose a mechanism for the growth of Zn0.09Cd0.91S hollow spheres. The results of the cathodoluminescence investigation indicate uniform Zn, Cd, and S distribution of alloyed Zn0.09Cd0.91S, instead of separate CdS, ZnS, or nanocrystals of a core-shell structure. To the best of our knowledge, the fabrication of ZnxCd1-xS hollow spheres of this kind by one-step thermal evaporation has never been reported. This work would present a new method of growing and applying hollow spheres on Si substrates, and the discovery of the Zn0.09 Cd0.91S hollow spheres would make the investigation of ZnxCd1-xS micro/nanostructures more interesting and intriguing.

Yang, Zai-Xing; Zhong, Wei; Au, Chak-Tong; Du, You-Wei

2013-10-01

174

Hollow polymeric (PLGA) nano capsules synthesized using solvent emulsion evaporation method for enhanced drug encapsulation and release efficiency  

NASA Astrophysics Data System (ADS)

Nano-hollow polymer shells, especially those polymers which are FDA approved, have captured the attention of many researchers and scientists in the field of pharmaceutical and medical therapeutics. In the field of controlled drug/gene release, nano-capsules in colloidal solutions, i.e. particles with hollow piths, play an important role in cargo encapsulation. These nanoparticles are synthesized using a variety of procedures such as emulsion polymerization, phase separation, crosslinking of micelles, inner core etching and self-assembly. Our work proposes a novel route to prepare hollow PLGA (poly (lactic-co-glycolic) acid) nanoparticles (HNPs), which showed increased drug-encapsulation and release efficiency. The simple emulsion solvent evaporation technique was adopted to synthesize nano-hollow shells of FDA approved polymer PLGA using only one organic phase. The hollow characteristics of nanoparticles were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal microscopy analysis. The particle size was analyzed by dynamic light scattering (DLS). Nanoparticles drug loading, encapsulation and release efficiency in vitro were assessed by ultraviolet spectroscopy. The developed nanoparticles were hollow and spherical in shape and approximately 80 nm in size. The drug encapsulation efficiency is 99.4% and the drug was released in a controllable manner during in vitro analysis.

Raichur, Archana; Nakajima, Yoshikata; Nagaoka, Yutaka; Maekawa, Toru; Sakthi Kumar, D.

2014-12-01

175

Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results  

NASA Technical Reports Server (NTRS)

Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

2013-01-01

176

Convergence of the viscosity method for isentropic gas dynamics  

Microsoft Academic Search

A convergence theorem for the method of artificial viscosity applied to the isentropic equations of gas dynamics is established. Convergence of a subsequence in the strong topology is proved without uniform estimates on the derivatives using the theory of compensated compactness and an analysis of progressing entropy waves.

Ronald J. DiPerna

1983-01-01

177

PARTICLE-GAS DYNAMICS WITH ATHENA: METHOD AND CONVERGENCE  

SciTech Connect

The Athena magnetohydrodynamics code has been extended to integrate the motion of particles coupled with the gas via aerodynamic drag in order to study the dynamics of gas and solids in protoplanetary disks (PPDs) and the formation of planetesimals. Our particle-gas hybrid scheme is based on a second-order predictor-corrector method. Careful treatment of the momentum feedback on the gas guarantees exact conservation. The hybrid scheme is stable and convergent in most regimes relevant to PPDs. We describe a semi-implicit integrator generalized from the leap-frog approach. In the absence of drag force, it preserves the geometric properties of a particle orbit. We also present a fully implicit integrator that is unconditionally stable for all regimes of particle-gas coupling. Using our hybrid code, we study the numerical convergence of the nonlinear saturated state of the streaming instability. We find that gas flow properties are well converged with modest grid resolution (128 cells per pressure length {eta}r for dimensionless stopping time {tau} {sub s} = 0.1) and an equal number of particles and grid cells. On the other hand, particle clumping properties converge only at higher resolutions, and finer resolution leads to stronger clumping before convergence is reached. Finally, we find that the measurement of particle transport properties resulted from the streaming instability may be subject to error of about {+-}20%.

Bai Xuening; Stone, James M., E-mail: xbai@astro.princeton.ed, E-mail: jstone@astro.princeton.ed [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2010-10-15

178

Control method for mixed refrigerant based natural gas liquefier  

DOEpatents

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

2003-01-01

179

Method of making gas diffusion layers for electrochemical cells  

DOEpatents

A method is provided for making a gas diffusion layer for an electrochemical cell comprising the steps of: a) combining carbon particles and one or more surfactants in a typically aqueous vehicle to make a preliminary composition, typically by high shear mixing; b) adding one or more highly fluorinated polymers to said preliminary composition by low shear mixing to make a coating composition; and c) applying the coating composition to an electrically conductive porous substrate, typically by a low shear coating method.

Frisk, Joseph William (Oakdale, MN); Boand, Wayne Meredith (Lino Lakes, MN); Larson, James Michael (Saint Paul, MN)

2002-01-01

180

Variable gas volume flow measuring and control methods and apparatus  

SciTech Connect

This patent describes a method of measuring gas flow volume in a system of the kind in which the amount of gas flowing in a duct can vary in response to the variation of area of a variable area orifice in the duct and/or in response to changes in the total pressure of the gas upstream of the orifice and wherein the total pressure upstream of the orifice is referenced to the static pressure downstream of the orifice. The method consists of sensing the total pressure upstream of the orifice, sensing the static pressure downstream of the orifice, and sensing a condition which is representative of the differential pressure between the total pressure upstream of the orifice and the static pressure downstream of the orifice. It further consists of producing a first signal corresponding to the sensed condition representative of the differential pressure, producing a second signal corresponding to the area of the opening in the orifice, supplying the first and second signals to a gas flow volume database correlated to the sensors and the orifice in the duct, and reading out from the database the gas flow volume occurring in the duct at the first and second signals.

Ginn, L.D.; Ginn, L.S.; Schneider, K.B.

1989-01-10

181

Evaporator Cleaning Studies  

SciTech Connect

Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning.

Wilmarth, W.R.

1999-04-15

182

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants? M. Leitzinger a,, P. Odert a  

E-print Network

exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of Co be neither a result of evaporation of a hydrogen envelope of a ``Hot Neptune'' nor a ``Hot Uranus of these planets are bodies of the ``super-Earth'' and sub- Uranus categ

Micela, Giusi

183

NISTIR 5873 INTRACYCLE EVAPORATIVE  

E-print Network

NISTIR 5873 INTRACYCLE EVAPORATIVE COOLING INA VAPOR COMPRESSION CYCLE Byung Soon Kim Piotr A INTRACYCLE EVAPORATIVE COOLING IN A VAPOR COMPRESSION CYCLE Elyung Soon Kim Piotr A. Domanski September 1996 the opportunity to limit throttling losses of the refrigeration cycle by intracycle evaporative cooling

Oak Ridge National Laboratory

184

Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.  

PubMed

The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory. PMID:24506092

Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

2014-03-01

185

40 CFR 1037.103 - Evaporative and refueling emission standards.  

Code of Federal Regulations, 2014 CFR

...as gasoline or ethanol) or gaseous fuel (such as natural gas or LPG) must meet evaporative and refueling emission...subpart S. (d) CNG refueling requirement. Compressed natural gas vehicles must meet the requirements for...

2014-07-01

186

Evaporation in space manufacturing  

NASA Technical Reports Server (NTRS)

'Normal evaporation' equations for predicting the compositional changes with time and temperature have been developed and correlated with actual experimental data. An evaporative congruent temperature is defined and used to explain, predict, or plan space experiments on anomalous constitutional melting (on cooling) or solidification (on heating). Uneven evaporation causes reactive jetting forces capable of initiating new convection currents, nongravitational accelerations, surface vibrations, or other disturbances. Applications of evaporation to space manufacturing are described concerning evaporative purification, surface cooling, specimen selection, particles splitting, freezing data interpretation, material loss and dimensional control, and surface contamination or compositional changes.

Li, C. H.

1974-01-01

187

A comparative study on pure, L-arginine and glycine doped ammonium dihydrogen orthophosphate single crystals grown by slow solvent evaporation and temperature-gradient method  

NASA Astrophysics Data System (ADS)

Single crystals of pure, L-arginine and glycine doped ammonium dihydrogen orthophosphate (ADP) were grown by both the slow solvent evaporation method and the temperature-gradient method of Sankaranarayanan-Ramasamy (SR). The metastable zone width for different saturation temperatures of pure glycine and L-arginine added solutions were carried out. The grown crystals were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), optical transmission, dielectric constant, dielectric loss, and Vickers microhardness. The DSC and TG curves of the grown crystals indicated that they were stable up to 200 C. The XRD study confirmed the structure of the grown crystal. The optical transmission analysis revealed that the pure and doped ADP crystals had very high percentage of transmission in the entire visible region. The important optical parameters such as reflectance and extinction coefficients of the grown crystals were calculated. L-arginine and glycine were used as dopants to reduce dielectric constant of ADP. The a.c. resistivity and a.c. conductivity were calculated. Dielectric loss of the doped ADP crystals grown by the SR method is lower than the doped ADP crystals grown by the conventional method. Larger hardness value for the SR method grown crystals confirmed greater crystalline perfection.

Pattanaboonmee, N.; Ramasamy, P.; Yimnirun, R.; Manyum, P.

2011-01-01

188

Application of the parallel multicanonical method to lattice gas condensation  

NASA Astrophysics Data System (ADS)

We present the speedup from a novel parallel implementation of the multicanonical method on the example of a lattice gas in two and three dimensions. In this approach, all cores perform independent equilibrium runs with identical weights, collecting their sampled histograms after each iteration in order to estimate consecutive weights. The weights are then redistributed to all cores. These steps are repeated until the weights are converged. This procedure benefits from a minimum of communication while distributing the necessary amount of statistics efficiently. Using this method allows us to study a broad temperature range for a variety of large and complex systems. Here, a gas is modeled as particles on the lattice, which interact only with their nearest neighbors. For a fixed density this model is equivalent to the Ising model with fixed magnetization. We compare our results to an analytic prediction for equilibrium droplet formation, confirming that a single macroscopic droplet forms only above a critical density.

Zierenberg, Johannes; Wiedenmann, Micha; Janke, Wolfhard

2014-05-01

189

Multiresidue gas chromatographic method for determining synthetic pyrethroid pesticides in agricultural products: collaborative study.  

PubMed

Fourteen laboratories from 6 countries and regions participated in an international collaborative study to evaluate a multiresidue gas chromatographic (GC) method for determining 8 synthetic pyrethroid pesticides in grains, fruits, and vegetables. The study design was based on Youden's matched-pairs principle for collaborative tests of analytical methods. Each laboratory analyzed 12 collaborative samples of wheat, oranges, and tomatoes as blind samples. Wheat samples were extracted with acetonitrile-water (2 + 1), while orange and tomato samples were extracted with acetone. Residues were partitioned into hexane, evaporated to dryness with a rotary evaporator, and then dissolved in hexane. The hexane extract was partitioned with acetonitrile and cleaned up on a 5% water-deactivated Florisil column with 6% ethyl ether in hexane as eluant. Residue concentrations were determined by GC with electron capture detection with splitless injection by comparison with single-point calibration standards. The appropriate standard concentration was determined by screening sample extracts before analysis. The multiresidue method was tested over the concentration range of 0.095-1.909 mg/kg depending on the 8 different of pesticides and agricultural products analyzed in the collaborative study. Statistical analysis of data from 13 laboratories showed weighted average recoveries for 8 pyrethroids in wheat, oranges, and tomatoes at 0.105-1.909, 0.095-1.909, and 0.105-0.954 mg/kg, respectively, ranging from 91.8 to 100.2%, from 88.1 to 100.6%, and from 88.2 to 101.5%, respectively. Reproducibility relative standard deviation values ranged from 6.46 to 17.74%, from 5.94 to 18.13%, and from 5.59 to 10.48%, respectively. Repeatability relative standard deviation values ranged from 6.34 to 10.84%, from 5.19 to 11.72%, and from 3.20 to 8.09%, respectively. The multiresidue GC method for determining synthetic pyrethroid pesticides in agricultural products has been adopted first action by AOAC INTERNATIONAL. PMID:10028687

Pang, G F; Cao, Y Z; Fan, C L; Zhang, J J; Li, X M

1999-01-01

190

Method and apparatus for controlling gas evolution from chemical reactions  

DOEpatents

The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

Skorpik, James R. (Kennewick, WA); Dodson, Michael G. (Richland, WA)

1999-01-01

191

Method and apparatus for controlling gas evolution from chemical reactions  

DOEpatents

The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

Skorpik, J.R.; Dodson, M.G.

1999-05-25

192

Gas phase fractionation method using porous ceramic membrane  

DOEpatents

Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

Peterson, Reid A. (Madison, WI); Hill, Jr., Charles G. (Madison, WI); Anderson, Marc A. (Madison, WI)

1996-01-01

193

Nonlinear preprocessing method for detecting peaks from gas chromatograms  

PubMed Central

Background The problem of locating valid peaks from data corrupted by noise frequently arises while analyzing experimental data. In various biological and chemical data analysis tasks, peak detection thus constitutes a critical preprocessing step that greatly affects downstream analysis and eventual quality of experiments. Many existing techniques require the users to adjust parameters by trial and error, which is error-prone, time-consuming and often leads to incorrect analysis results. Worse, conventional approaches tend to report an excessive number of false alarms by finding fictitious peaks generated by mere noise. Results We have designed a novel peak detection method that can significantly reduce parameter sensitivity, yet providing excellent peak detection performance and negligible false alarm rates from gas chromatographic data. The key feature of our new algorithm is the successive use of peak enhancement algorithms that are deliberately designed for a gradual improvement of peak detection quality. We tested our approach with real gas chromatograms as well as intentionally contaminated spectra that contain Gaussian or speckle-type noise. Conclusion Our results demonstrate that the proposed method can achieve near perfect peak detection performance while maintaining very small false alarm probabilities in case of gas chromatograms. Given the fact that biological signals appear in the form of peaks in various experimental data and that the propose method can easily be extended to such data, our approach will be a useful and robust tool that can help researchers highlight valid signals in their noisy measurements. PMID:19922615

2009-01-01

194

EVALUATION OF METHODS USED TO DESORB THE CONSTITUENTS ADSORBED ON THE CHARCOAL CONTAINED IN AUTOMOTIVE EVAPORATIVE CANISTERS  

EPA Science Inventory

This report presents the conclusion of a two-part study with evaluated current extraction methods for anaylizing in automobiles. The second part of this study investigated the use of solvent-free extraction methods such as high pressure C02 soxhlet extraction and vacuum transfer ...

195

EVALUATION OF METHODS USED TO DESORB THE CONSTITUENTS ADSORBED ON THE CHARCOAL CONTAINED IN AUTOMOTIVE EVAPORATIVE CANISTERS--PART II  

EPA Science Inventory

This report presents the conclusion of a two-part study with evaluated current extraction methods for anaylizing in automobiles. The second part of this study investigated the use of solvent-free extraction methods such as high pressure C02 soxhlet extraction and vacuum transfer ...

196

78 FR 25392 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category...operators of facilities subject to the petroleum and natural gas systems source category...final rule affects owners or operators of petroleum and natural gas systems. Regulated...

2013-05-01

197

78 FR 11585 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category...operators of facilities subject to the petroleum and natural gas systems source category...regulations could affect owners or operators of petroleum and natural gas systems. Regulated...

2013-02-19

198

78 FR 11619 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category...operators of facilities subject to the petroleum and natural gas systems source category...operators of facilities subject to the petroleum and natural gas systems source...

2013-02-19

199

Isotope-ratio-monitoring gas chromatography methods for high-precision isotopic analysis of nanomole  

E-print Network

Isotope-ratio-monitoring gas chromatography methods for high-precision isotopic analysis and a commercially available continuous-flow, gas chromatography interface (the Finnigan Gas Bench II). This work

Bebout, Gray E.

200

Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials  

SciTech Connect

Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

J. J. Einerson

2005-05-01

201

Method for cleansing noxious constituents from gas streams  

SciTech Connect

An apparatus and method for chemically altering and scrubbing the noxious constituents from foundry core manufacturing and arc welding operations is disclosed. An upstanding closed container is provided and a gas washing liquid is disposed within the container to a predetermined level. A horizontal baffle is mounted stationarily within the container at an elevation spaced above the level of the gas washing liquid therein and spaced peripheral portions of the baffle are spaced inwardly of the opposing inner surface of the container. A gas drive pipe extends into the container, downwardly past the baffle , and opens downwardly in a central lower portion of the container, below the baffle and near the bottom of the liquid. The container includes a top cover and an outlet duct is provided which opens outwardly of the container through a central portion of the cover. The gases are pumped into the drive pipe to achieve a critical velocity at the exit of the drive pipe of about 2, 300-20,000 linear feet per minu entering the liquid in a substantially vertical downward direction within the critical velocity range, small gascontaining bubbles, on the order of 1/8 - 3/8 inches in diameter, are formed as the gas stream rises, which bubbles impact against the horizontal baffle. The high velocity gases impart sufficient kinetic energy to the system to enable the necessary chemical reactions and scrubbing to proceed.

Schauer, D.J.; Schauer, J.M.

1982-05-18

202

A RP-LC method with evaporative light scattering detection for the assay of simethicone in pharmaceutical formulations  

Microsoft Academic Search

A reversed-phase liquid chromatographic method has been developed and validated for the determination of the polydimethylsiloxane (PDMS) component of Simethicone, which is used as an anti-foaming agent in pharmaceutical formulations. The method involves acidification to neutralise antacid components of the formulation, then a single extraction of the PDMS with dichloromethane. This is followed by separation with a reversed-phase column using

Douglas E Moore; Tina X Liu; William G Miao; Alison Edwards; Russell Elliss

2002-01-01

203

Modeling of the dynamics of a gas phase evaporating from the surface of a condensed phase under the effect of concentrated radiation pulses  

Microsoft Academic Search

An algorithm is developed which describes changes with time of the gas phase pressure near the condensate-gas interface due to the effect of concentrated radiation pulses. In the simplest case of a gas transparent to radiation, theoretical results are shown to be in qualitative agreement with experimental data.

P. V. Gerasimenko; V. A. Mazarchenkov; A. D. Suprun; A. M. Fedorchenko

1986-01-01

204

Self-contained cryogenic gas sampling apparatus and method  

DOEpatents

Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.

McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.

1996-03-26

205

Self-contained cryogenic gas sampling apparatus and method  

DOEpatents

Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.

McManus, Gary J. (Idaho Falls, ID); Motes, Billy G. (Idaho Falls, ID); Bird, Susan K. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID)

1996-01-01

206

Development of NDE methods for hot gas filters.  

SciTech Connect

Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in this project is aimed at developing nondestructive evaluation (FIDE) technology to allow detection, and determination of extent, of life-limiting characteristics such as thermal fatigue, oxidation, damage from ash bridging such as localized cracking, damage from local burning, and elongation at elevated temperature. Although in-situ NDE methods are desirable in order to avoid disassembly of the candle filter vessels, the current vessel designs, the presence of filter cakes and possible ash bridging, and the state of NDE technology prevent this. Candle filter producers use a variety of NDE methods to ensure as-produced quality. While impact acoustic resonance offers initial promise for examining new as-produced filters and for detecting damage in some monolithic filters when removed from service, it presents difficulties in data interpretation, it lacks localization capability, and its applicability to composites has yet to be demonstrated. Additional NDE technologies being developed and evaluated in this program and whose applicability to both monolithics and composites has been demonstrated include (a) full-scale thermal imaging for analyzing thermal property variations; (b) fret, high-spatial-resolution X-ray imaging for detecting density variations and dimensional changes; (c) air-coupled ultrasonic methods for determining through-thickness compositional variations; and (d) acoustic emission technology with mechanical loading for detecting localized bulk damage. New and exposed clay-bonded SiC filters and CVI-SiC composite filters have been tested with these additional NDE methods.

Deemer, C.; Ellingson, W. A.; Koehl, E. R.; Lee, H.; Spohnholtz, T.; Sun, J. G.

1999-07-21

207

Laboratory prototype flash evaporator  

NASA Technical Reports Server (NTRS)

A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

Gaddis, J. L.

1972-01-01

208

An evaporative and engine-cycle model for fuel octane sensitivity prediction  

SciTech Connect

The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with real Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.

Moran, D.P.; Taylor, A.B. [Univ. of Stellenbosch (South Africa)

1995-12-31

209

Computation of Pressurized Gas Bearings Using CE/SE Method  

NASA Technical Reports Server (NTRS)

The space-time conservation element and solution element (CE/SE) method is extended to compute compressible viscous flows in pressurized thin fluid films. This numerical scheme has previously been used successfully to solve a wide variety of compressible flow problems, including flows with large and small discontinuities. In this paper, the method is applied to calculate the pressure distribution in a hybrid gas journal bearing. The formulation of the problem is presented, including the modeling of the feeding system. the numerical results obtained are compared with experimental data. Good agreement between the computed results and the test data were obtained, and thus validate the CE/SE method to solve such problems.

Cioc, Sorin; Dimofte, Florin; Keith, Theo G., Jr.; Fleming, David P.

2003-01-01

210

Rapid Evaporation of microbubbles  

NASA Astrophysics Data System (ADS)

When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

Gautam, Jitendra; Esmaeeli, Asghar

2008-11-01

211

Applications of Electromagnetic Measurement Methods in Oil and Gas Industry  

NASA Astrophysics Data System (ADS)

When hydrocarbons accumulate in reservoirs, the reservoir rocks and a large volume of rock associated with the reservoirs undergo resistance changes. This method relates generally to the field of geophysical prospecting for the purposes of hydrocarbon exploration, development, and production. This method includes measuring magnetic field gradient in at least two orthogonal directions in response to the induced electromagnetic field and determining an electric field response. Specifically, this method is a method for determining the difference between the electrical resistance of a reservoir at an initial time and its electrical resistance at one or more later times, and relating that difference to production of hydrocarbons from the reservoir during the interim period. Electromagnetic methods are now being used to provide images of subsurface resistance on the reservoir scale. These images provide for the first time observation of the distribution of porosity and fluid content on the same scale as the reservoir. They are being used to identify bypassed oil, monitor sweep efficiency, identify unanticipated breakthrough, and map features. All such information could previously only be inferred from measurements within the well or from production data from the well. For monitoring production and enhanced recovery processes, when it can be assumed that the porosity is essentially constant and when there is a resistivity contrast in the different fluids or phases involved, the imaged resistivity is a direct mapping of the changes in saturation. In this paper we discuss about the methods for electromagnetic measurement methods and its application in oil and gas industry.

Dehghani, Maryam

2011-12-01

212

Method For Enhanced Gas Monitoring In High Density Flow Streams  

DOEpatents

A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

Von Drasek, William A. (Oak Forest, IL); Mulderink, Kenneth A. (Countryside, IL); Marin, Ovidiu (Lisle, IL)

2005-09-13

213

PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES  

EPA Science Inventory

Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

214

An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions  

NASA Astrophysics Data System (ADS)

Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.

Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.

2012-12-01

215

Optical methods for monitoring harmful gas in animal facilities  

NASA Astrophysics Data System (ADS)

Animal facilities produce large amounts of harmful gases such as ammonia, hydrogen sulfide, and methane, many of which have a pungent odor. The harmful gases produced by animal housing not only affect the health of people and livestock but also pollute the air. The detection of the harmful gases can effectively improve efficiency of livestock production and reduce environmental pollution. More and more optical detection methods are applied to the detection of the harmful gases produced by animal housing. This summarizes optical detection methods for monitoring the harmful gases in animal housing recently, including nondispersive infrared gas analyzer, ultraviolet differential optical absorption spectroscopy, Fourier transform infrared spectroscopy, and tunable diode laser absorption spectroscopy. The basic principle and the characteristics of these methods are illustrated and the applications on the detection of harmful gases in animal housing are described. Meanwhile, the research of harmful gases monitoring for livestock production based on these methods were listed. The current situation and future development of the detection methods for harmful gases generated by animal housing were summarized by comparing the advantages and disadvantages of each method.

Zhang, Shirui; Dong, Daming; Zheng, Wengang; Wang, Jihua

2014-06-01

216

Evaporation, Boiling and Bubbles  

ERIC Educational Resources Information Center

Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The

Goodwin, Alan

2012-01-01

217

DRIP AND EVAPORATION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Loss of water from the soil profile through evaporation from the soil surface is an important contributor to inefficiency in irrigated crop production. Residue management systems may reduce this evaporative loss, but cannot be used in all cropping systems. Choice of the irrigation system and its m...

218

Development and application of an analytical method using gas chromatography/triple quadrupole mass spectrometry for  

E-print Network

Development and application of an analytical method using gas chromatography/triple quadrupole mass to the development of gas chromatography/triple quadrupole mass spectrometry methods that allow the identification estimated using gas chromatography/mass spectrometry (GC/MS).[7,10,11] The efficiency of GC/MS methods

Clement, Prabhakar

219

A novel method for rapid determination of total solid content in viscous liquids by multiple headspace extraction gas chromatography.  

PubMed

This work demonstrates a novel method for rapid determination of total solid content in viscous liquid (polymer-enriched) samples. The method is based multiple headspace extraction gas chromatography (MHE-GC) on a headspace vial at a temperature above boiling point of water. Thus, the trend of water loss from the tested liquid due to evaporation can be followed. With the limited MHE-GC testing (e.g., 5 extractions) and a one-point calibration procedure (i.e., recording the weight difference before and after analysis), the total amount of water in the sample can be determined, from which the total solid contents in the liquid can be calculated. A number of black liquors were analyzed by the new method which yielded results that closely matched those of the reference method; i.e., the results of these two methods differed by no more than 2.3%. Compared with the reference method, the MHE-GC method is much simpler and more practical. Therefore, it is suitable for the rapid determination of the solid content in many polymer-containing liquid samples. PMID:25064534

Xin, Li-Ping; Chai, Xin-Sheng; Hu, Hui-Chao; Barnes, Donald G

2014-09-01

220

Development of a rapid and convenient method to separate eight ginsenosides from Panax ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detection.  

PubMed

Ginsenosides exhibit diverse biological activities and are major well-known components isolated from the radix of Panax ginseng C.A. Meyer. In the present work, a rapid and facile method for the separation and purification of eight ginsenosides from P. ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detector (HSCCC-ELSD) was successfully developed. The crude samples for HSCCC separation were first purified from ginseng extract using a macroporous resin; the extract was loaded onto a Diaion-HP20 column and fractionated by methanol and water gradient elution. The ginsenosides-protopanaxadiol (PPD) and protopanaxatriol (PPT) fractions were subsequently eluted with 65 and 80% methanol and water gradient elution, respectively. Furthermore, these two fractions were separated by HSCCC-ELSD. The two-phase solvent system used for separation was composed of chloroform/methanol/water/isopropanol at a volume ratio of 4:3:2:1. Each fraction obtained was collected and dried, yielding the following eight ginsenosides: Rg(1), Re, Rf, Rh(1), Rb(1), Rc Rb(2) and Rd. The purity of these ginsenosides was greater than 97% as assessed by HPLC-ELSD, and their structures were characterized by electrospray-ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy. This is the first report regarding the separation of the ginsenosides Rh(1), Rb(2) and Rc from P. ginseng by HSCCC. PMID:21491596

Shehzad, Omer; Ha, In Jin; Park, Youmie; Ha, Young Wan; Kim, Yeong Shik

2011-05-01

221

Effect of selenium doping on structural and optical properties of SnS:Se thin films by electron beam evaporation method  

NASA Astrophysics Data System (ADS)

SnS nanoparticle has been synthesized initially using SnCl2 2H2O and Na2S XH2O, in the presence of TEA by precipitation method and XRD and FTIR techniques have been used for characterization of the sample. Powder X-ray diffraction studies revealed the particle size to be 48 nm and the pattern represents polycrystalline herzenbergite orthorhombic crystal structure of SnS. The FTIR result also confirmed the SnS at 2354 cm-1. Secondly SnS:Se thin films have been deposited on glass substrates by electron beam evaporation technique and the films were annealed at 100 C and 200 C for 1 h. The unannealed films are amorphous in nature and the annealed film shows that a sharp crystalline peak is due to SnS. Also a peak is shown at 2? = 14.39, which is due to characteristic peak of SnSe2, established by their XRD patterns. The band gap energy (Eg) was determined from transmission spectra and an optical band gap of Eg varies from 1.6 eV to 1.79 eV.

Henry, Johnson; Mohanraj, Kannusamy; Kannan, Selvaraj; Barathan, Seshathri; Sivakumar, Ganesan

2013-01-01

222

Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets  

SciTech Connect

The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H. [Commissariat a l'Energie Atomique, CEA Saclay, DEN/DPC/SECR/LANIE, 91191 Gif sur Yvette (France); Chartier, F. [Commissariat a l'Energie Atomique, CEA Saclay, DEN/DPC, 91191 Gif sur Yvette (France)

2011-07-01

223

Apparatus and method for monitoring of gas having stable isotopes  

DOEpatents

Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

Clegg, Samuel M; Fessenden-Rahn, Julianna E

2013-03-05

224

The study on the interdependence of spray characteristics and evaporation history of fuel spray in high temperature air crossflow  

NASA Astrophysics Data System (ADS)

A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.

Zhu, J. Y.; Chin, J. S.

1986-06-01

225

Mergers, cooling flows, and evaporation  

NASA Technical Reports Server (NTRS)

Mergers (the capture of cold gas, especially) can have a profound influence on the hot coronal gas of early-type galaxies and clusters, potentially inducing symptoms hitherto attributed to a cooling flow, if thermal conduction is operative in the coronal plasma. Heat can be conducted from the hot phase into the cold phase, simultaneously ionizing the cold gas to make optical filaments, while locally cooling the coronal gas to mimic a cooling-flow. If there is heat conduction, though, there is no standard cooling-flow since radiative losses are balanced by conduction and not mass deposition. Amongst the strongest observational support for the existence of cooling-flows is the presence of intermediate temperature gas with x-ray emission-line strengths in agreement with cooling-flow models. Here, x-ray line strengths are calculated for this alternative model, in which mergers are responsible for the observed optical and x-ray properties. Since gas around 10(exp 4) K is thermally stable, the cold cloud need not necessarily evaporate and hydrostatic solutions exist. Good agreement with the x-ray data is obtained. The relative strengths of intermediate temperature x-ray emission lines are in significantly better agreement with a simple conduction model than with published cooling-flow models. The good agreement of the conduction model with optical, infrared and x-ray data indicates that significantly more theoretical effort into this type of solution would be profitable.

Sparks, W. B.

1993-01-01

226

DIAGNOSIS OF EVAPORATIVE LEAKS AND SENSOR FAULTS IN A VEHICLE FUEL SYSTEM  

Microsoft Academic Search

This paper describes a vacuum-decay based evaporative leak detection procedure for vehicle fuel systems. A physical model for an evaporative system is proposed containing parts for fuel evaporation, leakage flow and canister flow. Two methods for detecting evaporative leakages based on the model is presented. Both methods can detect a 0.5 mm diameter leakage in a laboratory environment. According to

Ingemar Andersson; Erik Frisk

227

Apparatus for the liquefaction of natural gas and methods relating to same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating

Bruce M. Wilding; Dennis N. Bingham; Michael G. McKellar; Terry D. Turner; Kevin T. Raterman; Gary L. Palmer; Kerry M. Klingler; John J. Vranicar

2007-01-01

228

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating

Bruce M. Wilding; Dennis N. Bingham; Michael G. McKellar; Terry D. Turner; Kevin T. Raterman; Gary L. Palmer; Kerry M. Klingler; John J. Vranicar

2005-01-01

229

Apparatus for the liquefaction of natural gas and methods relating to same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work

Bruce M. Wilding; Michael G. McKellar; Terry D. Turner; Francis H. Carney

2009-01-01

230

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating

Bruce M. Wilding; Dennis N. Bingham; Michael G. McKellar; Terry D. Turner; Kevin T. Raterman; Gary L. Palmer; Kerry M. Klingler; John J. Vranicar

2003-01-01

231

Analytical resource assessment method for continuous (unconventional) oil and gas accumulations - The "ACCESS" Method  

USGS Publications Warehouse

The U.S. Geological Survey (USGS) periodically assesses petroleum resources of areas within the United States and the world. The purpose of this report is to explain the development of an analytic probabilistic method and spreadsheet software system called Analytic Cell-Based Continuous Energy Spreadsheet System (ACCESS). The ACCESS method is based upon mathematical equations derived from probability theory. The ACCESS spreadsheet can be used to calculate estimates of the undeveloped oil, gas, and NGL (natural gas liquids) resources in a continuous-type assessment unit. An assessment unit is a mappable volume of rock in a total petroleum system. In this report, the geologic assessment model is defined first, the analytic probabilistic method is described second, and the spreadsheet ACCESS is described third. In this revised version of Open-File Report 00-044 , the text has been updated to reflect modifications that were made to the ACCESS program. Two versions of the program are added as appendixes.

Crovelli, Robert A.; revised by Charpentier, Ronald R.

2012-01-01

232

Evaporation, Condensation, and Precipitation  

NSDL National Science Digital Library

After completion of this project students should have an understanding of evaporation, condensation, and precipitation in the water cycle. Use the websites provided to answer the questions. Record your answers on the spreadsheet provided. Do you understand how the water cycle works? Begin by watching this short video about the water cycle.water cycle video Use the website to define condensation, precipitation, and evaporation?water cycle List the different types of precipitation from the site.types of precipitation Follow the directions to the experiment on this website to get a better understanding of how evaporation takes ...

Brown, Miss

2009-10-21

233

Urban Signatures: Evaporation (WMS)  

NSDL National Science Digital Library

Big cities influence the environment around them. For example, urban areas are typically warmer than their surroundings. Cities are strikingly visible in computer models that simulate the Earths land surface. This visualization shows evaporation rates predicted by the Land Information System (LIS) for a day in June 2001. Evaporation is lower in the cities because water tends to run off pavement and into drains, rather than being absorbed by soil and plants from which it later evaporates. Only part of the global computation is shown, focusing on the highly urbanized northeast corridor in the United States, including the cities of Boston, New York, Philadelphia, Baltimore, and Washington.

Delabeaujardiere, Jeff

2005-05-27

234

Flash evaporator systems test  

NASA Technical Reports Server (NTRS)

A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

Dietz, J. B.

1976-01-01

235

Applications of Mechanical Vapor Recompression to Evaporation and Crystallization  

E-print Network

, steam turbine or a gas turbine. The use of an MVR Evaporator/Crystallizer provides a comparatively low cost means of expanding the production capability of an existing evaporation plant either by adding a "stand alone" unit or by reconfiguring a multiple-effect...

Outland, J. S.

236

Prognosis of residual coal gas capacity made by the `Express' method  

NASA Astrophysics Data System (ADS)

An easy, reliable, and inexpensive method, called `Express' method, was described to determine the residual gas capacity of deep mines using results from an air and gas balance. Air and gas balances are common elements of mine management and must be performed periodically. Using the process described here to obtain balance results, it is straightforward to obtain the residual gas capacity, which is an important parameter for decision-making in current mine operations. After a mine is closed, the residual gas capacity becomes a dominant factor used to select methods to protect against gas emissions from the closed underground area or perhaps to provide information for the use of gas reserves. The proposed `Express' method is a much simpler method to obtain the residual gas capacity than other procedures used for this purpose to date.

Prokop, Pavel; Zapletal, Pavel; P?g?mek, Ivo

2011-04-01

237

Effects of the surroundings and conformerisation of n-dodecane molecules on evaporation/condensation processes  

NASA Astrophysics Data System (ADS)

The evaporation/condensation coefficient (?) and the evaporation rate (?) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ?B97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/?B97X-D). It is shown that ? depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy of solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of ? for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/Tc < 0.8) or slightly larger (at T/Tc > 0.8) than the values of ? calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of ? by the MD FF methods, except at temperatures close to the critical temperature.

Gun'ko, Vladimir M.; Nasiri, Rasoul; Sazhin, Sergei S.

2015-01-01

238

Effects of the surroundings and conformerisation of n-dodecane molecules on evaporation/condensation processes.  

PubMed

The evaporation/condensation coefficient (?) and the evaporation rate (?) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ?B97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/?B97X-D). It is shown that ? depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy of solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of ? for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/Tc < 0.8) or slightly larger (at T/Tc > 0.8) than the values of ? calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of ? by the MD FF methods, except at temperatures close to the critical temperature. PMID:25612715

Gun'ko, Vladimir M; Nasiri, Rasoul; Sazhin, Sergei S

2015-01-21

239

Sheet Membrane Spacesuit Water Membrane Evaporator  

NASA Technical Reports Server (NTRS)

A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

2013-01-01

240

Some methods of oil and gas reserve estimation in Azerbaijan  

SciTech Connect

This article deals with the scientific and practical problems related to estimating oil and gas reserves in terrigenous reservoirs of the Productive Series of middle Pliocene and in Upper Cretaceous volcanic and sedimentary rocks. The deposits in question are spread over onshore Azerbaijan and adjacent offshore areas in the Caspian Sea and are approximately 6.5 km deep. This article presents lithologic, stratigraphic, and petrophysical criteria used for selecting prospects for reserve estimation. Also presented are information on structure of rocks and estimation of their lithologic and physical properties. New methods for the interpretation and application of petrophysical and logging data, as well as statistical estimation of reserves, in complex volcaniclastic reservoir rocks, are also discussed.

Abasov, M.T.; Buryakovsky, L.A.; Kondrushkin, Y.M.; Dzhevanshir, R.D.; Bagarov, T.Y. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Chilingar, G.V. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

1997-08-01

241

Method for controlling exhaust gas heat recovery systems in vehicles  

DOEpatents

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11

242

Method for removing metal vapor from gas streams  

DOEpatents

A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

Ahluwalia, R. K. (6440 Hillcrest Dr., Burr Ridge, IL 60521); Im, K. H. (925 Lehigh Cir., Naperville, IL 60565)

1996-01-01

243

Stable Isotope Fractionation Due to Evaporation and Isotopic Exchange of Falling Waterdrops: Applications to Atmospheric Processes and Evaporation of Lakes  

Microsoft Academic Search

Waterdrops were suspended in vertical streams of No., At, or He gas with relative humidities of 0, 50, and 100% to determine the effects of evaporation and isotopic exchange on the deuterium and oxygen-18 contents of the drops. Equilibrium fractionation was found to exist between a drop and vapor at its surface (even during rapid evaporation in zero hfimidity atmospheres),

Michael K. Stewart

1975-01-01

244

CAPSULE REPORT: EVAPORATION PROCESS  

EPA Science Inventory

Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

245

Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers  

NASA Astrophysics Data System (ADS)

Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of 150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of 13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

2011-09-01

246

Estimating soil water evaporation using radar measurements  

NASA Technical Reports Server (NTRS)

Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

1988-01-01

247

Measure Guideline: Evaporative Condensers  

SciTech Connect

The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

German, A.; Dakin, B.; Hoeschele, M.

2012-03-01

248

Mixed feed evaporator  

DOEpatents

In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

Vakil, Himanshu B. (Schenectady, NY); Kosky, Philip G. (Ballston Lake, NY)

1982-01-01

249

VAPOR PRESSURES AND EVAPORATION COEFFICIENTS OF FE, NA AND K OVER CHONDRULE COMPOSITION MELTS. A. V. Fedkin1  

E-print Network

VAPOR PRESSURES AND EVAPORATION COEFFICIENTS OF FE, NA AND K OVER CHONDRULE COMPOSITION MELTS. A. V and isotopic evidence of significant evaporative losses from chondrules is rare. The free evaporation flux and evaporation coefficient of species x, resp., R is the gas constant and T is the temperature. Thus, computation

Grossman, Lawrence

250

Method for removing particulate matter from a gas stream  

DOEpatents

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01

251

Tank 26 Evaporator Feed Pump Transfer Analysis  

SciTech Connect

The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

Tamburello, David; Dimenna, Richard; Lee, Si

2009-02-11

252

Evaporation and Thermal Balance of Tiny HI Clouds  

E-print Network

We discuss the thermal evaporation of tiny HI clouds in the interstellar medium. Cold neutral clouds will take ~10^6 - 10^7 yr to evaporate if they are embedded in warm neutral gas and about half as long if embedded in hot gas. Heat flux saturation effects severely reduce the evaporation rate of tiny cold neutral medium (CNM) clouds into hot gas. For CNM clouds embedded in warm neutral medium (WNM) the much lower conductivity results in slower evaporation. This mass loss rate could still be significant, however, if the environment is relatively quiescent. Partial ionization of the WNM gas would substantially reduce the conductivity and lengthen the lifetime of the tiny HI clouds. The ultimate importance of thermal conduction to cloud evolution will depend on the role of turbulence and the characteristics of the medium in which the clouds are embedded.

Jonathan D. Slavin

2006-10-10

253

Method for removing undesired particles from gas streams  

DOEpatents

The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Hyatt, David E. (Denver, CO); Bustard, Cynthia Jean (Littleton, CO); Sjostrom, Sharon (Denver, CO)

1998-01-01

254

Multiphysics methods development for high temperature gas reactor analysis  

NASA Astrophysics Data System (ADS)

Multiphysics computational methods were developed to perform design and safety analysis of the next generation Pebble Bed High Temperature Gas Cooled Reactors. A suite of code modules was developed to solve the coupled thermal-hydraulics and neutronics field equations. The thermal-hydraulics module is based on the three dimensional solution of the mass, momentum and energy equations in cylindrical coordinates within the framework of the porous media method. The neutronics module is a part of the PARCS (Purdue Advanced Reactor Core Simulator) code and provides a fine mesh finite difference solution of the neutron diffusion equation in three dimensional cylindrical coordinates. Coupling of the two modules was performed by mapping the solution variables from one module to the other. Mapping is performed automatically in the code system by the use of a common material mesh in both modules. The standalone validation of the thermal-hydraulics module was performed with several cases of the SANA experiment and the standalone thermal-hydraulics exercise of the PBMR-400 benchmark problem. The standalone neutronics module was validated by performing the relevant exercises of the PBMR-268 and PBMR-400 benchmark problems. Additionally, the validation of the coupled code system was performed by analyzing several steady state and transient cases of the OECD/NEA PBMR-400 benchmark problem.

Seker, Volkan

255

Quantitative analysis of polyvinyl alcohol on the surface of poly( d, l-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration  

Microsoft Academic Search

Polyvinyl alcohol (PVA) is an emulsion stabilizer that is used in the solvent evaporation method for poly(d,l-lactide-co-glycolide) (PLG) microparticles preparation. In this study, the surface binding of PVA on PLG microparticles was quantitatively examined by employing gel permeation chromatography. The PVA binding can affect hydrophobicity and digestibility of the microparticle surface. GPC analysis detected the presence of PVA bound on

Seung Chan Lee; Jae Taek Oh; Myoung Ho Jang; Soo Il Chung

1999-01-01

256

Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.  

PubMed

As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator. PMID:18701113

Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

2008-09-12

257

The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method  

NASA Astrophysics Data System (ADS)

The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

Wada, Takao; Ueda, Noriaki

2013-04-01

258

The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method.  

PubMed

The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

Wada, Takao; Ueda, Noriaki

2013-04-21

259

The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method  

PubMed Central

The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

Wada, Takao; Ueda, Noriaki

2013-01-01

260

Development of NDE methods for hot gas filters  

Microsoft Academic Search

Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in

C. Deemer; W. A. Ellingson; E. R. Koehl; H. Lee; T. Spohnholtz; J. G. Sun

1999-01-01

261

Diagnostics of an RF Plasma Flash Evaporation Process Using the Monochromatic Imaging Technique  

Microsoft Academic Search

The high densities and high gas temperature of rf plasmas at pressures near 1 atm are favorable for the development of plasma sources capable of evaporating solid precursors in the plasma zone. In the cooler region downstream of the plasma, the evaporated material condenses to nanoparticles and\\/or coatings. The complete evaporation of precursors injected into a thermal plasma depends on

P. Buchner; H. Schubert; J. Uhlenbusch; M. Weiss

2001-01-01

262

Gas chromatographic method for detection of urinary sucralose: application to the assessment of intestinal permeability  

Microsoft Academic Search

We developed a capillary column gas chromatography (CCGC) method for the measurement of urinary sucralose (S) and three other sugar probes including, sucrose, lactulose (L) and mannitol (M) for use in in vivo studies of intestinal permeability. We compared the capillary method with a packed column gas chromatography (PCGC) method. We also investigated a possible role for sucralose as a

Ashkan Farhadi; Ali Keshavarzian; Earle W Holmes; Jeremy Fields; Lei Zhang; Ali Banan

2003-01-01

263

Detection methods for atoms and radicals in the gas phase  

NASA Astrophysics Data System (ADS)

This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized (CH, Cd, Cf, CC1, CBr, Cn, Cs, CSe, CH2, CD2, Chf, Cdf, CHC1, CHBr, CF2, CC12, CBr2, CFC1, CFBr, CH3, CD3, CF3, CH2F, CH2C1, CH2Br, CHF2, CHC12, CHBr2, Hco, Fco, CH30, CD30, CH2OH, CH3S, Nco, CH4N, CH302, CF302; C2, C2N, C2H, C20, C2HO, C2H3, C2F3, C2H5, C2HsO, C2H4OH, CH3CO, CD3CO, C2H3O, C2H502, CH3COO2, C2H4N, C2H6N, C3; Si, SiF, SiF2, SiO, SiC, Si2; Ge, GeC, GeO, GeF, GeF2, GeCl2, Sn, SnF, SnO, SnF2, Pb, PbF, PbF2, PbO, PbS). In table 2 detection methods for about 25 other atoms and 60 radicals are listed: (H, D, O, O2, Oh, Od, HO2, DO2, F, Ci, Br, I, Fo, Cio, BrO, Io, FO2, C1O2, Li, Na, K, Rb, Cs, N, N3, Nh, Nd, Nf, Nci, NBr, NH2, ND2, Nhd, Nhf, NF2, NC12, N2H3, No, NO2, NO3, Hno, Dno, P, Ph, Pd, Pf, Pci, PH2, PD2, PF2, Po, As, AsO, AsS, Sb, Bi, S, S2, Sh, Sd, Sf, SF2, So, Hso, Dso, Sn, Se, Te, Se2, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, Bh, BH2, Bo, Bn, B02, Cd, Hg, UF5). The tables also cite some recent kinetic applications of the various methods.

Hack, W.

264

Laser evaporation studies  

NASA Astrophysics Data System (ADS)

The use of a pulsed laser to evaporate dielectric materials for optical thin film deposition was investigated. The electrical properties of the laser induced plasma in the evaporant plume were studied. High flux (20A/sq cm) of high velocity (1 to 10 million) cm/s) ionic species were observed in the TEA-CO2 laser evaporation of many refractory oxides, chalcogenides and fluorides. Thin films of ZrO2 were deposited out of a plasma described above. These films were dense, oriented polycrystalline and had bulk refractive index values (2,15), low absorption (K about 0.001) and low particulate density for a range of laser fluence values. In the next and final phase of this project, thin film studies will be extended to a wider array of materials, with emphasis on obtaining high quality films with low particulate densities.

Sankur, H.

1986-10-01

265

Evaporatively driven morphological instability  

E-print Network

Simple observations of evaporating solutions reveal a complex hierarchy of spatio-temporal instabilities. We analyze one such instability suggested by the qualitative observations of Du and Stone and find that it is driven by a novel variant of the classical {\\em morphological instability} in alloy solidification. In the latter case a moving solid-liquid interface is accompanied by a solutally enriched boundary layer that is thermodynamically metastable due to {\\em constitutional supercooling}. Here, we consider the evaporation of an impure film adjacent to a solid composed of the nonvolatile species. In this case, constitutional supercooling within the film is created by evaporation at the solution-vapor interface and this drives the corrugation of the solid--solution interface across the thickness of the film. The principal points of this simple theoretical study are to suggest an instability mechanism that is likely operative across a broad range of technological and natural systems and to focus future quantitative experimental searches.

Robert W. Style; John. S. Wettlaufer

2012-01-12

266

How do drops evaporate?  

NASA Astrophysics Data System (ADS)

The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

Murisic, Nebojsa; Kondic, Lou

2007-11-01

267

Method for the removal of elemental mercury from a gas stream  

DOEpatents

A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.

Mendelsohn, Marshall H. (Downers Grove, IL); Huang, Hann-Sheng (Darien, IL)

1999-01-01

268

Method for the removal of elemental mercury from a gas stream  

DOEpatents

A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.

Mendelsohn, M.H.; Huang, H.S.

1999-05-04

269

Method for removing undesired particles from gas streams  

DOEpatents

The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

1998-11-10

270

Hot air drum evaporator  

DOEpatents

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01

271

Evaporator Development for an Evaporative Heat Pipe System  

NASA Technical Reports Server (NTRS)

As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead of a tube, the evaporator is made up of a stack-up of screen material and absorbent membranes inside a stainless steel shell and held together by a film adhesive and epoxy. There is an initial design for this flat plate evaporator, however is has not yet been made. The components of the stack-up are known, so all testing is focused on how it will all go together. This includes finding an appropriate epoxy to make the evaporator conductive all the way through and finding a way to hold the required tight tolerances as the stainless steel outer shell is put together. By doing the tests on smaller samples of the stack-ups and then testing the fill size component, the final flat plate evaporator will reach its final design so that research can continue on other parts of the regenerative fue1 cell system, and another step in the improvement of fue1 cell technology can be made.

Peters, Leigh C.

2004-01-01

272

Semiconductor gas sensors based on nanostructured tungsten oxide  

Microsoft Academic Search

Semiconductor gas sensors based on nanocrystallline WO3 films were produced by two different methods. Advanced reactive gas evaporation was used in both cases either for a direct deposition of films (deposited films) or to produce ultra fine WO3 powder which was used for screen printing of thick films. The deposited films sintered at 480 C and the screen-printed films sintered

J. L Solis; S Saukko; L Kish; C. G Granqvist; V Lantto

2001-01-01

273

TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS  

SciTech Connect

The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

Tamburello, D; Si Lee, S; Richard Dimenna, R

2008-09-30

274

Method and apparatus for scrubbing a gas containing powdered particles  

SciTech Connect

A scrubber is disclosed for separating powder particles from a gas stream comprising a closed vertical cylindrical housing having a tangential inlet for the gas stream and a concentric discharge pipe passing through the top of the housing for the removal of the purified gas stream; in which means are provided for flushing the lower portion of the inner wall of the housing. The flushing means comprises an annular gutter surrounding the housing and communicating with said inner wall by means of a large number of narrow passages. The level of the gutter is well above the lower end of the discharge pipe.

Eversdijk, B.P.; Kamphuts, G.G.

1981-03-24

275

Method of cooling gas only nozzle fuel tip  

DOEpatents

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01

276

Automated gas bubble imaging at sea floor - a new method of in situ gas flux quantification  

NASA Astrophysics Data System (ADS)

Photo-optical systems are common in marine sciences and have been extensively used in coastal and deep-sea research. However, due to technical limitations in the past photo images had to be processed manually or semi-automatically. Recent advances in technology have rapidly improved image recording, storage and processing capabilities which are used in a new concept of automated in situ gas quantification by photo-optical detection. The design for an in situ high-speed image acquisition and automated data processing system is reported ("Bubblemeter"). New strategies have been followed with regards to back-light illumination, bubble extraction, automated image processing and data management. This paper presents the design of the novel method, its validation procedures and calibration experiments. The system will be positioned and recovered from the sea floor using a remotely operated vehicle (ROV). It is able to measure bubble flux rates up to 10 L/min with a maximum error of 33% for worst case conditions. The Bubblemeter has been successfully deployed at a water depth of 1023 m at the Makran accretionary prism offshore Pakistan during a research expedition with R/V Meteor in November 2007.

Thomanek, K.; Zielinski, O.; Sahling, H.; Bohrmann, G.

2010-02-01

277

Automated gas bubble imaging at sea floor - a new method of in situ gas flux quantification  

NASA Astrophysics Data System (ADS)

Photo-optical systems are common in marine sciences and have been extensively used in coastal and deep-sea research. However, due to technical limitations in the past photo images had to be processed manually or semi-automatically. Recent advances in technology have rapidly improved image recording, storage and processing capabilities which are used in a new concept of automated in situ gas quantification by photo-optical detection. The design for an in situ high-speed image acquisition and automated data processing system is reported ("Bubblemeter"). New strategies have been followed with regards to back-light illumination, bubble extraction, automated image processing and data management. This paper presents the design of the novel method, its validation procedures and calibration experiments. The system will be positioned and recovered from the sea floor using a remotely operated vehicle (ROV). It is able to measure bubble flux rates up to 10 L/min with a maximum error of 33% for worst case conditions. The Bubblemeter has been successfully deployed at a water depth of 1023 m at the Makran accretionary prism offshore Pakistan during a research expedition with R/V Meteor in November 2007.

Thomanek, K.; Zielinski, O.; Sahling, H.; Bohrmann, G.

2010-06-01

278

Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods  

PubMed Central

A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2.2.1) heptan-2-one, 1, 7, 7-trimethyl-(1S, 4S)-; (3) Phenol, 2-methoxy-4-(1-propenyl)-; (4) Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl-; (5) Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro4, 7-dimethyl-1-1-(1-methylethyl)-, (1S-cis)-; (6) Phenol, 2-methoxy-; (7) Benzaldehyde, 3-hydroxy-4-methoxy-; (8) 11, 13-Eicosadienoic acid, methyl ester; (9) 2-Furancarboxaldehyde, 5-methyl-; (10) Maltol; (11) Phenol; (12) Hydroquinone; (13) 1H-Indene, 1-ethylideneoctahydro-7a-methyl-, (1E, 3a.alpha, 7a.beta.). Other compounds (14) 3-methyl butanal; (15) (D)-Limonene; (16) 1-methyl-4-(1-methyl ethyl) benzene; (17) Butanoic acid methyl ester; (18) 2-methyl propanal; (19) 2-butanone; (20) 2-pentanone; and (21) 2-methyl butane were also identified when P&T GC-MS was performed. Of the 21 compounds identified, 12 were validated using chemical standards. The identified compounds were found to be terpenes, derivatives of terpenes, esters, ketones, aldehydes, and phenol-derived aromatic compounds; these are the primary constituents of the essential oils of many plants and flowers. PMID:24804069

Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

2014-01-01

279

Evaporation of extrasolar planets  

E-print Network

Atomic hydrogen escaping from the extrasolar giant planet HD209458b provides the largest observational signature ever detected for an extrasolar planet atmosphere. In fact, the upper atmosphere of this planet is evaporating. Observational evidences and interpretations coming from various models are reviewed. Implications for exoplanetology are discussed.

David Ehrenreich

2008-07-11

280

Analysis of a geopressured gas reservoir using solution plot method  

E-print Network

by decreasing formation compressibility values as the pore pressure declines. Geopressured gas reservoirs are characterized by partially compacted rocks with major support of the overburden being provided by the abnormal pore pressures. Decline in the pore... permeability and compressibility treated as a function of pressure can be used to match geopressured gas reservoir performance behavior. Ambasthat5 used Bourgoyne's general material balance equation to develop a graphical matching technique based on a...

Hussain, Syed Muqeedul

2012-06-07

281

Method and apparatus for processing exhaust gas with corona discharge  

DOEpatents

The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

1999-06-22

282

A Simpler Way to Tame Multiple-Effect Evaporators.  

ERIC Educational Resources Information Center

Presents a new method to teach the subject of evaporators which is both simple enough to use in the classroom and accurate and flexible enough to be used as a design tool in practice. Gives an example using a triple evaporator series. Analyzes the effect of this method. (CW)

Joye, Donald D.; Koko, F. William Jr.

1988-01-01

283

Integration of Gas Chromatography Mass Spectrometry Methods for Differentiating Ricin Preparation Methods  

SciTech Connect

The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of the castor plant Ricinus communis. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatographic - mass spectrometric (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method and independent of the seed source. In particular the abundance of mannose, arabinose, fucose, ricinoleic acid and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation.

Wunschel, David S.; Melville, Angela M.; Ehrhardt, Christopher J.; Colburn, Heather A.; Victry, Kristin D.; Antolick, Kathryn C.; Wahl, Jon H.; Wahl, Karen L.

2012-05-17

284

Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method  

E-print Network

There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

Joshi, Krunal Jaykant

2012-10-19

285

Researching into Microbial-Limestone new wet flue gas desulfurization method  

Microsoft Academic Search

It is summarized the research hotspots of flue gas desulfurization (FGD) and analyzed the advantages and disadvantages of Limestone-Gypsum wet flue gas desulfurization (WFGD) and microbic desulfurization methods. Put forward a new idea of combining the Limestone-Gypsum WFGD, microbial method with catalytic oxidation of transition metal (Fe 3+ \\/Fe 2+

Junjiang Bao; Rui Tian; Xiaoxia Zhao; Chenxia Jia

2011-01-01

286

Defrosting method adopting dual hot gas bypass for an air-to-air heat pump  

Microsoft Academic Search

A novel dual hot gas bypass defrosting (DHBD) method is developed to remove frost from the outside heat exchanger (HEX) of an air-to-air heat pump. The proposed method adopts two bypass lines of hot gas from the compressor: one is connected to the inlet of the outdoor HEX, and the other is connected to the outlet of the exchanger. We

Hwan-Jong Choi; Byung-Soon Kim; Donghoon Kang; Kyung Chun Kim

2011-01-01

287

Method for combined removal of mercury and nitrogen oxides from off-gas streams  

DOEpatents

A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

2006-10-10

288

High-temperature gas stream filter and method  

SciTech Connect

The present invention relates generally to the removal of solid particulate material from high-temperature gas streams, and more particularly the removal of such particulate material by employing a barrier filter formed of a carbon-carbon composite provided by a porous carbon fiber substrate with open interstitial regions between adjacently disposed carbon fibers selectively restricted by carbon integrally attached to the carbon fibers of the substrate. In a typical utilization of a particulate-bearing hot gas stream, the particulate loading of the gas stream after cleaning is normally less than about 50 ppm and with essentially no particulates larger than about 10 microns. This carbon-carbon filter for removing particulate material of a particle size larger than a preselected particle size from a gas stream at a temperature greater than about 800 F, is produced by the steps which comprise: providing a substrate of carbonaceous fibers with pore-forming open interstitial regions between adjacently disposed fibers; and, sufficiently filling these open interstitial regions with carbon integrally attached to and supported by the fibers for providing the interstitial regions with throughgoing passage-ways of a pore size sufficient to provide for the passage of the gas stream while preventing the passage of particulate material larger than a preselected particle size.

Notestein, J.E.

1994-12-31

289

Acoustic observations of gas bubble streams in the NW Black Sea as a method for estimation of gas flux from vent sites  

Microsoft Academic Search

Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the

Yu. G. Artemov

2003-01-01

290

Method and apparatus for measuring the gas permeability of a solid sample  

DOEpatents

The disclosure is directed to an apparatus and method for measuring the permeability of a gas in a sample. The gas is allowed to reach a steady flow rate through the sample. A measurable amount of the gas is collected during a given time period and then delivered to a sensitive quadrupole. The quadrupole signal, adjusted for background, is proportional to the amount of gas collected during the time period. The quadrupole can be calibrated with a standard helium leak. The gas can be deuterium and the sample can be polyvinyl alcohol.

Carstens, D.H.W.

1984-01-27

291

Crystallization of proteins by dynamic control of evaporation  

NASA Astrophysics Data System (ADS)

It is expected that the kinetics of supersaturation, which is directly related to the evaporation of solvent from a crystallization solution, will greatly affect both nucleation and crystal growth processes. Therefore, a novel device has been developed which allows computer regulation of the flow of N 2(g) over a hanging drop to dynamically control the evaporation of solvent. A thermal conductivity detector is used to monitor the amount of water vapor transferred from the drop to the gas stream and provides closed loop control of the evaporation process. Data acquisition and control are accomplished using a custom program written with LabVIEW software (National Instruments) on a Macintosh II microcomputer. Quantitation of several evaporation protocols has been accomplished using both the thermal conductivity detector and a novel conductance cell that allows continuous measurement of solution analyte concentrations. Crystals of hen egg white lysozyme have been grown at different evaporation rates and analyzed according to size and number of single crystals.

Wilson, L. G.; Bray, T. L.; Suddath, F. L.

1991-03-01

292

Diffusion NMR methods applied to xenon gas for materials study  

NASA Technical Reports Server (NTRS)

We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

2002-01-01

293

8, 85658583, 2008 The evaporation  

E-print Network

ACPD 8, 8565­8583, 2008 The evaporation coefficient of D2O W. S. Drisdell et al. Title Page.0 License. Atmospheric Chemistry and Physics Discussions Determination of the evaporation coefficient of D2O­8583, 2008 The evaporation coefficient of D2O W. S. Drisdell et al. Title Page Abstract Introduction

Boyer, Edmond

294

New methods of generating electricity from gas sources  

Microsoft Academic Search

Thermoelectric generators, thermionic converters, and MHD generators are discussed from the standpoint of development, materials problems, efficiency, and potential applications. Because of the high temperatures and lengths of nozzle required for effective conversion, MHD units appear more suited for gas- and oil-fired central stations of the 100 megawatt class. Thermoelectric devices, which do not require high temperatures, are less complex

Von Fredersdorff

1960-01-01

295

Method for removing hydrogen sulfide from coke oven gas  

Microsoft Academic Search

An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations.

Ritter

1982-01-01

296

Accuracy of lagoon gas emissions using an inverse dispersion method  

Technology Transfer Automated Retrieval System (TEKTRAN)

Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions. These include those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish ...

297

A method for observing gas evolution during plastic laminate cure  

NASA Technical Reports Server (NTRS)

Polyimide, phenolic, and other resins which develop volatiles during laminating or molding cure are studied using optimum cure cycles. The specimen is placed on a platen and sealed in a plastic bag, then heated and observed for gas evolution using a binocular microscope. A cover plate is added to sumulate an autoclave.

Nicholls, A. H.

1969-01-01

298

Volumetric radial basis function methods applied to gas dynamics  

Microsoft Academic Search

A set of rotational and translation transformations are applied to the Euler gas dynamic equations. In such a transformed coordinate frame, the partial differential equations (PDEs) appear as a set of steady ordinary differential equations (ODEs) in the rotating, translating frame. By using appropriate linear combinations of the ODEs, we obtain a transformed set of ODEs that resemble the compatibility

Edward J. Kansa

2003-01-01

299

Two-dimensional gas chromatography: Principles, instrumentation, methods  

Microsoft Academic Search

The principles and potentials of two or multidimensional gas chromatographic separations (MDGC) of different types of complex mixtures are outlined with regard to analytical application. Except for preparative-scale and certain process control applications systems of coupled columns should contain at least one capillary column. The separation of selected cuts is to be executed at high efficiency and with change of

Gerhard Schomburg

1995-01-01

300

Development of comprehensive numerical schemes for predicting evaporating gas-droplets flow processes of a liquid-fueled combustor. Semiannual report, 15 June 1988-30 November 1988  

SciTech Connect

An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.

Chen, C.P.

1990-01-01

301

Evaporation control research, 1955-58  

USGS Publications Warehouse

One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.

Cruse, Robert R.; Harbeck, Guy Earl

1960-01-01

302

Water Membrane Evaporator  

NASA Technical Reports Server (NTRS)

A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

Ungar, Eugene K.; Almlie, Jay C.

2010-01-01

303

Evaporation rate and vapor pressure of selected polymeric lubricating oils.  

NASA Technical Reports Server (NTRS)

A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

Gardos, M. N.

1973-01-01

304

EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS  

SciTech Connect

We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owing to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.

Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Miura, Hitoshi [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan)] [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan); Nagasawa, Makiko; Nakamoto, Taishi [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)] [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

2013-02-20

305

Tried and True: Evaporating is cool  

NSDL National Science Digital Library

Many students hold misconceptions about evaporation. In this short exercise, students will apply the kinetic molecular theory to explain how cold water can evaporate and to observe the cooling effect of evaporation, and develop their own evaporation experiments.

Hand, Richard

2006-03-01

306

Synthesis and electrochemical properties of Sb2Se3 nanowires prepared by a gas induced reduction method.  

PubMed

Sb2Se3 nanowires have been prepared by a novel gas induced reduction (GIR) method. The precursor solution prepared by dissolving Sb2(OCH2CH2O)3 and SeO2 in a certain solvent was initially separated from the reductant, hydrazine hydrate. The reductant evaporated during the heating process, dissolved into the precursor solution and reacted with Sb3+ and SeO2 and finally Sb2Se3 nanostructures formed. Different solvents including diethanolamine, glycerol, ethylene glycol, deionized water, absolute ethanol and isopropyl alcohol were respectively used for comparison. It was found that when ethylene glycol was used as a solvent, pure, relatively homogeneous, and high aspect-ratio Sb2Se3 nanowires (40-120 nm in diameter and -100 microm in length) were prepared. Growth mechanism of the Sb2Se3 nanowires was proposed. The electrochemistry character of the nanowires was investigated via assembling into lithium ion batteries. The discharge capacity of Sb2Se3/Li cell cycled between 0.3 and 2.5 V was performed in the range of 142-1036 mA x h x g(-1) during the first 30 cycles, with the charge/discharge efficiency increasing from 89.4% to 97.5%. PMID:23646581

Wang, Xin; Cai, Kefeng; Chen, Song

2013-02-01

307

Catastrophic evaporation of rocky planets  

NASA Astrophysics Data System (ADS)

Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses ? 0.1 M? (less than twice the mass of Mercury) and surface temperatures ?2000 K are found to disintegrate entirely in ?10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b - which is believed to be a rocky body evaporating at a rate of dot{M} gtrsim 0.1 M_{{{oplus }}} Gyr-1 - our model yields a present-day planet mass of ? 0.02 M? or less than about twice the mass of the Moon. Mass-loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyr with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass-loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few per cent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10-100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler - if the progenitors are as large as their maximal, Mercury-like sizes (alternatively, the progenitors could be smaller and more numerous). According to our calculations, KIC 12557548b may have lost 70 per cent of its formation mass; today we may be observing its naked iron core.

Perez-Becker, Daniel; Chiang, Eugene

2013-08-01

308

Experimental analysis and semicontinuous simulation of low-temperature droplet evaporation of multicomponent fuels  

NASA Astrophysics Data System (ADS)

Low-pollutant and efficient combustion not only in internal combustion engines requires a balanced gaseous mixture of fuel and oxidizer. As fuels may contain several hundred different chemical species with different physicochemical properties as well as defined amounts of biogenic additives, e.g., ethanol, a thorough understanding of liquid fuel droplet evaporation processes is necessary to allow further engine optimization. We have studied the evaporation of fuel droplets at low ambient temperature. A non-uniform temperature distribution inside the droplet was already considered by including a finite thermal conductivity in a one-dimensional radial evaporation model (Rivard and Brggemann in Chem Eng Sci 65(18):5137-5145, 2010). For a detailed analysis of droplet evaporation, two non-laser-based experimental setups have been developed. They allow a fast and relatively simple but yet precise measurement of diameter decrease and composition change. The first method is based on collecting droplets in a diameter range from 70 to 150 m by a high-precision scale. A simultaneous evaluation of mass increase is employed for an accurate average diameter value determination. Subsequently, a gas chromatographic analysis of the collected droplets was conducted. In the second experiment, evaporation of even smaller droplets was optically analyzed by a high-speed shadowgraphy/schlieren microscope setup. A detailed analysis of evaporating E85 (ethanol/gasoline in a mass ratio of 85 %/15 %) and surrogate fuel droplets over a wide range of initial droplet diameters and ambient temperatures was conducted. The comparison of experimental and numerical results shows the applicability of the developed model over a large range of diameters and temperatures.

Lehmann, S.; Lorenz, S.; Rivard, E.; Brggemann, D.

2015-01-01

309

Evaporative cooling of the dipolar radical OH  

E-print Network

Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in temperature and three orders in phase-space density, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and sufficiently large initial populations, much colder temperatures are possible, and even a quantum-degenerate gas of this dipolar radical -- or anything else it can sympathetically cool -- may now be in reach.

Benjamin K. Stuhl; Matthew T. Hummon; Mark Yeo; Goulven Qumner; John L. Bohn; Jun Ye

2012-09-27

310

Completion methods in thick, multilayered tight gas sands  

E-print Network

-depositional activities (such as tectonic and digenesis)4. Understanding such complex systems thus becomes a challenge. A significant challenge in tight gas formations is the completion of multi- layered pay zones. Thick, highly layered formations are being completed... by operators on a daily basis in some areas. A lot of challenges are involved when completing these reservoirs. These challenges give rise to the main question: 4 How do we optimize completion techniques to ensure coverage of all pay zones while...

Ogueri, Obinna Stavely

2009-05-15

311

EVAPORATION AND THE ISOTOPIC COMPOSITION OF TYPE A AND B REFRACTORY INCLUSIONS. D.S. Ebel, L. Grossman1, S.B. Simon, A. Davis1  

E-print Network

EVAPORATION AND THE ISOTOPIC COMPOSITION OF TYPE A AND B REFRACTORY INCLUSIONS. D.S. Ebel, LO2 (CMAS) liquids undergoing open system evaporation into pure H2 gas. This evaporation model is used . Finally, it is apparent that evaporated metal atoms cannot leave their oxygen behind in the liquid, so

Grossman, Lawrence

312

Method of generating hydrogen gas from sodium borohydride  

DOEpatents

A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester, Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

2007-12-11

313

Mapping Soil Gas Radon Concentration: A Comparative Study of Geostatistical Methods  

Microsoft Academic Search

Understanding soil gas radon spatial variations can allow the constructor of a new house to prevent radon gas flowing from\\u000a the ground. Indoor radon concentration distribution depends on many parameters and it is difficult to use its spatial variation\\u000a to assess radon potential. Many scientists use to measure outdoor soil gas radon concentrations to assess the radon potential.\\u000a Geostatistical methods

Gabriele Buttafuoco; Adalisa Tallarico; Giovanni Falcone

2007-01-01

314

Two-dimensional MHD simulations of accretion disk evaporation  

NASA Astrophysics Data System (ADS)

We simulate the accretion disk evaporation to study the nature of spectral transitions in the black hole binaries. We perform 2 dimensional magnetohydrodynamical simulations with heat conduction by electrons. We assume axisymmetric accretion disks. We put cold gas torus in hot hydrostatic halo. Weak magnetic fields are initially threaded vertically. Self-gravity and magnetic resistivity are neglected. We use the numerical codes set "CANS "(Coordinated Astronomical Numerical Software). Heat conduction equation and MHD equations are solved separately according to time splitting method. We adopt Lax-Wendroff method for the MHD part and BiCG stabilized method for heat conduction part. We set an absorbing inner boundary condition. We obtain the result that the hot gas emanates from the disk, since there is the heat flow from hot halo to cool accretion disk. Near central objects, the mass flow rate is large. In inner region the corona gas falls to black hole, otherwise in outer region that goes to far from black hole.

Nakamura, Kenji E.

2007-04-01

315

PRODUCTION ENGINEERING AND MARKETING ANALYSIS OF THE ROTATING DISK EVAPORATOR  

EPA Science Inventory

Recent EPA-funded research into the onsite, mechanical evaporation of wastewater from single family homes revealed that a rotating disk evaporator (RDE) could function in a nondischarging mode. Such a device has potential use where site limitations preclude conventional methods o...

316

A molecular dynamics simulation of droplet evaporation Lorenzo Consolini 1  

E-print Network

A molecular dynamics simulation of droplet evaporation Lorenzo Consolini 1 , Suresh K. Aggarwal A molecular dynamics (MD) simulation method is developed to study the evaporation of submicron droplets the ``vaporization'' process. ? 2003 Elsevier Science Ltd. All rights reserved. Keywords: Molecular dynamics

Aggarwal, Suresh K.

317

Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments  

DOEpatents

A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.

Carpenter, Michael A. (Scotia, NY); Sirinakis, George (Bronx, NY)

2011-01-04

318

Isothermal Gas-liquid Flow Using the Lattice Boltzmann Method  

E-print Network

deformation, such as coalescence and break-up, with better numerical stability than other interfacial tracking methods like Volume of Fluid (VOF) and level set methods. We validate the present method for stationary and moving two-phase interfaces by comparing...

Kim, Donghoon

2012-10-19

319

Development and application of a method for analysis of phthalates in ham sausages by solid-phase extraction and gas chromatography-mass spectrometry.  

PubMed

A gas chromatography-mass spectrometry assay was developed and successfully applied for the determination of phthalates in ham sausage migrated from packaging film. The phthalates studied were dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), with dibutyl adipate (DBA) as internal standard. The sample pre-treatments included extraction with n-hexane, solvent evaporation and reconstitution with acetonitrile before and after solid-phase extraction (SPE). The extraction and cleaning up procedure was carried out with cartridges containing dimethyl butylamine groups, which showed extraction efficiencies over 87.3%. The calibration curves obtained were linear with correlation coefficients greater than 0.99. The method proved to be accurate and precise for the six phthalates used. It was successfully applied to a study on the migration of phthalates from packaging PVC film into ham sausage. PMID:20374814

Guo, Zhiyong; Wang, Sui; Wei, Danyi; Wang, Meili; Zhang, Huina; Gai, Panpan; Duan, Jing

2010-03-01

320

Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method  

Microsoft Academic Search

Micro gas flows are often encountered in MEMS devices and classical CFD could not accurately predict the flow and thermal behavior due to the high Knudsen number. Therefore, the gas flow in microgeometries was investigated using the direct simulation Monte Carlo (DSMC) method. New treatments for boundary conditions are verified by simulations of micro-Poiseuille flow, compared with the previous boundary

Moran Wang; Zhixin Li

2004-01-01

321

Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)  

PubMed Central

The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttmaa, Hilkka I.

2008-01-01

322

Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method  

NASA Astrophysics Data System (ADS)

Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

2012-05-01

323

Method of fabricating an integral gas seal for fuel cell gas distribution assemblies  

DOEpatents

A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

Dettling, Charles J. (E. Hanover, NJ); Terry, Peter L. (Chathum, NJ)

1988-03-22

324

Integral gas seal for fuel cell gas distribution assemblies and method of fabrication  

SciTech Connect

A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

Dettling, Charles J. (E. Hanover, NJ); Terry, Peter L. (Chatham Township, Morris County, NJ)

1985-03-19

325

Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity  

NASA Technical Reports Server (NTRS)

The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

2012-01-01

326

Application of Fast Marching Method in Shale Gas Reservoir Model Calibration  

E-print Network

and reservoir heterogeneity but also is time consuming. In this thesis, we propose and apply an efficient technique, fast marching method (FMM), to analyze the shale gas reservoirs. Our proposed approach stands midway between analytic techniques and numerical...

Yang, Changdong

2013-07-26

327

Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide  

DOEpatents

A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2000-01-01

328

Gas  

MedlinePLUS

... swallow and the breakdown of undigested food by bacteria in the large intestine. Certain foods may cause gas. Foods that produce gas in one person may not cause gas in another. You can reduce the amount of gas you have by Drinking lots of water and non-fizzy drinks Eating more slowly so ...

329

A versatile method for preparation of hydrated microbial-latex biocatalytic coatings for gas absorption and gas evolution.  

PubMed

We describe a latex wet coalescence method for gas-phase immobilization of microorganisms on paper which does not require drying for adhesion. This method reduces drying stresses to the microbes. It is applicable for microorganisms that do not tolerate desiccation stress during latex drying even in the presence of carbohydrates. Small surface area, 10-65 ?m thick coatings were generated on chromatography paper strips and placed in the head-space of vertical sealed tubes containing liquid to hydrate the paper. These gas-phase microbial coatings hydrated by liquid in the paper pore space demonstrated absorption or evolution of H?, CO, CO? or O?. The microbial products produced, ethanol and acetate, diffuse into the hydrated paper pores and accumulate in the liquid at the bottom of the tube. The paper provides hydration to the back side of the coating and also separates the biocatalyst from the products. Coating reactivity was demonstrated for Chlamydomonas reinhardtii CC124, which consumed CO? and produced 10.2 0.2 mmol O? m? h?, Rhodopseudomonas palustris CGA009, which consumed acetate and produced 0.47 0.04 mmol H? m? h?, Clostridium ljungdahlii OTA1, which consumed 6 mmol CO m? h?, and Synechococcus sp. PCC7002, which consumed CO? and produced 5.00 0.25 mmol O? m? h?. Coating thickness and microstructure were related to microbe size as determined by digital micrometry, profilometry, and confocal microscopy. The immobilization of different microorganisms in thin adhesive films in the gas phase demonstrates the utility of this method for evaluating genetically optimized microorganisms for gas absorption and gas evolution. PMID:22592947

Gosse, Jimmy L; Chinn, Mari S; Grunden, Amy M; Bernal, Oscar I; Jenkins, Jessica S; Yeager, Chris; Kosourov, Sergey; Seibert, Michael; Flickinger, Michael C

2012-09-01

330

Can photo-evaporation trigger planetesimal formation?  

E-print Network

We propose that UV radiation can stimulate the formation of planetesimals in externally-illuminated protoplanetary disks. We present a numerical model of disk evolution including vertical sedimentation and photo-evaporation by an external O or B star. As solid material grows and settles toward the disk midplane, the outer layers of the disk become dust depleted. When such a disk is exposed to UV radiation, heating drives photo-evaporative mass-loss from its surface, generating a dust-depleted outflow. The dust:gas surface density ratio in the disk interior grows until dust in the disk midplane becomes gravitationally unstable. Thus, UV radiation fields may induce the rapid formation of planetesimals in disks where sedimentation has occurred.

Henry B. Throop; John Bally

2005-04-05

331

Thermoelectric integrated membrane evaporation water recovery technology  

NASA Technical Reports Server (NTRS)

The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

1982-01-01

332

Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains  

Microsoft Academic Search

A high-order accurate method for analyzing two-dimensional rarefied gas flows is proposed on the basis of a nonstationary kinetic equation in arbitrarily shaped regions. The basic idea behind the method is the use of hybrid unstructured meshes in physical space. Special attention is given to the performance of the method in a wide range of Knudsen numbers and to accurate

V. A. Titarev

2009-01-01

333

Acoustic device and method for measuring gas densities  

NASA Technical Reports Server (NTRS)

Density measurements can be made in a gas contained in a flow through enclosure by measuring the sound pressure level at a receiver or microphone located near a dipole sound source which is driven at constant velocity amplitude at low frequencies. Analytical results, which are provided in terms of geometrical parameters, wave numbers, and sound source type for systems of this invention, agree well with published data. The relatively simple designs feature a transmitter transducer at the closed end of a small tube and a receiver transducer on the circumference of the small tube located a small distance away from the transmitter. The transmitter should be a dipole operated at low frequency with the kL value preferable less that about 0.3.

Shakkottai, Parthasarathy (inventor); Kwack, Eug Y. (inventor); Back, Lloyd (inventor)

1992-01-01

334

Gas turbine nozzle vane insert and methods of installation  

DOEpatents

A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

Miller, William John (Simpsonville, SC); Predmore, Daniel Ross (Clifton Park, NY); Placko, James Michael (West Chester, OH)

2002-01-01

335

Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey  

SciTech Connect

A literature survey was conducted to collect information and summarize the methods available to capture iodine from fuel reprocessing off-gases. Techniques were categorized as either wet scrubbing or solid adsorbent methods, and each method was generally described as it might be used under reprocessing conditions. Decontamination factors are quoted only to give a rough indication of the effectiveness of the method. No attempt is made to identify a preferred capture method at this time, although activities are proposed that would provide a consistent baseline that would aid in evaluating technologies.

Daryl Haefner

2007-02-01

336

An inverse method of determination of the interstellar neutral gas distribution function  

NASA Astrophysics Data System (ADS)

Tarantola's method is used to solve the inverse problem of determining the shifted Maxwellian distribution function of neutral interstellar He from count rates to be obtained with the GAS experiment on the Ulysses mission. The GAS experiment instrumentation and procedures are reviewed; the forward problem is outlined; and the applicability of Tarantola's method is demonstrated using simulated GAS data to estimate He density, bulk velocity, and temperature. For a statistical noise level of 20 percent, the predictions are found to agree to within 8 percent with the values stipulated in the simulation.

Banaszkiewicz, M.; Rosenbauer, H.; Witte, M.

337

Evaporation Dynamics of Moss and Bare Soil in Boreal Forests  

NASA Astrophysics Data System (ADS)

Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the evaporation would peak immediately following wetting of the surface but the skin temperatures responded by decreasing 20 minutes later. This study shows the evaporation dynamics of moss and bare ground, which will be incorporated into a hydrology model evaluating freshwater generation from the boreal forest.

Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.

2013-12-01

338

17Oexcess in evaporated desert waters and vapor from evaporation experiments  

NASA Astrophysics Data System (ADS)

Oxygen and hydrogen isotopes are classical proxies for the investigation of climatic effects in hydrological processes. The combination of the isotopic ratios 17O/16O and 18O/16O in water allowed the determination of mass dependent processes and enabled differentiation between equilibrium and kinetic fractionation (Barkan and Luz, 2007). In analogy to d-excess, deviation in ?17O from the global average trend of meteoric water is defined as: 17Oexcess = ?'17O - 0.528 ?'18O 17Oexcess depends on the impact of diffusive evaporation into air and thus reflects relative humidity conditions. The isotope ratios of water ?17O and ?18O were determined by isotope ratio gas mass spectrometry in dual inlet mode on a ThermoFinnigan MAT 253. The oxygen was extracted by water fluorination with CoF3. Our average measurement precision for ?17O is 0.03 , for ?18O 0.05 and for 17Oexcess approximately 7 per meg (1?). We compared 17Oexcess in natural waters from the highly arid deserts of Sistan (East Iran) and Atacama (Chile) with data obtained from evaporation experiments. In these experiments, water was evaporated into a stream of dry nitrogen and vapor collected cryogenically. The data show a systematic depletion of 17Oexcess in water with increasing degree of evaporation in the residual water body. Most negative 17Oexcess were determined for samples from ponds (Sistan) and salars (Atacama). These strongly evaporated samples indicate an evaporation development, following a fractionation trend (?) of approximately 0.523. The evaporation experiment shows a ? of 0.525 and is in agreement with water data from an experiment by Barkan and Luz (2007). The difference between natural and experimental evaporation suggests either different evaporation kinetics in the natural environment, variable proportion of kinetic and equilibrium fractionation, or additional diffusive processes during ground water seepage. References: Barkan, E. and Luz, L. (2007). Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun. Mass Spectrom., Vol. 21, pp. 2999-3005.

Surma, J.; Assonov, S.; Staubwasser, M.

2013-12-01

339

Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure  

ERIC Educational Resources Information Center

This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written

Canpolat, Nurtac

2006-01-01

340

Catastrophic Evaporation of Rocky Planets  

E-print Network

Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative-hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses 2000 K are found to disintegrate entirely in 0.1 M_Earth/Gyr --- our model yields a present-day planet mass of < 0.02 M_Earth or less than about twice the mass of the Moon. Mass loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyrs with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few percent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10--100 close-in quiescent progenitors with sub-da...

Perez-Becker, Daniel

2013-01-01

341

RHESSI Observation of Chromospheric Evaporation  

E-print Network

We present analyses of the spatial and spectral evolution of hard X-ray emission observed by {\\it RHESSI} during the impulsive phase of an M1.7 flare on 2003 November 13. In general, as expected, the loop top (LT) source dominates at low energies while the footpoint (FP) sources dominate the high energy emission. At intermediate energies, both the LT and FPs may be seen, but during certain intervals emission from the legs of the loop dominates, in contrast to the commonly observed LT and FP emission. The hard X-ray emission tends to rise above the FPs and eventually merge into a single LT source. This evolution starts first at low energies and proceeds to higher energies. The spectrum of the resultant LT source becomes more and more dominated by a thermal component with an increasing emission measure as the flare proceeds. The soft and hard X-rays show a Neupert-type behavior. With a non-thermal bremsstrahlung model the brightness profile along the loop is used to determine the density profile and its evolution, which reveals a gradual increase of the gas density in the loop. These results are evidence for chromospheric evaporation and are consistent with the qualitative features of hydrodynamic simulations of this phenomenon. However, some observed source morphology and its evolution cannot be accounted for by previous simulations. Therefore simulations with more realistic physical conditions are required to explain the results and the particle acceleration and plasma heating processes.

Wei Liu; Siming Liu; Yan Wei Jiang; Vahe' Petrosian

2006-06-06

342

Flash evaporation of liquid monomer particle mixture  

DOEpatents

The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

Affinito, J.D.; Darab, J.G.; Gross, M.E.

1999-05-11

343

Flash evaporation of liquid monomer particle mixture  

DOEpatents

The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

Affinito, John D. (Kennewick, WA); Darab, John G. (Richland, WA); Gross, Mark E. (Pasco, WA)

1999-01-01

344

Laser evaporation studies  

NASA Astrophysics Data System (ADS)

The physics of vaporization of matter under pulsed CO2 laser evaporation was studied. Analysis of the nature of the vapor plume in several materials indicated the presence of numerous excited species, neutral as well as ionized species, and ions with high kinetic energies. High quality films of refractory metal oxides and epitaxial films of Ge were deposited. The oxide materials were dense and crystalline and had high refractive index values, even when deposited on room temperature substrates. Ge films were epitaxial and single crystalline when deposited on Si substrates at 300 C. Study of the relationship of deposition conditions and film properties clearly indicated the beneficial role of the energetic ions in the film deposition. Special emphasis was given to the solution of the problem of particulates in the films.

Sankur, H. O.

1987-10-01

345

Apparatus and method for a gas turbine nozzle  

SciTech Connect

A nozzle includes an inlet, an outlet, and an axial centerline. A shroud surrounding the axial centerline extends from the inlet to the outlet and defines a circumference. The circumference proximate the inlet is greater than the circumference at a first point downstream of the inlet, and the circumference at the first point downstream of the inlet is less than the circumference at a second point downstream of the first point. A method for supplying a fuel through a nozzle directs a first airflow along a first path and a second airflow along a second path separate from the first path. The method further includes injecting the fuel into at least one of the first path or the second path and accelerating at least one of the first airflow or the second airflow.

Zuo, Baifang; Ziminsky, Willy Steve; Johnson, Thomas Edward; Intile, John Charles; Lacy, Benjamin Paul

2013-02-05

346

Linear nozzle with tailored gas plumes and method  

DOEpatents

There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

Leon, David D. (Murrysville, PA); Kozarek, Robert L. (Apollo, PA); Mansour, Adel (Mentor, OH); Chigier, Norman (Pittsburgh, PA)

1999-01-01

347

Control method for turbocharged diesel engines having exhaust gas recirculation  

DOEpatents

A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

2000-03-14

348

Comparison of real gas simulations using different numerical methods  

Microsoft Academic Search

Two different numerical simulation codes (the SPLIT\\/NE code and the PoliTo code) are examined in this paper by comparing results for non-equilibrium flow cases using two different geometries, a hemisphere-cylinder-flare (axisymmetric) and a hyperbola-flare-cylinder configuration (axisymmetric and 2-D plane). The solution methods implemented in the codes are essentially different (finite difference, bow shock fitting, matrix splitting and Runge-Kutta high accuracy

S. Menne; C. Weiland; D. D'Ambrosio; M. Pandolfi

1995-01-01

349

Evaporation of tiny water aggregation on solid surfaces with different wetting properties.  

PubMed

The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil. PMID:23051060

Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

2012-11-29

350

Evaporation of tiny water aggregation on solid surfaces of different wetting properties  

E-print Network

The evaporation of a tiny amount of water on the solid surface with different wettability has been studied by molecular dynamics simulations. We found that, as the surface changed from hydrophobicity to hydrophility, the evaporation speed did not show a monotonically decrease from intuition, but increased first, and then decreased after reached a maximum value. The competition between the number of the water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. A theoretical model based on those two factors can fit the simulation data very well. This finding is helpful in understanding the evaporation on the biological surfaces, designing artificial surface of ultra fast water evaporating or preserving water in soil.

Shen Wang; Yusong Tu; Rongzheng Wan; Haiping Fang

2012-03-08

351

Comparison of different evaporation estimates over the African continent  

NASA Astrophysics Data System (ADS)

Evaporation is a key process in the water cycle with implications ranging, inter alia, from water management to weather forecast and climate change assessments. The estimation of continental evaporation fluxes is complex and typically relies on continental-scale hydrological models or land-surface models. However, it appears that most global or continental-scale hydrological models underestimate evaporative fluxes in some regions of Africa, and as a result overestimate stream flow. Other studies suggest that land-surface models may overestimate evaporative fluxes. In this study, we computed actual evaporation for the African continent using a continental version of the global hydrological model PCR-GLOBWB, which is based on a water balance approach. Results are compared with other independently computed evaporation products: the evaporation results from the ECMWF reanalysis ERA-Interim and ERA-Land (both based on the energy balance approach), the MOD16 evaporation product, and the GLEAM product. Three other alternative versions of the PCR-GLOBWB hydrological model were also considered. This resulted in eight products of actual evaporation, which were compared in distinct regions of the African continent spanning different climatic regimes. Annual totals, spatial patterns and seasonality were studied and compared through visual inspection and statistical methods. The comparison shows that the representation of irrigation areas has an insignificant contribution to the actual evaporation at a continental scale with a 0.5 spatial resolution when averaged over the defined regions. The choice of meteorological forcing data has a larger effect on the evaporation results, especially in the case of the precipitation input as different precipitation input resulted in significantly different evaporation in some of the studied regions. ERA-Interim evaporation is generally the highest of the selected products followed by ERA-Land evaporation. In some regions, the satellite-based products (GLEAM and MOD16) show a different seasonal behaviour compared to the other products. The results from this study contribute to a better understanding of the suitability and the differences between products in each climatic region. Through an improved understanding of the causes of differences between these products and their uncertainty, this study provides information to improve the quality of evaporation products for the African continent and, consequently, leads to improved water resources assessments at regional scale.

Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L. P. H.; Uhlenbrook, S.

2014-01-01

352

Method and apparatus for filtering gas with a moving granular filter bed  

DOEpatents

A method and apparatus for filtering gas (58) with a moving granular filter bed (48) involves moving a mass of particulate filter material (48) downwardly through a filter compartment (35); tangentially introducing gas into the compartment (54) to move in a cyclonic path downwardly around the moving filter material (48); diverting the cyclonic path (58) to a vertical path (62) to cause the gas to directly interface with the particulate filter material (48); thence causing the gas to move upwardly through the filter material (48) through a screened partition (24, 32) into a static upper compartment (22) of a filter compartment for exodus (56) of the gas which has passed through the particulate filter material (48).

Brown, Robert C. (Ames, IA); Wistrom, Corey (Ames, IA); Smeenk, Jerod L. (Ames, IA)

2007-12-18

353

Solar Roof Cooling by Evaporation  

E-print Network

Evaporation is nature's way of cooling. By spraying a light film of water in the form of a mist for thirty seconds, then turning the sprays off for five minutes while evaporation takes place, the roof temperature can be reduced from 1650o to 880o...

Patterson, G. V.

1980-01-01

354

Experimental Investigation of Evaporation Behavior of Polonium and Rare-Earth Elements in Lead-Bismuth Eutectic Pool  

SciTech Connect

Equilibrium evaporation behavior was experimentally investigated for polonium ({sup 210}Po) in liquid lead-bismuth eutectic (LBE) and for rare-earth elements gadolinium (Gd) and europium (Eu) in LBE to understand and clarify the transfer behavior of toxic impurities from LBE coolant to a gas phase. The experiments utilized the 'transpiration method' in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. While the previous paper ICONE12-49111 has already reported the evaporation behavior of LBE and of tellurium in LBE, this paper summarizes the outlines and the results of experiments for important impurity materials {sup 210}Po and rare-earth elements which are accumulated in liquid LBE as activation products and spallation products. In the experiments for rare-earth elements, non-radioactive isotope was used. The LBE pool is about 330-670 g in weight and has a surface area of 4 cm x 14 cm. {sup 210}Po experiments were carried out with a smaller test apparatus and radioactive {sup 210}Po produced through neutron irradiation of LBE in the Japan Materials Testing Reactor (JMTR). We obtained fundamental and instructive evaporation data such as vapor concentration, partial vapor pressure of {sup 210}Po in the gas phase, and gas-liquid equilibrium partition coefficients of the impurities in LBE under the temperature condition between 450 and 750 deg. C. The {sup 210}Po test revealed that Po had characteristics to be retained in LBE but was still more volatile than LBE solvent. A part of Eu tests implied high volatility of rare-earth elements comparable to that of Po. This tendency is possibly related to the local enrichment of the solute near the pool surface and needs to be investigated more. These results are useful and indispensable for the evaluation of radioactive materials transfer to the gas phase in LBE-cooled nuclear systems. (authors)

Shuji Ohno; Shinya Miyahara; Yuji Kurata [Japan Atomic Energy Agency (Japan); Ryoei Katsura [Nippon Nuclear Fuel Development Co., Ltd. (Japan); Shigeru Yoshida [KAKEN Co., Ltd. (Japan)

2006-07-01

355

Correcting Microwave Precipitation Retrievals for near-Surface Evaporation  

E-print Network

This paper compares two methods for correcting passive or active microwave surface precipitation estimates based on hydrometeors sensed aloft that may evaporate before landing. These corrections were derived using two years ...

Surussavadee, Chinnawat

356

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-print Network

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings...

Abernethy, D.

1985-01-01

357

Evaporative Roof Cooling- A Simple Solution to Cut Cooling Costs  

E-print Network

Since the Energy Crisis Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retro-fit installations show direct energy savings...

Abernethy, D.

358

Method for the photocatalytic conversion of gas hydrates  

DOEpatents

A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

Taylor, Charles E. (Pittsburg, PA); Noceti, Richard P. (Pittsburg, PA); Bockrath, Bradley C. (Bethel Park, PA)

2001-01-01

359

Modeling Treated LAW Feed Evaporation  

SciTech Connect

This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process.

DANIEL, WE

2004-07-08

360

Gas chromatography-mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants.  

PubMed

Gas chromatography-mass spectrometry (GC-MS) is one of the most widely used methods for analyzing the emissions of biogenic volatile organic compounds (VOCs) from plants. Preconcentration of VOCs on the cartridges filled with different adsorbents is a well-accepted method for sampling of headspace. Here, we describe a gas-chromatographic method for determination of different isoprenoids (isoprene, monoterpenes, homoterpenes, and sesquiterpenes). The technique is based on adsorption of compounds of interest on multibed adsorbent cartridges followed by thermodesorption, and detection and analysis by GC-MS. PMID:24777796

Knnaste, Astrid; Copolovici, Lucian; Niinemets, lo

2014-01-01

361

The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines  

NASA Technical Reports Server (NTRS)

A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

Schweitzer, P H; Deluca, Frank, Jr

1942-01-01

362

Modeling of Bulk Evaporation and Condensation  

NASA Technical Reports Server (NTRS)

This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

Anghaie, S.; Ding, Z.

1996-01-01

363

Black Hole - Never Forms, or Never Evaporates  

E-print Network

Many discussion about the black hole conundrums, such as singularity and information loss, suggested that there must be some essential irreconcilable conflict between quantum theory and classical gravity theory, which cannot be solved with any semiclassical quantized model of gravity, the only feasible way must be some complete unified quantum theory of gravity. In \\cite{Vachaspati2007a}, the arguments indicate the possibility of an alternate outcome of gravitational collapse which avoids the information loss problem. In this paper, also with semiclassical analysis, it shows that so long as the mechanism of black hole evaporation satisfies a quite loose condition that the evaporation lifespan is finite for external observers, regardless of the detailed mechanism and process of evaporation, the conundrums above can be naturally avoided. This condition can be satisfied with Hawking-Unruh mechanism. Thus, the conflict between quantum theory and classical gravity theory may be not as serious as it seemed to be, the effectiveness of semiclassical methods might be underestimated. An exact universal solution with spherical symmetry of Einstein field equation has been derived in this paper. All possible solutions with spherical symmetry of Einstein field equation are its special cases. In addition, some problems of the Penrose diagram of an evaporating black hole first introduced by Hawking in 1975 \\cite{Hawking1975} are clarified.

Sun Yi

2011-03-21

364

A single-filament schlieren method for flowing characteristic measurements in the pulsed gas lasers  

NASA Astrophysics Data System (ADS)

The single-filament schlieren method was based on the beam deflection in non-uniform medium. In this paper, a fourelement photodiode was used to acquire the deflection of the probing beam. The effects of electromagnetic interference (EMI) and the vibration of the blower on the output of the photodiode were investigated in detail and they have little impact on the measurements of the flowing characteristic after discharge. Then the perturbation in the discharge region was investigated. The heated gas in the discharge region can be easily detected and the gas velocity can be calculated by tracing the drift of the heated gas. This method also showed a high sensitivity and convenience to observe the acoustic waves originated from fast energy deposition. The results showed that the reflective acoustic wave existed for about 4 ms after discharge and it had a major effect on the non-uniformity of gas medium before the subsequent pulsed discharge.

Xu, Yongyue; Zuo, Duluo; Wang, Xinbing; Li, Bin; Yu, Anlan; Luo, Shiwen

2014-02-01

365

REVIEW OF METHODS OF OPTICAL GAS Detection by Direct Optical Spectroscopy, with Emphasis on Correlation Spectroscopy  

NASA Astrophysics Data System (ADS)

This chapter reviews the development of optical gas sensors, starting with an initial emphasis on optical-fibre remoted techniques and finishing with a particular focus on our own group's work on highly selective methods using correlation spectroscopy. This latter section includes extensive theoretical modelling of a correlation spectroscopy method, and compares theory with practice for a CO2 sensor.

Dakin, John P.; Chambers, Paul

366

Generalized Laguerre Polynomials and Rational Chebyshev Collocation Method for Solving Unsteady Gas Equation  

Microsoft Academic Search

In this paper we propose, a collocation method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi- infnite interval. This approach is based on generalized Laguerre poly- nomials and rational Chebyshev functions. This method reduces the solution of this problem to the solution of a system of algebraic equa- tions. We also present the comparison

K. Parand; M. Shahini; A. Taghavi

2009-01-01

367

Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities  

SciTech Connect

For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan)

2008-08-07

368

Demonstration of a Method to Determine Atmospheric Gas Concentration from Infrared Emission Spectra  

Microsoft Academic Search

The measurement techniques of trace gas pollutants such as O 3, CO and NH3 in the atmosphere near the ground have matured enough to ensure reliable human exposure assessments. However, no practical method has been identified to quantify the vertical extent of gaseous pollutants near the ground. One method, based upon passive remote sensing, might prove practical in measuring the

David W. DuBois

369

Horizontal natural gas storage caverns and methods for producing same  

DOEpatents

The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

Russo, Anthony (Albuquerque, NM)

1995-01-01

370

Continuum regions of the flow in the evaporation-condensation problems  

NASA Astrophysics Data System (ADS)

The applicability of continuum approach based on the Navier-Stokes equations for the description of some regions of the gas flow realized at the evaporation-condensation processes is studied. Steady one-dimensional flows with plane, cylindrical and spherical types of symmetry are considered. The comparison between continuum and DSMC approaches is made. An extremely large effect of the evaporating surface curvature on the size of the transonic region under strong evaporation into vacuum was discovered.

Skovorodko, P. A.

2014-12-01

371

Thermal chemical recuperation method and system for use with gas turbine systems  

DOEpatents

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01

372

Thermal chemical recuperation method and system for use with gas turbine systems  

DOEpatents

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27

373

Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods  

NASA Astrophysics Data System (ADS)

Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual tracer flux measurements and onsite observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with onsite tracer gas release allows for quantification of facility emissions, and in some cases a more detailed picture of source locations.

Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

2014-12-01

374

Gas-kinetic numerical method for solving mesoscopic velocity distribution function equation  

Microsoft Academic Search

A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and\\u000a applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified\\u000a velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes\\u000a can be presented on the basis of the kinetic BoltzmannShakhov model equation.

Zhihui Li; Hanxin Zhang

2007-01-01

375

Forest evaporation models: relationships between stand growth and evaporation  

NASA Astrophysics Data System (ADS)

The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation on the water regime. The basis for this approach is (a) that growth rates are determined by water availability and limited by the maximum water extraction potential, and (b) that stand evaporation is proportional to biomass and biomass increment. The relationships between stand growth and evaporation were modelled for a set of catchment experiments where estimates of both growth and evaporation were available. The predicted mean evaporation, over periods of several years, was generally within 10% of the measured mean annual evaporation (rainfall minus streamflow) when the model from one catchment was applied to other catchments planted with the same species. The residual evaporation, after fitting the models, was correlated with rainfall: above-average rainfall resulted in above-average evaporation. This relationship could be used to derive estimates for dry and wet years. Analyses using the models provide additional evidence that Eucalyptus grandis may be depleting groundwater reserves in catchments where its roots can reach the water table. The models are designed to be integrated into a plantation management system which uses a geographic information system for spatial analysis and modelling. The use of readily available growth parameters as predictor variables may reduce our dependence on intricate process-based models. This is seen as an efficient way of extrapolating existing catchment data reflecting the impacts of forestry on water supplies across a range of sites, climatic zones and species. This approach has the potential for further development, especially in dealing with low flows and faster growing species.

Le Maitre, D. C.; Versfeld, D. B.

1997-06-01

376

Generalized average of signals (GAS) - a new method for denoising and phase detection  

NASA Astrophysics Data System (ADS)

A novel method called Generalized Average of Signals (GAS) was developed and tested during the last two years (Mlek et al., in press). This method is designed for processing of seismograms from dense seismic arrays and is convenient mainly for denoising and weak phase detection. The main idea of the GAS method is based on non-linear stacking of seismograms in frequency domain, which considerably improves signal-to-noise ratio of coherent seismograms. Several synthetic tests of the GAS method are presented and the results are compared with the PWS method of Schimell and Paulssen (1997). Moreover, examples of application on real data are presented. These examples were chosen to show a broad applicability of the method in experiments of different scales. The first one shows identification of S-waves on seismograms from shallow seismic. The second one concerns identification of converted waves from local earthquakes registered at the WEBNET local network in western Bohemia. Finally, the third one depicts identification of PKIKP onsets on seismograms of teleseismic earthquakes. Schimmel, M., Paulssen H. (1997): Noise reduction and detection of weak, coherent signals through phase- weighted stacks. Geophys. J. Int. 130, 497-505. Mlek J., Kolnsk P., Strunc J. and Valenta J. (2007): Generalized average of signals (GAS) - a new method for detection of very weak waves in seismograms. Acta Geodyn. et Geomater., in press.

Malek, J.; Kolinsky, P.; Strunc, J.; Valenta, J.

2007-12-01

377

OPERATING PLAN TAILINGS CELLS AND EVAPORATION PONDS  

E-print Network

OPERATING PLAN TAILINGS CELLS AND EVAPORATION PONDS PI?ON RIDGE MILL Energy Fuels Resources ..........................................................................................4 3.0 EVAPORATION POND DESIGN....................................................................14 5.0 EVAPORATION PONDS OPERATING AND MONITORING PROCEDURES ....17 5.1 Standard Operating Procedures

378

Cytogenetic studies of stainless steel welders using the tungsten inert gas and metal inert gas methods for welding.  

PubMed

Cytogenetic damage was studied in lymphocytes from 23 welders using the Tungsten Inert Gas (TIG), and 21 welders using the Metal Inert Gas (MIG) and/or Metal Active Gas (MAG) methods on stainless steel (SS). A matched reference group I, and a larger reference group II of 94 subjects studied during the same time period, was established for comparison. Whole blood conventional cultures (CC), cultures in which DNA synthesis and repair were inhibited (IC), and the sister chromatid exchange (SCE) assay were applied in the study. For the CC a statistically significant decrease in chromosome breaks and cells with aberrations was found for both TIG/SS and MIG/MAG/SS welders when compared with reference group II. A non-significant decrease was found for the corresponding parameters for the two groups of welders when compared with their matched referents. A statistically significant negative association was found between measurements of total chromium (Cr) in inhaled air and SCE, and a weaker negative correlation with hexavalent Cr (Cr(VI)) in air. In conclusion, no cytogenetic damage was found in welders exposed to the TIG/SS and MIG/MAG/SS welding fumes with low content of Cr and Ni. On the contrary, a decline in the prevalence of chromosomal aberrations was indicated in the TIG/SS and MIG/MAG/SS welders, possibly related to the suggested enhancement of DNA repair capacity at slightly elevated exposures. PMID:7885396

Jelmert, O; Hansteen, I L; Langrd, S

1995-03-01

379

Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains  

Microsoft Academic Search

A high-order accurate method for analyzing two-dimensional rarefied gas flows is proposed on the basis of a nonstationary\\u000a kinetic equation in arbitrarily shaped regions. The basic idea behind the method is the use of hybrid unstructured meshes\\u000a in physical space. Special attention is given to the performance of the method in a wide range of Knudsen numbers and to accurate

V. A. Titarev

2009-01-01

380

Control of black hole evaporation?  

E-print Network

Contradiction between Hawking's semi-classical arguments and string theory on the evaporation of black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that original Hawking effect can be also regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during evaporation process and as a result the evaporation process itself, significantly.

Doyeol Ahn

2007-02-24

381

Effect of pressure on the rate of evaporation from capillaries: statistical rate theory approach  

E-print Network

- dictions was also good, but the test was not as rigorous, since the internal vibrational frequenciesEffect of pressure on the rate of evaporation from capillaries: statistical rate theory approach P from studies of evaporation and condensation, crystal dissolution, gas­solid surface kinetics on single

Ward, Charles A.

382

Development of a Direct Evaporator for the Organic Rankine Cycle  

Microsoft Academic Search

This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The projects technical objective

Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

2011-01-01

383

Microfluidic evaporator for on-chip sample concentration.  

PubMed

We present a simple technique for the concentration of liquid samples in microfluidic devices applicable for single or multiple-phase configurations. The strategy consists of capturing the sample of interest within microfluidic traps and breaking its continuity by the introduction of a gas phase, which is also used to evaporate it. PMID:22918490

Casadevall i Solvas, Xavier; Turek, Vladimir; Prodromakis, Themistoklis; Edel, Joshua B

2012-10-21

384

Generation of charged clusters during thermal evaporation of gold  

Microsoft Academic Search

Investigating the generation of charged clusters during thermal evaporation of gold at 1523K has created a new understanding of film growth. In order to verify the presence of charged clusters in the gas phase and their polarity biases of +200, 0 and ?200V were applied to the substrate. The charge on the majority of clusters was shown to be positive

Mark C Barnes; In-D Jeon; Doh-Y Kim; Nong M Hwang

2002-01-01

385

Efficient method of gas laser pumping by an electron beam in the SIGE-1 experimental setup  

SciTech Connect

Lasers, sources of coherent UV and vacuum UV radiation, plasmachemical reactors, reactors for cleaning fouled gases, etc., can be classified as devices the working medium of which is plasma formed as a result of the interaction of a high-current relativistic electronic beam with gas. Efficiency of such devices which are united under the common name 'systems of injection gas electronics' (SIGE) depends mainly on the efficiency of energy transfer from a beam to gas ({eta}g = W{sub g}/W{sub b}) and that of the transform of the energy transferred to gas into the energy of the ultimate product W{sub in} ({eta}{sub in} = W{sub in}/W{sub g}). As a special case of SIGE, an experimental bench laser is considered. The new efficient method of pumping is supposed to be implemented on this laser to optimize the energy contribution {eta}{sub g} and useful output {eta}{sub in}.

Arlantsev, S. V., E-mail: arlantsev@mail.ru [Orlov Special Design Engineering Bureau of High-Energy Lasers 'Granat,' (Russian Federation); Kuz'min, G. P.; Minaev, I. M.; Mkheidze, G. P.; Tikhonevich, O. V.; Ul'yanov, D. K. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

2011-12-15

386

A method to estimate weight and dimensions of aircraft gas turbine engines. Volume 1: Method of analysis  

NASA Technical Reports Server (NTRS)

Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.

Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.

1977-01-01

387

A mass balance method for non-intrusive measurements of surface-air trace gas exchange  

NASA Astrophysics Data System (ADS)

A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

388

Method and apparatus for noble gas atom detection with isotopic selectivity  

DOEpatents

Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

Hurst, G. Samuel (Oak Ridge, TN); Payne, Marvin G. (Harriman, TN); Chen, Chung-Hsuan (Knoxville, TN); Parks, James E. (Oak Ridge, TN)

1984-01-01

389

A Gas Dynamics Method Based on The Spectral Deferred Corrections (SDC) Time Integration Technique and The Piecewise Parabolic Method (PPM)  

SciTech Connect

We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM framework is used to define edge averaged quantities which are then used to evaluate numerical flux functions. The SDC technique is used to integrate solution in time. This kind of approach was first taken by Anita et al in [17]. However, [17] is problematic when it is implemented to certain shock problems. Here we propose significant improvements to [17]. The method is fourth order (both in space and time) for smooth flows, and provides highly resolved discontinuous solutions. We tested the method by solving variety of problems. Results indicate that the fourth order of accuracy in both space and time has been achieved when the flow is smooth. Results also demonstrate the shock capturing ability of the method.

Samet Y. Kadioglu

2011-12-01

390

[Research on the method of interference correction for nondispersive infrared multi-component gas analysis].  

PubMed

A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible. PMID:22250543

Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man

2011-10-01

391

Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.  

PubMed

Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (?eff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, ?eff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, ?eff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of ?eff was developed. PMID:23329814

Havenith, George; Brde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

2013-03-15

392

An Experimental and Modeling Study of Evaporation from Bare Soils Subjected to Natural Boundary Conditions at the Land-Atmospheric Interface  

NASA Astrophysics Data System (ADS)

Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. We developed a unique two dimensional cell apparatus equipped with a network of sensors for automated and continuous monitoring of soil moisture, soil and air temperature and relative humidity, and wind velocity. Precision data under well-controlled transient heat and wind boundary conditions was generated. Results from numerical simulations were compared with experimental data. Results demonstrate the importance of properly characterizing soil thermal properties and accounting for dry soil conditions to properly estimate evaporation. Initial comparisons of various formulations of evaporation demonstrate the need for joint evaluation of heat and mass transfer for better modeling accuracy. Detailed comparisons are still underway. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface.

Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits

2011-12-01

393

Dual manifold heat pipe evaporator  

DOEpatents

An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

Adkins, D.R.; Rawlinson, K.S.

1994-01-04

394

Evaporation Tower With Prill Nozzles  

NASA Technical Reports Server (NTRS)

Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

Du Fresne, E. R.

1984-01-01

395

Explosive evaporation in solar flares  

NASA Technical Reports Server (NTRS)

This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

Fisher, George H.

1987-01-01

396

How do Black Holes evaporate?  

NASA Astrophysics Data System (ADS)

The study of a two dimensional model suggests the possibility that Black Hole evaporation may become a dynamically driven process even before Planck era is reached. On leave from the Department of Physics, University of Bologna, Italy.

Balbinot, Roberto

1984-03-01

397

Separation of sodium chloride from the evaporated residue of the reverse osmosis reject generated in the leather industry--optimization by response surface methodology.  

PubMed

Reverse osmosis (RO) concentrate is being evaporated by solar/thermal evaporators to meet zero liquid discharge standards. The resulted evaporated residue (ER) is contaminated with both organic and inorganic mixture of salts. The generation of ER is exceedingly huge in the leather industry, which is being collected and stored under the shelter to avoid groundwater contamination by the leachate. In the present investigation, a novel process for the separation of sodium chloride from ER was developed, to reduce the environmental impact on RO concentrate discharge. The sodium chloride was selectively separated by the reactive precipitation method using hydrogen chloride gas. The selected process variables were optimized for maximum yield ofNaCl from the ER (optimum conditions were pH, 8.0; temperature, 35 degrees C; concentration of ER, 600 g/L and HCl purging time, 3 min). The recovered NaCl purity was verified using a cyclic voltagramm. PMID:24956779

Boopathy, R; Sekaran, G

2014-08-01

398

Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide  

DOEpatents

A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2001-03-27

399

The desorptivity model of bulk soil-water evaporation  

NASA Technical Reports Server (NTRS)

Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

Clapp, R. B.

1983-01-01

400

Comparison Between Rational Chebyshev and Modified Generalized Laguerre Functions Pseudospectral Methods for Solving Lane-Emden and Unsteady Gas Equations  

Microsoft Academic Search

In this paper we provide a pseudospectral method for Lane-Emden equation which models many phenomena in mathematical physics and astrophysics. We also use this method for solving unsteady gas equation which model unsteady flow of a gas through a semi-infinite porous medium. This approach is based on some orthogonal functions which will be defined. Pseudospectral method reduces the solution of

K. Parand; A. Taghavi; M. Shahini

2009-01-01

401

Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces  

NASA Astrophysics Data System (ADS)

Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

2011-12-01

402

DWPF Recycle Evaporator Simulant Tests  

SciTech Connect

Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.

Stone, M

2005-04-05

403

GasKinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics  

E-print Network

to the MHD equations has not been fully addressed. The search for robust, accurate and efficient MHD flow Abstract A gas­kinetic flux splitting method is developed for the ideal magnetohydrodynamics (MHD) equa­ tions. The new scheme is based on the direct splitting of the flux function of the MHD equations

Xu, Kun

404

Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods  

ERIC Educational Resources Information Center

A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the

Halpern, Arthur M.

2011-01-01

405

METHOD FOR VARIATION OF GRAIN SIZE IN STUDIES OF GAS-SOLID REACTIONS INVOLVING CAO  

EPA Science Inventory

The paper describes a method for varying grain size in studies of gas-solid reactions involving CaO. (Note: Introducing grain size as an independent experimental variable should contribute to improved understanding of reactions in porous solids.) Calcining 1 micrometer CaCO3 part...

406

Method of purifying a gas stream using 1,2,3-triazolium ionic liquids  

DOEpatents

A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

Luebke, David; Nulwala, Hunald; Tang, Chau

2014-12-09

407

Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments  

DOEpatents

While silicon-containing ceramics or ceramic composites are prone to material loss in combustion gas environments, this invention introduces a method to prevent or greatly reduce the thickness loss by injecting directly an effective amount, generally in the part per million level, of silicon or silicon-containing compounds into the combustion gases.

Brun, Milivoj Konstantin (Ballston Lake, NY); Luthra, Krishan Lal (Niskayuna, NY)

2003-01-01

408

NOVEL CONCEPTS, METHODS AND ADVANCED TECHNOLOGY IN PARTICULATE/GAS SEPARATION  

EPA Science Inventory

This paper discusses presentations made during a symposium on novel concepts, methods, and advanced technology in particulate/gas separation. The symposium, held at the University of Notre Dame and sponsored by the National Science Foundation and the Environmental Protection Agen...

409

Neutron methods for measuring ²³⁵U content in UF gas  

Microsoft Academic Search

In the United States and Russia, UF gas streams of highly enriched uranium and lower enrichment uranium am being blended to reduce the stockpile of the highly enriched material. The resultant uranium is no longer useful for weapons, but is suitable as fuel for nuclear reactors. A method to verify the blending of high- and low-enrichment uranium was developed at

D. C. Stromswold; A. J. Peurrung; P. L. Reeder; R. A. Pappas; D. S. Sunberg

1996-01-01

410

Atmospheric Environment 42 (2008) 30763086 Scavenging of soluble gases by evaporating and growing cloud  

E-print Network

Atmospheric Environment 42 (2008) 3076­3086 Scavenging of soluble gases by evaporating and growing. Scavenging of atmospheric gaseous pollutants by cloud droplets is a result of gas absorption mechanism

Elperin, Tov

411

Investigation on mercury removal method from flue gas in the presence of sulfur dioxide.  

PubMed

A new integrated process was developed for the removal and reclamation of mercury from the flue gas in the presence of SO2, typically derived from nonferrous metal smelting. The new process contains a pre-desulfurization unit (Stage I) and a co-absorption unit (Stage II). In Stage I, 90% of the SO2 from flue gas can be efficiently absorbed by ferric sulfate and reclaimed sulfuric acid. Meanwhile, the proportion of Hg(2+) and Hg(0) in the flue gas can be redistributed in this stage. Then, over 95% of the Hg(0) and the residual SO2 can be removed simultaneously with a composite absorption solution from the flue gas in Stage II, which is much more efficient for the Hg(0) reclaiming than the traditional method. The composite absorption solution in Stage II, which is composed of 0.1g/L HgSO4, 1.0% H2O2 and H2SO4, could effectively remove and reclaim Hg(0) overcoming the negative effect of SO2 on Hg(0) absorption. Moreover, the concentrations of HgSO4 and H2O2 were adjusted with the changes in of the concentrations of Hg(0) and SO2 in the flue gas. It is a potential and promising technology for the mercury removal and reclaim from the flue gas in the presence of SO2. PMID:25072135

Ma, Yongpeng; Qu, Zan; Xu, Haomiao; Wang, Wenhua; Yan, Naiqiang

2014-08-30

412

Method for creating gas standards form liquid HFE-7100 and FC-72.  

SciTech Connect

HFE-7100 and FC-72 fluorinert are two fluids used during weapon component manufacturing. HFE-7100 is a solvent used in the cleaning of parts, and FC-72 is the blowing agent of a polymeric removable foam. The presence of either FC-72 or HFE-7100 gas in weapon components can provide valuable information as to the stability of the materials. Therefore, gas standards are needed so HFE-7100 and FC-72 gas concentrations can be accurately measured. There is no current established procedure for generating gas standards of either HFE-7100 or FC-72. This report outlines the development of a method to generate gas standards ranging in concentration from 0.1 ppm to 10% by volume. These standards were then run on a Jeol GC-Mate II mass spectrometer and analyzed to produce calibration curves. We present a manifold design that accurately generates gas standards of HFE-7100 and FC-72 and a procedure that allows the amount of each to be determined.

White, Michael K.; Brown, Jason R.; Thornberg, Steven Michael; Hochrein, James Michael; Irwin, Adriane Nadine

2007-07-01

413

WATER RESOURCES RESEARCH, VOL. 17, NO. S, PAGES 1453-1462, OCTOBER 1981 Operational Estimates ofLake Superior Evaporation  

E-print Network

Lake Superior Evaporation Based on IFYGL Findings JAN A. DERECKI NatioMI Oceanic and Atmospheric Administration, Great Lakes Enllironmental Research Laboratory AM Arbor, Michigan 48104 Monthly evapor~tion from Lake.SS transfer method. This method permits timely evaporation estimates from readily available land

414

Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles  

Microsoft Academic Search

Method and multiple-stage absorber for effecting gradual absorption of a gas in a solvent under controlled conditions so as to obtain a high-enthalpy solution of the gas in the solvent with maximum recuperation of the heat of absorption. This is achieved by passing the solvent and the gas in respectively opposite directions through a plurality of discrete absorption stages so

A. Kogan; U. Moore

1985-01-01

415

A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples  

NASA Technical Reports Server (NTRS)

A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

Carr, R. H.; Bustin, R.; Gibson, E. K.

1987-01-01

416

Lunar capture orbits, a method of constructing earth moon trajectories and the lunar GAS mission  

NASA Astrophysics Data System (ADS)

A method is described to construct trajectories from the earth to the moon which utilizes the existence of lunar capture orbits and the concept of 'stability boundary'. These orbits are ballistic and represent a new family of trajectories. They go into orbit about the moon from a suitable position about the earth with no required thrusting. This method is applied to a mission being studied at JPL called Lunar GAS (Get Away Special). Other applications are discussed.

Belbruno, E. A.

1987-05-01

417

Gas chromatographic method for the determination of hexaconazole residues in black tea  

Microsoft Academic Search

A highly reliable, quantitative and sensitive analytical method for determining the residues of the fungicide, hexaconazole\\u000a in black tea is described. The proposed method is based on liquid-liquid extraction followed by gas chromatographic determination,\\u000a using nitrogen phosphorus detector (GC-NPD) for the identification and quantitation of hexaconazole. The most appropriate\\u000a solvent mixture for extracting hexaconazole residues from black tea was n-hexane:acetone

Chinnachamy Karthika; Paul James Sachin

2008-01-01

418

Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity  

DOEpatents

A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

Whealton, John H. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Storey, John M. (Oak Ridge, TN); Raridon, Richard J. (Oak Ridge, TN); Armfield, Jeffrey S. (Upsilanti, MI); Bigelow, Timothy S. (Knoxville, TN); Graves, Ronald L. (Knoxville, TN)

2001-01-01

419

From evaporating pans to transpiring plants (John Dalton Medal Lecture)  

NASA Astrophysics Data System (ADS)

The name of the original inventor of irrigated agriculture is lost to antiquity. Nevertheless, one can perhaps imagine an inquisitive desert inhabitant noting the greener vegetation along a watercourse and putting two and two together. Once water was being supplied and food was being produced it would be natural to ask a further question: how much water can we put on? No doubt much experience was gained down through the ages, but again, one can readily imagine someone inverting a rain gauge, filling it with water and measuring how fast the water evaporated. The inverted rain gauge measures the demand for water by the atmosphere. We call it the evaporative demand. I do not know if this is what actually happened but it sure makes an interesting start to a talk. Evaporation pans are basically inverted rain gauges. The rain gauge and evaporation pan measure the supply and demand respectively and these instruments are the workhorses of agricultural meteorology. Rain gauges are well known. Evaporation pans are lesser known but are in widespread use and are a key part of several national standardized meteorological networks. Many more pans are used for things like scheduling irrigation on farms or estimating evaporation from lakes. Analysis of the long records now available from standardized networks has revealed an interesting phenomenon, i.e., pan evaporation has increased in some places and decreased in other but when averaged over large numbers of pans there has been a steady decline. These independent reports from, for example, the US, Russia, China, India, Thailand, are replicated in the southern hemisphere in, for example, Australia, New Zealand and South Africa. One often hears the statement that because the earth is expected to warm with increasing greenhouse gas emissions then it follows that water will evaporate faster. The pan evaporation observations show that this widely held expectation is wrong. When expectations disagree with observations, it is the observations that win. That is the basis of science. In this Dalton Medal lecture we first examine pan evaporation observations and show why pan evaporation has declined. Armed with that knowledge we then investigate the consequences for plant water use and how this is directly coupled to the catchment water balance.

Roderick, Michael

2013-04-01

420

Investigation of a New Monte Carlo Method for the Transitional Gas Flow  

SciTech Connect

The Direct Simulation Monte Carlo method (DSMC) is well developed for rarefied gas flow in transition flow regime when 0.0110, the gas flow is free molecular and can be simulated by the Test Particle Monte Carlo method (TPMC) without any problem even for a complex 3D vacuum system. In this paper we will investigate the approach to extend the TPMC to the transition flow regime by considering the collision between gas molecules as an interaction between a probe molecule and the gas background. Recently this collision mechanism has been implemented into ProVac3D, a new TPMC simulation program developed by Karlsruhe Institute of Technology (KIT). The preliminary simulation result shows a correct nonlinear increasing of the gas flow. However, there is still a quantitative discrepancy with the experimental data, which means further improvement is needed.

Luo, X.; Day, Chr. [Karlsruhe Institute of Technology(KIT), Institute for Technical Physics, 76021, Karlsruhe (Germany)

2011-05-20

421

Exhaust gas recirculation control method and apparatus for internal combustion engine  

SciTech Connect

An exhaust gas recirculation control method is described for operating an exhaust gas recirculation control device including a needle valve provided in an exhaust gas recirculation passage for setting an effective diameter of the passage, a position sensor for providing a signal representing a position of the needle valve, and a negative pressure motor for positioning the needle valve. The method comprises: setting a target value for the needle valve according to predetermined operating conditions of the internal combustion engine; measuring a positional deviation between the target value and an actual position of the needle valve as represented by the signal provided by the position sensor; and driving the negative pressure motor with only a single drive pulse having a time width corresponding to the measured positional deviation. An exhaust gas recirculation control apparatus is described for operating an exhaust gas recirculation control device. The apparatus comprises: means for setting a target value for the needle valve according to predetermined operating conditions of the internal combustion engine; and means for measuring a positional deviation between the target value and an actual position of the needle valve as represented by the signal provided by the position sensor.

Tsutsumi, K.

1987-02-10

422

Fault delineation studies along major thrust (MBT, MCT) of NW Himalayas, India using soil gas method  

NASA Astrophysics Data System (ADS)

A soil gas survey is conducted in Dharamsala region (area is seismically active and falls in the High Seismic Zone V of the Seismic Map of India) wherein forty soil gas samples are collected and analyzed for radon and helium concentrations. The coexisted anomalies are not only recorded along MBT-2 but also along the drainage system, indicating the presence of lineaments along these drainage systems. The results also suggest the presence of active transverse tectonic features (lineaments, faults) in the study area. Keeping in view the importance of tectonic setup in adjoining Palampur area, another soil gas survey is conducted where about thirty-five soil gas samples were collected along Chail thrust (MCT), MBT and Palampur thrust. The lineament pattern as observed from the soil gas data, in this zone is again the dominance of transverse (NE-SW) to the general strike of the Himalayas. Although. the past seismic activity does not appear to be intense as per the density of epicenters, but the dominance of transverse lineaments and other neotectonic evidences coupled with soil gas observations indicates that the future seismicity can't be overruled in this part. The study of aerial photographs, satellite images, topographic maps supported by ground truth survey reveals that the Mandi-Sundernagar area of Himachal Pradesh, has a network of interlinked subsurface fractures. In order to define the tectonic behavior of the study area, the analysis of the photo lineament features was integrated with soil-gas prospecting. A soil gas survey, where about seventy-five soil gas samples are collected, is conducted in study area. In this study, the relationship between radon, helium soil-gas anomalies and the structural patterns derived from the photo lineament analysis are investigated for the first time. Elevated emanation of radon and helium gases are detected over major tectonic features of the study area, thus indicating anomalous permeability of these zones in comparison with the adjacent areas. Results obtained during present investigation shows that soil gas method may be used as a tool in identifying active tectonic features (faults, lineaments, fractures) and also complementing and specifying remotely sensed structures and zones.

Mahajan, Sandeep; Singh Bajwa, Bikramjit; Walia, Vivek; Kumar, Arvind; Singh, Surinder; Yang, Tsanyo Frank; Dhar, Sunil

2010-05-01

423

Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films  

Microsoft Academic Search

This article gives an overview on recent developments in metal-oxide-based gas sensor systems, in particular on nanocrystalline\\u000a oxide materials deposited on modern, state-of-the-art sensor platforms fabricated in microtechnology. First, metal-oxide-based\\u000a gas sensors are introduced, and the underlying principles and fundamentals of the gas sensing process are laid out. In the\\u000a second part, the different deposition methods, such as evaporation, sputtering,

M. Graf; A. Gurlo; N. Brsan; U. Weimar; A. Hierlemann

2006-01-01

424

Catalyst for selective conversion of synthesis gas and method of making the catalyst  

DOEpatents

A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

1986-01-01

425

How over 100 years of climate variability may affect estimates of potential evaporation  

NASA Astrophysics Data System (ADS)

Hydrological modeling frameworks require an accurate representation of evaporation fluxes for appropriate quantification of e.g. the soil moisture budget, droughts, recharge and groundwater processes. Many frameworks have used the concept of potential evaporation, often estimated for different vegetation classes by multiplying the evaporation from a reference surface ("reference evaporation") with crop specific scaling factors ("crop factors"). Though this two-step potential evaporation approach undoubtedly has practical advantages, the empirical nature of both reference evaporation methods and crop factors limits its usability in extrapolations and non-stationary climatic conditions. In this paper we assess the sensitivity of potential evaporation estimates for different vegetation classes using the two-step approach when calibrated using a non-stationary climate. We used the past century's time series of observed climate, containing non-stationary signals of multi-decadal atmospheric oscillations, global warming, and global dimming/brightening, to evaluate the sensitivity of potential evaporation estimates to the choice and length of the calibration period. We show that using empirical coefficients outside their calibration range may lead to systematic differences between process-based and empirical reference evaporation methods, and systematic errors in estimated potential evaporation components. Such extrapolations of time-variant model parameters are not only relevant for the calculation of potential evaporation, but also for hydrological modeling in general, and they may limit the temporal robustness of hydrological models.

Bartholomeus, R. P.; Stagge, J. H.; Tallaksen, L. M.; Witte, J. P. M.

2014-09-01

426

Direct numerical simulation methods of hypersonic flat-plate boundary layer in thermally perfect gas  

NASA Astrophysics Data System (ADS)

High-temperature effects alter the physical and transport properties of air such as vibrational excitation in a thermally perfect gas, and this factor should be considered in order to compute the flow field correctly. Herein, for the thermally perfect gas, a simple method of direct numerical simulation on flat-plat boundary layer is put forward, using the equivalent specific heat ratio instead of constant specific heat ratio in the N-S equations and flux splitting form of a calorically perfect gas. The results calculated by the new method are consistent with that by solving the N-S equations of a thermally perfect gas directly. The mean flow has the similarity, and consistent to the corresponding Blasius solution, which confirms that satisfactory results can be obtained basing on the Blasius solution as the mean flow directly in stability analysis. The amplitude growth curve of small disturbance is introduced at the inlet by using direct numerical simulation, which is consistent with that obtained by linear stability theory. It verified that the equation established and the simulation method is correct.

Jia, WenLi; Cao, Wei

2014-01-01

427

Evaporation from seven reservoirs in the Denver water-supply system, central Colorado  

USGS Publications Warehouse

Seven reservoirs in central Colorado, operated by the Denver Board of Water Commissioners, were studied during 1967-73 to determine evaporation losses. These reservoirs, Elevenmile Canyon, Dillon, Gross, Antero, Cheesman, Williams Fork, and Ralston, are located on both sides of the Continental Divide. Methods for computing evaporation include energy-budget, mass-transfer, and pan relationships. Three reservoirs, Elevenmile Canyon, Dillon, and Gross, had mass-transfer coefficients calibrated by energy-budget studies. At the remaining reservoirs, an empirical technique was used to estimate the mass-transfer coefficient. The enery-budget-calibrated methods give the most accurate evaporation values; the empirical coefficients give only a best estimate of evaporation. All reservoirs should be calibrated by energy-budget studies. The pan method of computing evaporation is the least reliable method because of problems of advected energy through the sides of the pan, representative pan exposure , and the irregularity of ratios of reservoir to pan evaporation. (Woodard-USGS)

Ficke, John F.; Adams, D. Briane; Danielson, T.W.

1977-01-01

428

Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion.  

PubMed

This paper contains experimental research of NOx reduction in the combustion process with the primary methods, which were applied separately and in combined systems. In addition, the pulsation disturbance (PD) was applied, that is the gas stream was disturbed to increase the intensity of reagents mixing. An experimental stand was built to determine an influence of the following primary methods: air staging, reburning and flue gas recirculation on a reduction of NOx concentration. Experiments were carried out in three combinations: air staging with reburning, reburning with recirculation and air staging with recirculation. In all these cases, the PD was simultaneously applied. Researches were carried out in a quartz combustion chamber with laboratory equipment enabled to measure all the thermal and the chemical parameters of the process. The simultaneous application of primary methods causes additional increase in NOx reduction in certain systems. PMID:24645439

Zajemska, Monika; Musia?, Dorota; Poskart, Anna

2014-01-01

429

Steady evaporation and condensation of isolated clouds in hot plasma  

NASA Technical Reports Server (NTRS)

The evaporation and condensation of an isolated cloud embedded in a thermally stable hot gas is studied under the assumption that the ambient hot gas is in thermal equilibrium at constant temperature and that the cloud is large enough that classical conduction is valid. It is found that the cloud will evaporate provided that it is smaller than the Field length, which gives the maximum range of thermal conduction. A large cloud can condense only if the pressure exceeds the saturated vapor pressure p(sat). The pressure required for condensation increases as the cloud radius decreases, until condensation becomes impossible. Since p(sat) is close to the maximum pressure at which the hot gas can exist in equilibrium, condensation is likely to occur under unsteady conditions. The Compton-bremsstrahlung case is treated as an example.

Mckee, Christopher F.; Begelman, Mitchell C.

1990-01-01

430

Evaporation of mercury impurity from liquid lead-bismuth eutectic  

NASA Astrophysics Data System (ADS)

The equilibrium evaporation of mercury from dilute solutions in liquid lead-bismuth eutectic (LBE) was studied in argon atmosphere. Mercury present as impurity in LBE was evaporated and detected by atomic fluorescence spectroscopy. A method which could accurately simulate the experimental data was developed. Coefficients of the Henry constant temperature correlation for mercury dissolved in LBE were determined. Experiments with samples from several different batches of LBE revealed that mercury at mole fractions between 10-6 and 10-12 and temperatures between 150 and 350 C evaporated from liquid LBE close to ideal behavior. Evaporation of mercury from solid LBE on the other hand was unexpectedly high. These results are important for safety evaluations of LBE based spallation targets and accelerator driven systems.

Aerts, A.; Danaci, S.; Gonzalez Prieto, B.; Van den Bosch, J.; Neuhausen, J.

2014-05-01

431

Building microscopic soccer balls with evaporating colloidal fakir drops.  

PubMed

Evaporation-driven particle self-assembly can be used to generate three-dimensional microstructures. We present a unique method to create colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion droplets on a special type of superhydrophobic microstructured surface, on which the droplet remains in Cassie-Baxter state during the entire evaporative process. The remainders of the droplet consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the dynamics of the droplet evaporation, particle size, and number of particles in the system. PMID:23010925

Marn, Alvaro G; Gelderblom, Hanneke; Susarrey-Arce, Arturo; van Houselt, Arie; Lefferts, Leon; Gardeniers, Johannes G E; Lohse, Detlef; Snoeijer, Jacco H

2012-10-01

432

Removal of Sulfate Ion From AN-107 by Evaporation  

SciTech Connect

Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid.

GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

2000-08-02

433

Building microscopic soccer balls with evaporating colloidal fakir drops  

PubMed Central

Evaporation-driven particle self-assembly can be used to generate three-dimensional microstructures. We present a unique method to create colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion droplets on a special type of superhydrophobic microstructured surface, on which the droplet remains in CassieBaxter state during the entire evaporative process. The remainders of the droplet consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the dynamics of the droplet evaporation, particle size, and number of particles in the system. PMID:23010925

Marn, lvaro G.; Gelderblom, Hanneke; Susarrey-Arce, Arturo; van Houselt, Arie; Lefferts, Leon; Gardeniers, Johannes G. E.; Lohse, Detlef; Snoeijer, Jacco H.

2012-01-01

434

Vapor pressure measurements on low-volatility terpenoid compounds by the concatenated gas saturation method.  

PubMed

The atmospheric oxidation of monoterpenes plays a central role in the formation of secondary organic aerosols (SOAs), which have important effects on the weather and climate. However, models of SOA formation have large uncertainties. One reason for this is that SOA formation depends directly on the vapor pressures of the monoterpene oxidation products, but few vapor pressures have been reported for these compounds. As a result, models of SOA formation have had to rely on estimated values of vapor pressure. To alleviate this problem, we have developed the concatenated gas saturation method, which is a simple, reliable, high-throughput method for measuring the vapor pressures of low-volatility compounds. The concatenated gas saturation method represents a significant advance over traditional gas saturation methods. Instead of a single saturator and trap, the concatenated method uses several pairs of saturators and traps linked in series. Consequently, several measurements of vapor pressure can be made simultaneously, which greatly increases the rate of data collection. It also allows for the simultaneous measurement of a control compound, which is important for ensuring data quality. In this paper we demonstrate the use of the concatenated gas saturation method by determination of the vapor pressures of five monoterpene oxidation products and n-tetradecane (the control compound) over the temperature range 283.15-313.15 K. Over this temperature range, the vapor pressures ranged from about 0.5 Pa to about 70 Pa. The standard molar enthalpies of vaporization or sublimation were determined by use of the Clausius-Clapeyron equation. PMID:20000397

Widegren, Jason A; Bruno, Thomas J

2010-01-01

435

Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method  

NASA Astrophysics Data System (ADS)

In recent years, polarized 3He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3He gas using the SEOP method.

Lee, Wai Tung; Tong, Xin; Rich, Dennis; Liu, Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

2009-09-01

436

Laser-assisted field evaporation from insulators triggered by photoinduced hole accumulation  

NASA Astrophysics Data System (ADS)

We analyze the mechanism of laser-assisted field evaporation from insulators triggered by photoinduced hole accumulation at the tip apex. The effects of hole accumulation on the electric flux line and the activation barrier for field evaporation are analyzed by the boundary element method with a mesoscopic model and atomistic ab initio calculations. The ab initio calculations indicate that a certain amount of hole accumulation reduces the activation barrier for field evaporation substantially. We propose the following scenario for laser-assisted field evaporation from insulators: 1) a laser pulse creates holes in the valence band of oxide through electronic excitation, 2) the holes accumulate at the tip apex due to the external direct-current electric field, 3) the positive charge at the apex reduces the activation barrier for cation evaporation, 4) the cation evaporates from the apex, and 5) the next laser pulse creates holes again and triggers subsequent field evaporations.

Tamura, H.; Tsukada, M.; McKenna, K. P.; Shluger, A. L.; Ohkubo, T.; Hono, K.

2012-11-01

437

The Performance of Refrigeration Cycle with Vapor Re-circulation Evaporator Using an Ejector  

NASA Astrophysics Data System (ADS)

We have proposed new method that re-circulates vapor refrigerant into the evaporator using an ejector to enhance the evaporating heat transfer in the refrigeration cycle. It makes the evaporating heat transfer coefficient higher by increase of the dryness-quality at the inlet of evaporator. We investigated experimentally the coefficient of performance (COP) of the refrigeration cycle and the evaporating heat transfer coefficient with a proposal means, under various evaporating and condensing temperatures and heat loads. As a result, the COP of proposed cycle is 5-13% higher than the conventional cycle with a D.C. inverter compressor by re-circulation of refrigerant. Furthermore, we investigated the dry-out length in the evaporator by authorized empirical equation and evaluated the optimum flow rate of re-circulation.

Man'o, Tatsunori; Tanino, Masayuki; Okazaki, Takashi; Koyama, Shigeru

438

Estimation of wet surface evaporation from sensible heat flux measurements  

Microsoft Academic Search

A new method is proposed to estimate wet surface evaporation by means of measurements of sensible heat flux and of air temperature, relative humidity, and wind speed at one level only. This formulation is made possible by the linearization of the Bowen ratio, a common assumption in other methods, such as Penman's model and its derivatives. The method will be

Nikki Vercauteren; Elie Bou-Zeid; Hendrik Huwald; Marc B. Parlange; Wilfried Brutsaert

2009-01-01

439

An Introduction to the Material Point Method using a Case Study from Gas Dynamics  

SciTech Connect

The Material Point Method (MPM) developed by Sulsky and colleagues is currently being used to solve many challenging problems involving large deformations and/or fragementations with considerable success as part of the Uintah code created by the CSAFE project. In order to understand the properties of this method an analysis of the considerable computational properties of MPM is undertaken in the context of model problems from gas dynamics. One aspect of the MPM method in the form used here is shown to have first order accuracy. Computational experiments using particle redistribution are described and show that smooth results with first order accuracy may be obtained.

Tran, L. T. [SCI Institute, University of Utah, Salt Lake City, Utah (United States); Kim, J. [School of Computing, University of Utah, Salt Lake City, Utah (United States); Berzins, M. [SCI Institute, University of Utah, Salt Lake City, Utah (United States); School of Computing, University of Utah, Salt Lake City, Utah (United States)

2008-09-01

440

Grad's moment method for a low-density granular gas. Navier-Stokes transport coefficients  

NASA Astrophysics Data System (ADS)

The Navier-Stokes transport coefficients for a granular gas of smooth inelastic hard disks or spheres are determined from the inelastic Boltzmann equation by means of Grad's moment method. The shear viscosity ?, the thermal conductivity ? and the new transport coefficient ? (not present for elastic collisions) are explicitly obtained as nonlinear functions of the (constant) coefficient of restitution ?. The expressions of ?, ?, and ? agree with those previously obtained from the Chapman-Enskog method by using the first Sonine approximation. A comparison with previous results derived from Grad's moment method for two and three dimensions is also carried out.

Garz, Vicente

2012-11-01

441

Particle deposition during evaporation of colloidal sessile drops  

NASA Astrophysics Data System (ADS)

Deposition patterns of particles suspended in evaporating colloidal drops are determined by the flow fields within the drops. Using analytically determined velocities, particle motions are then tracked in a Lagrangian sense. It is found that the majority of particles intersect the free surface as it recedes. Such ``capture'' of particles by the free surface is found to be the major mechanism in establishing the deposition pattern. Patterns are calculated for wetting and non-wetting drops whose contact lines are either pinned or freely moving during evaporation. The distribution of evaporative flux which drives the flows is taken to be that engendered by gas-phase diffusion. The theoretical results are found to agree favorably with available experimental data.

Felske, James D.; Masoud, Hassan

2009-11-01

442

Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime  

NASA Astrophysics Data System (ADS)

A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

2012-11-01

443

Acoustic observations of gas bubble streams in the NW Black Sea as a method for estimation of gas flux from vent sites  

NASA Astrophysics Data System (ADS)

Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.

Artemov, Yu. G.

2003-04-01

444

Simplified method for measuring minor gas constituents from ILAS-II transmittance spectra  

NASA Astrophysics Data System (ADS)

In order to measure vertical profiles of minor gas concentrations in the stratosphere, Improved Limb Atmosphere Spectrometers (ILAS and ILAS-II) have been developed. ILAS was the first generation sensor and made observations in 1996 and 1997. ILAS-II will measure atmospheric limb transmittance in 66 spectral bands (whereas 44 for ILAS) in the thermal infrared region by observing solar ray passed through the atmosphere. Vertical profiles of minor gases are simultaneously retrieved by a spectral fitting algorithm with an onion-peeling method for vertical profiling. This algorithm adopts a precise radiative transfer calculation and is very accurate, but usually the standard radiative transfer calculation needs huge volume of line-by-line calculations of molecular absorption to simulate theoretical limb transmittance spectra by using the HITRAN database. Methods for accelerating the algorithm have been required. In the ILAS operational program, a table look-up method, which needs an excellent computer system, was used for rapid calculations. We proposed a simplified method, which predicts the gas profiles from the measured limb transmittance spectra and vertical profiles of atmospheric pressure and temperature without iterative calculations by using a multiple regression technique. The Principal Component Expansion (PCE) is used for reducing the scale of the multiple regression model. In the training process, coefficients of the model are estimated from the previously retrieved data sets including measured limb transmittance spectra, vertical profiles of atmospheric pressure and temperature, and retrieved gas profiles. Then, the method predicts gas profiles from the newly measured limb transmittance spectra and pressure and temperature profiles. The validity of the method was confirmed by numerical simulation using the MODTRAN v.3.5 radiative transfer code. The proposed method was also applied to the actual 3474 ILAS observation data sets. The model trained by 3373 data sets well predicted the gas profiles for another 100 data sets which are selected randomly . This proposed method can be used for quick look of ILAS-II measured data and for generating the initial profiles for the operational spectral fitting algorithm.

Hanaizumi, Hiroshi; Yokota, Tatsuya

2002-02-01

445

Laser heterodyne method for high-resolution gas-density measurements.  

PubMed

A new method for noncontact, high-resolution measurement of gas density is described. The method uses a two-frequency Zeeman-split He-Ne laser and cumulative phase-measuring electronics. The measurement is resolved in two dimensions and provides density that is averaged only along the length of the laser beam that passes through the test section. The technique is based on highly accurate measurement of the optical path-length change of the laser beam as it passes through a test cell (in principle, to within 0.001lambda, where lambda is the wavelength of the laser). The technique also provides a very large dynamic range (again, in principle, up to 10(10)), which makes the method additionally attractive. Although the optical path length through the test section is directly related to the index of refraction, and hence to the density of the gas, the method can also be used to measure temperature (if the gas pressure is known) or pressure (if the temperature is known). PMID:18360375

Otgen, M V; Ganguly, B

2001-07-20

446

The hydroacoustic method for the quantification of the gas flux from a submersed bubble plume  

NASA Astrophysics Data System (ADS)

This article presents an inverse hydroacoustic method for the remote quantification of the total gas flux transported from an underwater bubble plume. The method includes the surveying of the bubble plume by a vertically looking echo sounder and the calculation of the flux using the spatial distribution of the ultrasound backscattering at a fixed depth. A simplified parameterization containing only a few parameters is introduced to describe the empirical bubble size distribution. The linear correlation between the backscattering cross section of the bubble stream and the vertical gas flux is found. The calculation procedure takes into account the occurrence of a gas hydrate film at the bubble's surface. The influence of different parameters on the accuracy of the method is investigated. The resolution volume of the echo sounder corresponding to the fixed distance is considered as a two-dimensional spatial window. The method was applied to quantify the total convective methane flux at the Haakon-Mosby mud volcano (HMMV) depth 1280 m. The calculated values of the total flux near the bottom (100-400 t/year) are in good agreement with the independently estimated flux for the single bubble jet observed from the ROV (70 t/year). These calculations also show significant temporal variability of the flux at the HMMV. The total flux was found to vary by about a factor of 2-3 within time scales of days.

Muyakshin, S. I.; Sauter, E.

2010-12-01

447

Tubular sublimatory evaporator heat sink  

NASA Technical Reports Server (NTRS)

An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

Webbon, B. W. (inventor)

1977-01-01

448

Application of geo-microbial prospecting method for finding oil and gas reservoirs  

NASA Astrophysics Data System (ADS)

Microbial prospecting of hydrocarbons is based on the detection of anomalous population of hydrocarbon oxidizing bacteria in the surface soils, indicates the presence of subsurface oil and gas accumulation. The technique is based on the seepage of light hydrocarbon gases such as C1-C4 from the oil and gas pools to the shallow surface that provide the suitable conditions for the development of highly specialized bacterial population. These bacteria utilize hydrocarbon gases as their only food source and are found enriched in the near surface soils above the hydrocarbon bearing structures. The methodology involves the collection of soil samples from the survey area, packing, preservation and storage of samples in pre-sterilized sample bags under aseptic and cold conditions till analysis and isolation and enumeration of hydrocarbon utilizing bacteria such as methane, ethane, propane, and butane oxidizers. The contour maps for the population density of hydrocarbon oxidizing bacteria are drawn and the data can be integrated with geological, geochemical, geophysical methods to evaluate the hydrocarbon prospect of an area and to prioritize the drilling locations thereby reducing the drilling risks and achieve higher success in petroleum exploration. Microbial Prospecting for Oil and Gas (MPOG) method success rate has been reported to be 90%. The paper presents details of microbial prospecting for oil and gas studies, excellent methodology, future development trends, scope, results of study area, case studies and advantages.

Rasheed, M. A.; Hasan, Syed Zaheer; Rao, P. L. Srinivasa; Boruah, Annapurna; Sudarshan, V.; Kumar, B.; Harinarayana, T.

2014-07-01

449

A novel 83mKr tracer method for characterizing xenon gas and cryogenic distillation systems  

NASA Astrophysics Data System (ADS)

The radioactive isomer 83mKr, has many properties that make it very useful for various applications. Its low energy decay products, like conversion, shake-off and Auger electrons as well as X- and ?-rays are used for calibration purposes in neutrino mass experiment