Science.gov

Sample records for gas exploration production

  1. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  2. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  3. 78 FR 41768 - Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Significant Human Exposure; Final Statement of Policy. Federal Register (58 FR 28736, May 14, 1993) (FRL-4059... AGENCY 40 CFR Chapter I Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production...(a) to require manufacturers and processors of oil and gas exploration and production (E&P)...

  4. National Assessment of Oil and Gas Project: Areas of Historical Oil and Gas Exploration and Production in the United States

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2008-01-01

    This report contains maps and associated spatial data showing historical oil and gas exploration and production in the United States. Because of the proprietary nature of many oil and gas well databases, the United States was divided into cells one-quarter square mile and the production status of all wells in a given cell was aggregated. Base-map reference data are included, using the U.S. Geological Survey (USGS) National Map, the USGS and American Geological Institute (AGI) Global GIS, and a World Shaded Relief map service from the ESRI Geography Network. A hardcopy map was created to synthesize recorded exploration data from 1859, when the first oil well was drilled in the U.S., to 2005. In addition to the hardcopy map product, the data have been refined and made more accessible through the use of Geographic Information System (GIS) tools. The cell data are included in a GIS database constructed for spatial analysis via the USGS Internet Map Service or by importing the data into GIS software such as ArcGIS. The USGS internet map service provides a number of useful and sophisticated geoprocessing and cartographic functions via an internet browser. Also included is a video clip of U.S. oil and gas exploration and production through time.

  5. An overview of oil and gas exploration and production waste issues

    SciTech Connect

    Gibson, M.M.

    1995-12-31

    The petroleum exclusion of CERCLA and the drilling fluids exemption of RCRA were both created in 1980 to provide the oil and gas exploration and production industry with ample protection from excessive federal environmental regulation. Over the last 15 years, federal court decisions, EPA`s administration of these programs, and state regulatory actions have substantially reduced the scope of these two provisions. This presentation will explore the original intent of CERCLA`s petroleum exclusion and RCRA`s drilling fluids exemption, and how this original intent is at odds with subsequent EPA and judicial interpretation of these provisions. The presentation will conclude with an assessment of the current scope of the petroleum exclusion and the drilling fluids exemption, including a (cautious) prediction of the direction that federal and state policy governing exploration and production wastes is likely to take in the next few years.

  6. An overview of regulations for offshore oil and gas exploration and production in China

    SciTech Connect

    Yang, M.

    1994-12-31

    Many American oil companies have participated in Chinese offshore oil and gas development in recent years and will continue to do so. Very often American oil companies that pursue joint development programs with the Chinese oil firms are responsible for engineering and construction execution and facility operation. To fulfill the responsibilities, the American oil companies need to design, construct, install and operate an offshore facility in compliance with relevant Chinese offshore oil and gas development regulations. This article provides an overview of current Chinese regulations for offshore oil and gas exploration and production as well as highlights on some specific requirements imposed by the Chinese regulations, especially in environmental protection and safety areas. This article also discusses permitting requirements and mandatory approvals by the Chinese government. Other discussions include how to achieve compliance through sound strategy, thorough understanding and good planning.

  7. English-Spanish glossary: offshore exploration and production, gas processing, and valves

    SciTech Connect

    Not Available

    1981-12-01

    This series of articles contains 3 different English-Spanish glossaries of related terms used in the oil industry. The glossary of the offshore exploration and production involves a summary of terms used in the offshore oil activity. It also includes names of singular equipment used in offshore drilling, as well as several navigation terms in relation to the floating oil structures. With the help of the Gas Processors Association it was possible to compile a glossary of gas processing with a concise selection of common terms of the industry of gas processing. The glossary of valves includes more than 200 terms of the industry of valves in a specialized glossary, and several explanations about the application and operation of valves.

  8. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  9. Airborne Measurements of Emissions from Oil and Gas Exploration and Production Activities in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Roiger, A.; Raut, J.; Rose, M.; Weinzierl, B.; Reiter, A.; Thomas, J. L.; Marelle, L.; Law, K.; Schlager, H.

    2013-12-01

    A rapid decline of Arctic sea ice is expected to promote hydrocarbon extraction in the Arctic, which in turn will increase emissions of atmospheric pollutants. To investigate impacts of different pollution sources on the Arctic atmosphere, an aircraft campaign based in northern Norway was conducted in July 2012, as a part of the EU ACCESS (Arctic Climate Change Economy and Society) project. One of the flights focused on measuring emissions from various oil/gas exploration and production facilities ~110 km south of the Arctic Circle in the Norwegian Sea. Fresh and aged (from 5 minutes to 2.5 hours old) exhaust plumes from oil/gas production platforms, drilling rigs and tankers were probed with extensive aerosol and trace gas instrumentations. It was found that different types of facilities emit plumes with distinct chemical compositions. For example, tanker plumes were characterized by high SO2 concentration and high fraction of non-volatile particles while plumes from oil/gas production platforms showed significant increase in the nucleation mode particle concentration. Drilling rigs were found to be high black carbon emitters. In addition to the fresh plumes, relatively aged plumes (1.5 - 2.5 hours old) from a facility under development were measured. Even in these aged plumes, total particle concentrations were more than 6 times higher than the background concentration. Therefore, emissions from oil and gas activities are expected to have a significant impact on local air quality and atmospheric composition. With the aid of FLEXPART-WRF (a Lagrangian dispersion model) simulations, the results of this study will be used to validate and improve current emission inventories. In the future, these improved emission inventories can be used in regional and global chemical transport models to more accurately predict future Arctic air pollution.

  10. Brine production as an exploration tool for water drive gas reservoirs

    SciTech Connect

    Randolph, P.L.

    1982-01-01

    Data from detailed analyses of production from geopressured geothermal aquifers suggest that appropriate brine production tests may well result in production of otherwise undiscoverable hydrocarbons. This paper reviews concepts for the biogenic origin of natural gas, subsurface migration of natural gas, and trapping of that gas in commercially producible reservoirs. Data are presented to demonstrate discovery of free natural gas by brine production from two dry wildcat wells. Finally, conditions under which brine production testing may be a prudent investment are discussed. 5 figures.

  11. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  12. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  13. Options and costs for offsite disposal of oil and gas exploration and production wastes.

    SciTech Connect

    Puder, M. G.; Veil, J. A.; Environmental Science Division

    2007-01-01

    In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that

  14. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  15. Noble gas and carbon isotopes in natural gas: a new methodology for oil and gas exploration/production

    NASA Astrophysics Data System (ADS)

    Prinzhofer, A.; Battani, A.

    2003-04-01

    Isotopic measurements of both stables isotopes and noble gases give important clues to reconstruct the geological history of hydrocarbons, from their generation to their accumulation. Recent analytical advances in carbon isotopes of natural gases (methane to butane and carbon dioxide) allowed to characterize some of the physico-chemical processes which affect natural gas, instead of using these signatures as simple fingerprinting of origins as it was the case some decades ago. These reconstructions provide important information on both the origins and the dynamic behavior of hydrocarbon fluids in sedimentary basins. Moreover, correlating this methodology with other natural tracers increases the knowledge of hydrocarbon history. Among them, noble gas isotopes may be the new frontier tool, as their chemical inertness allows to use them as precise tracers of sources and of associated physical processes (phases behavior, migration and leakage). Moreover, because some isotopes are produced by natural radioactivity, they act therefore as geological clocks, giving potentially a quantification of the residence times of hydrocarbons in a reservoir. The parameters one would hope to constrain, and which may be used as boundary conditions for basin modeling, are the age and the residence time of the fluids constituting a petroleum system, the quantitative estimate of the distance of migration of the hydrocarbons from the source rock to the reservoir and from the petroleum system to the atmosphere, and the proportion of hydrocarbons lost through leakage from the time of accumulation to the present. Other parameters associated with hydrocarbon accumulations, and more conventionally studied, include the relations between source rocks and accumulated fluids, the possible bacterial contribution through methanogenesis and/or biodegradation, the range of maturity of the fluids, the possible dysmigration of the gas from a liquid through evaporative fractionation, the characterization

  16. Devonian shale gas exploration and production studies. Final report, November 1983-April 1986

    SciTech Connect

    Wallace, J.L.; Koziar, G.; Lemon, J.P.; Akers, M.J.

    1986-08-01

    Ten wells in southwestern West Virginia were selected as potential candidates for in-depth study to identify Devonian-shale-gas production-controlling mechanisms. Wells were studied using geophysical logs, TV log, and flow measurements. Sidewall cores were retrieved for geochemical and geophysical analyses. The well studies were augmented with a seismic survey, production data analysis and data collection for approximately 1400 wells in the study area.

  17. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    PubMed

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  18. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach

    SciTech Connect

    Amy Childers

    2011-03-30

    Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

  19. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S.

    1997-01-01

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  20. The German collaborative project SUGAR Utilization of a natural treasure - Developing innovative techniques for the exploration and production of natural gas from hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Haeckel, M.; Bialas, J.; Wallmann, K. J.

    2009-12-01

    Gas hydrates occur in nature at all active and passive continental margins as well as in permafrost regions, and vast amounts of natural gas are bound in those deposits. Geologists estimate that twice as much carbon is bound in gas hydrates than in any other fossil fuel reservoir, such as gas, oil and coal. Hence, natural gas hydrates represent a huge potential energy resource that, in addition, could be utilized in a CO2-neutral and therefore environmentally friendly manner. However, the utilization of this natural treasure is not as easy as the conventional production of oil or natural gas and calls for new and innovative techniques. In the framework of the large-scale collaborative research project SUGAR (Submarine Deposits of Gas Hydrates - Exploration, Production and Transportation), we aim to produce gas from methane hydrates and to sequester carbon dioxide from power plants and other industrial sources as CO2 hydrates in the same host sediments. Thus, the SUGAR project addresses two of the most pressing and challenging topics of our time: development of alternative energy strategies and greenhouse gas mitigation techniques. The SUGAR project is funded by two federal German ministries and the German industry for an initial period of three years. In the framework of this project new technologies starting from gas hydrate exploration techniques over drilling technologies and innovative gas production methods to CO2 storage in gas hydrates and gas transportation technologies will be developed and tested. Beside the performance of experiments, numerical simulation studies will generate data regarding the methane production and CO2 sequestration in the natural environment. Reservoir modelling with respect to gas hydrate formation and development of migration pathways complete the project. This contribution will give detailed information about the planned project parts and first results with focus on the production methods.

  1. The Aquitaine Basin: 60 years of gas exploration and production in the foreland of the Pyrenean fold and thrust belt

    SciTech Connect

    Le Vot, M.; Masset, J.M.; Biteau, J.J.

    1995-08-01

    Over the last 60 years, Exploration in the Aquitaine Basin has led to the discovery of about 13 TCF of gas associated with 100 MMBls of condensate. The first gas discovery was made on the St Marcet surface anticline in 1939. However the major step was accomplished in 1951 by the discovery of the Giant Lacq field (9 TCF of gas), which was followed in 1965 by the discovery of the Meillon Field (2,5 TCF). Production started in 1944 at St Marcel, in 1957 at Lacq and in 1967 at Meillon leading to a cumulative production of 10 TCF of gas as of December 1994. The fields are located in the immediate foreland of the Alpine Pyrenean Thrust Belt. The region shows as a result extreme structural complexity, which is also linked to the polyphased geological evolution of the area. Overprinted on the faulting pattern of the basement (Variscan and Hercynian orgenies), the area is characterized by a general E-W extension during the Jurassic and the Early Cretaceous, followed by a major submeridian compression from the Late Cretaceous to the Oligo-Miocene. In this context the traps for the fields consist in deep (3500 to 4500 m in average) faulted blocks derived from the Early to Mid Mesozoic extension, inverted at various degrees during the Late Cretaceous and Tertiary compressive events. In such a petroleum context, the challenge for the 90`s is to evaluate the remaining potential and to optimize the development of existing fields as well as to discover new fields especially within the unexplored zones along the leading edge of the Pyrenean Fold and Thrust Belt. Recent onshore 3D seismic (over 1500 km2 shot from 1987 to 1993) has proven to be efficient in defining good geometry for the fields and in delineating precisely the fractured zones of the reservoirs. It has as well allowed to develop a comprehensive understanding of the area and therefore a good evaluation of the unexplored zones within this very prolific region.

  2. Exploration-production studies in newly drilled Devonian-Shale gas wells. Annual report, February 1, 1985-January 31, 1986

    SciTech Connect

    Graham, R.L.

    1986-02-01

    The Devonian shale has been recognized as an important source of gas in the Appalachian Basin. The program aids producers in the collection of reservoir data not normally collected and assists in the evaluation of the effectiveness of zone selection and stimulation designs and methods. The study should provide a fuller understanding of the relationships that affect productivity in the Devonian shale. The relationships between gas flows and geological features that control the production characteristics in the Devonian shale are being developed.

  3. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  4. Developing Terrestrial Trophic Models for Petroleum and Natural Gas Exploration and Production Sites: The Oklahoma Tallgrass Prairie Preserve Example

    SciTech Connect

    Stevenson, M; Coty, J; Stewart, J; Carlsen, T; Callaham, M

    2001-01-26

    This document details procedures to be used when constructing a conceptual terrestrial trophic model for natural gas and oil exploration and production sites. A site conceptual trophic model is intended for use in evaluating ecological impacts of oil and brine releases at E&P sites from a landscape or ecosystem perspective. The terrestrial trophic model protocol was developed using an example site, the Tallgrass Prairie Preserve (TPP) in Oklahoma. The procedure focuses on developing a terrestrial trophic model using information found in the primary literature, and augmented using site-specific research where available. Although the TPP has been the subject of considerable research and public interest since the high-profile reintroduction of bison (Bison bison) in 1993, little formal work has been done to develop a food web for the plant and animal communities found at the preserve. We describe how to divide species into guilds using explicit criteria on the basis of resource use and spatial distribution. For the TPP, sixteen guilds were developed for use in the trophic model, and the relationships among these guilds were analyzed. A brief discussion of the results of this model is provided, along with considerations for its use and areas for further study.

  5. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata, Phase 1

    SciTech Connect

    Overbey, W.K. Jr.; Reeves, T.K.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.; Brunk, R.; Hawkins, L. )

    1991-05-01

    This research program has been designed to develop and verify a unique geostatistical approach for finding natural gas resources. The research has been conducted by Beckley College, Inc. (Beckley) and BDM Engineering Services Company (BDMESC) under contract to the US Department of Energy (DOE), Morgantown Energy Technology Center. Phase 1 of the project consisted of compiling and analyzing relevant geological and gas production information in selected areas of Raleigh County, West Virginia, ultimately narrowed to the Eccles, West Virginia, 7 {1/2} minute Quadrangle. The Phase 1 analysis identified key parameters contributing to the accumulation and production of natural gas in Raleigh County, developed analog models relating geological factors to gas production, and identified specific sites to test and verify the analysis methodologies by drilling. Based on the Phase 1 analysis, five sites have been identified with high potential for economic gas production. Phase 2 will consist of drilling, completing, and producing one or more wells at the sites identified in the Phase 1 analyses. The initial well is schedules to the drilled in April 1991. This report summarizes the results of the Phase 1 investigations. For clarity, the report has been prepared in two volumes. Volume 1 presents the Phase 1 overview; Volume 2 contains the detailed geological and production information collected and analyzed for this study.

  6. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata, Phase 1

    SciTech Connect

    Overbey, W.K. Jr.; Reeves, T.K.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.; Brunk, R.; Hawkins, L. )

    1991-05-01

    This research program has been designed to develop and verify a unique geostatistical approach for finding natural gas resources. The project has been conducted by Beckley College, Inc., and BDM Engineering Services Company (BDMESC) under contract to the US Department of Energy (DOE), Morgantown Energy Technology Center (METC). This section, Volume II, contains a detailed discussion of the methodology used and the geological and production information collected and analyzed for this study. A companion document, Volume 1, provides an overview of the program, technique and results of the study. In combination, Volumes I and II cover the completion of the research undertaken under Phase I of this DOE project, which included the identification of five high-potential sites for natural gas production on the Eccles Quadrangle, Raleigh County, West Virginia. Each of these sites was selected for its excellent potential for gas production from both relatively shallow coalbeds and the deeper, conventional reservoir formations.

  7. Utah coalbed gas exploration poised for growth

    SciTech Connect

    Petzet, G.A.

    1996-08-05

    Coalbed methane production in eastern Utah is growing despite a relaxed pace of exploratory drilling. Leasing has been active the past 2 years, but a delay in issuance of a federal environmental impact statement could retard drilling. Only 19 new wells began producing coalbed gas during 1995, but gas production increased from existing wells as dewatering progressed. The US Bureau of Land Management will allow limited exploration but no field development on federal lands until the EIS is completed, possibly as early as this month. The paper discusses production of coalbed methane in Utah.

  8. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

  9. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  10. Conference on the topic: {open_quotes}Exploration and production of petroleum and gas from chalk reservoirs worldwide{close_quotes}

    SciTech Connect

    Kuznetsov, V.G.

    1995-07-01

    More than 170 delegates from 14 countries in Europe, North America, Africa, and Asia took part in a conference on the topic: Exploration and Production of Petroleum and Gas from Chalk Reservoirs Worldwide. The conference was held in Copenhagen, Denmark in September,1994, and was a joint meeting of the American Association of Petroleum Geologists (AAPG), and the European Association of Petroleum Geoscientists and Engineers (EAPG). In addition to the opening remarks, 25 oral and nine poster reports were presented. The topics included chalk deposits as reservoir rocks, the occurrence of chalk deposits worldwide, the North Sea oil and gas fields, and other related topics.

  11. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption

    PubMed Central

    Oonincx, Dennis G. A. B.; van Itterbeeck, Joost; Heetkamp, Marcel J. W.; van den Brand, Henry; van Loon, Joop J. A.; van Huis, Arnold

    2010-01-01

    Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis. PMID:21206900

  12. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13

    SciTech Connect

    Not Available

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

  13. Arkoma exploration heats production builds

    SciTech Connect

    Petzet, G.A.

    1991-01-21

    This paper reports that exploratory drilling continues with fervor to Cambro-Ordovician Arbuckle targets, especially in Arkansas. Pennsylvanian zones continue to yield significant gas discoveries. Gas production from Arkoma basin counties in both states has been rising and stands to climb even further with startup of several new pipelines, assuming gas prices and takes hold up.

  14. Tunisia's production peaks, exploration busy

    SciTech Connect

    Mrad, R.; M'Rabet, A.; Chine, N. ); Davies, W.C.

    1991-12-23

    This paper reports on the oil and gas exploration industry in Tunisia which is continuing to experience an almost unprecedented boom as the effects of the favorable fiscal and legislative regime work through the recent discoveries come on stream. Perhaps the most significant of the new discoveries is 1 Belli on Cap Bon, which Marathon tested at a rate of 6,800 b/d of oil with reported potential of as much as 15,000 b/d.

  15. It`s not easy being green: Environmental legal challenges and strategies for international oil and gas exploration and production

    SciTech Connect

    Armstrong, K.E.

    1996-12-31

    International oil and gas E&P companies are being exposed to a steady proliferation of policies, laws, guidelines and other standards applicable to their activities. These are accompanied by expanded potential for legal and other liability. There are a number of treaties and other international agreements potentially relevant to F&P activities. National laws are the primary source of environmental law of concern to companies. However, guidelines developed by international governmental, financing, industry and other organizations are establishing standards to which companies may be held legally accountable. A number of key environmental issues and trends are influencing the development of environmental laws and generating areas of legal exposure for companies. Many basic company activities which involve layers are potentially affected. Companies can and should undertake a variety of activities to manage the environmental legal risks they face. Lawyers and negotiators for companies will play an essential role in developing and implementing such risk management programs.

  16. Gas production apparatus

    DOEpatents

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  17. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata. [Quarterly] technical progress report, January--March 1995

    SciTech Connect

    Brunk, R.G.

    1995-04-01

    The project objective is to verify a development strategy for high grading areas of multistrata (shallow gas sand and coalbeds) potential in southern West Virginia and test it in up to five wells. Accomplishments for the quarter are presented briefly for the following tasks: Alaskan energy development;dewatering/production extension test period; and demonstrate newly developed technologies for multi strata gas and water production to enhance commercial application.

  18. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata. Technical progress report, January--March 1996

    SciTech Connect

    Brunk, R.G.

    1996-04-01

    This paper is a status report on modeling gas flow and water production from coal reservoir systems in Alaska. No new activities under this task other than paperwork processes concerning funding issues and NEPA were conducted during this January to March 1996 reporting period. Data is provided on gas and water production during this reporting period. Metering variations were described along with processes of pumping and site observations during the recording period.

  19. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata, Phase 1. Volume 1, Overview

    SciTech Connect

    Overbey, W.K. Jr.; Reeves, T.K.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.; Brunk, R.; Hawkins, L.

    1991-05-01

    This research program has been designed to develop and verify a unique geostatistical approach for finding natural gas resources. The research has been conducted by Beckley College, Inc. (Beckley) and BDM Engineering Services Company (BDMESC) under contract to the US Department of Energy (DOE), Morgantown Energy Technology Center. Phase 1 of the project consisted of compiling and analyzing relevant geological and gas production information in selected areas of Raleigh County, West Virginia, ultimately narrowed to the Eccles, West Virginia, 7 {1/2} minute Quadrangle. The Phase 1 analysis identified key parameters contributing to the accumulation and production of natural gas in Raleigh County, developed analog models relating geological factors to gas production, and identified specific sites to test and verify the analysis methodologies by drilling. Based on the Phase 1 analysis, five sites have been identified with high potential for economic gas production. Phase 2 will consist of drilling, completing, and producing one or more wells at the sites identified in the Phase 1 analyses. The initial well is schedules to the drilled in April 1991. This report summarizes the results of the Phase 1 investigations. For clarity, the report has been prepared in two volumes. Volume 1 presents the Phase 1 overview; Volume 2 contains the detailed geological and production information collected and analyzed for this study.

  20. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata, Phase 1. Volume 2, Geology and engineering

    SciTech Connect

    Overbey, W.K. Jr.; Reeves, T.K.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.; Brunk, R.; Hawkins, L.

    1991-05-01

    This research program has been designed to develop and verify a unique geostatistical approach for finding natural gas resources. The project has been conducted by Beckley College, Inc., and BDM Engineering Services Company (BDMESC) under contract to the US Department of Energy (DOE), Morgantown Energy Technology Center (METC). This section, Volume II, contains a detailed discussion of the methodology used and the geological and production information collected and analyzed for this study. A companion document, Volume 1, provides an overview of the program, technique and results of the study. In combination, Volumes I and II cover the completion of the research undertaken under Phase I of this DOE project, which included the identification of five high-potential sites for natural gas production on the Eccles Quadrangle, Raleigh County, West Virginia. Each of these sites was selected for its excellent potential for gas production from both relatively shallow coalbeds and the deeper, conventional reservoir formations.

  1. Trinity Gas to explore for gas in Colombia

    SciTech Connect

    1997-07-01

    Trinity Gas Corp. officials signed an agreement on May 20, 1997, with the Cauca Valley Corp. (CVC) allowing Trinity to use CVC data to explore for natural gas in the Cauca Valley of Colombia. CVC, Colombia`s Valle del Cauca water resources and environmental division, is evaluating Colombia`s underground water reserves to protect, control and preserve fresh water aquifers, some of which contain natural gas pockets that cause blowouts in farmers` water wells. Preparations now are underway for drilling Trinity`s first well at the Palmira 1 site on the San Jose Hacienda, the largest privately owned sugar cane plantation in the valley. Trinity also entered into an agreement with the Cauca Valley Natural Gas and Electricity Project to furnish natural gas, generated electricity and energy fuel for the industrial district in the region. According to this contract, many valley residents will have electric service for the first time.

  2. Synergetic study of Silurian-Niagaran pinnacle reef belt around the Michigan Basin for exploration and production of oil and gas. Volumes 1 and 2

    SciTech Connect

    Aminian, K.

    1982-01-01

    The Silurian-Niagaran pinnacle reef occur on a belt which encircles the entire Michigan Basin including areas presently covered by the Great Lakes Huron and Michigan. Two different structural settings existed in the Michigan Basin during the Silurian Period. This resulted in formation of pinnacle reefs with somewhat different characteristics in the northern and southern parts of the basin. The pinnacles of the northern trend occur at depths of 4000 to 7000 ft, are up to 700 ft thick, and average about 100 acres in area. The southern pinnacles occur at depths of 2000 to 3000 ft, are shorter, about 300 ft, and attain larger areas. The majority of the hydrocarbon reserves of the northern trend are concentrated in pinnacles which occur on a band 3 to 4 miles wide inside the middle of the trend. There exists a regional partitioning of oil and gas in the northern pinnacle reefs which can be best explained by Gussaw Theory of migration and differential entrapment. A probabilistic model for exploration in play was found applicable in mature areas of the northern trend. The results were extended to other parts of the northern trend based on similar reef density and size distribution. In the southern trend where the reef density and size distribution is entirely different, the model was tested against limited data and results of future exploration were predicted. The effectiveness of exploration on the reef belt, based on seismic surveys, is 8 to 10 times better than random drilling. The reserves of the reef belt is in excess of 7 bbl of oil and 15 trillion ft/sup 3/ of natural gas originally in place. The oil primary and secondary recovery factors are 20 and 30%, respectively.

  3. Exploration and production in Papua New Guinea

    SciTech Connect

    Wulff, K.; Hobson, D. )

    1996-01-01

    The prospectivity of the Papuan Basin has been appreciated, since oil seeps were first discovered in 1911. Initially, the mountainous terrain, a deeply karstified limestone surface covered with tropical rainforest, fed by 300 inches of rain each year, restricted access to the adventurous. Early exploration was focussed along the coastline and river systems, with only limited success. The development of helicopter transportable rigs during the 1970s was the technological advance that led to success, as the crests of anticlines became accessible to the drill. Even so, the lack of seismic due to severe terrain conditions and structural complexity, still constrains our ability to image trap. Despite these limitations, the oil discovery at Lagifu-2 in 1986, led to the development of the Kutubu Field by a Chevron led joint venture, with first oil in 1992. The Kutubu Field was developed at a cost of US$ 1 billion. Reserves are in excess of 250 mmbo with production currently at 1,00,000 bopd. PNG's second oil development will be the Gobe / SE Gobe Fields, also in the Papuan Thrust Belt, and thought to contain around 100 mmbo. Discovered in the late 1980s, the field is expected to produce 25 000 bopd from 1997. Significant volumes of gas have been discovered in the Highlands at Hides, where 3 wells have now confirmed a gas column in excess of 1 km. Additional large gas discoveries have been made in the Papuan Basin, highlighting the potential for PNG to become a long term LNG s producer.

  4. Canadian incentives for oil and gas exploration. [Applicability to USA

    SciTech Connect

    Not Available

    1980-04-01

    During the 1970s a number of different exploration and production incentive programs were put in place in Canada, in particular in the Province of Alberta, Canada's principal oil- and gas-producing province. The DOE/RA is evaluating Canadian incentives for oil and gas exploration, and this study is intended to provide information that will help guide DOE/RA in determining the applicability of Canadian incentive programs in US energy policy. The study describes and documents the fiscal structure in which the Canadian oil industry operates. The incentive features of pricing policy, taxation policy, and provincial royalty systems are discussed. A principal focus of the study is on one of the most important of Canada's specific incentive programs, the Alberta Exploratory Drilling Incentive Credit Program (EDICP). The study describes and evaluates the effect of the EDICP on increased oil and gas exploration activity. Similarly, the study also reviews and evaluates other specific incentive programs such as the Alberta Geophysical Incentive Program, Frontier Exploration Allowances, and various tar sand and heavy oil development incentives. Finally the study evaluates the applicability of Canadian incentives to US energy policy.

  5. Exploration and production in Papua New Guinea

    SciTech Connect

    Wulff, K.; Hobson, D.

    1996-12-31

    The prospectivity of the Papuan Basin has been appreciated, since oil seeps were first discovered in 1911. Initially, the mountainous terrain, a deeply karstified limestone surface covered with tropical rainforest, fed by 300 inches of rain each year, restricted access to the adventurous. Early exploration was focussed along the coastline and river systems, with only limited success. The development of helicopter transportable rigs during the 1970s was the technological advance that led to success, as the crests of anticlines became accessible to the drill. Even so, the lack of seismic due to severe terrain conditions and structural complexity, still constrains our ability to image trap. Despite these limitations, the oil discovery at Lagifu-2 in 1986, led to the development of the Kutubu Field by a Chevron led joint venture, with first oil in 1992. The Kutubu Field was developed at a cost of US$ 1 billion. Reserves are in excess of 250 mmbo with production currently at 1,00,000 bopd. PNG`s second oil development will be the Gobe / SE Gobe Fields, also in the Papuan Thrust Belt, and thought to contain around 100 mmbo. Discovered in the late 1980s, the field is expected to produce 25 000 bopd from 1997. Significant volumes of gas have been discovered in the Highlands at Hides, where 3 wells have now confirmed a gas column in excess of 1 km. Additional large gas discoveries have been made in the Papuan Basin, highlighting the potential for PNG to become a long term LNG s producer.

  6. Geology of marine evaporites favorable for oil, gas exploration

    SciTech Connect

    Billo, S.M.

    1996-02-05

    Significant petroleum production related to carbonate-evaporite sequences has been found in many areas such as the Delaware, Paradox, and Michigan basins of North America and the Phanerozoic oil-bearing sediments of the Middle East and the North Sea. The regular association of petroleum and evaporites long has been recognized in almost all major oil-producing chemical and biochemical reservoir rocks of the world. A geologic approach to an exploration strategy may illustrate the facies relationships and hydrocarbon occurrences that provide a model for discovering the physical and chemical aspects of petroleum generation, migration, and accumulation, as well as the stratigraphic-tectonic relations necessary for entrapping oil and gas. This article endeavors to review exploration to date on the productive potential of evaporite basins, to appraise basic requirements for evaporitic environments to contain potential hydrocarbons, and to assess the significance of marine evaporites in petroleum geology.

  7. Product Lifecycle Management and Sustainable Space Exploration

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  8. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1991-09-01

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the resulting reserve additions. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). Presented is summary of discoveries and reserve additions that result from recent international exploration and development activities. A discovery, as used in this publication, is a published estimate of the ultimately recoverable reserves for either a new field, reservoir, or well. Ultimate recovery is defined in this report as cumulative production plus remaining plus reserves. Discoveries are obtained from various oil industry periodicals and company annual or quarterly reports. The discoveries are not verified by EIA but simply restated in this publication. There are four tables and six figures showing oil production, oil and gas reserve additions, active rotary rigs, and crude oil prices. The data are presented by country, geographic region, or economic sector such as the Organization of Petroleum Exporting Countries (OPEC), the Non-OPEC Market Economics (Non-OPEC ME), and the Centrally Planned Economies (CPE). A few of the more significant discoveries are discussed in this report, and their approximate locations are shown on three continental maps. The appendices list discoveries reported in industry periodicals and company reports, Petroconsultants oil and gas reserve additions, remaining oil and gas reserves, and a glossary of abbreviations. 19 refs., 7 figs., 4 tabs.

  9. Interconnecting compressors control coalbed gas production

    SciTech Connect

    Payton, R.; Niederhofer, J. )

    1992-10-05

    This paper reports that centralized compressors afford Taurus Exploration Inc.'s coalbed gas operations optimum control of gas production. Unlike satellite stations, the centralized system allows methane gas to e shifted from station to station via the interconnecting low-pressure pipeline network. The operations area encompasses approximately 40,000 acres, about 40 miles southwest of Birmingham, Ala. The project includes about 250-miles of low-pressure gas flow lines to almost 400 wells. The centralized system is less costly than a satellite station to build and operate. Unlike a satellite station that requires each compressor to have a complete set of ancillary equipment, the centralized system requires only one suction manifold, one dehydration setup, and one metering facility for every five compressor sets.

  10. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  11. GAS-007: First step in a series of Explorer payloads

    NASA Technical Reports Server (NTRS)

    Kitchens, Philip H.

    1987-01-01

    As part of the NASA Get Away Special program for flying small, self-contained payloads onboard the Space Shuttle, the Alabama Space and Rocket Center (ASRC) in Huntsville has sponsored three such payloads for its Project Explorer. One of these is GAS-007, which was carried originally on STS mission 41-G in early October 1984. Due to an operational error it was not turned on and was, therefore, subsequently rescheduled and flown on mission 61-C. This paper will review Explorer's history, outline its experiments, present some preliminary experimental results, and describe future ASRC plans for Get Away Special activities, including follow-on Explorers GAS-105 and GAS-608.

  12. Plan for Management of Mineral Assess on Native Tribal Lands and for Formation of a Fully Integrated Natural Gas and Oil Exploration and Production Company

    SciTech Connect

    Blechner, Michael H.; Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    This report describes a plan for Native American tribes to assume responsibility for and operation of tribal mineral resources using the Osage Tribe as an example. Under this plan, the tribal council select and employ a qualified Director to assume responsibility for management of their mineral reservations. The procurement process should begin with an application for contracting to the Bureau of Indian Affairs. Under this plan, the Director will develop strategies to increase income by money management and increasing exploitation of natural gas, oil, and other minerals.

  13. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  14. International Oil and Gas Exploration and Development

    EIA Publications

    1993-01-01

    Presents country level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve to production ratios (R/P ratios) for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form.

  15. Petroleum production and exploration in Ouachita region of Oklahoma

    SciTech Connect

    Suneson, N.H.; Campbell, J.A.

    1989-03-01

    Petroleum production in the Ouachita region of southeastern Oklahoma occurs in three geographic areas parallel to regional structure. The frontal gas, central oil, and central gas belts are distinguished by differences in structural setting, reservoir strata, and types of hydrocarbons. In the frontal belt, nearly 1 trillion ft/sup 3/ of dry gas has been produced from thrusted and subthrust Morrowan and Atokan sandstone and carbonate reservoirs. Over 8000 bbl of oil have been produced in the central oil belt, southeast of the Ti Valley fault. Structures consist of imbricate thrusts and isoclinal to overturned folds. The fields are typically small, associated with asphaltite or tar sands, and produce from Carboniferous sandstone reservoirs. Farther southeast, small fields within the central gas belt have produced minor gas from Ordovician, Devonian, and Mississippian reservoirs. Six Ordovician through Mississippian Ouachita-facies shales are potential petroleum source rocks and occur in the middle to lower part of the oil window. However, Devonian and Mississippian strata are composed primarily of terrestrial organic matter and are probably gas prone. Oil in Carboniferous reservoirs probably migrated upward stratigraphically from older sources. Recent exploration has focused on extending production from Pennsylvanian reservoirs in the frontal gas belt. However, a significant Arbuckle discovery (ARCO 2 Yourman) and a Broken Bow uplift test (Sohio 1-22 Weyerhauser) in 1987 indicate that Cambrian-Ordovician Arbuckle Group carbonates may be prospective beneath all of the Oklahoma Ouachitas. Near-future rank-wildcat exploration will probably focus on subthrust, structurally and stratigraphically favorable Arbuckle plays.

  16. Perspective of gas exploration in Ying-Qiong Basin

    SciTech Connect

    He, Hanyi; Zhongtiang Hu )

    1996-01-01

    The Yinggehai and Qiongdongnan Basin (Ying-Qiong Basin) in the northwest part of the South China Sea is a Cenozoic sedimentary basin, which has fast-subsiding and thick sediments. The maximum Cenozoic sediments in the center part of the basin is 20,000 m. Six sets of source rocks with prevailing Type III kerogen were developed in the basin, which has a great potential for gas generation. Different types of reservoirs and traps, leading to different assemblages of source rocks, reservoirs, and cap rocks, form good gas pools. Abnormal high temperature and high pressure in the basin resulted in many mud diapirs and made the generation, migration, and accumulation of gas more colorful. Up to now, four gas fields have been discovered in the basin. A large number of anticlines and stratigraphic-lithologic traps in the basin provide an extensive area for gas exploration. The perspective of gas exploration in the basin is vast and bright.

  17. Perspective of gas exploration in Ying-Qiong Basin

    SciTech Connect

    He, Hanyi; Zhongtiang Hu

    1996-12-31

    The Yinggehai and Qiongdongnan Basin (Ying-Qiong Basin) in the northwest part of the South China Sea is a Cenozoic sedimentary basin, which has fast-subsiding and thick sediments. The maximum Cenozoic sediments in the center part of the basin is 20,000 m. Six sets of source rocks with prevailing Type III kerogen were developed in the basin, which has a great potential for gas generation. Different types of reservoirs and traps, leading to different assemblages of source rocks, reservoirs, and cap rocks, form good gas pools. Abnormal high temperature and high pressure in the basin resulted in many mud diapirs and made the generation, migration, and accumulation of gas more colorful. Up to now, four gas fields have been discovered in the basin. A large number of anticlines and stratigraphic-lithologic traps in the basin provide an extensive area for gas exploration. The perspective of gas exploration in the basin is vast and bright.

  18. Exploration & development: US Rockies gas focus points up need for access, risk takers, infrastructure

    USGS Publications Warehouse

    Thomasson, M.R.; Belanger, P.E.; Cook, L.

    2004-01-01

    The last 20 yr of the Rocky Mountains oil and gas exploration and production business have been turbulent. Most of the major companies have left; they have been replaced with, independents and small to larger private and public companies. Natural gas become the primary focus of exploration. A discussion covers the shift of interest from drilling for oil to gas exploration and development in the Rockies since 1980; resource pyramid, showing relative volumes, reserves, resources, and undiscovered gas; the Wyoming fields that boost US gas supply, i.e., Jonah (6-12 tcf), Pinedale Anticline (10-20 tcf); Big Piney-LaBarge (15-25 tcf), Madden (3-5 tcf), and Powder river (24-27 tcf); and the future.

  19. Physics Applied to Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    Schwartz, Larry

    2002-03-01

    Problems involving transport in porous media are of interest throughout the fields of petroleum exploration and environmental monitoring and remediation. The systems being studied can vary in size from centimeter scale rock or soil samples to kilometer scale reservoirs and aquifers. Clearly, the smaller the sample the more easily can the medium's structure and composition be characterized, and the better defined are the associated experimental and theoretical modeling problems. The study of transport in such geological systems is then similar to corresponding problems in the study of other heterogeneous systems such as polymer gels, catalytic beds and cementitious materials. The defining characteristic of porous media is that they are comprised of two percolating interconnected channels, the solid and pore networks. Transport processes of interest in such systems typically involve the flow of electrical current, viscous fluids or fine grained particles. A closely related phenomena, nuclear magnetic resonance (NMR), is controlled by diffusion in the pore network. Also of interest is the highly non-linear character of the stress-strain response of granular porous media. We will review the development of two and three dimensional model porous media, and will outline the calculation of their physical properties. We will also discuss the direct measurement of the pore structure by synchrotron X-ray microtomography.

  20. Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa

    SciTech Connect

    Not Available

    1993-08-01

    This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

  1. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  2. History of coastal Alabama natural gas exploration and development. Final report

    SciTech Connect

    Wade, W.W.; Plater, J.R.; Kelley, J.Q.

    1999-05-01

    This study documents the development and growth of the natural gas industry offshore Alabama. This report provides a full account of natural gas discover, Mobile Bay leasing, industry exploration, industry development projects and production history. A gas production forecast is developed for the Mobile Bay region with and without proposed development of the Destin Dome OCS in the Eastern Gulf of Mexico. Coastal Alabama Norphlet and Miocene production will rise to 1.4 BCFD by 2000. Destin Dome`s production came online after Mobile Bay production from discovered reserves reaches peak, thereby sustaining supplies to interstate markets in the 1.4--1.6 BCFD through 2005. Combining both the Alabama state and federal OCS offshore production, the Alabama-Destin Dome production forecast reaches and sustains 1.6 BCFD between 2002--2004.

  3. Exploring Increased Productivity Through Employee Engagement

    NASA Astrophysics Data System (ADS)

    Richards, Wayne K., Jr.

    Disengaged employees cost U.S. companies billions of dollars annually in lowered productivity, a cost which has been compounded by the difficult economic situations in the country. The potential for increasing productivity through increased employee engagement was examined in this study. Using personal engagement theory and the theory of planned behavior, the purpose of this phenomenological study was to explore how the experiences of salaried aerospace employees affected productivity and the financial performance of an organization. Interviews were conducted with a purposive sample of 20 aerospace employees whose responses were codified and analyzed to identify themes. The analysis indicated that (a) the lived experiences of employees influenced employee engagement, (b) employee engagement affects organizational commitment and performance, and (c) trust and respect and leadership are essential components to keep employees engaged. Eighty percent of the participants indicated that as employee engagement increases so too does organizational performance. The implications for positive social change include new insights for leaders seeking to increase productivity and financial performance, and to support employee engagement for maintaining sustainability, retaining talent, increasing profits, and improving the economy.

  4. H.R. 1282: A Bill to provide enhanced energy security through incentives to explore and develop frontier areas of the Outer Continental Shelf and to enhance production of the domestic oil and gas resources in deep water areas of the Outer Continental Shelf. Introduced in the House of Representatives, One Hundred Third Congress, First Session, March 10, 1993

    SciTech Connect

    1993-12-31

    The report H.R. 1282 is a bill to provide enhanced energy security through incentives to explore and develop frontier areas of the Outer Continental Shelf and to enhance production of the domestic oil and gas resources in deep water areas. The proposed legislative text is included.

  5. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  6. Explore Your Future: Careers in the Natural Gas Industry.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    This career awareness booklet provides information and activities to help youth prepare for career and explore jobs in the natural gas industry. Students are exposed to career planning ideas and activities; they learn about a wide variety of industry jobs, what workers say about their jobs, and how the industry operates. Five sections are…

  7. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... expressed in common units of production with oil, gas, and other products converted to a common unit...

  8. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... expressed in common units of production with oil, gas, and other products converted to a common unit...

  9. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1990-07-26

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from international exploration and development, implementation, and evaluation of energy plans, policy and legislation. A discovery, as used in this publication, is a published estimate of the ultimately recoverable reserves for either a new field, reservoir, or well. This ultimate recovery is defined in this report as cumulative production plus remaining reserves. These discoveries are obtainable from various oil industry periodicals and company annual or quarterly reports. The discoveries are not verified by EIA but simply restated in this publication. The reported reserves do not necessarily follow the EIA definition of proved reserves. Each reserve entry follows the defining criteria of the originator. Not all discoveries are announced and not all announced discoveries are published. Some discoveries may be exaggerated or understand for political or other reasons. Therefore, the data in this report should be used with caution. 23 refs., 8 figs., 4 tabs.

  10. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    SciTech Connect

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD

  11. Exploration drilling for pre-mining gas drainage in coal mines

    NASA Astrophysics Data System (ADS)

    Shubina, E. A.; Brylin, V. I.; Lukyanov, V. G.; Korotchenko, T. V.

    2015-02-01

    High natural gas content in coal seams and low gas drainage efficiency are the basic issues to be addressed in order to ensure coal mining safety. A great number of wells being drilled within various gas drainage techniques significantly increase the costs of coal mining and do not reduce the gas content levels within the coal beds up to the required parameters in a short period of time. The integrated approach toward exploration well spacing applied at the stage of project development could make it possible to consider coal seam data to provide more effective gas drainage not only ahead of mining but also during further gas content reduction and commercial production of methane. The comparative analysis of a closely spaced grid of exploration program compiled in accordance with the recommendations on applying mineral reserves classification and inferred resources of coal and shale coal deposits and currently effective stimulation radius proves the necessity and possibility to consider exploration well data for gas drainage. Pre-mining gas drainage could ensure the safety of mining operations.

  12. Petroleum Development Oman gas exploration unlocks major new reserves

    SciTech Connect

    Wood, A.; Mozetic, A.

    1995-08-01

    Since 1985, Petroleum Development Oman (PDO) has been exploring for gas on behalf of the Government of Oman under a ten-year agreement signed in June 1984. The aim of the one-rig programme was to find additional non-associated gas reserves (3 TCF) to meet domestic energy requirements for a minimum of 40 years, for which the available reserves at that time (5.6 TCF) were insufficient. Initial results of the campaign, which principally targeted the Permian Khuff Formation, were disappointing, analogues to the major accumulations of the Arabian Gulf failing to materialise. During the second half of the programme, therefore, the strategy was revised to address the prospectivity of higher risk/higher reward plays recognised at greater depths. Well Saih Nihayda-24, drilled in 1989, found gas/condensate-bearing reservoirs in Cambro/Ordovician sandstones of the Andam Formation below 4000 metres. This discovery, in a seismically poorly defined anticline, sparked an intensive effort of 2D, and later 3D, long cable seismic acquisition. This led in 1991 to additional major gas/condensate finds in Saih Rawl and Barik, and a dedicated two-year two-rig appraisal campaign has since proven up sufficient reserves to support an LNG gas export scheme. The ten-year programme has more than tripled Oman`s non-associated gas expectation reserves to some 22 TCF, exceeding-the target more than five-fold. Significant potential for further gas discoveries identified in both North and South Oman provides encouragement for continued successful gas exploration in the future.

  13. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... (Extractive Activities—Oil and Gas Topic). Instruction 5 to Item 1204: The average production cost,...

  14. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... (Extractive Activities—Oil and Gas Topic). Instruction 5 to Item 1204: The average production cost,...

  15. VSAT: opening new horizons to oil and gas explorations

    NASA Astrophysics Data System (ADS)

    Al-Dhamen, Muhammad I.

    2002-08-01

    Whether exploring in the Empty Quarter, drilling offshore in the Gulf of Mexico, or monitoring gas pipelines or oil wells in the deserts, communications is a key element to the success of oil and gas operations. Secure, efficient communications is required between remote, isolated locations and head offices to report on work status, dispatch supplies and repairs, report on-site emergencies, transfer geophysical surveys and real-time drilling data. Drilling and exploration firms have traditionally used land-based terrestrial networks that rely on radio transmissions for voice and data communications to offshore platforms and remote deep desert drilling rigs. But these systems are inefficient and have proven inflexible with today's drilling and exploration communications demands, which include high-speed data access, telephone and video conferencing. In response, numerous oil and gas exploration entities working in deep waters and remote deep deserts have all tapped into what is an ideal solution for these needs: Very Small Aperture Terminal Systems (VSAT) for broadband access services. This led to the use of Satellite Communication Systems for a wide range of applications that were difficult to achieve in the past, such as real-time applications transmission of drilling data and seismic information. This paper provides a thorough analysis of opportunities for satellite technology solutions in support of oil and gas operations. Technologies, architecture, service, networking and application developments are discussed based upon real field experience. More specifically, the report addresses: VSAT Opportunities for the Oil and Gas Operations, Corporate Satellite Business Model Findings, Satellite Market Forecasts

  16. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production

  17. Exploring for natural gas using reflectance spectra of surface soils

    NASA Astrophysics Data System (ADS)

    Xu, Da-Qi; Ni, Guo-Qiang; Jiang, Li-Li; Shen, Yuan-Ting; Li, Ting; Ge, Shu-Le; Shu, Xian-Biao

    Reflectance spectra in the visible and near-infrared wavelengths provide a rapid and inexpensive means for determining the mineralogy of samples and obtaining information on chemical composition. Hydrocarbon microseepage theory establishes a cause-and-effect relation between oil and gas reservoirs and some special surface anomalies, which mainly include surface hydrocarbon microseepage and related alterations. Therefore, we can explore for oil, gas by determining reflectance spectra of surface anomalies. This idea has been applied to the R&D project of exploring for natural gas in Qinghai province of China using NASA EO-1 satellite with the Hyperion sensor (June 2005 to June 2006). In this project, in order to improve the accuracy of exploration targets of natural gas mapped in the field studied, an integrated practical system of exploration of oil and gas was built by the analysis of not only hyperspectral remote sensing data but also data provided from field work. In this paper, our efforts were focused on the analysis of the 799 reflectance spectra provided from the field work. In order to properly define the typical form of hydrocarbon microseepage with spectroscopy and fulfill the data analysis, it was necessary to build a spectral model. In this spectral model the most important features of hydrocarbon microseepage in the surface of our study area, i.e., diagnostic spectral macroscopic features and diagnostic spectral absorption features, were proposed and extracted, respectively. The distribution of coexisting anomalies, which results from both alteration minerals and hydrocarbons, is estimated by the diagnostic macroscopic features mainly using Spectral Angle Mapper (SAM) classifier. On the other hand, the diagnostic absorption features of two main absorption bands presented abundant local information, based on deep analysis of which, we are able to map the anomalies of alteration minerals and hydrocarbons, respectively. Additionally, a general framework of

  18. Gas Analysis of Geothermal Fluid Inclusions: A New Technology For Geothermal Exploration

    SciTech Connect

    David I. Norman; Joseph Moore

    2004-03-09

    To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal production. Knowledge of the gas contents in reservoir fluids can be applied to fluid inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the initial phase and lower drill hole completion costs. Commercial costs for fluid inclusion analysis done on at 20 feet intervals on chip samples for 10,000 ft oil wells is about $6,000, and the turn around time is a few weeks.

  19. Study on Exploring for Oil, Gas Using Hyperion data

    NASA Astrophysics Data System (ADS)

    Xu, D.-Q.; Ni, G.-Q.; Jiang, L.-L.; Ge, S.-L.

    Reflectance spectra in the visible and near-infrared wavelengths provide a rapid and inexpensive means for determining the mineralogy of samples and obtaining information on chemical composition Hydrocarbon microseepage theory setup a cause-and-effect relation between oil and gas reservoirs and some special surface alterations Therefore we can explore for oil gas by determining reflectance spectra of surface alterations This determination can be fulfilled by means of field work and hyperspectral remote sensing Our cooperative R D project which is sponsored by China National Petroleum Corporation CNPC and committing itself to exploration of oil gas in Qinghai area of China using NASA experimental Hyperion hyperspectral satellite documents a macroscopical feature of reflectance spectra of typical observation points in gas fields and then proposes a method in order to provide surface distribution information e g classification of alterations based on the reflectance spectra determined from the field and remote sensing and obtain anomaly zones of the special alterations This method mainly includes preprocessing of Hyperion images to improve the poor SNR Signal Noise Ratio of them principal component analysis PCA based on wavelet transform to reduce dimensionality and techniques providing surface distribution information using both absorption-band parameters such as the position depth width and asymmetry of the spectra and similarity of the entire shape between two spectra Finally several anomaly zones of alterations are obtained which are

  20. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  1. Construction guidelines for oil and gas exploration in northern Alaska

    SciTech Connect

    Crory, F.E.

    1991-11-01

    This report addresses the unique problems associated with oil and gas explorations in northern Alaska and provides background information on the climate and environment, including the permanently frozen ground that exists throughout the area. Information on exploration efforts in the 1940s and 1950s is also included to demonstrate what happens when summertime operations disturb the surface vegetation and thermal regime of the frozen tundra, being the basis for why such operations are no longer permitted. Separate chapters are provided on the design, construction and operation of winter trails, roads, airfields and drill pads, including a separate chapter on their abandonment. Emphasis is placed on how, why and when to accomplish the various tasks to successfully accomplish an exploration.

  2. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  3. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  4. South America: Growth in E and P opportunities keeps accelerating. [Oil and gas exploration and development in South America

    SciTech Connect

    Not Available

    1993-08-01

    This paper reviews and summarizes the oil and gas developments in Columbia, Argentina, Venezuela, Brazil, Ecuador, Peru, Bolivia, Chile, and other South American oil and gas producing countries during 1992 through 1993 and forecasts the future developments. The expanding exploration in these areas has resulted from the major new oil finds and the need for local countries to help stabilize their currency. The paper discusses exploration and drilling activity, production, and financial expenditures made on developing this regions reserves.

  5. Project Explorer GAS #007: Marshall Amateur Radio Club Experiment (MARCE)

    NASA Technical Reports Server (NTRS)

    Stluka, E. F.

    1986-01-01

    Polls were taken at the Project Explorer meetings regarding flying without the radio experiment transmitting. The radio downlinks require extra coordination and are sensitive to certain payloads. The poll results were unanimous. The radio downlinks are vital in providing data on the health and status of the total experiments package, in real time, during the flight. The amateur radio operators, prepared to receive the downlinks and OSCAR-10 relays, revealed that there was enormous interest throughout the world, to participate. This sets the stage for the reflight opportunities which the GAS program has provided. Major activities, pertinent to the STS-41G flight preparations by the GAS #007 team and support group, are listed.

  6. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    SciTech Connect

    Clark, E.

    2013-08-31

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least for the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.

  7. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  8. Myanmar production meets first-gas targets

    SciTech Connect

    Lepage, A.

    1998-09-07

    Despite scheduling complications caused by annual monsoons, the Yadana project to bring offshore Myanmar gas ashore and into neighboring Thailand has met it first-gas target of July 1, 1998. The Yadana field is a dry-gas reservoir in the reef upper Birman limestone formation t 1,260 m and a pressure of 174 bara (approximately 2,500 psi). It extends nearly 7 km (west to east) and 10 km (south to north). The water-saturated reservoir gas contains mostly methane mixed with CO{sub 2} and N{sub 2}. No production of condensate is anticipated. The Yadana field contains certified gas reserves of 5.7 tcf, calculated on the basis of 2D and 3D seismic data-acquisition campaigns and of seven appraisal wells. The paper discusses early interest, development sequences, offshore platforms, the gas-export pipeline, safety, environmental steps, and schedule constraints.

  9. Surface-operating standards for oil and gas exploration and development 'Gold Book', (third edition)

    SciTech Connect

    Not Available

    1989-01-01

    Federally owned oil and gas resources are located on lands administered by the Bureau of Land Management (BLM), the Forest Service (FS), other Federal Surface Management Agencies (SMAs), and on lands with non-Federal surface owner (split estate lands). Federal oil/gas lease operations are managed by the BLM in cooperation with the appropriate SMA or surface owner. This brochure was developed to aid the operator in permit approval and conduct of oil and gas operations on federal lands, from exploration to development and production, to abandonment. Information is provided for preparation of the surface use and drilling programs. The brochure also will prove useful in guiding oil and gas operators on Indian lands.

  10. North America: A better second half for drilling--Maybe. [Oil and gas exploration and development in North America

    SciTech Connect

    Not Available

    1993-08-01

    This paper provides data on the exploration, production, and drilling activity of the oil and gas industry in Canada, the US, and Central America. The section on the US discusses trends in drilling activity in both the first and second half of 1993. Statistical information on all oil and gas producing states if provided in a tabular format. Information on exploration and development expenditures is also discussed. Data is also provided drilling and production information for Canada, Mexico, Guatemala, Belize, Nicaragua, and other minor production areas.

  11. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  12. Antrim gas play, production expanding in Michigan

    SciTech Connect

    Not Available

    1994-05-30

    Devonian Antrim shale gas, the Michigan basin's dominant hydrocarbon play in terms of number of wells drilled for several years, shows every sign of continuing at a busy pace. About 3,500 Antrim completions now yield 350 MMcfd, more than 60% of Michigan's gas production. The outlook is for Antrim production to climb in the next 2--3 years to 500--600 MMcfd, about 1% of US gas output. These delivery numbers, slow decline rates, and expected producing life of 20--30 years has snagged pipelines attention. The growing production overtaxed local gathering facilities last fall, and the play recently got its first interstate outlet. Completion and production technology advances are improving well performance and trimming costs. Several hundred wells a year are likely to be drilled during the next few years. Production increases are coming from new wells, deepenings, and workovers. Numerous pipeline/gathering projects are planned in the area to handle the growing Antrim volumes. The paper discusses the development of this resource, efforts to extend the play, geology and production, drilling programs, and gas transportation.

  13. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  14. Novel Chemical Space Exploration via Natural Products

    PubMed Central

    Rosén, Josefin; Gottfries, Johan; Muresan, Sorel; Backlund, Anders; Oprea, Tudor I.

    2009-01-01

    Natural products (NPs) are a rich source of novel compound classes and new drugs. In the present study we have used the chemical space navigation tool ChemGPS-NP to evaluate the chemical space occupancy by NPs and bioactive medicinal chemistry compounds from the database WOMBAT. The two sets differ notable in coverage of chemical space, and tangible lead-like NPs were found to cover regions of chemical space that lack representation in WOMBAT. Property based similarity calculations were performed to identify NP neighbours of approved drugs. Several of the NPs revealed by this method, were confirmed to exhibit the same activity as their drug neighbours. The identification of leads from a NP starting point may prove a useful strategy for drug discovery, in the search for novel leads with unique properties. PMID:19265440

  15. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  16. Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy

    SciTech Connect

    Cochran, J.; Zinaman, O.; Logan, J.; Arent, D.

    2014-02-01

    Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distribution edge' subsectors: industrial, residential, commercial, and transportation end uses.

  17. New Methodology for Natural Gas Production Estimates

    EIA Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  18. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-07-01

    The paper reviews the technology of the Fischer-Tropsch synthesis used in the Sasal plant in South Africa. It discusses environmental aspects and economics of new FT facilities for the production of diesel fuels. Several projects are briefly described which use this technology for natural gas conversion.

  19. Bio-gas production from alligator weeds

    NASA Technical Reports Server (NTRS)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  20. Exploring the Limits of Crop Productivity 1

    PubMed Central

    Bugbee, Bruce G.; Salisbury, Frank B.

    1988-01-01

    The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20-hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment. PMID:11537442

  1. Oil and gas exploration on mid-Norway Continental Shelf: a brief history

    SciTech Connect

    Nelson, P.H.

    1988-02-01

    For 20 years, oil and gas exploration on the Mid-Norway continental shelf has been a process of evaluation carefully orchestrated by the government, leading to today's proven reserves of 2.3 million bbl of oil and 12.4 tcf of gas. For the first eleven years from 1969, only the Norwegian authorities and Statoil shot seismic surveys in the region. Together they acquired nearly 21,000 km of data from More in the south, through Haltenbanken, to Traenabanken in the north. Oil companies that wished to apply for a license first had to purchase selected, relevant state seismic. These purchases, particularly important in the early concession rounds, have largely financed the government's investment. In the Haltenbanken area, the first license (436 km/sup 2/; 107,750 ac) was issued in 1980; by 1983, after the issue of four more licenses adjacent to the first, two gas/condensate fields had been discovered, Midgard and Tyrihans (total gas reserves = 5 tcf). Despite disappointing results from Traenabanken, further successes came from additional licensing in Haltenbanken with the discovery of oil, gas, and condensate in the Draugen, Smoerbukk, Heidrun, and Njord fields and a handful of single well successes. Though little open acreage remains in the golden diamond of Haltenbanken, the Norwegian government will probably further respond to industry by licensing the remainder of this highly prospective tract, as well as encouraging higher-risk exploration in unproven areas. Today, development plans are far advanced for the Draugen oil field operated by A/S Norske Shell, with first production expected in 1992. To mature development plans for the gas-rich fields requires securing international gas sales contracts, the Norwegian oil industry's current preoccupation.

  2. Canada`s commercially oriented Radarsat returns SAR data for oil, gas exploration

    SciTech Connect

    Tack, R.E.

    1996-07-15

    Canada in November 1995 launched the world`s first commercially oriented remote sensing satellite to carry a synthetic aperture radar (SAR) imaging system. Radarsat provides the oil and gas industry with a unique variety of exploration and mapping capabilities not previously offered by an operational imaging satellite. Radarsat`s SAR data became commercially available in March 1996 at a cost ranging between 2{cents} to $1.60/sq km for most products--a fraction of the cost of airborne SAR imagery. The paper discusses the exploration and production benefits of SAR (all-weather imaging, varied orbits, and sensitivity to terrain) and Radarsat advantages variable incidence angle, multiple beam modes, onboard tape recorders, processing and delivery, and cost effectiveness.

  3. Gas potential of the Rome Trough in Kentucky: Results of recent Cambrian exploration

    SciTech Connect

    Harris, D.C.; Drahovzal, J.A.

    1996-09-01

    A recent gas discovery in the Rome Trough suggests the need to re-evaluate the deep Cambrian potential of eastern Kentucky. A new phase of Cambrian exploration began in mid-1994 with a new pool discovery by the Carson Associates No. 1 Kazee well in Elliott County, Ky. This well blew out and initially flowed 11 MMcfd of gas from the upper Conasauga Group/Rome Formation at 6,258 to 6,270 feet. After this discovery, a second exploratory well (the Blue Ridge No. 1Greene) was drilled on a separate structure in Elliott County in late 1995. The Blue Ridge well was temporarily abandoned, but had shows of gas and condensate. In early 1996, Carson Associates offset their initial discovery well with the No. 33 Lawson Heirs well. This activity follows a frustrating exploration history in the Rome Trough that is marked by numerous gas and oil shows, but rare commercial production. Only three single-well pools have produced commercial gas from the trough, including the recent Kazee well. Stratigraphic units below the Cambrian-Ordovician Knox Group in the Rome Trough are dramatically thicker than their equivalents on the shelf to the north. The interval in the trough is thought to include rocks as old as Early Cambrian, consisting of a basal sandstone, equivalents of the Shady/Tomstown Dolomite, the Rome Formation, and the Conasauga Formation. Sandstones and fractured shales have been responsible for most of the production to date, but dolostone intervals may also have potential. Limited seismic data indicate possible fan-delta and basin-floor fan deposits that may have reservoir potential.

  4. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik. B.; Lanza, Richard C.; Lidsky, L. M.

    1997-02-01

    A windowless deuterium gas target has been constructed for either monoenergetic or white neutron production with a 900 KeV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a beam of 5 mm transverse extent. This target is further being modified by the inclusion of an intermittent valve arrangement to reduce the flow rates in the higher pressure stages. This valve should allow operation at up to 1000 mbar with low duty factor beams.

  5. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas

  6. Exploration soil gas methods that reduce site characterization costs

    SciTech Connect

    Pyron, A.J.

    1995-09-01

    Initial site characterization of impacted or suspected sites is the most important portion of an integrated environmental remediation program. By use of passive soil gas (PSG) characterization methods, the author has saved his clients significant sums of money by expediting the characterization phase of a project, thus eliminating unnecessary drilling and sampling. He has also been able to advance remedial response by allowing better design of the characterization program. Several commercial products are available which incorporate the principals of the PSG methodology described herein. Using a decidedly low tech approach, the PSG methodology described herein can be used to identify impacted areas on a given site prior to installation of soil borings and monitorings wells. The method is low impact and does not attract unwanted attention to a potentially impacted site. Given the passive nature of the method; it allows a more accurate evaluation of subsurface soil gas conditions, and allows placement of subsequent subsurface tests (whether soil borings or monitoring wells) in optium positions for accurate characterization. This approach minimizes the number of wells needed to characterize a site, eliminates over-characterization and unnecessary drilling, and provides lateral data which in turn allows a client to determine the extent of any liability on a select property. By identifying the extent of his problem, the client can more realistically evaluate his liability and project a budget for completion of remediation. It also allows him to more easily identify the most effective remediation approach. The PSG method allows rapid characterization and priortization of multiple sites, thus allowing a more effective use of environmental budgets.

  7. New Thematic Solar System Exploration Products for Scientists and Educators

    NASA Technical Reports Server (NTRS)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  8. Anatomy of success in oil and gas exploration in Pakistan, 1915--94

    SciTech Connect

    Quadri, V.N.; Quadri, S.M.G.J.

    1996-05-13

    Pakistan, flanked by Iran, Afghanistan, China, and India, is the size of Texas and Louisiana combined. The Indus and Baluchistan basins cover 80% of Pakistan`s total area. The country also has 230,000 sq km of marine Exclusive Economic Zone. The law regarding E and P activity was promulgated in 1986, replacing the previous Petroleum (Production) Rules of 1949. As a result of the new Petroleum Policy implemented in March 1994 and streamlining of the bid review and award process, acreage leased including reconnaissance during 1994 was 355,541 sq km onshore and 120,640 sq km offshore, with the number of operating groups also a record high of 46. Although complex and disturbed as a result of collision tectonics, Pakistan`s geology is as fascinating as the surface geomorphology, from the complex compressional thrusted to the relatively simple extensional rifted, salt related to transform fault associated, the reefs, too, all impressive traps for petroleum, at times almost textbook examples. However, domestic oil production at yearend 1994 was about 53,251 b/d of oil and 1.7 bcfd of gas. Oil and gas have been found in the Potwar/Upper Indus basin and Lower Indus basin, and mainly gas with one gas/condensate discovery in the Sulaiman/Middle Indus basin. This article attempts to present brief case history outlines of typical, significant oil and gas discoveries of Pakistan 1915--94 with respect to the two main productive basins, their source and reservoir sequences, in order to determine the anatomy of success in exploration in Pakistan.

  9. Using production-based plays in the northern Gulf of Mexico as a hydrocarbon exploration tool

    SciTech Connect

    Lore, G.L.; Batchelder, E.C.

    1995-10-01

    The Minerals Management Service has described more than 100 plays in the northern Gulf of Mexico Outer Continental Shelf encompassing approximately 1,100 fields and over 9,500 productive sands. Plays are defined by a combination of production, chronostratigraphy, lighostratigraphy, and structural style. Cumulative production from these plays as of December 1993 is 9.01 billion barrels of oil and 107.7 trillion cubic feet of gas, with remaining proved reserves of 2.14 billion barrels of oil and 29.1 trillion cubic feet of gas. The information associated with these plays can be used by explorationists as a qualitative tool to target areas of potential exploration interest and as a quantitative tool to test the potential economic viability of both plays and individual prospects. Specific examples of each of these potential uses are provided. Qualitatively, the play maps target areas for future exploration in two ways. The first is to identify conceptual deep-sea fan plays located downdip from plays established in sediments of shallow water depositional environments. The second is to emphasize areas for both future exploration and infill potential around and within established plays. The extensive data sets associated with each play provide valuable quantitative information that can be used to assess the possible number and size of undiscovered accumulations in a play of exploration interest. At the individual prospect level, data related to reach productive sand and pool can be used to perform detailed geologic and economic evaluations.

  10. 43 CFR 3152.1 - Application for oil and gas geophysical exploration permit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Application for oil and gas geophysical exploration permit. 3152.1 Section 3152.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS GEOPHYSICAL EXPLORATION...

  11. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  12. A Computer-Assisted Oil Exploration and Production Game.

    ERIC Educational Resources Information Center

    Nichols, Gary John

    1987-01-01

    Describes a computer-assisted oil exploration and production game for students involved in a short course in petroleum geology. Outlines the game and its procedures, and provides sample structure maps generated by the computer in the course of playing the game. (TW)

  13. Exploring enzymes on cotton and their product targets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme-active cotton is a functional biocompatible material, and has potential applications as a sustainable material. With this in mind we have explored development of enzyme-active cotton with product potential as a disposable or reusable textile material. Lysozyme, which historically has been a w...

  14. Manufacturing Production: An Evaluation Report for the Occupational Exploration Program.

    ERIC Educational Resources Information Center

    Altschuld, James W.; And Others

    The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with manufacturing production, the report contains sections describing the simulation context, evaluation…

  15. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  16. Pneumatosis intestinalis and laparoscopic exploration: beware of gas explosion.

    PubMed

    Hong, Kwang Dae; Lee, Sun Il; Moon, Hong Young

    2012-04-01

    Colonic gas explosion, although rare, is sometimes a fatal iatrogenic complication in endoscopic procedures or laparotomic surgery, but it has not been reported during port incision of laparoscopy. We report a case of gas detonation in a patient with pneumatosis intestinalis and pneumoperitoneum, on opening the peritoneum with a diathermy for umbilical trocar insertion. Based on our experience, in cases of pneumoperitoneum, surgeons need to avoid using a diathermy in opening the peritoneum. PMID:22288881

  17. Polish permian basin: Lithofacies traps for gas within the Rotliegende deposits as a new exploration potential

    SciTech Connect

    Karnkowski, P.H. )

    1993-09-01

    Rotliegende deposits are the most prospective reservoir gas rocks in the Polish Permian basin. Thirty years of their exploration have led to location of numerous gas fields in the upper-most part of these series, particularly in the area of the Fore-Sudetic monocline. Up to this time, exploration studies concentrated mainly on structural objects, and most of the structures were positive gas traps. Well and seismic data also indicate an occurrence of lithofacies gas traps; they occur mainly in the sandstone zones within the fanglomerates surrounding the Wolsztyn Ridge. When comparing the facies regularities in the known gas fields in the German Permian basin (interfingering sandstones and claystones) to the facies patterns of the Polish Permian basin, one may suspect similar exploration possibilities. These are the first promising results. Advances in analysis of the Rotliegende depositional systems will enable us to create a new exploration potential.

  18. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    SciTech Connect

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  19. Evaluation of long-term gas hydrate production testing locations on the Alaska north slope

    USGS Publications Warehouse

    Collett, T.S.; Boswell, R.; Lee, M.W.; Anderson, B.J.; Rose, K.; Lewis, K.A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation

  20. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation.

  1. Coral reef formation theory may apply to oil, gas exploration

    SciTech Connect

    Not Available

    1990-12-10

    This paper reports a coral reef formation theory that has implications for hydrocarbon exploration. The theory states that many coral reefs and carbonate buildups from at and are dependent upon nutrient rich fluids seeping through the seabed.

  2. Gas-well production decline in multiwell reservoirs

    SciTech Connect

    Aminian, K.; Ameri, S. ); Stark, J.J. ); Yost, A.B. II )

    1990-12-01

    This paper introduces a pseudosteady-state constant-pressure solution for gas wells. The solution was used to develop a type-curve-based method to history match and predict multiwell gas reservoir production. Good agreements between the predicted and actual gas well production rates were obtained.

  3. Arizona strip breccia pipe program: exploration, development, and production

    SciTech Connect

    Mathisen, I.W. Jr.

    1987-05-01

    As part of the long-range plans for the Energy Fuels Corporation, they have embarked on one of the most active and aggressive uranium exploration programs in the US. These exploration efforts are located in the northwestern part of Arizona in an area referred to as the Arizona Strip. At a time when the domestic uranium industry is staggering to recover from its worst economic slump, Energy Fuels is spending millions of dollars a year on exploration, development, production, and milling. The reason for Energy Fuels' commitment to uranium exploration and production lies in the ground of Arizona in unique geologic formations called breccia pipes. Some of these structures, generally no more than 300 to 350 ft in diameter, contain uranium that is, on the average, five to ten times richer than ore found elsewhere in the US. The richness of this Arizona ore makes it the only conventionally mined uranium in the US that can compete in today's market of cheaper, high-grade foreign sources. Between January 1980 and December 1986, Energy Fuels has mined more than 10 billion lb of uranium from breccia pipe deposits at an average grade of 0.65% U/sub 3/O/sub 8/. Currently, Energy Fuels is operating six breccia pipe mines, and a plan of operations on a seventh mine has been submitted to the appropriate government agencies for the necessary mining permits.

  4. Exploring the thermodynamics of a universal Fermi gas

    NASA Astrophysics Data System (ADS)

    Nascimbène, S.; Navon, N.; Jiang, K. J.; Chevy, F.; Salomon, C.

    2010-02-01

    One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.

  5. Environmental legal implications of oil and gas exploration in the Niger Delta of Nigeria

    NASA Astrophysics Data System (ADS)

    Orubebe, Bibobra Bello

    Nigeria is an African country endowed with a wealth of oil and gas resources, and they are mainly found in the core Niger Delta (home to the Ijaw and Ogoni indigenous, ethnic minorities). Since Great Britain granted Nigeria political independence on October 1, 1960, successive Nigerian governments (military and civilian) have been dominated by the majority ethnic groups (Hausa-Fulani, Yoruba, and Ibo). Significantly, the government adopted a socialist-based model of absolute state ownership over oil and gas resources. The socialist model formed the basis of Nigeria's business collaboration with multinational oil and gas corporations from Europe and the United States (notably Shell, Chevron Texaco, Agip, Exxon Mobil, Total, and Elf). This model is fraught with contradictions and has led to unacceptable consequences, including policies that allow exploitation of natural resources without reference to environmental sustainability. When oil was first struck in 1956 at Oloibori (Ijaw area), people thought it would bring prosperity and an improved quality of life. Sadly, the opposite has occurred. Forty-nine years of hardship, agonizing pain, debilitating anger, extreme poverty, poisoned rivers, destroyed occupations, devastated environment, and stunted growth of the youth are the negative impacts of oil and gas exploitation in the Niger Delta. In other words, oil and gas exploration and production have visited a full range of evils---socio-political, economic, and cultural---upon the indigenous Niger Delta people. Furthermore, the wealth extracted from the area is used by the state and multinational corporations to enhance their own wealth and quality of life. Revenue has been conspicuously looted and misappropriated by political leaders at the expense of the Niger Delta environment and its people. This confluence of exploitation and injury has led to social upheavals and armed rebellions, all capable of precipitating the disintegration of the country. In this

  6. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2012-01-01

    The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical

  7. Federal offshore statistics: 1992. Leasing, exploration, production, and revenues as of December 31, 1992

    SciTech Connect

    Francois, D.K.

    1993-12-31

    The Outer Continental Shelf Lands Act, enacted in 1953 and amended several times, charges the Secretary of the Interior with the responsibility for administering and managing mineral exploration and development of the outer continental shelf, as well as for conserving its natural resources. This report documents the following: Federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; Federal offshore oil and natural gas sales volume and royalties; revenue from Federal offshore leases; disbursement of Federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. 11 figs., 83 tabs.

  8. Oil and Gas Exploration Planning using VOI Technique

    NASA Astrophysics Data System (ADS)

    Peskova, D. N.; Sizykh, A. V.; Rukavishnikov, V. S.

    2016-03-01

    Paper deals with actual problem about making decisions during field development. The main aim was to apply method “Value of information” in order to estimate the necessity of field exploration works and show the effectiveness of this method. The object of analysis - field X, which is located in the Eastern Siberia. The reservoir is B13 formation of Vend age. The Field has complex structure, and divided into blocks by faults. During evaluation of the project, main uncertainties and oil in place were obtained for three blocks of the field. According to uncertainty analysis, it was suggested to drill a new exploration well, and value of information method was applied to estimate results from this exploration works. Economic evaluation of the value of information method was made by choosing optimal development strategy. According to the obtained results, drilling of the exploration wells for blocks 1 and 3 of the field X is a good decision, while drilling a well in the second block is risky and not recommended. Also using the value of information, optimal well locations were advised - well l_le for the first block, and well 33 for the third block.

  9. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  10. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  11. Theoretical approach to explore the production routes of astatine radionuclides

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Lahiri, Susanta

    2009-02-01

    To fulfill the recent thrust of astatine radionuclides in the field of nuclear medicine, various production routes have been explored in the present work. The possible production routes of At209-211 comprise both light- and heavy-ion-induced reactions at the bombarding energy range starting from threshold to a maximum of 100 MeV. Excitation functions of those radionuclides, produced through various production routes, have been calculated by using nuclear reaction model codes TALYS, ALICE91, and PACE-II and are compared with the available measured data. Contributions of various reaction mechanisms, such as direct, pre-equilibrium, and equilibrium reactions, to the total reaction cross section have been studied using the codes. Results show that the equilibrium reaction dominates in all cases over other reaction mechanisms.

  12. Theoretical approach to explore the production routes of astatine radionuclides

    SciTech Connect

    Maiti, Moumita; Lahiri, Susanta

    2009-02-15

    To fulfill the recent thrust of astatine radionuclides in the field of nuclear medicine, various production routes have been explored in the present work. The possible production routes of {sup 209-211}At comprise both light- and heavy-ion-induced reactions at the bombarding energy range starting from threshold to a maximum of 100 MeV. Excitation functions of those radionuclides, produced through various production routes, have been calculated by using nuclear reaction model codes TALYS, ALICE91, and PACE-II and are compared with the available measured data. Contributions of various reaction mechanisms, such as direct, pre-equilibrium, and equilibrium reactions, to the total reaction cross section have been studied using the codes. Results show that the equilibrium reaction dominates in all cases over other reaction mechanisms.

  13. Exploring cyanobacterial genomes for natural product biosynthesis pathways.

    PubMed

    Micallef, Melinda L; D'Agostino, Paul M; Al-Sinawi, Bakir; Neilan, Brett A; Moffitt, Michelle C

    2015-06-01

    Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored. PMID:25482899

  14. IRIS DMC products help explore the Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Trabant, C.; Hutko, A. R.; Bahavar, M.; Ahern, T. K.; Benson, R. B.; Casey, R.

    2011-12-01

    Within two hours after the great March 11, 2011 Tohoku earthquake the IRIS DMC started publishing automated data products through its Searchable Product Depository (SPUD), which provides quick viewing of many aspects of the data and preliminary analysis of this great earthquake. These products are part of the DMC's data product development effort intended to serve many purposes: stepping-stones for future research projects, data visualizations, data characterization, research result comparisons as well as outreach material. Our current and soon-to-be-released products that allow users to explore this and other global M>6.0 events include 1) Event Plots, which are a suite of maps, record sections, regional vespagrams and P-coda stacks 2) US Array Ground Motion Visualizations that show the vertical and horizontal global seismic wavefield sweeping across US Array including minor and major arc surface waves and their polarizations 3) back-projection movies that show the time history of short-period energy from the rupture 4) R1 source-time functions that show approximate duration and source directivity and 5) aftershock sequence maps and statistics movies based on NEIC alerts that self-update every hour in the first few days following the mainshock. Higher order information for the Tohoku event that can be inferred based on our products which will be highlighted include a rupture duration of order 150 sec (P-coda stacks, back-projections, R1 STFs) that ruptured approximately 400 km along strike primarily towards the south (back-projections, R1 STFs, aftershock animation) with a very low rupture velocity (back-projections, R1 STFs). All of our event-based products are automated and consistently produced shortly after the event so that they may serve as familiar baselines for the seismology research community. More details on these and other existing products are available at: http://www.iris.edu/dms/products/

  15. Development of a Contingency Gas Analyzer for the Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Niu, Bill; Carney, Kenneth; Steiner, George; OHarra, William; Lewis, John

    2010-01-01

    NASA's experience with electrochemical sensors in a hand-held toxic gas monitor serves as a basis for the development of a fixed on-board instrument, the Contingency Gas Analyzer (CGA), for monitoring selected toxic combustion products as well as oxygen and carbon dioxide on the Orion Crew Exploration Vehicle (CEV). Oxygen and carbon dioxide are major components of the cabin environment and accurate measurement of these compounds is critical to maintaining a safe working environment for the crew. Fire or thermal degradation events may produce harmful levels of toxic products, including carbon monoxide (CO), hydrogen cyanide (HCN), and hydrogen chloride (HCl) in the environment. These three components, besides being toxic in their own right, can serve as surrogates for a panoply of hazardous combustion products. On orbit monitoring of these surrogates provides for crew health and safety by indicating the presence of toxic combustion products in the environment before, during and after combustion or thermal degradation events. Issues identified in previous NASA experiences mandate hardening the instrument and components to endure the mechanical and operational stresses of the CEV environment while maintaining high analytical fidelity. Specific functional challenges involve protecting the sensors from various anticipated events- such as rapid pressure changes, low cabin pressures, and extreme vibration/shock exposures- and extending the sensor lifetime and calibration periods far beyond the current state of the art to avoid the need for on-orbit calibration. This paper focuses on lessons learned from the earlier NASA hardware, current testing results, and engineering solutions to the identified problems. Of particular focus will be the means for protecting the sensors, addressing well known cross-sensitivity issues and the efficacy of a novel self monitoring mechanism for extending sensor calibration periods.

  16. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the

  17. 43 CFR 3151.1 - Notice of intent to conduct oil and gas geophysical exploration operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Notice of intent to conduct oil and gas geophysical exploration operations. 3151.1 Section 3151.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS...

  18. Crew Exploration Vehicle Environmental Control and Life Support Emergency Gas Consumable Sizing

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Peterso, Laurie

    2007-01-01

    As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements that drive the emergency gas consumables. Emergency gas is required to support Extravehicular Activities (EVA), maintain the cabin pressure during a cabin leak for the crew to don their suits, and to recover the cabin following a toxic even or a fire.

  19. 21 CFR 173.350 - Combustion product gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350 Combustion product gas. The food additive combustion...

  20. Reservoir controls on the occurrence and production of gas hydrates in nature

    USGS Publications Warehouse

    Collett, Timothy Scott

    2014-01-01

    modeling has shown that concentrated gas hydrate occurrences in sand reservoirs are conducive to existing well-based production technologies. The resource potential of gas hydrate accumulations in sand-dominated reservoirs have been assessed for several polar terrestrial basins. In 1995, the U.S. Geological Survey (USGS) assigned an in-place resource of 16.7 trillion cubic meters of gas for hydrates in sand-dominated reservoirs on the Alaska North Slope. In a more recent assessment, the USGS indicated that there are about 2.42 trillion cubic meters of technically recoverable gas resources within concentrated, sand-dominated, gas hydrate accumulations in northern Alaska. Estimates of the amount of in-place gas in the sand dominated gas hydrate accumulations of the Mackenzie Delta Beaufort Sea region of the Canadian arctic range from 1.0 to 10 trillion cubic meters of gas. Another prospective gas hydrate resources are those of moderate-to-high concentrations within sandstone reservoirs in marine environments. In 2008, the Bureau of Ocean Energy Management estimated that the Gulf of Mexico contains about 190 trillion cubic meters of gas in highly concentrated hydrate accumulations within sand reservoirs. In 2008, the Japan Oil, Gas and Metals National Corporation reported on a resource assessment of gas hydrates in which they estimated that the volume of gas within the hydrates of the eastern Nankai Trough at about 1.1 trillion cubic meters, with about half concentrated in sand reservoirs. Because conventional production technologies favor sand-dominated gas hydrate reservoirs, sand reservoirs are considered to be the most viable economic target for gas hydrate production and will be the prime focus of most future gas hydrate exploration and development projects.

  1. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  2. Production of biodiesel using expanded gas solvents

    SciTech Connect

    Ginosar, Daniel M; Fox, Robert V; Petkovic, Lucia M

    2009-04-07

    A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

  3. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  4. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik B.

    A windowless deuterium gas target has been constructed for high yield production of either monoenergetic or white fast neutrons. The operation of this target has been demonstrated on a 900 keV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a low duty factor beam of 5 mm transverse extent. The target employs an intermittent valve arrangement to reduce the flow rates in the higher pressure stages of a differentially pumped vacuum system. This valve allows operation at much greater target pressures for low duty factor beams than would otherwise be the case. Neutron yield measurements validated the functionality of the target system. This target will make possible considerable advances in methods of non-destructive testing and evaluation which employ fast neutrons, whether mono-energetic or otherwise. It is further suited to use as a thermal neutron source, with the addition of an appropriate moderator. The development of this target system has not only provided a functioning and valuable piece of equipment for use in further research, but has also investigated the technological limitations and functional requirements of implementing such a system in a practical setting. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 2139-4307. Ph. 617-253-5668; Fax 617- 253-1690.)

  5. Adsorbed sulfur-gas methods for both near-surface exploration and downhole logging

    SciTech Connect

    Farwell, S.O.; Barinaga, C.J.; Dolenc, M.R.; Farwell, G.H.

    1986-08-01

    The use of sulfur-containing gases in petroleum exploration is supported by (1) the idea that sulfur may play a role in petroleum genesis, (2) the corresponding existence of sulfur-containing compounds in petroleum and the potential for vertical migration of the low-molecular-weight sulfur species from these reservoirs, (3) the production of H/sub 2/S by anaerobic microorganism populations that develop in the subsurface areas overlying petroleum reservoirs due to the concomitant supply of hydrocarbon nutrients, (4) the recent discovery of near-surface accumulations of pyrite and marcasite as the source of induction potential anomalies over certain fields, and (5) the strong adsorptive affinities of sulfur gases to solid surfaces, which enhance both the concentration and localization of such sulfur-expressed anomalies. During the past 3 years, numerous near-surface soil samples and well cuttings from the Utah-Wyoming Overthrust belt have been analyzed for adsorbed sulfur-gas content by two novel analytical techniques: thermal desorption/metal foil collection/flash desorption/sulfur-selective detection (TD/MFC/FD/SSD) and thermal desorption/cryogenic preconcentration/high-resolution-gas chromatography/optimized-flame photometry (TD/CP/HRGC/OFP).

  6. International oil and gas exploration and development: 1991

    SciTech Connect

    Not Available

    1993-12-01

    This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

  7. Recent developments in environmental regulation impacting oil and gas production and refining

    SciTech Connect

    Pierce, D.E.

    1995-12-31

    This paper presents an overview of the recent major legal and regulatory developments impacting oil and gas exploration, production, and refining activities. The focus is upon the federal laws governing air, water, and land pollution for the period 1994 to the present.

  8. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  9. Exploring hot gas at junctions of galaxy filaments with Suzaku

    SciTech Connect

    Mitsuishi, I.; Sasaki, S.; Kawahara, H.; Sekiya, N.; Yamasaki, N. Y; Sousbie, T.

    2014-03-10

    We performed five pointing observations with Suzaku to search for hot gases associated with the junctions of galaxy filaments where no significant diffuse X-ray sources were previously detected. We discovered X-ray sources successfully in all five regions including merging groups of galaxies, Suzaku J0957+2610 and Suzaku J1134+2105, and analyzed two bright sources in each field. Spectral analysis indicates that three sources originate from X-ray diffuse halos associated with optically bright galaxies or groups of galaxies with kT ∼ 0.6-0.8 keV. The three other sources are possibly group- and cluster-scale X-ray halos with temperatures of ∼1 keV and ∼4 keV, respectively while the others are compact object origins such as active galactic nuclei. All of the three observed intracluster media within the junctions of the galaxy filaments previously found are involved in ongoing mergers. Thus, we demonstrate that deep X-ray observations at the filament junctions identified by galaxy surveys are a powerful means to explore previously undetected growing halos in a hierarchical structure.

  10. Exploring extrasolar worlds: from gas giants to terrestrial habitable planets.

    PubMed

    Tinetti, Giovanna; Griffith, Caitlin A; Swain, Mark R; Deroo, Pieter; Beaulieu, Jean Philippe; Vasisht, Gautam; Kipping, David; Waldmann, Ingo; Tennyson, Jonathan; Barber, Robert J; Bouwman, Jeroen; Allard, Nicole; Brown, Linda R

    2010-01-01

    Almost 500 extrasolar planets have been found since the discovery of 51 Peg b by Mayor and Queloz in 1995. The traditional field of planetology has thus expanded its frontiers to include planetary environments not represented in our Solar System. We expect that in the next five years space missions (Corot, Kepler and GAIA) or ground-based detection techniques will both increase exponentially the number of new planets discovered and lower the present limit of a approximately 1.9 Earth-mass object [e.g. Mayor et al., Astron. Astrophys., 2009, 507, 487]. While the search for an Earth-twin orbiting a Sun-twin has been one of the major goals pursued by the exoplanet community in the past years, the possibility of sounding the atmospheric composition and structure of an increasing sample of exoplanets with current telescopes has opened new opportunities, unthinkable just a few years ago. As a result, it is possible now not only to determine the orbital characteristics of the new bodies, but moreover to study the exotic environments that lie tens of parsecs away from us. The analysis of the starlight not intercepted by the thin atmospheric limb of its planetary companion (transit spectroscopy), or of the light emitted/reflected by the exoplanet itself, will guide our understanding of the atmospheres and the surfaces of these extrasolar worlds in the next few years. Preliminary results obtained by interpreting current atmospheric observations of transiting gas giants and Neptunes are presented. While the full characterisation of an Earth-twin might requires a technological leap, our understanding of large terrestrial planets (so called super-Earths) orbiting bright, later-type stars is within reach by current space and ground telescopes. PMID:21302557

  11. Robust MEMS gyroscope for oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Lin, David; Miller, Todd

    2014-06-01

    To satisfy the performance and reliability requirement of a MEMS based harsh environment sensor, the sensor development needs to depart from the classic method of single-discipline technology improvement. In this paper, the authors will describe a Microsystem-based design methodology which considers simultaneous multiple technology domain interaction and achieves performance optimization at the system level to address the harsh environment sensing challenge. This is demonstrated through specific examples of investigating a robust MEMS gyroscope suitable for high temperature and high vibration environments such as down-hole drilling for Oil and Gas applications. In particular, the different mechanisms of temperature-induced errors in MEMS gyroscope are discussed. The error sources include both the direct impact of the gyroscope dynamics by temperature and the indirect perturbation by temperature-induced package stress. For vibration and shock induced failure, the error contributions from the low frequency and high frequency contents are discussed. Different transducer designs with equivalent rate sensitivity can vary with several orders of magnitude in terms of the susceptibility to mechanical vibration. Also shown are the complex interactions among the gyroscopic transducer, packaging and the control electronics, resulting from these temperature and vibration error sources. The microsystem-based design methodology is able to capture such complex interactions and improve the gyroscope temperature and vibration performance. In contrast to other efforts in harsh environment sensing which focus on specific technology domains, the authors strive to demonstrate the need and advantage of addressing MEMS performance and reliability in harsh environment from a microsystem perspective.

  12. Mathematical analysis of intermittent gas injection model in oil production

    NASA Astrophysics Data System (ADS)

    Tasmi, Silvya, D. R.; Pudjo, S.; Leksono, M.; Edy, S.

    2016-02-01

    Intermittent gas injection is a method to help oil production process. Gas is injected through choke in surface and then gas into tubing. Gas forms three areas in tubing: gas column area, film area and slug area. Gas column is used to propel slug area until surface. A mathematical model of intermittent gas injection is developed in gas column area, film area and slug area. Model is expanding based on mass and momentum conservation. Using assume film thickness constant in tubing, model has been developed by Tasmi et. al. [14]. Model consists of 10 ordinary differential equations. In this paper, assumption of pressure in gas column is uniform. Model consist of 9 ordinary differential equations. Connection of several variables can be obtained from this model. Therefore, dynamics of all variables that affect to intermittent gas lift process can be seen from four equations. To study the behavior of variables can be analyzed numerically and mathematically. In this paper, simple mathematically analysis approach is used to study behavior of the variables. Variables that affect to intermittent gas injection are pressure in upstream valve and in gas column. Pressure in upstream valve will decrease when gas mass in valve greater than gas mass in choke. Dynamic of the pressure in the gas column will decrease and increase depending on pressure in upstream valve.

  13. Measuring micro-organism gas production

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Pearson, A. O.; Mills, S. M.

    1973-01-01

    Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples.

  14. Analysis of eastern Devonian gas shales production data

    SciTech Connect

    Gatens, J.M.; Stanley, D.K.; Lancaster, D.E.; Lee, W.J.; Lane, H.S.; Watson, A.T.

    1989-05-01

    Production data from more than 800 Devonian shale wells have been analyzed. Permeability-thickness product and gas in place estimated from production data have been found to correlate with well performance. Empirical performance equations, production type curves, and an analytical dual-porosity model with automatic history-matching scheme were developed for the Devonian shale.

  15. Integrated exploration strategy for locating areas capable of high gas rate cavity completion in coalbed methane reservoirs

    SciTech Connect

    Klawitter, A.L.; Hoak, T.E.; Decker, A.D.

    1995-10-01

    In 1993, the San Juan Basin accounted for approximately 605 Bcf of the 740 Bcf of all coalbed gas produced in the United States. The San Juan {open_quotes}cavitation fairway{close_quotes} in which production occurs in open-hole cavity completions, is responsible for over 60% of all U.S. coalbed methane production. Perhaps most striking is the fact that over 17,000 wells had penetrated the Fruitland formation in the San Juan Basin prior to recognition of the coalbed methan potential. To understand the dynamic cavity fairway reservoir in the San Juan Basin, an exploration rationale for coalbed methan was developed that permits a sequential reduction in total basin exploration area based on four primary exploration criteria. One of the most significant criterion is the existence of thick, thermally mature, friable coals. A second criterion is the existence of fully gas-charged coals. Evaluation of this criterion requires reservoir geochemical data to delineate zones of meteoric influx where breaching has occurred. A third criterion is the presence of adequate reservoir permeability. Natural fracturing in coals is due to cleating and tectonic processes. Because of the general relationship between coal cleating and coal rank, coal cleating intensity can be estimated by analysis of regional coal rank maps. The final criterion is determining whether natural fractures are open or closed. To make this determination, remote sensing imagery interpretation is supported by ancillary data compiled from regional tectonic studies. Application of these four criteria to the San Juan Basin in a heuristic, stepwise process resulted in an overall 94% reduction in total basin exploration area. Application of the first criterion reduced the total basin exploration area by 80%. Application of the second criterion further winnows this area by an addition 9%. Application of the third criterion reduces the exploration area to 6% of the total original exploration area.

  16. Exploring Remote Sensing Products Online with Giovanni for Studying Urbanization

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina; Kempler, Steve

    2012-01-01

    Recently, a Large amount of MODIS land products at multi-spatial resolutions have been integrated into the online system, Giovanni, to support studies on land cover and land use changes focused on Northern Eurasia and Monsoon Asia regions. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data. The customized Giovanni Web portals (Giovanni-NEESPI and Giovanni-MAIRS) are created to integrate land, atmospheric, cryospheric, and social products, that enable researchers to do quick exploration and basic analyses of land surface changes and their relationships to climate at global and regional scales. This presentation documents MODIS land surface products in Giovanni system. As examples, images and statistical analysis results on land surface and local climate changes associated with urbanization over Yangtze River Delta region, China, using data in Giovanni are shown.

  17. Exploration for shallow compaction-induced gas accumulations in sandstones of the Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Oldham, D.W.

    1997-01-01

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Tongue River Member of the Fort Union Formation (Paleocene) in the Wyoming portion of the Powder River Basin. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Coal-sourced bacterial gas may have accumulated in localized structural highs early in the burial history of lenticular sand bodies and associated sediments. Structural relief is due to the compaction contrast between sand and stratigraphically equivalent fine-grained sediments. A shallow gas play targeting sandstones as potential reservoirs was initiated in the Recluse area in response as sources for bacterial gas, and the presence of lenticular sandstones that may have promoted the development of compaction structures early in the burial process, to which early-formed bacterial gas migrated. Prospects were ranked based on a number of geologic elements related to compaction-induced trap development. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery and development of the Oedekoven Fort Union gas pool, which has produced nearly 2 BCF of gas from a depth of 340 ft. Production figures from the Oedekoven and Chan pools demonstrate the commercial gas potential of Fort Union sandstone reservoirs in the Powder River Basin. The shallow depths of the reservoirs, coupled with low drilling and completion costs, an abundance of subsurface control with which to delineate prospects, and an existing network of gas-gathering systems, make them attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.

  18. Depressurization and electrical heating of hydrate sediment for gas production

    NASA Astrophysics Data System (ADS)

    Minagawa, H.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on electrical heating of the hydrate core combined with depressurization for gas production. In-situ dissociation of natural gas hydrate is necessary for commercial recovery of natural gas from natural gas hydrate sediment. Thermal stimulation is an effective dissociation method, along with depressurization.To simulate methane gas production from methane hydrate layer, we investigated electrical heating of methane hydrate sediment. A decrease in core temperature due to the endothermic reaction of methane hydrate dissociation was suppressed and the core temperature increased between 1oC and 4oC above the control temperature with electric heating. A current density of 10A/m2 with depressurization would effectively dissociate hydrate. Therefore, depressurization and additional electrode heating of hydrate sediment saturated with electrolyte solution was confirmed to enable higher gas production from sediment with less electric power.

  19. Harsh-Environment Packaging for Downhole Gas and Oil Exploration

    SciTech Connect

    Shubhra Bansal; Junghyun Cho; Kevin Durocher; Chris Kapusta; Aaron Knobloch; David Shaddock; Harry Schoeller; Hua Xia

    2007-08-31

    This research into new packaging materials and methods for elevated temperatures and harsh environment electronics focused on gaining a basic understanding of current state-of-the-art in electronics packaging used in industry today, formulating the thermal-mechanical models of the material interactions and developing test structures to confirm these models. Discussions were initiated with the major General Electric (GE) businesses that currently sell into markets requiring high temperature electronics and packaging. They related the major modes of failure they encounter routinely and the hurdles needed to be overcome in order to improve the temperature specifications of these products. We consulted with our GE business partners about the reliability specifications and investigated specifications and guidelines that from IPC and the SAE body that is currently developing guidelines for electronics package reliability. Following this, a risk analysis was conducted for the program to identify the critical risks which need to be mitigated in order to demonstrate a flex-based packaging approach under these conditions. This process identified metal/polyimide adhesion, via reliability for flex substrates and high temperature interconnect as important technical areas for reliability improvement.

  20. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  1. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOEpatents

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  2. 77 FR 65547 - Reissuance of the NPDES General Permits for Oil and Gas Exploration Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... AGENCY Reissuance of the NPDES General Permits for Oil and Gas Exploration Facilities on the Outer...) General Permits for Oil and Gas Exploration Facilities on the Outer Continental Shelf and Contiguous State... Subcategory of the Oil and Gas Extraction Point Source Category (40 CFR part 425, Subpart A), as authorized...

  3. Senate Forum on Shale Gas Development Explores Environmental and Industry Issues

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-06-01

    The U.S. Senate Committee on Energy and Natural Resources brought together industry and environmental leaders for a 23 May forum that focused on industry best practices and environmental concerns related to the current shale gas boom. The boom in shale gas development has been brought about in large part through advances in horizontal drilling and hydraulic fracturing ("fracking") to increase shale oil and gas production.

  4. Features of the marketing strategy of oil and gas companies in exploration drilling

    NASA Astrophysics Data System (ADS)

    Sharf, I.; Malanina, V.; Kamynina, L.

    2014-08-01

    The implementation of national and regional programs for the development of new oil and gas provinces of Eastern Siberia poses the challenge of increasing geological exploration. The current drilling service companies' market structure, as well as the strategic task of search and exploration effectiveness requires qualitatively new approaches for choosing a contractor. The proposed strategy to select a contractor based on comprehensive analysis of certain groups of industrial, financial, infrastructural criteria allows not only to optimize the costs of exploration activities, but also to minimize preventively the risks of a poor geological exploration. The authors' SWOT- analysis of the marketing strategy of "Gazprom neft" for choosing a contractor outlined the problem of imperfection of the Russian legislation in the sphere of activities of service companies in the oil and gas sector.

  5. In-Situ Production of Solar Power Systems for Exploration

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Criswell, David R.

    1999-01-01

    refined materials are available as well as cheap fast transportation on demand. The processes takes place (except for the few seconds reprieve in shot towers etc.) under one gravity, with solar radiation significantly modulated by weather, and under conditions where one atmosphere is free and high vacuum is cumbersome and expensive. Off Earth, on lunar or Mars bases, the cost of photovoltaic power is driven by transport costs - Earth launch, deep space transport, landing on the planetary surface. Thus there is a premium for processes that are materials self-sufficient or for closed loop in-situ processes. The lack of differentiated ores on the Moon, and lack of explored minerals on Mars and interplanetary space give a premium to universal/non-ore-specific mineral extractive processes. Initially a semiconductor/photovoltaic production facility will build on no conveniently located industrial base, further increasing the premium on closed loop self sufficient processes.

  6. Project Explorer takes its second step: GAS-608 in engineering development

    NASA Technical Reports Server (NTRS)

    Kitchens, Philip H.

    1988-01-01

    An a continuation of its Project Explorer series, the Alabama Space and Rocket Center is sponsoring the development of two additional Get Away Special payloads. Details are given of GAS-608, including descriptions of its six experiments in organic crystal growth, roach eggs, yeast, radish seeds, bacterial morphology, and silicon crystals. A brief summary is also presented of GAS-105 and the Space Camp program for stimulating student first hand participation in space flight studies. GAS-608 will carry six student experiments, which will involve biology, crystal growth, and biochemistry in addition to a centralized package for electronics and power supply.

  7. Environmental policy and regulatory constraints to natural gas production.

    SciTech Connect

    Elcock, D.

    2004-12-17

    For the foreseeable future, most of the demand for natural gas in the United States will be met with domestic resources. Impediments, or constraints, to developing, producing, and delivering these resources can lead to price increases or supply disruptions. Previous analyses have identified lack of access to natural gas resources on federal lands as such an impediment. However, various other environmental constraints, including laws, regulations, and implementation procedures, can limit natural gas development and production on both federal and private lands. This report identifies and describes more than 30 environmental policy and regulatory impediments to domestic natural gas production. For each constraint, the source and type of impact are presented, and when the data exist, the amount of gas affected is also presented. This information can help decision makers develop and support policies that eliminate or reduce the impacts of such constraints, help set priorities for regulatory reviews, and target research and development efforts to help the nation meet its natural gas demands.

  8. Gas hearth products market fact base. Topical report, January 1996

    SciTech Connect

    1996-02-01

    The Gas Hearth Products Market Fact Base is an analysis of the U.S. gas log and fireplace markets. The study was undertaken to: determine current usage of and attitudes about fireplaces; identify barriers to acceptance of gas logs and fireplaces; determine the influence of service providers, and; identify important trends that can affect the markets for gas hearth products. The market fact base is based on four studies: a market analysis synthesizing primary and secondary research reports; in-depth interviews with market influencers from across the country (architects, contractors, interior designers, fireplace retailers and installers) and industry experts from gas utilities and trade associations; focus group meetings with consumers who own or intend to buy fireplaces, gas fireplace industry professionals, and editors of fireplace-related trade magazines, and; quantitative interviews with consumers in six U.S. cities.

  9. Process for production desulfurized of synthesis gas

    DOEpatents

    Wolfenbarger, James K.; Najjar, Mitri S.

    1993-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  10. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  11. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  12. Exploration for shallow, compaction-induced gas accumulations, Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Oldham, D.W.

    1996-06-01

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Fort Union Formation (Paleocene) in the Powder River Basin of Wyoming. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Gas is believed to have accumulated in localized structural highs early in the burial history of lenticular sands. Structural relief is due to the compaction contrast between sand and stratigraphically-equivalent fine-grained sediments. A shallow Fort Union gas play was based on reports of shallow gas shows, the occurrence of thick coals which could have served as sources for bacterial gas, and the presence of lenticular sandstones which may have promoted the development of compaction structures early in the burial process, to which bacterial gas migrated. Five geologic elements related to compactional trap development were used to rank prospects. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery of the Oedekoven Fort Union gas pool at a depth of 340 ft (104 m). The uncemented, very fine grained, well-sorted {open_quotes}Canyon sand{close_quotes} pay has extremely high intergranular porosity. Low drilling and completion costs associated with shallow, high-permeability reservoirs, an abundance of subsurface control with which to delineate prospects, and existing gas-gathering systems make Fort Union sandstones attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.

  13. Strategies for gas production from oceanic Class 3 hydrateaccumulations

    SciTech Connect

    Moridis, George J.; Reagan, Matthew T.

    2007-05-01

    Gas hydrates are solid crystalline compounds in which gasmolecules are lodged within the lattices of ice crystals. Vast amounts ofCH4 are trapped in gas hydrates, and a significant effort has recentlybegun to evaluate hydrate deposits as a potential energy source. Class 3hydrate deposits are characterized by an isolated Hydrate-Bearing Layer(HBL) that is not in contact with any hydrate-free zone of mobile fluids.The base of the HBL in Class 3 deposits may occur within or at the edgeof the zone of thermodynamic hydrate stability.In this numerical study oflong-term gas production from typical representatives of unfracturedClass 3 deposits, we determine that simple thermal stimulation appears tobe a slow and inefficient production method. Electrical heating and warmwater injection result in very low production rates (4 and 12 MSCFD,respectively) that are orders of magnitude lower than generallyacceptable standards of commercial viability of gas production fromoceanic reservoirs. However, production from depressurization-baseddissociation based on a constant well pressure appears to be a promisingapproach even in deposits characterized by high hydrate saturations. Thisapproach allows the production of very large volumes ofhydrate-originating gas at high rates (>15 MMSCFD, with a long-termaverage of about 8.1 MMSCFD for the reference case) for long times usingconventional technology. Gas production from hydrates is accompanied by asignificant production of water. However, unlike conventional gasreservoirs, the water production rate declines with time. The lowsalinity of the produced water may require care in its disposal. Becauseof the overwhelming advantage of depressurization-based methods, thesensitivity analysis was not extendedto thermal stimulation methods. Thesimulation results indicate that depressurization-induced gas productionfrom oceanic Class 3 deposits increases (and the corresponding waterto-gas ratio decreases) with increasing hydrate temperature

  14. Tempest gas turbine extends EGT product line

    SciTech Connect

    Chellini, R.

    1995-07-01

    With the introduction of the 7.8 MW (mechanical output) Tempest gas turbine, ECT has extended the company`s line of its small industrial turbines. The new Tempest machine, featuring a 7.5 MW electric output and a 33% thermal efficiency, ranks above the company`s single-shaft Typhoon gas turbine, rated 3.2 and 4.9 MW, and the 6.3 MW Tornado gas turbine. All three machines are well-suited for use in combined heat and power (CHP) plants, as demonstrated by the fact that close to 50% of the 150 Typhoon units sold are for CHP applications. This experience has induced EGT, of Lincoln, England, to announce the introduction of the new gas turbine prior to completion of the testing program. The present single-shaft machine is expected to be used mainly for industrial trial cogeneration. This market segment, covering the needs of paper mills, hospitals, chemical plants, ceramic industry, etc., is a typical local market. Cogeneration plants are engineered according to local needs and have to be assisted by local organizations. For this reason, to efficiently cover the world market, EGT has selected a number of associates that will receive from Lincoln completely engineered machine packages and will engineer the cogeneration system according to custom requirements. These partners will also assist the customer and dispose locally of the spares required for maintenance operations.

  15. Catalyst life and product color prediction for gas oil HDS

    SciTech Connect

    Ushio, M.; Hatayama, M.; Waku, T.

    1995-12-31

    Gas oil hydrodesulfurization was investigated. The sulfur content was reduced by increasing the reaction temperature. However, the severe temperatures made the product oil colored. The kinetic parameters of decoloring reaction at lower tempeatures were calculated.

  16. Outer Continental Shelf Oil and Gas Leasing/Production Program

    SciTech Connect

    Not Available

    1988-01-01

    This annual report on the Outer Continental Shelf (OCS) Oil and Gas Leasing and Production program summarizes receipts and expenditures, and includes information on OCS safety violations as reported by the US Coast Guard. 3 figs., 12 tabs.

  17. Mitigating Accidents In Oil And Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Johnsen, Stig

    Integrated operations are increasingly used in oil and gas production facilities to improve yields, reduce costs and maximize profits. They leverage information and communications technology (ICT) to facilitate collaboration between experts at widely dispersed locations. This paper discusses the safety and security consequences of implementing integrated operations for oil and gas production. It examines the increased accident risk arising from the tight coupling of complex ICT and SCADA systems, and proposes technological, organizational and human factors based strategies for mitigating the risk.

  18. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  19. Preliminary report on the commercial viability of gas production from natural gas hydrates

    USGS Publications Warehouse

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  20. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  1. Devonian shales of central Appalachian basin: geological controls on gas production

    SciTech Connect

    Lowry, P.H.; Hamilton-Smith, T.; Peterson, R.M. )

    1989-03-01

    Gas reserves of the Devonian shales of the Appalachian basin constitute a large, underdeveloped resource producing from fractured reservoirs. As part of ongoing Gas Research Institute research, K and A Energy Consultants, Inc., is identifying geological controls on gas production. Preliminary findings indicate that local gas production is controlled by a combination of structure and stratigraphy. Regional geological review indicates that Devonian sedimentation and structure is influenced by repeated reactivation of basement faults. Site-specific geologic studies indicate that depositional and structural mechanisms vary substantially throughout the basin. Gas production on the eastern margin of the producing area is controlled by an Alleghenian thrust front located by Grenville normal faults. High-capacity wells are associated with tear faults in the thrust sheets. To the southwest, deformation is controlled by both Grenville and Rome trough basement faults. Reactivation of these faults during later orogenic events produced a complex of high-angle reverse and strike-slip faults. Fracturing in the Devonian shales is produced by shearing and flexure associated with these structures. Syndepositional movement of the basement structures influenced the deposition of coarser grained turbidites and tempestites. The combination of fractures and coarser clastic beds provides effective reservoir systems. The shale contains abundant organic material consisting of terrestrial plant debris and marine algal remains. Thermal maturation of this material produced gas which charged the lower reservoir systems. Exploration along reactivated structural trends is an effective strategy for locating Devonian shale gas accumulations. This approach may also apply to other producing strata in the basin.

  2. Devices for the Production of Reference Gas Mixtures.

    PubMed

    Fijało, Cyprian; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2016-09-01

    For many years there has been growing demand for gaseous reference materials, which is connected with development in many fields of science and technology. As a result, new methodological and instrumental solutions appear that can be used for this purpose. Appropriate quality assurance/quality control (QA/QC) must be used to make sure that measurement data are a reliable source of information. Reference materials are a significant element of such systems. In the case of gas samples, such materials are generally called reference gas mixtures. This article presents the application and classification of reference gas mixtures, which are a specific type of reference materials, and the methods for obtaining them are described. Construction solutions of devices for the production of reference gas mixtures are detailed, and a description of a prototype device for dynamic production of reference gas mixtures containing aroma compounds is presented. PMID:27437588

  3. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    SciTech Connect

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  4. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-04-01

    Given the extensive available resources of coal and, to a lesser extent, natural gas, the challenge to access these resources in a way that balances growth and conservation in a responsible way, is a tough technological task. On the one hand there is the inadverterable and undesirable liberation of CO{sub 2} when carbon is used and on the other hand it is reasonable to assume that hydrocarbon liquids will, for the foreseeable future, remain the backbone of the supply of energy to automotive vehicles. It is therefore necessary that options for improved environmental performance of such fuels are developed and considered for application where the economics would permit it.

  5. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  6. US production of natural gas from tight reservoirs

    SciTech Connect

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  7. Research on the methods of splitting and prediction point by point in tight sandstone gas reservoir productivity

    NASA Astrophysics Data System (ADS)

    Sheng-fu, Wen; Bao-zhi, Pan; Bi-ci, Jiang; Li-hua, Zhang; Dan, Liu; Wen-bin, Liu; Yu-hang, Guo

    2015-06-01

    Single-point productivity evaluation and prediction are of important significance for the exploration and development in a tight sandstone gas field. The method of production splitting, multiple linear regression (MLR), and support vector machine regression (SVR) was used to establish the relationship between logging data and the gas production split point-to-point in tight sandstone gas reservoirs. In this study, the western region of the Sulige area in the Ordos Basin was the object of our research. Compared with the traditional KH splitting, the KHK splitting method was better.

  8. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  9. Production of Substitute Natural Gas from Coal

    SciTech Connect

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  10. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    1999-08-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general--and the Riverton Dome area specially--is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi{sup 2} and 30 mi {sup 2}) and a variety of other necessary geological and

  11. [Study on exploring for oil and gas using reflectance spectra of surface soils].

    PubMed

    Xu, Da-qi; Ni, Guo-qiang; Shen, Yuan-ting; He, Jin-ping; Jiang, Li-li

    2007-03-01

    Reflectance spectra in the visible and near-infrared wavelength region provide a rapid and inexpensive means for determining the mineralogy of samples and obtaining information on chemical composition. Hydrocarbon microseepage theory sets up a cause-and-effect relation between oil and gas reservoirs and some special surface alterations. Therefore the authors can explore for oil and gas by determining the reflectance spectra of surface alterations. This determination can be fulfilled by means of field work and hyperspectral remote sensing. In the present paper, firstly a macroscopical feature of reflectance spectra of typical observation points in gas fields is presented. Then a method is proposed in order to provide surface distribution information (e.g., classification) of alterations based on the reflectance spectra determined from the field, and obtain anomaly zones of the special alterations. This method has been applied to the analysis of the reflectance spectra determined in the field of Qinghai X X area, and the classification results tally with the existent gas fields in this area. A robustness analysis of the method shows that good results can be obtained when different combinations of parameters, such as samples, study band regions and thresholds, have been chosen in the process of classification. The valid classification samples and algorithms can be provided for the oil and gas exploration in progress in this area using NASA experimental hyperion hyperspectral satellite. PMID:17554913

  12. Water Resources and Natural Gas Production from the Marcellus Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Kappel, William M.

    2009-01-01

    The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.

  13. Gas Production from Hydrate-Bearing Sediments - Emergent Phenomena -

    SciTech Connect

    Jung, J.W.; Jang, J.W.; Tsouris, Costas; Phelps, Tommy Joe; Rawn, Claudia J; Santamarina, Carlos

    2012-01-01

    Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO{sub 2} hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low.

  14. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  15. Can the U. S. oil and gas resource base support sustained production

    SciTech Connect

    Fisher, W.L.

    1987-01-01

    The author notes that the U.S. is a maturely explored and developed oil and gas province, but that aggressive drilling in the lower 48 states in the past decade resulted in reserve additions sufficient to arrest decline and to stabilize levels of production. The author states that the remaining resources of oil and gas in the U.S. are substantial. Exploration of new fields at current rates of finding can be pursued at the levels of the past few years for at least 30 more years. Reserve growth from conventional but geologically targeted development techniques can maintain recent production-stabilizing levels of additions for 25 years, with half the remaining volumes recovered.

  16. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.

    PubMed

    Eynde, Erik Van; Lenaerts, Britt; Tytgat, Tom; Blust, Ronny; Lenaerts, Silvia

    2016-03-01

    Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%. PMID:26838336

  17. Emission characteristics of a premix combustor fueled with a simulated partial-oxidation product gas

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1979-01-01

    A two-stage gas turbine combustor concept employing a very fuel-rich partial oxidation stage is being explored for broadening the combustion margin between ultralow emissions and the lean stability limit. Combustion and emission results are presented for a series of experiments where a simulated partial oxidation product gas was used in a premix combustor operated with inlet air state conditions typical of cruise power for high-performance aviation engines (12 atm and 850 F). Ultralow NOx, CO, and HC emissions and an extended lean burning limit were achieved simultaneously.

  18. Natural gas productive capacity for the lower 48 states 1985 through 1997

    SciTech Connect

    1996-12-01

    This publication presents information on wellhead productive capacity and a projection of gas production requirements. A history of natural gas production and productive capacity at the wellhead, along with a projection of the same, is illustrated.

  19. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  20. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  1. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  2. U-GAS process for production of hydrogen from coal

    SciTech Connect

    Dihu, R.J.; Patel, J.G.

    1982-01-01

    Today, hydrogen is produced mainly from natural gas and petroleum fractions. Tomorrow, because reserves of natural gas and oil are declining while demand continues to increase, they cannot be considered available for long-term, large-scale production of hydrogen. Hydrogen obtained from coal is expected to be the lowest cost, large-scale source of hydrogen in the future. The U-GAS coal gasification process and its potential application to the manufacture of hydrogen is discussed. Pilot plant results, the current status of the process, and economic projections for the cost of hydrogen manufactured are presented.

  3. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOEpatents

    Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  4. Mercury in soil gas and air--A potential tool in mineral exploration

    USGS Publications Warehouse

    McCarthy, Joseph Howard; Vaughn, W.W.; Learned, R.E.; Meuschke, J.L.

    1969-01-01

    The mercury content in soil gas and in the atmosphere was measured in several mining districts to test the possibility that the mercury content in the atmosphere is higher over ore deposits than over barren ground. At Cortez, Nev., the distribution of anorhalous amounts of mercury in the air collected at ground level (soil gas) correlates well with the distribution of gold-bearing rocks that are covered by as much as 100 feet of gravel. The mercury content in the atmosphere collected at an altitude of 200 feet by an aircraft was 20 times background over a mercury posit and 10 times background over two porphyry copper deposits. Measurement of mercury in soil gas and air may prove to be a valuable exploration tool.

  5. Organic Sulfur Gas Production in Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic

  6. Kinetics study on biomass pyrolysis for fuel gas production.

    PubMed

    Chen, Guan-Yi; Fang, Meng-Xiang; Andries, J; Luo, Zhong-Yang; Spliethoff, H; Cen, Ke-Fa

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme. PMID:12861621

  7. Gas phase acetaldehyde production in a continuous bioreactor

    SciTech Connect

    Hwang, Soon Ook . Dept. of Chemical Engineering); Trantolo, D.J. . Center for Biotechnology Engineering); Wise, D.L. . Dept. of Chemical Engineering Northeastern Univ., Boston, MA . Center for Biotechnology Engineering)

    1993-08-20

    The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated.

  8. Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain.

    PubMed

    Chadwick, L J; Irgens, R L

    1991-02-01

    A hydrogen gas (H(2))-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H(2) with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H(2) production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity. PMID:16348423

  9. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  10. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  11. Some modern notions on oil and gas reservoir production regulation

    SciTech Connect

    Lohrenz, J.; Monash, E.A.

    1980-05-21

    The historic rhetoric of oil and gas reservoir production regulations has been burdened with misconceptions. One was that most reservoirs are rate insensitive. Another was that a reservoir's decline is primarily a function of reservoir mechaism rather than a choice unconstrained by the laws of physics. Relieved of old notions like these, we introduce some modern notions, the most basic being that production regulation should have the purpose of obtaining the highest value from production per irreversible diminution of thermodynamically available energy. The laws of thermodynamics determine the available energy. What then is value. Value may include contributions other than production per se and purely monetary economic outcomes.

  12. . Cheminformatic exploration of the chemical landscape of consumer products

    EPA Science Inventory

    Although Consumer products are a primary source of chemical exposures, little information is available on the chemical ingredients of these products and the concentrations at which they are present. To address this data gap, we have created a database of chemicals in consumer pro...

  13. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  14. Reactive oxygen species production and discontinuous gas exchange in insects.

    PubMed

    Boardman, Leigh; Terblanche, John S; Hetz, Stefan K; Marais, Elrike; Chown, Steven L

    2012-03-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  15. Production of bio-synthetic natural gas in Canada.

    PubMed

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system. PMID:20175525

  16. A semi-empirical photometric theory of cometary gas and dust production: Application to P/Halley's gas production rates

    NASA Technical Reports Server (NTRS)

    Newburn, R. L.

    1981-01-01

    The semiempirical photometric theory of cometary gas and dust production is recalibrated using UV observations from 14 comets and uniform visual photometry from 8 comets. The calibration is not changed significantly but becomes more secure. The complete theory is presented with all approximations evaluated and explained. Numerical calibration aspects are presented in tables. The theory is applied to P/Halley using a light curve without the artifact caused by the close approach to Earth in 1910. Gas production rates predicted for the 1985/86 apparition are similar to those for 1910.

  17. Evaluation of Gas Production Potential of Hydrate Deposits in Alaska North Slope using Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Nandanwar, M.; Anderson, B. J.

    2015-12-01

    Over the past few decades, the recognition of the importance of gas hydrates as a potential energy resource has led to more and more exploration of gas hydrate as unconventional source of energy. In 2002, U.S. Geological Survey (USGS) started an assessment to conduct a geology-based analysis of the occurrences of gas hydrates within northern Alaska. As a result of this assessment, many potential gas hydrate prospects were identified in the eastern National Petroleum Reserve Alaska (NPRA) region of Alaska North Slope (ANS) with total gas in-place of about 2 trillion cubic feet. In absence of any field test, reservoir simulation is a powerful tool to predict the behavior of the hydrate reservoir and the amount of gas that can be technically recovered using best suitable gas recovery technique. This work focuses on the advanced evaluation of the gas production potential of hydrate accumulation in Sunlight Peak - one of the promising hydrate fields in eastern NPRA region using reservoir simulations approach, as a part of the USGS gas hydrate development Life Cycle Assessment program. The main objective of this work is to develop a field scale reservoir model that fully describes the production design and the response of hydrate field. Due to the insufficient data available for this field, the distribution of the reservoir properties (such as porosity, permeability and hydrate saturation) are approximated by correlating the data from Mount Elbert hydrate field to obtain a fully heterogeneous 3D reservoir model. CMG STARS is used as a simulation tool to model multiphase, multicomponent fluid flow and heat transfer in which an equilibrium model of hydrate dissociation was used. Production of the gas from the reservoir is carried out for a period of 30 years using depressurization gas recovery technique. The results in terms of gas and water rate profiles are obtained and the response of the reservoir to pressure and temperature changes due to depressurization and hydrate

  18. GATEWAY Demonstrations: Exploring SSL Product Performance in the Real World

    SciTech Connect

    2013-10-01

    Fact sheet that outlines DOE's GATEWAY technology demonstration program, which evaluates high-performance SSL products for general illumination in a variety of real-world exterior and interior applications.

  19. Ecological Production Functions: A Theoretical and Practical Exploration

    EPA Science Inventory

    Ecological production functions characterize relationships between ecosystem condition, management practices, and the delivery of economically valuable ecosystem services. Many in the ecosystem service research community view ecological research directed toward developing ecolog...

  20. Trace gas flux from container production of woody landscape plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...

  1. Low nanopore connectivity limits gas production in Barnett formation

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Ewing, Robert P.; Rowe, Harold D.

    2015-12-01

    Gas-producing wells in the Barnett Formation show a steep decline from initial production rates, even within the first year, and only 12-30% of the estimated gas in place is recovered. The underlying causes of these production constraints are not well understood. The rate-limiting step in gas production is likely diffusive transport from matrix storage to the stimulated fracture network. Transport through a porous material such as shale is controlled by both geometry (e.g., pore size distribution) and topology (e.g., pore connectivity). Through an integrated experimental and theoretical approach, this work finds that the Barnett Formation has sparsely connected pores. Evidence of low pore connectivity includes the sparse and heterogeneous presence of trace levels of diffusing solutes beyond a few millimeters from a sample edge, the anomalous behavior of spontaneous water imbibition, the steep decline in edge-accessible porosity observed in tracer concentrations following vacuum saturation, the low (about 0.2-0.4% by volume) level presence of Wood's metal alloy when injected at 600 MPa pressure, and high tortuosity from mercury injection capillary pressure. Results are consistent with an interpretation of pore connectivity based on percolation theory. Low pore connectivity of shale matrix limits its mass transfer interaction with the stimulated fracture network from hydraulic fracturing and serves as an important underlying cause for steep declines in gas production rates and a low overall recovery rate.

  2. 21 CFR 173.350 - Combustion product gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Combustion product gas. 173.350 Section 173.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives §...

  3. Analytical Modeling of Shale Hydraulic Fracturing and Gas Production

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2012-12-01

    Shale gas is abundant all over the world. Due to its extremely low permeability, extensive stimulation of a shale reservoir is always required for its economic production. Hydraulic fracturing has been the primary method of shale reservoir stimulation. Consequently the design and optimization of a hydraulic fracturing treatment plays a vital role insuring job success and economic production. Due to the many variables involved and the lack of a simple yet robust tool based on fundamental physics, horizontal well placement and fracturing job designs have to certain degree been a guessing game built on previous trial and error experience. This paper presents a method for hydraulic fracturing design and optimization in these environments. The growth of a complex hydraulic fracture network (HFN) during a fracturing job is equivalently represented by a wiremesh fracturing model (WFM) constructed on the basis of fracture mechanics and mass balance. The model also simulates proppant transport and placement during HFN growth. Results of WFM simulations can then be used as the input into a wiremesh production model (WPM) constructed based on WFM. WPM represents gas flow through the wiremesh HFN by an elliptic flow and the flow of gas in shale matrix by a novel analytical solution accounting for contributions from both free and adsorbed gases stored in the pore space. WPM simulation is validated by testing against numerical simulations using a commercially available reservoir production simulator. Due to the analytical nature of WFM and WPM, both hydraulic fracturing and gas production simulations run very fast on a regular personal computer and are suitable for hydraulic fracturing job design and optimization. A case study is presented to demonstrate how a non-optimized hydraulic fracturing job might have been optimized using WFM and WPM simulations.Fig. 1. Ellipsoidal representation of (a) stimulated reservoir and (b) hydraulic fracture network created by hydraulic

  4. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  5. In situ propellant production: Alternatives for Mars exploration

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Jacobs, Mark K.; Cole, Kevin J.; Collins, John T.

    1991-01-01

    Current planning for the Space Exploration Initiative (SEI) recognizes the need for extraterrestrial resources to sustain long-term human presence and to attain some degree of self-sufficiency. As a practical matter, reducing the need to carry large supplies of propellant from Earth will make space exploration more economical. For nearly every round trip planned with conventional propulsion, the actual payload is only a small fraction - perhaps 10-15 percent - of the mass launched from Earth. The objective of this study was to analyze the potential application for SEI missions of propellants made exclusively from lunar or martian resources. Using such propellants could minimize or eliminate the cost of carrying propellant for surface excursion vehicles and return transfers through two high-energy maneuvers: Earth launch and trans-Mars injection. Certain chemical mono- and bipropellants are candidates for this approach; they could be recovered entirely from in situ resources on the Moon and Mars, without requiring a continuing Earth-based resupply of propellant constituents (e.g., fuel to mix with a locally obtained oxidizer) and, perhaps, with minimal need to resupply consumables (e.g., reagents or catalyst for process reactions). A complete assessment of the performance potential of these propellants must include the requirements for installation, operations, maintenance, and resupply of the chemical processing facility.

  6. Exploring attitudes regarding smokeless tobacco products for risk reduction.

    PubMed

    van Zyl, Michiel A; Rodu, Brad; Antle, Becky F; Bledsoe, Linda K; Sullivan, Dana J

    2013-01-01

    Utilizing qualitative data analysis, this study focused on the attitudes, knowledge, and beliefs relating to smokeless tobacco (ST) as a reduced-risk cigarette substitute for smokers among focus groups from the general public and from the health profession. It revealed that there is a lack of awareness and understanding of ST products, which has a significant impact on overall perception of these products as acceptable substitutes. Regulatory actions regarding tobacco by the U.S. Food and Drug Administration should enhance consumers' access to accurate information about nicotine addiction and tobacco use. PMID:23805803

  7. Opportunity to increase oil and gas exploration and lease rental income

    SciTech Connect

    Not Available

    1983-04-28

    As a general policy, the Federal Government does not issue oil and gas leases on lands that have been or may be designated as wilderness. Therefore, the Bureau of Land Management and the Forest Service generally do not process lease applications that include both nonwilderness lands and wilderness or potential wilderness lands. GAO found that over 1 million acres of the lands in the lease applications in seven western states involved nonwilderness lands. GAO believes the Bureau of Land Management and the Forest Service should implement joint procedures to segregate the nonwilderness portions of over-the-counter lease applications and lease them to willing applicants where practicable. For the seven states alone, this could increase the amount of federal lands available for oil and gas exploration and provide about $1 million in annual rental income.

  8. Elemental Fluorine-18 Gas: Enhanced Production and Availability

    SciTech Connect

    VanBrocklin, Henry F.

    2011-12-01

    The overall objective of this project was to develop an efficient, reproducible and reliable process for the preparation of fluorine-18 labeled fluorine gas ([¹⁸F]F₂) from readily available cyclotron-produced [¹⁸F]fluoride ion. The two step process entailed the production of [¹⁸F]fluoromethane with subsequent conversion to [¹⁸F]F₂ by electric discharge of [¹⁸F]fluoromethane in the presence of carrier nonradioactive F₂ gas. The specific goals of this project were i) to optimize the preparation of [¹⁸F]fluoromethane from [¹⁸F]fluoride ion; ii) to develop a prototype automated system for the production of [¹⁸F]F₂ from [¹⁸F]fluoride ion and iii) develop a compact user friendly automated system for the preparation of [¹⁸F]F₂ with initial synthesis of fluorine-18 labeled radiotracers. Over the last decade there has been an increased interest in the production of "non-standard" positron-emitting isotopes for the preparation of new radiotracers for a variety of applications including medical imaging and therapy. The increased availability of these isotopes from small biomedical cyclotrons has prompted their use in labeling radiotracers. In much the same way the production of [¹⁸F]F₂ gas has been known for several decades. However, access to [¹⁸F]F₂ gas has been limited to those laboratories with the means (e.g. F₂ targetry for the cyclotron) and the project-based need to work with [¹⁸F]F₂ gas. Relatively few laboratories, compared to those that produce [¹⁸F]fluoride ion on a daily basis, possess the capability to produce and use [¹⁸F]F₂ gas. A simplified, reliable system employing [¹⁸F]fluoride ion from cyclotron targetry systems that are already in place coupled with on-demand production of the [¹⁸F]F₂ gas would greatly enhance its availability. This would improve the availability of [¹⁸F]F₂ gas and promote further work with a valuable precursor. The major goals of the project were accomplished

  9. 78 FR 59650 - Subzone 9F, Authorization of Production Activity, The Gas Company, LLC dba Hawai'i Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... inviting public comment (78 FR 33051-33052, June 3, 2013). The FTZ Board has determined that no further... Foreign-Trade Zones Board Subzone 9F, Authorization of Production Activity, The Gas Company, LLC dba Hawai'i Gas, (Synthetic Natural Gas), Kapolei, Hawaii On May 22, 2013, The Gas Company, LLC dba...

  10. Derivational Morphophonology: Exploring Errors in Third Graders' Productions

    ERIC Educational Resources Information Center

    Jarmulowicz, Linda; Hay, Sarah E.

    2009-01-01

    Purpose: This study describes a post hoc analysis of segmental, stress, and syllabification errors in third graders' productions of derived English words with the stress-changing suffixes "-ity" and "-ic." We investigated whether (a) derived word frequency influences error patterns, (b) stress and syllabification errors always co-occur, and (c)…

  11. Heat Production as a Tool in Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Koteas, C.; Mabee, S. B.; Thomas, M.; Gagnon, T.

    2012-12-01

    Heat flow data (together with knowledge, or assumptions, of stratigraphy, thermal conductivity and heat production) provide the prime parameter for estimating the potential of geothermal resources. Unfortunately this information is expensive to obtain as it requires deep boreholes. Consequently it is sparse or lacking in areas not traditionally considered as having geothermal potential. New England (and most of the northeastern U.S.A.) is one such area. However, in the absence of volcano-derived hydrothermal activity with its attendant high heat flow, granitic plutons provide an alternative geothermal resource. Compared with other crustal rocks, granites contain higher concentrations of heat-producing elements (K, U, Th). Additionally, they are relatively homogeneous, compared to surrounding country rock, allowing for stimulation through hydro-fracking of large (>1 km3) geothermal reservoirs. Consequently we have adopted a different approach, obtaining heat production data rather then relying on the very sparse heat flow data. Birch and colleagues long since recognized the relationship between heat flow and heat production as an integral part of their concept of Heat Flow Provinces. Heat production is readily determined in the laboratory by measuring the density of a sample and the concentrations of its heat-producing elements potassium, uranium and thorium. We have determined the heat production for 570 samples from most of the major granitic and gneissic bodies in Massachusetts and Connecticut. We have also measured these parameters for 70 sedimentary rocks that cover granites and gneiss in the Connecticut and Narragansett Basins. This data is being used to calculate inferred heat flow data for these localities. Comparison of these inferred heat flow values with the sparse number of those measured directly in boreholes in the two States is encouraging, indicating that this approach has merit. We have also measured thermal conductivity on all of these samples

  12. 30 CFR 260.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I measure natural gas production on my... do I measure natural gas production on my eligible lease? You must measure natural gas production on... natural gas, measured according to part 250, subpart L of this title, equals one barrel of oil...

  13. Separation of flue-gas scrubber sludge into marketable products

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1997-08-31

    A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium

  14. Gas plant economic optimization is more than meeting product specification

    SciTech Connect

    Berkowitz, P.N.; Colwell, L.W.; Gamez, J.P.

    1996-12-31

    Gas plants require a higher level of process control to optimize the process to maximize operating profits. Automation alone does not achieve this objective whereas, on-line dynamic optimization of the control variables based on product pricing, the cost to process the gas and the contracts for gas and liquids is solvable by new control techniques. Daily operations are affected by a paradigm shift in the method of control for the facility. This newly developed and site proven technique has demonstrated how to improve benefits when net processing margins are positive and minimize operating cost when liquids margins are negative. Because ethane recovery versus its rejection is not a binary decision, a better means to operate can be shown to benefit the gas plant operator. Each specification has a cost to meet it or a penalty to exceed it. However, if allowed, exceeding specification may prove beneficial to the net profitability of the operations. With the decision being made on-line every few minutes, the results are more dramatic than previously understood. Gas Research Institute and Continental Controls, Inc. have installed more than 10 such systems in US gas processing plants. Project payout from the use of the MVC{reg_sign} technology has on average been less than six months. Processing savings have ranged from $.0075 to $.024 per Mcf. The authors paper last year showed where the benefits can be derived. This year the results of those facilities are shared along with the methodology to achieve them.

  15. AGA; U. S. gas reserve additions lag production

    SciTech Connect

    Not Available

    1992-05-04

    The American Gas Association estimates 1991 U.S. natural gas reserve additions were only 65-79% of production, compared with a 96% average for 1981-90. AGA found that 75% of 1991 reserve additions occurred as discoveries and field extensions, and only 25% came from revisions of estimates. Total reserve additions may range from 11.1 tcf to 13.4 tcf. The 30 largest gas reserves holders sold more than 1.1 tcf of reserves to other firms. The top 30 companies had reserve additions of 5.754 tcf, down 3.541 tcf from a year earlier. Total gas reserves held by the top 30 dropped by 3.757 tcf. The 30 companies produced 8.417 tcf in 1991, compared with 8.352 tcf in 1989. This paper reports that AGA compiles the reserve addition estimates from data the 30 largest gas companies file with the Securities and exchange Commission, supplemented with data from gas pipelines holding large reserves.

  16. Development of hydrate risk quantification in oil and gas production

    NASA Astrophysics Data System (ADS)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  17. Hydrogen and Oxygen Gas Production in the UT TRIGA Reflector

    SciTech Connect

    D. S. O'Kelly

    2000-11-12

    In December 1999, The University of Texas at Austin (UT) reported an unusual condition associated with the annular graphite reflector surrounding the Nuclear Engineering Teaching Laboratory (NETL) TRIGA reactor. The aluminum container encapsulating the graphite showed signs of bulging or swelling. Further, during an investigation of this occurrence, bubbles were detected coming from a weld in the aluminum. The gas composition was approximately 2:1 hydrogen to oxygen. After safety review and equipment fabrication, the reflector was successfully vented and flooded. The ratio of the gases produced is unusual, and the gas production mechanism has not yet been explained.

  18. Exploration and production operations in an environmentally sensitive area

    SciTech Connect

    Barker, G.W.; Steele, E.J.; Robalino, J.; Baldwin, S.J.

    1994-12-31

    The Ecuadorian portion of the Amazon Basin, known locally as the Oriente, is the major oil producing region in Ecuador. The tropical rain forests of the Oriente contain some of the Earth`s most biologically diverse and ecologically sensitive areas. In addition, the rain forest is home to several groups of indigenous peoples.When formulating an exploration plan and prior to beginning E and P activities in the Oriente, operators must understand the environmental and sociocultural issues in the region. These concerns are considered throughout the planning process, from project conception to project closure. An environmental management plan is adopted which addresses environmental and sociocultural concerns, minimizes environmental impact, prevents delays, and limits environmental liability.

  19. Advanced Exploration Systems Logistics Reduction and Repurposing Trash-to-Gas and Heat Melt Compactor KSC

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne J.; Layne, Andrew; Hummerick, Mary

    2013-01-01

    Topics covered: 1. Project Structure 2. "Trash to Gas" 3. "Smashing Trash! The Heat Melt Compactor" 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste" Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash. CO2 can be fed to Sabatier reactor for CH4 production to fuel LOX/LCH4 ascent vehicle. Optimal performance: HFWS, full temperature ramp to 500-600 C. Tar challenges exist. Catalysis: Dolomag did eliminate allene byproducts from the product stream. 2nd Gen Reactor Studies. Targeting power, mass, time efficiency. Gas separation, Catalysis to reduce tar formation. Microgravity effects. Downselect in August will determine where we should spend time optimizing the technology.

  20. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream

  1. Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993

    SciTech Connect

    Francois, D.K.

    1994-12-31

    This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

  2. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2015-05-01

    Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.

  3. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  4. Eastern Europe: Former Soviet Union, Humpty Dumpty still on its fall. [Petroleum and natural gas exploration and development in the former Soviet Union

    SciTech Connect

    Khartukov, E.M. ); Vinogradova, O.V.

    1993-08-01

    This paper reviews the oil and gas exploration and development activities in the former Soviet Union on a republic by republic basis. It gives figures on new well drilling activities (footage and numbers of new wells), locations of this activity, and production. The paper concentrates on the effects of the Soviet Union break-up on the availability of supplies and markets and the associated logistical headaches which resulted. The paper also briefly discusses activities in Bulgaria, Czech Republic, and Slovenia.

  5. NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS

    SciTech Connect

    DeVore, Joe R; Lu, Wei; Schwahn, Scott O

    2013-01-01

    Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

  6. Production, management, and environment symposium: Environmental footprint of livestock production - Greenhouse gas emissions and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the introduction to the 2015 Production, Management, and Environment symposium titled “Environmental Footprint of Livestock Production – Greenhouse Gas Emissions and Climate Change” that was held at the Joint Annual Meeting of the ASAS and ADSA at the Rosen Shingle Creek Resort in...

  7. Trash to Gas: Converting Space Trash into Useful Products

    NASA Technical Reports Server (NTRS)

    Nur, Mononita

    2013-01-01

    NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of C02, CO, CH4, and H20 were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.

  8. Trash-to-Gas: Converting Space Trash into Useful Products

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne J.; Hintze, Paul E.

    2013-01-01

    NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of CO2, CO, CH4, and H2O were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.

  9. Lunar Thermal Wadis and Exploration Rovers: Outpost Productivity and Participatory Exploration

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Wegeng, Robert; Suzuki, Nantel

    2009-01-01

    The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.

  10. Patterns of partner selection within a network of joint ventures in oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Cooke, Jeffrey Emmet

    Leaders of companies exploring for oil and gas had no means of characterizing the multitude of intercompany associations common to the industry. This study examined the patterns of intercompany associations, based on exploration lease joint ventures, for leases active on December 31, 2005 in the U.S. waters of the Gulf of Mexico. The company attributes examined in this study included company status, company size, lease joint venture network centrality, longevity of company lease ownership, and the extent of company operations. The joint count, network and spatial autocorrelation tests detected the significant patterning of intercompany associations by company status, but no patterning by company attributes including size, centrality, longevity, or extent. This study identified the strong tendency to homophily for major companies and heterophily for nonmajor companies. The overall tendency to heterophily by status remained across all the companies included in the study. Oil and gas company leaders and lease resource administrators can use insights from the observed patterns to inform partner selection decisions or lease administration practices.