Sample records for gas flow model

  1. Modeling of heavy-gas effects on airfoil flows

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1992-01-01

    Thermodynamic models were constructed for a calorically imperfect gas and for a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to develop an understanding of the differences in flow behavior between the new models and the perfect gas model. The models were also incorporated into a two dimensional flow solver to investigate their effects on transonic airfoil flows. Specifically, the calculations simulated airfoil testing in a proposed high Reynolds number heavy gas test facility. The results indicate that the non-idealities caused significant differences in the flow field, but that matching of an appropriate non-dimensional parameter led to flows similar to those in air.

  2. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  3. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  4. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates

    NASA Astrophysics Data System (ADS)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen

    2016-01-01

    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  5. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the

  6. General slip regime permeability model for gas flow through porous media

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  7. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  8. Turbulence modeling of gas-solid suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1988-01-01

    The purpose here is to discuss and review advances in two-phase turbulent modeling techniques and their applications in various gas-solid suspension flow situations. In addition to the turbulence closures, heat transfer effect, particle dispersion and wall effects are partially covered.

  9. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  10. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, R., E-mail: roland.masson@unice.fr; Team COFFEE INRIA Sophia Antipolis Méditerranée; Trenty, L., E-mail: laurent.trenty@andra.fr

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the massmore » exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.« less

  11. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.

  12. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    PubMed

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  13. A Physical Model Study of Two-Phase Gas-Liquid Flows in a Ladle Shroud

    NASA Astrophysics Data System (ADS)

    Singh, Prince K.; Mazumdar, Dipak

    2018-06-01

    Argon-steel flows inside a ladle shroud during teeming from a ladle to a tundish have been modelled physically. To this end, full-scale Perspex models of bloom as well as slab casting shrouds (BCS and SCS), operating with air and water, have been applied. Both open to air as well as immersed conditions were investigated with and without gas injection. Flows inside a ladle shroud under open to air and immersed conditions were found to be substantially different with a strong function of gas and liquid flow rates, collector nozzle and shroud diameters. Depending on the volumetric gas injection rate relative to liquid flow rate, different flow regimes have been observed in an immersed shroud [ i.e., 0 < ( ds/L_{s} ) ≤ 0.24 ]. At extremely low gas flow rates, [ i.e., ( Qg/Q_{L} ) ≤ 0.02 ], injected gas is completely entrained as bubbles by the down-flowing liquid resulting in a bubbly two-phase flow over the entire length of a shroud. However, with an increasing gas flow rate, two distinctly different regions start to develop within the shroud body: a free liquid jet in the upper part and a gas-liquid mixing zone below. The length of the free jet increases with an increasing gas flow rate and at significantly higher gas to liquid flow rates [ viz., ( Qg/Q_{L} )_{BCS} ≥ 0.42 ] and [ viz., ( Qg/Q_{L} )_{SCS} ≥ 0.30 ] , and the free jet is found to prevail over the entire length of the shroud. Within the range of conditions studied, it is observed that the free jet length or the line of demarcation between the jetting and two-phase mixing zone depends on gas and liquid flow rates and is specific to a particular shroud-collector nozzle system. Physical model results further indicate that a sufficiently large free jet length ( shroud length) tends to create a high pressure region inside a shroud and prevent ingression of air. Possible implications of the present findings with reference to industrial teeming practices are also discussed in the text.

  14. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas.

    PubMed

    Barmashenko, B D; Rosenwaks, S

    2012-09-01

    A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20  m/s.

  15. Modeling of liquid and gas flows in the horizontal layer with evaporation

    NASA Astrophysics Data System (ADS)

    Lyulin, Yuri; Rezanova, Ekaterina

    2017-10-01

    Mathematical modeling of two-layer flows in the "ethanol-nitrogen" system on the basis of the exact solutions of a special type is carried out. The influence of the gas flow, temperature and Soret effect on the flow patterns and evaporating processes at the interface is investigated. The results of comparison of the experimental and theoretical data are presented; the dependence of the evaporation intensity at interface of the gas flow rate and temperature is studied.

  16. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  17. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overallmore » model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.« less

  18. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  19. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  20. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  1. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providingmore » accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.« less

  2. Numerical modeling of Stokes flows over a superhydrophobic surface containing gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2017-10-01

    This paper continues the numerical modeling of Stokes flows near cavities of a superhydrophobic surface, occupied by gas bubbles, based on the Boundary Element Method (BEM). The aim of the present study is to estimate the friction reduction (pressure drop) in a microchannel with a bottom superhydrophobic surface, the texture of which is formed by a periodic system of striped rectangular microcavities containing compressible gas bubbles. The model proposed takes into account the streamwise variation of the bubble shift into the cavities, caused by the longitudinal pressure gradient in the channel flow. The solution for the macroscopic (averaged) flow in the microchannel, constructed using an effective slip boundary condition on the superhydrophobic bottom wall, is matched with the solution of the Stokes problem at the microscale of a single cavity containing a gas bubble. The 2D Stokes problems of fluid flow over single cavities containing curved phase interfaces with the condition of zero shear stress are reduced to the boundary integral equations which are solved using the BEM method.

  3. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less

  4. Modeling of information flows in natural gas storage facility

    NASA Astrophysics Data System (ADS)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  5. Swirling flow of a dissociated gas

    NASA Technical Reports Server (NTRS)

    Wolfram, W. R., Jr.; Walker, W. F.

    1975-01-01

    Most physical applications of the swirling flow, defined as a vortex superimposed on an axial flow in the nozzle, involve high temperatures and the possibility of real gas effects. The generalized one-dimensional swirling flow in a converging-diverging nozzle is analyzed for equilibrium and frozen dissociation using the ideal dissociating gas model. Numerical results are provided to illustrate the major effects and to compare with results obtained for a perfect gas with constant ratio of specific heats. It is found that, even in the case of real gases, perfect gas calculations can give a good estimate of the reduction in mass flow due to swirl.

  6. Modeling study of rarefied gas effects on hypersonic reacting stagnation flows

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Bao, Lin

    2014-12-01

    Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.

  7. A compressible two-layer model for transient gas-liquid flows in pipes

    NASA Astrophysics Data System (ADS)

    Demay, Charles; Hérard, Jean-Marc

    2017-03-01

    This work is dedicated to the modeling of gas-liquid flows in pipes. As a first step, a new two-layer model is proposed to deal with the stratified regime. The starting point is the isentropic Euler set of equations for each phase where the classical hydrostatic assumption is made for the liquid. The main difference with the models issued from the classical literature is that the liquid as well as the gas is assumed compressible. In that framework, an averaging process results in a five-equation system where the hydrostatic constraint has been used to define the interfacial pressure. Closure laws for the interfacial velocity and source terms such as mass and momentum transfer are provided following an entropy inequality. The resulting model is hyperbolic with non-conservative terms. Therefore, regarding the homogeneous part of the system, the definition and uniqueness of jump conditions is studied carefully and acquired. The nature of characteristic fields and the corresponding Riemann invariants are also detailed. Thus, one may build analytical solutions for the Riemann problem. In addition, positivity is obtained for heights and densities. The overall derivation deals with gas-liquid flows through rectangular channels, circular pipes with variable cross section and includes vapor-liquid flows.

  8. Project Rulison gas flow analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montan, D.N.

    1971-01-01

    An analysis of the well performance was attempted by fitting a simple model of the chimney, gas sands, and explosively created fracturing to the 2 experimentally measured variables, flow rate, and chimney pressure. The gas-flow calculations for various trial models were done by a finite difference solution to the nonlinear partial differential equation for radial Darcy flow. The TRUMP computer program was used to perform the numerical calculations. In principle, either the flow rate or the chimney pressure could be used as the independent variable in the calculations. In the present case, the flow rate was used as the independentmore » variable, since chimney pressure measurements were not made until after the second flow period in early Nov. 1970. Furthermore, the formation pressure was not accurately known and, hence, was considered a variable parameter in the modeling process. The chimney pressure was assumed equal to the formation pressure at the beginning of the flow testing. The model consisted of a central zone, representing the chimney, surrounded by a number of concentric zones, representing the formation. The effect of explosive fracturing was simulated by increasing the permeability in the zones near the central zone.« less

  9. A Gas-Kinetic Scheme for Reactive Flows

    NASA Technical Reports Server (NTRS)

    Lian,Youg-Sheng; Xu, Kun

    1998-01-01

    In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation by assigning a new internal degree of freedom to the particle distribution function. The new variable can be also used to describe fluid trajectory for the nonreactive flows. Due to the gas-kinetic BGK model, the current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate the accuracy and robustness of the current kinetic method.

  10. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhihui; Ma, Qiang; Wu, Junlin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less

  11. Decay of the 3D inviscid liquid-gas two-phase flow model

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-06-01

    We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.

  12. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  13. A mathematical model of fluid and gas flow in nanoporous media.

    PubMed

    Monteiro, Paulo J M; Rycroft, Chris H; Barenblatt, Grigory Isaakovich

    2012-12-11

    The mathematical modeling of the flow in nanoporous rocks (e.g., shales) becomes an important new branch of subterranean fluid mechanics. The classic approach that was successfully used in the construction of the technology to develop oil and gas deposits in the United States, Canada, and the Union of Soviet Socialist Republics becomes insufficient for deposits in shales. In the present article a mathematical model of the flow in nanoporous rocks is proposed. The model assumes the rock consists of two components: (i) a matrix, which is more or less an ordinary porous or fissurized-porous medium, and (ii) specific organic inclusions composed of kerogen. These inclusions may have substantial porosity but, due to the nanoscale of pores, tubes, and channels, have extremely low permeability on the order of a nanodarcy (~109-²¹ m² ) or less. These inclusions contain the majority of fluid: oil and gas. Our model is based on the hypothesis that the permeability of the inclusions substantially depends on the pressure gradient. At the beginning of the development of the deposit, boundary layers are formed at the boundaries of the low-permeable inclusions, where the permeability is strongly increased and intensive flow from inclusions to the matrix occurs. The resulting formulae for the production rate of the deposit are presented in explicit form. The formulae demonstrate that the production rate of deposits decays with time following a power law whose exponent lies between -1/2 and -1. Processing of experimental data obtained from various oil and gas deposits in shales demonstrated an instructive agreement with the prediction of the model.

  14. Modeling of static and flowing-gas diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman

    2016-03-01

    Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.

  15. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  16. Shale Gas Well, Hydraulic Fracturing, and Formation Data to Support Modeling of Gas and Water Flow in Shale Formations

    NASA Astrophysics Data System (ADS)

    Edwards, Ryan W. J.; Celia, Michael A.

    2018-04-01

    The potential for shale gas development and hydraulic fracturing to cause subsurface water contamination has prompted a number of modeling studies to assess the risk. A significant impediment for conducting robust modeling is the lack of comprehensive publicly available information and data about the properties of shale formations, shale wells, the process of hydraulic fracturing, and properties of the hydraulic fractures. We have collated a substantial amount of these data that are relevant for modeling multiphase flow of water and gas in shale gas formations. We summarize these data and their sources in tabulated form.

  17. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    NASA Technical Reports Server (NTRS)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  18. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  19. Poly-Gaussian model of randomly rough surface in rarefied gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksenova, Olga A.; Khalidov, Iskander A.

    2014-12-09

    Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less

  20. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  1. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  2. Generalized second-order slip boundary condition for nonequilibrium gas flows

    NASA Astrophysics Data System (ADS)

    Guo, Zhaoli; Qin, Jishun; Zheng, Chuguang

    2014-01-01

    It is a challenging task to model nonequilibrium gas flows within a continuum-fluid framework. Recently some extended hydrodynamic models in the Navier-Stokes formulation have been developed for such flows. A key problem in the application of such models is that suitable boundary conditions must be specified. In the present work, a generalized second-order slip boundary condition is developed in which an effective mean-free path considering the wall effect is used. By combining this slip scheme with certain extended Navier-Stokes constitutive relation models, we obtained a method for nonequilibrium gas flows with solid boundaries. The method is applied to several rarefied gas flows involving planar or curved walls, including the Kramers' problem, the planar Poiseuille flow, the cylindrical Couette flow, and the low speed flow over a sphere. The results show that the proposed method is able to give satisfied predictions, indicating the good potential of the method for nonequilibrium flows.

  3. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  4. Mathematical modeling of non-stationary gas flow in gas pipeline

    NASA Astrophysics Data System (ADS)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  5. Study of gas-liquid flow in model porous media for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team

    2015-11-01

    Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.

  6. Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation

    PubMed Central

    2014-01-01

    Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine

  7. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32

  8. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.

    PubMed

    Coughtrie, A R; Borman, D J; Sleigh, P A

    2013-06-01

    Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.

  10. Gas transfer in a bubbly wake flow

    NASA Astrophysics Data System (ADS)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  11. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  12. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  13. Gas Flow and Ion Transfer in Heated ESI Capillary Interfaces

    NASA Astrophysics Data System (ADS)

    Bernier, Laurent; Pinfold, Harry; Pauly, Matthias; Rauschenbach, Stephan; Reiss, Julius

    2018-02-01

    Transfer capillaries are the preferred means to transport ions, generated by electrospray ionization, from ambient conditions to vacuum. During the transfer of ions through the narrow, long tubes into vacuum, substantial losses are typical. However, recently it was demonstrated that these losses can be avoided altogether. To understand the experimental observation and provide a general model for the ion transport, here, we investigate the ion transport through capillaries by numerical simulation of interacting ions. The simulation encompasses all relevant factors, such as space charge, diffusion, gas flow, and heating. Special attention is paid to the influence of the gas flow on the transmission and especially the change imposed by heating. The gas flow is modeled by a one-dimensional gas dynamics description. A large number of ions are treated as point particles in this gas flow. This allows to investigate the influence of the capillary heating on the gas flow and by this on the ion transport. The results are compared with experimental findings. [Figure not available: see fulltext.

  14. K-distribution models for gas mixtures in hypersonic nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Bansal, Ankit

    strong bands of N2. For such cases, a new model is developed for the treatment of gas mixtures containing atomic lines, continuum and molecular bands. Full-spectrum k-distribution (FSK) method provides very accurate results compared to those obtained from the exact line-by-line method. For cases involving more extreme gradients in species concentrations and temperature, full-spectrum k-distribution model is relatively less accurate, and the method is refined by dividing the spectrum into a number of groups or scales, leading to the development of multi-scale models. The detailed methodology of splitting the gas mixture into scales is presented. To utilize the full potential of the k-distribution methods, pre-calculated values of k-distributions are stored in databases, which can later be interpolated at local flow conditions. Accurate and compact part-spectrum k-distribution databases are developed for atomic species and molecular bands. These databases allow users to calculate desired full-spectrum k-distributions through look-up and interpolation. Application of the new spectral models and databases to shock layer plasma radiation is demonstrated by solving the radiative transfer equation along typical one-dimensional flowfields in Earth's, Titan's and Mars' atmospheres. The k-distribution methods are vastly more efficient than the line-by-line method. The efficiency of the method is compared with the line-by-line method by measuring computational times for a number of test problems, showing typical reduction in computational time by a factor of more than 500 for property evaluation and a factor of about 32,000 for the solution of the RTE. A large percentage of radiative energy emitted in the shock-layer is likely to escape the region, resulting in cooling of the shock layer. This may change the flow parameters in the flowfield and, in turn, can affect radiative as well as convective heat loads. A new flow solver is constructed to simulate coupled hypersonic flow

  15. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  16. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  17. A numerical model for the simulation of low Mach number gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Daru, V.; Duluc, M.-C.; Le Quéré, P.; Juric, D.

    2010-03-01

    This work is devoted to the numerical simulation of gas-liquid flows. The liquid phase is considered as incompressible, while the gas phase is treated as compressible in the low Mach number approach. We present a model and a numerical method aimed at the computation of such two-phase flows. The numerical model uses a lagrangian front-tracking method to deal with the interface. The model being validated with a 1-D reference solution, results in the 2-D case are presented. Two air bubbles are enclosed in a rigid cavity and surrounded with liquid water. As the initial pressure of the two bubbles is set to different values, an oscillatory motion is induced in which the bubbles undergo alternate compression and dilatation associated with alternate internal heating and cooling. This oscillatory motion can not be sustained and a damping is finally observed. It is shown in the present work that thermal conductivity of the liquid has a significant effect on both the frequency and the damping time scale of the oscillations.

  18. Experimental and Model Studies on Loading Path-Dependent and Nonlinear Gas Flow Behavior in Shale Fractures

    NASA Astrophysics Data System (ADS)

    Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang

    2018-01-01

    Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.

  19. Laser cross-flow gas system

    DOEpatents

    Duncan, David B.

    1992-01-01

    A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube.

  20. Laser cross-flow gas system

    DOEpatents

    Duncan, D.B.

    1992-11-24

    A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube. 1 figure.

  1. Numerical simulation of gas-phonon coupling in thermal transpiration flows.

    PubMed

    Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A

    2009-10-01

    Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.

  2. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  3. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  4. Modeling of Liquid Steel/Slag/Argon Gas Multiphase Flow During Tundish Open Eye Formation in a Two-Strand Tundish

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor

    2018-04-01

    Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.

  5. Approximate deconvolution model for the simulation of turbulent gas-solid flows: An a priori analysis

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, Simon; Saeedipour, Mahdi

    2018-02-01

    Highly resolved two-fluid model (TFM) simulations of gas-solid flows in vertical periodic channels have been performed to study closures for the filtered drag force and the Reynolds-stress-like contribution stemming from the convective terms. An approximate deconvolution model (ADM) for the large-eddy simulation of turbulent gas-solid suspensions is detailed and subsequently used to reconstruct those unresolved contributions in an a priori manner. With such an approach, an approximation of the unfiltered solution is obtained by repeated filtering allowing the determination of the unclosed terms of the filtered equations directly. A priori filtering shows that predictions of the ADM model yield fairly good agreement with the fine grid TFM simulations for various filter sizes and different particle sizes. In particular, strong positive correlation (ρ > 0.98) is observed at intermediate filter sizes for all sub-grid terms. Additionally, our study reveals that the ADM results moderately depend on the choice of the filters, such as box and Gaussian filter, as well as the deconvolution order. The a priori test finally reveals that ADM is superior compared to isotropic functional closures proposed recently [S. Schneiderbauer, "A spatially-averaged two-fluid model for dense large-scale gas-solid flows," AIChE J. 63, 3544-3562 (2017)].

  6. Gas flow path for a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.

    A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less

  7. Foam flow in a model porous medium: II. The effect of trapped gas.

    PubMed

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  8. Stability of Buoyancy-Driven Gas Flow: Visualization of Coherent and Incoherent Gas Flow Patterns and Capillary Trapping

    NASA Astrophysics Data System (ADS)

    Geistlinger, H. W.; Samani, S.; Pohlert, M.; Jia, R.; Lazik, D.

    2009-12-01

    sequestration mechanisms. In order to investigate the stability of buoyancy-driven gas flow and the transition between coherent flow, incoherent flow, and their correlation to capillary trapping, we conducted high-resolution optical bench scale experiments. We observed a grain-size (dk) - and flow-rate (Q) dependent transition from incoherent to coherent flow. Based on core-annular flow (= cooperative pore-body filling), we propose a dynamic stability criterion that could describe our experimental results. Our experimental results for vertical gas flow support the experimental results by Lenormand et al. [1983] obtained for horizontal flow, if one takes into account that gravity leads to more unstable flow conditions. Our main results, which are in strong contradiction to the accepted conceptual model of the sloped aquifer, are: (1) Capillary Trapping can already occur during injection and at the front of the plume [Lazik et al., 2008] (2) Gas clusters or bubbles can be mobile (incoherent gas flow) and immobile (capillary trapping), and (3) Incoherent gas flow can not be described by a generalized Darcy law [Geistlinger et al., 2006, 2009].

  9. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model.

    PubMed

    Kuang, Hua; Li, Xingli; Song, Tao; Dai, Shiqiang

    2008-12-01

    The modeling of human behavior is an important approach to reproduce realistic phenomena for pedestrian flow. In this paper, an extended lattice gas model is proposed to simulate pedestrian counter flow under the open boundary conditions by considering the human subconscious behavior and different maximum velocities. The simulation results show that the presented model can capture some essential features of pedestrian counter flows, such as lane formation, segregation effect, and phase separation at higher densities. In particular, an interesting feature that the faster walkers overtake the slower ones and then form a narrow-sparse walkway near the central partition line is discovered. The phase diagram comparison and analysis show that the subconscious behavior plays a key role in reducing the occurrence of jam cluster. The effects of the symmetrical and asymmetrical injection rate, different partition lines, and different combinations of maximum velocities on pedestrian flow are investigated. An important conclusion is that it is needless to separate faster and slower pedestrians in the same direction by a partition line. Furthermore, the increase of the number of faster walkers does not always benefit the counter flow in all situations. It depends on the magnitude and asymmetry of injection rate. And at larger maximum velocity, the obtained critical transition point corresponding to the maximum flow rate of the fundamental diagram is in good agreement with the empirical results.

  10. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  11. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.

    PubMed

    Edwards, Ryan W J; Doster, Florian; Celia, Michael A; Bandilla, Karl W

    2017-12-05

    Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.

  12. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less

  13. Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2008-12-01

    Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in

  14. Asymptotic research of transonic gas flows

    NASA Astrophysics Data System (ADS)

    Velmisov, Petr A.; Tamarova, Yuliya A.

    2017-12-01

    The article is dedicated to the development asymptotic theory of gas flowing at speed next to sound velocity, particularly of gas transonic flows, i.e. the flows, containing both, subsonic and supersonic areas. The main issue, when styding such flows, are nonlinearity and combined type of equations, describing the transonic flow. Based on asymptotic nonlinear equation obtained in the article, the gas transonic flows is studied, considering transverse disturbance with respect to the main flow. The asymptotic conditions at shock-wave front and conditions on the streamlined surface are found. Moreover, the equation of sound surface and asymptotic formula defining the pressure are recorded. Several exact particular solutions of such equation are given, and their application to solve several tasks of transonic aerodynamics is indicated. Specifically, the polynomial form solution describing gas axisymmetric flows in Laval nozzles with constant acceleration in direction of the nozzle's axis and flow swirling is obtained. The solutions describing the unsteady flow along the channels between spinning surfaces are presented. The asymptotic equation is obtained, describing the flow, appearing during non-separated and separated flow past, closely approximated to cylindrical one. Specific solutions are given, based on which the examples of steady flow are formed.

  15. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  16. Computations of ideal and real gas high altitude plume flows

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  17. Smart Application of Direct Gas Injection using a new conceptual model on Coherent and Incoherent Flow: From Bench Scale to Field Scale.

    NASA Astrophysics Data System (ADS)

    Geistlinger, H.; Samani, S.; Pohlert, M.; Martienssen, M.; Engelmann, F.; Hüttmann, S.

    2008-12-01

    Within the framework of the OXYWALL field experiment we developed the direct gas injection (DGI) of oxygen as a remediation technology, which allows the cost-efficient and large-scale cleaning of groundwater contaminated with organic contaminants. That technology can be used as wide-banded, unselective remediation method for complex contaminant mixtures. Particularly, it could be proofed in field experiments that mineral oil hydrocarbons, aromatic hydrocarbons (BTEX), the rather persistent gasoline component Methyl tertiary-butyl ether (MTBE), and chlorinated aliphatic and aromatic hydrocarbons, like Trichloroethene and Monochlorobenzene, can be aerobically metabolized by autochthon microorganisms. Over the last 8 years the field site was investigated and a dense monitoring network was installed using Geoprobe direct- push technology and standard hydrogeological investigations were conducted, like EC-Logs, Injections-Logs, Gamma-Logs, TDR-probes, oxygen measurements with in-situ optodes, and tracer test with test gases SF6, Ar, and Oxygen. The key parameter for controling and regulating the DGI is the spatial and temporal distribution of the gas phase. High-resolution optical bench scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads and natural sands. We observed a grain-size (dk)- and flow-rate (Q) dependent transition from incoherent to coherent flow. Conceptualizing the stationary tortuous gas flow as core-annulus flow and applying Hagen- Poiseuille flow for a straight capillary, we propose a flow-rate- and grain-size dependent stability criterion that could describe our experimental results and was used for classifying the experiments in a dk-Q-diagram (flow chart). Since DGI simulations are mainly based on continuum models, we also test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media by

  18. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    PubMed

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.

    PubMed

    Yue, Jun; Rebrov, Evgeny V; Schouten, Jaap C

    2014-05-07

    We report a three-phase slug flow and a parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 μm connected to a cross-flow mixer. The three-phase slug flow pattern is characterized by a flow of decane droplets containing single elongated nitrogen bubbles, which are separated by water slugs. This flow pattern was observed at a superficial velocity of decane (in the range of about 0.6 to 10 mm s(-1)) typically lower than that of water for a given superficial gas velocity in the range of 30 to 91 mm s(-1). The parallel-slug flow pattern is characterized by a continuous water flow in one part of the channel cross section and a parallel flow of decane with dispersed nitrogen bubbles in the adjacent part of the channel cross section, which was observed at a superficial velocity of decane (in the range of about 2.5 to 40 mm s(-1)) typically higher than that of water for each given superficial gas velocity. The three-phase slug flow can be seen as a superimposition of both decane-water and nitrogen-decane slug flows observed in the chip when the flow of the third phase (viz. nitrogen or water, respectively) was set at zero. The parallel-slug flow can be seen as a superimposition of the decane-water parallel flow and the nitrogen-decane slug flow observed in the chip under the corresponding two-phase flow conditions. In case of small capillary numbers (Ca ≪ 0.1) and Weber numbers (We ≪ 1), the developed two-phase pressure drop model under a slug flow has been extended to obtain a three-phase slug flow model in which the 'nitrogen-in-decane' droplet is assumed as a pseudo-homogeneous droplet with an effective viscosity. The parallel flow and slug flow pressure drop models have been combined to obtain a parallel-slug flow model. The obtained models describe the experimental pressure drop with standard deviations of 8% and 12% for the

  20. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Cox, Rachel E.; Mulligan, Jaysen; Ahmed, Kareem; Wilson, Jennifer G.; Calle, Luz M.

    2017-01-01

    The purpose of this work is to develop a version of Paschen's Law that takes into account the flow of ambient gas past electrode surfaces. Paschen's Law does not consider the flow of gas past an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement while traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance between electrode surfaces is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised theoretical model must be a function of the mean velocity, v (sub xm), of the ambient gas and reduce to Paschen's law when the gas mean velocity, v (sub xm) equals 0. A new theoretical formulation of Paschen's Law, taking into account the Mach number and dynamic pressure, derived by the authors, will be discussed. This equation was evaluated by wind tunnel experimentation whose results were consistent with the model hypothesis.

  1. Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Kolmakova, D.; Popov, G.

    2018-01-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  2. Developing an Effective Model for Shale Gas Flow in Nano-scale Pore Clusters based on FIB-SEM Images

    NASA Astrophysics Data System (ADS)

    Jiang, W. B.; Lin, M.; Yi, Z. X.; Li, H. S.

    2016-12-01

    Nano-scale pores existed in the form of clusters are the controlling void space in shale gas reservoir. Gas transport in nanopores which has a significant influence on shale gas' recoverability displays multiple transport regimes, including viscous, slippage flow and Knudsen diffusion. In addition, it is also influenced by pore space characteristics. For convenience and efficiency consideration, it is necessary to develop an upscaling model from nano pore to pore cluster scale. Existing models are more like framework functions that provide a format, because the parameters that represent pore space characteristics are underdetermined and may have multiple possibilities. Therefore, it is urgent to make them clear and obtained a model that is closer to reality. FIB-SEM imaging technology is able to acquire three dimensional images with nanometer resolution that nano pores can be visible. Based on the images of two shale samples, we used a high-precision pore network extraction algorithm to generate equivalent pore networks and simulate multiple regime (non-Darcy) flow in it. Several structural parameters can be obtained through pore network modelling. It is found that although the throat-radius distributions are very close, throat flux-radius distributions of different samples can be divided into two categories. The variation of tortuosity with pressure and the overall trend of throat-flux distribution changes with pressure are disclosed. A deeper understanding of shale gas flow in nano-scale pore clusters is obtained. After all, an upscaling model that connects absolute permeability, apparent permeability and other characteristic parameters is proposed, and the best parameter scheme considering throat number-radius distribution and flowing porosity for this model is selected out of three schemes based on pore scale results, and it can avoid multiple-solution problem and is useful in reservoir modelling and experiment result analysis, etc. This work is supported by

  3. Numerical Simulation of Multiphase Flow in Nanoporous Organic Matter With Application to Coal and Gas Shale Systems

    NASA Astrophysics Data System (ADS)

    Song, Wenhui; Yao, Jun; Ma, Jingsheng; Sun, Hai; Li, Yang; Yang, Yongfei; Zhang, Lei

    2018-02-01

    Fluid flow in nanoscale organic pores is known to be affected by fluid transport mechanisms and properties within confined pore space. The flow of gas and water shows notably different characteristics compared with conventional continuum modeling approach. A pore network flow model is developed and implemented in this work. A 3-D organic pore network model is constructed from 3-D image that is reconstructed from 2-D shale SEM image of organic-rich sample. The 3-D pore network model is assumed to be gas-wet and to contain initially gas-filled pores only, and the flow model is concerned with drainage process. Gas flow considers a full range of gas transport mechanisms, including viscous flow, Knudsen diffusion, surface diffusion, ad/desorption, and gas PVT and viscosity using a modified van der Waals' EoS and a correlation for natural gas, respectively. The influences of slip length, contact angle, and gas adsorption layer on water flow are considered. Surface tension considers the pore size and temperature effects. Invasion percolation is applied to calculate gas-water relative permeability. The results indicate that the influences of pore pressure and temperature on water phase relative permeabilities are negligible while gas phase relative permeabilities are relatively larger in higher temperatures and lower pore pressures. Gas phase relative permeability increases while water phase relative permeability decreases with the shrinkage of pore size. This can be attributed to the fact that gas adsorption layer decreases the effective flow area of the water phase and surface diffusion capacity for adsorbed gas is enhanced in small pore size.

  4. Apparatus for focusing flowing gas streams

    DOEpatents

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  5. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves.

    PubMed

    Fan, Zichuan; Jiang, Wentao; Wright, William M D

    2018-04-23

    This paper describes a completely non-contact ultrasonic method of gas flow metering using air-coupled leaky Lamb waves. To show proof of principle, a simplified representation of gas flow in a duct, comprising two separated thin isotropic plates with a gas flowing between them, has been modelled and investigated experimentally. An airborne compression wave emitted from an air-coupled capacitive ultrasonic transducer excited a leaky Lamb wave in the first plate in a non-contact manner. The leakage of this Lamb wave crossed the gas flow at an angle between the two plates as a compression wave, and excited a leaky Lamb wave in the second plate. An air-coupled capacitive ultrasonic transducer on the opposite side of this second plate then detected the airborne compression wave leakage from the second Lamb wave. As the gas flow shifted the wave field between the two plates, the point of Lamb wave excitation in the second plate was displaced in proportion to the gas flow rate. Two such measurements, in opposite directions, formed a completely non-contact contra-propagating Lamb wave flow meter, allowing measurement of the flow velocity between the plates. A COMSOL Multiphysics® model was used to visualize the wave fields, and accurately predicted the time differences that were then measured experimentally. Experiments using different Lamb wave frequencies and plate materials were also similarly verified. This entirely non-contact airborne approach to Lamb wave flow metering could be applied in place of clamp-on techniques in thin-walled ducts or pipes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Development of the ARISTOTLE webware for cloud-based rarefied gas flow modeling

    NASA Astrophysics Data System (ADS)

    Deschenes, Timothy R.; Grot, Jonathan; Cline, Jason A.

    2016-11-01

    Rarefied gas dynamics are important for a wide variety of applications. An improvement in the ability of general users to predict these gas flows will enable optimization of current, and discovery of future processes. Despite this potential, most rarefied simulation software is designed by and for experts in the community. This has resulted in low adoption of the methods outside of the immediate RGD community. This paper outlines an ongoing effort to create a rarefied gas dynamics simulation tool that can be used by a general audience. The tool leverages a direct simulation Monte Carlo (DSMC) library that is available to the entire community and a web-based simulation process that will enable all users to take advantage of high performance computing capabilities. First, the DSMC library and simulation architecture are described. Then the DSMC library is used to predict a number of representative transient gas flows that are applicable to the rarefied gas dynamics community. The paper closes with a summary and future direction.

  7. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  8. High gas flow alpha detector

    DOEpatents

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  9. High gas flow alpha detector

    DOEpatents

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  10. Pore-scale mechanisms of gas flow in tight sand reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near

  11. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George J.

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  12. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGES

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  13. Experimental validation of a direct simulation by Monte Carlo molecular gas flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shufflebotham, P.K.; Bartel, T.J.; Berney, B.

    1995-07-01

    The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

  14. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli

    2018-05-01

    Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

  15. A gas kinetic scheme for hybrid simulation of partially rarefied flows

    NASA Astrophysics Data System (ADS)

    Colonia, S.; Steijl, R.; Barakos, G.

    2017-06-01

    Approaches to predict flow fields that display rarefaction effects incur a cost in computational time and memory considerably higher than methods commonly employed for continuum flows. For this reason, to simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been introduced. In the present work, analytically defined gas-kinetic schemes based on the Shakhov and Rykov models for monoatomic and diatomic gas flows, respectively, are proposed and evaluated with the aim to be used in the context of hybrid simulations. This should reduce the region where more expensive methods are needed by extending the validity of the continuum formulation. Moreover, since for high-speed rare¦ed gas flows it is necessary to take into account the nonequilibrium among the internal degrees of freedom, the extension of the approach to employ diatomic gas models including rotational relaxation process is a mandatory first step towards realistic simulations. Compared to previous works of Xu and coworkers, the presented scheme is de¦ned directly on the basis of kinetic models which involve a Prandtl number correction. Moreover, the methods are defined fully analytically instead of making use of Taylor expansion for the evaluation of the required derivatives. The scheme has been tested for various test cases and Mach numbers proving to produce reliable predictions in agreement with other approaches for near-continuum flows. Finally, the performance of the scheme, in terms of memory and computational time, compared to discrete velocity methods makes it a compelling alternative in place of more complex methods for hybrid simulations of weakly rarefied flows.

  16. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    NASA Astrophysics Data System (ADS)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  17. Equations and simulations for multiphase compressible gas-dust flows

    NASA Astrophysics Data System (ADS)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  18. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  19. Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.

    1990-01-01

    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the

  20. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  1. Evaporation-induced gas-phase flows at selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.

    2018-02-01

    Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.

  2. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  3. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  4. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  5. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  6. Slip length measurement of gas flow.

    PubMed

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-16

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.

  7. Experimental and Numerical Study of Spacecraft Contamination Problems Associated With Gas and Gas-Droplet Thruster Plume Flows

    DTIC Science & Technology

    2006-04-17

    of the droplet phase are then used for validation of theoretical models of the gas-droplet plume flow. Based on experimental and numerical results...with the continuous model adequately reproduces the Arrhenius rate at high temperatures but significantly underpredicts the theoretical rate at low...continuous model and discrete model of real gas effects, and the results on the shock -wave stand-off distance were compared with the experimental data of

  8. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  9. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  10. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  11. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  12. Modeling of glow discharge in a gas flow

    NASA Astrophysics Data System (ADS)

    Galeev, I. G.; Asadullin, T. Ya

    2017-11-01

    The discharge plasma of positive column in electronegative gas flow has been described by two-dimensional integro-differential system of equations written in the approximation of “narrow channel”. An efficient algorithm of solving this system of equations is suggested. In this work an implicit method is used of solution with selection gradient of the electric field along the channel. The simulation of discharge characteristics was conducted under various boundary conditions at the inlet of the discharge area and with various full discharge currents.

  13. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.

  14. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.

    PubMed

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.

  15. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  16. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  17. Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Liu, Nan-Suey

    2005-01-01

    The three-dimensional, viscous, turbulent, reacting and non-reacting flow characteristics of a model gas turbine combustor operating on air/methane are simulated via an unstructured and massively parallel Reynolds-Averaged Navier-Stokes (RANS) code. This serves to demonstrate the capabilities of the code for design and analysis of real combustor engines. The effects of some design features of combustors are examined. In addition, the computed results are validated against experimental data.

  18. Gas flow headspace liquid phase microextraction.

    PubMed

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  19. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-10-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  20. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-09-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  1. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  2. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  3. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    NASA Technical Reports Server (NTRS)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and

  4. Experimental Study and Numerical Modeling of Gas Flow in Microchannels and Micronozzles

    DTIC Science & Technology

    2005-12-01

    built and used to study gas flows in microscale. Gas velocity measurements in microscale were conducted using both Laser Induced Fluorescence...velocity measurements in microscale were conducted using both Laser Induced Fluorescence technique (LIF) in conjunction with Image Correlation...micronozzles, several velocity measurement techniques have been used, such as laser doppler anemometry (LDA), particle image velocimetry (PIV), molecular

  5. Simultaneous flow of gas and water in a damage-susceptible argillaceous rock

    NASA Astrophysics Data System (ADS)

    Nguyen, T. S.

    2011-12-01

    A research project has been initiated by the Canadian Nuclear Safety Commission (CNSC) to study the influence of gas generation and migration on the long term safety of deep geological repositories for radioactive wastes. Such facilities rely on multiple barriers to isolate and contain the wastes. Depending on the level of radioactivity of the wastes, those barriers include some or all of the following: corrosion and structurally resistant containers, low permeability seals around the emplacements rooms, galleries and shaft, and finally the host rock formations. Large quantities of gas may be generated from the degradation of the waste forms or the corrosion of the containers. The generated gas pressures, if sufficiently large, can induce cracks and microcracks in the engineered and natural barriers and affect their containment functions. The author has developed a mathematical model to simulate the above effects. The model must be calibrated and validated with laboratory and field experiments in order to provide confidence in its future use for assessing the effects of gas on the long term safety of nuclear wastes repositories. The present communication describes the model and its use in the simulation of laboratory and large scale in-situ gas injection experiments in an argillaceous rock, known as Opalinus clay, from Mont Terri, Switzerland. Both the laboratory and in-situ experiments show that the gas flow rate substantially increases when the injection pressure is higher than the confining stress. The above observation seems to indicate that at high gas injection pressures, damage could possibly be induced in the rock formation resulting in an important increase in its permeability. In order to simulate the experiments, we developed a poro-elastoplastic model, with the consideration of two compressible pore fluids (water and gas). The bulk movement of the pore fluids is assumed to obey the generalized Darcy's law, and their respective degree of saturation is

  6. Phase and flow behavior of mixed gas hydrate systems during gas injection

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2017-12-01

    We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of

  7. Impact of waves on the circulation flow in the Iguasu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S.; Kislov, V.; Tronin, I.

    2017-01-01

    2D axisymmetric transient flow induced by a pulsed braking force in the Iguasu gas centrifuge (GC) is simulated numerically. The simulation is performed for two cases: transient and stationary. The braking forces averaged over the period of rotation are equal to each other in both cases. The transient case is compared with the stationary case where the flow is excited by the stationary braking force.Two models of the gas cenrifuge is simulated. There are two cameras in the first model and three cameras in the second one. In the transient case for the two cameras model pulsations almost doubles the axial circulation flux in the working camera. In the transient case for the three cameras model the gas flux through the gap in the bottom baffle exceeds on 15 % the same flux in the stationary case for the same gas content and temperature at the walls of the rotor. We argue that the waves can reduce the gas content in the GC on the same 15 %.

  8. Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junjian; Kang, Qinjun; Wang, Yuzhu

    One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less

  9. Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method

    DOE PAGES

    Wang, Junjian; Kang, Qinjun; Wang, Yuzhu; ...

    2017-06-01

    One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less

  10. Reacting Multi-Species Gas Capability for USM3D Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Schuster, David M.

    2012-01-01

    The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.

  11. Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.

    1996-01-01

    For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.

  12. Gas and Oil Flow through Wellbore Flaws

    NASA Astrophysics Data System (ADS)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  13. The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model

    NASA Astrophysics Data System (ADS)

    Liu, Chang-jiang; Pang, Song; Xu, Qiang; He, Ling; Yang, Shao-peng; Qing, Yun-jie

    2018-06-01

    The motion of many solid-gas two-phase flows can be described by the Boltzmann equation. In order to simplify the Boltzmann equation, the convective-diffusion term is reserved and the collision term is replaced by the three-dimensional Bharnagar-Gross-Krook (BGK) model. Then the simplified Boltzmann equation is solved by homotopy perturbation method (HPM), and its approximate analytical solution is obtained. Through the analyzing, it is proved that the analytical solution satisfies all the constraint conditions, and its formation is in accord with the formation of the solution that is obtained by traditional Chapman-Enskog method, and the solving process of HPM is much more simple and convenient. This preliminarily shows the effectiveness and rapidness of HPM to solve the Boltzmann equation. The results obtained herein provide some theoretical basis for the further study of dynamic model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by microseism and the sand storm caused by strong breeze.

  14. Gas Exchange Models for a Flexible Insect Tracheal System.

    PubMed

    Simelane, S M; Abelman, S; Duncan, F D

    2016-06-01

    In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.

  15. Overview of physical models of liquid entrainment in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey V.

    2018-03-01

    A number of recent papers devoted to development of physically-based models for prediction of liquid entrainment in annular regime of two-phase flow are analyzed. In these models shearing-off the crests of disturbance waves by the gas drag force is supposed to be the physical mechanism of entrainment phenomenon. The models are based on a number of assumptions on wavy structure, including inception of disturbance waves due to Kelvin-Helmholtz instability, linear velocity profile inside liquid film and high degree of three-dimensionality of disturbance waves. Validity of the assumptions is analyzed by comparison to modern experimental observations. It was shown that nearly every assumption is in strong qualitative and quantitative disagreement with experiments, which leads to massive discrepancies between the modeled and real properties of the disturbance waves. As a result, such models over-predict the entrained fraction by several orders of magnitude. The discrepancy is usually reduced using various kinds of empirical corrections. This, combined with empiricism already included in the models, turns the models into another kind of empirical correlations rather than physically-based models.

  16. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  17. Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders

    NASA Astrophysics Data System (ADS)

    Chan, Kit Yan

    2005-11-01

    In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.

  18. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Aubrey L.

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFBmore » riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.« less

  19. Analysis of Developing Gas/liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made inmore » simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.« less

  20. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering

  1. Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Offenhaeuser, F.

    1987-01-01

    The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.

  2. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  3. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    NASA Astrophysics Data System (ADS)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  4. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  5. Exhaust plume impingement of chemically reacting gas-particle flows

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Penny, M. M.; Greenwood, T. F.; Roberts, B. B.

    1975-01-01

    A series of computer codes has been developed to predict gas-particle flows and resulting impingement forces, moments and heating rates to surfaces immersed in the flow. The gas-particle flow solution is coupled via heat transfer and drag between the phases with chemical effects included in the gas phase. The flow solution and impingement calculations are discussed. Analytical results are compared with test data obtained to evaluate gas-particle effects on the Space Shuttle thermal protection system during the staging maneuver.

  6. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  7. Flow stagnation at Enceladus: The effects of neutral gas and charged dust

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.

    2012-06-01

    Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.

  8. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  9. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    DOE PAGES

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    2017-04-01

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less

  10. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less

  11. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas.more » The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.« less

  12. Prediction of slug-to-annular flow pattern transition (STA) for reducing the risk of gas-lift instabilities and effective gas/liquid transport from low-pressure reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toma, P.R.; Vargas, E.; Kuru, E.

    Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less

  13. Transition regime analytical solution to gas mass flow rate in a rectangular micro channel

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou; Dongari, Nishanth

    2012-11-01

    We present an analytical model predicting the experimentally observed gas mass flow rate in rectangular micro channels over slip and transition regimes without the use of any fitting parameter. Previously, Sone reported a class of pure continuum regime flows that requires terms of Burnett order in constitutive equations of shear stress to be predicted appropriately. The corrective terms to the conventional Navier-Stokes equation were named the ghost effect. We demonstrate in this paper similarity between Sone ghost effect model and newly so-called 'volume diffusion hydrodynamic model'. A generic analytical solution to gas mass flow rate in a rectangular micro channel is then obtained. It is shown that the volume diffusion hydrodynamics allows to accurately predict the gas mass flow rate up to Knudsen number of 5. This can be achieved without necessitating the use of adjustable parameters in boundary conditions or parametric scaling laws for constitutive relations. The present model predicts the non-linear variation of pressure profile along the axial direction and also captures the change in curvature with increase in rarefaction.

  14. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  15. Rarefaction effects in gas flows over curved surfaces

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  16. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  17. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  18. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  19. Gas flow through through a porous mantle: implications of fluidisation

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja

    Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.

  20. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less

  1. Decay of the 3D viscous liquid-gas two-phase flow model with damping

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-08-01

    We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.

  2. Development of a subsurface gas flow probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, R.P.; Ballard, S.; Barker, G.T.

    1997-04-01

    This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less

  3. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  4. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs

    PubMed Central

    Tawhai, Merryn H; Hoffman, Eric A

    2013-01-01

    is distributed to the peripheral tissue. The human airway structure spans more than 20 generations, beginning with the extra-thoracic airways (oral or nasal cavity, and through the pharynx and larynx to the trachea), then the conducting airways, the respiratory airways, and to the alveoli. The airways in individuals and sub-populations (by gender, age, ethnicity, and normal vs. diseased states) may exhibit different dimensions, branching patterns and angles, and thickness and rigidity. At the local level, one would like to capture detailed flow characteristics, e.g. local velocity profiles, shear stress, and pressure, for prediction of particle transport in an airway (lung structure) model that is specific to the geometry of an individual, to understand how inter-subject variation in airway geometry (normal or pathological) influences the transport and deposition of particles. In a systems biology – or multiscale modeling – approach, these local flow characteristics can be further integrated with epithelial cell models for the study of mechanotransduction. At the global (organ) level, one would like to match regional ventilation (lung function) that is specific to the individual, thus ensuring that the flow that transports inhaled particles is appropriately distributed throughout the lung model. Computational models that do not account for realistic distribution of ventilation are not capable of predicting realistic particle distribution or targeted drug deposition. Furthermore, the flow in the human lung can be transitional or turbulent in the upper and proximal airways, and becomes laminar in the distal airways. The flows in the laminar, transitional and turbulent regimes have different temporal and spatial scales. Therefore, modeling airway structure and predicting gas flow and particle transport at both local and global levels require image-guided multiscale modeling strategies. In this article, we will review the aforementioned three key aspects of CFD

  5. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  6. Chemically Reacting One-Dimensional Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The governing equations for the one-dimensional flow of a gas-particle system are discussed. Gas-particle effects are coupled via the system momentum and energy equations with the gas assumed to be chemically frozen or in chemical equilibrium. A computer code for calculating the one-dimensional flow of a gas-particle system is discussed and a user's input guide presented. The computer code provides for the expansion of the gas-particle system from a specified starting velocity and nozzle inlet geometry. Though general in nature, the final output of the code is a startline for initiating the solution of a supersonic gas-particle system in rocket nozzles. The startline includes gasdynamic data defining gaseous startline points from the nozzle centerline to the nozzle wall and particle properties at points along the gaseous startline.

  7. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  8. On numerical model of one-dimensional time-dependent gas flows through bed of encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Lutsenko, N. A.; Fetsov, S. S.

    2017-10-01

    Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.

  9. Interaction of a Gas Flow Carrying Nonspherical Microparticles with a Cross Cylinder

    NASA Astrophysics Data System (ADS)

    Amelyushkin, I. A.; Stasenko, A. L.

    2018-05-01

    A model of the dynamics of the particles-spheroids carried by a gas flow over a cross cylindrical body and rebounding from it has been developed. In this model, the gas flow around the particles is assumed to be viscous, and the reverse action of the particles on the gas and the collisions between them are not taken into account. The coefficients of recovery of the velocity components of the particles rebounded from the cylinder were determined on the basis of the heuristic theory in which the physical and mechanical properties of colliding bodies are considered. The influence of the ratio between the axes of particles-spheroids on the coefficient of wetting of the cylinder by them, the distributions of the mass-flow density of the particles and their velocity components over the cylinder surface, and the spatial distribution of the indicated quantities of the rotating particles rebounded from the cylinder was investigated numerically. The model proposed can be used for estimating the action of ice microcrystals and particles of volcanic ash emissions and dust storms on the structural elements of aircraft engines and small-size flying vehicles.

  10. Interaction of a Gas Flow Carrying Nonspherical Microparticles with a Cross Cylinder

    NASA Astrophysics Data System (ADS)

    Amelyushkin, I. A.; Stasenko, A. L.

    2018-03-01

    A model of the dynamics of the particles-spheroids carried by a gas flow over a cross cylindrical body and rebounding from it has been developed. In this model, the gas flow around the particles is assumed to be viscous, and the reverse action of the particles on the gas and the collisions between them are not taken into account. The coefficients of recovery of the velocity components of the particles rebounded from the cylinder were determined on the basis of the heuristic theory in which the physical and mechanical properties of colliding bodies are considered. The influence of the ratio between the axes of particles-spheroids on the coefficient of wetting of the cylinder by them, the distributions of the mass-flow density of the particles and their velocity components over the cylinder surface, and the spatial distribution of the indicated quantities of the rotating particles rebounded from the cylinder was investigated numerically. The model proposed can be used for estimating the action of ice microcrystals and particles of volcanic ash emissions and dust storms on the structural elements of aircraft engines and small-size flying vehicles.

  11. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  12. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  13. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  14. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  15. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  16. Scaling and modeling of turbulent suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1989-01-01

    Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.

  17. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  18. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  19. Numerical modeling of flow focusing: Quantitative characterization of the flow regimes

    NASA Astrophysics Data System (ADS)

    Mamet, V.; Namy, P.; Dedulle, J.-M.

    2017-09-01

    Among droplet generation technologies, the flow focusing technique is a major process due to its control, stability, and reproducibility. In this process, one fluid (the continuous phase) interacts with another one (the dispersed phase) to create small droplets. Experimental assays in the literature on gas-liquid flow focusing have shown that different jet regimes can be obtained depending on the operating conditions. However, the underlying physical phenomena remain unclear, especially mechanical interactions between the fluids and the oscillation phenomenon of the liquid. In this paper, based on published studies, a numerical diphasic model has been developed to take into consideration the mechanical interaction between phases, using the Cahn-Hilliard method to monitor the interface. Depending on the liquid/gas inputs and the geometrical parameters, various regimes can be obtained, from a steady state regime to an unsteady one with liquid oscillation. In the dispersed phase, the model enables us to compute the evolution of fluid flow, both in space (size of the recirculation zone) and in time (period of oscillation). The transition between unsteady and stationary regimes is assessed in relation to liquid and gas dimensionless numbers, showing the existence of critical thresholds. This model successfully highlights, qualitatively and quantitatively, the influence of the geometry of the nozzle, in particular, its inner diameter.

  20. Effect of particle inertia on fluid turbulence in gas-solid disperse flow

    NASA Astrophysics Data System (ADS)

    Mito, Yoichi

    2016-11-01

    The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.

  1. PIV Measurements of Gas Flow Fields from Burning End

    NASA Astrophysics Data System (ADS)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  2. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  3. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  4. General Reynolds analogy on curved surfaces in hypersonic rarefied gas flows with non-equilibrium chemical reactions

    NASA Astrophysics Data System (ADS)

    Xingxing, Chen; Zhihui, Wang; Yongliang, Yu

    2016-11-01

    Hypersonic chemical non-equilibrium gas flows around blunt nosed bodies are studied in the present paper to investigate the Reynolds analogy relation on curved surfaces. With a momentum and energy transfer model being applied through boundary layers, influences of molecular dissociations and recombinations on skin frictions and heat fluxes are separately modeled. Expressions on the ratio of Cf / Ch (skin friction coefficient to heat flux) are presented along the surface of circular cylinders under the ideal dissociation gas model. The analysis indicates that molecular dissociations increase the linear distribution of Cf / Ch, but the nonlinear Reynolds analogy relation could ultimately be obtained in flows with larger Reynolds numbers and Mach numbers, where the decrease of wall heat flux by molecular recombinations signifies. The present modeling and analyses are also verified by the DSMC calculations on nitrogen gas flows.

  5. Turbulence modeling in simulation of gas-turbine flow and heat transfer.

    PubMed

    Brereton, G; Shih, T I

    2001-05-01

    The popular k-epsilon type two-equation turbulence models, which are calibrated by experimental data from simple shear flows, are analyzed for their ability to predict flows involving shear and an extra strain--flow with shear and rotation and flow with shear and streamline curvature. The analysis is based on comparisons between model predictions and those from measurements and large-eddy simulations of homogenous flows involving shear and an extra strain, either from rotation or from streamline curvature. Parameters are identified, which show the conditions under which performance of k-epsilon type models can be expected to be poor.

  6. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  7. Numerical modelling of flow through foam's node.

    PubMed

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal

    2017-10-15

    In this work, for the first time, a three-dimensional model to describe the dynamics of flow through geometric Plateau border and node components of foam is presented. The model involves a microscopic-scale structure of one interior node and four Plateau borders with an angle of 109.5 from each other. The majority of the surfaces in the model make a liquid-gas interface where the boundary condition of stress balance between the surface and bulk is applied. The three-dimensional Navier-Stoke equation, along with continuity equation, is solved using the finite volume approach. The numerical results are validated against the available experimental results for the flow velocity and resistance in the interior nodes and Plateau borders. A qualitative illustration of flow in a node in different orientations is shown. The scaled resistance against the flow for different liquid-gas interface mobility is studied and the geometrical characteristics of the node and Plateau border components of the system are compared to investigate the Plateau border and node dominated flow regimes numerically. The findings show the values of the resistance in each component, in addition to the exact point where the flow regimes switch. Furthermore, a more accurate effect of the liquid-gas interface on the foam flow, particularly in the presence of a node in the foam network is obtained. The comparison of the available numerical results with our numerical results shows that the velocity of the node-PB system is lower than the velocity of single PB system for mobile interfaces. That is owing to the fact that despite the more relaxed geometrical structure of the node, constraining effect of merging and mixing of flow and increased viscous damping in the node component result in the node-dominated regime. Moreover, we obtain an accurate updated correlation for the dependence of the scaled average velocity of the node-Plateau border system on the liquid-gas interface mobility described by

  8. Method and system for gas flow mitigation of molecular contamination of optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less

  9. Decay of the 3D viscous liquid-gas two-phase flow model with damping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yinghui, E-mail: zhangyinghui0910@126.com

    We establish the optimal L{sup p} − L{sup 2}(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, L{sup p} − L{sup 2} estimates for the linearized equations, and delicate energy estimates.

  10. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  11. Three mechanisms model of shale gas in real state transport through a single nanopore

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai

    2018-02-01

    At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.

  12. Rarefaction effects in microchannel gas flow driven by rhythmic wall contractions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnashis; Staples, Anne; Department of Biomedical Engineering; Mechanics, Virginia Tech Collaboration

    2015-11-01

    Current state of the art microfluidic devices employ precise and timely operation of a complex arrangement of micropumps and valves for fluid transport. A much more novel flow transport mechanism is found in entomological respiratory systems, which involve rhythmic wall contractions for driving the fluid flow. The practical viability of using this technique in future microfluidic devices has been studied earlier. The present study investigates the incorporation of rarefaction effects in the above model of microscale gas flow by including slip boundary conditions. The Navier Stokes equations for gas flow in rectangular microchannel are solved analytically with microscale and lubrication theory assumptions. First order slip boundary conditions are incorporated to account for the rarefaction effects. The dependence of fluid velocities and pressure gradient on the slip boundary conditions is studied. Time averaged unidirectional fluid flow rates are plotted for different phase lags between the contractions, with and without slip in order to obtain an optimum range under different conditions.

  13. Reacting Flow in the Entrance to a Channel with Surface and Gas-Phase Kinetics

    NASA Astrophysics Data System (ADS)

    Mikolaitis, David; Griffen, Patrick

    2006-11-01

    In many catalytic reactors the conversion process is most intense at the very beginning of the channel where the flow is not yet fully developed; hence there will be important interactions between the developing flow field and reaction. To study this problem we have written an object-oriented code for the analysis of reacting flow in the entrance of a channel where both surface reaction and gas-phase reaction are modeled with detailed kinetics. Fluid mechanical momentum and energy equations are modeled by parabolic ``boundary layer''-type equations where streamwise gradient terms are small and the pressure is constant in the transverse direction. Transport properties are modeled with mixture-averaging and the chemical kinetic sources terms are evaluated using Cantera. Numerical integration is done with Matlab using the function pdepe. Calculations were completed using mixtures of methane and air flowing through a channel with platinum walls held at a fixed temperature. GRI-Mech 3.0 was used to describe the gas-phase chemistry and Deutchmann's methane-air-platinum model was used for the surface chemistry. Ignition in the gas phase is predicted for high enough wall temperatures. A hot spot forms away from the walls just before ignition that is fed by radicals produced at the surface.

  14. Simulation modelling for new gas turbine fuel controller creation.

    NASA Astrophysics Data System (ADS)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  15. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  16. Experimental Flow Models for SSME Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Abel, L. C.; Ramsey, P. E.

    1989-01-01

    Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.

  17. Stripped interstellar gas in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1991-01-01

    It is suggested that nonlinear perturbations which lead to thermal instabilities in cooling flows might start as blobs of interstellar gas which are stipped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly 100 solar masses/yr, which is similar to the rates of cooling in cluster cooling flows. It is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low-entropy perturbations may help to maintain their identities by suppressing both thermal conduction and Kelvin-Helmholtz instabilities. These density fluctuations may disrupt the propagation of radio jets through the intracluster gas, which may be one mechanism for producing wideangle-tail radio galaxies.

  18. Partial wetting gas-liquid segmented flow microreactor.

    PubMed

    Kazemi Oskooei, S Ali; Sinton, David

    2010-07-07

    A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.

  19. Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR

    NASA Astrophysics Data System (ADS)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2006-04-01

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering or as reactors. We report a model study on silica aerogel using a time-of-flight magnetic resonance imaging technique to characterize the flow field and explain the effects of heterogeneities in the pore structure on gas flow and dispersion with 129Xe as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides insights into the dynamics of flow in porous media where several phases or chemical species may be present.

  20. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  1. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  2. Flow and criticality in the open cycle gas core.

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.

    1971-01-01

    A series of flowing gas experiments using air, argon, and freon has been conducted in Idaho. The purpose is to study methods of obtaining flow patterns which would create maximum possible system reactivity consistent with an acceptably low uranium to coolant-gas loss ratio. These have been conducted on both ?two-dimensional' and truly three-dimensional spherical configurations of diameters 18 to 42 inches. The larger diameter is that proposed for a minimum cost flowing gas critical experiment, and the size extremes make extrapolations to the large 6 and 8 foot diameter configurations more reliable. Results show that large enough inner gas (fuel) volume fractions can be achieved to attain criticality.

  3. System for controlling the flow of gas into and out of a gas laser

    DOEpatents

    Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.

    1994-01-01

    A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.

  4. Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern

    NASA Astrophysics Data System (ADS)

    Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro

    2009-01-01

    The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.

  5. Variable flow gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroem, S.

    1986-11-25

    This patent describes a variable flow gas turbine engine of the type having a combustor for generating combustion gases and a turbine rotor for receiving and expanding the hot combustion gases, comprising: duct means for defining a channel for directing the flow of combustion gases from the combustor to the rotor; vane means in the channel forming at least one throat; means for varying the effective flow area for combustion gases flowing through the throat and impinging on the rotor. The varying means includes winglet means fixedly mounted in the throat for separating the gases flowing through the throat intomore » first and second streams; and means for injecting high pressure fluid into the throat for varying the flow of combustion gases in one of the streams.« less

  6. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  7. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand flow...

  8. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand flow...

  9. A Fokker-Planck based kinetic model for diatomic rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Gorji, M. Hossein; Jenny, Patrick

    2013-06-01

    A Fokker-Planck based kinetic model is presented here, which also accounts for internal energy modes characteristic for diatomic gas molecules. The model is based on a Fokker-Planck approximation of the Boltzmann equation for monatomic molecules, whereas phenomenological principles were employed for the derivation. It is shown that the model honors the equipartition theorem in equilibrium and fulfills the Landau-Teller relaxation equations for internal degrees of freedom. The objective behind this approximate kinetic model is accuracy at reasonably low computational cost. This can be achieved due to the fact that the resulting stochastic differential equations are continuous in time; therefore, no collisions between the simulated particles have to be calculated. Besides, because of the devised energy conserving time integration scheme, it is not required to resolve the collisional scales, i.e., the mean collision time and the mean free path of molecules. This, of course, gives rise to much more efficient simulations with respect to other particle methods, especially the conventional direct simulation Monte Carlo (DSMC), for small and moderate Knudsen numbers. To examine the new approach, first the computational cost of the model was compared with respect to DSMC, where significant speed up could be obtained for small Knudsen numbers. Second, the structure of a high Mach shock (in nitrogen) was studied, and the good performance of the model for such out of equilibrium conditions could be demonstrated. At last, a hypersonic flow of nitrogen over a wedge was studied, where good agreement with respect to DSMC (with level to level transition model) for vibrational and translational temperatures is shown.

  10. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    DOE PAGES

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...

    2017-09-19

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  11. Gas flows in radial micro-nozzles with pseudo-shocks

    NASA Astrophysics Data System (ADS)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2018-07-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  12. Gas flow means for improving efficiency of exhaust hoods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gasmore » from the front of the individual toward the contaminants. 15 figures.« less

  13. One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure

    NASA Astrophysics Data System (ADS)

    Vedernikov, A.; Balapanov, D.

    2016-11-01

    A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of any meaningful density variation in the system. The energy balance is described by the heat equation that is solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes equations. This work deals with the ideal gas. The approach is also valid for other equations of state.

  14. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  15. Unified gas-kinetic scheme with multigrid convergence for rarefied flow study

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2017-09-01

    The unified gas kinetic scheme (UGKS) is based on direct modeling of gas dynamics on the mesh size and time step scales. With the modeling of particle transport and collision in a time-dependent flux function in a finite volume framework, the UGKS can connect the flow physics smoothly from the kinetic particle transport to the hydrodynamic wave propagation. In comparison with the direct simulation Monte Carlo (DSMC) method, the current equation-based UGKS can implement implicit techniques in the updates of macroscopic conservative variables and microscopic distribution functions. The implicit UGKS significantly increases the convergence speed for steady flow computations, especially in the highly rarefied and near continuum regimes. In order to further improve the computational efficiency, for the first time, a geometric multigrid technique is introduced into the implicit UGKS, where the prediction step for the equilibrium state and the evolution step for the distribution function are both treated with multigrid acceleration. More specifically, a full approximate nonlinear system is employed in the prediction step for fast evaluation of the equilibrium state, and a correction linear equation is solved in the evolution step for the update of the gas distribution function. As a result, convergent speed has been greatly improved in all flow regimes from rarefied to the continuum ones. The multigrid implicit UGKS (MIUGKS) is used in the non-equilibrium flow study, which includes microflow, such as lid-driven cavity flow and the flow passing through a finite-length flat plate, and high speed one, such as supersonic flow over a square cylinder. The MIUGKS shows 5-9 times efficiency increase over the previous implicit scheme. For the low speed microflow, the efficiency of MIUGKS is several orders of magnitude higher than the DSMC. Even for the hypersonic flow at Mach number 5 and Knudsen number 0.1, the MIUGKS is still more than 100 times faster than the DSMC method for

  16. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  17. Experimental perfect-gas study of expansion-tube flow characteristics

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Miller, C. G., III

    1978-01-01

    Results of an experimental investigation of expansion tube flow characteristics performed with helium test gas and acceleration gas are presented. The use of helium, eliminates complex real gas chemistry in the comparison of measured and predicted flow quantities. The driver gas was unheated helium at a nominal pressure of 33 MN sq m. The quiescent test gas pressure and quiescent acceleration gas pressure were varied from 0.7 to 50 kN/sq m and from 2.5 to 53 N/sq m, respectively. The effects of tube-wall boundary layer growth and finite secondary diaphragm opening time were examined through the variation of the quiescent gas pressures and secondary diaphragm thickness. Optimum operating conditions for helium test gas were also defined.

  18. Humidification of base flow gas during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Shiba, Naoki; Nagano, Osamu; Hirayama, Takahiro; Ichiba, Shingo; Ujike, Yoshihito

    2012-01-01

    In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patient's lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10 Hz, maximum stroke volumes (SV) of 285, 205, and 160 ml at the respective frequencies, and, BFs of 20, 30, 40 l/min using an original lung model. The R100 device was equipped with a heated humidifier, Hummax Ⅱ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50 cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another Hummax Ⅱ. The lung model temperature was controlled at 37℃. The Hummax Ⅱ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6 Hz (SV 285 ml) and BF 20 l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100.

  19. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200 liters...

  20. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200 liters...

  1. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  2. Coupled Monte Carlo Probability Density Function/ SPRAY/CFD Code Developed for Modeling Gas-Turbine Combustor Flows

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF

  3. Rarefied gas flow through two-dimensional nozzles

    NASA Technical Reports Server (NTRS)

    De Witt, Kenneth J.; Jeng, Duen-Ren; Keith, Theo G., Jr.; Chung, Chan-Hong

    1989-01-01

    A kinetic theory analysis is made of the flow of a rarefied gas from one reservoir to another through two-dimensional nozzles with arbitrary curvature. The Boltzmann equation simplified by a model collision integral is solved by means of finite-difference approximations with the discrete ordinate method. The physical space is transformed by a general grid generation technique and the velocity space is transformed to a polar coordinate system. A numerical code is developed which can be applied to any two-dimensional passage of complicated geometry for the flow regimes from free-molecular to slip. Numerical values of flow quantities can be calculated for the entire physical space including both inside the nozzle and in the outside plume. Predictions are made for the case of parallel slots and compared with existing literature data. Also, results for the cases of convergent or divergent slots and two-dimensional nozzles with arbitrary curvature at arbitrary knudsen number are presented.

  4. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  5. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  6. Breakdown characteristics of atmospheric dielectric barrier discharge in gas flow condition

    NASA Astrophysics Data System (ADS)

    Fan, Zhihui; Yan, Huijie; Wang, Yuying; Liu, Yidi; Guo, Hongfei; Ren, Chunsheng

    2018-05-01

    Experimental investigations of the breakdown characteristics of plate-to-plate dielectric barrier discharge excited by an AC source at different gas flow conditions are carried out. The ignition voltage for the appearance of the very first discharge filament and the breakdown voltage in each discharge half cycle in continuous operation are examined. As revealed by the results of the indoor air experiment, the ignition voltage manifests a monotonous increase with the increase in the gas flow rate, while the breakdown voltage has a marked decline at the low gas flow rate and increases slightly as the gas flow rate is higher than 10 m/s. As regards the obvious decreases in the ignition voltage and breakdown voltage, the decrease in the humidity with the increase in the gas flow rate plays a dominant role. As regards the increase in breakdown voltage, the memory effect from the preceding discharge is considered. The losses of metastable particles, together with particles having high translational energy in the gas flow, are considered to be the most critical factors.

  7. Effects of argon gas flow rate on laser-welding.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  8. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  9. Physical properties and surface/interface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemuri, R. S.; Carbjal-Franco, G.; Ferrer, D. A.

    2012-10-15

    Nanocrystalline WO3 films were grown by reactive magnetron sputter-deposition in a wide range of oxygen gas flow rates while keeping the deposition temperature fixed at 400 oC. The physical characteristics of WO3 films were evaluated using grazing incidence X-ray diffraction (GIXRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) measurements. Physical characterization indicates that the thickness, grain size, and density of WO3 films are sensitive to the oxygen gas flow rate during deposition. XRD data indicates the formation of tetragonal WO3 films. The grain size increases from 21 to 25 nm with increasing oxygen gas flow rate to 65%, atmore » which point the grain size exhibits a decreasing trend to attain the lowest value of 15 nm at 100% oxygen. TEM analysis provides a model consisting of isotropic WO3 film (nanocrystalline)-SiO2 interface (amorphous)-Si(100) substrate. XRR simulations, which are based on this model, provide excellent agreement to the experimental data indicating that the normalized thickness of WO3 films decreases with the increasing oxygen gas flow rate. The density of WO3 films increases with increasing oxygen gas flow rate.« less

  10. Use of schlieren methods to study gas flow in laser technology

    NASA Astrophysics Data System (ADS)

    Mrňa, Libor; Pavelka, Jan; Horník, Petr; Hrabovský, Jozef

    2016-11-01

    Laser technologies such as welding and cutting rely on process gases. We suggest to use schlieren imaging to visualize the gas flow during these processes. During the process of laser welding, the shielding gas flows to the welded area to prevent oxidation of the weld pool by surrounding air. The gas also interacts with hot plasma spurting from the key hole induced by the laser beam incident on the molten material. This interaction is quite complicated because hot plasma mixes with the cold shielding gas while the system is moving along the weld. Three shielding gases were used in the presented experiment: Ar, He and N2. Differences in dynamics of the flow are clearly visible on schlieren images. Moreover, high speed recording reveals a structure consisting of hot gas bubbles. We were also able to determine the velocity of the bubbles from the recording. During laser cutting, the process gas flows coaxially with the laser beam from the nozzle to remove the molten material out of the kerf. The gas flow is critical for the quality of the resulting edge of the cut. Schlieren method was used to study gas flow under the nozzle and then under the material being cut. This actually creates another slot nozzle. Due to the very low speed of flow below the material the schleiren method is already at the limit of its sensitivity. Therefore, it is necessary to apply a differential technique to increase the contrast. Distinctive widening of the flow shaped by the kerf was observed.

  11. Revisiting low-fidelity two-fluid models for gas-solids transport

    NASA Astrophysics Data System (ADS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  12. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels

    NASA Astrophysics Data System (ADS)

    Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei

    2017-08-01

    Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

  13. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.

    PubMed

    Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei

    2017-08-01

    Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

  14. Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation

    NASA Technical Reports Server (NTRS)

    Lin, J. T.; Ovacik, L.; Jones, O. C.

    1991-01-01

    The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.

  15. Effects of flow rate and gas mixture on the welfare of weaned and neonate pigs during gas euthanasia.

    PubMed

    Sadler, L J; Hagen, C D; Wang, C; Widowski, T M; Johnson, A K; Millman, S T

    2014-02-01

    The objectives of this study were to assess efficacy and welfare implications of gas euthanasia when applied to weaned and neonate pigs. Parameters associated with welfare, which were measured before loss of consciousness, included open-mouth breathing, ataxia, righting response, and escape attempts. Two age groups (weaned and neonate) were assessed in 9 gas treatments arranged in a 2 × 4 factorial design, with 2 gas types (CO2 = 100% CO2 and 50:50 = 50:50 CO2:argon) and 4 flow rates (box volume exchange/min: slow = 20%; medium = 35%; fast = 50%; prefill = prefilled followed by 20%) and a control treatment in which ambient air was passed through the box. Pig pairs (10/treatment) were placed in a modified Euthanex AgPro system (Euthanex Corp., Palmer, PA). Behavioral and physiological responses were observed directly and from video recordings for latency, duration, prevalence (percent of pigs affected), and frequency (number of occurrences/pig). Data were analyzed as linear mixed models or with a Cox proportional hazard model as appropriate. Piglet pair was the experimental unit. For the weaned pig, welfare was superior with CO2 relative to 50:50 within 1 or more flow rates on the basis of reduced duration of open-mouth breathing, duration of ataxia, frequency of escape attempts, and duration and frequency of righting response (P < 0.05). No measured parameters indicated superior welfare with the use of 50:50, whereas latencies to loss of posture and last movement favored CO2 (P < 0.05). Faster flow rates were associated with reduced (P < 0.05) duration or frequency of open-mouth breathing, ataxia, and righting response, as well as superior (P < 0.05) indicators of efficacy, including latencies to loss of posture, gasping, and last movement, relative to slower flow rates. Weaned pigs were more likely to defecate (P < 0.01), display nasal discharge (P < 0.05), and display longer (P < 0.001) latencies to loss of posture and last movement than neonates. Duration of

  16. Implicit gas-kinetic unified algorithm based on multi-block docking grid for multi-body reentry flows covering all flow regimes

    NASA Astrophysics Data System (ADS)

    Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu

    2016-12-01

    Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single

  17. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  18. Method of introducing additive into a reaction gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelfelder, S.; Chughtai, M.Y.

    1984-04-03

    A method of continuously introducing additive, which is conveyed by gaseous and/or liquid carriers, into a turbulent reaction gas flow in the combustion chamber of a steam generator having dry ash withdrawal for selective removal, in a dry manner, of environmentally harmful gaseous noxious materials, such as sulfur, chlorine, and chlorine compounds, which are contained in a hot reaction gas flow which results after a complete or incomplete flame combustion of solid, liquid, or gaseous fuels. Depending upon the additive introduced, heat is stored and/or used for decomposition reactions. The additive, is first introduced at one or more input locations,more » due to locally different pressure conditions in the combustion chamber, into one or more recirculation flows which are within the system and are closed. The additive is subsequently withdrawn from these recirculation flows and is introduced into the reaction gas flow.« less

  19. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  20. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz; Filipczak, Gabriel

    2017-10-01

    This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.

  1. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    PubMed Central

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-01-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  2. Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  3. Pulsatile flow and mass transport over an array of cylinders: gas transfer in a cardiac-driven artificial lung.

    PubMed

    Chan, Kit Yan; Fujioka, Hideki; Bartlett, Robert H; Hirschl, Ronald B; Grotberg, James B

    2006-02-01

    The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.

  4. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  5. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  6. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  7. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  8. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  9. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang, E-mail: cliuaa@ust.hk; Xu, Kun, E-mail: makxu@ust.hk; Sun, Quanhua, E-mail: qsun@imech.ac.cn

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, themore » dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the

  10. Growth of a Massive Young Stellar Object Fed by a Gas Flow from a Companion Gas Clump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Shen, Zhiqiang; Ren, Zhiyuan

    We present a Submillimeter Array (SMA) observation toward the young massive double-core system G350.69-0.49. This system consists of a northeast (NE) diffuse gas bubble and a southwest (SW) massive young stellar object (MYSO), both clearly seen in the Spitzer images. The SMA observations reveal a gas flow between the NE bubble and the SW MYSO in a broad velocity range from 5 to 30 km s{sup −1} with respect to the system velocity. The gas flow is well confined within the interval between the two objects and traces a significant mass transfer from the NE gas bubble to the SWmore » massive core. The transfer flow can supply the material accreted onto the SW MYSO at a rate of 4.2×10{sup −4} M{sub ⊙} yr{sup −1}. The whole system therefore suggests a mode for the mass growth in the MYSO from a gas transfer flow launched from its companion gas clump, despite the driving mechanism of the transfer flow not being fully determined from the current data.« less

  11. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  12. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  13. Modeling self-consistent multi-class dynamic traffic flow

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  14. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  15. Neural network models for biological waste-gas treatment systems.

    PubMed

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  16. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    NASA Astrophysics Data System (ADS)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-12-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  17. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  18. Rarefied gas flows through a curved channel: Application of a diffusion-type equation

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki

    2010-11-01

    Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.

  19. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, J.T.; Smid, J.; Hsiau, S.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zonesmore » history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.« less

  20. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  1. Model for economic evaluation of high energy gas fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engi, D.

    1984-05-01

    The HEGF/NPV model has been developed and adapted for interactive microcomputer calculations of the economic consequences of reservoir stimulation by high energy gas fracturing (HEGF) in naturally fractured formations. This model makes use of three individual models: a model of the stimulated reservoir, a model of the gas flow in this reservoir, and a model of the discounted expected net cash flow (net present value, or NPV) associated with the enhanced gas production. Nominal values of the input parameters, based on observed data and reasonable estimates, are used to calculate the initial expected increase in the average daily rate ofmore » production resulting from the Meigs County HEGF stimulation experiment. Agreement with the observed initial increase in rate is good. On the basis of this calculation, production from the Meigs County Well is not expected to be profitable, but the HEGF/NPV model probably provides conservative results. Furthermore, analyses of the sensitivity of the expected NPV to variations in the values of certain reservoir parameters suggest that the use of HEGF stimulation in somewhat more favorable formations is potentially profitable. 6 references, 4 figures, 3 tables.« less

  2. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    PubMed

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  3. Numerical Analysis of Dusty-Gas Flows

    NASA Astrophysics Data System (ADS)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  4. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    PubMed

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  5. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst

    PubMed Central

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types. PMID:28727738

  6. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface

  7. Numerical modeling of underground storage system for natural gas

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  8. Gas-Liquid Flow in Pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas J. Hanratty

    A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such asmore » frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.« less

  9. Integral Transport Analysis Results for Ions Flowing Through Neutral Gas

    NASA Astrophysics Data System (ADS)

    Emmert, Gilbert; Santarius, John

    2017-10-01

    Results of a computational model for the flow of energetic ions and neutrals through a background neutral gas will be presented. The method models reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The present work focuses on multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical, cylindrical, or linear geometry. This has been implemented as a computer code for atomic (3He, 3He +, 3He + +) and molecular (D, D2, D-, D +, D2 +, D3 +) ion and neutral species, and applied to modeling inertial-electrostatic connement (IEC) devices. The code yields detailed energy spectra of the various ions and energetic neutral species. Calculations for several University of Wisconsin IEC and ion implantation devices will be presented. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095, Dept. of Energy Grant DE-FG02-04ER54745, and the Grainger Foundation.

  10. Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)

    1999-01-01

    A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.

  11. The evolution of cooling flows. I - Self-similar cluster flows. [of gas in intergalactic medium

    NASA Technical Reports Server (NTRS)

    Chevalier, Roger A.

    1987-01-01

    The evolution of a cooling flow from an initial state of hydrostatic equilibrium in a cluster of galaxies is investigated. After gas mass and energy are injected into the cluster at an early phase, the gas approaches hydrostatic equilibrium over most of the cluster and cooling becomes important in the dense central regions. As time passes, cooling strongly affects an increasing amount of gas. The effects of mass removal from the flow, the inclusion of magnetic or cosmic-ray pressure, and heat conduction are considered individually.

  12. Continuum approaches for describing solid-gas and solid-liquid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, P.; Harvey, J.; Levine, H.

    Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less

  13. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    NASA Astrophysics Data System (ADS)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  14. The flows structure in unsteady gas flow in pipes with different cross-sections

    NASA Astrophysics Data System (ADS)

    Plotnikov, Leonid; Nevolin, Alexandr; Nikolaev, Dmitrij

    2017-10-01

    The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of complex configuration. On the basis of experimental researches it is established that the strong oscillatory phenomena exist in the inlet pipe of the piston engine arising after the closing of the intake valve. The placement of the profiled plots (with a cross section of a square or an equilateral triangle) in the intake pipe leads to the damping of the oscillatory phenomena and a more rapid stabilization of pulsating flow. This is due to the stabilizing effect of the vortex structures formed in the corners of this configuration.

  15. Multiphase flow models for hydraulic fracturing technology

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  16. Study of Solid Particle Behavior in High Temperature Gas Flows

    NASA Astrophysics Data System (ADS)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.

    2009-01-01

    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  17. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    NASA Astrophysics Data System (ADS)

    Taghavi, Majid; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia; Mattoli, Virgilio

    2014-12-01

    In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.

  18. Parents of two-phase flow and theory of "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.

  19. Effect of shroud geometry on the effectiveness of a short mixing stack gas eductor model

    NASA Astrophysics Data System (ADS)

    Kavalis, A. E.

    1983-06-01

    An existing apparatus for testing models of gas eductor systems using high temperature primary flow was modified to provide improved control and performance over a wide range of gas temperature and flow rates. Secondary flow pumping, temperature and pressure data were recorded for two gas eductor system models. The first, previously tested under hot flow conditions, consists of a primary plate with four tilted-angled nozzles and a slotted, shrouded mixing stack with two diffuser rings (overall L/D = 1.5). A portable pyrometer with a surface probe was used for the second model in order to identify any hot spots at the external surface of the mixing stack, shroud and diffuser rings. The second model is shown to have almost the same mixing and pumping performance with the first one but to exhibit much lower shroud and diffuser surface temperatures.

  20. Droplet breakup in accelerating gas flows. Part 2: Secondary atomization

    NASA Technical Reports Server (NTRS)

    Zajac, L. J.

    1973-01-01

    An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.

  1. Solution of weakly compressible isothermal flow in landfill gas collection networks

    NASA Astrophysics Data System (ADS)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  2. A flow reactor setup for photochemistry of biphasic gas/liquid reactions

    PubMed Central

    Schachtner, Josef; Bayer, Patrick

    2016-01-01

    Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887

  3. Comet Gas and Dust Dynamics Modeling

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul A.; Lee, Seungwon

    2010-01-01

    This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.

  4. Effects of particle mixing and scattering in the dusty gas flow through moving and stationary cascades of airfoils

    NASA Astrophysics Data System (ADS)

    Tsirkunov, Yu. M.; Romanyuk, D. A.; Panfilov, S. V.

    2011-10-01

    Time-dependent two-dimensional (2D) flow of dusty gas through a set of two cascades of airfoils (blades) has been studied numerically. The first cascade was assumed to move (rotor) and the second one to be immovable (stator). Such a flow can be considered, in some sense, as a flow in the inlet stage of a turbomachine, for example, in the inlet compressor of an aircraft turbojet engine. Dust particle concentration was assumed to be very low, so that the interparticle collisions and the effect of the dispersed phase on the carrier gas were negligible. Flow of the carrier gas was described by full Navier-Stokes equations. In calculations of particle motion, the particles were considered as solid spheres. The particle drag force, transverse Magnus force, and damping torque were taken into account in the model of gas-particle interaction. The impact interaction of particles with blades was considered as frictional and partly elastic. The effects of particle size distribution and particle scattering in the course of particle-blade collisions were investigated. Flow fields of the carrier gas and flow patterns of the particle phase were obtained and discussed.

  5. Multi-scale approach to the modeling of fission gas discharge during hypothetical loss-of-flow accident in gen-IV sodium fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behafarid, F.; Shaver, D. R.; Bolotnov, I. A.

    The required technological and safety standards for future Gen IV Reactors can only be achieved if advanced simulation capabilities become available, which combine high performance computing with the necessary level of modeling detail and high accuracy of predictions. The purpose of this paper is to present new results of multi-scale three-dimensional (3D) simulations of the inter-related phenomena, which occur as a result of fuel element heat-up and cladding failure, including the injection of a jet of gaseous fission products into a partially blocked Sodium Fast Reactor (SFR) coolant channel, and gas/molten sodium transport along the coolant channels. The computational approachmore » to the analysis of the overall accident scenario is based on using two different inter-communicating computational multiphase fluid dynamics (CMFD) codes: a CFD code, PHASTA, and a RANS code, NPHASE-CMFD. Using the geometry and time history of cladding failure and the gas injection rate, direct numerical simulations (DNS), combined with the Level Set method, of two-phase turbulent flow have been performed by the PHASTA code. The model allows one to track the evolution of gas/liquid interfaces at a centimeter scale. The simulated phenomena include the formation and breakup of the jet of fission products injected into the liquid sodium coolant. The PHASTA outflow has been averaged over time to obtain mean phasic velocities and volumetric concentrations, as well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which have served as the input to the core-scale simulations using the NPHASE-CMFD code. A sliding window time averaging has been used to capture mean flow parameters for transient cases. The results presented in the paper include testing and validation of the proposed models, as well the predictions of fission-gas/liquid-sodium transport along a multi-rod fuel assembly of SFR during a partial loss-of-flow accident. (authors)« less

  6. Numerical and Experimental Investigation of Stratified Gas-Liquid Two-Phase Flow in Horizontal Circular Pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.

    This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less

  7. Gas flow calculation method of a ramjet engine

    NASA Astrophysics Data System (ADS)

    Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir

    2017-11-01

    At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.

  8. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  9. HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadday, M

    2006-09-28

    The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design ofmore » flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.« less

  10. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  11. One-dimensional flows of an imperfect diatomic gas

    NASA Technical Reports Server (NTRS)

    1959-01-01

    With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)

  12. A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Xu, Kun

    1999-01-01

    This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.

  13. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  14. Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: A dynamic stochastic simulation model.

    PubMed

    Kok, Akke; van Middelaar, Corina E; Mostert, Pim F; van Knegsel, Ariëtte T M; Kemp, Bas; de Boer, Imke J M; Hogeveen, Henk

    2017-01-01

    Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health.

  15. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  16. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    NASA Astrophysics Data System (ADS)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig; Wix, Christian

    2016-12-01

    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall conversion is found to be directly proportional to the flow uniformity. Finally the effect of manufacturing errors is investigated. The design is shown to be robust towards deviations from design dimensions of at least ±0.1 mm which is well within obtainable tolerances.

  17. Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics-Simultaneous Reaction Model (CFD-SRM) Coupled Model

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2014-10-01

    A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.

  18. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  19. Two-Equation Low-Reynolds-Number Turbulence Modeling of Transitional Boundary Layer Flows Characteristic of Gas Turbine Blades. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Schmidt, Rodney C.; Patankar, Suhas V.

    1988-01-01

    The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.

  20. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    NASA Astrophysics Data System (ADS)

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the

  1. Numerical research of parameters of interaction of the gas flow with rotary valve of the gas pipeline

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. V.; Karelin, D. L.; Muljukin, V. L.

    2016-11-01

    Conducted numerical research of static characteristics of the rotary gate valve at different angles of its deviation. for this purpose were set different values of pressure differential on the valve depending on which, was determined the mass flow and torque on valve axes. The mathematical model is provided by continuity equations, average on Reynolds, Navier-Stokes and energy, the equation of the perfect gas, the equations of two-layer k-e of model of turbulence. When calculating the current near walls are used Wolfstein's model and the hybrid wall functions of Reichardt for the speed and temperature. The task is solved in three-dimensional statement with use of conditions of symmetry. The structure of the current is analyzed: zones of acceleration and flow separation, whirlwinds, etc. Noted growth of hydraulic resistance of the valve with reduction of slope angle of the valve and with the increase in mass flow. Established increase of torque with reduction of the deviation angle of the valve and with increase in the mass expense.

  2. Simulation of granular and gas-solid flows using discrete element method

    NASA Astrophysics Data System (ADS)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D

  3. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    NASA Astrophysics Data System (ADS)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different

  4. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture: Original Research Article: Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture

    DOE PAGES

    Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling; ...

    2018-03-25

    In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less

  5. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture: Original Research Article: Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling

    In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less

  6. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  7. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    NASA Technical Reports Server (NTRS)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  8. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  9. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    NASA Astrophysics Data System (ADS)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  10. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    NASA Technical Reports Server (NTRS)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  11. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was foundmore » that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.« less

  12. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  13. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  14. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  15. Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Kucharek, H.; Clark, G.; O'Neill, M.; Petersen, L.; Bzowski, M.; Saul, L.; Wurz, P.; Fuselier, S. A.; Izmodenov, V. V.; McComas, D. J.; Müller, H. R.; Alexashov, D. B.

    2009-08-01

    Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly- α backscattering observations and the two Voyager crossings of the termination shock.

  16. Modeling dynamic accumulation of gas hydrates in Shenhu area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Su, Z.; Cao, Y.; Wu, N.

    2013-12-01

    The accumulation of the hydrates in Shenhu area on northern continental slope of the South China Sea (SCS) could not be well quantified by the numerical models. The formation mechanism of the hydrate deposits remains an open question. Here, a conceptual model was applied for illustrating the formation pattern of hydrate accumulation in Shenhu area based on the studies of sedimentary and tectonic geologies. Our results indicated that the present hydrate deposits were a development of 'ancient hydrates' in the faulted sediment. The dynamic accumulation of the hydrates was further quantified by using a numerical model with two controlling parameters of seafloor sedimentation rate and water flow rate. The model results were testified with the hydrate saturations derived from the chloride abnormalities at site SH2 in Shenhu area. It suggested that the hydrate accumulation in Shenhu area had experienced two typical stages. In the first stage, the gas hydrates grew in the fractured sediment ~1.5 Ma. High permeability of the fractured sediment permitted rapid water flow that carrying methane gas toward the seafloor. Massive gas transformed to gas hydrate in the gas hydrate stability zone (GHSZ) at water flow rate of 50m/kyr within 40kyrs. The 'ancient hydrate' filled 20% volume of the sediment pores in the stage. The second stage was initiated after ending of the last faulting activity. The water flow rate dropped to 0.7m/kyr due to quick burial of fine-grained sediments. Inadequate gas supply could merely sustain hydrate growth slowly at the base of GHSZ, and ultimately yielded the current hydrate deposits in Shenhu area after a subsequent evolution of 1.5 Myrs.

  17. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    DOE PAGES

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; ...

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less

  18. Measurements of gas temperature in a radiatively heated particle laden turbulent duct flow

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Banko, Andrew; Villafane, Laura; Elkins, Chris; Eaton, John

    2017-11-01

    Predicting the absorption of radiation through a turbulent, particle laden flow is relevant in atmospheric sciences, turbulent combustion, and in the design of a particle solar receivers. In order to better understand the coupling between the particle phase, the turbulent fluid phase, and the incident radiation, the effects of radiation absorption by disperse inertial particles in a turbulent duct flow was studied experimentally. A fully-developed turbulent duct flow at Reynolds numbers of O(104) , laden with particles at mass loading ratios of 0.1-0.8, was subject to infrared radiation at varying incident powers. The particle Stokes number based on the Kolmogorov length scale was approximately 12, resulting in a preferentially concentrated particle phase. Measurements of the mean and fluctuating components of the gas phase temperature were made along the wall bisector. Results from mean temperature traverses of the gas phase show that a one-dimensional model can account for much of the mean gas temperature rise. Temperature fluctuations due to preferential concentration are significant and can reach approximately 50% of the mean temperature rise. This work was funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1.

  19. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, James A.; Pfund, David M.; Sheen, David M.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involvedmore » flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL

  20. ρ-VOF: An interface sharpening method for gas-liquid flow simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin

    2018-05-01

    The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.

  1. An experimental study of interacting swirl flows in a model gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Vishwanath, Rahul B.; Tilak, Paidipati Mallikarjuna; Chaudhuri, Swetaprovo

    2018-03-01

    In this experimental work, we analyze the flow structures emerging from the mutual interaction between adjacent swirling flows at variable degrees of swirl, issued into a semi-confined chamber, as it could happen in a three cup sector of an annular premixed combustor of a modern gas turbine engine. Stereoscopic particle image velocimetry ( sPIV) is used to characterize both the non-reacting and reacting flow fields in the central diametrical (vertical) plane of the swirlers and the corresponding transverse (horizontal) planes at different heights above the swirlers. A central swirling flow with a fixed swirl vane angle is allowed to interact with its neighboring flows of varied swirl levels, with constant inlet bulk flow velocity through the central port. It is found that the presence of straight jets with zero swirl or co-rotating swirling jets with increasing swirl on both sides of the central swirling jet, significantly alters its structures. As such, an increase in the amount of swirl in the neighboring flows increases the recirculation levels in central swirling flow leading to a bubble-type vortex breakdown, not formed otherwise. It is shown with the aid of Helmholtz decomposition that the transition from conical to bubble-type breakdown is captured well by the radial momentum induced by the azimuthal vorticity. Simultaneous sPIV and OH-planar laser-induced fluorescence (PLIF) are employed to identify the influence of the neighboring jets on the reacting vortex breakdown states. Significant changes in the vortex breakdown size and structure are observed due to variation in swirl levels of the neighboring jets alongside reaction and concomitant flow dilatation.

  2. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A.; Chen, C. P.

    1990-01-01

    Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.

  3. Temperature, Velocity, and Mean Turbulence Structure in Stongly-Heated Internal Gas Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEligot, Donald Marinus; Mikielewicz, D. P.; Shehata, A. M.

    2002-10-01

    The main objective of the present study is to examine whether "simple" turbulence models (i.e., models requiring two partial differential equations or less for turbulent transport) are suitable for use under conditions of forced flow of gas at low Reynolds numbers in tubes with intense heating, leading to large variations of fluid properties and considerable modification of turbulence. Eleven representative models are considered. The ability of such models to handle such flows was assessed by means of computational simulations of the carefully designed experiments of Shehata and McEligot (IJHMT 41 (1998) 4297) at heating rates of q+in˜0.0018, 0.0035 and 0.0045,more » yielding flows ranging from essentially turbulent to laminarized. The resulting comparisons of computational results with experiments showed that the model by Launder and Sharma (Lett. Heat Transfer 1 (1974) 131) performed best in predicting axial wall temperature profiles. Overall, agreement between the measured velocity and temperature distributions and those calculated using the Launder–Sharma model is good, which gives confidence in the values forecast for the turbulence quantities produced. These have been used to assist in arriving at a better understanding of the influences of intense heating, and hence strong variation of fluid properties, on turbulent flow in tubes.« less

  4. Study of interfacial behavior in concurrent gas-liquid flows

    NASA Astrophysics Data System (ADS)

    McCready, Mark J.

    1989-02-01

    This research is focused on acquiring an understanding of the fundamental processes which occur within the liquid layer of separated (i.e., annular or stratified) gas-liquid flows. Knowledge of this behavior is essential for interpretation of pressure drops, entrainment fraction, transport processes and possibly flow regime transitions in gas-liquid flows. We are examining the qualitative and quantitative nature of the interface, using this information to predict the behavior of the flow field within the film and also studying the effect of the flow field on interface and wall heat and mass transfer rates. Study of waves on sheared liquid layers is best broken into two limiting cases, film depth ratio to wavelength ratio (epsilon) much less than one (typical of annular flows) and epsilon is greater than or equal to 1 (typical of stratified flows). Our study of waves where epsilon = O(1) has shown that wave amplitude spectrum is determined by overtone interactions between various modes which lead to a net flux of energy from low (where it is fed in from gas shear) to high frequency waves (where it is dissipated). Interfacial shear and film depth determine the interaction rates and therefore the spectral shape. Using a balance equation for wave energy, we developed a procedure for quantitatively predicting the wave spectrum. For waves with epsilon is dominated by 1, it is appropriate to examine individual traveling wave shapes (rather than the wave spectrum). We have found that measured wavelengths and speeds of periodic waves exhibit small but significant deviations from predictions of linear stability theory.

  5. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  6. Statistic characteristics of the gas-liquid flow in a vertical minichannel

    NASA Astrophysics Data System (ADS)

    Kozulin, I. A.; Kuznetsov, V. V.

    2010-03-01

    The gas-liquid upward flow was studied in a rectangular minichannel of 1.75×3.8 mm and length of 0.7 m. The experiments were carried out within the range of the gas superficial velocity from 0.1 to 10 m/s and the liquid superficial velocity from 0.07 to 0.7 m/s for the co-current H2O/CO2 flow under the conditions of saturation. The method for the two-beam laser scanning of structure and determination of statistic characteristics of the two-phase flow was worked through. The slug-bubble, slug, transitional, churn, and annular flows were distinguished. The statistics characteristics of liquid and gas phases motion in a minichannel were obtained for the first time including the velocities of phase motion.

  7. Analysis of Gas-Particle Flows through Multi-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Yile

    Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations. To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of

  8. The simulation and experimental validation on gas-solid two phase flow in the riser of a dense fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Yao; Jiang, Fan; Xu, Xiang; Wang, Sheng-Dian; Fan, Bao-Guo; Xiao, Yun-Han

    2009-06-01

    Gas-solid flow in dense CFB (circulating fluidized bed)) riser under the operating condition, superficial gas 15.5 m/s and solid flux 140 kg/m2s using Geldart B particles (sand) was investigated by experiments and CFD (computational fluid dynamics) simulation. The overall and local flow characteristics are determined using the axial pressure profiles and solid concentration profiles. The cold experimental results indicate that the axial solid concentration distribution contains a dilute region towards the up-middle zone and a dense region near the bottom and the top exit zones. The typical core-annulus structure and the back-mixing phenomenon near the wall of the riser can be observed. In addition, owing to the key role of the drag force of gas-solid phase, a revised drag force coefficient, based on the EMMS (energy-minimization multi-scale) model which can depict the heterogeneous character of gas-solid two phase flow, was proposed and coupled into the CFD control equations. In order to find an appropriate drag force model for the simulation of dense CFB riser, not only the revised drag force model but some other kinds of drag force model were used in the CFD. The flow structure, solid concentration, clusters phenomenon, fluctuation of two phases and axial pressure drop were analyzed. By comparing the experiment with the simulation, the results predicted by the EMMS drag model showed a better agreement with the experimental axial average pressure drop and apparent solid volume fraction, which proves that the revised drag force based on the EMMS model is an appropriate model for the dense CFB simulation.

  9. Calculation of gas-flow in plasma reactor for carbon partial oxidation

    NASA Astrophysics Data System (ADS)

    Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya

    2018-03-01

    The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.

  10. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Technical Reports Server (NTRS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  11. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Astrophysics Data System (ADS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-03-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  12. An investigation into the flow behavior of a single phase gas system and a two phase gas/liquid system in normal gravity with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Heist, Timothy J.

    1990-01-01

    The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.

  13. Cardiovascular microbubble transport in vessel bifurcations with pulsatile flow: experimental model and theory

    NASA Astrophysics Data System (ADS)

    Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph

    2008-11-01

    The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.

  14. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  15. Flows of X-ray gas reveal the disruption of a star by a massive black hole.

    PubMed

    Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial

    2015-10-22

    Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

  16. A review of bias flow liners for acoustic damping in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Lahiri, C.; Bake, F.

    2017-07-01

    The optimized design of bias flow liner is a key element for the development of low emission combustion systems in modern gas turbines and aero-engines. The research of bias flow liners has a fairly long history concerning both the parameter dependencies as well as the methods to model the acoustic behaviour of bias flow liners under the variety of different bias and grazing flow conditions. In order to establish an overview over the state of the art, this paper provides a comprehensive review about the published research on bias flow liners and modelling approaches with an extensive study of the most relevant parameters determining the acoustic behaviour of these liners. The paper starts with a historical description of available investigations aiming on the characterization of the bias flow absorption principle. This chronological compendium is extended by the recent and ongoing developments in this field. In a next step the fundamental acoustic property of bias flow liner in terms of the wall impedance is introduced and the different derivations and formulations of this impedance yielding the different published model descriptions are explained and compared. Finally, a parametric study reveals the most relevant parameters for the acoustic damping behaviour of bias flow liners and how this is reflected by the various model representations. Although the general trend of the investigated acoustic behaviour is captured by the different models fairly well for a certain range of parameters, in the transition region between the resonance dominated and the purely bias flow related regime all models lack the correct damping prediction. This seems to be connected to the proper implementation of the reactance as a function of bias flow Mach number.

  17. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  18. Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process

    PubMed Central

    Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing

    2014-01-01

    A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions. PMID:25338207

  19. Isothermal gas-liquid flow at reduced gravity

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.

    1990-01-01

    Research on adiabatic gas-liquid flows under reduced gravity condition is presented together with experimental data obtained using a NASA-Lewis RC 100-ft drop tower and in a LeRC Learjet. It is found that flow patterns and characteristics remain unchanged after the first 1.5 s into microgravity conditions and that the calculated time for a continuity wave to traverse the test section is less than 1.2 s. It is also found that the dispersed bubbles move at the same velocity as that of the front of the slug and that the transition between bubbly and slug flow is insensitive to diameter. Both the bubbly and the slug flows are suggested to represent a continuum of the same physical process. The characteristics of annular, slug, and bubbly flows are compared.

  20. Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.

    PubMed

    Doi, Toshiyuki

    2011-02-01

    Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society

  1. Measurement of gas yields and flow rates using a custom flowmeter

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.

    2001-01-01

    A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.

  2. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  3. Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim

    2018-02-01

    Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.

  4. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    NASA Astrophysics Data System (ADS)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  5. Long-term flow monitoring of submarine gas emanations

    NASA Astrophysics Data System (ADS)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  6. Nonideal isentropic gas flow through converging-diverging nozzles

    NASA Technical Reports Server (NTRS)

    Bober, W.; Chow, W. L.

    1990-01-01

    A method for treating nonideal gas flows through converging-diverging nozzles is described. The method incorporates the Redlich-Kwong equation of state. The Runge-Kutta method is used to obtain a solution. Numerical results were obtained for methane gas. Typical plots of pressure, temperature, and area ratios as functions of Mach number are given. From the plots, it can be seen that there exists a range of reservoir conditions that require the gas to be treated as nonideal if an accurate solution is to be obtained.

  7. Computer program for natural gas flow through nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Subroutines, FORTRAN 4 type, were developed for calculating isentropic natural gas mass flow rate through nozzle. Thermodynamic functions covering compressibility, entropy, enthalpy, and specific heat are included.

  8. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    NASA Technical Reports Server (NTRS)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  9. The gas jet behavior in submerged Laval nozzle flow

    NASA Astrophysics Data System (ADS)

    Gong, Zhao-xin; Lu, Chuan-jing; Li, Jie; Cao, Jia-yi

    2017-12-01

    The behavior of the combustion gas jet in a Laval nozzle flow is studied by numerical simulations. The Laval nozzle is installed in an engine and the combustion gas comes out of the engine through the nozzle and then injects into the surrounding environment. First, the jet injection into the air is simulated and the results are verified by the theoretical solutions of the 1-D isentropic flow. Then the behavior of the gas jet in a submerged Laval nozzle flow is simulated for various water depths. The stability of the jet and the jet evolution with a series of expansion waves and compression waves are analyzed, as well as the mechanism of the jet in a deep water depth. Finally, the numerical results are compared with existing experimental data and it is shown that the characteristics of the water blockage and the average values of the engine thrust are in good agreement and the unfixed engine in the experiment is the cause of the differences of the frequency and the amplitude of the oscillation.

  10. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  11. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks.

    PubMed

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-07

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  12. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  13. Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.

    2015-12-01

    The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.

  14. Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: A dynamic stochastic simulation model

    PubMed Central

    van Middelaar, Corina E.; Mostert, Pim F.; van Knegsel, Ariëtte T. M.; Kemp, Bas; de Boer, Imke J. M.; Hogeveen, Henk

    2017-01-01

    Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health. PMID:29077739

  15. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  16. A paradigm for modeling and computation of gas dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Liu, Chang

    2017-02-01

    In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct

  17. Kinetic modeling of liquefied petroleum gas (LPG) reduction of titania in MATLAB

    NASA Astrophysics Data System (ADS)

    Yin, Tan Wei; Ramakrishnan, Sivakumar; Rezan, Sheikh Abdul; Noor, Ahmad Fauzi Mohd; Izah Shoparwe, Noor; Alizadeh, Reza; Roohi, Parham

    2017-04-01

    In the present study, reduction of Titania (TiO2) by liquefied petroleum gas (LPG)-hydrogen-argon gas mixture was investigated by experimental and kinetic modelling in MATLAB. The reduction experiments were carried out in the temperature range of 1100-1200°C with a reduction time from 1-3 hours and 10-20 minutes of LPG flowing time. A shrinking core model (SCM) was employed for the kinetic modelling in order to determine the rate and extent of reduction. The highest experimental extent of reduction of 38% occurred at a temperature of 1200°C with 3 hours reduction time and 20 minutes of LPG flowing time. The SCM gave a predicted extent of reduction of 82.1% due to assumptions made in the model. The deviation between SCM and experimental data was attributed to porosity, thermodynamic properties and minute thermal fluctuations within the sample. In general, the reduction rates increased with increasing reduction temperature and LPG flowing time.

  18. The effect of surfactant on stratified and stratifying gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  19. Flow dynamics of a spiral-groove dry-gas seal

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhang, Huiqiang; Cao, Hongjun

    2013-01-01

    The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.

  20. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction

  1. Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber

    DTIC Science & Technology

    2002-10-18

    try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison

  2. Characteristics of dilute gas-solids suspensions in drag reducing flow

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.

  3. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  4. Gas Generator Feedline Orifice Sizing Methodology: Effects of Unsteadiness and Non-Axisymmetric Flow

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; West, Jeffrey S.

    2011-01-01

    Engine LH2 and LO2 gas generator feed assemblies were modeled with computational fluid dynamics (CFD) methods at 100% rated power level, using on-center square- and round-edge orifices. The purpose of the orifices is to regulate the flow of fuel and oxidizer to the gas generator, enabling optimal power supply to the turbine and pump assemblies. The unsteady Reynolds-Averaged Navier-Stokes equations were solved on unstructured grids at second-order spatial and temporal accuracy. The LO2 model was validated against published experimental data and semi-empirical relationships for thin-plate orifices over a range of Reynolds numbers. Predictions for the LO2 square- and round-edge orifices precisely match experiment and semi-empirical formulas, despite complex feedline geometry whereby a portion of the flow from the engine main feedlines travels at a right-angle through a smaller-diameter pipe containing the orifice. Predictions for LH2 square- and round-edge orifice designs match experiment and semi-empirical formulas to varying degrees depending on the semi-empirical formula being evaluated. LO2 mass flow rate through the square-edge orifice is predicted to be 25 percent less than the flow rate budgeted in the original engine balance, which was subsequently modified. LH2 mass flow rate through the square-edge orifice is predicted to be 5 percent greater than the flow rate budgeted in the engine balance. Since CFD predictions for LO2 and LH2 square-edge orifice pressure loss coefficients, K, both agree with published data, the equation for K has been used to define a procedure for orifice sizing.

  5. Thermo-Gas-Dynamic Model of Afterburning in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Ferguson, R E; Bell, J B

    2003-07-27

    A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.

  6. Closure models for transitional blunt-body flows

    NASA Astrophysics Data System (ADS)

    Nance, Robert Paul

    1998-12-01

    A mean-flow modeling approach is proposed for the prediction of high-speed blunt-body wake flows undergoing transition to turbulence. This method couples the k- /zeta (Enstrophy) compressible turbulence model with a procedure for characterizing non-turbulent fluctuations upstream of transition. Two different instability mechanisms are examined in this study. In the first model, transition is brought about by streamwise disturbance modes, whereas the second mechanism considers instabilities in the free shear layer associated with the wake flow. An important feature of this combined approach is the ability to specify or predict the location of transition onset. Solutions obtained using the new approach are presented for a variety of perfect-gas hypersonic flows over blunt- cone configurations. These results are shown to provide better agreement with experimental heating data than earlier laminar predictions by other researchers. In addition, it is demonstrated that the free-shear-layer instability mechanism is superior to the streamwise mechanism in terms of comparisons with heating measurements. The favorable comparisons are a strong indication that transition to turbulence is indeed present in the flowfields considered. They also show that the present method is a useful predictive tool for transitional blunt-body wake flows.

  7. Heat-flow equation motivated by the ideal-gas shock wave.

    PubMed

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  8. Design and Uncertainty Analysis for a PVTt Gas Flow Standard

    PubMed Central

    Wright, John D.; Johnson, Aaron N.; Moldover, Michael R.

    2003-01-01

    A new pressure, volume, temperature, and, time (PVTt) primary gas flow standard at the National Institute of Standards and Technology has an expanded uncertainty (k = 2) of between 0.02 % and 0.05 %. The standard spans the flow range of 1 L/min to 2000 L/min using two collection tanks and two diverter valve systems. The standard measures flow by collecting gas in a tank of known volume during a measured time interval. We describe the significant and novel features of the standard and analyze its uncertainty. The gas collection tanks have a small diameter and are immersed in a uniform, stable, thermostatted water bath. The collected gas achieves thermal equilibrium rapidly and the uncertainty of the average gas temperature is only 7 mK (22 × 10−6 T). A novel operating method leads to essentially zero mass change in and very low uncertainty contributions from the inventory volume. Gravimetric and volume expansion techniques were used to determine the tank and the inventory volumes. Gravimetric determinations of collection tank volume made with nitrogen and argon agree with a standard deviation of 16 × 10−6 VT. The largest source of uncertainty in the flow measurement is drift of the pressure sensor over time, which contributes relative standard uncertainty of 60 × 10−6 to the determinations of the volumes of the collection tanks and to the flow measurements. Throughout the range 3 L/min to 110 L/min, flows were measured independently using the 34 L and the 677 L collection systems, and the two systems agreed within a relative difference of 150 × 10−6. Double diversions were used to evaluate the 677 L system over a range of 300 L/min to 1600 L/min, and the relative differences between single and double diversions were less than 75 × 10−6. PMID:27413592

  9. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  10. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  11. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    PubMed

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of

  12. Applying Alkyl-Chain Surface Functionalizations in Mesoporous Inorganic Structures: Their Impact on Gas Flow and Selectivity Depending on Temperature.

    PubMed

    Besser, Benjamin; Ahmed, Atiq; Baune, Michael; Kroll, Stephen; Thöming, Jorg; Rezwan, Kurosch

    2016-10-12

    Porous inorganic capillary membranes are prepared to serve as model structures for the experimental investigation of the gas transport in functionalized mesopores. The porous structures possess a mean pore diameter of 23 nm which is slightly reduced to 20 nm after immobilizing C 16 -alkyl chains on the surface. Gas permeation measurements are performed at temperatures ranging from 0 to 80 °C using Ar, N 2 , and CO 2 . Nonfunctionalized structures feature a gas transport according to Knudsen diffusion with regard to gas flow and selectivity. After C 16 -functionalization, the gas flow is reduced by a factor of 10, and the ideal selectivities deviate from the Knudsen theory. CO 2 adsorption measurements show a decrease in total amount of adsorbed gas and isosteric heat of adsorption. It is hypothesized that the immobilized C 16 -chains sterically influence the gas transport behavior without a contribution from adsorption effects. The reduced gas flow derives from an additional surface resistance caused by the C 16 -chains spacially limiting the adsorption and desorption directions for gas molecules propagating through the structure, resulting in longer diffusion paths. In agreement, the gas flow is found to correlate with the molecular diameter of the gas species (CO 2 < Ar < N 2 ) increasing the resistance for larger molecules. This affects the ideal selectivities with the relation [Formula: see text]. The influence on selectivity increases with increasing temperature which leads to the conclusion that the temperature induced movement of the C 16 -chains is responsible for the stronger interaction between gas molecules and surface functional groups.

  13. On the Divergence of the Velocity Vector in Real-Gas Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette

    2009-01-01

    A theoretical study was performed addressing the degree of applicability or inapplicability, to a real gas, of the occasionally stated belief that for an ideal gas, incompressibility is synonymous with a zero or very low Mach number. The measure of compressibility used in this study is the magnitude of the divergence of the flow velocity vector [V(bar) (raised dot) u (where u is the flow velocity)]. The study involves a mathematical derivation that begins with the governing equations of flow and involves consideration of equations of state, thermodynamics, and fluxes of heat, mass, and the affected molecular species. The derivation leads to an equation for the volume integral of (V(bar) (raised dot) u)(sup 2) that indicates contributions of several thermodynamic, hydrodynamic, and species-flux effects to compressibility and reveals differences between real and ideal gases. An analysis of the equation leads to the conclusion that for a real gas, incompressibility is not synonymous with zero or very small Mach number. Therefore, it is further concluded, the contributions to compressibility revealed by the derived equation should be taken into account in simulations of real-gas flows.

  14. Mathematical Modeling of the Heat Transfer and Conditions of Ignition of a Turbulent Flow of a Reactive Gas

    NASA Astrophysics Data System (ADS)

    Matvienko, O. V.

    2016-01-01

    Results of investigations into the heat transfer and conditions of ignition of a turbulent flow of a chemically reactive gas have been presented. Approximation formulas have been obtained for determining the critical conditions of ignition of the turbulent flow, the length of the preflame zone, and the criterion of heat transfer in subcritical and supercritical reaction regimes.

  15. Methods and systems for detecting gas flow by photoacoustic signal generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Niloy; Challener, William Albert

    A method for the detection of a gas flowing from a location in a structure is described. A hollow-core optical fiber is placed in a position adjacent the structure. The fiber includes a sound-conductive cladding layer; and further includes at least one aperture extending into its cross-sectional diameter. A beam of pulsed, optical is transmitted into the fiber with a tunable laser. The optical energy is characterized by a wavelength that can be absorbed by the gas that flows into the fiber through the aperture. This causes a temperature fluctuation in the region of gas absorption, which in turn generatesmore » an acoustic wave in the absorption region. The acoustic wave travels through the cladding layer, and can be detected with a microphone, so as to provide the location of gas flow, based on the recorded position and movement of the acoustic wave. A related system is also described.« less

  16. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  17. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2017-04-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/ h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/ h is larger than 0.4.

  18. Modelling of Dispersed Gas-Liquid Flow using LBGK and LPT Approach

    NASA Astrophysics Data System (ADS)

    Agarwal, Alankar; Prakash, Akshay; Ravindra, B.

    2017-11-01

    The dynamics of gas bubbles play a significant, if not crucial, role in a large variety of industrial process that involves using reactors. Many of these processes are still not well understood in terms of optimal scale-up strategies.An accurate modeling of bubbles and bubble swarms become important for high fidelity bioreactor simulations. This study is a part of the development of robust bubble fluid interaction modules for simulation of industrial-scale reactors. The work presents the simulation of a single bubble rising in a quiescent water tank using current models presented in the literature for bubble-fluid interaction. In this multiphase benchmark problem, the continuous phase (water) is discretized using the Lattice Bhatnagar-Gross and Krook (LBGK) model of Lattice Boltzmann Method (LBM), while the dispersed gas phase (i.e. air-bubble) modeled with the Lagrangian particle tracking (LPT) approach. The cheap clipped fourth order polynomial function is used to model the interaction between two phases. The model is validated by comparing the simulation results for terminal velocity of a bubble at varying bubble diameter and the influence of bubble motion in liquid velocity with the theoretical and previously available experimental data. This work is supported by the ``Centre for Development of Advanced Computing (C-DAC), Pune'' by providing the advanced computational facility in PARAM Yuva-II.

  19. A Multi-Fidelity Surrogate Model for Handling Real Gas Equations of State

    NASA Astrophysics Data System (ADS)

    Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S."bala"

    2016-11-01

    The explosive dispersal of particles is an example of a complex multiphase and multi-species fluid flow problem. This problem has many engineering applications including particle-laden explosives. In these flows, the detonation products of the explosive cannot be treated as a perfect gas so a real gas equation of state is used to close the governing equations (unlike air, which uses the ideal gas equation for closure). As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both of the state equations must be satisfied. One of the more accurate, yet computationally expensive, methods to deal with this is a scheme that iterates between the two equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work strives to create a multi-fidelity surrogate model of this process. We then study the performance of the model with respect to the iterative method by performing both gas-only and particle laden flow simulations using an Eulerian-Lagrangian approach with a finite volume code. Specifically, the model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel modeling approach. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA00023.

  20. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    NASA Astrophysics Data System (ADS)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  1. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.

    1990-01-01

    A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours

  2. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    PubMed

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  4. A CFD study of gas-solid jet in a CFB riser flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Guenther, Chris

    2012-03-01

    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics ofmore » riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.« less

  5. Performance comparison of supersonic ejectors with different motive gas injection schemes applicable for flowing medium gas laser

    NASA Astrophysics Data System (ADS)

    Singhal, G.; Subbarao, P. M. V.; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2017-05-01

    A class of flowing medium gas lasers with low generator pressures employ supersonic flows with low cavity pressure and are primarily categorized as high throughput systems capable of being scaled up to MW class. These include; Chemical Oxygen Iodine Laser (COIL) and Hydrogen (Deuterium) Fluoride (HF/DF). The practicability of such laser systems for various applications is enhanced by exhausting the effluents directly to ambient atmosphere. Consequently, ejector based pressure recovery forms a potent configuration for open cycle operation. Conventionally these gas laser systems require at least two ejector stages with low pressure stage being more critical, since it directly entrains the laser media, and the ensuing perturbation of cavity flow, if any, may affect laser operation. Hence, the choice of plausible motive gas injection schemes viz., peripheral or central is a fluid dynamic issue of interest, and a parametric experimental performance comparison would be beneficial. Thus, the focus is to experimentally characterize the effect of variation in motive gas supply pressure, entrainment ratio, back pressure conditions, nozzle injection position operated together with a COIL device and discern the reasons for the behavior.

  6. A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits

    USGS Publications Warehouse

    Mastin, Larry G.; Ghiorso, Mark S.

    2000-01-01

    This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.

  7. Study of Plasma Flows Generated in Plasma Focus Discharge in Different Regimes of Working Gas Filling

    NASA Astrophysics Data System (ADS)

    Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.

    2017-12-01

    Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.

  8. A prototype of an electric-discharge gas flow oxygen-iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    NASA Astrophysics Data System (ADS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-03-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O2: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as 100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to 220-230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen-iodine laser based on a slab cryogenic RF discharge.

  9. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagin, N. P.; Ionin, A. A., E-mail: aion@sci.lebedev.ru; Kochetov, I. V.

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O{sub 2}: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions,more » volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.« less

  10. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives

    NASA Astrophysics Data System (ADS)

    Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.

    2017-10-01

    The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.

  11. Modeling of Cluster-Induced Turbulence in Particle-Laden Channel Flow

    NASA Astrophysics Data System (ADS)

    Baker, Michael; Capecelatro, Jesse; Kong, Bo; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    A phenomenon often observed in gas-solid flows is the formation of mesoscale clusters of particles due to the relative motion between the solid and fluid phases that is sustained through the dampening of collisional particle motion from interphase momentum coupling inside these clusters. The formation of such sustained clusters, leading to cluster-induced turbulence (CIT), can have a significant impact in industrial processes, particularly in regards to mixing, reaction progress, and heat transfer. Both Euler-Lagrange (EL) and Euler-Euler anisotropic Gaussian (EE-AG) approaches are used in this work to perform mesoscale simulations of CIT in fully developed gas-particle channel flow. The results from these simulations are applied in the development of a two-phase Reynolds-Averaged Navier-Stokes (RANS) model to capture the wall-normal flow characteristics in a less computationally expensive manner. Parameters such as mass loading, particle size, and gas velocity are varied to examine their respective impact on cluster formation and turbulence statistics. Acknowledging support from the NSF (AN:1437865).

  12. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    NASA Astrophysics Data System (ADS)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  13. Nonlinear oscillatory rarefied gas flow inside a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhu, Lianhua; Su, Wei; Wu, Lei; Zhang, Yonghao

    2018-04-01

    The nonlinear oscillation of rarefied gas flow inside a two-dimensional rectangular cavity is investigated on the basis of the Shakhov kinetic equation. The gas dynamics, heat transfer, and damping force are studied numerically via the discrete unified gas-kinetic scheme for a wide range of parameters, including gas rarefaction, cavity aspect ratio, and oscillation frequency. Contrary to the linear oscillation where the velocity, temperature, and heat flux are symmetrical and oscillate with the same frequency as the oscillating lid, flow properties in nonlinear oscillatory cases turn out to be asymmetrical, and second-harmonic oscillation of the temperature field is observed. As a consequence, the amplitude of the shear stress near the top-right corner of the cavity could be several times larger than that at the top-left corner, while the temperature at the top-right corner could be significantly higher than the wall temperature in nearly the whole oscillation period. For the linear oscillation with the frequency over a critical value, and for the nonlinear oscillation, the heat transfer from the hot to cold region dominates inside the cavity, which is contrary to the anti-Fourier heat transfer in a low-speed rarefied lid-driven cavity flow. The damping force exerted on the oscillating lid is studied in detail, and the scaling laws are developed to describe the dependency of the resonance and antiresonance frequencies (corresponding to the damping force at a local maximum and minimum, respectively) on the reciprocal aspect ratio from the near hydrodynamic to highly rarefied regimes. These findings could be useful in the design of the micro-electro-mechanical devices operating in the nonlinear-flow regime.

  14. Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Mellish, Benjamin P.; Miller, Fletcher J.; Tien, James S.

    2005-01-01

    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2.

  15. Development of a Gas Dynamic and Thermodynamic Simulation Model of the Lontra Blade Compressor™

    NASA Astrophysics Data System (ADS)

    Karlovsky, Jerome

    2015-08-01

    The Lontra Blade Compressor™ is a patented double acting, internally compressing, positive displacement rotary compressor of innovative design. The Blade Compressor is in production for waste-water treatment, and will soon be launched for a range of applications at higher pressure ratios. In order to aid the design and development process, a thermodynamic and gas dynamic simulation program has been written in house. The software has been successfully used to optimise geometries and running conditions of current designs, and is also being used to evaluate future designs for different applications and markets. The simulation code has three main elements. A positive displacement chamber model, a leakage model and a gas dynamic model to simulate gas flow through ports and to track pressure waves in the inlet and outlet pipes. All three of these models are interlinked in order to track mass and energy flows within the system. A correlation study has been carried out to verify the software. The main correlation markers used were mass flow, chamber pressure, pressure wave tracking in the outlet pipe, and volumetric efficiency. It will be shown that excellent correlation has been achieved between measured and simulated data. Mass flow predictions were to within 2% of measured data, and the timings and magnitudes of all major gas dynamic effects were well replicated. The simulation will be further developed in the near future to help with the optimisation of exhaust and inlet silencers.

  16. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  17. Schlieren flow visualization of helium atmospheric plasma jet and influence of the gas flow rate and applied voltage frequency

    NASA Astrophysics Data System (ADS)

    Borghei, S. M.; Vaziri, N.; Alibabaei, S.

    2018-03-01

    We used schlieren photography to visualize the influence of gas flow rates of 1, 2.5, 5, 10 L/min and of the applied voltage frequency on a helium atmospheric plasma jet induced at the nozzle of a capillary tube. The expansion of the gas in the surrounding medium (air) was analyzed in the two different modes – plasma on/plasma off. Changes in the above parameters affect the gas flow regime and the hydrodynamics of the jet.

  18. Development of braided rope seals for hypersonic engine applications: Flow modeling

    NASA Technical Reports Server (NTRS)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank

    1992-01-01

    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.

  19. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Continuum modeling of cooperative traffic flow dynamics

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.

    2009-07-01

    This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.

  1. Nasal high flow clears anatomical dead space in upper airway models

    PubMed Central

    Celik, Gülnaz; Feng, Sheng; Bartenstein, Peter; Meyer, Gabriele; Eickelberg, Oliver; Schmid, Otmar; Tatkov, Stanislav

    2015-01-01

    Recent studies showed that nasal high flow (NHF) with or without supplemental oxygen can assist ventilation of patients with chronic respiratory and sleep disorders. The hypothesis of this study was to test whether NHF can clear dead space in two different models of the upper nasal airways. The first was a simple tube model consisting of a nozzle to simulate the nasal valve area, connected to a cylindrical tube to simulate the nasal cavity. The second was a more complex anatomically representative upper airway model, constructed from segmented CT-scan images of a healthy volunteer. After filling the models with tracer gases, NHF was delivered at rates of 15, 30, and 45 l/min. The tracer gas clearance was determined using dynamic infrared CO2 spectroscopy and 81mKr-gas radioactive gamma camera imaging. There was a similar tracer-gas clearance characteristic in the tube model and the upper airway model: clearance half-times were below 1.0 s and decreased with increasing NHF rates. For both models, the anterior compartments demonstrated faster clearance levels (half-times < 0.5 s) and the posterior sections showed slower clearance (half-times < 1.0 s). Both imaging methods showed similar flow-dependent tracer-gas clearance in the models. For the anatomically based model, there was complete tracer-gas removal from the nasal cavities within 1.0 s. The level of clearance in the nasal cavities increased by 1.8 ml/s for every 1.0 l/min increase in the rate of NHF. The study has demonstrated the fast-occurring clearance of nasal cavities by NHF therapy, which is capable of reducing of dead space rebreathing. PMID:25882385

  2. 10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS PRODUCER PROCESS, BUILDING 10A.' Holston Army Ammunition Plant, Holston Defense Corporation. August 29, 1974. Delineator: G. A. Horne. Drawing # SK-1942. - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN

  3. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    PubMed

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  4. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  5. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  6. The application of a unique flow modeling technique to complex combustion systems

    NASA Astrophysics Data System (ADS)

    Waslo, J.; Hasegawa, T.; Hilt, M. B.

    1986-06-01

    This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.

  7. Navier-Stokes simulation of real gas flows in nozzles

    NASA Technical Reports Server (NTRS)

    Nagaraj, N.; Lombard, C. K.

    1987-01-01

    Air flow in a hypersonic nozzle causes real gas effects due to reaction among the species constituting air. Such reactions may be in chemical equilibrium or in chemical nonequilibrium. Here using the CSCM upwind scheme for the compressible Navier-Stokes equations, the real gas flowfield in an arcjet nozzle is computed for both the equilibrium case and the nonequilibrium case. A hypersonic nozzle flow arising from a pebble bed heated plenum is also computed for the equilibrium situation. Between the equilibrium cases, the chemistry is treated by two different schemes and comments are made as to computational complexity. For the nonequilibrium case, a full set of seventeen reactions and full implicit coupling of five species with gasdynamics is employed to compute the flowfield. For all cases considered here the gas is assumed to be a calorically imperfect mixture of ideal gases in thermal equilibrium.

  8. Bypass Flow Resistance in Prismatic Gas-Cooled Nuclear Reactors

    DOE PAGES

    McEligot, Donald M.; Johnson, Richard W.

    2016-12-20

    Available computational fluid dynamics (CFD) predictions of pressure distributions in the vertical bypass flow between blocks in a prismatic gas-cooled reactor (GCR) have been analyzed to deduce apparent friction factors and loss coefficients for systems and network codes. We performed calculations for vertical gap spacings "s" of 2, 6 and 10 mm, horizontal gaps between the blocks of two mm and two flow rates, giving a range of gap Reynolds numbers Re Dh of about 40 to 5300. Laminar predictions of the fully-developed friction factor f fd were about three to ten per cent lower than the classical infinitely-wide channelmore » In the entry region, the local apparent friction factor was slightly higher than the classic idealized case but the hydraulic entry length L hy was approximately the same. The per cent reduction in flow resistance was greater than the per cent increase in flow area at the vertical corners of the blocks. The standard k-ϵ model was employed for flows expected to be turbulent. Its predictions of f fd and flow resistance were significantly higher than direct numerical simulations for the classic case; the value of L hy was about thirty gap spacings. Initial quantitative information for entry coefficients and loss coefficients for the expansion-contraction junctions between blocks is also presented. Our study demonstrates how CFD predictions can be employed to provide integral quantities needed in systems and network codes.« less

  9. Bypass Flow Resistance in Prismatic Gas-Cooled Nuclear Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEligot, Donald M.; Johnson, Richard W.

    Available computational fluid dynamics (CFD) predictions of pressure distributions in the vertical bypass flow between blocks in a prismatic gas-cooled reactor (GCR) have been analyzed to deduce apparent friction factors and loss coefficients for systems and network codes. We performed calculations for vertical gap spacings "s" of 2, 6 and 10 mm, horizontal gaps between the blocks of two mm and two flow rates, giving a range of gap Reynolds numbers Re Dh of about 40 to 5300. Laminar predictions of the fully-developed friction factor f fd were about three to ten per cent lower than the classical infinitely-wide channelmore » In the entry region, the local apparent friction factor was slightly higher than the classic idealized case but the hydraulic entry length L hy was approximately the same. The per cent reduction in flow resistance was greater than the per cent increase in flow area at the vertical corners of the blocks. The standard k-ϵ model was employed for flows expected to be turbulent. Its predictions of f fd and flow resistance were significantly higher than direct numerical simulations for the classic case; the value of L hy was about thirty gap spacings. Initial quantitative information for entry coefficients and loss coefficients for the expansion-contraction junctions between blocks is also presented. Our study demonstrates how CFD predictions can be employed to provide integral quantities needed in systems and network codes.« less

  10. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    NASA Astrophysics Data System (ADS)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  11. Interstellar Gas Flow Vector and Temperature Determination over 5 Years of IBEX Observations

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Schwadron, N.; Sokół, J. M.; Wurz, P.

    2015-01-01

    The Interstellar Boundary Explorer (IBEX) observes the interstellar neutral gas flow trajectories at their perihelion in Earth's orbit every year from December through early April, when the Earth's orbital motion is into the oncoming flow. These observations have defined a narrow region of possible, but very tightly coupled interstellar neutral flow parameters, with inflow speed, latitude, and temperature as well-defined functions of inflow longitude. The best- fit flow vector is different by ≈ 3° and lower by ≈ 3 km/s than obtained previously with Ulysses GAS, but the temperature is comparable. The possible coupled parameter space reaches to the previous flow vector, but only for a substantially higher temperature (by ≈ 2000 K). Along with recent pickup ion observations and including historical observations of the interstellar gas, these findings have led to a discussion, whether the interstellar gas flow into the solar system has been stable or variable over time. These intriguing possibilities call for more detailed analysis and a longer database. IBEX has accumulated observations over six interstellar flow seasons. We review key observations and refinements in the analysis, in particular, towards narrowing the uncertainties in the temperature determination. We also address ongoing attempts to optimize the flow vector determination through varying the IBEX spacecraft pointing and discuss related implications for the local interstellar cloud and its interaction with the heliosphere.

  12. FUSE Observations of Warm Gas in the Cooling Flow Clusters A1795 and A2597

    NASA Technical Reports Server (NTRS)

    Oegerle, W. R.; Cowie, L.; Davidsen, A.; Hu, E.; Hutchings, J.; Murphy, E.; Sembach, K.; Woodgate, B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectroscopy of the cores of the massive cooling flow clusters Abell 1795 and 2597 obtained with FUSE. As the intracluster gas cools through 3 x 10(exp 5)K, it should emit strongly in the O VI lambda(lambda)1032,1038 resonance lines. We report the detection of O VI (lambda)1032 emission in A2597, with a line flux of 1.35 +/- 0.35 x 10(exp -15) erg/sq cm s, as well as detection of emission from C III (lambda)977. A marginal detection of C III (lambda)977 emission is also reported for A1795. These observations provide evidence for a direct link between the hot (10(exp 7) K) cooling flow gas and the cool (10(exp 4) K) gas in the optical emission line filaments. Assuming simple cooling flow models, the O VI line flux in A2597 corresponds to a mass deposition rate of approx. 40 solar mass /yr within the central 36 kpc. Emission from O VI (lambda)1032 was not detected in A1795, with an upper limit of 1.5 x 10(exp -15) erg/sq cm s, corresponding to a limit on the mass cooling flow rate of M(28 kpc) less than 28M solar mass/ yr. We have considered several explanations for the lack of detection of O VI emission in A1795 and the weaker than expected flux in A2597, including extinction by dust in the outer cluster, and quenching of thermal conduction by magnetic fields. We conclude that a turbulent mixing model, with some dust extinction, could explain our O VI results while also accounting for the puzzling lack of emission by Fe(sub XVII) in cluster cooling flows.

  13. The Fault Block Model: A novel approach for faulted gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursin, J.R.; Moerkeseth, P.O.

    1994-12-31

    The Fault Block Model was designed for the development of gas production from Sleipner Vest. The reservoir consists of marginal marine sandstone of Hugine Formation. Modeling of highly faulted and compartmentalized reservoirs is severely impeded by the nature and extent of known and undetected faults and, in particular, their effectiveness as flow barrier. The model presented is efficient and superior to other models, for highly faulted reservoir, i.e. grid based simulators, because it minimizes the effect of major undetected faults and geological uncertainties. In this article the authors present the Fault Block Model as a new tool to better understandmore » the implications of geological uncertainty in faulted gas reservoirs with good productivity, with respect to uncertainty in well coverage and optimum gas recovery.« less

  14. Groundwater flow associated with coalbed gas production, Ferron Sandstone, east-central Utah

    USGS Publications Warehouse

    Anna, L.O.

    2003-01-01

    The flow and distribution of water associated with coalbed gas production in the Ferron Sandstone was characterized utilizing a discrete fracture network model and a porous media model. A discrete fracture network model calculated fluid flux through volumes of various scales to determine scale effects, directional bulk permeability, and connectivity. The mean directional permeabilities varied by less than a factor of 6, with the northwest-southeast direction (face cleat direction) as the most conductive. Northwest southeast directed hydrofracture simulations increased permeability in all directions except the northeast-southwest, although the permeability increase was not more than a factor of 3. Cluster analysis showed that the simulated cleat network was very well connected at all simulated scales. For thick coals, the entire cleat network formed one compartment, whereas thin coals formed several compartments. Convex hulls of the compartments confirmed that the directional bulk permeability was nearly isotropic. Volumetric calculations of the Ferron coal indicated that all the water produced to date can be accounted for from the coal cleat porosity system and does not depend on contributions of water from contiguous units.Flow paths, determined from porous media modeling from recharge to discharge, indicate that the three coalbed gas (CBG) fields assessed in this study could have different groundwater chemical compositions as confirmed by geochemical data. Simulated water production from 185 wells from 1993 to 1998 showed that in 1998 the maximum head drawdown from the Drunkards Wash field was more than 365 m, and the cone of depression extended to within a short distance of the Ferron outcrop. Maximum drawdown in the Helper field was 120 m, and the maximum drawdown in the Buzzards Bench field was just over 60 m. The cone of depression for the Helper field was half the size of the Drunkards Wash field, and the cone of depression for the Buzzards Bench field was

  15. 3D motion picture of transparent gas flow by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu

    2018-03-01

    Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.

  16. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.

    1990-01-01

    A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.

  17. Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Curran, Thomas; Denner, Fabian; van Wachem, Berend

    2017-11-01

    The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.

  18. Numerical Modeling of Thermal Edge Flow

    NASA Astrophysics Data System (ADS)

    Ibrayeva, Aizhan

    A gas flow can be induced between two interdigitated arrays of thin vanes, when one of the arrays is uniformly heated or cooled. Sharply curved isotherms near the vane edges leads to momentum imbalance among incident particles, which creates Knudsen force to the vane and thermal edge flow in a gas. The flow is observed in a rarefied gas, when the mean free path of the molecules are comparable with the characteristic length scale of the system. In order to understand a physical mechanism of the flow and Knudsen force, the configuration was numerically investigated under different gas rarefication degrees and temperature gradients in the system by direct simulation Monte Carlo (DSMC) method. From simulations, the highest force value is obtained when Knudsen number is around 0.5 and becomes negligible in free molecular and continuum regimes. DSMC results are analyzed from the theoretical point of view and compared to experimental data. Validation of the simulations is done by the RKDG method. An effect of various geometric parameters to the performance of the actuator was investigated and suggestions were made for improved design of the device.

  19. Ion transport membrane module and vessel system with directed internal gas flow

    DOEpatents

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  20. Aerothermal modeling program. Phase 2, element B: Flow interaction experiment

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.

    1987-01-01

    NASA has instituted an extensive effort to improve the design process and data base for the hot section components of gas turbine engines. The purpose of element B is to establish a benchmark quality data set that consists of measurements of the interaction of circular jets with swirling flow. Such flows are typical of those that occur in the primary zone of modern annular combustion liners. Extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current physical models used to predict such flows.

  1. Incorporating seismic observations into 2D conduit flow modeling

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J.

    2006-04-01

    Conduit flow modeling aims to understand the conditions of magma at depth, and to provide insight into the physical processes that occur inside the volcano. Low-frequency events, characteristic to many volcanoes, are thought to contain information on the state of magma at depth. Therefore, by incorporating information from low-frequency seismic analysis into conduit flow modeling a greater understanding of magma ascent and its interdependence on magma conditions and physical processes is possible. The 2D conduit flow model developed in this study demonstrates the importance of lateral pressure and parameter variations on overall magma flow dynamics, and the substantial effect bubbles have on magma shear viscosity and on magma ascent. The 2D nature of the conduit flow model developed here allows in depth investigation into processes which occur at, or close to the wall, such as magma cooling and brittle failure of melt. These processes are shown to have a significant effect on magma properties and therefore, on flow dynamics. By incorporating low-frequency seismic information, an advanced conduit flow model is developed including the consequences of brittle failure of melt, namely friction-controlled slip and gas loss. This model focuses on the properties and behaviour of magma at depth within the volcano, and their interaction with the formation of seismic events by brittle failure of melt.

  2. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    NASA Astrophysics Data System (ADS)

    Chang, Heon-Young

    2001-06-01

    In this paper we investigate the properties of advection-dominated accretion flows(ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs) in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  3. Direct simulation of high-vorticity gas flows

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1987-01-01

    The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.

  4. Modeling the Phase Composition of Gas Condensate in Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  5. An investigation into shallow system dynamics during strombolian activity at Mt Etna using UV cameras, seismic data and modelling of gas flow

    NASA Astrophysics Data System (ADS)

    Pering, Tom D.; Tamburello, Giancarlo; McGonigle, Andrew J. S.; Aiuppa, Alessandro; James, Mike R.; Lane, Steve J.; Sciotto, Mariangela; Cannata, Andrea; Patanè, Domenico

    2014-05-01

    During rapid strombolian activity observed at the Bocca Nuova (BN) crater of Mt Etna on the 27th July 2012, ultra-violet cameras were used to measure SO2 emissions from the active vent over ≡ 30 minutes of activity. This resulted in the first determination of SO2 masses for strombolian activity at Etna, with individual bursts of ≡ 0.1 - 14 kg. By combining this with Multi-GAS measurements of gas ratios in the BN plume, we estimate a total gas mass for individual bursts of ≡ 0.2 - 165 kg. By calculating the degassing paths of typical H2O and CO2 contents for Etnean magmas and matching this with the measured CO2/SO2 ratio of ≡3 we estimate that the depth that gas decouples from the melt at 0.5 - 6.2 km. Statistical analysis of the repose time between bursts showed an average interval of ≡3 - 5 s with a maximum of ≡ 45 s. Plotting the repose time following bursts against their gas masses indicates that larger events were not followed rapidly by a subsequent event. The subsequent event also always had a significant emission speed, i.e. following larger events there was a minimum wait period and minimum emission speed for the subsequent burst. This could be the result of a number of different processes or effects: 1) bubble coalescence and the consequent faster rise of larger gas masses,, 2) the coalescence of ascending Taylor bubbles (slugs), 3) an atmospheric transport effect related to changes in magma level, and 4) the partial collapse of a foam or a form of trap-and-release mechanism. Subsequent analysis of the fluid dynamics was performed using several numerical models, including: Del Bello et al. (2012) to estimate magma and conduit parameters, Seyfried and Freundt (2000) with Llewellin et al. (2012) to estimate where transition to full slug flow occurs, and Noguiera et al. (2006) for the wake length of slugs. The use of these models in combination with the James et al. (2008) dynamic slug model suggests that coalescence between gas masses, reasonably

  6. Compression Shocks in Two-Dimensional Gas Flows

    NASA Technical Reports Server (NTRS)

    Busemann, A.

    1949-01-01

    The following are arguments on the compression shocks in gas flow start with a simplified representation of the results of the study made by Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented by several amplifications for the application.In the treatment of compression shocks, the equation of energy, the equation of continuity, the momentum equation, the equation of state of the particular gas, as well as the condition Of the second law of thermodynamics that no decrease of entropy is possible in an isolated system, must be taken into consideration. The result is that, in those cases where the sudden change of state according to the second law of thermodynamics is possible, there always occurs a compression of the gas which is uniquely determined by the other conditions.

  7. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in whichmore » hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.« less

  8. LSPRAY: Lagrangian Spray Solver for Applications With Parallel Computing and Unstructured Gas-Phase Flow Solvers

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    1998-01-01

    Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.

  9. Extraction and evaluation of gas-flow-dependent features from dynamic measurements of gas sensors array

    NASA Astrophysics Data System (ADS)

    Kalinowski, Paweł; Woźniak, Łukasz; Jasiński, Grzegorz; Jasiński, Piotr

    2016-11-01

    Gas analyzers based on gas sensors are the devices which enable recognition of various kinds of volatile compounds. They have continuously been developed and investigated for over three decades, however there are still limitations which slow down the implementation of those devices in many applications. For example, the main drawbacks are the lack of selectivity, sensitivity and long term stability of those devices caused by the drift of utilized sensors. This implies the necessity of investigations not only in the field of development of gas sensors construction, but also the development of measurement procedures or methods of analysis of sensor responses which compensate the limitations of sensors devices. One of the fields of investigations covers the dynamic measurements of sensors or sensor-arrays response with the utilization of flow modulation techniques. Different gas delivery patterns enable the possibility of extraction of unique features which improves the stability and selectivity of gas detecting systems. In this article three utilized flow modulation techniques are presented, together with the proposition of the evaluation method of their usefulness and robustness in environmental pollutants detecting systems. The results of dynamic measurements of an commercially available TGS sensor array in the presence of nitrogen dioxide and ammonia are shown.

  10. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  11. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yixin; Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987; Chen, Tingting

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carriedmore » out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.« less

  12. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.B.; Borling, D.C.; Powers, B.S.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less

  13. Spinal cord deformation due to nozzle gas flow effects using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wong, Ronnie J.; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Sun, Cuiru; Huang, Yize; Yang, Victor X. D.

    2015-03-01

    The use of gas assistance in laser machining hard materials is well established in manufacturing but not in the context of surgery. Laser cutting of osseous tissue in the context of neurosurgery can benefit from gas-assist but requires an understanding of flow and pressure effects to minimize neural tissue damage. In this study we acquire volumetric flow rates through a gas nozzle on the spinal cord, with dura and without dura.

  14. Numerical simulation of rarefied gas flow through a slit

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong

    1990-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  16. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  17. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  18. An Improved Model for a Once-through Counter-Cross-Flow Waste Heat Recovery Unit

    DTIC Science & Technology

    1983-09-01

    RAnkine Cycle Energy Recovery (RACER) system. As conceived, the RACER system will be an unfired waste heat recovery system designed to convert waste... heater to arrive at the feedwater inlet. For the given geometry and flow conditions, the model will calcu- late the water inlet temperature consistent...when given feedwater inlet temperature, steam outlet tempera- ture, operating pressure, inlet and outlet gas conditions and gas flow rate. In this

  19. Design and Testing of a Shell-Flow Hollow-Fiber Venting Gas Trap

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Cross, Cindy; Hansen, Scott; Vogel, Matthew; Dillon, Paul

    2013-01-01

    A Venting Gas Trap (VGT) was designed, built, and tested at NASA Johnson Space Center to eliminate dissolved and free gas from the circulating coolant loop of the Orion Environmental Control Life Support System. The VGT was downselected from two different designs. The VGT has robust operation, and easily met all the Orion requirements, especially size and weight. The VGT has a novel design with the gas trap made of a five-layer spiral wrap of porous hydrophobic hollow fibers that form a cylindrically shaped curtain terminated by a dome-shaped distal plug. Circulating coolant flows into the center of the cylindrical curtain and flows between the hollow fibers, around the distal plug, and exits the VGT outlet. Free gas is forced by the coolant flow to the distal plug and brought into contact with hollow fibers. The proximal ends of the hollow fibers terminate in a venting chamber that allows for rapid venting of the free gas inclusion, but passively limits the external venting from the venting chamber through two small holes in the event of a long-duration decompression of the cabin. The VGT performance specifications were verified in a wide range of flow rates, bubble sizes, and inclusion volumes. Long-duration and integrated Orion human tests of the VGT are also planned for the coming year.

  20. Pockels-effect cell for gas-flow simulation

    NASA Astrophysics Data System (ADS)

    Weimer, D.

    1982-05-01

    A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m.

  1. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears.more » In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.« less

  2. Surface Composition Influence on Internal Gas Flow at Large Knudsen Numbers

    DTIC Science & Technology

    2000-07-09

    situated in an ultra high vacuum system . The system is supplied with means of gas phase, surface CP585, Rarefied Gas Dynamics: 22nd International...control and gas flow measuring system . The experimental procedure consists in a few stages. The first stage includes surface preparation process at...solid body system , Proceedings 20-th Int. Symp. Rarefied Gas Dynamics, Peking University Press, Beijing, China, 1997, pp. 387-391. 3. Lord, R.G

  3. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  4. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  5. Uncertainty analysis of gas flow measurements using clearance-sealed piston provers in the range from 0.0012 g min-1 to 60 g min-1

    NASA Astrophysics Data System (ADS)

    Bobovnik, G.; Kutin, J.; Bajsić, I.

    2016-08-01

    This paper deals with an uncertainty analysis of gas flow measurements using a compact, high-speed, clearance-sealed realization of a piston prover. A detailed methodology for the uncertainty analysis, covering the components due to the gas density, dimensional and time measurements, the leakage flow, the density correction factor and the repeatability, is presented. The paper also deals with the selection of the isothermal and adiabatic measurement models, the treatment of the leakage flow and discusses the need for averaging multiple consecutive readings of the piston prover. The analysis is prepared for the flow range (50 000:1) covered by the three interchangeable flow cells. The results show that using the adiabatic measurement model and averaging the multiple readings, the estimated expanded measurement uncertainty of the gas mass flow rate is less than 0.15% in the flow range above 0.012 g min-1, whereas it increases for lower mass flow rates due to the leakage flow related effects. At the upper end of the measuring range, using the adiabatic instead of the isothermal measurement model, as well as averaging multiple readings, proves important.

  6. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.

    2015-06-01

    The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarilymore » be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.« less

  7. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  8. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  9. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  10. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  11. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  12. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oilmore » (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.« less

  13. Flow-switching device for comprehensive two-dimensional gas chromatography.

    PubMed

    Bueno, Pedro A; Seeley, John V

    2004-02-20

    A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.

  14. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    NASA Astrophysics Data System (ADS)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  15. Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect

    NASA Astrophysics Data System (ADS)

    Chen, Li; Fang, Wenzhen; Kang, Qinjun; De'Haven Hyman, Jeffrey; Viswanathan, Hari S.; Tao, Wen-Quan

    2015-03-01

    Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al. [Phys. Rev. E 65, 046308 (2002), 10.1103/PhysRevE.65.046308]. The second-order Beskok and Karniadakis-Civan's correlation [A. Beskok and G. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999), 10.1080/108939599199864 and F. Civan, Transp. Porous Med. 82, 375 (2010), 10.1007/s11242-009-9432-z] is adopted to calculate the apparent permeability based on intrinsic permeability and the Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate the model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicate that Klinkenberg's effect plays a significant role on fluid flow in low-permeability porous media, and it is more pronounced as the Knudsen number increases. Fluid flow in a shale matrix with and without fractures is also studied, and it is found that the fractures greatly enhance the fluid flow and Klinkenberg's effect leads to higher global permeability of the shale matrix.

  16. Performance of different PEEP valves and helmet outlets at increasing gas flow rates: a bench top study.

    PubMed

    Isgrò, S; Zanella, A; Giani, M; Abd El Aziz El Sayed Deab, S; Pesenti, A; Patroniti, N

    2012-10-01

    Aim of the paper was to assess the performance of different expiratory valves and the resistance of helmet outlet ports at increasing gas flow rates. A gas flow-meter was connected to 10 different expiratory peep valves: 1 water-seal valve, 4 precalibrated fixed PEEP valves and 5 adjustable PEEP valves. Three new valves of each brand, set at different pressure levels (5-7.5-10-12.5-15 cmH(2)O, if available), were tested at increasing gas flow rates (from 30 to 150 L/min). We measured the pressure generated just before the valves. Three different helmets sealed on a mock head were connected at the inlet port with a gas flow-meter while the outlet was left clear. We measured the pressure generated inside the helmet (due to the flow-resistance of the outlet port) at increasing gas flow rates. Adjustable valves showed a variable degree flow-dependency (increasing difference between the measured and the expected pressure at increasing flow rates), while pre-calibrated valves revealed a flow-independent behavior. Water seal valve showed low degree flow-dependency. The pressures generated by the outlet port of the tested helmets ranged from 0.02 to 2.29 cmH(2)O at the highest gas flow rate. Adjustable PEEP valves are not suggested for continuous-flow CPAP systems as their flow-dependency can lead to pressures higher than expected. Precalibrated and water seal valves exhibit the best performance. Different helmet outlet ports do not significantly affect the pressure generated during helmet CPAP. In order to avoid iatrogenic complications gas flow and pressure delivered during helmet CPAP must always be monitored.

  17. Effective Boundary Conditions for Continuum Method of Investigation of Rarefied Gas Flow over Blunt Body

    NASA Astrophysics Data System (ADS)

    Brykina, I. G.; Rogov, B. V.; Semenov, I. L.; Tirskiy, G. A.

    2011-05-01

    Super- and hypersonic rarefied gas flow over blunt bodies is investigated by using asymptotically correct viscous shock layer (VSL) model with effective boundary conditions and thin viscous shock layer model. Correct shock and wall conditions for VSL are proposed with taking into account terms due to the curvature which are significant at low Reynolds number. These conditions improve original Davis's VSL model [1]. Numerical calculation of Krook equation [2] is carried out to verify continuum results. Continuum numerical and asymptotic solutions are compared with kinetic solution, free-molecule flow solution and with DSMC solutions [3, 4, 5] over a wide range of free-stream Knudsen number Kn∞. It is shown that taking into account terms with shock and surface curvatures have a pronounced effect on skin friction and heat-transfer in transitional flow regime. Using the asymptotically correct VSL model with effective boundary conditions significantly extends the range of its applicability to higher Kn∞ numbers.

  18. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    NASA Astrophysics Data System (ADS)

    Goree, J.; Liu, Bin; Drake, David

    2006-08-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  19. Modeling of acoustic wave dissipation in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Guerin, Gilles; Goldberg, David

    2005-07-01

    Recent sonic and seismic data in gas hydrate-bearing sediments have indicated strong waveform attenuation associated with a velocity increase, in apparent contradiction with conventional wave propagation theory. Understanding the reasons for such energy dissipation could help constrain the distribution and the amounts of gas hydrate worldwide from the identification of low amplitudes in seismic surveys. A review of existing models for wave propagation in frozen porous media, all based on Biot's theory, shows that previous formulations fail to predict any significant attenuation with increasing hydrate content. By adding physically based components to these models, such as cementation by elastic shear coupling, friction between the solid phases, and squirt flow, we are able to predict an attenuation increase associated with gas hydrate formation. The results of the model agree well with the sonic logging data recorded in the Mallik 5L-38 Gas Hydrate Research Well. Cementation between gas hydrate and the sediment grains is responsible for the increase in shear velocity. The primary mode of energy dissipation is found to be friction between gas hydrate and the sediment matrix, combined with an absence of inertial coupling between gas hydrate and the pore fluid. These results predict similar attenuation increase in hydrate-bearing formations over most of the sonic and seismic frequency range.

  20. Modeling and Simulation of the Off-gas in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Gandt, Karima; Echterhof, Thomas; Pfeifer, Herbert

    2017-12-01

    The following paper describes an approach to process modeling and simulation of the gas phase in an electric arc furnace (EAF). The work presented represents the continuation of research by Logar, Dovžan, and Škrjanc on modeling the heat and mass transfer and the thermochemistry in an EAF. Due to the lack of off-gas measurements, Logar et al. modeled a simplified gas phase under consideration of five gas components and simplified chemical reactions. The off-gas is one of the main continuously measurable EAF process values and the off-gas flow represents a heat loss up to 30 pct of the entire EAF energy input. Therefore, gas phase modeling offers further development opportunities for future EAF optimization. This paper presents the enhancement of the previous EAF gas phase modeling by the consideration of additional gas components and a more detailed heat and mass transfer modeling. In order to avoid the increase of simulation time due to more complex modeling, the EAF model has been newly implemented to use an efficient numerical solver for ordinary differential equations. Compared to the original model, the chemical components H2, H2O, and CH4 are included in the gas phase and equilibrium reactions are implemented. The results show high levels of similarity between the measured operational data from an industrial scale EAF and the theoretical data from the simulation within a reasonable simulation time. In the future, the dynamic EAF model will be applicable for on- and offline optimizations, e.g., to analyze alternative input materials and mode of operations.

  1. The preparation of calcium superoxide in a flowing gas stream and fluidized bed

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1980-01-01

    Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.

  2. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen

    2016-01-01

    The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.

  3. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  4. Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Sourabh

    Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal

  5. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  6. Assessment of a flow-through balance for hypersonic wind tunnel models with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.

    1993-01-01

    The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.

  7. The gas heterogeneous flows cleaning technology from corona discharge field

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Tokarev, A.; Judanov, V.; Vinogradov, V.

    2017-11-01

    A nanogold capture and extraction from combustion products of Kara-Keche coal, description the process: a coal preparation to experiments, nanogold introducing in its composition, temperature and time performance of combustion, device and function of experimental apparatus, gas-purification of the gas flow process and receiving combustion products (condensate, coke, ash, rags) is offerred.

  8. Schlieren optical visualization for transient EHD induced flow in a stratified dielectric liquid under gas-phase ac corona discharges

    NASA Astrophysics Data System (ADS)

    Ohyama, R.; Inoue, K.; Chang, J. S.

    2007-01-01

    A flow pattern characterization of electrohydrodynamically (EHD) induced flow phenomena of a stratified dielectric fluid situated in an ac corona discharge field is conducted by a Schlieren optical system. A high voltage application to a needle-plate electrode arrangement in gas-phase normally initiates a conductive type EHD gas flow. Although the EHD gas flow motion initiated from the corona discharge electrode has been well known as corona wind, no comprehensive study has been conducted for an EHD fluid flow motion of the stratified dielectric liquid that is exposed to the gas-phase ac corona discharge. The experimentally observed result clearly presents the liquid-phase EHD flow phenomenon induced from the gas-phase EHD flow via an interfacial momentum transfer. The flow phenomenon is also discussed in terms of the gas-phase EHD number under the reduced gas pressure (reduced interfacial momentum transfer) conditions.

  9. Appliance of Inertial Gas-Dynamic Separation of Gas-Dispersion Flows in the Curvilinear Convergent-Divergent Channels for Compressor Equipment Reliability Improvement

    NASA Astrophysics Data System (ADS)

    Liaposhchenko, O. O.; Sklabinskyi, V. I.; Zavialov, V. L.; Pavlenko, I. V.; Nastenko, O. V.; Demianenko, M. M.

    2017-08-01

    The new methods of vibration and inertial gas-dynamic separation of gas-condensate and dusty flows and the corresponding separation devices are proposed in order to avoid emergencies and premature wear of parts and components of the compressor equipment. The formation of the gas flow and disperse particles in the curvilinear convergent-divergent channels are investigated. The optimizing hydrodynamic profiling of a geometrical configuration of curvilinear separation channels with rigid and flexible walls of baffles is carried out.

  10. Stationary spiral flow in polytropic stellar models

    PubMed Central

    Pekeris, C. L.

    1980-01-01

    It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models. PMID:16592825

  11. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  12. FAIMS Operation for Realistic Gas Flow Profile and Asymmetric Waveforms Including Electronic Noise and Ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.

    The use of Field Asymmetric waveform Ion Mobility Spectrometry (FAIMS) has rapidly grown with the advent of commercial FAIMS systems coupled to mass spectrometry. However, many fundamental aspects of FAIMS remain obscure, hindering its technological improvement and expansion of analytical utility. Recently, we developed a comprehensive numerical simulation approach to FAIMS that can handle any device geometry and operational conditions. The formalism was originally set up in one dimension for a uniform gas flow and limited to ideal asymmetric voltage waveforms. Here we extend the model to account for a realistic gas flow velocity distribution in the analytical gap, axialmore » ion diffusion, and waveform imperfections (e.g. noise and ripple). The non-uniformity of gas flow velocity profile has only a minor effect, slightly improving resolution. However, waveform perturbations are significant even at very low levels, in some cases {approx} 0.01% of nominal voltage. These perturbations always improve resolution and decrease sensitivity. Variation of noise or ripple amplitude produces a trade-off between resolution and sensitivity. This trade-off is physically equivalent to that obtained via adjustment of the gap width and/or asymmetric waveform frequency, but the scaling of low-frequency ripple appears to be a more practical way to control FAIMS resolution.« less

  13. Hybrid lattice gas simulations of flow through porous media

    NASA Astrophysics Data System (ADS)

    Becklehimer, Jeffrey Lynn

    1997-10-01

    This study introduces a suite of models designed to investigate transport phenomena in simulated porous media such as rigid or quenched sediment and clay-like deformable environments. This is achieved by using a variety of techniques that are borrowed from the field of statistical physics. These techniques include percolation, lattice gas, and cellular automata. A percolation-based model is used to study a porous medium by using rods and chains of various shapes and sizes to model the porous media formed by sediments. This is further extended to model clay-like deformable media by interacting heavy sediment particles. An interacting lattice gas computer simulation model based on the Metropolis algorithm is used to study the transport properties of fluid particles and permeability of a porous sediment. Finally, a hybrid lattice gas model is introduced by combining the Metropolis Monte Carlo method with a direct simulation which involves the collision rules as in cellular automata. This model is then used to study shock propagation in a fluid filled porous medium. This study is then extended to study shock propagation through in a fluid filled elastic porous medium. Several interesting and new results were obtained. These results show that for rigid chain percolation the percolation threshold shows a dependence on the chain length of pc~ Lc-1/2 and the jamming coverage decreases with the chain length as Lc- 1/3. For the random SAW-like chains the percolation threshold decays with the chain length as Lc- 0.01 and the jamming coverage as Lc-1/3. The fluid flow model shows that permeability depends nonmonotonically on the concentration of the fluid. For some fluids at a fixed porosity, the permeability increases on increasing the bias until a certain value Bc above which it decreases. Also, it was found that a shock propagates in a drift-like fashion when in a rigid porous medium when the porosity is high; low porosity damps out the shock front very quickly. For a shock

  14. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  15. Impact of Variations on 1-D Flow in Gas Turbine Engines via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Ngo, Khiem Viet; Tumer, Irem

    2004-01-01

    The unsteady compressible inviscid flow is characterized by the conservations of mass, momentum, and energy; or simply the Euler equations. In this paper, a study of the subsonic one-dimensional Euler equations with local preconditioning is presented using a modal analysis approach. Specifically, this study investigates the behavior of airflow in a gas turbine engine using the specified conditions at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine, to determine the impact of variations in pressure, velocity, temperature, and density at low Mach numbers. Two main questions motivate this research: 1) Is there any aerodynamic problem with the existing gas turbine engines that could impact aircraft performance? 2) If yes, what aspect of a gas turbine engine could be improved via design to alleviate that impact and to optimize aircraft performance? This paper presents an initial attempt to model the flow behavior in terms of their eigenfrequencies subject to the assumption of the uncertainty or variation (perturbation). The flow behavior is explored using simulation outputs from a customer-deck model obtained from Pratt & Whitney. Variations of the main variables (i.e., pressure, temperature, velocity, density) about their mean states at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine are modeled. Flow behavior is analyzed for the high-pressure compressor and combustion chamber utilizing the conditions on their left and right boundaries. In the same fashion, similar analyses are carried out for the high-pressure and low-pressure turbines. In each case, the eigenfrequencies that are obtained for different boundary conditions are examined closely based on their probabilistic distributions, a result of a Monte Carlo 10,000 sample simulation. Furthermore, the characteristic waves and wave response are analyzed and contrasted among different cases, with and without preconditioners. The results reveal

  16. Film stability in a vertical rotating tube with a core-gas flow.

    NASA Technical Reports Server (NTRS)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  17. On-site flow calibration of turbine meters for natural gas custody transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Schexnayder, L.L.; Conkling, D.B.

    1991-05-01

    This paper presents the design criteria, performance characteristics, and calibration procedures relating to a turbine-meter flow-calibration facility used in the high-volume custody transfer of natural gas. The facility, located in Venice, LA, is owned and operated by Chevron U.S.A. Inc. and is used to meter sales volumes of up to 500 MMscf/D (14.16 {times} 10 std m{sup 3}/d) at a nominal operating pressure of 1,000 psig (6.9 MPa). The system includes three 12-in. (30.48 cm) turbine meters used for sales-volume measurement, a bank of sonic nozzles, and a master turbine meter connected in series with the sales meters. The sonicmore » nozzles and master meter serve as flow-proving and -calibration devices. sonic nozzles are recommended by the turbine-meter standard for meter calibration. This paper examines the performance of on-site calibration of gas turbine meters. The Venice facility successfully demonstrated that on-site calibration of gas-metering devices can ensure accurate gas-flow measurement under field conditions.« less

  18. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  19. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  20. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  1. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.

    PubMed

    Jeong, Heon-Ho; Yadavali, Sagar; Issadore, David; Lee, Daeyeon

    2017-07-25

    Microscale gas bubbles have demonstrated enormous utility as versatile templates for the synthesis of functional materials in medicine, ultra-lightweight materials and acoustic metamaterials. In many of these applications, high uniformity of the size of the gas bubbles is critical to achieve the desired properties and functionality. While microfluidics have been used with success to create gas bubbles that have a uniformity not achievable using conventional methods, the inherently low volumetric flow rate of microfluidics has limited its use in most applications. Parallelization of liquid droplet generators, in which many droplet generators are incorporated onto a single chip, has shown great promise for the large scale production of monodisperse liquid emulsion droplets. However, the scale-up of monodisperse gas bubbles using such an approach has remained a challenge because of possible coupling between parallel bubbles generators and feedback effects from the downstream channels. In this report, we systematically investigate the effect of factors such as viscosity of the continuous phase, capillary number, and gas pressure as well as the channel uniformity on the size distribution of gas bubbles in a parallelized microfluidic device. We show that, by optimizing the flow conditions, a device with 400 parallel flow focusing generators on a footprint of 5 × 5 cm 2 can be used to generate gas bubbles with a coefficient of variation of less than 5% at a production rate of approximately 1 L h -1 . Our results suggest that the optimization of flow conditions using a device with a small number (e.g., 8) of parallel FFGs can facilitate large-scale bubble production.

  2. Multi-Scale Morphological Analysis of Conductance Signals in Vertical Upward Gas-Liquid Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying

    2016-11-01

    The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.

  3. Spontaneous pulse generation in a steady channel flow of a colloidal suspension - the role of dissolved gas

    NASA Astrophysics Data System (ADS)

    Shim, Suin; Shardt, Orest; Stone, Howard A.

    2017-11-01

    We introduce a phenomenon that is observed when deionized (DI) water with suspended charged particles flows through a single microfluidic channel. When an aqueous suspension of amine-modified, positively charged polystyrene particles (volume fraction = 0.01) flows steadily through a serpentine polydimethylsiloxane (PDMS) channel, a pulse of particles is generated, which then flows through the channel at a slower speed than the mean flow velocity. We quantify the results and rationalize the observations by considering the diffusiophoresis of charged particles driven by gas leakage through the permeable PDMS walls. A mathematical model will be compared with the experimental observations.

  4. Estimating the gas hydrate recovery prospects in the western Black Sea basin based on the 3D multiphase flow of fluid and gas components within highly permeable paleo-channel-levee systems

    NASA Astrophysics Data System (ADS)

    Burwicz, Ewa; Zander, Timo; Rottke, Wolf; Bialas, Joerg; Hensen, Christian; Atgin, Orhan; Haeckel, Matthias

    2017-04-01

    Gas hydrate deposits are abundant in the Black Sea region and confirmed by direct observations as well as geophysical evidence, such as continuous bottom simulating reflectors (BSRs). Although those gas hydrate accumulations have been well-studied for almost two decades, the migration pathways of methane that charge the gas hydrate stability zone (GHSZ) in the region are unknown. The aim of this study is to explore the most probable gas migration scenarios within a three-dimensional finite element grid based on seismic surveys and available basin cross-sections. We have used the commercial software PetroMod(TM) (Schlumberger) to perform a set of sensitivity studies that narrow the gap between the wide range of sediment properties affecting the multi-phase flow in porous media. The high-resolution model domain focuses on the Danube deep-sea fan and associated buried sandy channel-levee systems whereas the total extension of the model domain covers a larger area of the western Black Sea basin. Such a large model domain allows for investigating biogenic as well as thermogenic methane generation and a permeability driven migration of the free phase of methane on a basin scale to confirm the hypothesis of efficient methane migration into the gas hydrate reservoir layers by horizontal flow along the carrier beds.

  5. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much fastermore » gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.« less

  6. Analysis of thermo-chemical nonequilibrium models for carbon dioxide flows

    NASA Technical Reports Server (NTRS)

    Rock, Stacey G.; Candler, Graham V.; Hornung, Hans G.

    1992-01-01

    The aerothermodynamics of thermochemical nonequilibrium carbon dioxide flows is studied. The chemical kinetics models of McKenzie and Park are implemented in separate three-dimensional computational fluid dynamics codes. The codes incorporate a five-species gas model characterized by a translational-rotational and a vibrational temperature. Solutions are obtained for flow over finite length elliptical and circular cylinders. The computed flowfields are then employed to calculate Mach-Zehnder interferograms for comparison with experimental data. The accuracy of the chemical kinetics models is determined through this comparison. Also, the methodology of the three-dimensional thermochemical nonequilibrium code is verified by the reproduction of the experiments.

  7. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    PubMed

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.

  8. Boundary conditions for gas flow problems from anisotropic scattering kernels

    NASA Astrophysics Data System (ADS)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline

    2015-10-01

    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  9. Gas flows in S-E binary systems of galaxies

    NASA Technical Reports Server (NTRS)

    Sotnikova, N. YA.

    1990-01-01

    Tidal interaction between the galaxies in binary systems leads to important consequences. Some peculiarities in galactic morphology as well as the transfer of matter from one galaxy to another may be due to this factor. In particular, gas flows in intergalactic space may be formed. Such flows enriching one component with gas from the other may play a substantial role in the evolution of mixed (S-E) pairs. One can mention several facts corroborating the possibility of the gas transfer from the spiral to the elliptical galaxy. High HI content (10(exp 7) to 10(exp 9) solar mass) is detected in nearly 40 E galaxies (Bottinelli and Gougenheim, 1979; Knapp et al., 1985). Such galaxies are often members of pairs or of multiple systems including an S galaxy, which may be the source of gas (Smirnov and Komberg, 1980). Moreover, the gas kinematics and its distribution also indicate an external origin for this gas (Knapp et al., 1985). In many cases there is an outer gaseous disk. The directions of the disk and of stellar rotation don't always coincide (van Gorkom et al., 1985; Varnas et al., 1987). The galaxy colors in S-E pairs are correlated (the Holmberg effect): bluer ellipticals have spiral components that are usually bluer (Demin et al., 1984). The fraction of E galaxies with emission lines (N sub em) in S-E pairs showing traces of tidal interaction is twice as large (N sub em approx. equals 0.24) as in pairs without interaction (N sub em approx. equals 0.12) (Sotnikova, 1988b). Since the presence of emission lines in a galaxy spectrum strongly depends on gas content, this fact also leads to the conclusion that ellipticals in interacting S-E pairs are enriched with gas. These facts may be considered as a serious indication of the existence of gas transfer. Hence, investigation of this process is of interest.

  10. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  11. Conical flow near singular rays. [shock generation in ideal gas

    NASA Technical Reports Server (NTRS)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  12. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling effortsmore » that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to

  13. Modeling of Methane Migration in Shallow Aquifers from Shale Gas Well Drilling.

    PubMed

    Zhang, Liwei; Soeder, Daniel J

    2016-05-01

    The vertical portion of a shale gas well, known as the "tophole" is often drilled using an air-hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3-D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high-pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre-existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane. © 2015, National Ground Water Association.

  14. Liquid slip over gas nanofilms

    NASA Astrophysics Data System (ADS)

    Ramisetti, Srinivasa B.; Borg, Matthew K.; Lockerby, Duncan A.; Reese, Jason M.

    2017-08-01

    We propose the rarefied-gas-cushion model (r-GCM), as an extended version of the gas-cushion model (GCM), to estimate the apparent slip of water flowing over a gas layer trapped at a solid surface. Nanobubbles or gas nanofilms may manifest rarefied-gas effects and the r-GCM incorporates kinetic boundary conditions for the gas component in the slip Knudsen regime. These enable an apparent hydrodynamic slip length to be calculated given the gas thickness, the Knudsen number, and the bulk fluid viscosities. We assess the r-GCM through nonequilibrium molecular dynamics (NEMD) simulations of shear-driven liquid flow over an infinite gas nanofilm covering a solid surface, from the gas slip regime to the early transition regime, beyond which NEMD is computationally impractical. We find that, over the flow regimes examined, the r-GCM provides better predictions of the apparent liquid slip and retrieves both the GCM and the free-molecular behavior in the appropriate limits.

  15. Macro-kinetic investigation on phenol uptake from air by biofiltration: Influence of superficial gas flow rate and inlet pollutant concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zilli, M.; Fabiano, B.; Ferraiolo, A.

    1996-02-20

    The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1,650more » mg {center_dot} m{sup {minus}3}, or the superficial gas flow rate, from 30 to 460 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg {center_dot} m{sup {minus}3} {center_dot} h{sup {minus}1}. The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg {center_dot} m{sup {minus}3} and superficial gas flow rates ranging from 30 to 92 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg {center_dot} m{sup {minus}3}, operating at a superficial gas flow rate of 30 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}.« less

  16. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  17. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less

  18. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  19. A comparison of upwind schemes for computation of three-dimensional hypersonic real-gas flows

    NASA Technical Reports Server (NTRS)

    Gerbsch, R. A.; Agarwal, R. K.

    1992-01-01

    The method of Suresh and Liou (1992) is extended, and the resulting explicit noniterative upwind finite-volume algorithm is applied to the integration of 3D parabolized Navier-Stokes equations to model 3D hypersonic real-gas flowfields. The solver is second-order accurate in the marching direction and employs flux-limiters to make the algorithm second-order accurate, with total variation diminishing in the cross-flow direction. The algorithm is used to compute hypersonic flow over a yawed cone and over the Ames All-Body Hypersonic Vehicle. The solutions obtained agree well with other computational results and with experimental data.

  20. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    NASA Astrophysics Data System (ADS)

    Frederick, Jennifer Mary

    Methane hydrate is an ice-like solid which sequesters large quantities of methane gas within its crystal structure. The source of methane is typically derived from organic matter broken down by thermogenic or biogenic activity. Methane hydrate (or more simply, hydrate) is found around the globe within marine sediments along most continental margins where thermodynamic conditions and methane gas (in excess of local solubility) permit its formation. Hydrate deposits are quite possibly the largest reservoir of fossil fuel on Earth, however, their formation and evolution in response to changing thermodynamic conditions, such as global warming, are poorly understood. Upward fluid flow (relative to the seafloor) is thought to be important for the formation of methane hydrate deposits, which are typically found beneath topographic features on the seafloor. However, one-dimensional models predict downward flow relative to the seafloor in compacting marine sediments. The presence of upward flow in a passive margin setting can be explained by fluid focusing beneath topography when sediments have anisotropic permeability due to sediment bedding layers. Even small slopes (10 degrees) in bedding planes produce upward fluid velocity, with focusing becoming more effective as slopes increase. Additionally, focusing causes high excess pore pressure to develop below topographic highs, promoting high-angle fracturing at the ridge axis. Magnitudes of upward pore fluid velocity are much larger in fractured zones, particularly when the surrounding sediment matrix is anisotropic in permeability. Enhanced flow of methane-bearing fluids from depth provides a simple explanation for preferential accumulation of hydrate under topographic highs. Models of fluid flow at large hydrate provinces can be constrained by measurements of naturally-occurring radioactive tracers. Concentrations of cosmogenic iodine, 129-I, in the pore fluid of marine sediments often indicate that the pore fluid is much